
NBER WORKING PAPER SERIES

MEASURING ECONOMIC GROWTH FROM OUTER SPACE

J. Vernon Henderson
Adam Storeygard

David N. Weil

Working Paper 15199
http://www.nber.org/papers/w15199

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
July 2009

We thank Chris Elvidge for advice and auxiliary data; Andrew Foster, Stefan Hoderlein, Blaise Melly,
Daniel Orenstein, and seminar participants at Brown, the 2008 BREAD/CEPR/Verona Summer School
on Development Economics, and the 2009 Annual Meeting of the Population Association of America
for comments; and Joshua Wilde and Isabel Tecu for research assistance. Storeygard acknowledges
support from Award Number T32HD007338 from the Eunice Kennedy Shriver National Institute of
Child Health and Human Development. The views expressed herein are those of the author(s) and
do not necessarily reflect the views of the National Bureau of Economic Research.

© 2009 by J. Vernon Henderson, Adam Storeygard, and David N. Weil. All rights reserved. Short
sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided
that full credit, including © notice, is given to the source.



Measuring Economic Growth from Outer Space
J. Vernon Henderson, Adam Storeygard, and David N. Weil
NBER Working Paper No. 15199
July 2009
JEL No. E01,O47,Q1,R11

ABSTRACT

GDP growth is often measured poorly for countries and rarely measured at all for cities. We propose
a readily available proxy: satellite data on lights at night. Our statistical framework uses light growth
to supplement existing income growth measures. The framework is applied to countries with the lowest
quality income data, resulting in estimates of growth that differ substantially from established estimates.
We then consider a longstanding debate: do increases in local agricultural productivity increase city
incomes? For African cities, we find that exogenous  gricultural productivity shocks (high rainfall
years) have substantial effects on local urban economic activity.
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Introduction 
 
 Gross Domestic Product (GDP) is the most important variable in analyses of economic 

growth.  The conceptual problems in defining GDP, let alone using it as a measure of welfare, 

are the stuff of introductory economics courses.  Just as serious, however, is the problem that 

GDP itself is often badly measured, especially in developing countries.  Relative to developed 

countries, in a typical developing country a much smaller fraction of economic activity is 

conducted within the formal sector, the degree of economic integration and price equalization 

across regions is lower, and the government statistical infrastructure is much weaker.  These 

factors make the calculation of nominal GDP (total value added, in domestic prices) difficult.   

Making useful comparisons of real GDP, either over time or between countries, also requires the 

construction of price indices: either a domestic price index to measure real income growth within 

a country, or purchasing power parity exchange (PPP) rates based on prices for a comparable set 

of goods to make inter-country comparisons.   

In the Penn World Tables (PWT), one of the standard compilations of cross-country data 

on income, countries are given grades corresponding to subjective data quality, with a grade of A 

indicating a margin of error of 10%, B indicating 20%, C indicating 30%, and D indicating 40%. 

The grading is based in part on the ability to construct good PPP measures, but also reflects a 

country’s capacity to produce reliable national income accounts and domestic price indices. 

Almost all industrialized countries receive a grade of A.  By contrast, for the 43 countries of sub-

Saharan Africa, 17 get a D and 26 get a C. (Deaton and Heston 2008) 

An illustration of the degree of measurement error in the PWT comes from Johnson et 

al.’s (2009) study of revisions to the PWT data.  Specifically, the authors compared version 6.1 

of the PWT, released in 2002, with version 6.2, released in 2006.  The standard deviation of the 

change in countries’ average growth over the period 1970-1999 was 1.1% per year – an 

enormous change in comparison to the average growth rate over this period of 1.56% per year.  

To give a particularly striking example: the authors calculated the ten worst growth performers in 

Africa based on the 6.1 data and similarly based on the 6.2 data.  Only five countries were on 

both lists.1   Measurement error in GDP data can easily lead researchers to erroneous conclusions.  

                                                 
1 Changes in data between different versions of the PWT can result from changes in the pricing 
survey used to establish purchasing power parities (known at the International Comparisons 
Project or ICP) as well as revisions in underlying national income accounts data and changes in 



 3

For example, Dawson et al. (2001) claim that the empirical link between output volatility and 

income growth in the PWT data is purely a product of measurement error in annual income.   

In the worst case, some countries simply have no national accounts data available at all.  

For example, Iraq, Myanmar, Somalia, and Liberia are among the countries not included in the 

most recent (6.2) version of PWT.  Finally for most developing countries and many developed 

ones, reliable data on output at the sub-national level, particularly cities but even larger regions, 

is not regularly available. 

 In response to the problems of measuring GDP, there is a long tradition in economics of 

considering various proxies that cover periods or regions for which GDP data are not available at 

all or not available in a timely fashion.  For example, until the year 2005, the Federal Reserve 

Board based its monthly index of industrial production in part on a survey of utilities that 

measured electricity delivered to different classes of industrial customers.  Similarly, an IMF 

study examining electricity consumption in Jamaica over the decade of the 1990s concluded that 

officially measured GDP growth, which averaged 0.3% per year, understated true output growth 

by 2.7% per year, the gap being explained by growth of the informal sector (IMF, 2006). 

Economic historians have also employed a variety of proxies for studying economic outcomes in 

the period before the creation of national income accounts and in order to examine growth in 

sub-national units.  For example, Good (1994) estimates output in 22 sub-regions of the 

Habsburg Empire in the period 1870-1910 using proxies such as the number of letters mailed per 

capita.  The essays in Steckel and Rose (2002) use skeletal remains to measure both the average 

standard of living and the degree of inequality in the Americas over the last two millennia. 

In this paper we explore the usefulness of a different proxy for economic activity: the 

amount of light that can be observed from outer space.  More particularly, our focus will be on 

using changes in “night lights” as a measure of economic growth. There are two reasons to do so. 

First we can use the change in night light intensity as an additional measure of income growth.  

Even if changes in light from space are subject measurement error, it is well known that several 

error-prone measures are better than one, especially if there is no reason to think that the 

measurement errors are correlated (e.g., Browning and Crosley, 2009).  In the paper, we develop 

                                                                                                                                                             
methodology.  Versions of the PWT within the same “generation,” for examples versions 6.1 and 
6.2, use the same ICP data.   Johnson et al. report that changes in national income accounts data 
are the dominant source of differences between the two versions.   
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a simple framework showing how to combine our lights measure, which is in a different metric 

than income (c.f., Browning and Crosley, 2009 or Krueger and Lindahl, 2001), with income 

measures to improve estimates of true economic growth. We illustrate the methodology with an 

application to countries that are perceived as having low capacity in generating reliable national 

income accounts and price indices, those that receive a grade D in the PWT. For these countries 

we provide new estimates of their economic growth over the period 1992/3 to 2002/3. 

Second, there are many circumstances where we have changes in night lights data that 

inform us about economic growth, but no corresponding measures of income growth. Most 

significantly, night lights data are available at a far greater degree of geographic fineness than is 

attainable in any standard income and product accounts.  As discussed later, we can map data on 

light observed from space on approximately one-kilometer squares and aggregate them to the 

city or regional level. This makes the data uniquely suited to spatial analyses of economic 

activity. Economic analysis of growth and of the impacts of policies and events on cities and 

regions of many countries is hindered by a complete absence of any regular measure of local 

economic activity. While population data are sometimes regularly available for cities above a 

certain size, almost no countries have city level GDP data.2 Night lights data give us such a 

measure. Note also that data from satellites are available at a much higher time frequency than 

standard output measures. Thus they are available well in advance of income measures from 

national accounts and provide an early signal of country growth changes. Also, as will be 

illustrated below, they allow us to assess the time patterns on regional income growth of events 

such as discovery of minerals, construction of roads, civil strife, and the like. 

To illustrate the application of night lights to measuring economic growth at sub-national 

levels and at the same time contribute to a long-standing debate in economics, we examine the 

extent to which productivity in the agricultural hinterland of a city affects city income. Urban 

economists tend to model cities as either divorced from their hinterland (e.g., Black and 

Henderson, 1999) or as source of demand for local agricultural crops (von Thunen, 1826 and 

Nerlove and Sadka, 1991). Traditional development economics views the rural sector as simply a 

source of surplus labor (dual sector models following Lewis 1954 and Harris-Todaro 1970). The 

new economic geography allows agriculture to be a source of demand for urban products, but the 

interaction plays a limited role in analysis (Krugman, 1991, with some empirical application in 

                                                 
2 For an exception, see Au and Henderson (2006) on China. 
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de Mata et al., 2007). Only a handful of agricultural growth economists (e.g, Irz and Roe, 2005 

and Tiffin and Irz, 2006) seem to seriously consider that productivity gains in local agriculture 

play a strong role in stimulating city economic activity. The idea that agricultural activity spurs 

urban economies is hard to test because it require sub-national data on both city incomes and 

incomes in the agricultural hinterland of cities, as well as a context to make inferences about 

which way causality runs. In this paper, we make use of the natural experiment of rainfall shocks 

to examine the extent to which productivity gains in local agriculture engender increases in 

economic activity as measured by night lights, for 541 African cities served by local agricultural 

hinterlands. 

