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1 Introduction

Currency carry trades offer large expected excess returns, challenging the benchmark models in
international macroeconomics. In this paper, we explore whether a class of disaster-based models
that postulate the existence of rare but large adverse aggregate shocks to stochastic discount factors
can explain these excess returns. This class of models, pioneered by Rietz (1988) and Barro (2006),
has received much attention recently in the macroeconomics and finance literature. However, this
class of models is difficult to estimate because of the small number of disasters in sample. To
address this difficulty, we provide a new method for estimating disaster risk premia even in samples
that do not contain any disasters. We find that disaster risk premia are statistically significant and
account for about one fourth of carry trade excess returns.

Currency carry trades are investment strategies where one borrows in low—interest rate curren-
cies and invests in high—interest rate currencies. The value of the exchange rate at the end of the
investment period is the sole source of risk. If investment currencies depreciate or funding cur-
rencies appreciate, then investors' returns decrease because they lose on their investment or must
reimburse larger amounts. With risk-neutral and rational investors, high—interest rate currencies
should depreciate on average against low—interest rate currencies and carry trade excess returns
should be zero. Yet, in the data, these excess returns are large and positive on average. A natural
explanation is that investors are risk averse and demand to be compensated for taking on such risk.

Carry trade investors, however, can use currency options to hedge this currency risk. For
example, a domestic investor who is long in the foreign currency may buy a put contract that
offers a large payoff in case the foreign currency depreciates. The investor thereby protects himself
against adverse movements in the exchange rate. Likewise, a domestic investor who is short in the
foreign currency may buy a call contract, protecting herself against an appreciation of the foreign
currency. Using different currency option contracts, investors can tailor their exposure to exchange
rate risk, buying protection against adverse exchange rate movements beyond any chosen cutoff.
Intuitively, different hedged investment strategies should offer returns that are commensurate with
their levels of risk. For example, the difference in returns between a strategy that is immune to
large adverse changes in exchange rates and one that is not immune reflects the compensation for
bearing the risk of a large currency depreciation. Yet a simple comparison across unhedged and
hedged returns does not allow a precise estimation of disaster risk premia. The simple reason is
that hedged strategies protect investors against large exchange rate changes of two types: those
due to jumplike disasters and those that might occasionally happen without any jump in a world of
Gaussian shocks.

In this paper, we propose a parsimonious exchange rate model to disentangle disaster from
Gaussian risk premia. Following Backus, Foresi and Telmer (2001), we start off with the law of

2



motion of the stochastic discount factor (SDF) in each country. These SDFs incorporate both a
traditional log-normal component, as in Lustig, Roussanov and Verdelhan (2008), and a disaster
component, as in Farhi and Gabaix (2008). We assume that financial markets are complete and
thus define the change in exchange rate as the log difference between the domestic and foreign
SDFs. In our model, expected currency excess returns are simply the sum of Gaussian and disaster
risk premia. The former arise from random shocks observed every period, while the latter are due
to rare disasters. We assume that these disasters do not occur in sample. As a consequence,
changes in exchange rates follow a normal distribution in sample. Our model delivers closed-form
solutions for short-dated put and call currency options, hedged currency excess returns, and risk
reversals (traded option pairs that replicate a long out-of-the-money put position and a short out-
of-the-money call position). We use these expressions to establish a simple empirical procedure
to measure the compensation for disaster risk. The decomposition of risk premia presented in this
paper is a methodological contribution that could be useful in other asset markets.

We turn to currency data to implement our procedure and test the model's implications. To
do so, we rely on currency spot, forward, and option contracts collected by JP Morgan for 32
countries. The data start in January 1996 and end in December 2008. Based on exchange rate
normality tests, we restrict our sample in two dimensions: we focus on advanced countries and we
exclude the fall of 2008. We take the view that the fall of 2008 corresponds to a unique disaster
in our sample period, and we devote a final section to it. As a robustness check, we report in a
separate appendix the results obtained with both advanced and emerging countries. Our data set
comprises the prices of one-month options on bilateral exchange rates with different degrees of
moneyness: far out-of-the-money puts (denoted 10 delta puts), out-of-the money puts (denoted
25 delta puts), at-the-money puts and calls, out-of-the-money calls (denoted 25 delta calls) and
far out-of-the-money calls (denoted 10 delta caIIs).

Following Lustig and Verdelhan (2007), we form portfolios of currency excess returns by sorting
currencies based on their interest rates. We consider zero-investment strategies that go long in
the highest—interest rate currencies and short in the lowest—interest rate currencies. We apply this
methodology to both hedged and unhedged excess returns. Unhedged carry trades yield an average
annual excess return of 6.5% in our sample. Carry trades hedged at 10 delta and 25 delta yield

L An option is said to be at-the-money if its strike price is equal to the forward exchange rate. A put (call) option is
said to be out-of-the-money if its strike price is below (above) the forward rate—that is, if it takes a large depreciation
(appreciation) to make the option worthwhile exercising. Figure[d presents the payoffs of three option-based strategies
considered throughout this paper: (i) being long an out-of-the-money put option, (ii) being long an out-of-the-money
call option and (iii) being long a risk-reversal (i.e., being long an out-of-the-money put option and short an out-of-the-
money call option with symmetric strikes.)

2The delta of an option represents its sensitivity to changes in the spot exchange rate. The delta of a put varies
between 0 for extremely out-of-the-money options to —1 for extremely in-the-money-options. A 10 delta (25 delta)
put is an option with a delta of 10% (25%). Figure 2 presents the deltas of put options as a function of their prices.
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4.8% and 3.7% per annum, respectively, while carry trades hedged at the money yield 1.7% per
annum. Hedged (except at-the-money) and unhedged returns and their differences are statistically
all significant. Using Hansen's (1982) generalized method of moments (GMM) with at-the-money,
25-delta, and 10-delta options, we obtain a disaster risk premium of 1% per annum. This estimate is
significantly different from zero, even after taking into account the small sample size. It represents
approximately one fifth of expected unhedged carry excess returns. To maximize statistical precision,
GMM puts relatively more weight on the deep out-of-the-money options. However, those out-of-
the money options are likely to be the least liquid. A simple “equal weighted” estimator (with equal
weights on the 10-delta, 25-delta, and at-the-money options) puts more weight than the GMM
estimator on the more liquid options, which is preferable if the liquidity of out-of-the money options

IS @ major concern.

We investigate the robustness of our results to the presence of transaction costs and counter-
party risk. Bid—ask spreads are easily available on currency forward rates but not on options. We
thus assume that bid—ask spreads are equal to 5% of implied volatilities for advanced countries and
10% for other countries. As a result, our simulated bid—ask spreads increase in bad times. Their
values are lower than the ones observed during the recent subprime mortgage crisis but correspond
to market estimates. Taking into account bid—ask spreads and using GMM, we obtain a significant
estimate of the disaster risk premium, which in this case is equal to 1.3% and represents one fourth
of expected carry excess returns. This is our benchmark estimate. It is a lower bound because it
does not take into account counterparty risk and because the GMM procedure puts relatively more
weight on options that are deep out-of-the-money. We derive the sensitivity of this estimate to

default probabilities on currency options markets.

The model also implies strong links between interest rates, contemporaneous and future changes
in exchange rates, and the price of risk reversals — that is, the difference between the price of an out-
of-the-money put option and the price of an out-of-the-money call option with symmetric strikes.
Risk reversals capture the presence of asymmetric downside or upside risk. If the foreign currency is
expected to depreciate, then out-of-the money puts should be more expensive than symmetric out-
of-the-money calls. On the other hand, if exchange rates were normally distributed then symmetric
puts and calls should have the same prices. The model predicts that: (i) risk reversals increase
with interest rates; (i) an increase in risk reversals is associated with a contemporaneous exchange
rate depreciation reflecting the higher riskiness of the currency; and (iii) high values for risk rever-
sals predict high average future currency returns because high exposure to disaster risk must be

compensated by high returns. We check these predictions on individual countries, panel data, and

3The implied volatility is defined as the volatility necessary to match the observed option price using a standard
Black—Scholes formula.



currency portfolios. Empirically, risk reversals increase with interest rates, as in the model. Protec-
tion against crash risk is more expensive for high—interest rate currencies than for low—interest rate
ones. We find, as in the model, that increases in risk reversals and foreign currency depreciations
tend to occur simultaneously. However, evidence is mixed as to whether risk reversals predict future
exchange rates. Overall, risk reversals appear to contain useful information on potential disasters.
Building portfolios on the basis of risk reversals delivers a monotonic cross-section of currency
excess returns. The implied disaster risk premia is in line with our previous estimates.

We also examine the implications of our model for the implied volatility smiIeH We present
a simple calibration of the model that simultaneously matches our estimate of the disaster risk
premium and provides a good fit for the smile observed in the data.

Overall, our model is not rejected by the data. We reach this conclusion by performing a J-test
of the model’s pricing errors. This validates our strategy of using a parsimonious and tractable
model. In our view, resorting to a richer but more complex model would be justified only if we had
access to a larger data set.

As a case study of a disaster episode, we use the fall of 2008. This period certainly represented
bad times — corresponding to a high SDF — as evidenced by the deterioration in a large set of
conventional risk measures. For example, during the fall 2008, the U.S. stock market index declined
by 33% in terms of the MSCI index. Consistent with the disaster hypothesis, we document that
the carry trade performed very poorly during that period: the cumulative loss amounted to 17.8%
from September to December. This also represents an extreme drop from a statistical perspective,
since the standard deviation of monthly carry trade returns over the whole sample is just 2%.

Our estimates of disaster risk premia and carry trade losses during fall 2008 are broadly consistent
with the findings and calibration of Barro (2006) and Barro and Ursua (2008, 2009). In our model,
the disaster risk premium depends on two main components: (i) the probability of disasters and
the impact of disasters on SDFs, and (ii) the carry trade payoffs in times of disaster. We use the
fall 2008 episode to calibrate the latter and the values in Barro and Ursua (2008) to characterize
the former. These parameters imply a disaster risk premium of 2.8%, which is higher than but
comparable to our estimate of 1.3%. This exercise should be viewed as a back-of-the-envelope
calculation rather than a rigorous estimate, given that our inference relies on a single disaster.

Our paper is related to two different literatures: the forward premium puzzle and its potential
explanations; and option pricing with jumps. Since the pioneering work of Hansen and Hodrick
(1980) and Fama (1984), many papers have reported deviations from the uncovered interest rate

parity (UIP) condition. These deviations are also known as the forward premium puzzle. In a

4The implied volatility of an option is a convenient normalization of the price of this option as a function of its
strike. The smile refers to the relationship between the implied volatility and the strike. We provide formal definitions
in Section 3] of the paper.



recent contribution, Lustig et al. (2008) build a cross-section of currency excess returns and show
that it can be explained by covariances between returns and return-based risk factors. In order to
replicate this result, stochastic discount factors must have not only a common component across
countries but also heterogenous loadings on this common component. This paper builds on the
disaster risk literature to satisfy this condition. Our model derives from Farhi and Gabaix (2008),
who augment the standard consumption-based model with disaster risk following Rietz (1988) and
Barro (2006). World disaster risk is a common component, but countries differ in their exposures
to world disasters. As a result, this paper contributes to the large literature on peso problems in

international finance,

Our paper also belongs to a recent literature using options to investigate the quantitative im-
portance of disasters in currency markets. Bhansali (2007) was the first to document the empirical
properties of hedged carry trade strategies. Brunnermeier, Nagel and Pedersen (2008) show that
risk reversals increase with interest rates. In their view, the crash risk of the carry trade is due to a
possible unwinding of hedge fund portfolios. This is consistent with one interpretation of disasters.
Most closely related to this paper, Jurek (2008) provides a comprehensive empirical investigation of
hedged carry trade strategies. He uses deep-out-of-the-money currency options to derive currency
crash risk. Jurek’s main result — that disaster risk explains 30% to 40% of carry trade returns — is
consistent with the findings of this paper, but our approach differs in several dimensions. First, our
model-based empirical strategy leads to a structural interpretation of the results. Second, the model
allows us to use a variety of option strikes, including more-liquid at-the-money options, in order to
disentangle Gaussian and disaster risk premia. Using at-the-money options, Burnside, Eichenbaum,
Kleshchelski and Rebelo (2008) also find that disaster risk can account for the carry trade premium,
where disaster risk comes in the form of a high value of the stochastic discount factor rather than
large carry trade losses. In contrast to our approach, in their framework the only source of risk

priced in carry trade returns is disaster risk.

