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1. Introduction 

Since the early 1970s, Daniel Kahneman and Amos Tversky (hereafter KT 1972, 

1974, 1983) published a series of remarkable experiments documenting significant 

deviations from the Bayesian theory of judgment under uncertainty.  While KT’s 

heuristics and biases program has survived substantial experimental scrutiny, models of 

heuristics have proved elusive2.  In this paper, we offer a new model of decision making 

that accounts for quite a bit of the experimental evidence.   

In a 2008 lecture at Harvard, Kahneman noted that heuristics describe how people 

evaluate hypotheses quickly, based on what first comes to mind.  People may be entirely 

capable of more careful deliberation and analysis, and perhaps of better decisions, but not 

when they do not think things through.  Kahneman (2003) describes such quick decision 

making as System 1 (intuition), and distinguishes it from System 2 (reasoning).  We 

present a formal model of such System 1 judgment, based on what comes to mind3. 

We describe a problem in which a decision maker evaluates a hypothesis in light 

of some data, but with some residual uncertainty remaining.  This residual uncertainty 

can be thought of as scenarios that have not been specified.  We think of the decision 

maker as automatically filling in from memory some of the scenarios, but not others, and 

making the judgment in light of what he is thinking about.  Our approach is consistent 

with KT’s insistence that judgment under uncertainty is similar to perception.  Just as an 

individual fills in details from memory when interpreting sensory data (for example, 

when looking at the duck-rabbit or when judging distance from the height of an object), 

the decision maker recalls missing scenarios when he evaluates a hypothesis.  Kahneman 

                                                 
2 Partial exceptions include Mullainathan (2000), Griffin and Tversky (1992), and Tversky and Koehler 
(1994), to which we return in Section 3.3. 
3 Affect and emotion, two commonly noted aspects of system 1, play no role in our analysis. 
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and Frederick (2005) describe how psychologists think about this process: “The question 

of why thoughts become accessible – why particular ideas come to mind at particular 

times – has a long history in psychology and encompasses notions of stimulus salience, 

associative activation, selective attention, specific training, and priming (p. 271).” 

In our model of this process, what is accessible from memory in the first instance 

– what comes to mind – is both limited and selected.  On the one hand, some scenarios 

come to mind immediately, others do not: the working memory is limited.  On the other 

hand, the selection is primed by the question being asked (or hypothesis being evaluated), 

and might not be the data a Bayesian would ask for.  We model such accessibility by 

specifying that scenarios come to mind in order of their representativeness, defined as 

their ability to predict the hypothesis being evaluated relative to other hypotheses4.  This 

assumption formalizes some key properties of KT’s representativeness heuristic, giving 

to the latter a specific cognitive content in terms of limited and selective memory.  In this 

model, when the agent only thinks of some scenarios, his evaluations could (but need not) 

be severely biased; if he considers all the scenarios, his decisions are rational in the 

Bayesian sense.   The deliberate System 2 evaluations thus emerge as the limiting case of 

System 1 judgments, as more things come to mind. 

In the next section, we present an example illustrating our approach and the basic 

intuition for our results.  In Section 3, we present the formal model, and relate our 

approach to prior work.  The following sections apply the model to KT’s experimental 

findings.  Section 4 considers some of biases related to representativeness, such as base-

rate neglect and insensitivity to predictability.   Section 5 addresses the failures of 

                                                 
4 We used a different term than representativeness in an earlier draft, since Kahneman and Tversky appear 
to have a broader idea in mind.  Nevertheless, several readers suggested that we use represenativeness, 
since our definition of  represenativeness is close to several observations made by Kahneman and Tversky.    
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extensionality, namely the conjunction and disjunction fallacies.  Section 6 concludes.  

 

2 An Example: Intuitive Reasoning in an Electoral Campaign 

Popkin (1991) argues that intuitive reasoning plays a key role in politics, and can 

help explain the significance that ethnic voters in America attach to the candidates’ 

knowledge of their customs.  “In 1972, during New York primaries, Senator George 

McGovern of South Dakota was courting the Jewish vote, trying to demonstrate his 

sympathy for Israel.  As Richard Reeves wrote for New York magazine in August, 

‘During one of McGovern’s first trips into the city he was walked through Queens by city 

councilman Matthew Troy and one of their first stops was a hot dog stand.  “Kosher?” 

said the guy behind the counter, and the prairie politician looked even blanker than he 

usually does in big cities.  “Kosher!” Troy coached him in a husky whisper.  “Kosher and 

a glass of milk,” said McGovern.’” (p. 2).    

Popkin argues that such seemingly minor errors may matter a lot in elections 

because voters judge candidates intuitively.  Popkin suggests that in many – perhaps most 

– cases, such intuitive assessments work pretty well.  Yet this leaves open the question: 

under what circumstances do intuitive assessments lead to biases?  To show how our 

model may shed light on this question, we consider an example in which intuitive 

reasoning works well, and then return to hotdogs. 

Suppose for concreteness that McGovern declared at a Jewish campaign event 

that Israel was the aggressor in the 1967 war.  Suppose that a voter only wants to assess 

the probability that the candidate is qualified, but thinks most immediately of the 

candidate’s familiarity with his concerns. Think of the voter as having a database of 
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“associations” in his long term memory, summarized by a distribution of candidate types 

that, conditional on calling Israel the aggressor, is described in Table 1.A5: 
 

Familiarity Calls Israel aggressor in 
1967 war familiar unfamiliar 

qualified  

0.15 
 

0.025 

qualificati
on of 
candidate 

unqualified  

0.025 
 

0.8 
 

Table 1.A 

Table 1.A captures two ideas: i) calling Israel the aggressor in the 1967 war is very 

informative about his unfamiliarity with concerns of a Jewish voter (82.5% of the 

candidates who say this are unfamiliar), and ii) unfamiliarity in turn is very informative 

about qualification, at least for a Jewish voter (relative to a prior of 1/2 before calling 

Israel the aggressor).  The latter property is reflected in the qualification estimate of a 

Bayesian voter, which is equal to: 

Pr(qualified) = Pr(qualified, familiar) + Pr(qualified, unfamiliar) = 0.175,          (1) 

where we suppress conditioning on “calling Israel the aggressor”.  The Bayesian reduces 

his assessment of qualification sharply because the blunder is so informative. 

 Although Table 1.A is stored in the voter’s long term memory, due to working 

memory limits not all candidate types might come to mind to aid the evaluation of the 

candidate’s qualification.  In equation (1), the Bayesian voter considers that both 

                                                 
5 Throughout the analysis we take the basic database of associations (in this example, Table 1.A) as given.  
One could alternatively specify a very rich and high-dimensional database and endogenously derive a 
reduced database such as that in Table 1.A, where the agent represents specific hypotheses.  One thought 
process consistent with our model might work as follows.  In the first stage, the hypotheses to be tested 
themselves determine some dimensions of the space. In the current example, hearing about a candidate 
makes the “qualification” dimension salient to the voter, which pins down the rows of Table 1.A.  Then the 
candidate's statement about Jewish issues brings to mind familiarity with Jewish concerns, namely the 
columns of Table 1.A.  More generally, the agent in our model may fill in scenarios using the dimensions 
with respect to which the data are quite informative. As we shall see, the fact that the data are informative 
about the dimension defining the scenarios does not imply that the data are informative about the 
hypotheses tested by the agent, which is the very source of biases in our model. 
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qualified and unqualified candidates can be either familiar or unfamiliar with his 

concerns. The decision maker we describe, in contrast, is a “local thinker,” named so 

because, to evaluate hypotheses, he does not use all the data in Table 1.A but only the 

information he obtains by sampling in his memory some specific examples of qualified 

and unqualified candidates.  In KT’s spirit, what first comes to the voter’s mind are 

examples of representative, or stereotypical, qualified and unqualified candidates. 

We model this idea by assuming that the voter fits the most representative 

familiarity level – or “scenario” – for each level of qualification of the candidate.  We 

formally define the representative scenario as the familiarity level that best predicts, i.e. is 

relatively more associated with, the respective qualification level.  These representative 

scenarios for a qualified and an unqualified candidate are then given by: 

{ }
)Pr(maxarg)(

,
squalifiedqualifieds

unfamiliarfamiliars∈
= ,                                 (2) 

{ }
)Pr(maxarg)(

,
sdunqualifiedunqualifies

unfamiliarfamiliars∈
= .                             (3) 

In Table 1.A, this means that a qualified candidate evokes examples of candidates who 

are familiar, but an unqualified candidate evokes candidates who are unfamiliar.6  

Qualification and familiarity are associated in the stereotypical qualified candidate.  This 

reduces the voter’s actively processed information to the circled diagonal below: 
 

Familiarity Calls Israel aggressor in 
1967 war familiar unfamiliar 

qualified  

0.15 
 

0.025 

qualificat
ion of 
candidate 

unqualified  

0.025 
 

0.8 
 

Table 1.B 

                                                 
6 Indeed, Pr(qual|familiar) =..86 > .036 =Pr(qual|unfamiliar). The reverse is true for an unqualified candidate. 
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The local thinker’ assessment uses only stereotypical qualified and unqualified 

candidates, so his assessment (indicated by superscript L) is equal to: 
 

158.0
),Pr(),Pr(

),Pr()(Pr ≈
+

=
unfamiliardunqualifiefamiliarqualified

familiarqualifiedqualifiedL       (4) 

 

Comparing (4) with (1), we see that a local thinker does almost as well as a Bayesian, 

because stereotypes capture a big chunk of the respective hypotheses’ probabilities.  In 

reality as well as in the voter’s mind, familiarity and qualification largely go together. 