The rest of this paper is organized as follows. Section 1 gives a brief introduction to the 

night lights data, discusses more obvious examples of how they represent differences in income 

levels or growth across countries and the effects of shocks on growth or income levels, and 

estimates simple baseline specifications where changes in lights over time may be used to predict 

income growth. In Section 2 we develop the statistical framework to show how information on 

changes in lights can be combined with existing measures of income growth to get improved 

estimates of true income growth. In Section 3 we turn to the application where we estimate the 

impact of agricultural productivity shocks on urban economic activity for a large sample of 

African cities.  Section 4 concludes.  

 

1.   Night lights data  

Several US Air Force weather satellites circle the earth 14 times per day, recording the 

intensity of earth-based lights.  Each satellite observes every location on the planet (between 65 

degrees S latitude and 65 degrees N latitude) every night at some time between 8:30 and 10:00 

pm.  Using night lights during the dark half of the lunar cycle in seasons when the sun sets early 

removes intense sources of natural light, leaving mostly man-made light. Readings affected by 

auroral activity (the northern and southern lights) and forest fires are also removed both 

manually and using frequency filters. Observations where cloud cover obscures visible light are 

also excluded.  Intensity of lights is measured as a six-bit (0-63) digital number calculated for 

every 30-second output pixel (approximately 0.86 square kilometers at the equator), which is 

averaged across overlapping raw input pixels and all valid evenings in a year. The values are not 

direct measures of physical luminance, because sensor settings vary over time.  However, they 
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can be relatively calibrated over time to get a reasonable approximation of trends in luminance, 

in part because of several years in which multiple sensors on different satellites were collecting 

data at the same time.  The recalibrated data, which we use throughout the paper, is on a scale of 

0-65. Because pixel size varies by latitude,3 below in statistical analysis for each relevant region 

(e.g., a country), we calculate a weighted average of lights across pixels within a country, with 

the weights being a pixels’ shares of a region’s land area. 

Intensity of night lights reflects outdoor and some indoor use of lights. However, more 

generally, consumption of nearly all goods in the evening requires lights. As income rises, so 

does light usage per person, in both consumption activities and many investment activities. 

Obviously this a complex relationship, and we abstract from such issues as public versus private 

lighting, relative contributions of consumption versus investment, and the relationship between 

daytime and nighttime consumption and investment. Because we will be looking at growth in 

lights in statistical work, cross-country level differences in these ratios will not be important. 

Growth in lights is just another proxy measure for true growth in income, where the advantage of 

lights data over other proxies is that they are readily available. 

Table 1 gives some sense of the data, describing the distribution of digital numbers across 

pixels for ten countries covering a broad range of incomes and population densities. For 

reference, we also include data on GDP per capita, population density, and the fraction of the 

population living in urban areas.  One measure of interest is the fraction of pixels for which no 

light at all is registered.  In the United States, 67.7% of pixels are unlit.  In Canada that 

percentage is over 90, while in the Netherlands it is under 1.  The percentage of unlit pixels falls 

with income holding density constant; Bangladesh, with higher population density than the 

Netherlands, has 68% of pixels unlit.  Among poor, sparsely populated countries like 

Mozambique and Madagascar, over 99% of pixels are unlit. 

 Among the countries in Table 1 (and more generally in the sample) there are remarkably 

few pixels with digital numbers of 1 or 2.  Among middle and lower income countries, the most 

commonly observed range for the digital number is from 3-5; for the US and Canada, it is 6-10; 

and for the Netherlands, it is 21-62.  The minimal fraction of pixels with digital numbers of 1 or 

                                                 
3 Data for lights (and rainfall) are reported on a latitude-longitude grid.  Because of the curvature of the Earth, grid 
cell size varies in proportion to the cosine of latitude.  Thus all grid cell sizes are reported at the equator; sizes at 
other latitudes can be calculated accordingly.  For example a grid cell in London, at 51.5 degrees latitude, is 0.62 
square kilometers. 
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2 reflects, we think, the effect of software designed to filter out noise in the sensor. More 

generally the censoring of data at the low end means some low density-low income pixels do not 

get counted, so to some extent we will undercount lights nationally. Pixels with values of 63-65 

are mostly top-coded. 4  This affects small, densely-populated areas of rich countries and almost 

nowhere in poor countries. 

 Table 1 also shows the mean digital number and the within-country Gini for the digital 

number. The mean ranges from 22 in the Netherlands to 0.03 in Madagascar. The Gini varies 

enormously across countries as well. Below in the empirical work we will explore whether 

dispersion measures like the Gini additionally contribute to our ability to predict income growth.  

 

1.1   Simple examples of what night lights data reflect 

A global view  

A quick look at the world in Figure 1 suggests that lights reflect human economic activity 

as pointed out in Croft (1978), Elvidge et al. (1997), Sutton and Costanza (2002), Ebener et al 

(2005), Doll et al. (2006) and Sutton et al (2007), among others.5  In the figure unlit areas are 

black, and lights appear with intensity increasing from gray to white. Lights in an area reflect 

total intensity of income, which is increasing in both income per person and number of people. In 

the United States, where living standards are fairly uniform nationally, the higher concentration 

of lights in coastal areas near the oceans and the Great Lakes reflects the higher population 

densities there. The comparison of lights in Western Europe and India reflects huge differences 

in per capita income, as does the comparison between Brazil and the Democratic Republic of 

Congo.  

 

Eastern Europe and the Former Soviet Republics Over Time 

 

                                                 
4 Because of relative calibration across years, the top-coded value ranges from 63-65; in the raw data, it is always 
63.  The distribution of the data is such that it is much rarer to find pixels with a value of 63 in a satellite-year in 
which the top-coded value is 64 or 65. 
5 Indeed, several of these authors estimated the cross-sectional lights-GDP relationship for countries and subnational 
units of developed regions.  However, to our knowledge only Ebener et al (2005) and Sutton et al (2007) have 
considered sub-national units of developing countries, both with very small numbers of units per country. Sutton et 
al (2007) is the only paper with quantitative analysis of data for multiple (two) years, but they do not produce panel 
estimates. 
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To see mostly pure income effects, we examine the differential effects of the economic 

transition on income and lights in Eastern Europe versus the neighboring former Soviet republics. 

Specifically, we compare the former Soviet republics of Moldova and Ukraine, where per capita 

income fell in the wake of the USSR’s breakup, with their neighbors Hungary, Poland, and 

Romania, which went through a much smoother transition process. 

Although our satellite data only start two years into transition the differences in lights are 

dramatic (Elvidge et al., 2005). In Figure 2 the more brightly lit areas in 2002 are in the Eastern 

European countries, where light intensity increases dramatically from 1992 to 2002. The 

dimming of lights over the same 10 years for their neighbors who were formerly part of the 

Soviet Union is distinct. In Moldova and Ukraine, income per capita fell by 30% and 35% 

respectively, while population fell by 3% and 8% respectively, and light intensity dropped by 68% 

and 47% respectively. In Hungary, Poland and Romania, where incomes rose by 41%, 56%, and 

23%, the respective rises in lights were 46%, 80%, and 112%. 

 

Gemstones in Madagascar 

As mentioned above, a strength of night light data is that they can be used to examine 

changes in economic activity at a very local scale.  In late 1998, large deposits of rubies and 

sapphires were accidentally discovered in southern Madagascar, near the towns of Ilakaka and 

Sakaraha.  The region is now thought to contain the world’s largest sapphire deposit, accounting 

for around 50% of world supply, and Ilakaka and Sakaraha have become major trading centers 

for sapphires. Previously little more than a truck stop, Ilakaka’s population is now estimated at 

roughly 20,000.6  The story of these developments can clearly be seen in the night lights data in 

Figure 3.  In 1998 (and all but one of the previous six years) there were no lights visible in either 

Ilakaka or Sakaraha. Over the next five years there was a sharp growth in the number of pixels 

for which light is visible at all, and in the intensity of light per pixel. The other town visible in 

the figure, Ihosy, shows no such growth. If anything, Ihosy’s light gets smaller and weaker, as it 

suffers in the competition across local cities for population. 

