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1 Introduction

Many elderly keep large amounts of assets until very late in life. Further-
more the income-rich run down their assets more slowly than the income-poor
(Dynan et al. [22]). Why is this the case?

This paper provides a model of saving for retired elderly singles that
addresses both of these questions. Our framework allows for bequest mo-
tives, social insurance, risky and heterogenous life expectancy, and risky and
heterogenous medical expenses. The important dimensions of observable het-
erogeneity that we consider are age, sex, a measure of permanent income, and
health.

Our estimation proceeds in two steps. Using the Assets and Health Dy-
namics of the Oldest Old (AHEAD) dataset, we first estimate stochastic
processes for mortality and out-of pocket medical expenditures as functions
of sex, health, permanent income, and age. In our second step, we estimate
our model using the method of simulated moments. In particular, the model’s
preference parameters are chosen so that the permanent income-conditional
age-asset profiles simulated from the model match those in the data, cohort
by cohort.

While our estimated values of the coefficient of relative risk aversion and
the discount factor are in line with those provided by the previous literature,
the additional sources of heterogeneity that we consider allow the model to
fit important aspects of the data well. Our estimated structural model is
not rejected when we test its over-identifying restrictions. In addition, the
distribution of deceased persons’ estates generated by our model matches up
very well with that observed in the data.

We find that bequests are luxury goods that are potentially quite impor-
tant for the richest retirees. We also find, however, that our estimates of the
bequest motive are very imprecise and that for most of our sample, savings
barely change when the bequest motive is eliminated. One reason why the
bequest motive is weakly identified is that even in the top permanent income
quintile, median assets in our sample of elderly singles never exceed $200,000;
hence we do not have enough “super-rich” individuals to pin down the the
bequest motive.

On the other hand, our estimated model implies that medical expendi-
tures are important in explaining the saving of the elderly, including the
richer ones, whether or not bequest motives are included. For example, our
baseline model predicts that between ages 74 and 84 median assets for those
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in the top permanent income quintile fall from $170,000 to $130,000. When
we eliminate all medical expenses, median assets for this group fall much
more, from $170,000 at age 74 to $60,000 at age 84.

These results are due to two important features of out-of-pocket medical
expenses that we uncover in the first step estimation. First, even in presence
of health insurance, out-of-pocket medical and nursing home expenses can
be large; uncertain medical needs generate significant net income risk for
the elderly.1 Second, average medical expenditures rise very rapidly with
age and income. For example, our model predicts that average out-of-pocket
medical expenditures rise from $1,100 at age 75 to $9,200 at age 95. While
a 95-year-old in the bottom quintile of the permanent income distribution
expects to spend $1,700 on medical expenses, a person of the same age in
the top quintile expects to spend $15,800. Medical needs that rise with age
provide the elderly with a strong incentive to save, and medical expenses
that rise with permanent income encourage the rich to be more frugal.

We find that medical expenditures have large effects on savings even we
make them a choice variable in a model designed to fit both observed asset
holdings and observed out-of-pocket medical expenditures. In this version
of the model, people derive utility from consumption of medical goods and
services, and face medical needs shocks to their preferences. These shocks
depend on age, gender, and health, and retirees optimally choose medical
and non-medical consumption taking into account the contribution of public
and private insurance and their own resources. Importantly, while we do not
allow our medical needs shocks to depend on permanent income, our model
generates out-of-pocket medical expenditure rising with both permanent in-
come and age, as in the data. This feature is a result of the budget constraint
and private and public insurance contributions. High-income seventy-year-
olds thus anticipate that if they live into their nineties they will probably
choose to make large medical expenditures, like the ninety year olds in our
sample do, and choose to save to be able to pay for them. Thus, whether
they are exogenous or chosen, it is not surprising that medical expenditures
have large effects on savings, as long as medical expenditures fit the data.

An important feature of our model is that it accounts for social insur-
ance programs such as Supplemental Security Income and Medicaid, which
insure against catastrophic medical expenses. Social insurance programs are
important in explaining why low income individuals have few assets prior

1See Brown and Finkelstein [8].
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to retirement (Hubbard et al. [34], Scholz et al. [53]) and why these people
do not accumulate assets during retirement. We find, however, that medical
expenses are so large that social insurance also affects saving at the top of the
income distribution. Although making medical expenses endogenous reduces
the effects of social insurance, the effects that remain are stronger at higher
income levels than at lower ones.

Our model also allows for differential mortality, because people who are
rich, healthy, and female live longer.2 Such differential life expectancy im-
plies that as a cohort of people grows older its surviving membership becomes
increasingly composed of the rich (Shorrocks [54]). The resulting mortality
bias makes the surviving elderly seem more thrifty than they actually are.
Failure to account for the mortality bias would lead us to understate asset
decumulation by over 50% for the 74 year-old in our sample. Our model,
which replicates the mortality differences found in the AHEAD data, gener-
ates asset profiles consistent with these observations.

In sum, we find that properly accounting for old age expenditure on
medical care and for social insurance programs providing a consumption floor
are very important to explain the elderly’s savings. Hence, they are likely to
be key elements to take into account to properly evaluate policy proposals
affecting the elderly.

The rest of the paper is organized as follows. In section 2, we review the
most closely related literature. In section 3, we introduce our version of the
life cycle model, and in section 4, we discuss our estimation procedure. In
sections 5 and 6, we describe the data and the estimated shock processes
that elderly individuals face. We discuss parameter estimates and model fit
in section 7. Section 8 contains some decomposition exercises that gauge the
forces affecting saving behavior. In section 9 we develop a version of the
model where medical expenses are a choice variable, estimate the model, and
use it to perform some robustness checks. We conclude in section 10.

2 Related Literature

Our paper is related to a number of papers in the savings literature that
consider either uncertain medical expenditures or bequest motives.

2See Attanasio and Emmerson [4], and Deaton and Paxon [16] for evidence on per-
manent income and mortality. See Hurd et al. [36] for evidence on health status and
mortality.
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In an early study, Kotlikoff [40] finds that out-of-pocket medical expen-
ditures are potentially an important driver of aggregate saving. However,
Kotlikoff also stresses the need for better data on medical expenses and for
more realistic modeling of this source of risk.

More recent studies, such as Hubbard et al. [33] and Palumbo [48], find
that medical expenses have fairly small effects. In contrast, we find that
medical expenses go a long way towards accounting for the observed lack of
asset decumulation after retirement, at least for the elderly singles. The cause
of these differences is that Hubbard et al. and Palumbo understate the extent
to which medical expenditures rise with age and income. As an example, the
average medical expense for a 100-year-old generated by Hubbard et al.’s
medical expenditure model is about 16% of the average medical expense for
a 100-year-old found in our data. We obtain different estimates because we
use newer and better data: the AHEAD contains detailed information for
a large number of very old individuals. This allows us to estimate a more
flexible specification of medical expenses.

Hubbard et al. [34] argue that means-tested social insurance programs
(in the form of a minimum consumption floor) provide strong incentives for
low income individuals not to save. Their simulations, however, indicate that
reducing the consumption floor has little effect on the consumption of college
graduates. In contrast, we find that the consumption floor has an effect on
saving decisions at all levels of income. Rich people live longer and also face
medical expenses that rise rapidly as they age. Therefore, they also value
social insurance as a safeguard against catastrophic medical expenses, even
if they often end up not using it. This finding is consistent with Brown and
Finkelstein’s work [8], which finds large effects of Medicaid on the decisions
of fairly rich people.

Scholz et al. [53] find that a life cycle model, augmented with realistic
income and medical expense uncertainty, does good job of fitting the distri-
bution of wealth at retirement. We add to their paper by showing that a
realistic life cycle model can do a good job of fitting the patterns of asset
decumulation observed after retirement.

In his seminal paper Hurd [35] estimates a simple structural model of sav-
ings and bequest motives in which bequests are normal goods, and does not
find support for large bequest motives. De Nardi’s [14] calibration exercise
shows that modeling bequests as a luxury good is important to explain the
savings of the richest few. Lupton and Kopczuk [43] find that a majority of
elderly singles have a bequest motive. However, whether the motive is active
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or not depends on the individual’s financial resources because, consistently
with De Nardi, they estimate bequests to be luxury goods. While none of
the preceding papers accounted for medical expenses, Dynan et al. [21] argue
that the same assets can be used to address both precautionary and bequest
concerns. Using responses from an attitudinal survey to separate bequest and
medical expense motives, Ameriks et al. [2] find that bequests are important
for many people. In this paper we allow bequests to be luxury goods, and
we let the AHEAD data speak to both the intensity of bequest motives and
the level of wealth at which they become operative.

3 The model

Our analysis focuses on people who have retired already. This choice al-
lows us to concentrate on saving and consumption decisions, and to abstract
from labor supply and retirement decisions. We restrict our analysis to el-
derly singles to avoid dealing with household dynamics, such as the transition
from two to one family members.

Consider a single person, either male or female, seeking to maximize his or
her expected lifetime utility at age t, t = tr+1, ..., T , where tr is the retirement
age. These individuals maximize their utility by choosing consumption c.
Each period, the individual’s utility depends on its consumption and health
status, h, which can be either good (h = 1) or bad (h = 0).

The within-period utility function from consumption is

u(c, h) = δ(h)
c1−ν

1 − ν
, (1)

with ν ≥ 0. Following Palumbo [48] we model the dependence of utility on
health status as

δ(h) = 1 + δh, (2)

so that when δ = 0, health status does not affect utility.
When the person dies, any remaining assets can be left to one’s children

or other heirs. We denote with e the estate net of taxes. The household
derives utility from leaving the estate (net of estate taxes) e, to heirs

φ(e) = θ
(e+ k)

1 − ν

(1−ν)

, (3)
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where θ is the intensity of the bequest motive, while k determines the cur-
vature of the bequest function and hence the extent to which bequests are a
luxury goods.