5Other consumption-based models replicate the forward premium puzzle. Verdelhan (2009) uses habit preferencesin
the vein of Campbell and Cochrane (1999). Bansal and Shaliastovich (2008) build on the long-run risk model pioneered
by Bansal and Yaron (2004). Guo (2007) presents a disaster-based model with monetary frictions. Ait-Sahalia, Wang
and Yared (2001), Backus, Chernov and Martin (2009), Barro and Ursua (2009), Bates (2009), Bollerslev and Todorov
(2009), Gabaix (2008), Gourio (2008), Julliard and Ghosh (2008), Liu, Pan and Wang (2005), Martin (2008), Pan
(2002), Santa-Clara and Yan (2009) and Wachter (2008) all study disaster risk on equity and bond markets. Using swap
rates, exchange rate returns, and prices of at-the-money currency options, Graveline (2006) estimates a two-country
term structure model that replicates the forward premium anomaly. Barro (2009) studies the welfare costs of rare
disasters.

See Lewis (1995) for a survey. For example, Kaminsky (1993), extending the work of Engel and Hamilton (1990),
considers the possibility of rare events explaining investors’ expectations about exchange rates. Rare events in her model
are infrequent switches from contractionary to expansionary monetary policy, and she provides evidence that investors'
expectations are consistent with the model. However, she does not examine the forward premium puzzle and considers
only one exchange rate (dollar—sterling) and a short time period.



A related literature studies high-frequency data and option pricing with jumps, following pioneer-
ing work by Bates (1996a, 1996b), who shows that exchange rate jumps are necessary to explain
option smiles. More recently, Carr and Wu (2007) find great variations in the riskiness of two cur-
rencies (the yen and the British pound) against the U.S. dollar, and they relate it to stochastic risk
premia. Campa, Chang and Reider (1998) document similar results for some European cross-rates.
Bakshi, Carr and Wu (2008) find evidence that jump risk is priced in currency options. However,
the jumps they consider are high-frequency jumps, whereas the disasters we have in mind are of
very low frequency; in Barro (2006), disasters happen every 60 years. As a result, the economic
analysis and our econometric technique are very different: we cannot directly measure disasters
because they do not occur in our sample — unlike the small jumps that occur in studies such as
Bakshi et al. (2008).

The paper is organized as follows. Section [2] presents our model and derives its main implications.
Section 3 reports our empirical results and Section 4] concludes. A separate appendix reports proofs
and empirical robustness checks.

2 Theory

We provide a simple model that serves as the basis for our empirical strategy. In the model, expected
carry trade returns X¢ correspond to the sum of two risk premia, a " normal times” or Gaussian risk

premium 7€, and a disaster risk premium 7P
X¢ =7P 4 7°.

Here and in what follows, G refers to Gaussian and D refers to disaster.

Our main objective is to devise a simple structural estimation procedure to determine w°, 7P
and the fraction of carry trade returns due to disaster risk. To accomplish this, we use additional
information from hedged carry trade returns. Hedged carry trades are zero-investment trades where
the investor borrows in the funding currency and then uses the proceeds to invest in the investment
currency and to purchase protection against a large depreciation of the investment currency through
currency put options. In the model, we derive closed-form solutions for the expected returns of
hedged carry trades as a function of the option strikes. The expected return Xg .4 Of a hedged
carry trade is

Xheedged = (1 + A)WG-

"In this simple overview, returns are computed in units of the funding currency. Later in the paper, we also treat
the more general case where returns are computed in units of the investment currency.
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In this formula, A € (—1,0) denotes the delta of the put option hedging the trade. The delta,
which we define shortly, is increasing in the option strike. This is intuitive: the further away from
the money, the more depreciation risk the investor bears and the higher the expected return of the
hedged carry trade. We will make use of several strikes, with corresponding delta equal to —0.1 for
deep-out-of-the-money options, —0.25 for out-of-the-money options, and —0.5 for at-the-money
options. Hence the expected returns of a carry trade hedged deep out-of-the-money (10-delta),
out-of-the-money (25-delta), and at-the-money (ATM) are respectively:

e _ G e _ G e _ G
Xhedged, 10-detta = 0.977, X hedged, 25-delta = 0- 797", Xhedged, atm = 0.577.

To the best of our knowledge, this simple decomposition of hedged and unhedged returns is novel.

The rest of the section is devoted to setting up a model and deriving this result. Our modeling
strategy follows Backus et al. (2001): we specify a stochastic discount factor for each country.
These SDFs incorporate both a traditional log-normal component as in Lustig et al. (2008) and
a disaster component as in Farhi and Gabaix (2008). This is enough to compute all relevant
quantities, returns, and asset prices.

2.1 Model Setup

We focus on two countries, home and foreign, and develop a two-period model. In order to develop
our empirical application, in Section [3l we explain how to incorporate this building block in a multi-
country, multi-period extension. There, we introduce a state variable €2; that describes the state of
the world. The parameters of our two-country, two-period model depend on €2;. All the results in
this section should be understood as returns conditional on 2, but for notational simplicity we do
not make this dependence explicit. In particular, all the expectations in this section are conditional
on ;.

We assume that financial markets are complete but that some frictions prevent perfect risk
sharing across countries. Because we have data only for options on nominal exchange rates, we
choose to consider only nominal returns. Therefore, our SDFs should be thought of as nominal

SDFs (i.e., in units of local currency).H

8An example of such a friction often used in the literature is the assumption that some goods are not traded. The
assumption of complete markets is not necessary. Technically, our theory requires only the absence of arbitrage and
that risk-free bonds and options with enough strikes be traded. In other words, we rely on the existence of SDFs but
do not need these SDFs to be unique.

9The link with real pricing kernels is well known. If Q; 4. is the change in the quantity of real goods bought by one
unit of the local currency and if M, . is the real SDF, then the nominal SDF is My ¢r = M Qt 4r.
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In the home country, the log SDF evolves as:

1
log My t1r = —gT + VT — 5 var ()T

0 if there is no disaster at time t + T
, log (J) if there is a disaster at time t + T '

We use a superscript star to denote foreign variables. The log of SDF in the foreign country evolves

as:
* * * 1 *
logM;, ., = —g9'T+¢€ T—Evar(e)T
0 if there is no disaster at time t + T
log (J*) if there is a disaster at time t + T '

Observe that the SDFs have two components. The first one, —g7 + €y/T — 3var (e) T, is a
country-specific Gaussian risk with an arbitrary degree of correlation across countries. The second
component, log (J), captures the impact of a disaster on the country’s SDF.

The probability of a disaster between t and t+ 7 is given by pT. Note that disasters are perfectly
correlated across the two countries: disasters are world disasters. Here, g and g* are constants.
The random variables (e, €*) are jointly normally distributed with mean 0 and may be correlated.
However, (g,€*) are independent of the nonnegative random variables J and J*, which measure
the magnitudes of the disaster event. All these variables are independent of the realization of the
disaster event.

The “disaster” can have several interpretations. One, championed by Rietz (1988) and Barro
(2006), is that of a macroeconomic drop in aggregate consumption, perhaps due to a war or a major
economic crisis that affects many countries. Another interpretation is that of a financial stress or
crisis affecting participants in world financial markets, perhaps via a drastic liquidity shortage and
a violent drop in asset valuations. Both interpretations have merit, and we do not need to take a
stand on the precise nature of a disaster.

This model is extremely tractable. Indeed, it yields closed-form solutions for a number of key
moments of interest. However, this tractability does not come for free. It relies on a few important
assumptions: that € and €* are jointly normal and independent of the realization of the disaster. As
we shall soon see, our model implies that, conditional on no disasters, the change in the exchange
rate between home and foreign is an affine transformation of €* — €. In Section [3lit is shown that,
within our sample, we cannot reject the hypothesis that the distribution of monthly log exchange
rate changes conditional on no disaster being Iognormal. This validates our assumption that

0At very high frequencies, exchange rates exhibit fat-tailed distributions. In line with the central limit theorem,



€* — € is normally distributed and independent of the realization of disasters. However, our model
presumes not only that €* — € is normal but also that € and €* are both normal. This assumption
on pricing kernels is harder to confront directly with the data. Section provides an overall test
of the fit of the model and fails to reject it. This result validates our overall strategy of building a
simple and parsimonious model that is consistent with the data.

2.2 Interest Rates and Exchange Rates

In a complete markets economy such as ours, the change in the (nominal) exchange rate is given
by the ratio of the SDFs (Backus et al., 2001):

*
Stir _ Mt,t+7’
St Mt,t+'r

where S is measured in home currency per foreign currency. An increase in S represents an appre-
ciation of the foreign currency. The exchange rate moves both in normal times and in disasters.
In normal times, the exchange rate increases following a good realization of the home Gaussian
risk € or a bad realization of the foreign Gaussian risk €*. In disasters, the exchange rate increases
following a good realization of J or a bad realization of J*.

It is important to note that a low realization of J* corresponds to a depreciation of the foreign
currency. Hence, a country’s exposure to disaster risk increases when the distribution of J* decreases
in the first-order stochastic dominance sense. Actually, we will see shortly that a summary statics
for the foreign country’s exposure to disaster risk is —pE[J* — 1].

The home interest rate r is determined by the Euler equation 1 = E [M; ;1 ,€""]:
r=g—log(l+prE[J-1])/T. (1)

A similar expression determines the foreign interest rate. In the limit of small time intervals, this

expression takes a very simple form.

Proposition 1. /n the limit of small time intervals T — 0, the interest rate r in the home country
Is given by
r=g-—pE[J-1].

A similar formula holds for the foreign interest rate. Ceteris paribus, if the foreign country has

a higher average disaster risk or a lower pE [J* — 1], then it also has a higher interest rate. This

however, monthly changes in exchange rates very often appear to be Gaussian.
11n Section 3l we return to this issue and discuss how relaxing this hypothesis could potentially help us reduce the
sensitivity of the estimated disaster risk premium on the strikes of the options used for its estimation.
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higher interest can be understood as compensation for the risk of holding a currency that tends to
depreciate in disasters when the SDF is high.

2.3 Options

To determine the payoffs of hedged carry trades, we need to specify some option-related notation.
We denote by Py i, (K) and Ceyr (K) the prices of one-period puts and calls on the home—foreign
currency pair: Ps ., (K) is the home currency price of a put yielding (K — S;4+/S:)" in the home
currency, and Cq¢,-(K) is the home currency price of a call yielding (S;./S: — K)" in the home

currency/*?

The Black—Scholes formula. Our closed-form solutions for hedged carry trade returns build on
a version of the Black-Scholes formula. This formula, developed originally by Black and Scholes
(1973) in the context of stocks, was adapted to a foreign exchange setting by Garman and Kohlha-
gen (1983). We denote by V£s(S, K, o,r, r*, T) and V5s(S, K, o, r, r*, T) the Black—Scholes price
for a put and a call, respectively, when the spot is S, the strike is K, the volatility is o, the time
to maturity is 7, the home interest rate is r, and the foreign interest rate is r*. For example, the

Black—Scholes price of a put is given by
VES(S, K, o, r*,7) = Ke ""N(—d,) — Se " "N(—d),

where N is the cumulative distribution function of a Gaussian and where

_ log(S/K) + (r — r +02/2)T

d

d2:d1—0'\/;.

The Black—=Scholes formula has a simple scaling property with respect to the time to maturity
T and the interest rates r and r*:

Ves(S, K, o,r r*,7) = Vis(Se "™, Ke "™, 0y/T,0,0,1).

This scaling property means that we can use the formula whenever the time to maturity is equal
to 1 and both interest rates are 0. For notational convenience, we will omit the arguments 0 and
1 and simply write

Vies(S, K, 0) = V5s(S, K, 0,0,0,1).

12\We use the notation: y* = max (0, y).
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The delta of options. The delta of an option is the sensitivity (or the partial derivative) of the
option price to a change in the underlying exchange rate. The delta of a put is negative because
the value of a put increases when the underlying currency depreciates. The delta decreases with
the strike of a put: a deep-out-of-the-money put has a delta close to 0, while a deep-in-the-money
has a delta close to —e™"' . For example, in the Black—Scholes model, the delta of a put is given
by

VL (S, K,o,r, 1", 7)/0S = —e™" "N(—d\).

We will often consider the limit of short time to maturity. The delta of the option then has a
simple interpretation: it is the probability that the put will be exercised. More formally, the delta
of a put option with time to maturity 7 and strike Se*VT has the following Iimit:

ALs(k) = ligﬁOGV;S(S, Se™VT o, r,r*,7)/0S = —N(k/0) € (—1,0),

where the partial derivative is taken with respect to the first argument.

For example, k = 0 for at-the-money options and so the delta of an ATM put is —1/2.