The same idea, however, suggests that in some cases local thinkers make very 

biased assessments.  Return to the example of a candidate’s ignorance that drinking milk 

with hotdogs is not kosher.  Suppose that the distribution of candidate types is: 

Familiarity Drinks milk with a hotdog 
familiar unfamiliar 

qualified  

0.024 
 

0.43 

Q
ualifica

tion of 
candidat
e

unqualified  

0.026 
 

0.52 
 

Table 1.C 

As in the previous case, in Table 1.C the candidate’s drinking milk with hotdogs 

is very informative about his unfamiliarity with the concerns of Jewish voters, but now 

such unfamiliarity is extremely uninformative about the candidate’s qualification (all 

relative to a prior of 1/2).  Indeed, 95% of the candidates do not know the rules of 

kashrut, including the vast majority of both the qualified and the unqualified ones.  In this 

example, a Bayesian assesses Pr(qualified) = 0.454; he realizes that drinking milk with a 

hotdog is nearly irrelevant for qualification. 

The local thinker, in contrast, still associates familiarity with qualification because 

the stereotypical qualified candidate is still one familiar with his concerns.  Formally, the 

scenario “familiar” yields a higher probability of the candidate being qualified (.024/.05 = 
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.48) than the scenario “unfamiliar” (.43/.95 = .45).  Likewise, the scenario unfamiliar 

yields a higher probability of the candidate being unqualified (.55) than the scenario 

familiar (.52).  The local thinker then estimates: 

   044.0
),Pr(),Pr(

),Pr()(Pr ≈
+

=
unfamiliardunqualifiefamiliarqualified

familiarqualifiedqualifiedL     (5) 

which differs from the Bayesian’s assessment by a factor of nearly 10!  In contrast to the 

previous case, the local thinker grossly over-reacts to news and mis-estimates 

probabilities.  Now local thinking generates a massive loss of information and bias.   

Why this difference in the examples?  After all, in both examples the stereotypical 

qualified candidate is familiar with the voter’s concerns, while the stereotypical 

unqualified candidate is unfamiliar since, in both cases, familiarity and qualification are 

positively associated in reality.  In the initial, more standard, example, the candidate’s 

familiarity is a good proxy for qualification.  Formally, almost all qualified candidates are 

familiar and unqualified ones are unfamiliar, so stereotypical qualified and unqualified 

candidates are both extremely common.  When the stereotypes of qualified and 

unqualified candidates are not only representative but also likely, the local thinker’s bias 

is kept down.  As a consequence, intuitive reasoning delivers good results.   

In the second example, in contrast, familiarity is a poor proxy for qualification.  

Formally, the bulk of both qualified and unqualified candidates are unfamiliar with the 

voter’s concerns, which implies that the stereotypical qualified candidate (familiar with 

concerns) is very uncommon while the stereotypical unqualified candidate is very 

common.  Hence, although unfamiliarity with the rules of kashrut does not affect much 

the true probability that the candidate is qualified, it is inconsistent with the voter’s 

stereotypical qualified candidate.  But then, by focusing only on the stereotypical 
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candidates, the local thinker drastically underestimates qualification because he forgets 

that many qualified candidates are also unfamiliar with the rules of kashrut!   

As noted by Popkin (1991), voters fit political facts using candidates’ personal 

data because those data allow them to map the candidate into a stereotypical candidate, 

which is precisely what happens in our model.  In our model, this process leads to good 

judgments in situations where the dimension defining the stereotype (familiarity) is quite 

informative about qualification (Table 1.A), while it leads to very biased judgments in 

situations where the dimension defining the stereotype is scarcely informative about the 

target assessment of qualification (Table 1.C).  We capture this effect by the distinction 

between the representativeness and likelihood of scenarios.  This distinction also plays a 

key role in rationalizing the biases generated by the use of heuristics.   

These considerations establish a further connection of our work to research in 

psychology, namely the idea of attribute substitution.  According to Kahneman and 

Frederick (2005, p. 269), “When confronted with a difficult question, people may answer 

an easier one instead and are often unaware of the substitution.”   Instead of answering a 

hard question “is the candidate qualified?,”  the voter answers an easier one, “is he 

familiar with my concerns?”  We show that such attribute substitutions might occur 

because, rather than thinking about all possibilities, people think in terms of stereotypical 

candidates, which associate qualification and familiarity.  In many situations, such 

substitution works, as in our initial example where familiarity is a good stand-in for 

qualification. But in some situations, the answer to a substitute question is not the same 

as the answer to the first, as when lots of candidates unfamiliar with the rules of kashrut 

are nonetheless qualified.   It is in those situations that intuitive reasoning leads to biased 
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judgment, as our analysis seeks to show.   

We now formalize our model of decision making and study its broader 

implications for judgment under uncertainty and the heuristics and biases research. 

 

3. The Model 

The world is described by a probability space (X,π ), where  is 

a finite state space generated by the product of K ≥ 1 dimensions and the function 

KXXX ××≡ ...1

[ 1,0: →X ]π  maps each element Xx∈  into a probability 0)( ≥xπ  such that 

.  In the example of Section 2, the dimensions of X are the candidate’s 

qualification, his familiarity with voter concerns and his blunder (i.e., K =  3), the elements 

 are candidate types and the probability measure 

1)( =∑ xπ

Xx∈ π  is described in Table 1.A. 

An agent evaluates the probability of  hypotheses  in light of data 

.  Hypotheses and data are events of X; that is, both  (r = 1,..., N) and d are subsets of 

X.  If the agent receives no data, then 

1>N

X

Nhh ,...,1

d rh

d = : nothing is ruled out.  Hypotheses are 

exhaustive but may be non-exclusive.  In (X, π ), the probability of  given d is 

determined by Bayes’ rule as: 

rh

∑
∑

∈

∩∈=
∩

=

dx

dhxr
r x

x

d
dh

dh r

)(

)(

)Pr(
)Pr(

)Pr(
π

π
.                                          (6) 

In our example, (1) follows from (6) since in Table 1.A the probabilities are normalized 

by Pr(calls Israel aggressor).  As we saw in Section 2, a local thinker may fail to produce 

the correct assessment (6) because he only considers a subset of elements x, those 

belonging to what we henceforth call his “represented state space”. 
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3.1 The Represented State Space 

The represented state space is shaped by the recall of elementary events (or 

elements) in X prompted by the assessed hypotheses , r = 1,…,N.  Recall is governed 

by two assumptions.  First, working memory limits the number of elements recalled by 

the agent to represent each hypothesis. Second, the agent recalls for each hypothesis the 

most “representative” elements.  Note that an element here is what we called a stereotype 

in the example of Section 2.  We formalize the first assumption as follows: 

rh

 

A1 (Local Thinking):  Given d, let  denote the number of elements in , r 

=1,…,N.  The agent represents each 

rM

hr

dhr ∩

d∩  using a number  of elements 

, where  is the maximum number of elements the agent can recall.   

),min( bM r

dhx r ∩∈ 1≥b

 

The set  includes all the elements (representations) consistent with 

hypothesis  and with the data d.  Two polar cases are of interest: i) the case of 

dhr ∩

rh 1=b , 

where thinking is fully local and only one element in the set of representations is selected 

for each hypothesis, and ii) the case where b  is sufficiently large that all hypotheses are 

represented using all elements in dhr ∩ . In the latter case, we say that the agent’s 

representation of all hypotheses is perfect.7 

The representation of hypothesis  is perfect if there are fewer than b  elements 

in the set of representations .  At the extreme, if 

rh

dhr ∩ dhr ∩  identifies a single element 

in X, even the representation with 1=b  is perfect.  The more interesting case involves 

broad hypotheses consisting of more than b  elements.  In this case, when , the 1=b

                                                 
7 For a given b, we can alternatively refer to b-level local thinking.  A1 is one way to capture limited recall.  
Our substantive results would not change if we alternatively assumed that the agent discounts the 
probability of certain elements.   
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entire set  must be collapsed into a single element. To do so, the agent attributes 

exact values to the dimensions of X that are not pinned down by the hypothesis and the 

data.  For instance, in the example of Section 2, to represent qualified and unqualified 

candidates, the voter considers one familiarity scenario for each level of qualification. 

dhr ∩

A more general formal definition of scenarios is as follows: consider the class of 

problems where  and  specify exact values (rather than ranges) for some dimensions 

of X.  In this class of problems, 

rh d

dhr ∩  takes the form: 

[ ]{ }KisomeforfixedisxwherexxXxd ∈≡

d

h iiir ,...,1ˆˆ ∈=∩ ,          (7) 

where  is the exact value taken by the i-th dimension in the hypothesis or data. The 

remaining dimensions are unrestricted.  This is consistent with the example in Section 2, 

where hypotheses specify qualification levels, data specify candidate statements, and the 

remaining familiarity dimension is left completely free.  The possible scenarios for the 

class of hypotheses  in (7) are defined as follows: 

ix̂

dhr ∩

 

Definition 1.   Suppose that  fixes the values of Nr < K dimensions in X.  Denote 

by Fr the set of the remaining K – Nr ≥ 0 free dimensions.  If Fr is non empty, a scenario s 

for  is any event 

dhr ∩

hr ∩ { rtt FtallforxxXxs ∈′=∈≡

rS

}.  If Fr is empty, the only 

scenario for  is s = X.   is the set of all possible scenarios for hypothesis . dhr ∩ rh

 

A scenario fills the details missing from the hypothesis and data by identifying a 

single element in , which we denote by dhr ∩ Xdhs r ∈∩∩ .  How do scenarios come 

to mind? We assume that the agent represents hypotheses belonging to class (7) as 

follows: 
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A2 (Recall by Representativeness):  Fix d and .  When b = 1, the agent represents  

with the most “representative” scenario , which is the scenario maximizing: 

rh rh
1
rs

)Pr()Pr(
)Pr()Pr(

dshdsh
dshdsh
rr

r
r ∩∩+∩∩

∩∩
=∩ ,                                       (8) 

where rh is the complement X\  in X of hypothesis .  When b > 1, the agent represents rh rh

rh  with b most “representative” scenarios , k = 1,…,b, where scenarios with a lower 

index k yield a higher value of (8) and where we define  for . 

k
rs

φ=k
rs rMk >

 

The local thinker represents  by recalling only the b most “representative” 

scenarios, those that are more associated with  relative to its complement 

rh

rh rh .  Scenario 

 is the most representative model for the hypothesis  in the sense that, together with 

the data, it maximizes the likelihood 

1
rs rh

)Pr( d∩shr  of the hypothesis.  It is useful to view 

the intersection of the data, the hypothesis, and the first scenario that comes to mind as a 

stereotype that the local thinker imagines. 