 

                                                 
6 Hamilton, Richard BBC News Online, “Madagascar's Scramble for Sapphires,” 1 August 2003, 
http://news.bbc.co.uk/2/hi/africa/3114213.stm  Accessed 18 January 2008 
Hogg, Jonny. BBC News Online, “Madagascar's Sapphire Rush,” 17 November 2007, 
http://news.bbc.co.uk/2/hi/programmes/from_our_own_correspondent/7098213.stm Accessed 18 January 2008 
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1. 2. Lights as a measure of economic activity 

In this sub-section, we analyze the use of lights as a measure of growth in national 

economic activity. If jY  is true real income and jX% is total lights summed across all pixels 

country j  with area jA , as a level relationship we expect:  

 

  ln( / ) (ln( / )), ' 0j j j jX A f Y A f= >%                                     (1) 

 

As a “structural” relationship, increased income generates increased light usage, so lights in an 

area are an increasing function of total income in the area. As written and in this paper, we 

assume the latter is increasing at the same rate in number of people and per capita income. It is 

not clear what the curvature of the ( )f ⋅ function should be, although we will generally assume 

log-linearity.  There could be some diminution in the rate of increase of light as income rises: 

with more urbanization there is a greater likelihood of people living above one another, so that 

some light is blocked from reaching space. Also, with urbanization, there could be economies of 

scale in the use of lights, such as street lamps. On the other hand, there are large fixed costs 

associated with electricity distribution, which could lead to a convex relationship between 

income and light output around some income threshold.  Of course the shape of the relationship 

will also be affected by the nature of the sensors used.  The functional relationship between true 

luminance and recorded digital numbers is unknown. 

 Our data’s capacity to measure true luminance varies across countries by climate and is 

affected by changes in light sensor technology and specific satellites over time. Also the 

composition of income between consumption and investment, the division of economic activity 

between night and day, population density, and land area vary across counties. To mitigate all 

these problems, we restrict attention to growth formulations, where these variations across 

counties are differenced out, and we include year fixed effects in our analysis.   Also, we are not 

so interested in the structural relationship in (1) per se.  Rather, our goal is to predict income 

growth using light growth data. Similarly, by focusing on income growth, we can reduce error by 

avoiding PPP measures of income (Nuxoll, 1994). Instead, we look at the income growth rate in 

a country in constant local currency units (LCU), which tells us the real internal growth for the 

bundle of goods relevant to the country in question. 
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For purposes of predicting income growth using data on changes in lights, we difference 

a log-linear version of (1) and rearrange to estimate an equation of the form 

 

1 ,jt jt jty x eψ= +                                                         (2) 

 

where  1 1 1 1 1ln ln   and ln ln .jt jt jt jt jt jty Y Y x X X− −≡ − ≡ −  jtX  is the weighted average of lights 

across pixels in a country. The parameter ψ is the inverse of the elasticity of lights with respect 

to income.  We experimented with different functional forms and controls for changes in light 

dispersion.  Those experiments, some of which we report below, suggest (2) is appropriate.  

 We estimate (2) for a panel of countries, in two ways. First, we look at annual data for 

1992-2003 on income and light, and estimate a levels specification with a full set of country 

fixed effects. We add time fixed effects to help control for differences in light calibration across 

different aging satellites in different years, as well as sweeping out worldwide income growth 

effects. Identification is from within-country relative variation in lights and income over time. 

Second, we estimate (2) directly, with a long differenced relationship between 1992/93 and 

2002/03.  In our application in the next section we rely on the long differenced model. 

Our measure of GDP is in constant local currency units and taken from the World 

Development Indicators (WDI). The lights data are collected by US Air Force weather satellites.   

Data for the years 1992-2003 are processed and distributed by the National Oceanic and 

Atmospheric Administration’s (NOAA) National Geophysical Data Center. In years with data 

for two satellites, simple averages across satellites are calculated for each pixel. Details are in the 

Appendix.  

 

1.3 Basic Results 

 Table 2 presents some basic results for a slightly unbalanced panel of 187 countries over 

12 years, where we drop Equatorial Guinea as an outlier (see below).7 An average of 179 

countries appear in each year.  The smallest number in any year is 174. Column 1 shows the 

fixed effect results, where the within R2 is very high at 0.66. Column 2 suggests a quadratic 

                                                 
7 The panel is primarily unbalanced due to missing GDP data.  
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specification does not fit the data, while Figure 4, looking non-parametrically at the ,jt jty x  

relationship suggests a linear specification in the growth rates is appropriate. 

The estimated coefficient on lights, ψ , is 0.29 and highly significant in column 1.  As 

discussed below, this estimate is seriously biased and we are primarily interested in using it in 

prediction rather than using it to infer a structural parameter.   However, if one ignores the bias 

and interprets the coefficient structurally, it implies that the elasticity of light with respect to 

income (1/ ψ ) is greater than one, which would be consistent with light being a luxury good 

over the relevant range in the data.  

In column 3 we control for dispersion of lights within a country by using the Gini 

coefficient for lights among pixels within a country.  Given that the estimated relationship 

between lights and income in column 1 is concave, one would expect that a greater dispersion of 

lights, holding the average level of light constant, would be associated with lower average 

income. However, in column 3, the coefficient on lights is the same as in column 1 and the Gini 

has a zero coefficient.  We also tried interactions of the Gini with lights and a translog 

formulation of the two, but the results suggest the simple log-linear model fits the data better.8 

In column 4 we estimate the relationship in long differences, averaging the first two and 

last two years of data.9  The elasticity is somewhat higher, though within one standard error, of 

the estimate in column 1. Figure 5 plots the long difference data points for 171 countries adding 

back in Equatorial Guinea. The figure shows why the linear approximation in Table 2 does so 

well, and also illustrates why we dropped Equatorial Guinea as an extreme outlier.10 We also 

estimated a long difference version adding in a quadratic term and then the change in the Gini; 

again both coefficients are zero. 

  

2. Using night lights data to improve estimates of growth in true income  

 

                                                 
8To measure dispersion one could also use the standard deviation of lights within a country.  However, even after 
factoring out country and year fixed effects the simple correlation between the standard deviation and mean of lights 
is 0.89.   Note the Hirschman-Herfindahl index can be decomposed into a part related to the standard deviation and a 
part to do with number of pixels per country; the latter is already controlled for by country fixed effects.  
9 For the Bahamas, Barbados and Cambodia, income data for one of the four relevant years is missing. In these 
cases, we simply use the other three.   
10 The WDI data imply an annual growth rate of GDP in Equatorial Guinea of over 23%.  During this period, oil 
production in the country went from almost nothing to the third highest level in Africa.  The population is less than 
one million.   
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As mentioned above, the PWT gives grades to countries corresponding to degree of error 

in measurement of PPP GDP. While we are not using PPP numbers, we might expect that the 

quality gradient in the PWT would apply to our GDP data (built up from national income 

accounts and domestic price indices) as well.  Variations in the degree of measurement error 

should show up as heteroskedasticity in our regressions, with the error variance depending on the 

quality group a country is in.  To test whether this is the case, we calculated the mean squared 

errors for the four quality groups for the long difference equation (column 4 of Table 2).  These 

are, in grade order (A through D): 0.022, 0.037, 0.024, and 0.041. The A and B groups are very 

small, however, with only 18 and 13 countries, respectively.  Combining A and B into one group 

results in values of 0.028, 0.024, and 0.041 for A and B, C, and D groups, respectively.  The 

mean squared error for D countries is much larger than for the other country groups.   

This exercise suggests, not surprisingly, that it is in the D countries where an alternative 

to national income accounts data would be most valuable.  We now proceed to show how such 

an alternative can be constructed using the lights data.   

 

2.1 The statistical model 

 

 We have an unobserved magnitude, jty ,  the growth rate in true income in country j, for 

which we wish to obtain the best estimate possible. We have two measures that relate to jty : (1) 

the growth in measured income 1 jty  and (2) the growth in lights jtx . The relationships are   

 

1 1

2

(3 )

(3 )
jt jt jt

jt jt jt

y y a

x y b

ε

β ε

= +

= +  
 

Note the units of the dependent variables in (3a) and (3b) differ and that (3b) is a specific 

functional form adapted from the growth version of (1). We assume the error terms 1 2 and jt jtε ε  

are uncorrelated with jty and with each other. The variances of the error terms ( 1 2,σ σ ) and that 

of ( )yy σ are unobserved.  