2.4 Hedged and Unhedged Carry Trade Returns

We compute returns in units of the home currency. However, we want to allow for the possibility
that home might be both the funding currency (if r < r*) and the investment currency (if r > r*).
Hence we define two carry trade payoffs X and Y that correspond to these two cases:

St
* +7 rT
X pir = e’'T — e
[+ '

T St

Yt,t+7 = _Xt,t+T-

The payoff X; .y, corresponds to the following trade: at date t, borrow one unit of the home
currency at rate r and invest the proceeds in the foreign currency at rate r*. At the end of the
trade, at date t+4 7, convert the proceeds back into the home currency. The payoff Y; ryr = — Xt t4r
corresponds to the opposite trade.

In the main text, we treat the case where the home currency is the funding currency (r <
r*). The corresponding derivations can be found in Appendix A. In Appendix B, we derive the
corresponding results for the case where home is the investment currency.

We now construct the hedged carry trade returns, X; ., ,-(K). The return X; . -(K) is the
payoff of the following zero-investment trade: borrow one unit of the home currency at interest

13|n this equation, & is a normalized measure of the moneyness of the option.
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rate r ; use the proceeds to buy AEHT(K) puts with strike K, protecting against a depreciation in
the foreign currency; and invest the remainder (1 — A, (K)P:t+-(K)) in the foreign currency at
interest rate r*. Here P; .., (K) is the home currency price of a put yielding (K — StJrT/St)Jr in

the home currency,

r*TS ’ 5 T " rT
Xt’t+T(K):(1—A5t+T(K)Pt,t+T(K))e g; +>‘Et+T(K) (K_ g;) —C

where we choose the hedge ratio A7, (K) to eliminate disaster risk:

M (K)=€e"T/(1+P(K)e"").

Of foremost interest to us is the annualized expected returns, conditional on no disasters, of
two strategies: the unhedged carry trade, X¢, and the hedged carry trades, X¢(k), at strike e*v™
over short horizons 7. These returns correspond to the following limiting cases:

X = lim ENP [X;.rid] /T,
T—0

X(k) = lim ENP [Xtm (e’“ﬁﬂ /7.

T—0

To summarize our notation: X, ., denotes the carry trade return and X€ is its expected value;
Xe.e4-(€%V7) denotes the hedged carry trade return with strike K = V7 and X¢(k) is the expected
value of that hedged carry trade return. ENP denotes expectations under the assumption of no
disaster.

The following proposition offers a decomposition of these returns in terms of disaster and

Gaussian risk premia.

Proposition 2. /n the limit of small time intervals (T — 0), carry trade expected returns (conditional
on no disasters) are given by

X¢=pE[J—J]+cov(e e—c¢"). (2)
In the same limit, hedged carry trade expected returns (conditional on no disasters) are given by
Xe(k) = —pE [(J = )"] +cov(e, e —€") (1 + Ags(k)) . (3)
The first term in equation (2]) is the risk premium associated with disaster risk:
P =pE[J - J].
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If the foreign country is riskier, then E [J — J*] > 0 and the expected return due to disaster risk is
positive. The second term in (2)) is the risk premium associated with “Gaussian risk”a la Backus et
al. (2001):

7° = cov (g, — %) ;

this is the covariance between the home SDF and the bilateral exchange rate S;../S:. In our
model, the expected return of the carry trade compensates for the exposure to these two sources
of risk.

The purchase of protection against extreme depreciation affects the loading of the carry trade
payoff on the two sources of risk in the model. This is reflected in the expression for the expected
value of the hedged carry trade return in equation (3)). The disaster risk premium 7° is reduced to
pE [(J* — J)*], which equals zero if J > J* almost surely. The Gaussian risk premium ¢ is reduced
to cov (g, — €*) (1 + ABs(k)). This can be understood as follows: because the put option has a
sensitivity to currency changes that is equal to the option delta AES(K,), hedging reduces the risk
premium corresponding to Gaussian risk by cov (g, € — €*) |A5s(k)|. We will expand on the intuition
for this term in Section 2.5l

Implied volatilities. To put Proposition[21to work, we use implied volatilities. The implied volatility
Getor (K) of a put with strike K is defined implicitly as the volatility that would make the Black—

Scholes price match the observed price of the option:
Porir(K)=e "V (1, Ke" 7,61 01r (K)VT).

A similar definition holds for call options. By the put—call parity formula, the implied volatility of
a put and a call having the same strike and maturity are equal. We now state a lemma that will

simplify the empirical analysis.

Lemma 1. /n the limit of small time intervals (T — 0), the Black—Scholes implied volatility

Gerir (€YT) Of a put or a call with strike eV is given by var (e* — €)"/>.

Lemma [Il states that, in the limit of small time intervals, the implied volatility is equal to the

14Backus et al. (2001) show that, if markets are complete and SDFs are log normal, then expected log currency
excess returns are equal to E(log R¢) = 1/2Var(logM) — 1/2Var(log M*). We focus here instead on the log of
expected currency excess returns, but the two expressions are naturally consistent. Starting from Backus et al. (2001),
we obtain:

log E(R®)

Il

1 1 1 1
E(log R®) + Evar(Re) = Evar(s) - Evar(s*) + Evar(s —€")

var(e) — cov(g, g%);
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physical Gaussian volatility of the bilateral exchange rate, var (¢* — 5)1/2

. This is true even though
our model contains both normal-times risk and disaster risk. The intuition is as follows. For options
close to the money, the value of the option due to disasters is proportional to pt, the probability
that the disaster will occur during the lifetime 7 of the option. This is very small compared to the
value of the option due to normal-times volatility, which is proportional to /7. Hence, for small
maturities and strikes close to the money, most of the value of the option comes from Gaussian risk
rather than disaster risk. Correspondingly, the implied volatility of the option is well approximated
by the physical volatility of the exchange rate.

In the case of short-dated options with near-the-money strikes, Lemma [1l implies that we can
use the Black—Scholes implied volatilities ¢ ¢+ (e”ﬁ) instead of the physical Gaussian volatility
var (e* — €)? when computing AEs(k) in equation (B). This is true even though — owing to the
presence of disasters — the assumptions of the Black—Scholes model do not hold.

As a result, we need not to forecast future volatility country by country (which would be difficult
given that market participants have more information than we do). We can instead rely on option-
implied volatilities. The quality of this approximation deteriorates for out-of-the-money options, in
which cases the implied volatility is larger than the physical volatility. Our procedure will then bias
our estimates of option deltas away from 0, leading to an overestimation of Gaussian risk premia
and an underestimation of disaster risk premia.

Rather than using the underlying options strike, traders in practice routinely use its Black—
Scholes delta, which is a conventional quantity computed as

TN (m/?%— (r;\;— 62/2)7') |

Note that this quantity might differ from the true sensitivity of the option with respect to the

fundamental. However, it converges to AE<(k) = —e™" TN(—d;) in the limit of small time intervals.

Using Lemma [1l therefore provides us with a useful simplification: in the limit of small time
intervals, the conventional deltas that traders use to quote currency options coincide not only with
the true deltas of the options but also with the quantity AL<(k) featured in our model.

In practice, this approximation is valid when the disaster risk premium p(J* — J)7 is small in
absolute value compared to the option price, which is of order £ov/T (where £ > 0 depends on k).
Therefore, our approximation will be valid only if 7 < (é0/ (p|J — J*|))2. Numerically, with yearly
units volatility is about 10% so o ~ 0.1. The disaster part of the carry trade risk premium is, in
order of magnitude, 1.5%, so p|J* — J| ~ 0.015. Thus we need 7 < 44£2. For at-the-money
options, £ = 1/\/5 and the condition is T < 44¢% = 6.9 years. Because we use one-month options

15For this analysis we need not to decompose the relative contributions of p and J* — J, as Farhi and Gabaix (2008)
do. Only the value of the disaster risk premium, p(J* — J)T, matters.
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(T = 1/12), our approximation is expected to be valid in practice. Furthermore, in practice the ratio
of the implied volatility of 10-delta and 25-delta options to the implied volatility of ATM options
typically lies between 1 and 1.2. Hence, using the volatility ATM rather than the implied volatility
at 10-delta would change the factor 1 + A of 10-delta options from 0.9 to 0.94; for the 25-delta
options, the 1 + A factor would be equal to 0.79 instead of 0.75. These corrections would imply
only trivial modifications to our empirical estimates, much below their reported standard errors.

2.5 Estimating the Contribution of Disasters

The expected return of the unhedged carry trade in equation (2) can be re-expressed as
X =mP 4+ 7¢. (4)

Assume that J* < J almost surely: this means that the exchange rate of the foreign country will
depreciate with respect to the home country in case of a disaster. A put option protects the investor
against a large depreciation associated with disasters and also against more a modest depreciation
resulting from Gaussian risk. As a consequence, the hedged carry trade is less risky and commands
a lower risk premium. The further out of the money the put option is, the more risk the investor
bears, and so the higher the hedged carry trade return. Indeed, we can re-express (3]) as

Xe(k) =7° (L + ALs(k)) .

For instance, take the carry trade hedged with at-the-money options (k = 0). In this case,
ALs(k) = —1/2 and X©é(k) = 0.57%. The expected return of the carry trade hedged at the money
is equal to half of the no-disaster risk premium 7rG.

The intuition here is that the hedge eliminates all the disaster risk and half the Gaussian risk.
That exactly half of the Gaussian risk is eliminated might seem surprising, given that the SDF puts
more weight on depreciation of the foreign currency than on its appreciation. The intuition is as
follows. In the limit of small time horizons 7 — 0, the shape of the distribution is a Gaussian with
standard deviation o/7T, whereas the adjustments for risk that govern the difference between the
physical and risk-adjusted probability are much smaller — of the order of magnitudes of 7. Together

with the fact that the Gaussian distribution is symmetric around 0, this implies X¢(0) = 0.57°.

18With an upper bound of 1.1, the numbers are 0.92 and 0.77; with an upper bound of 1.3, they are 0.95 and 0.81.

17An informal explanation runs as follows. The carry trade has a “disaster beta” of 1, and a “Gaussian” beta of 1.
Hence, its risk premium is 72 4+ 7®. On the other hand, the carry trade hedged at the money has a disaster beta of
0 and a Gaussian risk beta of 1/2 (as we saw earlier, it eliminates half the Gaussian risk). Hence, its risk premium is
0.57¢. Likewise, the carry trade hedged at 10 delta has a disaster beta of 0 and a Gaussian risk beta of 0.9 (because
it eliminates 10% of the Gaussian risk), so its risk premium is 0.97C .
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Next, take the carry trade hedged with a put option at 25 delta. In the language of currency
traders, this means that the strike is such that the delta of the put is —0.25; thus X¢(k) = 0.757°.
Likewise, for the carry trade hedged at 10 delta, we get X¢(k) = 0.97°. Again, the intuition is
that, since that the hedge uses a relatively deep-out-of-the-money put, investors bear much of the
Gaussian risk but not all of it: they bear 90% of the risk, so that the expected return of the carry
trade at 10 delta is 0.9 times the Gaussian risk premium.

The method behind our estimation procedure is to use expected returns of different investment
strategies with different loadings on disaster and Gaussian risks to derive ¢ and 2. Alternatively,
option prices can also be used directly to make some inference about those risk premia. We turn
to this issue in the next section.

2.6 Risk Reversals

Roughly speaking, if the foreign currency is riskier than the home currency, then out-of-the-money
put prices on the currency pair (home, foreign) should be higher than out-of-the-money call prices,
since the price of protection against a devaluation of the foreign currency should be high. In this
section we construct a simple metric — risk reversals — to measure the gap between the out-of-the-
money puts and out-of-the money calls.

One tradition is to construct risk reversals as the implied volatility of an out-of-the-money put,
minus the implied volatility of a symmetric out-of-the-money call. A more theoretically appealing
definition for our purposes involves looking at the difference between the prices of put and calls
rather than at the difference between their implied volatilities. More precisely, we call F = e(r—")7
the forward rate of the bilateral exchange rate S;,,/S;. We use k, which in practice is close to 1,
in order to indicate the moneyness of the options. For instance, for puts and calls corresponding
to movements of 10% from the forward rate, k = 1.1. We define the risk reversal to be

RR(Fk) = P (Fk™') — k"*C (Fk). (5)

Risk reversals are the price of one put with strike Fk ! minus k! calls with strike Fk, which
Is symmetric with respect to the money forward rate F. For instance, in the previous case where
k = 1.1, the risk reversal is the price of a put protecting against a 10% depreciation of the foreign
currency minus 0.9 units of a call paying off symmetrically (i.e., if the foreign currency appreciates
by 10%).

The next lemma gives the reason for the definition in equation (B): if there is only Gaussian

risk, then the risk reversal is exactly 0.

17



Lemma 2. /f there is no disaster risk, then the risk reversal is exactly zero, for all strikes: RR (Fk) =
0 for all k > 0.

On the other hand, if there is disaster risk then the risk reversal is basically the price of an out-
of-the-money put (in the previous example, protecting against a 10% depreciation of the foreign
currency) minus the price of a symmetric call (e.g., protecting against a 10% appreciation of the
foreign currency). Hence, if the foreign country has more crash risk than the home country, its risk
reversal is positive.