We assume that non-asset income yt, is a deterministic function of sex,
g, permanent income, I, and age t:

yt = y(g, I, t). (4)

The individual faces several sources of risk, which we treat as exogenous.
While this is of course a simplification, we believe that it is a reasonable one,
because we focus on older people who have already shaped their health and
lifestyle.

1) Health status uncertainty. We allow the transition probabilities for
health status to depend on previous health, sex, permanent income and age.
The elements of the health status transition matrix are

πj,k,g,I,t = Pr(ht+1 = k|ht = j, g, I, t), j, k ∈ {1, 0}. (5)

2) Survival uncertainty. Let sg,h,I,t denote the probability that an indi-
vidual of sex g is alive at age t+1, conditional on being alive at age t, having
time-t health status h, and enjoying permanent income I.

3) Medical expense uncertainty. Medical expenses, mt, are defined as out-
of-pocket expenses. Since our focus is on understanding the effects of out-of-
pocket medical expenses on saving decisions, this version of the model takes
medical expenses as exogenous shocks to the household’s available resources
for our benchmark model, as in Scholz et al. [53], Palumbo [48] and Hubbard
et al. [33, 34]. In section 9 we study whether endogenizing medical expenses
affects our key results.

We assume that the mean and the variance of the log of medical expenses
depend upon sex, health status, permanent income, and age:

lnmt = m(g, h, I, t) + σ(g, h, I, t) × ψt. (6)

Following Feenberg and Skinner [25] and French and Jones [30], we assume
that the idiosyncratic component ψt can be decomposed as

ψt = ζt + ξt, ξt ∼ N(0, σ2
ξ ), (7)

ζt = ρmζt−1 + ǫt, ǫt ∼ N(0, σ2
ǫ ), (8)
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where ξt and ǫt are serially and mutually independent. In practice, we
discretize ξ and ζ, using quadrature methods described in Tauchen and
Hussey [55].

The timing is the following: at the beginning of the period the individual’s
health status and medical medical expenses are realized. Then the individual
consumes and saves. Finally the survival shock hits. Households who die
leave any remaining assets to their heirs.

Next period’s assets are given by

at+1 = at + yn(rat + yt, τ) + bt −mt − ct, (9)

where yn(rat + yt, τ) denotes post-tax income, r denotes the risk-free, pre-
tax rate of return, the vector τ describes the tax structure, and bt denotes
government transfers.

Assets have to satisfy a borrowing constraint:

at ≥ 0. (10)

Following Hubbard et al. [33, 34], we also assume that government transfers
provide a consumption floor:

bt = max{0, c +mt − [at + yn(rat + yt, τ)]}, (11)

Equation (11) says that government transfers bridge the gap between an indi-
vidual’s “total resources” (i.e., assets plus income less medical expenses) and
the consumption floor. To be consistent with logic of asset and means-tested
transfers present in public insurance programs, we impose that if transfers
are positive, ct = c and at+1 = 0.

To save on state variables we follow Deaton [15] and redefine the problem
in terms of cash-on-hand: defining cash-on-hand allows us to combine assets
and the transitory component of medical expenses into a single state variable.

xt = at + yn(r at + yt, τ) + bt −mt. (12)

Note that assets and cash-on-hand follow:

at+1 = xt − ct, (13)

xt+1 = xt − ct + yn

(
r(xt − ct) + yt+1, τ

)
+ bt+1 −mt+1. (14)

To enforce the consumption floor, we impose

xt ≥ c, ∀t, (15)
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and to ensure that assets are always non-negative, we require

ct ≤ xt, ∀t. (16)

Note that all of the variables in xt are given and known at the beginning
of period t. We can thus write the individual’s problem recursively, using the
definition of cash-on-hand. Letting β denote the discount factor, the value
function for a single individual is given by

Vt(xt, g, ht, I, ζt) = max
ct,xt+1

{
u(ct, ht) + βsg,h,I,tEtVt+1(xt+1, g, ht+1, I, ζt+1)

+ β(1 − sg,h,I,t)φ(et)

}
, (17)

subject to
et = (xt − ct) − max{0, τ̃ · (xt − ct − x̃)}. (18)

and equations (14) - (16). The parameter τ̃ denotes the tax rate on estates
in excess of x̃, the estate exemption level.

4 Estimation procedure

4.1 The Method of Simulated Moments

To estimate the model, we adopt a two-step strategy, similar to the one
used by Gourinchas and Parker [31], Cagetti [10], and French and Jones [29].
In the first step we estimate or calibrate those parameters that can be cleanly
identified without explicitly using our model. For example, we estimate mor-
tality rates from raw demographic data. Let χ denote the collection of these
first-step parameters.

In the second step we estimate the vector of parameters ∆ = (δ, ν, β, c, θ, k)
with the method of simulated moments (MSM), taking as given the elements
of χ that were estimated in the first step. In particular, we find the vector ∆̂
yielding the simulated life-cycle decision profiles that “best match” (as mea-
sured by a GMM criterion function) the profiles from the data. Because our
underlying motivations are to explain why elderly individuals retain so many
assets, and to explain why individuals with high income save at a higher rate,
we match permanent income-conditional age-asset profiles.
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Consider individual i of birth cohort p in calendar year t. Note that
the individual’s age is t − p. Let ait denote individual i’s assets. Sorting
the sample by permanent income, we assign every individual to one of Q
quantile-based intervals. In practice, we split the sample into 5 permanent
income quintiles, so that Q = 5. Suppose that individual i of cohort p falls
in the qth interval of the sample income distribution. Let apqt(∆, χ) be the
model-predicted median asset level in calendar year t for an individual of
cohort p that was in the qth income interval. Assuming that observed assets
have a continuous density, at the “true” parameter vector (∆0, χ0) exactly
half of the individuals in group pqt will have asset levels of apqt(∆0, χ0) or
less. This leads to a well-known set of moment conditions:3

E
(
1{ait ≤ apqt(∆0, χ0)} − 1/2 |p, q, t, individual i alive at t

)
= 0, (19)

for each p, q and t triple. In other words, for each permanent income-cohort
grouping, the model and the data have the same median asset levels. Our
decision to use conditional medians, rather than means, reflects sample size
considerations; in some pqt cells, changes in one or two individuals can lead
to sizeable changes in mean wealth. Sample size considerations also lead us
to combine men and women in a single moment condition.

The mechanics of our MSM approach are fairly standard. In particu-
lar, we compute life-cycle histories for a large number of artificial individ-
uals. Each of these individuals is endowed with a value of the state vector
(t, xt, g, ht, I, ζt) drawn from the data distribution for 1996, and each is as-
signed a series of health, medical expense, and mortality shocks consistent
with the stochastic processes described in section 2 above. When simulating
health and mortality shocks, we give each simulated person the entire health
and mortality history realized by a person in the AHEAD data with the same
initial conditions.4 Since the data provide health and mortality only during
interview years, we simulate it in off-years using our estimated models and
Bayes’ Rule. The simulated medical expenditure shocks ζ and ξ are Monte
Carlo draws from discretized versions of our estimated shock processes.

Solving numerically the model described in section 3 yields a set of deci-
sion rules, which, in combination with the simulated endowments and shocks,

3See Manski [44], Powell [50] and Buchinsky [9]. Related methodologies are applied in
Cagetti [10] and Epple and Sieg [24].

4This approach ensures that the simulated health and mortality processes are fully
consistent with the data, even if our parsimonious models of these processes are just an
approximation. We are grateful to Michael Hurd for suggesting this approach.
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allows us to simulate each individual’s assets, medical expenditures, health
and mortality. We then compute asset profiles (values of apqt) from the arti-
ficial histories in the same way as we compute them from the real data.

Finally, we adjust ∆ until the difference between the data and simulated
profiles—a GMM criterion function based on equation (19)—is minimized.

We discuss the asymptotic distribution of the parameter estimates, the
weighting matrix and the overidentification tests in Appendix A.5

4.2 Econometric Considerations

In estimating our model, we face two well-known econometric problems.
First, in a cross-section, older individuals will have earned their labor income
in earlier calendar years than younger ones. Because wages have increased
over time (with productivity), this means that older individuals are poorer at
every age, and the measured saving profile will overstate asset decumulation
over the life cycle. Put differently, even if the elderly do not run down their
assets, our data will show that assets decline with age, as older individuals
will have lower lifetime incomes and assets at each age. Not accounting for
this effect will lead us to estimate a model that overstates the degree to which
elderly people run down their assets (Shorrocks [54]).

Second, wealthier people tend to live longer, so that the average survivor
in each cohort has higher lifetime income than the average deceased member
of that cohort. This “mortality bias” tends to overstate asset growth in an
unbalanced panel. In addition, as time passes and people die, the surviving
people will be, relative to the deceased, healthy and female. These healthy
and female people, knowing that they will live longer, will tend to be more
frugal than their deceased counterparts, and hence have a flatter asset profile
in retirement. Not accounting for mortality bias will lead us to understate
the degree to which elderly people run down their assets.

A major advantage of using a structural approach is that we can address
these biases directly, by replicating them in our simulations. We address
the first problem by giving our simulated individuals age, wealth, health,
gender and income endowments drawn from the distribution observed in the
data. If older people have lower lifetime incomes in our data, they will have

5Major theoretical contributions to the method of simulated moments include Pakes
and Pollard [47] and Duffie and Singleton [20]. Other useful references on asymptotic
theory include Newey [45], Newey and McFadden [46] and Powell [50].
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lower lifetime incomes in our simulations. Furthermore, we match assets at
each age, conditional on cohort and income quintile. We address the second
problem by allowing mortality to differ with sex, permanent income and
health status. As a result our estimated decision rules and our simulated
profiles incorporate mortality effects in the same way as the data.