 Combining (3a) and (3b), we can write the relationship between growth of lights and 

growth of measured income as  
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1jt jt jtx yβ η= +        (3c) 

where  2 1jt jt jtη ε βε= − .  An estimate of the structural parameterβ in (3c) via OLS would be 

biased by classical measurement error.  Specifically, 

  

        
2

2 2
1

ˆplim y

y

σ
β β

σ σ
=

+
. 

 

As described in equation (3a), 1 jty , which is what we have in the data, is an imperfect 

estimate of true income growth jty . We can potentially improve on this estimate as follows. We 

estimate equation (2) by OLS to then get fitted values 1ˆ jty . As detailed below, the estimated 

parameter ψ̂  from equation (2) is a highly biased estimate of 1/ β , but for the exercise at hand 

we simply wish to get the best fitted values, 1ˆ jty . We now have two imperfect measures of jty , 

namely 1 jty  and 1ˆ jty . We form a linear combination of the two  

 

                               1 1ˆ ˆ(1 )jt jt jty y yλ λ= + −  ,                                             (4) 

 

and choose λ  to minimize the error with which ˆ jty  measures jty . The λ  that minimizes var

ˆ( )y y−  is given by11 

 
2 2

2
2 2 2 2 2 2
1 2 2

ˆ* arg min var( )
( )

y

y y

y y
λ

σ σ
λ

σ β σ σ σ σ
= − =

+ +
.                                   (5) 

 

*λ  is a function of four unknown parameters ( 2 2 2
1 2, , ,  and yσ σ σ β  ), but the observed data 

provide only three sample moments: 

  

                                                 
11 2

1 1 1 1ˆ ˆ ˆvar( ) var( (1 ) ) 2cov( (1 ) , ),yy y y y y y yλ λ σ λ λ− = + − + − + −  where 2
1 1ˆ [cov( , ) / ]xy y x xσ= . 
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2 2
1 1

2 2 2
2

2
1

var( ) (6)

var( ) (7)

cov( , ) (8)

y

y

y

y

x

y x

σ σ

β σ σ

βσ

= +

= +

=

 

 

 As with classical measurement error, there are two ways to proceed.  One path would be 

to estimate the structural parameter β  by regressing growth in lights on growth in measured 

income, using instrumental variables to correct for measurement error in income.  Eligible 

instruments in this case would any variables that drive income growth, such as investment in 

physical or human capital, changes in institutions, and so on.  In general, we were concerned 

about the validity and power of any instrument for 1y  .  For D countries in particular, we could 

not find variables that were sufficiently good predictors of income growth and were available for 

a large enough number of countries.    

The alternative path, which is the one we chose to follow, is to make an assumption about 

the ratio of signal to total variance in measured GDP growth, 1y .  Define this ratio as 

 

    
2

2 2
1

y

y

σ
φ

σ σ
=

+
.                (9) 

 

Note that equation (9) is also the expression for the degree of bias in the estimate of β  in 

equation (3c) under OLS estimation, as described above.    If we assume a specific value for φ  

then the optimal λ  is given by 

 
2 2

1 1
2 2

1 1

var( ) var( ) cov( , )*
var( ) var( ) cov( , ) 1

y x y x
y x y x

φ φ ρλ
ρ

− −
= =

− −
 ,                        (10) 

 

where ρ  is the correlation between 1 and y x .  

 Identification can also be achieved by assuming a value for the ratio of signal to total 

variance for the second measure: 2 2 2 2 2
2/( )y yθ β σ β σ σ= + . We do not know either  or θ φ , but the 
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data impose a relationship between the two to give a locus of the two possible signal to variance 

ratios: 
2

21

1

cov( , )
var( ) var( )

y x
y x

θφ ρ= =                         (11) 

 

2.2 Application to the D Countries  

 

For the application we proceed as follows. We are going to estimate true income growth 

from 1992/93-2002/03 by combining information on measured income growth with lights 

information. The first issue concerns the optimal weight on measured GDP growth from equation 

(10). The data give us estimates for these countries for 1 1cov( , ), var( ),  and var( )y x y x , which are 

0.0806, 0.0751 and 0.1704 respectively. From those we get a value of ρ  in equation (10) of 

0.7124. For values of signal to total variance ratio measures of φ  = 0.6, 0.75, and 0.9, we would 

get weights on measured income growth of 0.19, 0.49, and 0.80, with the rest of the weight being 

on fitted income growth. For purposes of the illustration, we will use φ =0.75.  This value 

implies that .677θ = .  Thus the illustration assumes that the GDP growth data is a little less  

noisy than growth as measured by lights.12 

The next step is to estimate equation (2) to get fitted values of ŷ for those countries. 

Table 3 gives estimates for equation (2) for this sample of countries. The estimated values of ψ  

for the fixed effect and long difference specifications are respectively 0.396 and 0.473. The long 

difference ψ  is higher than the fixed effect estimate, even after accounting for country coverage 

differences.13 We will utilize the long difference formulation, since, in the end, we want to 

predict 10 year growth rates. Note that the estimates of ψ  for the D countries in Table 3 are 

higher than for the full sample in Table 2. They could be higher because in the structural 

relationship (3b) the true β  differs; that is, there could be a different relationship between 

income and lights in the less developed countries that make up group D. Alternatively, the 
                                                 
12 The “40% margin of error” for D countries in the PWT might suggest a signal to total variance ratio of 0.6.  
However, it is not clear from the PWT literature whether this number applies to levels or growth rates.  Our 
assumption is that growth as measured in our WDI data has less measurement error than cross sectional GDP at 
purchasing power parity as measured in PWT. 
13 For the 36 countries in column 2 of Table 3 the panel estimate of ψ  is 0.403, little different than the 0.396 for 41 
countries.  
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degree of bias in the estimate due to measurement error could differ between the full country 

sample and the D sample. Note if we wanted ψ  for the purposes of estimating 1/ β  (rather than 

just for prediction or fitted value purposes), we would have to account for the degree of bias 

where 
2 2

2
2

ˆp lim (1/ ) x

x

σ σψ β
σ
−

= .                                  (12) 

 

 Finally, by assuming φ =0.75, we can solve also for all unknown parameters of the model 

in equations 6-9. Foremost is β = 1.43.  For 2 2 2
1 2, , and yσ σ σ , we have 0.056, 0.019 and  0.055. 

This suggests that in a structural interpretation in equation (3b) the elasticity of lights with 

respect to true income is 1.43.14  

 

2.2.1 Results 

 

 Applying the weights to the reported WDI growth rates in local currency units and our 

fitted values, we can get an estimate of the average annual growth rate of true income, ŷ , for 

each of the 36 D countries. These rates are recorded in Table 4 for comparison with WDI 

estimates.  Figure 6 presents a graphical version of the comparison.   The horizontal axis records 

the annualized growth rate of  GDP over the decade as measured in the WDI while the vertical 

axis shows the same thing as measured by the lights data.  Points near the 45 degree line in 

Figure 6 are countries where the two measures give similar results.  The further above (below) 

the 45 degree line is a data point, the higher (lower) is growth in lights data in comparison to 

growth in the WDI data.  The figure also shows a set of iso-composite growth lines, where each 

iso-composite growth line shows the combinations of lights and WDI based growth rates for 

which our calculated true growth rate is the same.  The slope of these iso-composite growth lines 

(but not the position of the data points on the graph) will vary with the assumed value of λ ; as 

the weights on lights based growth rates decline, lines become steeper but the points at which 

they intersect the 45 degree line do not change. 

                                                 
14 A regression of lights on measured income correspondingly yields an estimate of 1.07, consistent by construction 
with the 0.75 degree of bias. Note in equation (10) this implies a true ψ of 0.70, while the estimate is 0.47, 
consistent by construction with the bias in equation (12).  
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The figure and table suggest that, as would be predicted by a standard analysis of 

measurement error, growth is more likely to be underestimated in the WDI for countries with 

low measured income growth rates, and overestimated in the WDI for some countries showing 

very high growth rates. But there is a lot of variation across countries in the adjustment. By 

reading the true growth rates versus WDI and lights based numbers in Table 4 or by viewing the 

divergence between the WDI versus lights based numbers in Figure 6, one can see, that after 

adjustment, countries like Surinam (SUR) and Papua New Guinea (PNG) have noticeably higher 

growth rates, but countries like Uzbekistan (UZB) and Central African Republic (CAF), which 

have similar recorded growth rates, show little change. We downgrade higher growth rate 

countries like Mozambique (MOZ) and Sudan (SDN), but not Cambodia (KHM), Lao PDR 

(LAO), or Bhutan (BTN). For D countries at the tails of high or low recorded growth such as 

Myanmar (MMR), Liberia (LBR), and the Democratic Republic of Congo (COD), lights strongly 

amend recorded growth rates. For example, in Congo, the WDI data imply an annual average 

growth of GDP of -2.6% per year while the satellite data imply growth of 2.4% per year.  The 

optimally weighted average is almost exactly zero. In Myanmar, the WDI data say that GDP 

grew at an annual rate of 8.6% while the lights data imply an annual growth rate of 3.4%. In both 

these cases, there is reason, beyond the night lights data, to suspect that GDP is particularly 

poorly measured in the WDI.  The Democratic Republic of Congo experienced civil war for 

much of the period for which we have satellite data, while the economy in Myanmar was largely 

autarkic and non-market. 