In the next proposition, we characterize the limit price of risk reversals for strikes in the parametric
class e*vV7™.

Proposition 3. /n the limit of small time intervals, the price of risk reversals is given by
lim RR(Fe™T)/T = pE [(J = J)" = (J" = ']+ 201+ A5s(k)PEL(S = NI (6)

Consider a risk reversal at-the-money forward (k = 0) in the case where J > J* almost surely.
Then, AL(0) = —1/2 and lim, o RR(Fe*vT)/T = 0. In other words, disaster risk generates non
trivial risk reversals only for strikes away from the money.

Risk reversals on the currency pair (home, foreign) essentially capture the relative loadings on
disaster risk of the home currency and the foreign currency in the following sense. If the distribution
of J* decreases in a first-order stochastic dominance sense (i.e., if the foreign currency bears more
crash risk), then the value of the risk reversal is weakly higher (lim, o RR(Fe*VT)/T is weakly
higher).

We can also consider strikes that do not scale as k+/7 in the limit of short time horizons. If
instead the strike is constant at K > 0, then the delta of the corresponding put option is equal to

—1. In this case, the price of deep-out-of-the money risk reversals is
lim RR(K)/T = pE [(K*IJ — ) o (K- J)+] . (7)
T—0
We conclude this section with a proposition linking risk reversals to interest rates.

Proposition 4. /n the domain where the foreign country has more disaster risk than the home
country (J > J*), ceteris paribus, the more the foreign country is exposed to disaster risk (the lower
is J* in the sense of first-order stochastic dominance), the higher are the interest rate differential
r* — r and the short-maturity risk reversal.

Proposition [4] is natural. Riskier countries should have higher interest rates as we have already

seen, and they should have higher prices of put premia because they bear important crash risk: their
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risk reversals are higher. An analogous proposition naturally holds if the foreign country has less

disaster risk than the home country.

3 Estimation

The theoretical results presented in the previous section guide our empirical work on carry trade
returns. From a methodological perspective, the model has two main implications: currency excess
returns increase with interest rates, and currency options allow the estimation of disaster risk
premia. We follow these two insights. Because the forward premium puzzle implies that risk premia
are time-varying, we build portfolios of currency excess returns by sorting countries based on their
interest rates. By doing so, we obtain currency excess returns that are significantly different from
zero and capture expected excess returns from currency markets. We apply this methodology to
unhedged and hedged currency excess returns. As a result, we obtain the empirical counterparts
to the expected excess returns described in the previous section. Using the closed-form expressions
derived there, we estimate the market compensation for crash risk.

3.1 Data

We first describe our data set and how we build currency portfolios, and then turn to our results on
disaster risk premia. We start off with spot, forward, and option contracts on currency markets.

Spot, forward, and currency options. All exchange rates in our sample are in U.S. dollar per
foreign currency. As a result, an increase in the exchange rate corresponds to an appreciation of
the foreign currency and a decline of the U.S. dollar. For each currency, our sample presents spot
and forward exchange rates at the end of the month and implied volatilities from currency options
for the same dates. We consider one-month forward rates and options with one-month maturity.
Longer-term contracts are available but much less traded. We construct foreign interest rates using
forward currency rates and the U.S. LIBOR, assuming that the covered interest rate parity condition
hoIds.

Options are quoted using their Black and Scholes implied volatilities for five different deltas.

Our sample comprises deep-out-of-the-money puts (denoted 10 delta puts), out-of-the-money puts

8|n normal conditions, forward rates satisfy the covered interest rate parity condition (CIP): forward discounts (e.g.,
the log differences between forward and spot rates) equal the interest rate differentials between two countries. Akram,
Rime and Sarno (2008) study high-frequency deviations from CIP and conclude that CIP holds at daily and lower
frequencies.

19 Jorion (1995), Carr and Wu (2007) and Corte, Sarno and Tsiakas (2009) study the features of these currency
options.

19



(25 delta puts), at-the-money puts and calls, out-of-the money calls (25 delta calls) and deep-out-
of-the money calls (10 delta calls) for the 1996-2008 period. Figure Bl presents, as an example, the
implied volatilities of the currency options in our sample at the end of August 2008. If the underlying
risk-neutral distributions of exchange rates were purely log-normal, then these lines would be flat:
implied volatilities would not differ across strike prices. This is clearly not the case here. Note
for instance that the implied volatility curve is decreasing for Australia or New Zealand (two high—
interest rate countries at that time) and increasing for Japan or Switzerland (two low—interest rate
countries). These curves signal departures from the normality assumption. Let us take a simple
example. A high implied volatility for an out-of-the-money call option implies that the probability of
a foreign currency appreciation is higher than in a normal distribution. At the end of August 2008,
option prices reflect large probabilities of appreciation for the Japanese yen and Swiss franc as well
as large probabilities of depreciation for the Australian and New Zealand dollars. These expected
changes actually occurred in the next months.

Using these spot, forward, and option contracts, we now build unhedged and hedged currency
excess returns following the definitions presented in Section [2.4]

Portfolios of unhedged and hedged currency excess returns. For each individual currency, we
construct the corresponding excess return from the perspective of a U.S. investor. We consider
two cases: the investor goes either long or short in the foreign currency. In each case, we build the
hedged excess return obtained by buying protection on the option market against an unfavorable
change in the foreign currency. When the U.S. investor is long in the foreign currency he buys a
put contract, thereby protecting himself against a depreciation of the foreign currency. When he is
short, he buys a call contract. Again, the strike price of these options contracts is either far out of
the money (at 10 delta), out of the money (at 25 delta), or at the money.

We sort currencies on their forward discounts and allocate them into three portfolios, rebalancing
every month. The first portfolio contains the lowest—interest rate currencies while the last portfolio
contains the highest—interest rate currencies. By sorting currencies on their risk characteristics,
we focus on sources of aggregate risk and average out idiosyncratic variations. When computing
portfolio averages, we use equal weights for all currencies. We obtain avera currency excess

returns, average implied volatilities, and average risk reversals for each portfolio.

20By using data from the Chicago Mercantile Exchange, we could have extended the sample to 1986 for three
currencies (Canadian dollar, Swiss franc, and yen) and to 1994 for two others (Australian dollar and British pound).
Unfortunately CME data do not provide at each date a constant variety of option strikes, which is crucial for our
estimation procedure.

2INote that the hedge strategy requires buying one option for every currency in the portfolio. In essence, this
amounts to buying protection against adverse movements of every currency in the portfolio against the U.S. dollar.
Another potentially interesting strategy consists of buying a single option to protect against an adverse movement of
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The connection with the theory developed in Section [2] is as follows. The different countries
are indexed by / € /. A state variable €2; describes the state of the world at date t. This state
variable follows an arbitrary stationary stochastic process. All the parameters of the model are
arbitrary functions of €2,: p, g;, Ji and cov(e;, €;). Correspondingly all the computed variables r;,
X&, Xe(k);, wP and 7€ depend on Q. Underlying our three portfolios are the three state-dependent
sets 11(2¢), 12(€2¢), and /3(€2;).

High interest rates r; can be due to high values of g’ or to low values of pE[J; — 1]. If disaster
risk is an important determinant of cross-country variations in interest rates, then a portfolio formed
by selecting countries with high—interest rates will, on average, select countries that feature high
disaster risk, —E[J;]. The empirical analysis that follows indeed confirms that.

Sample. Our data set comes from JP Morgan. It contains 32 currencies: Argentina, Australia,
Brazil, Canada, Chile, China, Columbia, Czech Republic, Denmark, Euro area, Hong Kong, India,
Indonesia, Israel, Japan, Malaysia, Mexico, New Zealand, Norway, Peru, Philippines, Poland, Singa-
pore, South Africa, South Korea, Sweden, Switzerland, Taiwan, Thailand, Turkey, United Kingdom,
and Venezuela. Following the World Economic Outlook (IMF, 2008) classification, we split the
sample between advanced countries and emerging countries.

There are two main reasons to focus on advanced countries: the higher liquidity of their option
markets and the normality of their returns. We focus here on normality tests and investigate later
the impact of transaction costs.

Our model implies that, as long as a currency crash does not occur in sample, changes in
exchange rate are conditionally normally distributed. We check this implication in our data, limiting
first our attention to the 1/1996 — 8/2008 period. We exclude the last four months of our sample
because, during the fall of 2008, high—interest rate currencies depreciated and low—interest rate
currencies appreciated sharply. Carry trades thus paid very badly in the fall of 2008, when stock
markets tumbled worldwide and liquidity dried up. We take the view that this period represents an
example of disasters in our sample and will pay special attention to this particular period in the next
section. For now, we exclude it from our sample.

Table @ in Appendix C reports higher moments of changes in exchange rates along with the
standard Jarque and Bera (1980) and Lilliefors (1967) normality tests for each currency available
over this period. The left panel focuses on advanced countries. Bootstrapping the skewness and

kurtosis statistics, we find that the sample values are not significantly different from the Gaussian

the basket of currencies in this portfolio. However, we do not have data on basket options and so we do not pursue
that route.

22The Word Economic Outlook classification combines three criteria: (i) per capita GDP, (ii) export diversification,
and (iii) integration into the global financial system.
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ones for all countries, except for South Korea and Singapore. The Lilliefors test leads to the
same conclusion. The Jarque—Bera test rejects normality more often (adding the United Kingdom
and Japan to the list), but the test is known to over-reject in short samples. The comparison
with the right panel, which focuses on emerging countries, is striking. There, most exchange rate
distributions differ from normality. Most rejections come from high kurtosis. If we include fall
2008 in our sample, the recent large changes in exchange rates lead to rejection of the normal
distribution even for many advanced countries.

Our model implies that conditional changes in exchange rates are normal. Yet the normality
tests reported so far are unconditional, and exchange rates tend to exhibit time-varying volatility.
To take into account such heteroscedasticity, we estimate a GARCH (1, 1) model for each currency.
We then run normality tests on exchange rate changes normalized by their volatility. To save space,
we report results in Table [I0 in Appendix C. After the GARCH (1, 1) correction, all advanced
countries, except South Korea, exhibit conditionally Gaussian exchange rates in our sample. Most
emerging countries, however, still fail normality tests.

As a result, we focus here on our sample of advanced countries (excluding South Korea) over the
1/1996-8/2008 period. We turn now to our main empirical results. Note that results obtained
with the whole sample of advanced and emerging countries are reported in Appendix C as robustness
checks. In that appendix we also consider a smaller sample of the nine most advanced countries as
in Jurek (2008).

3.2 Results

We first present the key characteristics of our currency portfolios and then focus on measures of
disaster risk premia.

Portfolio characteristics. Forming portfolios is a way to compute moments conditional on the
three sets Iy, I, and /3. Of particular interest to us will be three of these moments: carry trade
returns and the corresponding disaster and Gaussian risk premia. For instance, the expected return
on portfolio k is simply the average return over the countries in the portfolio:

Zielk(ﬂt) XF(82;)
#1(S2¢) ’

23We also report, in Appendix C, higher moments and normality tests for our portfolios of currency excess returns. In
our benchmark sample of advanced countries, the Lilliefors test cannot reject the normality assumption for any of our
portfolios. In our large sample of advanced and emerging countries, however, the high—interest rate portfolios exhibit
fat tails and thus clearly depart from normality.

24Qur sample consists of Canada, Czech Republic, Denmark, Euro area, Israel, Japan, New Zealand, Norway, Poland,
Singapore, Sweden, Switzerland, Thailand, and United Kingdom

e
X, =E
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where /, denotes the set of currencies in portfolio k. Similarly, the expected hedged return on

portfolio k is:
Zielk(Qt) X£(€2)(K)
# 1, (2;)

Table [I] reports average currency excess returns that are either unhedged, hedged at 10 delta,

Xi(k)=E

hedged at 25 delta, or hedged at the money. Average currency excess returns increase monotonically
from the first to the last portfolio. This is not a surprise: we know from the empirical literature on
the uncovered interest rate parity that high—interest rate currencies tend to appreciate on average.
As a result, investors in these currencies gain both the interest rate differential and the foreign
exchange rate appreciation. Hedging downside risks decreases average returns. A hedge at 10 delta
protects the investor against large drops in foreign currencies, whereas a hedge at the money protects
the investor against any depreciation of the foreign currency: the latter insurance is obviously more
expensive because it covers more states of nature and thus leads to lower excess returns.

For each portfolio, we also report in Table [2] the average implied volatility at different strikes.
One result stands out: the average implied volatility of high—interest rate currencies (e.g., portfolio
3) is much higher for out-of-the-money put options than for other strikes and other portfolios.
Option markets price a large depreciation risk for high—interest rate currencies. The same insight
is apparent in risk reversals.