5 Data

The AHEAD is part of the Health and Retirement Survey (HRS) con-
ducted by the University of Michigan. It is a survey of individuals who were
non-institutionalized and aged 70 or older in 1994. A total of 8,222 individu-
als in 6,047 households (in other words, 3,872 singles and 2,175 couples) were
interviewed for the AHEAD survey in late 1993/early 1994, which we refer
to as 1994. These individuals were interviewed again in 1996, 1998, 2000,
2002, 2004, and 2006. The AHEAD data include a nationally representative
core sample as well as additional samples of blacks, Hispanics, and Florida
residents.

We consider only single retired individuals in the analysis. This leaves us
with 3,259 individuals, of whom 592 are men and 2,667 are women. Of these
3,259 individuals, 884 are still alive in 2006. Appendix B gives more details
on the data.

Our measure of net worth (or assets) is the sum of all assets less mortgages
and other debts. The AHEAD has information on the value of housing
and real estate, autos, liquid assets (which include money market accounts,
savings accounts, T-bills, etc.), IRAs, Keoghs, stocks, the value of a farm
or business, mutual funds, bonds, and “other” assets. We do not use 1994
assets because they were underreported (Rohwedder et al. [51]).

Non-asset income includes the value of Social Security benefits, defined
benefit pension benefits, annuities, veterans benefits, welfare, and food stamps.
We measure permanent income as the individual’s average income over all
periods during which he or she is observed. Because Social Security benefits
and (for the most part) pension benefits are a monotonic function of aver-
age lifetime labor income, this provides a reasonable measure of lifetime, or
permanent income.6

6Because annuity income often reflects the earnings of a deceased spouse, our measure
of permanent income is not so much a measure of the individual’s own lifetime income as
it is a measure of the income of his or her household.
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Medical expenses are the sum of what the individual spends out of pocket
on insurance premia, drug costs, and costs for hospital, nursing home care,
doctor visits, dental visits, and outpatient care. It includes medical expenses
during the last year of life. It does not include expenses covered by insurance,
either public or private. French and Jones [30] show that the medical expense
data in the AHEAD line up very well with the aggregate statistics. For
our sample, mean medical expenses are $3,712 with a standard deviation of
$13,429 in 1998 dollars. Although this figure is large, it is not surprising,
because Medicare did not cover prescription drugs for most of the sample
period, requires co-pays for services, and caps the number of reimbursed
nursing home and hospital nights.

In addition to constructing moment conditions, we also use the AHEAD
data to construct the initial distribution of permanent income, age, sex,
health, medical expenses, and cash-on-hand that starts off our simulations.
In particular, each simulated individual is given a state vector drawn from
the joint distribution of state variables observed in 1996.

6 Data profiles and first step estimation re-

sults

In this section we describe the life cycle profiles of the stochastic processes
(e.g., medical expenditures) that are inputs to our dynamic programming
model, and the asset profiles we want our model to explain.

6.1 Asset profiles

We construct the permanent-income-conditional age-asset profiles as fol-
lows. We sort individuals into permanent income quintiles, and we track
birth-year cohorts. We work with 5 cohorts. The first cohort consists of
individuals that were ages 72-76 in 1996; the second cohort contains ages
77-81; the third ages 82-86; the fourth ages 87-91; and the final cohort, for
sample size reasons, contains ages 92-102. We use asset data for 6 different
years; 1996, 1998, 2000, 2002, 2004 and 2006. To construct the profiles, we
calculate cell medians for the survivors for each year assets are observed.

To fix ideas, consider Figure 1, which plots median assets by age and
income quintile for two birth-year cohorts for those that are still alive at
each moment in time. The lines at the far left of the graph are for the
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youngest cohort, whose members in 1996 were aged 72-76, with an average
age of 74. The other set of lines are for the cohort aged 82-86 in 1996.

There are five lines for each cohort because we have split the data into
permanent income quintiles. Unsurprisingly, assets turn out to be monoton-
ically increasing in income, so that the bottom line shows median assets in
the lowest income quintile, while the top line shows median assets in the top
quintile. For all permanent income quintiles in these cohorts, the assets of

Figure 1: Median assets by cohort and PI quintile: data. Solid line: cohort aged
74 in 1996. Dashed line, cohort aged 85 in 1996.

surviving individuals neither rise rapidly nor decline rapidly with age. If any-
thing, those with high income tend to have increases in their assets, whereas
those with low income tend to have declines in assets as they age. The profiles
for other cohorts, which are shown in Appendix B, are also similar.

Our finding that the income rich elderly run down their assets at a very
slow rate complements and confirms those by Dynan et al. [22] who look both
at younger as well as older households but do not have as many observations
as we do on the very elderly.

Figure 2 compares asset profiles that are aggregated over all the income
quintiles. The solid line shows median assets for everyone observed at a given
point in time, even if they died in a subsequent wave, i.e., the unbalanced
panel. The dashed line shows median assets for the subsample of individuals
who were still alive in the final wave, i.e., the balanced panel. It shows that
the asset profiles for those that were alive in the final wave—the balanced
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Figure 2: Median assets by birth cohort: everyone in the data (solid lines) vs.
survivors (dashed lines).

panel—have much more of a downward slope. The difference between the
two sets of profiles confirms that the people who died during our sample
period tended to have lower assets than the survivors.

Failure to account for the mortality bias would lead us to understate
asset decumulation by over 50% for the 74 year-olds in 1996. In 1996 median
assets of the 74 year olds who survived to 2006 were $84,000. In contrast, in
1996 median assets of all of the 74 year olds alive in that year were $60,000.
Median assets of those in the same cohort who survived to 2006 were $44,000.
The implied drops in median assets between 1996 and 2006 for that cohort
are therefore vastly different depending on what population we look at: only
$16,000 if we look at the unbalanced panel, but $40,000 for the balanced
panel of the survivors who made it to 2006. This is consistent with the
findings of Love et al. [42]. Sorting the data by permanent income reduces,
but does not eliminate, mortality bias.

Since our model explicitly takes mortality bias and differences in perma-
nent income into account, it is the unbalanced panels that we use in our
MSM estimation procedure.

16



6.2 Medical expense profiles

The mean of logged medical expenses is modeled as a function of: a
quartic in age, sex, sex interacted with age, current health status, health
status interacted with age, a quadratic in the individual’s permanent income
ranking, and permanent income ranking interacted with age. We estimate
these profiles using a fixed-effects estimator.7

We use fixed effects, rather than OLS, for two reasons. First, differential
mortality causes the composition of our sample to vary with age. In contrast,
we are interested in how medical expenses vary for the same individuals as
they grow older. Although conditioning on observables such as permanent
income partly overcomes this problem, it may not entirely. The fixed-effects
estimator overcomes the problem completely. Second, cohort effects are likely
to be important for both of these variables. Failure to account for the fact
that younger cohorts have higher average medical expenditures than older
cohorts will lead the econometrician to understate the extent to which med-
ical expenses grow with age. Cohort effects are automatically captured in a
fixed-effect estimator, as the cohort effect is merely the average fixed effect
for all members of that cohort.

The combined variance of the medical expense shocks (ζt + ξt) is modeled
with the same variables and functional form as the mean (see equation 6).

Our estimates indicate that average medical expenses for men are about
20% lower than for women, conditional on age, health and permanent income.
Average medical expenses for healthy people are about 50% lower than for
unhealthy people, conditional on age, sex and permanent income. These
differences are large, but the differences across permanent income groups are
even larger.

To better interpret our estimates, we simulate medical expense histories
for the AHEAD birth-year cohort whose members were ages 72-76 (with an
average age of 74) in 1996. We begin the simulations with draws from the
joint distribution of age, health, permanent income and sex observed in 1996.

Figure 3 presents average medical expenses, conditional on age and per-
manent income quintile for a balanced sample of people. We rule out at-
trition in these simulations because it is easier to understand how medical
expenses evolve over time when tracking the same individuals. The picture

7Parameter estimates for the data generating process for medical expenses, income,
health, and mortality, and a guide to using these data, are available at: http://
www.chicagofed.org/economic research and data/economists preview.cfm?autID=29.

17



with mortality bias, however, is similar. Permanent income has a large ef-

Figure 3: Average medical expenses, by permanent income quintile.

fect on average medical expenses, especially at older ages. Average medical
expenses are less than $1,000 a year at age 75, and vary little with income.
By age 100, they rise to $2,900 for those in the bottom quintile and of the
income distribution, and to almost $38,000 for those at the top of the income
distribution. Mean medical expenses at age 100 are $17,700.

Mean medical expenses implied by our estimated processes line up well
with the raw data. We have 58 observations on medical expenses for 100-
year-old individuals, averaging $15,603 (with a standard deviation of $33,723
and a standard error of $4,428) per year, with 72% of these expenses coming
from nursing home care. Between ages 95 and 100, we have 725 person-
year observations on medical expenses, averaging $9,227 (with a standard
deviation of $19,988 and standard error of $737). Therefore, the data indicate
that average medical expenses for the elderly are high.

Medical expenses for the elderly are volatile as well as high. We find
that the average variance of log medical expenses is 2.53. This implies that
medical expenses for someone with a two standard deviation shock to medical
expenses pays 6.8 times the average, conditional on the observables.8 The
variance of medical expenses rises with age, bad health, and income.

8We assume that medical expenses are log-normally distributed, so the predicted level
of medical expenses are exp

(
m+ 1

2σ
2
)
, where m denotes predicted log medical expenses

and σ2 denotes the variance of the idiosyncratic shock ψt. The ratio of the level of
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French and Jones [30] find that a suitably-constructed lognormal distri-
bution can match average medical expenses and the far right tail of the
distribution. They also find that medical expenses are highly correlated over
time. Table 1 shows estimates of the persistent component ζt and the transi-
tory component ξt. The table shows that 66.5% of the cross sectional variance
of medical expenses are from the transitory component, and 33.5% from the
persistent component. The persistent component has an autocorrelation co-
efficient of 0.922, however, so that innovations to the persistent component
of medical expenses have long-lived effects. Most of a household’s lifetime

medical expense risk comes from the persistent component.