 

3. Application: Does local agriculture contribute to local city growth? 

 

As noted in the introduction, urban economists model city growth as a process 

disconnected from agriculture both in theory and empirically (Glaeser et al 1992 and Glaeser and 

Saiz 2004). Development economists have long recognized the rural-urban interaction in two-

sector models dating back to Lewis (1954), but most modeling assumes that the rural sector is 

just a source of labor for the growing urban sector. On the empirical side, Brueckner (1990) 

looks at city sizes as they relate to rural-urban income gaps. Using aggregate country data, he 

finds that higher rural incomes retard urbanization and the growth of the largest city in a country. 
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Da Mata et al (2007) find that higher rural incomes in city hinterlands also retard city population 

growth in Brazil.  

What these approaches generally miss is the positive side: higher rural incomes can 

contribute to local urban economic growth, something that is hinted at in the new economic 

geography literature (Krugman, 1991), as well as in da Mata et al (2007) for Brazil. This notion 

has long been pursued by agricultural economists, as well as a few growth economists (e.g., 

Kuznets, 1955; Kogel and Prskawetz 2001, Irz and Roe 2005, Tiffin and Irz, 2006). Local 

agricultural growth can generate local savings and investment in manufacturing and services, 

which are more urbanized activities. Farmers with increased incomes in a city hinterland demand 

more urban output such as farm machinery, household items, and personal and business services.  

However no studies have had the data to do a convincing empirical analysis to show that 

exogenous increases in farm incomes in a city’s hinterland causally spur urban income growth in 

that city. In this section we examine a panel of 541 cities in 18 African countries over 9 years. As 

explained in the Appendix, the selection of countries is in part dictated by needing city 

population data and co-ordinates so as to identify cities. For 14 of the countries, data cover all 

cities with populations over 10,000 in 2008 within 3 km of a night light source, while for the 

other countries the minimum population size is 5,000- 20,000 (see Table A2). We have annual 

data on rainfall and on lights. Rainfall is an exogenous source of increases in agricultural yields 

and incomes in many African contexts (Miguel, Sergenti and Satyanath, 2004; World Bank, 

2005). We don’t have income data for these cities at all, and we have population data for at most 

one year in the time period for which we have detailed rainfall. However we have lights for 

every year. Our presumption is that increased rain increases agricultural productivity and thus 

income in hinterland areas of cities. Farmers’ spending increases demand for urban goods, 

raising urban income. The rise in urban income leads to an increase in lights. We test the net 

result directly—increased hinterland rainfall spurs urban lights. 
The formulation we use is 

 

 ,0
ln( ) k

jt i j t i j t jti
x rβ α λ ε−=

= + + +∑  (13) 

 

where jtx  is lights in city j in time t and ,j t ir − is rainfall in the hinterlands of city j at time t-i. In 

equation (13) current and prior years’ rainfall affect current lights after allowing for city and time 
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fixed effects. The lag structure in (13) implies that productivity shocks in agriculture persist in 

changing urban incomes beyond the current year. So for example, farmers who get windfall 

income in a year may smooth spending in urban areas over several successive years. Also, 

income windfalls in agriculture may result in increased investments in agricultural production 

(seeds, fertilizer and equipment) which generate agricultural income gains in succeeding years, 

which in turn increase demand for urban products. We will find that effects attenuate at k = 4; 

and we will look at the falsification test of adding a lead year of rain. Also in interpreting 

equation (13), lights could increase with rainfall because urban incomes rise due to either per 

capita urban income growth, population growth, or both. While we can’t distinguish the two, in 

this case it seems likely to be per capita income growth. City population effects likely go in the 

opposite direction: other studies suggest that improved agricultural incomes reduce migration 

from rural hinterlands to cities (Brueckner, 1990 and da Mata et al, 2007). 

An issue in estimation of (13) concerns the distribution of the εit. We allow for clustering 

of the εit by city, but the process may be more distinct. We might expect serial correlation along 

the lines of an AR[1] process. Other conditions facing a city that vary over time may be serially 

correlated in a common fashion across cities. We will look at both fixed effects and AR[1] 

estimates.  A second concern is that in 7% of city-years, xjt equals zero, so ln(xjt) is undefined. 

Generally we rely on OLS, but replace ln(xjt) with ln(xjt +δ), where δ=1.15  Note that 2 is the 

smallest nonzero value of lights in the data We also present a Tobit specification for ln(xjt), with 

truncation when the light measure falls below 2 and is not recorded. The Tobit results are almost 

identical to OLS ones. Fixed effects Tobits are biased for short panels, but our panel is not that 

short and most observations are not censored. 

In application of equation (13), the impact of agricultural rain may differ according to the 

urban context. Large industrialized cities may be more independent of local agricultural 

conditions, relying more on national and international trade in industrial goods. Smaller cities 

may be more grounded in local hinterland economies and more sensitive to changes in 

agricultural productivity. We explore this by looking at whether effects vary between primate 
                                                 
15  Results with δ=0.5 and δ=2 produce coefficients 10-20% larger than and smaller than, respectively, results with 
δ=1 for all k≥0, but with correspondingly different standard errors, so t-statistics are within 5% of their counterparts 
when δ=1.  Results are very similar to those cited if δ is only added to city-years with light values of zero, instead of 
all cities, before logging. Using unlogged lights values produces effects in the same directions, except for k=3 in 
some specifications, but most coefficients are no longer significant.  This makes sense – one would not expect a 
linear effect of the same amount of rain across all city sizes.  No approach is available for AR[1] errors that is 
equivalent to Honoré’s (1992) censored fixed effects method for models using clustered errors. 
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cities and other cities in the sample. We define primate cities as the largest or the effective 

capital cities in each of our 18 countries.  For all but Malawi, the capital and largest city are the 

same. We will also look at whether results differ for cities of less than versus more than 200,000 

people. 

 

City Data 

 

We have two main sources of data for our African cities. First are the lights. We have no 

city boundaries, so we define cities as contiguous lit areas. Figure 7a illustrates our methodology 

for an area of southern Ghana. The boundaries of contiguous sections of lights on the landscape 

are marked for different years. We draw the outer envelope of contiguous lit pixels across all 

years and define this as the potential urban area. Then, as shown in Figure 7b, we map in 

jurisdictional cities as points, based on geo-coordinates identified with each city (see Appendix).  

The population for each lit area is the sum of the city populations in that area. In the 

overwhelming majority of cases (502 of 541), there is only one city per lit area (as in the south-

east corner of Figure 7b).  In the other 39, larger urban areas consist of several jurisdictions as 

pictured in the northwest portion of Figure 7b, where 3 cities fall within the same light. The 

second data source is annual rainfall estimates (Love et al 2004), recorded on a 0.1 degree grid 

(approximately 124 sq. km at the equator).  The rain data only exist starting in 1995, so we 

cannot use the first three years of the lights. We draw a 30 km buffer around each lit area (i.e. the 

green area pictured in Figure 7b) to create a catchment area.  We measure average rainfall over 

all grid entries that are in the catchment area but outside the lit area.16 

 

Basic results for rainfall effects on urban incomes 

 

Columns 1-5 in Table 5 state the basic results. With clustered robust errors and no AR[1] 

structure, columns 1-4 show different lag structures. Column 1 includes only rain in the 

contemporaneous year; column 2 allows for three years of effects; column 3 for four years; and 

column 4 for five years. It is clear rain from two years before the present still has a significant 

effect on urban income.  In columns 3 and 4 coefficients for rain from three years prior to the 

                                                 
16 Results were broadly similar when radii from 20 to 70 km were used. 
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current year are smaller, and in column 4, rain from four years prior has an insignificant 

(negative) coefficient. We generally use a lag structure with three or four years of rain, including 

the current year, in further specifications. In column 5 we give Tobit results for column 4; they 

are almost identical. In column 6, we re-estimate column 3 imposing an AR[1] process.17 That 

slightly reduces the rain effect of the first two lags. In columns 7 and 8 we conduct a falsification 

test by adding a lead year of rain, which should have no effect. With an AR[1] process modeling 

serial correlation, the lead year has no effect. The fact that the lead shows some effect for the 

ordinary panel estimation suggests that not modeling the serial correlation in the data can result 

in misleading estimates.  