The above formal definition of representativeness has two key properties.  First, 

an attribute is more representative of a hypothesis not only if it is more associated with it, 

but also if it is less associated with all other hypotheses. That is, an attribute is perceived 

as more stereotypical if it maximizes the contrast between a hypothesis and its 

complement.  Second, what is stereotypical for one hypothesis is independent of other 

hypotheses being explicitly evaluated by the agent, as our definition of representativeness 

only refers to the relationship between a hypothesis and its complement. Still, one key 

property of A2 is that the way a hypothesis is formulated affects its representation. 
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We can derive the represented state space from the recalled scenarios.  If the 

agent recalls  in conjunction with the hypothesis , he includes the corresponding 

element s  in the representation of .  Applying this logic to all the 

1
rs

hr ∩

rh

Xdr ∈∩1
rh

hypotheses  evaluated by the agent yields: Nhh ,...,1

 

Definition 2 Given data d and hypotheses , r = 1,…,N, the agent’s representation of rh

any hypothesis  is defined as rh ∪
bk

r
k
rr dhsdh

,,...,1

)(~
=

∩∩≡ , and the agent’s represented 

state space X~  is defined as ∪
N

r dh
,...,1

)(
r

X ~~
=

≡ .   

 

The represented state space is simply the union of all elements recalled by the agent for 

each of the assessed hypotheses.  Definition 2 applies to hypotheses belonging to the 

class in (7), but it is easy to extend it to general hypotheses which, rather than attributing 

exact values, restrict the range of some dimensions of X.  Appendix 1 shows how to do 

this and to apply our model to the evaluation of these hypotheses as well.  The only result 

in what follows that relies on restricting the analysis to the class of hypotheses in (7) is 

Proposition 1.  As we show in the appendix, all other results, including the role of 

diagnosticity vs. likelihood as well as the results on the disjunction and conjunction 

fallacy of Section 5 can be easily extended to fully general classes of hypotheses. 

 

3.2 Probabilistic Assessments by a Local Thinker 

In the represented state space, the local thinker computes the probability of  as:  th

)~Pr(
))(~Pr(

)(Pr
X
dh

dh t
t

L = ,                                                    (9) 
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which is the probability of the representation of  divided by that of the represented 

state space 

th

X~ .  One crucial property of (9) is that the assessed probability of a hypothesis 

depends on the other hypotheses examined in conjunction with it as the latter affects the 

represented state space and thus the denominator of (9).  This is one key way in which the 

examined hypotheses shape assessments in our model.  Evaluated at b = 1, (9) is the 

counterpart of expression (4) in Section 2.   

Expression (9) highlights the role of local thinking.  If  for all r = 1,..,N, 

then 

rMb ≥

dXX ∩=~ , dhdh tt ∩≡)(~  and (9) boils down to )Pr( dht Pr(/)d∩ , which is the 

Bayesian’s estimate of )Pr( dht .  Biases in judgment can only arise when the agent’s 

representations are limited, that is, when rMb <  for some r.  

When the hypotheses are exclusive [i.e. φ=∩ rt hh  rt,∀ ], (9) can be written as: 

∑ ∑

∑

= =

=

∩⎥
⎦

⎤
⎢
⎣

⎡
∩

∩⎥
⎦

⎤
⎢
⎣

⎡
∩

=
N

r
r

b

k
r

k
r

t

b

k
t

k
t

t
L

dhdhs

dhdhs
dh

1 1

1

)Pr()Pr(

)Pr()Pr(
)(Pr ,                                (9’) 

where )Pr( dhs r ∩  is the likelihood of scenario s for , or the probability of s when  is 

true.  The bracketed terms in (9’) measure the share of a hypothesis’ total probability 

captured by its representation.  Equation (9’) says that if the representations of all 

hypotheses are equally likely (all bracketed terms are equal), the estimate is perfect, even 

if memory limitations are severe.  Otherwise, biases may arise.  Despite the importance 

of likelihood for the accuracy of assessments, the ranking of scenarios by their likelihood 

often differs from that by their representativeness.  

rh rh
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3.3 Discussion of the Setup and the Assumptions 

It is worth discussing the conceptual structure of the model.  Assumption A2 

posits that a hypothesis is represented using a mental model, or more specifically a 

scenario, that is most closely associated with this hypothesis relative to other ones, much 

in the spirit of KT’s notion of representativeness.  Representativeness is “defined as a 

subjective judgment of the extent to which the event in question is similar in essential 

properties to its parent population or reflects the salient features of the process by which 

it is generated” (KT 1972, p 431).  Indeed, KT (2002, p.23) have a discussion of 

representativeness related to our model’s definition:  “Representativeness tends to covary 

with frequency: common instances and frequent events are generally more representative 

than unusual instances and rare events,” but they add that “an attribute is representative 

of a class if it is very diagnostic; that is the relative frequency of this attribute is much 

higher in that class than in a relevant reference class.”  In other words, sometimes what is 

representative is not likely.  As we show below, the use of representative but unlikely 

scenarios drives many of the KT anomalies. 

Our approach is also related to Griffin and Tversky’s (1992) notion that agents 

assess a hypothesis more in light of the strength of the evidence in its favour, a concept 

akin to our “representativeness”, than in light of such evidence’s weight, a concept akin 

to our “likelihood”.  Also related is Tversky and Koehler’s (1994) support theory, which 

postulates that individuals do not attach beliefs to events but to descriptions of events, so 

that different descriptions of the same event may trigger different assessments. Tversky 

and Koheler however characterize such non-extensional probability axiomatically, 

without deriving it from underlying cognitive frictions as we do here. 
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In our model, representative scenarios quickly pop to the mind of a decision 

maker, consistent with the idea – supported in cognitive psychology and neurobiology – 

that background information is a key input in the interpretation of external (e.g., sensory) 

stimuli.8  What prevents the local thinker form integrating all other scenarios consistent 

with the hypothesis, as a Bayesian would do, is assumption A1 of incomplete recall.  

With complete recall, even our agent is Bayesian.  His thinking is System 2 thinking.9 

The key implication of this setup is that the hypotheses evaluated by the agent 

themselves influence his assessments by “polluting” his representation of the state space 

through their effect on the recall and salience of alternative scenarios.  This feature is 

neither shared by existing models of imperfect memory (e.g., Mullainathan 2000, Wilson 

2002) nor by models of analogical thinking (Jehiel 2005) or categorization (e.g., 

Mullainathan 2002, Mullainathan et al. 2008).  In the latter models, there is a first stage in 

which – irrespective of the hypotheses evaluated by the agent – data provision prompts 

the choice of a category (akin to a scenario) and a second stage where all hypotheses are 

evaluated in the same chosen category.  In models of categories, the Jewish voter 

observing a candidate drinking milk with a hotdog immediately categorizes him as 

unfamiliar with his concerns, and within that category he estimates the relative likelihood 

                                                 
8 In the model, background knowledge is summarized by the objective probability distribution )(xπ . This 
clearly need not be the case. Consistent with memory research, some elements Xx∈  may get precedence 
in recall not because they are more frequent but because the agent has experienced them more intensely or 
because they are easier to recall.  Considering these possibilities is an interesting extension of our model. 
9 Our approach shares some similarities with models of sampling.  Stewart et al. (2006) study how agents 
form preferences over choices by sampling their past experiences, Osborne and Rubinstein (1998) study the 
determination of equilibrium in strategic settings where players sample the performance of different 
actions. The focus of these works is very different from judgment under uncertainty.  From a general 
behavioural standpoint, however, the fundamental innovation of our work is to consider the case where 
agents do not sample scenarios at random but based on their representativeness (or more broadly 
accessibility) leading them to over-sample certain specific memories and under-sample others. 
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of qualified and unqualified candidates.  He would make a mistake in assessing 

qualification, but only a small one when virtually all candidates are unfamiliar. 

In our model, in contrast, everything happens simultaneously because, on the one 

hand, the hypotheses themselves affect which scenarios are recalled and, on the other 

hand, competing hypotheses are represented using different scenarios.  In many 

situations, categorical and local thinking lead to similar assessments of hypotheses, but in 

situations closely related to KT anomalies, they diverge.  Categorical thinking cannot, for 

example, explain the conjunction and disjunction fallacies, as we discuss below. 