Parameter Variable Estimate

ρm autocorrelation of persistent component 0.922
σ2

ǫ innovation variance of persistent component 0.0503
σ2

ξ innovation variance of transitory component 0.665

Table 1: Persistence and variance of innovations to medical expenses (variances
as fractions of total cross-sectional variance).

Our estimates of medical expense risk indicate greater risk than found
in other studies (see Hubbard, et al. [33] and Palumbo [48]). However, our
estimates still potentially understate both the level and risk of the medical
expenses faced by older Americans, because our measure of medical expendi-
tures does not include the value of Medicaid contributions. As equation (11)
shows, some of the medical expenses (mt) in our model may be paid for by
the government through the provision of the consumption floor. Therefore,
the ideal measure of mt drawn from the data would include both the out-
of-pocket expenditures actually made by the consumer and the expenditures
covered by Medicaid. The AHEAD data, however, do not include Medicaid
expenditures.

medical expenses two standard deviations above the mean to average medical expenses is
exp(m+2σ)

exp(m+σ2/2) = exp(2σ − σ2/2) = 6.80 if σ =
√

2.53.
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6.3 Income profiles

We model mean income in the same way as mean medical expenses, using
the same explanatory variables and the same fixed-effects estimator.

Figure 4: Average income, by permanent income quintile.

Figure 4 presents average non-asset income profiles, conditional on per-
manent income, computed by simulating our model. For those in the top
permanent income quintile, annual income averages $20,000 per year. Figure
1 shows that median wealth for the high income younger cohort is slightly
under $200,000, or about 10 years worth of income for this group.

6.4 Mortality and health status

We estimate the probability of death and bad health as logistic func-
tions of a cubic in age; sex; sex interacted with age; previous health status;
health status interacted with age; a quadratic in permanent income rank;
and permanent income rank interacted with age. A detailed description of
our estimates can be found in De Nardi et al. [18].

Using the estimated health transitions, survival probabilities, and the ini-
tial joint distribution of age, health, permanent income and sex found in our
AHEAD data, we simulate demographic histories. Table 2 presents predicted
life expectancies.9 Rich people, women, and healthy people live much longer

9Our predicted life expectancy is lower than what the aggregate statistics imply. In
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Income Healthy Unhealthy Healthy Unhealthy
Quintile Male Male Female Female All†

bottom 7.6 5.9 12.8 10.9 11.1
second 8.4 6.6 13.8 12.0 12.4
third 9.3 7.4 14.7 13.2 13.1
fourth 10.5 8.4 15.7 14.2 14.4
top 11.3 9.3 16.7 15.1 14.7

By gender:‡

Men 9.7
Women 14.3

By health status:⋄

Healthy 14.4
Unhealthy 11.6

Note: life expectancies calculated through simulations using estimated health transition

and survivor functions. † Calculations use the gender and health distributions observed

in each permanent income quintile. ‡ Calculations use the health and permanent income

distributions observed for each gender. ⋄ Calculations use the gender and permanent

income distributions observed for each health status group.

Table 2: Life expectancy in years, conditional on reaching age 70.

than their poor, male, and sick counterparts. Two extremes illustrate this
point: an unhealthy male at the bottom quintile of the permanent income
distribution expects to live only 6 more years, that is, to age 76. In contrast,
a healthy woman at the top quintile of the permanent income distribution
expects to live 17 more years, thus making it to age 87. Such significant

2002, life expectancy at age 70 was 13.2 years for men and 15.8 years for women, whereas
our estimates indicate that life expectancy for men is 9.7 years for men and 14.3 years for
women. These differences stem from using data on singles only: when we re-estimate the
model for both couples and singles we find that predicted life expectancy is within 1/2
year of the aggregate statistics for both men and women.
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differences in life expectancy should, all else equal, lead to significant differ-
ences in saving behavior. In complementary work, (De Nardi et al. [19]), we
show this is in fact the case.

We also find that for rich people the probability of living to very old ages,
and thus facing very high medical expenses, is significant. For example,
using the same simulations used to construct Table 2, we find that a healthy
70-year-old woman in the top quintile of the permanent income distribution
faces a 14 percent chance of living 25 years, to age 95.

7 Second step estimation results

Table 3 presents preference parameter estimates for several specifications.
The first column presents results for a parsimonious model with no bequest
motives and no health preference shifter. The second column reports esti-
mates for a model in which health can shift the marginal utility of consump-
tion. In the third column, the bequest motive is activated, and in the final
column, both the bequest motive and the preference shifter are active. In all
cases, we set the interest rate to 2%.

Table 3 shows that the bequest parameters are never statistically signif-
icant and, as shown by the overidentification statistics, have little effect on
the model’s fit.

When considered in isolation, the health preference parameter is not sig-
nificant either. However, the final column shows that this parameter is sta-
tistically significant when bequest motives are included. An appropriate test,
however, is the joint test based on the change in the overidentification statis-
tic (Newey and McFadden [46], section 9). Comparing the first and last
columns of Table 3 shows that the test statistic decreases by 4.8, while 3
degrees of freedom are removed. With a χ2(3) distribution, this change has
a p-value of 18.7%, implying that we cannot reject the parsimonious model.

In short, the bequest and health preference parameters are (collectively)
not statistically significant, do not help improve the fit of the model, and,
moreover, have little effect on any of the other parameter estimates. We thus
use the parsimonious model as our benchmark specification and only briefly
discuss the other configurations.
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With health-
dependent With

Benchmark preferences bequests All

ν: relative risk aversion coeff. 3.81 3.75 3.84 3.66
(0.50) (0.47) (0.55) (0.55)

β: discount factor 0.97 0.97 0.97 0.97
(0.04) (0.05) (0.05) (0.04)

δ: preference shifter 0.0 -0.21 0.0 -0.36
NA (0.18) NA (0.14)

θ: bequest intensity 0.0 0.0 2,360 2,419
NA NA (8,122) (1,886)

k: bequest curvature (in 000s) NA NA 273 215
NA NA (446) (150)

c: consumption floor 2,663 2,653 2,665 2,653
(346) (337) (353) (337)

Overidentification test 82.3 80.6 81.5 77.5

Degrees of freedom 98 97 96 95

p-value 87.4% 88.5% 85.4% 90.5%

Table 3: Estimated structural parameters. Standard errors are in parentheses
below estimated parameters. NA refers to parameters fixed for a given
estimation.

7.1 The benchmark model

The first column of table 3 shows that the estimated coefficient of relative
risk aversion is 3.8, the discount factor is .97, and the consumption floor is
$2,663. These estimates are well within the range of those provided in the
previous literature.

Our estimated coefficient of relative risk aversion, 3.8, is higher than
the coefficients found by fitting non-retiree consumption trajectories, either
through Euler equation estimation (e.g., Attanasio et al. [3]) or through the
method of simulated moments (Gourinchas and Parker [31]). It is, however,
at the lower end of the estimates found by Cagetti [10], who matched wealth
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profiles with the method of simulated moments over the whole life cycle. It is
much lower than those produced by Palumbo [48], who matched consumption
data for retirees using maximum likelihood estimation. Given that our out-
of-pocket medical expenditure data indicate more risk than that found by
Palumbo, it is not surprising that we can match observed precautionary and
life-cycle savings with a lower level of risk aversion.

The consumption floor that we estimate ($2,700 in 1998 dollars) is similar
to the value that Palumbo [48] uses ($2,000 in 1985 dollars). However, our
estimate is about half the size of the value that Hubbard et al. [33] use, and
is also about half the average value of Supplemental Security Income (SSI)
benefits.

Our consumption floor proxies for Medicaid health insurance (which al-
most eliminates medical expenses to the financially destitute) and SSI. Given
the complexity of these programs, and the fact that many potential recipients
do not fully participate in them, it is tricky to establish a priori what the con-
sumption floor should be. Individuals with income (net of medical expenses)
below the SSI limit are usually eligible for SSI and Medicaid. However, some
individuals with income well above the SSI level can receive Medicaid ben-
efits, depending on the state they live in. On the other hand, many eligible
individuals do not draw SSI benefits and Medicaid, suggesting that the value
of the consumption floor is much lower than the statutory benefits.10 Our es-
timates likely provide an “effective” consumption floor, one which combines
the complexity and variety of the statutory rules with people’s perceptions
and attitudes toward welfare eligibility. In appendix C, we show that fixing
the consumption floor at $5,000 significantly worsens the model’s fit.

The Euler Equation can give some intuition for the estimates and their
identification. Ignoring taxes and bequest motives, the Euler Equation is
given by

(1 + δht)c
−ν
t = β(1 + r)stEt(1 + δht+1)c

−ν
t+1. (20)

Log-linearizing this equation shows that expected consumption growth fol-
lows:

Et (∆ ln ct+1) =
1

ν
[ln(β(1 + r)st) + δEt(ht+1 − ht)]

+
ν + 1

2
V art(∆ ln ct+1). (21)

10For example, Elder and Powers [23] (Table 2), find that less than 50 percent of those
eligible for SSI receive benefits.
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The coefficient of relative risk aversion is identified by differences in saving
rates across the income distribution, in combination with the consumption
floor. Low income households are relatively more protected by the consump-
tion floor, and will thus have lower values of V art(∆ ln ct+1) and thus weaker
precautionary motives. The parameter ν helps the model explain why in-
dividuals with high permanent income typically display less asset decumu-
lation. Appendix C discusses the identification of the coefficient of relative
risk aversion and the consumption floor in more detail.