The last panel of Table [2] presents average risk reversals at delta 10 and 25 delta:

RE, — £ | icuan KR
#1,(2¢)

Recall that risk reversals correspond to positions that are long put and short call options. As
a result, higher levels of risk reversals indicate higher probabilities of depreciation for the foreign
currency. We report risk reversals quoted in terms of implied volatilities. As in the model, risk
reversals increase monotonically with interest rates. Higher—interest rate currencies have higher
probabilities of depreciation. This result is in line with the premises of our model, which introduces
the risk of large-scale depreciation in currency markets.

The strong link between interest rates and risk reversals suggests a comparable sorting that uses
risk reversals instead of interest rates. Underlying this construction are three different portfolio sets
with their corresponding conditional moments. Here again we obtain a monotonically increasing
cross-section of excess returns. Table [3 reports hedged and unhedged average excess returns.
Countries with higher levels of risk reversals tend to offer higher currency returns on average. The
difference in unhedged returns between the last and first portfolio is lower than in our previous
portfolios, but it is still significant.

We now turn to the direct estimation of the market’'s compensation for bearing disaster risk.
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Disaster risk premia. In order to estimate disaster risk premia, we focus on a zero-investment
strategy that goes long on high—interest rate currencies and short on low—interest rate currencies.

This strategy corresponds to usual currency carry trades.

The expected return of the carry trade is X° = X5 — X;. It can be decomposed as the sum
of a disaster risk premium 72 and a Gaussian risk premium 7°. The disaster risk premium is the
difference between the average disaster risk premium in portfolio 3 and the average disaster risk

premium in portfolio 1:
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Similarly, the Gaussian risk premium is the difference between the average Gaussian risk premium
in portfolio 3 and the average Gaussian risk premium in portfolio 1:
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The average unhedged return of this strategy is equal to 6.5% per year in our sample. It
corresponds to the sum of the average return on the third portfolio in the left panel of Table
[ (when the investor is long on the foreign currency) and the first portfolio in the right panel
(when the investor is short on the foreign currency). We also report hedged carry trades at 10
delta, 25 delta, and at-the-money (ATM). They correspond to X (k) = X3(k) — X;(k). The
first panel of Table [4] presents these average carry excess returns and their standard errors. The
latter are obtained by bootstrapping the monthly excess returns under the assumption that they are
independent and identically distributed (i.i.d.). As a result, these standard errors take into account
the short sample size. Carry excess returns that are either unhedged or hedged at 10 delta and 25
delta are statistically different from zero. Carry returns hedged at the money are positive but not
significant. The differences between unhedged and hedged returns are all positive and significant.

The second panel of Table [ reports structural estimates of the disaster risk component (WD)
and the Gaussian risk component (7¢). We start with simple estimates that only require computing

averages, and then we turn to GMM estimates.

As derived in the previous section, unhedged excess returns correspond to the sum of w2 and
7°. Hedged excess returns are approximately equal to 7 multiplied by a correction factor related
to the delta of the option. To estimate 7 and 7, we first correct each average hedged return

for its delta component:

Xe(k) = X"(k)/(1+ D),
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where X°(k) corresponds to the average carry return hedged at delta k (k = 10, 25, or at-the-
money) and A, denotes the option delta (respectively equal to —0.1, —0.25, and —0.5). Section

shows that the expected value of each X¢(k) is simply 7°. So, we form our estimate of the

Gaussian risk premium as a simple weighted average of the delta-corrected hedged carry trade
returns:

76 = W (8)

where N is the number of hedged excess returns considered. For instance, N = 1 when we use
ATM options only and N = 3 when we use 10 delta, 25 delta and ATM options.

As warranted by the analysis in Section 2.5] our estimate of the disaster risk premium is the
average unhedged carry trade return, X°, minus the estimate of the Gaussian premium:

70 = X° — 76, (9)

We report four sets of estimates obtained using the methodology just described and four different
sets of hedged returns: 10 delta (first column), 25 delta (second column), at-the-money (third
column) hedged returns along with the previous three hedged returns combined together (fourth
column). Note that we estimate two risk premia, ®° and 7°, using either two (first, second,
and third columns) or four moments (fourth column). Again, standard errors are obtained by
bootstrapping the monthly excess returns under the assumptions that they are i.i.d. Depending on
the specification, Gaussian risk premia range from 3.4% to 5.3%; disaster risk premia amount to
1.2% to 3.1% annually. The latter account for approximately 20% to 50% of the average carry
trade returns in our sample. The lower estimate is obtained when using only deep-out-of-the-money
options. Disaster risk premia are significantly different from zero in all cases, except when using
solely at-the-money options.

Our previous estimates of disaster risk premia, obtained with simple averages, correspond to the
minimization of the sum of squared differences between empirical and theoretical excess returns.
We now turn to Hansen’s (1982) GMM estimates of disaster risk premia. We use all the available
unhedged and hedged excess returns and thus have four moments to estimate two parameters. The
other cases reported previously are just-identified with two moments to determine two parameters.

25This estimate corresponds to the minimization of:

(X°—7P —7°)2 + Z(m —79)2.

KEl

2°This estimate corresponds to the minimization of g%-W tgr, where W is the variance-covariance matrix of all
hedged and unhedged returns and where gr describes all moment conditions: gr = [(X — @ — @°), (X¢(k1) —
7)), ... (Xe(k3) —®°)]. If W1 = A’A then the estimate minimizes gi-A'Agr; this corresponds to the "square” of
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In order to weight the different moments, we use the covariance matrix of all hedged and unhedged
returns. We do not use a spectral density matrix because of the short length of our sample. We
obtain a disaster risk premium of 1% (with a standard error of 0.4) and a Gaussian risk premium
of 4.8% (with a standard error of 1.9). The disaster risk premium obtained with all hedged returns
is close to the one obtained with 10-delta returns. This happens because the standard deviation of
delta-corrected ATM hedged returns is much higher than the other ones. As a result, the GMM
estimation underweights this moment, which previously delivered the higher estimate of disaster risk
premia. This procedure thus gives a lower bound on disaster risk premia. Note also that the GMM
estimation does not impose the condition that unhedged excess returns are the sum of disaster and
Gaussian risk premia.

We check our results on different portfolios that feature either different sorts or different coun-
tries. We obtain similar results on portfolios of currency excess returns sorted on risk reversals.
Recall that these portfolios deliver a monotonic cross-section of returns and offer a carry excess
return of 3.2% annually. Table [B] reports estimates of the corresponding Gaussian and disaster risk
premia. The former varies from 1.3% to 1.7%, and the latter ranges from to 1.4% to 1.9%. Again,
all estimates except the one using solely at-the-money options, are statistically significant. Disaster
risk premia account for approximately 40%—60% percent of the long—short returns on these risk
reversal—based portfolios.

As robustness checks, we consider two additional samples: either all the developed and emerging
countries in our data set or a subset of nine developed countries (Australia, Canada, Euro area,
Japan, New Zealand, Norway, Sweden, Switzerland, and United Kingdom). To save space, we report
all tables in Appendix C. We obtain very similar estimates on the small sample of nine developed
countries as before on our larger sample of advanced countries. Using GMM, we obtain a disaster
risk premium of 1.1%, which accounts for 25% of the carry trade returns. We obtain somehow lower
disaster risk premia on our large sample of advanced and emerging countries. Emerging markets,
however, present lower liquidity and higher bid—ask spreads as we have seen; moreover most fail
normality tests. Taking transaction costs into account helps reconcile the results obtained on both
samples.

We view these estimates of disaster risk premia as the main empirical contribution of this paper
because they are derived within a theoretical framework that allows us to incorporate a variety
of options. We draw two clear conclusions from this experiment. First, disaster risk is priced on

linear combinations of our original moments. As a result, the minimization does not imply that X =7P +7°. The
J-statistic is equal to grvar(gr) tgr ~ x?(#moments — #parameters); cf Cochrane (2005).

2TTable [I3] presents disaster risk premia for the nine developed countries. Table [I4 reports average currency excess
returns across portfolios when we sort developed and emerging countries based on interest rates. Table presents
implied volatilities and risk reversals for developed and emerging countries. Table [16] reports estimates of disaster risk
premia in the same sample.
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currency markets. Second, there are significant differences in the amounts of disaster risk across
countries. If all countries bore the same amount of disaster risk, then it would cancel out in our

long—short excess returns.

The estimate of disaster risk premia 72 is higher when using at-the-money options than out-of-
the-money options. In light of the model, out-of-the-money options seem “too cheap” compared to
at-the-money options. Note, however, that differences in disaster risk premia across these options
are not statistically significant. Take for example the GMM estimate as a benchmark. Then the
other estimates, obtained using simple averages, differ by 0.15, 0.62, 2.09, and 0.95 percentage
points (see Table []). But the corresponding standard errors on these differences are 0.57, 0.96,
1.72, and 1.01 percentage points. Therefore, the estimates of disaster premia are not statistically
different across strikes. With this caveat in mind, we turn to potential explanations for these
different point estimates. We see three possible explanations: illiquidity, counterparty risk, and

model misspecification.

The illiquidity explanation runs as follows. The JP Morgan market maker simply gives indicative
prices by using the Black—Scholes formula (which generates a low option price), but there is little
trading of out-of-the-money options. If someone wanted to aggressively buy these options, then
she would end up moving prices against herself and paying higher prices. So the potential trading

prices are higher than the indicative prices we have in our data.

In the counterparty risk explanation, the seller of a put might actually default during a disaster.
Put premia take that risk into account and are lower than in the model. This issue, of course,
affects not only currency options but also stock options, credit default swaps, and the like. We

expand on this issue in Section [3.4].

Finally, the model may simply be misspecified. The model might generate too small a risk-neutral
probability for small depreciations. One way to incorporate this possibility in our model would be to
allow for two kinds of disasters: large disasters and small disasters. In such a specification, out-of-
the-money options offer no protection against small disasters and would therefore be cheaper than
at-the-money options.

We do not attempt to enrich the model to capture liquidity and counterparty risks or small
disasters, leaving this for future research. In this paper, we focus on the simplest model that is
not rejected by the data. We can formally test if the model is rejected with our GMM estimation.
Following Hansen (1982), we compute the J-test of the model's pricing errors. This statistic is
distributed as a chi-square with two degrees of freedom. The J-statistic is 2.51, leading to a p-value

of 0.28. The model is thus not rejected in our sample.
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3.3 Transaction Costs

So far, our estimates of disaster risk premia do not take into account bid—ask spreads on currency
markets. Transaction costs on forward and spot contracts would reduce unhedged excess returns.
Transaction costs on currency options would increase insurance costs against disasters. As a result,
these costs would increase the share of disaster risk premia. In this respect, the numbers previously
reported in this paper constitute a lower bound.

Bid and ask spreads are not available in the JP Morgan dataset. For the spot and forward
markets, we rely on Reuters daily quotes available on Datastream. Measured in our sample, these
quotes imply average spreads (divided by the mid rate) of 9 basis points for forwards and 8 basis
points for spot rates. When implementing carry trades through forward markets, investors who go
long on high—interest rate currencies buy forward contracts at the ask price. When they receive the
corresponding foreign currencies at the end of the contract, they convert their proceeds back into
U.S. dollars at the bid price. As a result, they incur half the bid—ask spread on both the forward
and spot contracts. Assuming a spread of 8 basis points and 12 trades per year, the annual cost
is equal to about 100 basis points or 1%. Gilmore and Hayashi (2008) argue that such spreads
overstate transaction costs on currency markets because investors might roll over their positions
each month instead of closing them to re-open them the next day. With an example based on the
South African rand, they show that forward markets imply an annual carry cost of 192 basis points
whereas rolling over positions would cost only 13 basis points i.e., 15 times less; cf. Appendix 2 of
their paper. This estimate, however, assumes that a given currency remains in the carry portfolio
for five years, and thus it underestimates the costs due to portfolio rebalancing. As a result, we
assume that the average actual transaction costs on our unhedged carry portfolio are in between
these two estimates. We take an annual value of 0.25% for advanced countries and 2% for emerging
countries.

We should like to assess transaction costs on currency option markets but unfortunately we
do not have access to time—series of bid—ask spreads on these markets. To obtain an order of
magnitude, we collected bid—ask spreads on November 10, 2008 and January 20, 2009 for different
currency pairs. Table[12in Appendix C presents these bid—ask spreads on currency options quoted
in terms of implied volatilities. Because of the global financial crisis, implied volatilities are much
higher than in the rest of our sample. For most currency pairs, implied volatilities in November
2008 are more than twice their sample means. According to market participants, bid—ask spreads
in November 2008 were also much higher than in our sample. These spreads reached 30% of the
underlying midpoint (mean of bid and ask) values for out-of-the-money options on emerging market

currencies. Bid—ask spreads are much tighter for the currencies of the most advanced countries.