 

4.  Biases in Probabilistic Assessments 

We measure a local thinker’s bias in assessing a generic hypothesis  against an 

alternative hypothesis  by deriving from expression (9’) the odds ratio: 
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where )Pr(/)Pr( 21 dhdh  is a Bayesian’s estimate of the odds of relative to .  One 

interpretation of (10) is that representations of  and  pop to the agent’s mind.  The 

relative likelihood of those representations is captured by the bracketed term.  The odds 

of  are over-estimated if and only if the representation of  is more likely than that of 

 (the bracketed term is greater than one).  Intuitively, a more likely representation 

induces the agent to over-sample instances of the corresponding hypothesis.  Biases arise 

in our model when one hypothesis is represented with relatively unlikely scenarios.   

1h 2h

1h 2h

1h 1h

2h

When b =1, expression (10) becomes:   
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which highlights how representativeness and likelihood of scenarios shape probability 

estimates.  Ceteris paribus, over-estimation of  is the strongest if the representative 

scenario  used to represent  is also the most likely one for , while the 

representative scenario  used to represent  is the least likely one for .  In this case, 

1h

1
1s 1h 1h

2h1
2s 2h

)dPr( 1
1
1 hs ∩  is maximal and )Pr( 2

1
2 dhs ∩

1h

 is minimal, maximizing the bracketed term in 

(11).  Conversely, under-estimation of  is the strongest if the representative scenario  1
1s

is the least likely one for , while the scenario  is the most likely one for . 1h 1
2s 2h

This analysis illuminates the electoral campaign example of Section 2.  Consider 

the general distribution of candidate types when d = “drinks milk with a hotdog”: 

 

Drinks milk with a hotdog familiar unfamiliar 
qualified π1 π2 

unqualified π3 π4 
 

Table 2.A 
 

 

We assume that π1/π3>π2/π4, i.e. that being qualified is more likely among familiar 

than unfamiliar types, so that familiarity with Jewish concerns is at least slightly 

informative about qualification.  This implies that: 

)Pr()Pr(
31

3

42

4 familiardunqualifieunfamiliardunqualifie =
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The representative scenario for dunqualifieh =1

qualified s =1
2

 is then , while the 

representative scenario for h  is .  By A2, the voter represents 

unfamiliars =1
1

=2 familiar
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1h  with  and  with .  In this represented 

state space, the local thinker estimates , so that the 

estimated odds ratio is equal to: 
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which is the counterpart of (11).  The bracketed term is the ratio of the likelihoods of 

scenarios for low and high qualifications [ )Pr( dunqualifieunfamilar / )Pr( qualifiedfamiliar ].  

The odds that the candidate is unqualified are over-estimated when π4/π3> π1/π2, namely 

when the share of unfamiliar candidates among the unqualified ones is sufficiently high.  

In this case, by associating unfamiliarity with low qualification in the stereotypical 

candidates, the voter forgets that many qualified candidates are also unfamiliar with the 

rules of kashrut, leading to an over-sampling of unqualified types.   

In the example of Table 1.A, judgments are good because π2 and π3 are small, so 

that the most representative and the most likely scenarios coincide for both hypotheses.  

The extreme version of this case arises when the distribution is given by Table 2.B: 

 

Calls Israel aggressor in 1967 war familiar unfamiliar 
qualified π1 0 

unqualified 0 π4 
 

Table 2.B 
 

With parameter values in Table 2.B, the bias in expression (12) is zero.  Each hypothesis 

is fully represented by its stereotype and so local thinking entails no informational loss, 

leading to a perfect assessment.  More generally, even if some probability mass is placed 

on non-stereotypical candidates, assessments are perfect (or moderately biased) provided 

that representativeness and likelihood coincide for both hypotheses. 
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Matters are radically different with the parameter values in Table 1.C, in which 

case π1 and π3 are small while π2 and π4 are large.  This is precisely the case in which the 

representative scenario “unfamiliar” used to represent dunqualifieh =1  is highly likely 

[π4/(π3+π4) is large], while the representative scenario “familiar” used to represent 

 is unlikely [π1/(π2+π1) is small].  As shown by (12), in this case biases are 

large.  The extreme version of such divergence between representativeness and likelihood 

for  arises under the following probability distribution of types: 

qualifiedh =2

qualifiedh =2

 

Drinks milk with a hotdog familiar unfamiliar 
qualified π 1→0 π2 

unqualified 0 π4 
 

Table 2.C 
 

If π3 = 0, the representativeness of scenarios is preserved because it is still the case that 

π1/π3 > π2/π4.  However, as π1→0, the likelihood of the “familiar” scenario for 

 becomes zero, so the over-estimation factor in expression (12) becomes 

infinite!  In this case, the local thinker’s focus on stereotypes induces him to grossly over-

sample unqualified candidates, and leads to severe underestimation of qualification. 

qualifiedh =2

To summarize, the errors in assessment are particularly high when 

representativeness and likelihood of scenarios are positively related for one hypothesis 

and negatively related for the other. When this happens, the representation of the first 

hypothesis is much more probable than that of the second, leading the agent to over-

estimate the probability of the former. 

To see in a more general setting how biases arise in our model and what 

determines their strength, consider the following proposition, which is proved in the 

Appendix and is restricted to the class of hypotheses described in (7): 
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Proposition 1.  Suppose that the agent evaluates hypotheses ,  where1h 2h 12 hh =  and the 

set of feasible scenarios for them is the same, namely SSS == 21 . We then have: 

 

1) Representation: scenarios rank in opposite order of representativeness for the two 

hypotheses, formally  for k = 1,…,M where M is the number of scenarios in S. 1
21

+−= kMk ss

 

2) Assessment bias: 
 

i) If )(xπ  is such that )Pr( 11 dhsk ∩  and )Pr( 21 dhsk ∩  strictly decrease in k (at least for 

some k), the representativeness and likelihood of scenarios are positively related for , 

and negatively related for . The agent thus over-estimates the odds of  relative to  

for every b < M.  One can find a 

1h

2h2h 1h

)(xπ  so that such over estimation is arbitrarily large.  

The opposite is true if )Pr( 11 dhsk ∩  and )Pr( 21 dhsk ∩  strictly increase in k. 

 

ii) If )(xπ  is such that )Pr( 11 dhsk ∩  decreases and )Pr( 21 dhsk ∩  increases in k, the 

representativeness and likelihood of scenarios are positively related for both hypotheses. 

The agent over- or underestimates the odds of  relative to  at most by a factor of M/b. 1h 2h

Proposition 1 usefully breaks down the roles of assumption A.2 and of the 

probability distribution )(xπ  in generating biases.10  With respect to representations, A.2 

implies that when 12 hh =

1h

, the most representative scenarios for  are the least 

representative ones for  and vice-versa.  The difference in the representativeness of the 

same scenario for the two hypotheses would not be so stark if 

2h

12 hh ≠ , since in that case 

 and  could be represented with the same scenario.  We stress the case in which 1h 2h

                                                 
10 The proof of the Proposition provides detailed conditions on classes of problems in which it is indeed the 
case that . SSS == 21
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12 hh =  because, by A2, recall maximizes the contrast in the representation of different 

hypotheses.  Intuitively, the stereotypes for competing hypotheses are different: the 

stereotype of a qualified candidate is very different from that of an unqualified one.    

What does this property of representations imply for biases?  Part 2.i) says that 

this reliance on different stereotypes causes pervasive biases if the likelihood ranking of 

scenarios is the same under each hypothesis.  In this case, the use of a highly likely 

scenario for one hypothesis precludes its use for the competing hypothesis, leading to 

overestimation of the former.  The resulting bias can even be infinite.  This is what 

happens in Table 2.C, where “unfamiliar” is the most likely scenario for both hypotheses 

but is only used for   because it is only representative of that hypothesis.  

In general, case 2.i) formally captures situations that are informative about some specific 

scenarios (the most likely ones), but where those scenarios are in turn not very 

informative about  because they are likely under both hypotheses.   

dunqualifieh =1

12 , hh

In this case, the use of stereotypes or, more generally, of limited representation 

leads to strong biases.  As we shall see, this effect plays a crucial role in accounting for 

the biases arising from heuristics, especially the disjunction fallacy. 

Finally, part 2.ii) captures the case where the representativeness and likelihood of 

scenarios are positively related for both hypotheses.  Biases are now limited (but possibly 

still quite large) and the largest estimation bias occurs if the likelihood of one hypothesis 

is fully concentrated on one scenario while the likelihood of the competing hypothesis is 

fully spread among its M scenarios. This implies that hypotheses whose distribution is 

spread out over a larger number of scenarios are more likely to be underestimated.  The 
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maximum bias falls in b because recall of more scenarios attenuates the impact on 

assessments of the differences in how hypotheses are spread out across scenarios. 

We next show how our model helps rationalize two specific biases related to the 

representativeness heuristic: base-rate neglect and insensitivity to predictability.  We 

focus on numerical examples, but we also discuss the general ideas behind our results. 