Rainfall effects are arguably large. Each one standard deviation increase in rain (0.90 

mm/day), in the current or either of the prior two years, leads to a roughly 14% increase in lights. 

From Table 2 a 14% increase in lights represents about a 4% increase in GDP for a city. Thus, a 

sustained increase in rain over several years would have a very strong effect on urban incomes.  

However, the effect of hinterland rain on city growth is heterogeneous and differs by type 

of city. Bigger, more industrialized cities are less dependent on their hinterlands, as are political 

centers. Table 6 shows that primate cities have much lower rainfall effects. For one year of rain 

the coefficient of 0.155 is just 0.054 for primate cities. When three years of rain are included, the 

coefficients for year t, t-1 and t-2 are 0.16, 0.15, and 0.15 for ordinary cities, while for primate 

cities they are 0.084, 0.073 and 0.053. Treating the 29 cities with a population over 200,000 in 

1995 as primate cities, in column 3, the differential in coefficients is almost the same as column 

2. Allowing for an AR[1] structure in columns 4 and 5 yields similar effects.   

 

Robustness 

 

Finally, we consider two alternative explanations of the results. First, more rain results in 

cheaper hydroelectric power, which drives increased usage of electricity. Hydroelectric power is 

very common in sub-Saharan Africa. While hydroelectric power accounted for only about 20% 

of electricity generation in sub-Saharan Africa in 2003, it represented more than half of 

                                                 
17 We use Foster and Lee’s (2009) version of the method of Hansen (2007). 
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generation for more than half of the countries, including 12 of 18 in our sample.18  In order to 

test this hypothesis, we construct a crude national measure of hydro dependence, hydro 

generation divided by total electricity consumption averaged across all years in the sample.  It is 

crude because some countries import and export a lot of electricity, and we cannot identify 

imports or exports by country pair or by generation type.  When this measure of hydro 

dependence is interacted with rainfall, countries more dependent on hydro have smaller rainfall 

effects, not larger ones, and the interacted term is not significant. Thus hydroelectric power costs 

do not seem to be at the heart of what is going on. That conclusion is also consistent with the 

Table 6 result that primate cities are less affected by rainfall changes than non-primate cities, 

since inhabitants of primate cities are likely to have a much greater reliance on electric power, in 

terms of both household coverage and intensity of lighting per household. 

Second, the satellite only takes data when there are no clouds over a place, and rain 

requires clouds, so one might expect that high rainfall is associated with noisy lights 

measurements averaged over fewer nights.  We can confirm empirically that more rain is 

correlated with fewer nights of lights data.  However, controlling for the number of nights of data 

has little effect on our results. Similarly, controlling for the 3% of lights that contain at least one 

top-coded pixel saturating the sensor has little effect. 

 

4. Conclusion 

 

Satellite night-lights data are a useful proxy for economic activity at temporal and 

geographic scales for which traditional data are of poor quality or unavailable. We developed a 

statistical model to optimally combine data on changes in night lights with data on measured 

income growth to improve estimates of true income growth. We applied the methodology to 

countries with low quality national income data, the D countries in the PWT. For these 36 

countries, we get a new set of income growth numbers for the 10 years 1992/3 – 2002/3. These 

estimates differ from data in WDI by as much as several percent per year.  As a second 

application in which no income measures are available, we considered the interaction between 

the economies of urban areas and their rural hinterlands in Africa, and demonstrated that 

                                                 
18 Energy Information Administration (USA; EIA). 2007. International Energy Annual 2005. 
http://www.eia.doe.gov/pub/international/iea2005/iea_2005.zip Accessed 9 April 2008 
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productivity shocks in the form of rainfall in agriculture contribute strongly to economic growth 

of the cities serving agriculture. This is the first empirical contribution to the debate about 

whether rural hinterlands contribute to urban growth. 

 

 Appendix: Data 

 

A. Lights 

 The Version 2 Defense Meteorological Satellite Program Optical Linescan System 

(DMSP-OLS) Nighttime Lights Time Series data are available from the National Oceanic and 

Atmospheric Administration’s (NOAA) National Geophysical Data Center (NGDC) as a set of 

annual composites, currently for 1992-2003.19  This most recent version of the data is a series of 

18 annual composites from 4 satellites each operating for overlapping periods of 3 to 6 years 

between 1992 and 2003.   

 Each annual composite is a raster (grid) dataset with values every 30 seconds of latitude 

and longitude (approximately 0.86 km^2 at the equator, decreasing with the cosine of latitude) 

between 65 degrees north and 65 degrees south latitude.  The exclusion of high latitude zones 

affects approximately 3 million people, or 0.05% of the global total, in 7 countries.  Each grid 

value is an eight-bit integer (0-63) called a digital number (DN), averaged for over all nights 

fitting certain criteria (i.e. not too much moonlight, sunlight, aurora activity or cloud cover). 

They were compiled and cleaned, removing temporary features such as forest fires, by NGDC. A 

calibration has been applied to ensure greater comparability across satellite-years, but they 

cannot be interpreted directly as physical units of light (Chris Elvidge, personal communication).  

 Global lights data have several problems besides this lack of true calibration. First, the 

sensor saturates at a level of light that is very common in the cities and towns of rich countries, 

resulting in topcoded values.  At high latitudes no summer data can be used because sunlight is 

still contaminating images at local pass times of 8:30 to 10 pm.  This effect is diminished closer 

to the equator. The data are subject to overglow or blooming, which means that lights tend to 

appear larger than they actually are, especially for bright lights and over water.  Snow tends to 

magnify light values.  Humidity, which varies significantly across the continent, is known to 

affect the performance of other sensors but has never been studied in relation to the DMSP-OLS. 

                                                 
19 Available at http://www.ngdc.noaa.gov/dmsp/global_composites_v2.html 
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Many of these problems are not likely to be important in the Africa city examination, as there are 

few instances of top-coding, no long summer nights, and no snow.  Further details about the 

lights data and processing can be found in Elvidge et al. (1997, 1999, 2002, 2003, 2005), Lieske 

(1981), and Small, Pozzi and Elvidge (2005).  

 For the Africa section of the present paper, lights were processed as follows.  In any 

given year, the overwhelming majority of land in Africa is unlit (i.e. it has a DN value of zero).  

Lit areas corresponding to cities, oil wells or other features thus form a set of polygons.  This set 

varies from year to year, but there is substantial overlap, as individual features tend to persist 

over time.  In order to have coherent units of analysis we create a combined map, in which the 

value of a given pixel is the maximum value of all 18 individual satellite-years.  The result of 

this is a set of 9189 non-contiguous polygons on the African continent in which all pixels were 

lit for at least one year.  For each of these, the total calibrated digital number for each satellite-

year, as well as the minimum and maximum pixel, were reported.   

 

B. African cities 

City location and population 

 In order to identify cities we need a data source with cities and their populations (which 

also allows us to separate effects by city size). Cities and their population are obtained from 

www.citypopulation.de.  Only countries for which information is available for at least one census 

after 1994 are used.  Island states were also dropped.  While population figures are not 

necessarily taken directly from the official census bureaus, spot checks suggest that they are 

consistent with the official figures, where available.  Five countries (Algeria, Egypt, Morocco, 

South Africa, and Tunisia) were dropped because massive agglomerated lights containing 

significant proportions of their populations make them qualitatively different than the rest of the 

continent.  Three more, (Republic of Congo, Swaziland and Lesotho) were dropped because of 

significant contamination across their borders by lights from other countries, namely Democratic 

Republic of Congo, Angola and South Africa).  While this is in itself an interesting phenomenon, 

it would render interpretation too difficult for the present exercise.  Lastly, Western Sahara was 

removed because its sovereignty has been contested over the course of the study period. This left 

18 countries (listed in Table A2) and 782 identified cities above some threshold size as reported 

by www.citypopulation.de. Of the 9,189 African lights, 2,323 have centroids falling within the 
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18 countries selected above.  In 13 of these countries, all settlements of more than 10,000 are 

purported to be reported by www.citypopulation.de.  However, Mozambique and Ghana’s 

nominal cutoffs are 20,000, Mauritania’s is 15,000, Central African Republic’s is 5,000, and 

Rwanda lists no cutoff.  Furthermore, the benchmark year for these cutoffs is never specified, 

and in practice, 14 of 782 cities have lower populations than their nominal cutoff for every year 

up to 2008. 