28\We thank the Bank of France for sharing these data with us.
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In January 2009, most implied volatilities were lower but spreads remained around 10%. According
to market participants, these spreads are abnormally large. To estimate the impact of transaction
costs on our results, we assume bid—ask spreads of 5% for advanced countries and 10% for the
others. As a result, spreads widen when implied volatilities increase, but not fully to the levels
observed during fall 2008. We convert these implied volatilities spreads into bid—ask prices and then
re-estimate hedged excess returns.

We test the robustness of our results to the inclusion of these transaction costs. As expected,
transaction costs increase the share of disaster risk; the results are reported in Table[6l Using simple
averages, Gaussian risk premia now range from 1.6% to 4.7%. Disaster risk premia also range from
1.6% to 4.7% annually, accounting for approximately 25%—70% of the average carry trade in our
sample. Disaster risk premia are significantly different from zero. Using GMM, we obtain a disaster
risk premium of 1.3% It is three standard errors away from zero and represents one fourth of the
carry trade excess returns. We consider this value as our best estimate of the compensation for
disaster risk considering the data available. It is, however, a lower bound because it does not take

into account default probabilities on option markets.

3.4 Counterparty Risk

So far we have assumed that there is no counterparty risk for options. However, it is reasonable
to think that the seller of a put might default with some probability ¢ if a disaster occurs. In that
case, an agent engaging in hedged carry trade still bears some disaster risk. Indeed, the expected
excess return of the hedged carry trade is then:

Xﬁedged = (1 + A)T"G + ¢7TD-

Since with probability ¢ the agent is exposed to disasters, the compensation for the disaster risk
is then ¢m2. Our estimation procedure to uncover disaster risk premia must now be amended as

follows:
b X —X(K)/1+A4)
B 1-— ¢/(1 + AK,)

For instance, take the case of deep-out-of-the-money options (A = —0.1). Equation ([LQ)) shows

™

(10)

that the estimate of m° that does not take into account counterparty risk must now be multiplied
by approximately 1/(1 — 1.1¢). When ¢ = 0.1, 7° is multiplied by 1.12; when ¢ = 0.25, it is
multiplied by 1.38. For ATM options (A = —0.5) the adjustment is even larger: when ¢ = 0.1, 7°
is multiplied by 1.25; when ¢ = 0.25, it is multiplied by 2.

This section demonstrates that counterparty risk can substantially increase our estimate of
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disaster risk premia. However, we lack data to pin down default probabilities on option markets.
As a result, our estimate of disaster risk premia should be considered as a lower bound. One
approach to estimate default probabilities could be to use information from the credit default swap
or corporate bond markets, but this is beyond the scope of this paper and we leave it for further
research. Instead, we now compare our estimate of disaster risk premia to the macroeconomic

literature on disasters, starting with a case study of fall 2008.

3.5 Fall 2008 and Comparison with Barro and Ursua (2008)

We view this recent period as the unique example of disaster in our data. As noted earlier, its
inclusion in our sample is enough to reject the normality assumption for many countries. In this
section, we provide a brief description of what happened in currency markets. Both spot and option

markets support the characterization of this period as a financial disaster.

Fall 2008. In our sample, fall 2008 stands out as the worst time for carry traders. This is obvious
for specific currencies, but it also holds for currency portfolio returns. We start with a simple
example using two bilateral exchange rates; in the recent period, the New Zealand dollar has been
a high—interest rate currency while the Japanese yen has been a low—interest rate one. Figure [4]
plots monthly changes in these exchange rates against the U.S. dollar. We start our graph at the
beginning of the subprime crisis on financial markets; the sample period is thus 7/2007 — 12/2008.
Clearly, the Japanese yen appreciated and the New Zealand dollar depreciated during that period,
with both movements hurting carry traders. The same figure also reports the return index on a
carry trade strategy that borrows in yen to invest in the New Zealand dollar. The index starts at
100 in July 2007. At the end of December 2008, the index is slightly above 60, and most of the
losses have occurred in the last four months of the sample. These losses are not specific to the
New Zealand dollar—Japanese yen pair; we obtain similar results with our baskets of currencies.
The average return of our carry trade strategy was minus 4.5% in the fall 2008, for a cumulative
decline from September to December that amounts to 17.8%. This is a large drop, as the standard
deviation of monthly returns over the whole sample is just 2%. Almost all of the 17.8% decline is
due to losses on high—interest rate currencies, which depreciated sharply.

Similar conclusions arise in the case of currency options. Large changes in exchange rates
triggered exercise of currency options embedded in our portfolios. Figure Bl plots the frequency of
call and put options exercised on currencies allocated in the first and last portfolios, respectively.
At each moment in time, the frequency is obtained as the number of options exercised divided by
the number of currencies in the portfolio at that time. Recall that the first portfolio contains low—

interest rate currencies and thus funding currencies. Investors want to buy call options to insure
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themselves against large appreciation of such currencies. The last portfolio contains high—interest
rate currencies. There, investors consider put options. The figure shows clearly that the frequency
of 10-delta put options exercised reaches an all-time high in the fall of 2008. The proportion of call
options triggered was also high, but not at its maximum value in the sample.

These very low returns on currency markets occurred in bad times for U.S. investors. During
fall 2008, the U.S. stock market declined by 33% in terms of the MSCI index. Figure [6l compares
equity and currency excess returns over our sample. The correlation between these excess returns
is particularly high, reaching 0.7 since the start of the subprime mortgage crisis in July 2007.

Standard risk measures beyond those from equity markets point in the same direction in our
sample: the equity option—implied volatility index VIX, its bond equivalent MOVE, and credit spreads
were at their all-time high in the fall of 2008. Figure [7] presents all these variables in a standardized
way: currency returns and risk measures are all de-meaned and then divided by their standard
deviations. The events of fall 2008 represent up to five standard deviations in these series. Very
low currency excess returns (four standard deviations below their means) happened exactly when
volatilities in equity and bond markets and credit spreads were high (four standard deviations above
their means) — that is, in bad times. Our sample in this paper is short, but our findings are in line
with the literature. As Lustig et al. (2008) show, carry trades tend to pay poorly during times of
crises, exactly when stock markets tank. This high correlation between stock and currency markets
also occurred during the 1987 stock market crash and during the Mexican, Asian, and Russian
crises. These market-based indices offer real-time measures of risk that complement the approach
based on marginal utilities and real consumption growth rates. Figure [8 focuses on consumption
growth, and the same conclusion emerges here. Preliminary estimates of U.S. national account
statistics point toward an annualized decrease of 4.3% in real personal consumption expenditures
in the fourth quarter of 2008, following an annualized decrease of 3.8% in the third quarter. These
shocks represent declines of more than three standard deviations in the mean consumption growth
rate. As reported in Lustig and Verdelhan (2007) on an earlier sample, low carry trade excess
returns tend to occur in times of low consumption growth.

Finally, note that the link between risk reversals and subsequent currency appreciations differ
during crisis and normal times. In normal times, according to the model, high levels of risk reversals
should predict foreign currency appreciations. Using actual data, however, we did not find much
significant predictability though. During times of crisis, high risk reversals should predict foreign
currency depreciation. This is what happened during the fall of 2008: foreign currency depreciation

seemed to follow high risk reversals. This behavior is line with the model if we interpret the fall of

29The closest event to this very strong decline in equity and currency returns is the 1987 stock market crash. From
September to November 1987, the U.S. stock market lost 32.6%. This period is not in our sample because we do not
have currency option data before January 1996.
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2008 as a disaster. The evidence is, of course, very limited because we have only one disaster in our
sample. As a consequence, we do not attempt to quantify this point and instead simply present, in
Figure [9, exchange rate appreciations and risk reversals for each month and each currency in the
fall of 2008.

According to many markets and risk factors, the fall of 2008 constitutes a disaster. We use this

example to connect our findings with the previous macroeconomic literature on disasters.

Comparison with Barro and Ursua (2008). In a disaster, the stochastic discount factor is mul-
tiplied by an amount J. To relate this J to more primitive economic quantities, we use the model of
Farhi and Gabaix (2008). In that model, J = B~"F where B~" is the growth of real marginal utility
during a disaster and F is the growth of the value of one unit of the local currency in terms of interna-
tional goods during the same disaster. Hence T° = pE[J],—pE[J]; = pE[B~1(F)],—pE[B~(F)]s.
Therefore, the disaster risk premium depends on the probability of disasters p, the relative value

of the SDF B~7, and the payoff of the carry trade in disasters through the sufficient statistic
pE[B=Y(F)], — pE[B~7(F)],. Using the episode of fall 2008 to calibrate the value of F; — F3
and assuming away a potential correlation between B~ and F; — F3, we can shed some light on

the typical value of pB~". This exercise should be viewed as a back-of-the-envelope calculation
rather than a rigorous estimate, since our inference of F; — F3 relies on a single disaster that is
still unfolding as this paper is written. Thus we cannot observe the full path to recovery and, as
Gourio (2008) shows, we might overestimate the impact of disasters. With this caveat in mind, if
we retain a value for F; — F5 of 20% then a value for pE[B—] of 6.5% is necessary to generate a
disaster risk premium 7° of the order of magnitude that we estimate in the data.

We compare this value to Barro and Ursua’s (2008b) estimates. These authors use long samples
of consumption series for a large set of countries. Their findings are broadly consistent with the
estimates from Barro (2006), which are based on GDP disasters. Barro and Ursua (2008b) estimate
a probability of disasters p equal to 3.63%. A coefficient of relative risk aversion v = 3.5 then
implies that E[B—"] = 3.88, leading to a value of pE[B~] equal to 14%. The authors show that

these values can rationalize the equity premium.

Using a value of 14% for pE[B~"] and a value of 20% for F; — F3 leads to a disaster risk premium
of 0.14 x 0.2 = 2.8%, which is higher than but still comparable to our point estimate. Therefore,
we view our estimates as being broadly consistent with Barro and Ursua (2008b)'s findings. We

end this paper with a review of the link between volatility smiles, risk reversals, and exchange rates.

30Note, however, that interpreting our pricing kernel strictly as a simple function of consumption growth would open
a large debate that is beyond the scope of this paper. Constant relative risk aversion and complete markets imply, for
example, a very high correlation between consumption growth and exchange rates, a high correlation that is not evident
in the data (Backus and Smith, 1993).
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3.6 Volatility Smiles, Risk Reversals, and Exchange Rates

We first provide a simple calibration of the model in order to check that it simultaneously accounts
for the volatility smile observed in the data and the disaster risk premium that we have estimated.
We then test the contemporaneous relationship between risk reversals and exchange rates, and the

predictive content of risk reversals for currencies.

Accounting for the smile. In this section we examine the implications of our model for the
volatility smile — that is, the relationship between the implied volatility and the strike of currency

options. The exact value of a put with strike K is given by

Preir(K) = (L—p7)e 97V (1, Ke™ 97907, 0/T)
+ pre STE [JVE (1, Ke 9IS/ S 0 e V/T)]

where 0 ,r = y/var (e —€*) and the expectation operator E is over the joint distribution of J

and J*.

The implied volatility o+, is computed by solving the following implicit equation:
Proir(K)=e" "V (1, Ke "7 Gy o /T)

where r = g —log (1 + pTE[J—1]) /T and r* = g* —log (1 + pTE [J* — 1]) /7. Recall that when
quoting options, traders routinely use the delta of the underlying option rather than its strike, which

is a conventional quantity computed as

e (109 (K) = (r=r"+02,,,/2) T
_e "N - : :
Ut,t+7’ﬁ

Note that this quantity might differ from the true sensitivity of the option with respect to the
fundamental.

All our currency options are options on exchange rates against the U.S dollar. It is therefore
most natural to attempt to calibrate our model to fit the average volatility smile of a given portfolio.
We choose to focus on portfolio 3 which represents a carry trade where the funding currency is the
U.S. dollar. To calibrate the model, we choose the parameters as follows. We take J and J* to
be deterministic. We assume that the values of p and J for the United States are consistent with
the estimation of Barro and Ursua: J = B™ = 3.88 and p = 3.63%. We choose J* to match a
value of 2 = 1.6%, a number that is roughly in the middle of our range of estimates. We shall

investigate the sensitivity of the calibration to the exact value retained for w2, which implies that
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J*=J(1—=7nP/(pB™)) = 3.44. We choose the physical volatility of the exchange rate to match
an implied volatility at the money in portfolio 3 of 10%. This leads us to pick o ¢+ = 9.6%. We
pick g = 13.4 and g* = 14.6% in order to match the average U.S. interest rate (r = 3%) and the
average interest rate in portfolio 3 (r* = 5.8%) over the sample.