Table 3 also reveals that our model fits the data well. A way to assess
the goodness of fit of our model is to compute the p−value of the overiden-
tification statistics. It is 87.3% for our baseline specification. This is a good
result for an estimated structural model, as many such models are rejected.

Figure 5: Median assets by cohort and PI quintile: data and model.

Figure 5 provides a visual measure of fit, by showing how the baseline
model fits a subset of the data profiles, using unbalanced panels. (The model
fits equally well for the cells that are not shown.) The model does a very
good job at matching the key features of the data that we are interested in:
both in the model and in the observed data individuals with high permanent
income tend to increase their wealth with age, whereas individuals with low
income tend to run down their wealth with age.

Because our model uses income-, health- and sex-adjusted mortality pro-
files, the profiles it generates should exhibit mortality biases similar to those
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Figure 6: Median assets by birth cohort: everyone in the simulations vs. sur-
vivors.

found in the data. Figure 6 shows simulated asset profiles, first for all sim-
ulated individuals alive at each date, and then for the individuals surviving
the entire simulation period. As in the data, restricting the profiles to long-
term survivors reveals much more asset decumulation. The mortality bias
generated by the model is large.

Given that the survival rate, st, is often much less than 1, it follows from
equation (21) that the model will generate downward-sloping, rather than
flat, consumption profiles, unless the discount factor β is fairly large. Fig-
ure 7 shows simulated consumption profiles for ages 74-100. Except for the
last two years of life, consumption falls with age. This general tendency
is consistent with many empirical studies of older-age consumption. For ex-
ample, Fernandez-Villaverde and Krueger find that non-durable consumption
declines about one percent per year between ages 70 and 90. (Also see Banks,
Blundell, and Tanner [5].)

7.2 The model with health-dependent preferences

The second and fourth columns of Table 3 show point estimates of δ =
−.21 or δ = −.36: holding consumption fixed, being in good health lowers
the marginal utility of consumption by 21-36%. This implies that an antici-
pated change from good to bad health leads consumption to increase by 6 to
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Figure 7: Median consumption by PI quintile: simulations.

10%, depending on the specification (see equation (21)). Previous empirical
studies disagree on whether δ is greater than or less than 0. (See Lillard and
Weiss [41], Rust and Phelan [52], Viscusi and Evans [56] and Finkelstein et
al. [26] as examples.)

This parameter, however, is not statistically significant (if considered
jointly with bequests), and none of the other parameter estimates are af-
fected by its inclusion.

7.3 The model with bequest motives

The third and fourth columns of Table 3 show parameter estimates for
models that include a bequest motive. Because the two specifications deliver
similar parameter estimates, we focus on the results in the third column.

The point estimates of θ = 2, 360 and k = 273, 000 indicate that the con-
sumption level above which the bequest motive becomes operative is about
$36,000 per year. (See Appendix D for a derivation.) By way of comparison,
individuals in the top permanent income quintile have an average annuity
income of about $20,000 and hold less than $200,000 of assets. This sug-
gests that most people in our sample do not have a strong bequest motive.
Not surprisingly, we find that bequest motives are not very important for
fitting our data; none of the estimated bequest parameters are statistically
significant, and adding bequests does not significantly improve the model’s
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fit.
For those sufficiently rich, however, the marginal propensity to bequeath

above that consumption level is also high, with 88 cents of every extra dollar
above the threshold being left as bequests. (See Appendix D.) Hence one
can interpret our estimates as suggesting that the bequest motive could be
present for the richest people in our sample.

To show the model’s implications for bequests, Figure 8 displays the dis-
tribution of assets that individuals hold one period before their deaths.11

Comparing the two panels of Figure 8 highlights that the models with and
without the estimated bequest motive generate very similar distributions of
bequests. Both versions of the model also do a good job of matching the
distribution of assets before death found in the data, although both versions
slightly under-estimate the probability of having less than $10,000 in the year
before death.
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Figure 8: Cumulative distribution function of assets held 1 period before death:
data and model. Model with bequest motive in the left panel, and
without on the right panel. Legend: solid line is model, lighter line is
data.

Our findings should not be interpreted as a rejection of bequest motives

11When AHEAD respondents die, their descendants are asked about the value of the es-
tate. However, problems of non-response are severe – 49% of all estate values are imputed.
Furthermore, it is unclear whether reported estates also include the value of the deceased
individual’s home. For these reasons we report the distribution of assets one year before
death rather than estates. Estates are somewhat lower than assets one year before death;
mean and median assets 1 year before death are $162,000 and $37,000, whereas mean and
median estates are $132,000 and $20,000.
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in general. Our sample is composed of elderly singles. It is well known that
singles are poorer than couples (see for example Dı́az-Giménez et al. [17]),
and other evidence indicates that bequests are a luxury good (De Nardi [14],
and Dynan et al. [22]). Our sample of singles may not contain enough rich
households to reveal strong bequest motives. Moreover, and importantly, a
significant fraction of our sample is composed of people who have already
lost their partner, and it is possible that some of the estate was already split
between the surviving spouse and other heirs.

7.4 Summary

Our main results from the second step estimation can be summarized as
follows. First, our estimates of the coefficient of relative risk aversion, time
discount factor, and consumption floor are reasonable and within the range
of the literature. Second, we do not find that health-dependent preferences
are important for understanding retirees’ saving behavior. Third, we do not
find that bequest motives significantly affect savings in our sample. Fourth,
the model fits the data well, both in terms of the moment conditions that
we match, and in terms of the mortality bias in the asset and bequests
distribution that it generates. Finally, the model’s consumption implications
are consistent with previous empirical evidence. Put together, these findings
give us confidence that we can use our benchmark model (without bequests
and preference shocks) to study how savings depend on medical expenses and
the consumption floor.

8 What are the important determinants of

savings?

To determine the importance of the key mechanisms in our model we
fix the estimated parameters at their benchmark values and then change
one feature of the model at a time. For each of these different economic
environments we compute the optimal saving decisions, simulate the model,
and compare the resulting asset accumulation profiles to the asset profiles
generated by the baseline model.

We display asset profiles for the AHEAD birth-year cohort whose mem-
bers were ages 72-76 (with an average age of 74) in 1996. To focus on un-
derlying changes in saving, we rule out attrition and assume every individual
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lives to age 100. People will face the same risks and have the same expecta-
tions as before (except for the particular aspect changed in each experiment),
but in their realized lives they do not die and drop out of the simulations
until age 100. None of our conclusions would change if we were to also allow
for mortality bias.

Figure 9: Median assets by cohort and PI quintile: baseline and model with no
medical expenses.

First, we ask whether the out-of-pocket medical expenditures that we
estimate from the data are important drivers of old age savings. To answer
this question, we zero out all medical out-of-pocket medical expenditures for
everyone and look at the corresponding profiles. This could be seen as an
extreme form of insurance provided by the government.

Figure 9 shows that medical expenses are a big determinant of the el-
derly’s saving behavior, especially for those with high permanent income,
for whom those expenses are especially high, and who are relatively less
insured by the government-provided consumption floor. These retirees are
reducing their current consumption in order to pay for the high out-of-pocket
medical expenses they expect to bear later in life. For given initial wealth,
if there were no out-of-pocket medical expenses, individuals in the highest
permanent-income quintile would deplete their net worth by age 94. In the
baseline model with medical expenses they keep almost $40,000 to pay for
out-of-pocket medical expenses in the last few years of life. The risk of living
long and having high medical expenses late in life increases savings. This
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Figure 10: Median assets by cohort and PI quintile: baseline and model with no
medical expense risk.

decomposition indicates that modeling out-of-pocket medical expenses is im-
portant in evaluating policy proposals that affect the elderly.

We next shut down out-of-pocket medical expense risk (the shocks ζ and
ξ), while keeping average medical expenditure constant (conditional on all
of the relevant state variables). Figure 10 shows the results. Interestingly,
and consistently with Hubbard, Skinner and Zeldes [33], we find that, con-
ditional on average medical expenses, the risk associated with the volatility
of medical expenses has only a small effect on the profiles of median wealth.
Our results are also consistent with Palumbo’s [48] finding that eliminating
medical expense risk generates small effects on consumption and assets.12

One reason why medical expense risk might not have a large effect is that
the consumption floor limits the effects of catastrophic medical expenses. To
explore this effect further, we reduce the consumption floor to 80% of its
value, that is from $2,663 to $2,100. One could interpret this as a reform
reducing the government-provided consumption safety net. The effects of

12Figure 10 shows that eliminating medical expense risk sometimes causes assets to
increase. One reason for the increase is that when the variance of medical expenses is
reduced, the frequency of large medical expenses is also reduced, which in turn reduces
the fraction of medical expenses covered by Medicaid. Eliminating volatility in mt can
thus raise the average medical expense borne by retirees. Because this cost increase will
be highest at oldest ages, individuals will respond by accumulating more assets.
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this change are quite evident. Individuals respond to the increase in net
income uncertainty by rapidly accumulating assets to self-insure. Figure 11
shows that reducing the consumption floor affects the savings profiles of both
low- and high-permanent-income singles. The consumption floor matters for
wealthy individuals as well as poor ones. This is perhaps unsurprising given
the size of our estimated medical expenses for the old and income-rich; even
wealthy households can be financially decimated by medical expenses in very
old age.

Figure 11: Median assets by cohort and PI quintile: baseline and model with
80% of the consumption floor.

9 Endogenous medical spending

To check the sensitivity of our findings to the assumption that medical
expenses are exogenous, we consider a more complex model in which retirees
optimally choose how much to spend on medical goods and services, as well
as on non-medical consumption. Our findings are robust to this extension.

We assume that retirees derive utility from consumption of both non-
medical and medical goods, with the relative weights on the two goods vary-
ing with age, health, and an idiosyncratic “medical needs” shock.

