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1 Introdu
tionCurren
y 
arry trades o�er large expe
ted ex
ess returns, 
hallenging the ben
hmark models ininternational ma
roe
onomi
s. In this paper, we explore whether a 
lass of disaster-based modelsthat postulate the existen
e of rare but large adverse aggregate sho
ks to sto
hasti
 dis
ount fa
tors
an explain these ex
ess returns. This 
lass of models, pioneered by Rietz (1988) and Barro (2006),has re
eived mu
h attention re
ently in the ma
roe
onomi
s and �nan
e literature. However, this
lass of models is diÆ
ult to estimate be
ause of the small number of disasters in sample. Toaddress this diÆ
ulty, we provide a new method for estimating disaster risk premia even in samplesthat do not 
ontain any disasters. We �nd that disaster risk premia are statisti
ally signi�
ant anda

ount for about one fourth of 
arry trade ex
ess returns.Curren
y 
arry trades are investment strategies where one borrows in low{interest rate 
urren-
ies and invests in high{interest rate 
urren
ies. The value of the ex
hange rate at the end of theinvestment period is the sole sour
e of risk. If investment 
urren
ies depre
iate or funding 
ur-ren
ies appre
iate, then investors' returns de
rease be
ause they lose on their investment or mustreimburse larger amounts. With risk-neutral and rational investors, high{interest rate 
urren
iesshould depre
iate on average against low{interest rate 
urren
ies and 
arry trade ex
ess returnsshould be zero. Yet, in the data, these ex
ess returns are large and positive on average. A naturalexplanation is that investors are risk averse and demand to be 
ompensated for taking on su
h risk.Carry trade investors, however, 
an use 
urren
y options to hedge this 
urren
y risk. Forexample, a domesti
 investor who is long in the foreign 
urren
y may buy a put 
ontra
t thato�ers a large payo� in 
ase the foreign 
urren
y depre
iates. The investor thereby prote
ts himselfagainst adverse movements in the ex
hange rate. Likewise, a domesti
 investor who is short in theforeign 
urren
y may buy a 
all 
ontra
t, prote
ting herself against an appre
iation of the foreign
urren
y. Using di�erent 
urren
y option 
ontra
ts, investors 
an tailor their exposure to ex
hangerate risk, buying prote
tion against adverse ex
hange rate movements beyond any 
hosen 
uto�.Intuitively, di�erent hedged investment strategies should o�er returns that are 
ommensurate withtheir levels of risk. For example, the di�eren
e in returns between a strategy that is immune tolarge adverse 
hanges in ex
hange rates and one that is not immune re
e
ts the 
ompensation forbearing the risk of a large 
urren
y depre
iation. Yet a simple 
omparison a
ross unhedged andhedged returns does not allow a pre
ise estimation of disaster risk premia. The simple reason isthat hedged strategies prote
t investors against large ex
hange rate 
hanges of two types: thosedue to jumplike disasters and those that might o

asionally happen without any jump in a world ofGaussian sho
ks.In this paper, we propose a parsimonious ex
hange rate model to disentangle disaster fromGaussian risk premia. Following Ba
kus, Foresi and Telmer (2001), we start o� with the law of2



motion of the sto
hasti
 dis
ount fa
tor (SDF) in ea
h 
ountry. These SDFs in
orporate both atraditional log-normal 
omponent, as in Lustig, Roussanov and Verdelhan (2008), and a disaster
omponent, as in Farhi and Gabaix (2008). We assume that �nan
ial markets are 
omplete andthus de�ne the 
hange in ex
hange rate as the log di�eren
e between the domesti
 and foreignSDFs. In our model, expe
ted 
urren
y ex
ess returns are simply the sum of Gaussian and disasterrisk premia. The former arise from random sho
ks observed every period, while the latter are dueto rare disasters. We assume that these disasters do not o