 

Latitudes and longitudes for African cities 

 Latitudes and longitudes were assigned from three sources: www.citypopulation.de, the 

Gridded Rural Urban Mapping Project,20 and www.world-gazetteer.com.  Locations were 

validated with respect to satellite imagery in Google Earth to ensure that they indeed fell in or 

very near a city.  However, no further information was available to ensure that it was the named 

city, other than the three original sources.  In a few instances, one of the three coordinate sources 

was chosen because it placed the city within a light, whereas another source did not.  We 

consider this appropriate because we are not attempting to demonstrate the well-known 

collocation of cities and lights (e.g. Welch 1980), but rather to use this fact for further analysis.  

For fifteen cities in three countries (Tanzania, Mauritania, and Ghana) no coordinate information 

was available.  This reduced the sample to 767 cities. 

 

Combining lights and population 

Each light in the sampled countries is assigned the population of all cities within 3 

kilometers.  The three kilometer buffer is used because of measurement error in the 

latitude/longitude data and the georeferencing of the lights, following Balk et al. (2004). 111 city 

points fell farther than 3 km from the nearest light in the sample. In most cases, the points that 

fell within 3 km fell within 1 km, as would be expected from simple rounding of coordinates to 

the nearest hundredth of a degree.  This reduced the set of city-points from 767 to 656.  However, 

only one of these 111 has a population over 25,000, and it is a border city that would have fallen 

within a light whose centroid fell in another country if such lights were included in the sample. 

                                                 
20 Center for International Earth Science Information Network (CIESIN), Columbia University; International Food 
Policy Research Institute (IFPRI); The World Bank; and Centro Internacional de Agricultura Tropical (CIAT). 2004. 
Global Rural-Urban Mapping Project (GRUMP), Alpha Version. Palisades, NY: Socioeconomic Data and 
Applications Center (SEDAC), Columbia University. At http://sedac.ciesin.columbia.edu/gpw. 
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Only six more have populations over 20,000, and one of these would have fallen within a light 

whose centroid fell in another country if such lights were included in the sample.  So it is 

plausible that nearly all of these 111 points are just too small to be seen by the satellites. 

 Of the 2323 lights, 541, or 23% contain at least one city for which we have population.  

However, the others are far less bright and/or extensive lights on average, consistent with the 

idea that they correspond to smaller settlements not included in the population data.  They could 

also correspond to mines or other industrial facilities. Of the 541 lights with populated places, 

thirty-five touch a border, at least according to one common set of international boundaries.21  Of 

these, seven contain city points on both sides of the border.22 

 

Rainfall 

 Rainfall data for each 0.1 degree grid cell (approximately 124 km^2 at the equator) are 

from the NOAA Climate Prediction Center's Africa Rainfall Climatology (ARC; Love et al. 

2004).  Unlike most commonly used rainfall data, these are estimates based on both rain gauges 

and satellite measurements.  The addition of satellite measurements is especially important in 

Africa, where actively reporting rain gauges are sparsely located.  It means that neighboring 

observations are significantly less dependent than those based on stations alone.  Ideally we 

would calculate rainfall for years corresponding to agricultural seasons, like Maccini and Yang 

(2008).  However, seasons vary across Africa, and the lights composites are only available for 

calendar years anyway.  Data are available for 1995 to the present. 
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Table 1: Night Lights Data for Selected Countries, 1992-2003 average 
Digital 
Number (DN) 

USA  Canada  Netherlands Brazil Costa 
Rica 

Guatemala  Bangladesh Madagascar Mozambique Malawi 

0 67.74% 93.38% 0.89% 94.07% 69.10% 82.37% 68.20% 99.74% 99.56% 97.65%
1-2 0.00% 0.00% 0.00% 0.01% 0.00% 0.01% 0.30% 0.00% 0.01% 0.00%
3-5 6.36% 0.46% 0.38% 2.20% 11.33% 9.78% 20.02% 0.13% 0.23% 0.84%
6-10 13.42% 3.24% 17.15% 2.13% 13.01% 5.13% 7.99% 0.07% 0.11% 0.95%
11-20 5.89% 1.68% 32.05% 0.79% 3.56% 1.57% 2.02% 0.03% 0.04% 0.29%
21-62 5.56% 1.15% 46.37% 0.71% 2.54% 0.99% 1.36% 0.03% 0.04% 0.27%
63-65 1.02% 0.09% 3.16% 0.09% 0.45% 0.16% 0.10% 0.00% 0.00% 0.01%
% area unlit 64.87% 92.14% 0.85% 94.28% 69.53% 82.89% 68.04% 99.74% 99.58% 97.16%
Avg. DN 5.0249 0.8947 22.3948 0.6664 3.1691 1.4412 2.2637 0.0257 0.0398 0.3135
Gini(DN) 0.8286 0.9597 0.3636 0.9682 0.8229 0.8958 0.7929 0.9985 0.9977 0.9864
Population 
density     
(per sq. km) 

30 3 463 20 73 98 1021 26 22 116

% urban 78% 79% 75% 80% 57% 44% 23% 26% 28% 14%
GDP per 
capita, PPP 
(2005 $) 

36126 29675 30502 7728 7575 3785 839 833 475 663

Notes:  
1) values of 64 and 65 are possible because of relative calibration across years. 
2) % area unlit accounts for differences in cell area, whereas the percentage of cells having digital number 0, 1-2, etc. does not. 
3) each figure is calculated within satellite-years, averaged across satellites within a year, and then across years. 
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Table 2. Baseline results for the world: 1992-2003; growth in real GDP (local currency units) 
 
 Fixed effects specifications Long differences 
 (1) (2) (3) (4) 
 ln(GDP) ln(GDP) ln(GDP) ln(GDP) 
     
ln(lights/area) 0.287*** 0.270*** 0.286*** 0.324*** 
 [0.046] [0.044] [0.050] [0.041] 
     
ln(lights/area)2  -0.01   
  [0.011]   
     
gini(lights)   -0.005  
   [0.199]  
     
Constant    0.227*** 
    [0.018] 
     
Observations 2149 2149 2149 170 
Number of countries 187 187 187 170 
(Within-country) R-sq 0.661 0.664 0.661 0.315 
Country fixed effects yes yes yes no 
Year fixed effects yes yes yes no 
Error treatment Robust, clustered 

by country 
Robust, clustered 

by country 
Robust, clustered 

by country 
Robust 

 
*** p<0.01, ** p<0.05, * p<0.1. Robust standard errors in brackets 
In column 4 long differences are calculated averaging the first and last two years of levels data. 
 
Table 3. Results for “D” countries:  1992-2003; growth in real GDP (local currency units) 
 
 Fixed effects  Long differences 
 (1) (2) 
 ln(GDP) ln(GDP) 
   
ln(lights/area) 0.396*** 0.473*** 
 [0.107] [0.066] 
   
Constant  0.220*** 
  [0.039] 
   
Observations 466 36 
Number of countries 41 36 
(Within-country) R-sq 0.634 0.507 
Country fixed effects yes no 
Year fixed effects yes no 
Error treatment Robust, clustered by 

country 
Robust 

 
*** p<0.01, ** p<0.05, * p<0.1. Robust standard errors in brackets 
In column 2 long differences are calculated averaging the first and last two years of levels data. 
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Table 4. Ten-year growth rates in true income, ŷ , for “D” countries (1992/93-2002/03) 