A complementary approach is that of Grossman [32], in which medical
expenses represent investments in health capital, which in turn decreases
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mortality. While this is an appealing mechanism, the existing empirical lit-
erature suggests that these effects are particularly small for the U.S elderly
for two reasons. First, the expenditures that we are considering are sup-
plementing Medicaid, Medicare, and insurance-provided medical goods and
services, which cover most life-threatening conditions. Second, the stock of
health carried by an elderly person is in large part determined by the health
investments that were made in the past, including those made by the person’s
parents in his or her childhood and even before birth. Hence, for our sample
of people aged 70 and older, the effects of additional health investments are
not as large as, for example, in infancy.

A key piece of empirical evidence comes from the RAND Health Insurance
Experiment, where a random set of individuals were given co-payment-free
health insurance over a 3- to 5-year period, while a control group faced
standard co-payments. Brook et al. [7] found that even though the group
with free health care utilized medical services much more intensively than
the control group, the additional treatments had only a “minimal influence”
on subsequent health outcomes.

Surprisingly, some empirical studies show that even programs such as
Medicare, which likely help paying for some life-threatening conditions, have
little effects on extending life-expectancy. For example, Finkelstein and McK-
night [27] “find no compelling evidence that, in its first 10 years, Medicare
reduced overall elderly mortality.” They also note that, more in general, the
literature on the effects of health insurance “points strongly to no or only
very modest health benefits.” Fisher et al. [28] study regional variations in
Medicare spending, and conclude that individuals in high-spending regions
”do not have better health outcomes.” More in line with what one might
expect, a paper by Card et al. [11] finds a small reduction in mortality for 65
year old who are admitted through the emergency room for “non-deferrable”
conditions which are covered by Medicare for people at that age.

For these reasons some recent structural models have supplemented Gross-
man’s mechanism with the direct utility effects we use. For example Khwaja [38]
finds that “medical utilization would only decline by less than 20% over the
life cycle if medical care was purely mitigative and had no curative or pre-
ventive components.” (Also see Blau and Gilleskie [6].)

Given that the existing evidence indicates that the effect of additional
medical spending on life expectancy is small (and especially so for the elderly)
and that allowing for this additional effect would complicate the model and
require the estimation of many additional parameters, we focus on the utility
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effects of medical expenditures.

9.1 The endogenous medical expenditure model

At the beginning of each period the individual’s health status and medical
needs shocks are realized and need-based transfers are given. The individ-
ual then chooses consumption, medical expenditure, and saves. Finally the
survival shock hits. If the person dies, the estate is passed on to one’s heir.

The flow utility from consumption is given by

u(ct,mt, ht, ζt, ξt, t) =
1

1 − ν
c1−ν
t + µ(t, ht, ζt, ξt)

1

1 − ω
m1−ω

t , (22)

where t is age, ct is consumption of non-medical goods, mt is total consump-
tion of medical goods, ht is health status, and µ(·) is the medical needs shock,
which affects the marginal utility of consuming medical goods and services.
The consumption of both types of goods is expressed in dollar values. The
substitution elasticities for the two goods, however, can differ.

As before, we allow the need for medical services to have a temporary (ξt)
and a persistent (ζt) component; we recycle the variable names to save on
notation. We assume that these shocks follow the same processes as in equa-
tions (7) and (8), with potentially different parameters. It is worth stressing
that we not allow any of these shocks to depend on permanent income; in-
come affects medical expenditures solely through the budget constraint.

We model two important features of the health care system:

1. Private and public insurance pay the share 1− q(t, ht) of the total cost
of the medical services incurred by the retiree. Its complement, q(t, ht),
is the out-of-pocket share paid by the retiree. We estimate q(t, ht) as
part of our first-stage estimation. (See Appendix B for details.)

2. Social insurance, such as Medicaid and SSI, provide monetary trans-
fers that vary with financial resources and medical needs. We model
these transfers as providing a flow utility floor. The transfers thus
depend on the retirees’ state variables, not least their medical needs
shocks. For a given utility floor and state vector, we find the transfer
b∗(·) = b∗(t, at, g, ht, I, ζt, ξt) that puts each retiree’s utility at the floor.
Transfers then kick in to provide the minimum utility level to retirees
who lack the resources to afford it

b(t, at, g, ht, I, ζt, ξt) = max{0, b∗(t, at, g, ht, I, ζt, ξt)}. (23)

34



As before, we impose that if transfers are positive, the individual con-
sumes all of his resources (by splitting them optimally between the two
goods), so that at+1 = 0.

The retiree’s value function is given by

V (t, at, g, ht, I, ζt, ξt) = max
ct,mt,at+1

{
1

1 − ν
c1−ν
t + µ(t, ht, ζt, ξt)

1

1 − ω
m1−ω

t

+ βsg,h,I,tEt

(
V (t+ 1, at+1, g, ht+1, I, ζt+1, ξt+1)

)

+ β(1 − sg,h,I,t)φ(e)
)
}
, (24)

subject to equations (23), (18), (10), and

at+1 = at + yn(rat + yt) + b(t, at, g, ht, I, ζt, ξt) − ct −mtq(t, ht). (25)

9.2 Estimation

The log of the medical needs shifter µt is modeled as a function of: a
cubic in age; current health status; and health status interacted with age.
The combined variance of the shocks ζt +ξt is modelled as a quadratic in age;
current health status; and health status interacted with age. To identify these
parameters, we expand the moment conditions described by equation (19) to
include moments relating to: mean medical expenses by age and birth cohort,
for each half of the permanent income distribution; the 90th percentile of
medical expenses in the same cells; and the first and second autocorrelations
for medical expenses in each cell.13 Detailed moment conditions can be found
in Appendix A. In all other respects our MSM procedure is the same as
before.

13When a simulated individual receives a transfer from the government (bt > 0), we cal-
culate the medical expenses the individual would have made if there were no transfer. This
measure of out-of-pocket medical expenses is netted out of any social insurance payments.
Our model thus replicates the censoring of out-of-pocket medical expenditures caused by
Medicaid transfers that are already subtracted from the AHEAD medical expenditures
data.
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9.3 Results

The preference parameter estimates for the endogenous medical expendi-
ture model are shown in Appendix C. The new estimate of β, the discount
factor is 0.99, is slightly higher than the benchmark estimate of 0.97. The
estimate of ν, the coefficient of relative risk aversion for “regular” consump-
tion is 2.15, while the estimate of ω, the coefficient of relative risk aversion
for medical goods is 3.19, so that the demand for medical goods is less elas-
tic than the demand for consumption. Both coefficients are similar to, but
somewhat smaller than, the benchmark estimate of 3.82.

Figure 12: Median assets by cohort and PI quintile: data and endogenous med-
ical expenditure model.

The model also requires parameter estimates for the mean of the logged
medical needs shifter µ(t, ht, ζt, ξt) and the process for the shocks ζt and ξt.
The estimates for these parameters (available from the authors on request)
show that the demand for medical services rises rapidly with age.

Although the overidentification test statistic shows that the model with
endogenous medical expenditure is rejected by the data, the model does
a reasonable job in matching the main patterns of the asset profiles (see
Figure 12). Furthremore, the model fits the medical expense distribution
rather well: see Appendices B and C.

Out-of-pocket (and total) medical expenses in the endogenous medical ex-
penditure model can be eliminated by setting the medical needs parameter µt
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Figure 13: Median assets: baseline endogenous medical expense model and
model with no medical expenses.

to zero. Figure 13 shows that the effects of eliminating medical expenses are
similar to those found in the exogenous medical expense model (Figure 9).
Given that the consumer must prepare for the same pattern of medical ex-
penditures in either model, this is not surprising. Retirees will save for high
medical expenditures at old ages whether the expenditures are exogenous
shocks estimated from the data or medical expenditure choices consistent
with the same data.

Figure 14 shows the effects of reducing the generosity of social insurance
by 50% for both the exogenous medical expenses model and the endogenous
one with a utility floor.14 As in the exogenous medical expenditure model, a
change in social insurance has an effect on the savings of everyone, including
the richest elderly. The effects are of course smaller, because retirees in the
endogenous medical expense model can adjust medical expenditures as well
as consumption.

In sum, the endogenous medical expense model confirms and reinforces
our conclusion that medical expenses are a major savings motive, and that
social insurance affects the saving of the income-rich as well as that of the
income-poor. Our main findings appear thus robust to the way in which we

14In the endogenous medical expense model, we index the estimated utility floor by the
consumption level that provides the floor when µ = 1. To run the counterfactual, we cut
that consumption level in half.
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Figure 14: Median assets: baseline and model with 50% of the consumption floor
for the exogenous (left panel) and endogenous (right panel) medical
expense models.

model the medical expenditure decision.

10 Conclusions

In this paper, we construct, estimate and analyze a rich model of saving
for retired single people. Our paper provides several contributions.

First, we estimate the out-of-pocket medical expenses faced by the elderly
using a better data set and more flexible functional forms. As a result, we
find that medical expenses are much higher and more volatile than previously
estimated, that they rise very fast with age, and that at very advanced ages
(that is starting from about age 80), medical expenses are very much a lux-
ury good; i.e., they are much higher for individuals with higher permanent
income.

Second, we carefully estimate mortality probabilities by age as a function
of health, sex, and permanent income and find large variations along all
three dimensions. We find that in an unbalanced panel, mortality bias—the
tendency of rich people to live longer—is significant.

Third, we construct and estimate a structural model of saving using the
method of simulated moments. As a result of our careful first step-estimation
and of the richer sources of heterogeneity that we include in our model, we
find that our parameter estimates are very reasonable, and that our model
provides a better fit to the data than that previously obtained in the litera-
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ture. In particular, our estimated structural model fits saving profiles across
the entire income distribution, and reproduces the observation that elderly
people with high permanent income have a smaller dissaving rate than elderly
people with low permanent income.