ur in sample. As a 
onsequen
e,
hanges in ex
hange rates follow a normal distribution in sample. Our model delivers 
losed-formsolutions for short-dated put and 
all 
urren
y options, hedged 
urren
y ex
ess returns, and riskreversals (traded option pairs that repli
ate a long out-of-the-money put position and a short out-of-the-money 
all position).1 We use these expressions to establish a simple empiri
al pro
edureto measure the 
ompensation for disaster risk. The de
omposition of risk premia presented in thispaper is a methodologi
al 
ontribution that 
ould be useful in other asset markets.We turn to 
urren
y data to implement our pro
edure and test the model's impli
ations. Todo so, we rely on 
urren
y spot, forward, and option 
ontra
ts 
olle
ted by JP Morgan for 32
ountries. The data start in January 1996 and end in De
ember 2008. Based on ex
hange ratenormality tests, we restri
t our sample in two dimensions: we fo
us on advan
ed 
ountries and weex
lude the fall of 2008. We take the view that the fall of 2008 
orresponds to a unique disasterin our sample period, and we devote a �nal se
tion to it. As a robustness 
he
k, we report in aseparate appendix the results obtained with both advan
ed and emerging 
ountries. Our data set
omprises the pri
es of one-month options on bilateral ex
hange rates with di�erent degrees ofmoneyness: far out-of-the-money puts (denoted 10 delta puts), out-of-the money puts (denoted25 delta puts), at-the-money puts and 
alls, out-of-the-money 
alls (denoted 25 delta 
alls) andfar out-of-the-money 
alls (denoted 10 delta 
alls).2Following Lustig and Verdelhan (2007), we form portfolios of 
urren
y ex
ess returns by sorting
urren
ies based on their interest rates. We 
onsider zero-investment strategies that go long inthe highest{interest rate 
urren
ies and short in the lowest{interest rate 
urren
ies. We apply thismethodology to both hedged and unhedged ex
ess returns. Unhedged 
arry trades yield an averageannual ex
ess return of 6:5% in our sample. Carry trades hedged at 10 delta and 25 delta yield1An option is said to be at-the-money if its strike pri
e is equal to the forward ex
hange rate. A put (
all) option issaid to be out-of-the-money if its strike pri
e is below (above) the forward rate|that is, if it takes a large depre
iation(appre
iation) to make the option worthwhile exer
ising. Figure 1 presents the payo�s of three option-based strategies
onsidered throughout this paper: (i) being long an out-of-the-money put option, (ii) being long an out-of-the-money
all option and (iii) being long a risk-reversal (i.e., being long an out-of-the-money put option and short an out-of-the-money 
all option with symmetri
 strikes.)2The delta of an option represents its sensitivity to 
hanges in the spot ex
hange rate. The delta of a put variesbetween 0 for extremely out-of-the-money options to �1 for extremely in-the-money-options. A 10 delta (25 delta)put is an option with a delta of 10% (25%). Figure 2 presents the deltas of put options as a fun
tion of their pri
es.3



4:8% and 3:7% per annum, respe
tively, while 
arry trades hedged at the money yield 1.7% perannum. Hedged (ex
ept at-the-money) and unhedged returns and their di�eren
es are statisti
allyall signi�
ant. Using Hansen's (1982) generalized method of moments (GMM) with at-the-money,25-delta, and 10-delta options, we obtain a disaster risk premium of 1% per annum. This estimate issigni�
antly di�erent from zero, even after taking into a

ount the small sample size. It representsapproximately one �fth of expe
ted unhedged 
arry ex
ess returns. To maximize statisti
al pre
ision,GMM puts relatively more weight on the deep out-of-the-money options. However, those out-of-the money options are likely to be the least liquid. A simple \equal weighted" estimator (with equalweights on the 10-delta, 25-delta, and at-the-money options) puts more weight than the GMMestimator on the more liquid options, whi
h is preferable if the liquidity of out-of-the money optionsis a major 
on
ern.We investigate the robustness of our results to the presen
e of transa
tion 
osts and 
ounter-party risk. Bid{ask spreads are easily available on 
urren
y forward rates but not on options. Wethus assume that bid{ask spreads are equal to 5% of implied volatilities for advan
ed 
ountries and10% for other 
ountries.3 As a result, our simulated bid{ask spreads in
rease in bad times. Theirvalues are lower than the ones observed during the re
ent subprime mortgage 
risis but 
orrespondto market estimates. Taking into a