Country 
ISO 
code 

WDI 
(LCU) 

fitted 
lights 

optimal 
combination of 
WDI and fitted 

lights difference 
Myanmar MMR 0.826 0.337 0.578 -0.248 
Liberia LBR 0.922 0.643 0.780 -0.141 
Mozambique MOZ 0.719 0.499 0.607 -0.112 
Angola AGO 0.484 0.285 0.383 -0.101 
Sudan SDN 0.549 0.367 0.457 -0.093 
Togo TGO 0.398 0.223 0.309 -0.089 
United Arab Emirates ARE 0.554 0.393 0.473 -0.082 
Malta MLT 0.366 0.236 0.300 -0.066 
Uganda UGA 0.661 0.548 0.604 -0.058 
Yemen, Rep. YEM 0.518 0.410 0.463 -0.055 
Belarus BLR 0.162 0.059 0.110 -0.052 
Algeria DZA 0.277 0.176 0.226 -0.051 
Mongolia MNG 0.312 0.238 0.275 -0.037 
Niger NER 0.332 0.279 0.305 -0.027 
Guinea-Bissau GNB 0.001 -0.051 -0.025 -0.026 
Cyprus CYP 0.377 0.330 0.353 -0.024 
Seychelles SYC 0.274 0.236 0.255 -0.020 
Uzbekistan UZB 0.216 0.187 0.201 -0.015 
Central African Republic CAF 0.191 0.170 0.180 -0.011 
Chad TCD 0.412 0.392 0.402 -0.010 
Comoros COM 0.154 0.137 0.145 -0.009 
Namibia NAM 0.379 0.379 0.379 0.000 
Cambodia KHM 0.684 0.722 0.703 0.019 
Lao PDR LAO 0.617 0.665 0.642 0.024 
Bhutan BTN 0.637 0.713 0.676 0.038 
Guyana GUY 0.332 0.412 0.373 0.041 
Cape Verde CPV 0.595 0.687 0.642 0.047 
Lesotho LSO 0.307 0.399 0.354 0.047 
Saudi Arabia SAU 0.179 0.277 0.229 0.049 
Haiti HTI -0.031 0.192 0.082 0.113 
Suriname SUR 0.200 0.436 0.320 0.119 
Eritrea ERI 0.450 0.686 0.570 0.120 
Djibouti DJI -0.040 0.215 0.090 0.130 
Papua New Guinea PNG 0.105 0.407 0.258 0.153 
Tajikistan TJK -0.227 0.102 -0.060 0.167 
Congo, Dem. Rep. COD -0.264 0.241 -0.008 0.256 
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Table 5: Results for African rainfall and city growth, 1995-2003 
 
 (1) (2) (3) (4) (5) (6) (7) (8) 
 ln(light(t)+1) ln(light(t)+1) ln(light(t)+1) ln(light(t)+1) ln(light(t)) ln(light(t)+1) ln(light(t)+1) ln(light(t)+1) 
         
rain(t) 0.152*** 0.159*** 0.201*** 0.149*** 0.158*** 0.162*** 0.223*** 0.251*** 
 [0.041] [0.043] [0.050] [0.051] [0.055] [0.041] [0.056] [0.060] 
         
rain(t-1)  0.150*** 0.160*** 0.183*** 0.193*** 0.137*** 0.153*** 0.178*** 
  [0.035] [0.045] [0.059] [0.063] [0.042] [0.049] [0.052] 
         
rain(t-2)  0.146*** 0.156*** 0.165*** 0.176*** 0.144*** 0.123** 0.132** 
  [0.040] [0.042] [0.052] [0.057] [0.040] [0.051] [0.053] 
         
rain(t-3)   0.074* 0.090* 0.095* 0.098*** 0.090** 0.079* 
   [0.042] [0.049] [0.053] [0.038] [0.040] [0.044] 
         
rain(t-4)    -0.051 -0.051    
    [0.043] [0.046]    
         
rain(t+1)       0.061 0.107** 
       [0.046] [0.050] 
         
Observations 4869 3787 3246 2705 2705 2705 2164 2705 
Cities 541 541 541 541 541 541 541 541 
(Within-city) R-sq 0.046 0.055 0.041 0.048 0.048 0.032 0.036 0.043 
City fixed effects yes yes yes yes yes yes yes yes 
Year fixed effects yes yes yes yes yes yes yes yes 
Error treatment robust, 

cluster on 
city 

robust, 
cluster on 

city 

robust, 
cluster on 

city 

robust, 
cluster on 

city 

cluster on 
city in Tobit 

AR[1], Foster 
and Lee 
(2009) 

AR[1], Foster 
and Lee 
(2009) 

robust, 
cluster on city

*** p<0.01, ** p<0.05, * p<0.1       
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Table 6: Rainfall: differential effect on primate cities, 1995-2003 
 

 (1) (2) (3) (4) (5) 
 ln(lights(t)+1) ln(lights(t)+1) ln(lights(t)+1) ln(lights(t)+1) ln(lights(t)+1)
      

rain(t) 0.155*** 0.161*** 0.163*** 0.132*** 0.134*** 
 [0.042] [0.045] [0.046] [0.036] [0.037] 
      
primate*rain(t) -0.102** -0.077* -0.085** -0.076** -0.068* 
 [0.045] [0.043] [0.042] [0.039] [0.036] 
      
rain(t-1)  0.152*** 0.153*** 0.126*** 0.128*** 
  [0.036] [0.037] [0.035] [0.036] 
      
primate*rain(t-1)  -0.079* -0.079** -0.083* -0.075** 
  [0.043] [0.037] [0.045] [0.037] 
      
rain(t-2)  0.148*** 0.148*** 0.116*** 0.117*** 
  [0.041] [0.042] [0.036] [0.036] 
      
primate*rain(t-2)  -0.095** -0.062 -0.096** -0.075* 
  [0.045] [0.046] [0.042] [0.040] 
      
Observations 4869 3787 3787 3246 3246 
Cities 541 541 541 541 541 
(Within-city) R-sq 0.046 0.056 0.056 0.053 0.053 
Primate definition political political pop>200k political pop>200k 
Error structure robust, cluster 

on city 
robust, cluster 

on city 
robust, cluster 

on city 
AR[1] Foster 

and Lee 
(2009) 

AR[1] Foster 
and Lee 
(2009) 

City fixed effects yes yes yes yes yes 
Year fixed effects yes yes yes yes yes 
*** p<0.01, ** p<0.05, * p<0.1     
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Table A1: Descriptives       
Variable N mean sd min max Sample 
change in ln(GDP), LCU 170 0.315 0.211 -0.384 0.922 all countries (except GNQ) 
change in ln(lights) 170 0.271 0.365 -1.119 1.525 all countries (except GNQ) 
change in ln(GDP), LCU 36 0.351 0.274 -0.264 0.922 grade D countries 
change in ln(lights) 36 0.276 0.413 -0.573 1.061 grade D countries 
gini(lights) 2149 0.820 0.215 0.045 1.000 all countries (except GNQ) 
ln(std. dev.(lights)) 2149 1.439 0.966 -1.430 3.085 all countries (except GNQ) 
gini(lights) 466 0.907 0.191 0.189 1.000 grade D countries 
ln(std. dev.(lights)) 466 0.718 1.052 -1.430 2.982 grade D countries 
ln(lights(t)+1) 4869 5.548 2.126 0 11.426 African cities 
rain(t) 4869 1.903 0.904 0.007 5.111 African cities 
rain(t-1) 4328 1.886 0.893 0.007 5.111 African cities 
rain(t-2) 3787 1.896 0.899 0.007 5.111 African cities 
rain(t-3) 3246 1.896 0.900 0.007 5.111 African cities 
rain(t-4) 2705 1.943 0.921 0.007 5.111 African cities 
rain(t+1) 4328 1.893 0.894 0.007 5.111 African cities 
primate city dummy (political) 4869 0.035 0.184 0 1 African cities 
primate city dummy 
(population > 200,000) 

4869 0.054 0.225 0 1 African cities 

 
Table A2. African countries with city population data 
Country census year Unit Pop. 

cutoff
WUP 
2007 
cutoff

# city 
points 

# city 
lights

# 
lights 1 2 3  

Benin 1992 2002  urban localities 10,000 10,000 64 29 56
Burkina 
Faso 

1985 1996 2006 urban localities 10,000 10,000 44 38 58

Botswana 1991 2001  towns 10,000 5,000 27 21 128
Central 
African 
Republic 

1988 2003  cities 5,000 3,000 37 14 27

Ghana 1984 2000  urban localities 20,000 5,000 69 34 256
Guinea 1983 1996  urban areas 10,000 27 23 66
Kenya 1989 1999  towns 10,000 2,000 62 47 220
Mozambique 1980 1997 2007 principal cities 20,000 34 32 136
Mauritania 1988 2000  communes 15,000 5,000 25 16 33
Malawi 1987 1998  towns 10,000 19 19 87
Namibia 1991 2001  towns 10,000 19 16 190
Niger 1988 2001  urban centers 10,000 2,500 36 31 135
Rwanda 1991 2002  principal 

municipalities 
none 15 12 13

Senegal 1988 2002  urban 
communes 

10,000 10,000 51 38 143

Tanzania 1988 2002  urban localities 10,000 104 74 255
Uganda 1991 2002  towns 10,000 2,000 60 39 67
Zambia 1990 2000  localities 10,000 5,000 37 30 135
Zimbabwe 1992 2002  towns 10,000 2,500 37 28 318
Subtotal     767 541 2,323
All other African countries    6,866
Africa Total      9,189
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