Using our model and estimated processes and parameters we draw sev-
eral conclusions. We find that the pattern of out-of-pocket medical expenses
by age and permanent income is a key determinant of savings. If single
households live to very advanced ages, they are almost sure to need very ex-
pensive medical care, and they thus need to keep a large amount of assets (an
amount increasing in permanent income, as medical expenses also increase)
to self-insure against this risk.

We find that bequests are luxury goods and thus have little effect on
saving for most of our sample of elderly singles: in our data, median net worth
in the top permanent income quintile is less than $200,000. The parameter
values for this bequest motive are imprecisely estimated as well, probably
because we don’t have enough rich people in our sample. As a result, our
model fits almost equally well with or without bequest motives. In contrast,
medical expenses are crucial whether or not bequest motives are included.

Finally, we find that a publicly-provided consumption floor has a large
effect on the asset profiles of all people, even those with high income.

Our main conclusion is that out-of-pocket medical expenditures, and the
way in which they interact with the consumption floor, go a long way toward
explaining the elderly’s saving decisions and are very important elements
that should be included in models evaluating old-age policy reforms. Our
conclusions are robust to endogenizing medical expenditure in an empirically
realistic way.
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Appendix A: Moment conditions and asymptotic distri-
bution of parameter estimates

Benchmark model

In the model with exogenous medical expenses, our estimate, ∆̂, of the
“true” M × 1 preference vector ∆0 is the value of ∆ that minimizes the
(weighted) distance between the estimated life cycle profiles for assets found
in the data and the simulated profiles generated by the model. For each
calendar year t ∈ {t0, ..., tT} = {1996, 1998, 2000, 2002, 2004, 2006}, we match
median assets for 5 permanent income quintiles in 5 birth year cohorts.15 The
1996 (period-t0) distribution of simulated assets, however, is bootstrapped
from the 1996 data distribution, and thus we match assets to the data for
1998, ..., 2006. In addition, we require each cohort-income-age cell have at
least 10 observations to be included in the GMM criterion. In the end we
have a total of J = 101 moment conditions.

Suppose that individual i belongs to birth cohort p, and his permanent
income level falls in the qth permanent income quintile. Let apqt(∆, χ) denote
the model-predicted median asset level for individuals in individual i’s group
at time t, where χ includes all parameters estimated in the first stage (in-
cluding the permanent income boundaries). Assuming that observed assets
have a continuous conditional density, apqt will satisfy

Pr
(
ait ≤ apqt(∆0, χ0) |p, q, t, individual i observed at t

)
= 1/2.

The preceding equation can be rewritten as a moment condition (Manski [44],
Powell [50] and Buchinsky [9]). In particular, applying the indicator function
produces

E
(
1{ait ≤ apqt(∆0, χ0)} − 1/2 |p, q, t, individual i observed at t

)
= 0. (26)

Equation (26) is merely equation (19) in the main text, adjusted to allow
for “missing” as well as deceased individuals. Continuing, we can convert
this conditional moment equation into an unconditional one (e.g., Chamber-
lain [12]):

E
(
[1{ait ≤ apqt(∆0, χ0)} − 1/2] × 1{pi = p}

× 1
{q − 1

Q
≤ Ii <

q

Q

}
× 1{individual i observed at t}

∣∣ t
)

= 0, (27)

15Because we do not allow for macro shocks, in any given cohort t is used only to identify
the individual’s age.
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for p ∈ {1, 2, ..., P}, q ∈ {1, 2, ..., Q}, t ∈ {t1, t2..., tT}.
Suppose we have a data set of I independent individuals that are each

observed at up to T separate calendar years. Let ϕ(∆;χ0) denote the J-
element vector of moment conditions described immediately above, and let
ϕ̂I(.) denote its sample analog. Letting ŴI denote a J×J weighting matrix,
the MSM estimator ∆̂ is given by

argmin
∆

I

1 + τ
ϕ̂I(∆;χ0)

′ŴIϕ̂I(∆;χ0),

where τ is the ratio of the number of observations to the number of simulated
observations.

In practice, we estimate χ0 as well, using the approach described in the
main text. Computational concerns, however, compel us to treat χ0 as known
in the analysis that follows. Under regularity conditions stated in Pakes and
Pollard [47] and Duffie and Singleton [20], the MSM estimator ∆̂ is both
consistent and asymptotically normally distributed:

√
I
(
∆̂ − ∆0

)
 N(0,V),

with the variance-covariance matrix V given by

V = (1 + τ)(D′WD)−1D′WSWD(D′WD)−1,

where: S is the variance-covariance matrix of the data;

D =
∂ϕ(∆;χ0)

∂∆′

∣∣∣
∆=∆0

(28)

is the J ×M gradient matrix of the population moment vector; and W =
plimI→∞{ŴI}. Moreover, Newey [45] shows that if the model is properly
specified,

I

1 + τ
ϕ̂I(∆̂;χ0)

′R−1ϕ̂I(∆̂;χ0) χ2
J−K ,

where R−1 is the generalized inverse of

R = PSP,

P = I − D(D′WD)−1D′W.

The asymptotically efficient weighting matrix arises when ŴI converges
to S−1, the inverse of the variance-covariance matrix of the data. When
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W = S−1, V simplifies to (1 + τ)(D′S−1D)−1, and R is replaced with S.
This is the matrix we use for all the results shown in this paper.

But even though the optimal weighting matrix is asymptotically efficient,
it can be biased in small samples. (See, for example, Altonji and Segal [1].)
To check for robustness, we also use a “diagonal” weighting matrix, as sug-
gested by Pischke [49]. This diagonal weighting scheme uses the inverse of
the matrix that is the same as S along the diagonal and has zeros off the di-
agonal of the matrix. This matrix delivers parameter estimates very similar
to our benchmark estimates.

We estimate D, S and W with their sample analogs. For example, our
estimate of S is the J × J estimated variance-covariance matrix of the sam-
ple data. When estimating this matrix, we use sample statistics, so that
apqt(∆, χ) is replaced with the sample median for group pqt.

One complication in estimating the gradient matrix D is that the func-
tions inside the moment condition ϕ(∆;χ) are non-differentiable at certain
data points; see equation (27). This means that we cannot consistently esti-
mate D as the numerical derivative of ϕ̂I(.). Our asymptotic results therefore
do not follow from the standard GMM approach, but rather the approach
for non-smooth functions described in Pakes and Pollard [47], Newey and
McFadden [46] (section 7) and Powell [50].

To find D, it is helpful to rewrite equation (27) as

Pr
(
pi = p &

q − 1

Q
≤ Ii ≤

q

Q
& individual i observed at t

)
×

[∫ apqt(∆0,χ0)

−∞

f
(
ait

∣∣ p, q − 1

Q
≤ Ii ≤

q

Q
, t
)
dait − 1

2

]
= 0, (29)

It follows that the rows of D are given by

Pr
(
pi = p &

q − 1

Q
≤ Ii ≤

q

Q
& individual i observed at t

)
×

f
(
apqt

∣∣ p, q − 1

Q
≤ Ii ≤

q

Q
, t
)
× ∂apqt(∆0;χ0)

∂∆′
. (30)

In practice, we find f
(
apfqt|p, q, t

)
, the conditional p.d.f. of assets eval-

uated at the median apqt, with a kernel density estimator written by Kon-
ing [39].
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The model with endogenous medical expenditures

To estimate the model with endogenous medical expenses, we add several
moment conditions relating to medical expenses. We first simulate medical
expenses at an annual frequency, and then take two-year averages to produce
a measure of medical expenses comparable the one contained in the AHEAD.

Because we are interested in the possibility of catastrophic medical ex-
penses, especially at very old ages, it is important that each cohort-income-
age cell have a fairly large number of observations. To ensure this we split
the income distribution in half, rather than into quintiles, so that that the
quintile index q lies in {1, 2}. As before, we divide individuals into 5 cohorts,
and match data from 5 waves covering the period 1998-2006.

To fit the upper tail of the medical expense distribution, we require the
model to match the 90th percentile of out-of-pocket medical expenditures in
each cohort-income-age cell. Let m90

pqt(∆, χ) denote the model-predicted 90th
percentile for individuals in cohort p and permanent income half q at time
(age) t. Letting i index individuals, and proceeding as before, we have the
following moment condition:

E
(
[1{mit ≤ m90

pqt(∆0, χ0)} − 0.9] × 1{pi = p}

× 1
{q − 1

Q
≤ Ii <

q

Q

}
× 1{individual i observed at t}

∣∣ t
)

= 0, (31)

for p ∈ {1, 2, ..., P}, q ∈ {1, 2}, t ∈ {t1, t2..., tT}.
We also require the model to match mean medical expenses (in levels,

not logs) in each cell. Let mpqt(∆, χ) denote the model-predicted mean. The
associated moment condition is

E
(
[mit −mpqt(∆0, χ0)] × 1{pi = p}

× 1
{q − 1

Q
≤ Ii <

q

Q

}
× 1{individual i observed at t}

∣∣ t
)

= 0, (32)

Finally, to pin down the autocorrelation coefficient for ζ (ρm), and its
contribution to the total variance ζ + ξ, we require the model to match the
first and second autocorrelations of logged medical expenses. Define the
residual Rit as

Rit = ln(mit) − lnmpqt,

lnmpqt = E(ln(mit)|pi, qi, t),
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and define the standard deviation σpqt as

σpqt =
√
E
(
R2

it|pi = p, qi = q, t
)
.

Both lnmpqt and σpqt can be estimated non-parametrically as elements of χ.
Using these quantities, the autocorrelation coefficient ACpqtj is:

ACpqtj = E

(
RitRi,t−j

σpqt σpq,t−j

∣∣∣∣∣ pi = p, qi = q

)
.