 

4.1 Neglect of Base-Rates 

Experimental subjects often fail to properly use base-rates in assessing 

probability.  KT (1974) gave subjects a personality description of a stereotypical 

engineer, and told them that he comes from a group of 100 engineers and lawyers, and 

the share of engineers in the group.  Subjects assessed the odds that this person was an 

engineer or a lawyer.  In making this assessment, they mainly focused on the personality 

description, barely taking the base-rates of the engineers in the group into account.11 

Our model generates base-rate neglect as the consequence of agents’ assessing 

probabilities by retrieving stereotypes.  We now show how this works in a flexible setup 

based on KT’s (1983) famous Linda experiment, to which we return in Section 5 to 

discuss conjunction fallacies.  Subjects are presented with a description of a young 

woman, called Linda, who is a stereotypical leftist, and in particular was a college 

activist.  They are then asked to check off in order of likelihood the various possibilities 

                                                 
11 The illustrations here are Linda, lawyer-engineer and other examples of base-rate neglect related to the 
representativeness heuristic (more broadly to association of hypotheses with stereotypes). Base-rate neglect 
is more general, since it also occurs in judgments that cannot be readily interpreted in terms of 
representativeness, such as the Cascells et al. (1978) experiment on physicians’ interpretation of clinical 
tests or the KT’s blue vs. green cab experiment (KT 1982, p. 154). These latter instances of base-rate 
neglect are unlikely to be due to the use of stereotypes, although they might well be a product of local 
thinking.  KT (1982, p. 154) describe the differences between these two forms of base-rates neglect. 
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of what Linda is today.  Subjects estimate that Linda is more likely to be “a bank teller 

and a feminist” than merely “a bank teller.” 

To discuss base-rate neglect in this context, suppose that Linda is described as a 

former leftist activist (A), and suppose she can be in one of two occupations, bank teller 

(BT) or social worker (SW) and adhere to one of two current political orientations, 

feminist (F) or moderate (M).  The (unconditional) probability distribution of full 

descriptions of former activist Linda is displayed in Table 3, where τ and σ are the base 

probabilities of a bank teller and a social worker in the whole population, respectively. 
 

A (activist) F (feminist) M (moderate) 
BT (bank teller) (2/12)τ (1/12)τ 

SW (social worker) (9/15)σ (1/15)σ 
 

Table 3. 
 

Table 3 captures two ideas: i) being a former activist reduces the odds of being a 

bank teller (former activists are only 1/4 of all bank tellers but 2/3 of all social workers), 

and ii) among former activists, bank tellers are relatively more moderate than social 

workers (moderates are only 1/10 of social workers but 1/3 of bank tellers). 

A fully local thinker (i.e., b = 1) is told that Linda was an activist (i.e., A) and 

asked to assess the probability that she is a bank teller (BT) or a social worker (SW).  The 

Bayesian odds are (1/4 τ)/(2/3σ)= (3/8)(τ /σ). But what comes to the local thinker’s mind?  

Property ii) of Table 3 implies that the representative scenario for ‘‘bank teller’’ is 

“moderate” (M), that for ‘‘social worker’’ is “feminist” (F). Formally, 

=d

),Pr( MABT  = 

5τ/(5τ+4σ) > Pr( , )BT A F  = 5τ/(5τ+18σ) and thus ),Pr( MASW  > )F,Pr( ASW . As a result, 

‘‘bank teller’’ is represented by (BT, A, M), ‘‘social worker’’ by (SW, A, F), leading to: 
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As in (11), the right-most term in (13) is the Bayesian odds ratio, while the 

bracketed term is the ratio of the two representations’ likelihoods.  The bracketed term is 

smaller than one, implying not only that the local thinker under-estimates the odds of 

Linda being a bank teller, but that he also neglects some of the information contained in 

the population odds of a bank teller, τ/σ.  The local thinker under-weights the base-rate 

by a factor of (1/3)/(9/10) = 10/27 relative to the Bayesian assessment. 

Neglect of base-rates arises here because the data d = A is more consistent with 

“feminist” than with “moderate”, thereby skewing the agent’s recall and thus probability 

judgment in favor of “social worker”.  That is, d = A induces retrieval of many instances 

of formerly activist and feminist social workers, but only a few instances of formerly 

activist, but now moderate, bank tellers, leading to an over-sampling and thus over-

estimation of social workers.  In our specific numerical example, bank teller, in contrast 

to social worker, prompts the recall of a representative but unlikely scenario.  As we shall 

see, this feature is essential for explaining the conjunction fallacy.  In the present context, 

however, although the use of an unlikely scenario renders biases more severe, it is not 

necessary for base-rate neglect, which is a natural consequence on the agent’s use of 

limited, stereotypical information.  In this sense, our model shows that one effect that KT 

attribute to agents’ use of non-probabilistic logic or heuristics can be rationalized as the 

result of subjects’ limited ability to represent and recall scenarios. 

 

4.2 Insensitivity to Predictability 

Various experiments reveal people’s failure to account for the reliability of the 

evidence used in making probabilistic judgments, which are often heavily shaped by 
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scarcely informative data.  In one study, KT (1974) presented subjects with descriptions 

of the performance of a student-teacher during a particular practice lesson.  Some 

subjects were asked to evaluate the quality of the lesson, other subjects were asked to 

predict the standing of each student-teacher five years after the practice lesson.  The 

judgments made under the two conditions were identical, irrespective of subjects’ 

awareness of the limited predictability of teaching competence five years later on the 

basis of a single trial lesson. 

The electoral campaign example of Sections 2 and 3 already showed that local 

thinkers can over-react to scarcely informative, but representative, evidence.  To see this 

in the context of KT’s experiments, suppose that a local thinker assesses the quality of a 

candidate based on the latter’s job talk at a university department.  There are three 

dimensions: the candidate’ quality, which can be high (H) or low (L), the quality of his 

talk, which can be good (GT) or bad (BT), and his expressive ability, which can be 

articulate (A) or inarticulate (I).  The distribution of these characteristics is as follows:   
 

 

Good Talk (GT) Inarticulate (I) Articulate (A) 
High Quality (H) 0.005 0.25 
Low Quality (L) 0.005 0.24 

 

Table 4.A 
 

 

Bad Talk  (BT) Inarticulate (I) Articulate (A) 
High Quality (H) 0.24 0.005 
Low Quality (L) 0.25 0.005 

 

Table 4.B 
 
 

In tables 4.A and 4.B, the quality of the talk is highly correlated with expressive 

ability, but the latter dimension is mildly informative of the candidate’s quality.  Tables 

4.A and 4.B are admittedly extreme, but their similarity to Table 2.C shows the parallel 

between insensitivity to predictability and the electoral campaign example of Section 2. 
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Since in Tables 4.A and 4.B the candidate’s expressive ability is representative of 

his quality, after listening to the talk, the local thinker represents low quality candidates 

as inarticulate, and high quality ones as articulate.  The local thinker then assesses: 
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The local thinker grossly over-estimates the quality of the candidate after a good talk and 

under-estimates it after a bad talk.  Indeed, in our example the quality of the talk conveys 

very little information about the candidate’s quality: a Bayesian would estimate 

Pr(H|GT)/Pr(L|GT) = 1.04 and Pr(H|BT)/Pr(L|BT) = 0.96 !! 

Once more, over-reaction to the quality of the talk is due to the agent’s quick 

association of the candidate’s quality and expressive ability. It is useful to interpret this 

result in terms of the use of stereotypes.  Over-reaction here is due to the fact that the data 

(quality of the talk) are scarcely informative about the target attribute (quality of the 

candidate), but very informative about an attribute defining the stereotype for different 

hypotheses (expressive ability). As in the Linda example, Tables 4.A and 4.B exploit the 

divergence between representativeness and likelihood to illustrate this phenomenon in the 

starkest manner, but over-reaction to data is a natural and general consequence of the use 

of stereotypes, as shown in the section below. 

 

4.3 The Role of Data-Provision 

Local thinkers’ biases described in Proposition 1 do not rely in any fundamental 

way on data provision (i.e., they also arise for d = X).  However, since in the experiments 
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considered so far biases resulted from the explicit exposure of agents to some piece of 

data, this is an appropriate place to look more closely at the role of data provision in our 

model.  To do so, consider again (11) and focus on the bracketed term, measuring the 

local thinker’s bias.  If no data is provided, i.e. if d = X, this bracketed term is equal to: 
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where  is the representative scenario for  when no data is given.  In (14), the agent’s 

bias is written as the product of two factors: i) the ratio of the probabilities of 

representations (the first factor) and ii) the ratio of the probabilities of the hypotheses (the 

second factor).  After data provision (i.e. ), equation (14) becomes: 
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where  is the representative scenario for  when d is given.  Data lower the bias if (15) 

is closer to 1 than (14); they raise the bias otherwise.  We cannot say a priori which of 

these cases we are in, but we can think of the role of data as a combination of two effects.  

1
îs ih

First, for a given ratio of the probabilities of representations (the first factor), d 

can boost bias by changing the probabilities of hypotheses (the second factor).  Only this 

effect is at work if representations do not change (a sufficient condition for 

representations not to change is that  is also feasible with data, i.e., , but 1
is φ≠∩dsi

1

φ=∩ dsi
1  for fi = 1,2).  Indeed, if representations do not change, neither does the agent’s 

assessment, even if d is objectively informative.  This first effect of data, then, captures 

the under-reaction by a local thinker because in this case data provision leaves 

unchanged the assessment by a local thinker but not that by a Bayesian.  Specifically, d 
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increases the over-estimation of  if and only if the data are informative about  [i.e. 

Pr(h1∩d)/Pr(h2∩d) < Pr(h1)/Pr(h1)], in which case under-reaction boosts the bias for . 

1h

φ

1

2h

h1

The second effect arises instead when the data “destroy” either or both of the 

initial scenarios (i.e. if  for some i = 1,2), so that the representation of one or 

both hypotheses must change.  Only this effect is at work when d is uninformative [i.e. 