The resulting implied volatilities as a function of the delta of the option in this calibration are as
follows. For a 10-delta put, the implied volatility is 11.4%. For a 25-delta put, the implied volatility
is 10.4%. At the money, the implied volatility is 10.0%. For a 25-delta call, the implied volatility is
9.9%. Finally, for a 10-delta call, the implied volatility is 9.8%.

These values should be compared with the implied volatilities for portfolio 3 in the data. For
a 10-delta put, the implied volatility is 11.5%. For a 25-delta put, the implied volatility is 10.6%.
At the money, the implied volatility is 10.0%. For a 25-delta call, the implied volatility is 10.0%.
Finally, for a 10-delta call, the implied volatility is 10.4%. The overall fit of our model is quite good.
It is better for out-of-the-money puts than for out-of-the-money calls. Note, however, that we
obtain these values by assuming constant J and J*. The fit could be further improved by choosing
an appropriate probability distribution for J and J*.

Risk reversals and exchange rates. The model implies that (i) increases in risk reversals are
associated with contemporaneous exchange rate depreciations, and (ii) high levels of risk reversals
predict future currency returns. We test these predictions both on panel data and on portfolio

series.

In order to test for the first prediction, we first regress monthly changes in nominal exchange
rates on monthly changes in risk reversals. We use risk reversals measured in prices at 10 and 25
deltas. Because these deltas imply different deviations from forward rates across countries, we also
check our findings on risk reversals that are normalized: these risk reversals correspond to strikes
that are 5% or 10% away from forward rates. We de-mean both the regressor and the dependant
variable so as to remove the central role played by the U.S. dollar. The results on portfolios are
reported in Table[7l Tables[I8 and[I9lin Appendix C report panel results for advanced economies and
the whole sample, respectively. All panel specifications include currency fixed effects, and standard
errors are obtained by bootstrap. We find a highly robust negative correlation between changes

in risk reversals and changes in exchange rates. This negative relationship is robust to alternative

31Following the same calibration procedure but using a value of 2% for w? leads to the following implied volatilities.
For a 10-delta put, the implied volatility is 12.1%. For a 25-delta put, the implied volatility is 10.6%. At the money,
the implied volatility is 10.0%. For a 25-delta call, the implied volatility is 9.9%. Finally, for a 10-delta call, the implied
volatility is 9.8%. We also report the implied volatilities when the retained value for 72 is 1%. For a 10-delta put, the
implied volatility is 10.5%. For a 25-delta put, the implied volatility is 10.2%. At the money, the implied volatility is
10.0%. For a 25-delta call, the implied volatility is 10.0%. Finally, for a 10-delta call, the implied volatility is 9.9%.
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risk-reversal measures and to controlling for the effect of the doIIar. With portfolios and risk
reversals at either 10 or 25 deltas, R? values range from 25% to 40%. In our panel estimates using
demeaned country-level exchange rates, R? values are close to 5%. In both cases, risk reversals
are statistically significant. Their effect is also economically significant: a one-standard-deviation
change in risk reversals is associated with a 1% to 2.3% variation in exchange rates, which is slightly
below the monthly standard deviation of nominal exchange rate changes (2.8%).

In order to test for the second prediction, we augment standard UIP regressions with risk
reversals. Equivalent regressions are run against excess returns instead of changes in exchange
rates. The null hypothesis of UIP is a coefficient of 1 for the interest differential (defined as
the difference between domestic and foreign interest rate in the specification with exchange rate
change) and a coefficient of 0 in the specification with excess returns. We recover the usual negative
coefficient on the interest rate differential. Adding risk reversals to the usual UIP regressions does
not improve one-month-ahead exchange rate forecasts, and no risk reversal significantly predicts
currency excess returns or changes in nominal exchange rates in panel data, as shown in Table 8l
To save space, we report equivalent panel results in Tables and 21l in Appendix C. Currency
portfolios suggest a clear positive relationship between average currency excess returns and average
risk reversals across portfolios. As previously noted, the last panel of Table [2l reports an increase in
average risk reversals from the first to the last portfolio. Equivalent results are obtained for other
measures of risk reversals and for the whole sample of advanced and emerging countries. However,
within portfolios, there is no one-month-ahead predictability of risk reversals on currency excess
returns; this is shown in Table [8l

Overall we find strong evidence in favor of a contemporaneous link between exchange rates and
risk reversals, but we find more limited evidence of exchange rate predictability.

4 Conclusion

The objective of this paper is to provide a simple model-based estimation of the share of carry
trade returns that can be attributed to disaster risk. Our main empirical result shows that disaster
premia explain one fourth of carry trade returns. This result suggests that the introduction of a
time-varying disaster risk in exchange rate models, as in Farhi and Gabaix (2008), is empirically
relevant.

Although we find that disaster risk plays a significant role in explaining currency returns, we fall
short of fully solving the carry trade puzzle though disasters. In fact, our findings suggest that

32Carr and Wu (2007) also report high contemporaneous correlation between currency excess returns and risk reversals
for the yen and the British pound against the U.S. dollar.
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a typical investor can still obtain significant carry trade returns while being hedged against large
currency crashes. Several interpretations of these hedged excess returns are possible. First, the
investor naturally expects to be compensated for the remaining Gaussian, non—disaster risk. In
bad times high—interest rate currencies tend to depreciate and low—interest rate currencies tend
to appreciate. Second, out-of-the-money options might be relatively cheap in our sample. These

options are not default-free, and counterparty risk might push their prices downward.
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Table 1: Excess Returns: Advanced Countries Sorted on Interest Rates

Portfolios 1 2 3 1 2 3
Going Long Going Short

Panel I: Unhedged

Mean ~1.37 145 513 137 —145 —5.13
[2.08] [2.25] [2.08] | [2.02] [2.14]  [1.99]
Sharpe Ratio  —0.19  0.19  0.71 0.19 —0.19 —0.71

Panel II: Hedged at 10 delta

Mean —230 065 406 | 074 —158 —533
[1.93]  [1.99] [1.90] | [1.86] [1.94]  [1.87]
Sharpe Ratio  —0.33  0.09  0.60 | 011  —023 —0.81

Panel IlI: Hedged at 25 delta

Mean 214 059 303 | 062 —121 —468
[1.72]  [1.82] [1.66] | [1.48] [1.59]  [1.53]
Sharpe Ratio  —0.36  0.09 051 012 —021 —0.86

Panel IV: Hedged ATM

Mean ~-1.33  0.61 168 | 0.02 —086 —3.47
[1.27]  [1.40] [1.26] | [1.07] [1.13]  [1.10]
Sharpe Ratio  —0.31  0.13 039 | 000 —-021 —0.91

Notes: This table reports average currency excess returns that are unhedged or hedged at 10 delta, at 25 delta, and
at-the-money for our three portfolios. In the left section, we assume that the U.S. investor goes long in the foreign
currency; in the right section, we assume that the U.S. investor goes short in the foreign currency. In each case,
we report the mean excess return, its standard error, and the corresponding Sharpe ratio. The mean and standard
deviations are annualized (multiplied respectively by 12 and v/12). The Sharpe ratio corresponds to the ratio of the
annualized mean to the annualized standard deviation. Standard errors are obtained by bootstrapping the monthly
excess returns under the assumptions that they are i.i.d. Portfolio 1 contains currencies with the lowest interest rates;
portfolio 3 contains currencies with the highest interest rates. The horizon of the excess returns and the option maturity
is one month for each. Data are monthly, from JP Morgan. The sample period is 1/1996 — 8/2008.
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Table 2: Implied Volatilities and Risk Reversals: Advanced Countries Sorted on Interest Rates

Portfolios 1 2 3

Panel I: Implied Volatilities

106 Put 9.78 10.09 11.50
[0.14] [0.17] [0.20]
256 Put 9.38 9.56 10.60
[0.15] [0.16] [0.17]
ATM 9.33 9.31 10.02
[0.14] [0.16] [0.17]
256 Call 9.78 9.55 10.02
[0.15] [0.16] [0.15]
106 Call 10.51 10.05 10.39
[0.16] [0.17] [0.16]

Panel II: Risk Reversals (Implied Volatilities)

Mean RR10 —-0.73 0.05 1.12
[0.06] [0.05] [0.06]
Mean RR25 —0.40 0.01 0.58
[0.03] [0.03] [0.03]

Notes: This table reports average implied volatilities and risk reversals by portfolios. The first panel reports average
implied volatilities on put and call contracts for strike prices at 10 delta, at 25 delta, and at-the-money. The second
panel reports risk reversals at 10 delta and 25 delta measured in terms of implied volatilities. The figures are quoted in
annual percentages. Standard errors are obtained by bootstrapping the monthly excess returns under the assumptions
that they are i.i.d. Portfolio 1 contains currencies with the lowest interest rates; portfolio 3 contains currencies with
the highest interest rates. The horizon of the excess returns and the option maturity is one month for each. Data are
monthly, from JP Morgan. The sample period is 1/1996 — 8/2008.

42



Table 3: Excess Returns: Advanced Countries Sorted on Risk Reversals

Portfolios 1 2 3 1 2 3
Going Long Going Short

Panel |: Unhedged

Mean 0.48 1.22 3.70 | —0.48 —122 —3.70
[2.10]  [2.11]  [1.95] | [2.06]  [2.05]  [1.87]
Sharpe Ratio  0.06 0.16 054 | —0.06 —0.16 —0.54

Panel Il: Hedged at 10 delta

Mean —038 047 257 | —1.00 —139 —3.96
[2.02]  [2.05] [1.83] | [1.98]  [1.90]  [1.76]
Sharpe Ratio  —0.05  0.07 039 | —0.14 —020 —0.62

Panel Ill: Hedged at 25 delta

Mean —021  0.05 183 | —0.68 —1.29 —3.45
[1.68]  [1.70]  [1.51] | [1.66]  [1.61]  [L.45]
Sharpe Ratio  —0.03  0.01 033 | —0.12 —023 —0.65

Panel IV: Hedged ATM

Mean —-0.03 —0.09 1.17 | -053 —133 —2.55
[1.28]  [1.31] [1.10] | [L.12]  [1.16]  [L.06]
Sharpe Ratio  —0.01  —0.02 029 | —0.13 —0.32 —0.69

Notes: This table reports average currency excess returns that are unhedged or hedged at 10 delta, at 25 delta, and
at the money for our three portfolios. In the left section, we assume that the U.S. investor goes long in the foreign
currency; in the right section, we assume that the U.S. investor goes short in the foreign currency. In each case,
we report the mean excess return, its standard error, and the corresponding Sharpe ratio. The mean and standard
deviations are annualized (multiplied respectively by 12 and v/12). The Sharpe ratio corresponds to the ratio of the
annualized mean to the annualized standard deviation. Standard errors are obtained by bootstrapping the monthly
excess returns under the assumptions that they are i.i.d. Portfolio 1 contains currencies with the lowest risk reversals
at 10 delta; portfolio 3 contains currencies with the highest risk reversals at 10 delta. The horizon of the excess returns
and the option maturity is one month for each. Data are monthly, from JP Morgan. The sample period is 1/1996 —
8,/2008.
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Table 4: Disaster Risk Premia - Advanced Countries Sorted on Interest Rates

Panel I: Carry Excess Returns

Unhedged Carry Hedged at 100 Hedged at 256 Hedged ATM

Mean 6.50 4.80 3.65 1.70
[1.88] [1.59] [1.41] [1.12]

Mean Spread 1.70 2.85 4.80
[0.41] [0.85] [1.32]

Panel |I; Estimations

106 250 ATM 106, 256, GMM
and ATM 279 Stage

P 1.16 1.63 3.10 1.96 1.01
[0.41] [0.87] [1.68] [0.93] [0.36]
o 5.33 4.87 3.40 4.53 4.77
[1.79] [1.87] [2.21] [1.87] [1.92]
7™ — 76 —4.17 -3.23 —0.30 —2.57 —3.76
[1.90] [2.31] [3.51] [2.35] [2.02]

Notes: This first panel of this table reports average returns on hedged and unhedged currency carry trades and their
standard errors. We use the currency portfolios presented in Table Il Carry trades correspond to returns on the last
minus returns on the first portfolio. We consider different hedges: 10-delta, 25-delta and at-the-money. We also report
the average difference between unhedged and hedged carry trades. The second panel reports structural estimates. Here
70 denotes the part of the carry excess return linked to disaster risk and € corresponds to the Gaussian, non-disaster
part of the same excess return. These estimates are obtained using hedged returns at 10 delta (first column), 25 delta
(second column), and ATM (third column) or at 10 delta, at 25 delta, and ATM combined (fourth and fifth columns).
Standard errors are obtained by bootstrapping the monthly excess returns under the assumptions that they are i.i.d.
Data are monthly, from JP Morgan. The sample period is 1/1996 — 8/2008.
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Table 5: Disaster Risk Premia : Advanced Countries Sorted on Risk Reversals