Let ACpqtj(∆, χ) be the autocorrelation coefficient implied by the model,
calculated using model values of lnmpqt and σpqt. The resulting moment
condition for the first autocorrelation is

E

([
RitRi,t−1

σpqt σpq,t−1

− ACpqt1(∆0, χ0)

]
× 1{pi = p} × 1

{q − 1

Q
≤ Ii <

q

Q

}

× 1{individual i observed at t & t− 1}
∣∣∣∣ t
)

= 0, (33)

The corresponding moment condition for the second autocorrelation is

E

([
RitRi,t−2

σpqt σpq,t−2

− ACpqt2(∆0, χ0)

]
× 1{pi = p} × 1

{q − 1

Q
≤ Ii <

q

Q

}

× 1{individual i observed at t & t− 2}
∣∣∣∣ t
)

= 0, (34)

To summarize, the moment conditions used to estimate model with en-
dogenous medical expenses consist of: the moments for asset medians de-
scribed by equation (27); the moments for the 90th percentile of medical
expenses described by equation (31); the moments for mean medical ex-
penses described by equation (32); and the moments for the autocorrelations
of logged medical expenses described by equations (33) and (34). The GMM
criterion function, standard errors, and overidentification test statistic are
straightforward extensions of those used in the baseline model.

Appendix B: Data and first-stage results
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Overview of the AHEAD data

The AHEAD data provides high quality information on, amongst other
things, mortality, medical expenses, income, and wealth.

If it is discovered that a sample member dies, this is recorded and verified
using the National Death Index. Attrition for reasons other than death
is relatively rare. Furthermore, the mortality rates we estimate from the
AHEAD are very similar to the aggregate statistics, giving us confidence in
the data.

We consider only single retired individuals in the analysis. We drop all in-
dividuals who were either married or co-habiting at any point in the analysis
(so we include individuals who were never married with those who were di-
vorced or widowed by wave 1), which leaves us with 3,498 individuals. After
dropping individuals with missing wave 1 labor income data and individuals
with over $3,000 in labor income in any wave, we are left with 3,259 individ-
uals, of whom 592 are men and 2,667 are women. Of these 3,259 individuals,
884 are still alive in 2006.

We use the RAND release of the data for all variables, although we aug-
ment the RAND medical expense data. Parameter estimates and documen-
tation for out-of-pocket medical expenses, mortality rates, and health tran-
sition probabilities are available at: http://www.chicagofed.org/
economic research and data/economists preview.cfm?autID=29.

Assets

One problem with asset data is that the wealthy tend to underreport their
wealth in all household surveys (Davies and Shorrocks [13]). This leads to
understating asset levels at all ages. However, Juster et al. [37] show that the
wealth distribution of the AHEAD matches up well with aggregate values for
all but the richest 1% of households. However, problems of wealth underre-
porting seem particularly severe for 1994 AHEAD wave (see Rohwedder et
al. [51]). As a result, we do not use the 1994 wealth data in our estimation
procedure. (We use other 1994 data, however, in constructing the income,
health, and mortality profiles.) Given that, and the fact that we are match-
ing median assets (conditional on permanent income), the underreporting by
the very wealthy should not significantly affect our results.

Figure 15 shows the full set of asset profiles we use in the analysis.

Medical expenses
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Figure 15: Median assets by cohort and PI quintile: data.

The measure of medical expenditures contained in the AHEAD is average
medical expenditures over the last two years. For surviving individuals, we
use the RAND release of medical expense data. RAND has not coded medical
expenses that people incur in their last year of life. However, the AHEAD
data include follow-up interviews of the deceased’s survivors. These follow-
up interviews include information on medical expenses in the last year of
life. Because AHEAD respondents were asked only a limited set of questions
about their medical spending in 1994, we use medical expense data from 1996
onwards.

Because medical expeditures in the AHEAD are two-year averages, while
our model operates at an annual frequency, we multiply the two-year vari-
ance residual variance by 1.424. This adjustment, based on the “Standard
Lognormal” Model shown in Table 7 of French and Jones [30], gives us the
variance in one-year medical expenditures that would, when averaged over
two years, match the variance seen in the two-year data.16

Figure 16 compares the cumulative distribution function (CDF) of out-
of-pocket medical expenditures found in the data with that produced by the
models with exogenous and endogenous medical expenditures. Both models
fit the data well.

16To keep mean medical expenses (as opposed to their log) constant, this variance adjust-
ment is accompanied by an adjustment to the log mean. A description of this adjustment
can be found in our on-line documentation.
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Figure 16: Cumulative distribution function of medical expenses: data and the
exogenous (left panel) and endogenous (right panel) medical expen-
diture models. Legend: solid line is model, lighter line is data.

The CDF for the model with exogenous medical expenses lies slightly
above the CDF for the data until about $40K, and thus understates the
probability of large medical expenditures. This is not surprising because, due
to the nature of the AHEAD data, the exogenous medical expense process
is estimated on out-of-pocket expenditures net of Medicaid payments that,
ideally, should have been included.

The model with endogenous medical expenditures, in contrast, explicitly
models this kind of censoring. As a result, the moment conditions used to
estimate the process for the “medical needs” shocks use model-generated and
actual data that are both net of Medicaid payments. This should and in fact
does increase the estimated probability of large medical expenses, relative
to the exogenous medical expense model. The second panel of Figure 16
shows that the CDF for the endogenous model understates the probability of
low medical expenses, but fits the upper tail of the distribution (beginning
around $20K) quite well.

Co-insurance rates

We also use the AHEAD data to estimate the co-insurance rate q(t, ht).
Recall that in all waves AHEAD respondents are asked about what medical
expenses they paid out of pocket. In 1998, 2000, and 2002 they were also
asked about total billable medical expenses (including what is paid for by
insurance). We measure the co-insurance rate as the amount spent out of
pocket (less insurance premia) divided by the total billable medical expenses.
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Following Yogo (2009) we regress the log of this on an age polynomial and
health status, and health status interacted with age. We find that the co-
insurance rate falls with age and for people in bad health.

Appendix C: More estimation results

The first column of results in Table 4 reports the estimates from our
benchmark model.

The second column of Table 4 estimates a version of the benchmark model
with an exogenously fixed consumption floor. This is meant to further in-
vestigate whether the risk aversion parameter and the consumption floor are
separately identified. Raising the consumption floor to $5,000 exposes con-
sumers to less risk: the model compensates by raising the estimated value of
ν to 6.0. This adjustment to ν, however, is not enough to prevent a significant
worsening of the model’s fit. When the consumption floor is set exogenously
to $5,000, the p-value for the overidentification statistic is only 20.7%, com-
pared to 87.4% for the baseline specification. Such a large worsening of fit
suggests that ν and c are in fact identified. The estimated discount factor is
marginally lower.
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Endogenous
c = medical

Benchmark $5, 000 expenditures

ν: RRA coefficient, consumption 3.81 6.04 2.15
(0.50) (1.01) (0.055)

ω: RRA, medical expenditures NA NA 3.19
NA NA (0.054)

β: discount factor 0.97 0.96 0.99
(0.04) (0.06) (0.01)

c: consumption floor 2,663 5,000 NA
(346) NA NA

c: utility floor† NA NA 202
NA NA (23.4)

Overidentification test 82.3 110.2 667.0

Degrees of freedom 98 99 242

p-value overidentification test 87.4% 20.7% 0.0%

† In the endogenous medical expense model, the estimated utility floor is indexed by the

consumption level that provides the floor when µ = 1. This consumption value is not

comparable to the consumption floor.

Table 4: Estimated preference parameters. Standard errors are in parentheses
below estimated parameters. NA refers to parameters fixed for a given
estimation or to a case in which a given parameter does not apply.
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The final column of Table 4 shows the preference parameters for the model
with endogenous medical expenses. These results have been discussed in the
main text. Estimating the model with endogenous medical expenditures also
requires us to find the parameters of the log of the medical needs shifter
µ(t, ht, ζt, ξt). Figure 17 shows that, at the estimated parameter values, the
model fits the medical expenditure data well. Figure 17 compares observed
and simulated profiles for the mean and the 90th percentile of the medical
expenditure distribution, by cohort and permanent income. The figure shows
that the model slightly under-predicts medical expenditures, but captures
well the way in which expenditures rise with both age and permanent income.

Figure 17: Medical expenditures: data and endogenous medical expenditure
model. Left panel: means. Right panel: 90th percentile.

Appendix D: Interpreting the size of the bequest motive

To get a sense of the size of the bequest motive, consider a person who
starts the period with cash-on-hand x, dies for sure the next period without
incurring any medical expenses, and is in good health. Assume further that
this person’s assets are well below the estate taxation exemption level. The
budget constraint for such a person is given by e = (1 + r)(x − c), where e
is the bequest (estate) left. The first order condition for an interior solution
implies that the marginal utility of consumption today equals the appropri-
ately discounted marginal utility of bequests. Using the budget constraint
and our first order condition we can solve for optimal bequests:

e =
1 + r

1 + r + f
(fx− k), (35)
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where k is the shift parameter introduced in equation (3), and f is a function
of several preference parameters. Since bequests cannot be negative, the
expression for e reveals that x has to be large (> k/f) before the person will
leave any bequests. If x is not sufficiently large, then c = x and the solutions
just derived do not apply. Assuming that x is in fact large enough, the
marginal propensity to bequeath out of an extra dollar today is ∂

∂x

(
e

1+r

)
=

f

1+r+f
.

Using the parameter values in the third column of Table 3, we find that
marginal propensity to bequeath is 0.88, and the bequest motive becomes
operative at x = $36, 000. In a dynamic model, where the odds of dying in
any given period are low, x should be interpreted not as the total stock of
wealth, but as its annuity or consumption value. The bequest motive appears
to be strong, but only at very high levels of wealth.
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