Pr(h1∩d)/Pr(h2∩d) = Pr(h1)/Pr(h2)]. This effect captures a local thinker’s over-reaction 

and enhances over-estimation of h  if the new representation of 1h riggered by the data is 

relatively more likely than that of 2h  In this case, data facilitate the recall of instances 

supporting  relative to , increasing the over-sampling of the former hypothesis. 

=∩ dsi
1

2h

 t

 .

1h

This second effect can be seen in the base-rate neglect phenomenon of Section 

4.1.  Suppose that before receiving any information, the distribution of Linda types is: 
 

A 
NA

F M 

BT (2/3)(τ/4) 
 

(1/5)(3τ/4)

(1/3)(τ/4) 
 

(4/5)(3τ/4)
SW (9/10)(2σ/3) 

 
(1/2)(σ/3)

(1/10)(2σ/3) 
 

(1/2)(σ/3)
 

Table 5. 
 

The entries above the diagonal capture the distribution of former activist Linda types 

(same as in Table 3); those below the diagonal show the distribution of former non 

activist types (NA).  Obviously, τ + σ = 1 . The data d = A is informative about the 

probability that Linda is a bank teller [whose odds fall from τ/σ to (3/8)*(τ/σ)], but – as 

shown in (13) – the local thinker grossly mis-estimates these odds.   

To see how this is due to the effect of data on stereotypes, suppose that the agent 

is asked to assess the probability that Linda is a bank teller or a social worker without 
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being given any data.  It is easy to show that now the agent represents a bank teller as a 

“non activist and moderate”, a social worker as an “activist and feminist”.  As a result: 
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an almost correct unconditional probability assessment, given that the population odds 

ratio is equal to τ/σ.   

More important, a comparison of (17) to (13) shows that the agent grossly over-

reacts to the evidence that Linda was an activist.  After seeing d=A, the local thinker 

reduces the odds of bank teller much more than a Bayesian [specifically, by a factor of 

about (1/3)*(3/8) versus  a factor of 3/8].  As discussed above, this over-reaction is due to 

the fact that the data d = A “destroys” the stereotype of bank teller, which relies on Linda 

being a non-activist, but not that of a social worker, which is instead perfectly consistent 

with her being a former activist.  Such asymmetric impact on the hypotheses’ 

representations imply that the data d =A relegate the hypothesis of bank teller to the rare 

exemplar of a former activist and now moderate Linda. This reduces the agent’s ability to 

recall instances of bank tellers, inducing an over-sampling of social workers and thus a 

drastic over-reaction to data. 

The same effect is at play in the insensitivity to predictability experiment, where a 

good talk destroys only the stereotype of a bad candidate while a bad talk only that of a 

good candidate.  Over-reaction to the data is particularly severe here because the quality 

of the talk is scarcely informative about the quality of the candidate. 
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5.  Failures of Extensionality 

5.1 Conjunction Fallacy 

The conjunction rule states that the probability of a conjoined event C&D cannot 

exceed the probability of event C or D by itself.  KT’s (1983) Linda experiment, which 

we have already described and analyzed for other purposes, dramatically demonstrated 

the conjunction fallacy.  Experimental subjects estimated that Linda the former activist is 

more likely today to be a feminist bank teller than just a bank teller.  

For simplicity, we only study the conjunction fallacy when b=1 and when the 

agent is provided no data, but it is possible to relax these assumptions because the 

fundamental logic of the conjunction fallacy does not rely on them.  We now formally 

consider the class of problems in (7), but in the appendix we prove that Proposition 2 

below holds also for general classes of hypotheses. 

We focus on the so-called “direct tests”, namely when the agent is asked to 

simultaneously assess the probability of a conjoined event 21 hh ∩  and of one of its 

constituent events such as .  Denote by  the scenario used to represent the 

conjunction  and by  the scenario used to represent the constituent event .  In 

this case, the conjunction fallacy obtains in our model if and only if:  

1h

1
1s

1
2,1s

21 hh ∩ 1h

)Pr()Pr( 1
1
121

1
2,1 hshhs ∩≥∩∩ ,                                           (18) 

i.e., when the probability of the represented conjunction is higher than the probability of 

the represented constituent event . Expression (18) is a direct consequence of (9), as in 

this direct test the denominators are identical and cancel out.  The conjunction fallacy 

[expression (18)] then arises only under the following necessary condition: 

1h

 

 32



Proposition 2.  When b=1, in a direct test of hypotheses  and 1h 21 hh ∩ ,  

 only if scenario  is not the most likely for . )(Pr)(Pr 121 hhh LL ≥∩ 1
1s 1h

 

The conjunction fallacy arises only if the constituent event  is represented with 

a representative but unlikely scenario.  To see why, rewrite (18) as: 

1h

)Pr()Pr( 1
1
112

1
2,1 hshhs ≥∩ .                                         (19) 

The conjunction rule is violated when scenario  is less likely than  for 

hypothesis . Note, though, that  is itself a scenario for  since  

identifies an element of X.  As a consequence, condition (18) only holds if the 

representative scenario  is not the most likely scenario for , which proves 

Proposition 2.   It is then obvious that, whenever a hypothesis  is not represented with 

the most likely scenario, to induce the conjunction fallacy it is sufficient for the agent to 

test hypothesis  against the conjoined hypothesis , where  is the most 

likely scenario for hypothesis  and  is the element obtained by fitting such most 

likely scenario in hypothesis  itself.  By construction, in this case , 

so that the conjunction rule is clearly violated. 
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Consider now one specific instance of the conjunction fallacy in the Linda 

example from Section 4.  After hearing Linda described as a former activist (i.e., d = A), 

the agent – whose probability space is displayed in Table 3 – assesses the probabilities 

that Linda is a “bank teller” and a “feminist bank teller”.  As discussed previously, the 

agent represents Linda the bank teller by picking the “moderate” scenario, whereas Linda 
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the “feminist bank teller” leaves no gaps to be filled and is represented perfectly, even by 

a local thinker.  Using the values of Table 3, the local thinker estimates: 

1
2
1

2
3

1
3/1

),,Pr(
),,Pr(

),(Pr
)(Pr

<=⎥⎦
⎤

⎢⎣
⎡==

FABT
MABT

AFBT
ABT

L

L

                        (20) 

The conjunction rule is violated.  

In line with Proposition 2, representativeness and likelihood diverge because the 

“moderate” scenario used to represent Linda the bank teller is less likely than the 

“feminist” scenario, as “moderate” is very unlikely in light of the fact that Linda is a 

former activist.  Why does the agent fail to realize this fact?  Our answer is that the term 

“bank teller” brings to mind a representation that excludes feminist bank tellers because 

“feminist” is a characteristic disproportionately associated with social workers, which 

does not then match the image of an exemplar bank teller. 

This discussion highlights the role played by the data. The conjunction rule is 

violated here not because “bank teller” is represented with the “moderate” scenario per 

se, but because such a scenario is very unlikely given that Linda is a former activist.  If d 

= A were not provided, then, according to Table 5, the unconditional scenario for bank 

teller would be “non activist, moderate” (NA,M), while that for a feminist bank teller 

would be “activist’’ (A).  In this case,  

1
5
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60

19/10
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                           (21) 

Not only is the conjunction rule not violated, but the odds of “bank teller” are over-

estimated.  This is another instance of the effect of data provision discussed in Section 

4.3: the agent violates the conjunction rule because d = A destroys the likely scenario of 

“formerly non-activist, moderate,” with which “bank teller” is represented. 
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One explanation of the Linda experiment discussed in KT (1983) holds that the 

subjects, instead of assessing Pr(BT|A) and Pr(BT,F|A), intuitively assess the probabilities 

of Linda being a former activist under the two hypotheses namely Pr(A|BT) and 

Pr(A|F,BT).12  This error can yield the conjunction fallacy because being feminist can 

increase the chance of being Linda.  Indeed, in our example in Table 5, Pr(A|BT) = 1/4 < 

Pr(A|F,BT) = 10/19.  However, KT (1983) addressed this possibility in some experiments.  

In one of them, subjects were provided with the data that the tennis player Bjorn Borg 

had reached the Wimbledon final, and then asked to assess whether it was more likely 

that in the final Borg would lose the first set or whether he would lose the first set but win 

the match.  Most subjects violated the conjunction rule by stating that the second 

outcome was more likely than the first. Our model can explain this evidence, but a 

mechanical assessment of Pr(d|h) cannot.  The reason is that Pr(Borg has reached the 

final| Borg’s score in the final) is always equal to one, regardless of the final score. 

Most important, the conjunction fallacy explanation based on the substitution of 

Pr(h|d) with Pr(d|h) relies on the provision of data d.  This story cannot thus explain the 

conjunction rule violations that occur in the absence of data provision.  To see how our 

model can account for those, consider another experiment from KT (1983).  Subjects are 

asked to compare the likelihoods of “A massive flood somewhere in North America in 

which more than 1000 people drown” to that of “An earthquake in California causing a 

flood in which more than 1000 people drown”.  Most subjects find the latter event, which 

is a special case of the former, to be nonetheless more likely.  