Panel I: Carry Excess Returns

Unhedged Carry Hedged at 106 Hedged at 256 Hedged ATM

Mean 3.22 1.57 1.15 0.64
[1.66] [1.53] [1.29] [1.14]

Mean Spread 1.65 2.07 2.58
[0.36] [0.80] [1.32]

Panel II: Estimations

106 250 ATM 106, 256, GMM
and ATM 279 Stage

70 1.48 1.68 1.94 1.70 1.41
[0.36] [0.87] [1.72] [0.94] [0.32]
T 1.74 1.54 1.28 1.52 1.67
[1.67] [1.74] [2.11] [1.74] [1.78]
T — 76 —0.26 0.14 0.66 0.18 —0.27
[1.79] [2.22] [3.49] [2.28] [1.90]

Notes: This first panel of this table reports average returns on hedged and unhedged currency carry trades and their
standard errors. We use the currency portfolios presented in Table Bl Carry trades correspond to returns on the last
minus returns on the first portfolio. We consider different hedges: 10-delta, 25-delta and at-the-money. We also report
the average difference between unhedged and hedged carry trades. The second panel reports structural estimates. Here
70 denotes the part of the carry excess return linked to disaster risk and € corresponds to the Gaussian, non-disaster
part of the same excess return. These estimates are obtained using hedged returns at 10 delta (first column), 25 delta
(second column), and ATM(third column) or at 10 delta, at 25 delta and ATM combined (fourth and fifth columns).
Standard errors are obtained by bootstrapping the monthly excess returns under the assumptions that they are i.i.d.
Data are monthly, from JP Morgan. The sample period is 1/1996 — 8/2008.
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Table 6: Disaster Risk Premia - Advanced Countries Sorted on Interest Rates with Transaction
Costs

Panel I: Carry Excess Returns

Unhedged Carry Hedged at 100 Hedged at 256 Hedged ATM

Mean 6.25 421 2.83 0.78
[1.83] [1.67] [1.44] [1.14]

Mean Spread 2.04 3.42 5.47
[0.43] [0.85] [1.34]

Panel II: Estimations

100 250 ATM 106, 259, GMM
and ATM 279 Stage

P 1.57 2.47 4.69 2.91 1.28
[0.41] [0.87] [1.68] [0.93] [0.37]
o 4.67 3.78 1.56 3.34 4.02
[1.81] [1.91] [2.29] [1.91] [1.96]
e —-3.10 —1.31 3.14 —0.42 2.74
[1.91] [2.35] [3.60] [2.41] [2.04]

Notes: This first panel of this table reports average returns on hedged and unhedged currency carry trades and their
standard errors. We use the currency portfolios presented in Table Il Carry trades correspond to returns on the last
minus returns on the first portfolio. We consider different hedges: 10-delta, 25-delta and at-the-money. We also report
the average difference between unhedged and hedged carry trades. The second panel reports structural estimates. Here
7P denotes the part of the carry excess return linked to disaster risk and 7 corresponds to the Gaussian, non-disaster
part of the same excess return. These estimates are obtained using hedged returns at 10 delta (first column), 25 delta
(second column), and ATM (third column) or at 10 delta, at 25 delta, and ATM combined (fourth and fifth columns).
Standard errors are obtained by bootstrapping the monthly excess returns under the assumptions that they are i.i.d.
Data are monthly, from JP Morgan. The sample period is 1/1996 — 8/2008. We assume annual transaction costs of
0.25% on unhedged returns and bid—ask spreads of 5% on implied volatilities.
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Table 7: Changes in Risk Reversals and Exchange Rates: Contemporaneous Specifications within
Portfolios

Dependant Variable: Exchange Rates

Panel I: Raw Variables Panel II: De-meaned Variables
Portfolios P1 P2 P3 P1 P2 P3
Risk Reversals -126.63 -131.82 -105.18 -119.95 -132.09 -145.43
Strike: Delta 10 [12.93]*** [24.22]*** [28.46]*** | [27.30]*** [18.09]*** [17.87]***
Observations 155 155 155 155 155 155
R? 0.4 0.28 0.41 0.37 0.42 0.35
Risk Reversals -77.56 -62.66 -49.29 -54.95 -62 -74.57
Strike: Delta 25 [8.46]%**  [18.28]%** [16.76]*** | [10.08]*** [17.25]*** [14.26]***
Observations 155 155 155 155 155 155
R? 0.38 0.25 0.36 0.32 0.36 0.31
Risk Reversals -61.64 -39.38 -30.31 -96.83 -45.76 -69.08
Strike: Forward +/- 10% [14.66]***  [36.52] [13.61]** [60.45]  [12.88]*** [30.00]**
Observations 96 125 133 96 125 133
R? 0.22 0.14 0.28 0.05 0.25 0.16
Risk Reversals -40.08 -48.97 -46.8 -50.99 -52.8 -47.9
Strike: Forward 4+/- 5%  [4.69]***  [6.05]***  [7.66]*** | [7.51]*** [5.08]*** [6.80]***
Observations 147 155 144 147 155 144
R? 0.39 0.3 0.46 0.42 0.44 0.32

Notes: This table documents contemporaneous relationships between changes in nominal exchange rates and changes
in risk reversals. Constant terms are included but not reported. Panel | presents results based on raw variables; panel
[l uses cross-sectionally de-meaned variables to control for the specific role of the U.S. dollar. Changes in exchange
rates correspond to monthly log changes; changes in risk reversals correspond to first differences. Each horizontal
panel presents the results of regressions including a different risk-reversal measure. Standard errors obtained from
bootstrap procedures using 1000 replications are presented below the point estimates. The symbols ***, ** and *
indicate statistical significance at 1%, 5%, and 10% confidence levels respectively. The sample comprises currencies
from advanced countries (excluding observations with non floating exchange rate according to the IMF de facto
classification). Data are monthly, from JP Morgan. The sample period is 02/1996 — 08,/2008.
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Table 8: Risk Reversals, Exchange Rate Changes and Currency Excess Returns: Predictive Speci-
fications within Portfolios

Dependant Variable: Panel |: Exchange Rates Panel II: Currency Excess Returns
Portfolios P1 P2 P3 P1 P2 P3
Interest Rate Differentials -1.27 -4.16 -0.97 -2.27 -5.17 -1.97
[1.52] [1.77]*%* [1.08] [1.49] [1.74]%** [1.06]*
Risk Reversals: (+/- 10%) 13.1 -1.12 -3.7 13.11 -1.14 -3.72
[13.36] [37.33] [19.30] [14.94] [40.95] [19.38]
Observations 109 129 138 109 129 138
R? 0.02 0.04 0.01 0.04 0.06 0.03
Interest Rate Differentials -2.78 -3.49 -0.96 -3.78 -4.5 -1.97
[1.28]** [1.72]** [1.15] [1.27]*** [1.79]** [1.16]*
Risk Reversals: (+/- 5%) 0.81 -2.37 -3.44 0.81 -2.39 -3.47
[5.52] [9.54] [7.53] [5.55] [9.69] [7.26]
Observations 109 129 138 109 129 138
R? 0.03 0.04 0.01 0.05 0.06 0.02
Interest Rate Differentials -2.5 - 3.48 -0.7 -3.5 -4.49 -1.71
[1.21]*%  [L.71]** [1.02] [1.22]%%%  [1.65]*** [1.06]
Risk Reversals: Delta 10 4.18 -8.18 -7.39 4.17 -8.23 -7.44
[16.66] [25.22] [18.81] [17.10] [26.06] [18.55]
Observations 155 155 155 155 155 155
R? 0.02 0.04 0.01 0.05 0.06 0.02
Interest Rate Differentials -2.51 -3.49 -0.76 -3.52 -4.5 -1.76
[1.26]¥*  [1.69]** [1.07] [1.23]%¥%%  [1.68]*** [1.12]
Risk Reversals: Delta 25 0.39 -5.32 -5.06 0.38 -5.35 -5.09
[9.31] [13.27] [10.02] [9.41] [14.19] [10.90]
Observations 155 155 155 155 155 155
R? 0.02 0.04 0.01 0.05 0.06 0.02

Notes: This table presents results of predictability tests. We regress monthly changes in nominal exchange rates (panel
[) or monthly currency excess returns (panel II) on risk reversals and interest differentials. The interest differential is
defined as the difference between the domestic and the foreign interest rate. The null hypothesis of UIP not being
rejected is a coefficient of 1 for the interest rate differential in panel | and a coefficient of 0 in panel Il. Constant
terms are included but not reported. Standard errors obtained from a bootstrap procedure using 1000 replications
are presented below their respective point estimates. The symbols *** ** and * indicate statistical significance at
1%, 5%, and 10% confidence levels respectively. The sample comprises currencies from advanced countries (excluding
observations with non floating exchange rate according to the IMF de facto classification.) Data are monthly, from JP
Morgan. The sample period is 02/1996 — 08/2008.
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= Long Put (Strike K)
= Long Call (Strike K¥*)

= [.ong Risk Reversal (Long Put with Strike K; Short Call
with Strike K¥*)

Prices and Strikes

Figure 1. Option Payoffs

This figure presents the payoffs of different option investments as a function of the underlying asset prices and strikes.
We consider the payoff of buying a call (with strike K*) or buying a put option (with strike K). Finally, we consider a
risk reversal that corresponds to selling a call (with strike K*) and simultaneously buying a put (with strike K).
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Figure 2: Deltas

This figure presents the deltas of put options as a function of their prices. The delta of an option is defined as the rate
of change of the option price with respect to the price of the underlying asset. The delta of a put varies between 0 for
the most deep-out-of-the-money options and —1 for the most deep-in-the-money options. The figure is computed for
a currency put option with a one-month maturity, an annualized implied volatility of 10%, and foreign and domestic
interest rates both set equal to 4% per annum.
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Figure 3: One-Month Option-Implied Volatility Smiles, August 2008

This figure plots, for each currency in our sample, implied volatilities for different strike prices. Implied volatilities are
in percentages; strike prices are scaled by spot rates.
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Figure 4: New Zealand Dollar and Japanese Yen
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This figure plots monthly changes in exchange rates for the New Zealand dollar and the Japanese yen as well the
return index on a carry trade strategy that borrows in yen to invest in New Zealand dollars. The sample period is

7/2007-12/2008.

52
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1 T T T T T T

HI‘H Ll Ll

0
1996 1998 2000 2002 2004 2006 2008 2010

0.8

0.6

0.4

0.2

Call Options Exercised (first portfolio, per currency)
1 T T T T T T

0.8

0.6

0.4

02 _ ‘ ‘ ‘ I |
0 1 | | 1

1996 1998 2000 2002 2004 2006 2008 2010

Figure 5: Options Exercised

This figure plots the frequency of call and put options exercised (respectively) in the first and last portfolios. At each
moment in time, the frequency is obtained as the number of options exercised divided by the number of currencies in
the portfolio at that time. We consider only options at 10 delta. The sample period is 2/1996 — 12/2008.
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Currency and Equity Excess Returns
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Figure 6: Currency Carry Trades and Equity Returns

This figure plots monthly currency carry trades and U.S. equity returns. Carry excess returns (blue bars) correspond to
our sample of advanced countries. Data are monthly, from JP Morgan (IMF). Equity returns (red line) correspond to
the U.S. MSCI index. The sample period is 2/1996 — 12/2008.
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Carry Excess Returns and Equity Volatility
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Figure 7: Carry Returns and Risk Measures

This figure plots carry excess returns and different risk measures. The upper panel uses the equity option—implied
volatility index VIX; below are the bond option—implied volatility MOVE index and the credit spread (measured as the
yield spreads between BAA bonds and 10-year U.S. Treasury bonds). Currency returns (blue bars) and risk measures
(red lines) are all de-meaned and then divided by their standard deviations. The sample period is 2/1996—12/2008.
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Currency Excess Returns and Quarterly Consumption Growth
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Figure 8: Carry Returns and Consumption Growth

This figure presents quarterly carry excess returns and real consumption growth per capita. Currency returns (blue
bars) and consumption growth (red line) are all de-meaned and then divided by their standard deviations. The sample
period is 2/1996-12/2008.
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Risk Reversals and One-Month-Ahead Exchange Rate Appreciation
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Figure 9: Risk Reversals and Changes in Exchange Rates, Fall 2008

This figure plots risk reversals at 10 delta and subsequent one-month changes in exchange rates for each month of
fall 2008. Risk reversal prices are in basis points; changes in exchange rates are in percentages. Increases in exchange
rates correspond to depreciation of the U.S. dollar. Exchange rate changes between date t and t + 1 are dated t + 1.
The sample focuses on advanced countries and covers the period from 9/2008 to 12/2008.
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