                                                 
12 In a personal communication, Xavier Gabaix proposed a “local prime” model complementary to our local 
thinking model. Such a model exploits the above intuition about the conjunction fallacy. Specifically, in the 
local prime model an agent assessing h1, …, hn evaluates PrL’(hi|d) = Pr(d|hi)/[ Pr(h1|d) + …+ Pr(hn|d)].   
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To analyze this experiment, the state space can be described as having three 

dimensions: the type of flood, which can either be severe (S) or mild (M), the cause of 

flood, which can either be a earthquake (E) or a tornado (T), and the location of the flood, 

which can either be California (C) or the rest of North America (NC).  The distribution in 

the state space has the following features: 
 

M 
S

E T 

C (1-x)eC 
xeC 

tC/2 
tC/2

NC eNC/2 
eNC/2 

(1-z)tNC 
ztNC

 

Table 6 

eL and tL capture the probabilities of an earthquake and a tornado in location L = 

C, NC, while x > 1/2 and z > 1/2 are respectively the share of earthquakes causing severe 

floods in California and of tornados causing severe floods in the rest of North America.  

All probabilities must add up to 1.  Table 6 captures two features of a subject’s beliefs: i) 

earthquakes are sufficiently milder in the rest of North America than in California in that 

they cause fewer severe floods (only 1/2 of earthquakes cause severe floods in North 

America, x >1/2 earthquakes cause severe floods in California), and ii) tornados are 

sufficiently milder in California than in the rest of North America that they cause fewer 

severe floods (only 1/2 of tornados cause severe floods in California, z > 1/2 tornados 

cause severe floods in the rest of North America).  We make the natural assumption that z 

> x, so that tornados are more likely to cause severe floods than earthquakes.   

Table 6 implies that a severe flood (S) is represented with scenario (T,NC), namely 

as a severe flood caused by a tornado in the rest of North America because 

zNCTS =),Pr(  > xCES =),Pr(  > =),Pr( CTS 2/1),Pr( =NCES . The event “Severe 
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flood caused by an earthquake in California” instead uniquely identifies the scenario (S, 

C, E).  Given these representations, the assessed odds of (S,C,E) relative to (S) are: 

C

NC
L

L

xe
zt

ECS
TNCS

ECS
S

==
),,Pr(
),,Pr(

),,(Pr
)(Pr .                                       (22) 

If the probability of disastrous earthquakes in California is sufficiently high relative to 

that of disastrous tornados in North America, (i.e., ), the conjunction fallacy 

arises without data.  Intuitively, although tornadoes mainly cause mild floods, they are a 

stereotypical cause of floods.  Hence, severe floods are represented as being caused by 

tornadoes, even though agents hold the belief that earthquakes in California can be so 

severe as to cause much more disastrous floods.  The problem, though, is that agents 

retrieve this belief only if earthquakes and California are explicitly mentioned.   

CNC xezt >

The general idea behind these types of conjunction fallacy is that either the data 

(Linda is a former activist) or the question itself (floods in North America) bring to mind  

a representative but unlikely scenario. Besides the examples specifically discussed, this 

general principle can help explain other types of conjunction rule violations.  For 

example, Kahneman and Frederick (2005) report that subjects estimate the annual 

number of murders in the state of Michigan to be lower than that in the city of Detroit, 

which is in Michigan.  Our model suggests that this might be explained by the fact that 

the stereotypical location in Michigan is rural and non-violent, so subjects forget that the 

more violent city of Detroit is in the state of Michigan as well. 

 

5.2 Disjunction Fallacy 

According to the disjunction rule, the probability attached to an event A should be 

equal to the total probability of all events whose union is equal to A.  Fischhoff, Slovic 
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and Lichtenstein (1978) were the first to document the violation of the disjunction rule 

experimentally.  They asked car mechanics, as well as lay people, to estimate the 

probabilities of different causes of a car’s failure to start.  They document that on average 

the probability assigned to the residual hypothesis – “The cause of failure is something 

other than the battery, fuel system, or the engine” – went up from 0.22 to 0.44 when that 

hypothesis was broken up into more specific causes (e.g. the starting system, the ignition 

system). Respondents, including most remarkably experienced car mechanics, discounted 

hypotheses that were not explicitly mentioned.  The under-estimation of implicit 

disjunctions such as residual hypotheses has been documented in many other experiments 

and is the key assumption behind Tversky and Koehler’s (1994) support theory.   

To see whether local thinking can rationalize such disjunction fallacy, compare 

the assessment of hypothesis h1 with the assessment of hypotheses  and  where 

 (and obviously 

1,1h 2,1h

12,11,1 hhh =∪ φ=∩ 2,11,1 hh ) by an agent with b=1.  It is straightforward 

to extend the result to the case where b>1.  Formally, we compare  when h1 is 

tested against 

)( 1hPr L

1h  with the sum  obtained when  and  are tested 

against their complement 

)( 2,1hLPr)(Pr 11hL + 1,1 ,1hh 2

1h .  The local thinker then violates the disjunction rule in the 

direction of the Fischhoff et al. experiment provided  > . )2,1(Pr)(Pr 11h LL + h Pr )( 1hL
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disjunction h1 is underestimated when:   
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Equation (23) immediately boils down to: 

)Pr()Pr()Pr( 1
1
12,1

1
2,11,1

1
1,1 hshshs ∩>∩+∩ ,                                 (23’) 

meaning that the probability of the representation  of  is smaller than the sum of 

the probabilities of the representations  and of  and , 

respectively.  The appendix proves that this occurs if the following condition holds: 

1
1
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1,1s 2,12 h∩ 1,1h 2,1h

 

Proposition 3.  Suppose that b = 1.  In one test, hypothesis  is tested against a set of 

alternatives. In another test, hypotheses  and , are jointly tested against the same 

set of alternatives as . Then, if  is also a feasible scenario for  and , it follows 

that . 

1h

1,1h 2,1h

1h

)2,1h

1
1s 1,1h 2,1h

)Pr((Pr)(Pr 11,1 hh LL >+

 

Local thinking leads to underestimation of implicit disjunctions. Intuitively, unpacking a 

hypothesis h1 into its constituent events reminds the local thinker of elements of h1 which 

he would otherwise fail to integrate into his representation.  The sufficient condition for 

this to occur (i.e., that  must be a feasible scenario in the explicit disjunction) is very 

weak.  For example, it is always fulfilled when the representation of the implicit 

disjunction  is contained in a residual category of the explicit disjunction such as 

“other”.  The logic for this result is that the condition in Proposition 3 implies that: 

1
1s

1
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1 hs ∩

{ }2,1
1
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1,11
1
1 , hshshs ∩∩∈∩ ,                                        (24) 

that is, at least one of hypotheses  and  has the same representation as the implicit 

disjunction . 

1,1h 2,1h

1h

Proposition 3 is directly proved for general hypotheses, not only for those 

belonging to the class in (7).  This allows us to immediately consider the following model 

 39



of the car mechanic experiment.  There is only one dimension, the cause of a car’s failure 

to start (i.e., K = 1) so that , where fuel stands for “fuel system” 

and ignition stands for “ignition system.” Assume without loss of generality that 

. This case meets the conditions of Proposition 

3 because now no dimension is left free, so all hypotheses share the same scenario s = X. 

{ ignitionfuelbatteryX ,,≡

0)Pr( >ignition

}

}

}

)Pr()Pr( >> fuelbattery

The agent is initially asked to assess the likelihood that the car’s failure to start is 

not due to battery troubles.  That is, he is asked to assess the hypotheses 

, . Since K = 1, there are no scenarios to fit.  Yet, since 

the implicit disjunction  does not pin down an exact value for the 

car’s failure to start, by criterion (8’) in Appendix 1 the agent represents it by selecting its 

most likely element, which is fuel.  The local thinker then attaches the probability: 

{ }ignitionfuelh ,1 = {batteryh =2

fuelh ,1 = { ignition

)Pr()Pr(
)Pr()(Pr 1 batteryfuel

fuelhL

+
=                                            (25) 

to the cause of the car’s failure to start being other than battery when this hypothesis is 

formulated as an implicit disjunction. 

Now suppose that the implicit disjunction h1 is broken up into its constituent 

elements, h1,1 = fuel and h1,2 = ignition (e.g., the individual is asked to separately assess 

the likelihood that the car’s failure to start is due to ignition troubles or to fuel system 

troubles).  Clearly, the local thinker represents h1,1 by fuel and h1,2 by ignition.  As before, 

he represents the other hypothesis h2 by battery.   The local thinker now attaches greater 

probability to the car’s failure to start being other than the battery because: 
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In other words, we can account for the observed disjunction fallacy.  The logic is the 

same as that of Proposition 3: the representation of the explicit disjunction adds to the 

representation of the implicit disjunction (i.e. x = fuel) an additional element (i.e. x = 

ignition), which boosts the assessed probability of the explicit disjunction.   

 

6. Conclusion 

We have presented a simple model of System 1 in which the agent perceives some 

data, and combines it with information retrieved from memory to evaluate a hypothesis.  

The central assumption of the model is that, in the first instance, information retrieval 

from memory is both limited and selective.  Some, but not all, of the missing scenarios 

come to mind of the decision maker.  Moreover, the hypothesis in question primes the 

selective retrieval of scenarios from memory, with those most predictive of the 

hypothesis itself relative to the other hypotheses – the representative scenarios -- being 

retrieved first.  In many situations, such intuitive judgment works well, and does not lead 

to large biases in probability assessments.   But in situations where the representativeness 

and likelihood of scenarios diverge, intuitive judgment becomes faulty.  We showed that 

this simple model accounts for a significant number of experimental results documented 

by Kahneman and Tversky, most of which are related to the representativeness heuristic.  

In particular, the model can explain the conjunction and disjunction fallacies exhibited by 

experimental subjects. 

To explain the evidence, we took a narrow view of how recall of various 

scenarios takes place.  In reality, many other factors affect recall.  Both availability and 
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anchoring heuristics described by Kahneman and Tversky bear on how scenarios come to 

mind, but through mechanisms other than those we elaborated.   

Perhaps, at a more general level, our model suggests a somewhat different view of 

heuristics, and of System 1 vs System 2 thinking.  From our perspective, intuition and 

reasoning are not two different modes of thought.  Rather, they differ in what is retrieved 

from memory to make an evaluation.   In the case of intuition, the retrieval is not only 

quick, but also partial and selective.  In the case of reasoning of the sort studied by 

economists, the retrieval is complete.    

Indeed, in economic models, we typically think of people receiving limited 

information from the outside world, but then combining it with everything they know to 

make evaluations and decisions.   The point of our model is that, at least in making quick 

decisions, people do not bring everything they know to bear on their decisions.  Only 

some information is automatically recalled from passive memory, and – crucially to 

understanding the world – the things that are recalled might not even be the most useful.  

Heuristics, then, are not limited decisions.  They are decisions like all the others, but 

based on limited and selected inputs from memory.  System 1 and System 2 are examples 

of the same mode of thought; they differ in what comes to mind. 
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Appendix 1: Generalizing the definition of scenarios 
Consider general combinations of hypotheses and data constraining some dimensions of 
X to be in a certain set without necessarily fixing specific values for them as in (7). Now: 

[ ]{ }KIIiandXHsomeforHxXxdh iiiir ,...,1, ⊆∈⊂∈∈≡∩ ,     (27) 
where I is the set of dimensions constrained by the hypothesis, Hi is the set specified in 
the hypothesis (and the data) for each Ii∈ . Dimensions Ii∉  are left completely free.  
The class of hypotheses in (7) is a special case of that in (27) when sets Hi are singletons. 

To operationalize our definition of a scenario, we assume that the agent 
transforms a hypothesis of type (27) into a hypothesis of type (7) by filling specific 
values in each set Hi for every Ii∈ .  The agent also fills the dimensions left completely 
free (i.e. values for ) by selecting a scenario fulfilling Definition 1.  We assume that 
an agent with b = 1 does that by solving: 

Ii∉
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,                                                         (8’) 

where { IiHxxXxx iiiI }∈∀∈=∈≡ ˆ:

IiiiI Hxx ∈∈≡ )ˆ(
Ii∈

rh

. Here scenario  is – conditional on having 
fixed a certain  – the exact equivalent of the scenario in Definition 1. 
When all dimensions  take exact values, expression (8’) boils down into (8).  More 
generally, criterion (8’) relies on a two stage procedure. First, each hypothesis  is 
decomposed into all its constituent “elementary hypotheses”, defined as those that fix one 
exact value for each dimension in I.. For each elementary hypothesis (8’), the scenario 
maximizing the hypothesis’ conditional probability is selected. Finally, (8’) picks the 
elementary hypothesis that, with the respective maximizing scenario, has the highest 
conditional probability.
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13  A solution to problem (8’) always exists due to finiteness of 
the problem. This procedure generates a representation  for hypothesis  

which is the general counterpart of the outcome , obtained in the class of 
problems in (7). Accordingly, (8’) yields a ranking  among all possible 
representations of  that in turns ranks all elements in 
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recall.  Formula (9) can be directly applied to calculate the local thinker’s probabilistic 
assessment. Furthermore, in the case of exhaustive hypotheses in the general class (27) 
the local thinker’s probabilistic assessment can be written as: 
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Expression (9’’) is an immediate generalization of (9’). In particular, besides Proposition 
1, which – as we shall see below is proved only for problems in (7) – all the results of the 
                                                 
13 This assumption captures the idea that dimensions explicitly mentioned in the hypothesis are selected to 
maximize the probability of the latter.  We could assume that filling gaps in hypotheses taking the form 
described in (27) is equivalent to selecting scenarios, that is the agent may maximize (8) subject to 
selecting scenarios . Although our main results would still hold, in this case all scenarios 

 would be equally representative, as expression (8) would always be equal to 1. Assumption (8’) 
captures the intuitive idea that the agent also orders the representativeness of elements belonging to ranges 
explicitly mentioned in the hypothesis itself. 

dhs r ∩∈
dhs r ∩∈

 43



paper are generalized to hypotheses of kind (27), with the only caveat that in this case 
stereotype dhs r

k
r ∩∩  should be read as the intersection of the set of specific values 

chosen by the agent for representing rh  with the data and the chosen scenario, i.e. as 
dxs k

rI
k
r ∩∩ , , where the latter term is the k’th ranked term according to objective (8’).   

 
 Proofs  Appendix 2:

roof of Proposition 1.  This proof restrict the analysis to the case where hypotheses 
s (7).  Before proving the proposition, we identify one specific 

P 1h  
and h  belong to clas2

setting where hypotheses 1h , and 12 hh =  have the same set of feasible scenarios. Let 
}KX 1,0=  be the state space, generated by the product of K>2 binary dimensions (there 

is no loss of generality here as any finite tate space can be represented this way). Focus 
s of problems where: i) the data d uniquely fix the value of N-1 dimensions, 

and ii) the agent assesses two hypotheses 1h , 2h  such that 1h  fixes the value of one 
dimension and 2h  fixes the other value of the same dimension, so that 
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**

dhsb <∩ )Pr( 2
1

1

**

dhs bM ∩−+ .  But 

then, since )Pr( 11 dhs ∩  and k )Pr( 21 dhs ∩  strictly decrease in e 

that 

k k, it must also be the cas

)Pr()Pr( 2
1

1 hs bMb −+ b > b .  But then, this implies that (29) must 
hold for all ing b consistent with the fact that: 

11 dhsd ∩<∩  for all *

b > b*, includ  = M, which is in

 44



1)Pr()Pr(
1

2
1

1
1

11 =∩=∩ ∑∑
=

−+

=

M

k

kM
M

k

k dhsdhs                                (30) 

must necessarily hold.  Hence, if )Pr( 11 dhs k ∩  and )Pr( 21 dhs k ∩  strictly decrease in k 
condition (28) must always hold and the odds of  are always (weakly) overestimated.  
It is also immediate to show that the odds of  are always (weakly) overestimated when 

1h

2h
)Pr( 11 dhs k ∩  and )Pr( 21 dhs k ∩  strictly increase in k.  By using the same logic, one can 

readily show that when )Pr( 11 dhs k ∩  and )Pr( 1s k
2h ∩ d  strictly increase in k. The odds 

of  are under-estimated for any b. 1h
To see how in this case over-estimation of  may be infinite, take by 

construction a 
1h

)(xπ  such that: 
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, for all k≥1, where 0 < ε < 1. 
Then, for all b ≤ M, we have that: 
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For ε → 0 the extent of over-estimation is arbitrarily large for any b < M. 
Finally, consider point 2.ii).  If )(xπ  is such that )Pr( 11 dhs k ∩  decreases and 

)Pr( 21 dhs k ∩  increase in k, the two hypotheses are represented with their most likely 
scenarios. Thus, the greatest over estimation of  relative to  is reached when 1h 2h

1)Pr( 1
1
1 =∩ dhs  and M/dhs M 1)Pr( 21 =∩ .  That is, when  is concentrated on its 

most likely scenario while the distribution of  is fully dispersed among all scenarios.  
In this case, in which 

1h

2h
M/1dhs )Pr( 1

1
1 =∩  and 1=)∩ dPr( 21 hs M , the agent under 

estimates the odds of  by a factor of M/b. 1h
 
Generalization of Proposition 2 to the Class of Problems in (27).  This follows 
directly from the consideration that from (9) condition (18) directly translates into 

, which in turn implies that expression (19) becomes )Pr()Pr( 1
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must not be the most likely one for  because it is also a representation of .  
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Proof of Proposition 3.  Before proceeding, it is important to bear in mind that in this 
proof we use the general representation rule (8’) to encompass the case where the implicit 
disjunction h1 specifies a range of values, as this more general case allows to explain the 
car mechanic experiment in a very simple setting.  This implies that condition (24) now 
involves the full representation of a hypothesis, including the specification of the 
dimensions constrained by inequality in the hypothesis itself.  Recall that in this case the 
expression  should be read as  where  and 1  maximize rr hs ∩1 )( 11

Irr xhs ∩ )( 1
Ir xh rs

objective (8’)  To prove the proposition it is useful to first note that according to criterion 
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(8’) representations follow a “revealed preference” logic: if the local thinker represents 
1h  with ( )1

1

hypothesis 

1 , sxI , then the agent will always use the same representation for a generic 

1h  when 0h ⊂ ( ) 0
1
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1 , hsxI ∈  and, at the same time, 1
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tation for , note 
t if t
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0h , in the se t 0h  and in the same set of dimen ons I. 
To see that in this case a representation for 1h  is also a represen
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But conditio 1) because representa
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origi1h  and would yield a higher value of criterion (8’) than the l representation 
),( 1xI .  Hence, if 0

11
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1
1 ),( hsxI ∈  and 1

1s  is a scenario for 0h , then 0h  has the same 
tation as 1h .  But then, since by sumption 1asrepres 1s  is a scenario for either 1,1h  or 2,1h , 

it must be that )( 1, s
y o

1
1xI  belongs to either of them.  As result, condition (24) holds and the 

disjunction falla ains.   
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