ount bid{ask spreads and using GMM, we obtain a signi�
antestimate of the disaster risk premium, whi
h in this 
ase is equal to 1:3% and represents one fourthof expe
ted 
arry ex
ess returns. This is our ben
hmark estimate. It is a lower bound be
ause itdoes not take into a

ount 
ounterparty risk and be
ause the GMM pro
edure puts relatively moreweight on options that are deep out-of-the-money. We derive the sensitivity of this estimate todefault probabilities on 
urren
y options markets.The model also implies strong links between interest rates, 
ontemporaneous and future 
hangesin ex
hange rates, and the pri
e of risk reversals { that is, the di�eren
e between the pri
e of an out-of-the-money put option and the pri
e of an out-of-the-money 
all option with symmetri
 strikes.Risk reversals 
apture the presen
e of asymmetri
 downside or upside risk. If the foreign 
urren
y isexpe
ted to depre
iate, then out-of-the money puts should be more expensive than symmetri
 out-of-the-money 
alls. On the other hand, if ex
hange rates were normally distributed then symmetri
puts and 
alls should have the same pri
es. The model predi
ts that: (i) risk reversals in
reasewith interest rates; (ii) an in
rease in risk reversals is asso
iated with a 
ontemporaneous ex
hangerate depre
iation re
e
ting the higher riskiness of the 
urren
y; and (iii) high values for risk rever-sals predi
t high average future 
urren
y returns be
ause high exposure to disaster risk must be
ompensated by high returns. We 
he
k these predi
tions on individual 
ountries, panel data, and3The implied volatility is de�ned as the volatility ne
essary to mat
h the observed option pri
e using a standardBla
k{S
holes formula. 4




urren
y portfolios. Empiri
ally, risk reversals in
rease with interest rates, as in the model. Prote
-tion against 
rash risk is more expensive for high{interest rate 
urren
ies than for low{interest rateones. We �nd, as in the model, that in
reases in risk reversals and foreign 
urren
y depre
iationstend to o

ur simultaneously. However, eviden
e is mixed as to whether risk reversals predi
t futureex
hange rates. Overall, risk reversals appear to 
ontain useful information on potential disasters.Building portfolios on the basis of risk reversals delivers a monotoni
 
ross-se
tion of 
urren
yex
ess returns. The implied disaster risk premia is in line with our previous estimates.We also examine the impli
ations of our model for the implied volatility smile.4 We presenta simple 
alibration of the model that simultaneously mat
hes our estimate of the disaster riskpremium and provides a good �t for the smile observed in the data.Overall, our model is not reje
ted by the data. We rea
h this 
on
lusion by performing a J-testof the model's pri
ing errors. This validates our strategy of using a parsimonious and tra
tablemodel. In our view, resorting to a ri
her but more 
omplex model would be justi�ed only if we hada

ess to a larger data set.As a 
ase study of a disaster episode, we use the fall of 2008. This period 
ertainly representedbad times { 
orresponding to a high SDF { as eviden
ed by the deterioration in a large set of
onventional risk measures. For example, during the fall 2008, the U.S. sto
k market index de
linedby 33% in terms of the MSCI index. Consistent with the disaster hypothesis, we do
ument thatthe 
arry trade performed very poorly during that period: the 
umulative loss amounted to 17:8%from September to De
ember. This also represents an extreme drop from a statisti
al perspe
tive,sin
e the standard deviation of monthly 
arry trade returns over the whole sample is just 2%.Our estimates of disaster risk premia and 
arry trade losses during fall 2008 are broadly 
onsistentwith the �ndings and 
alibration of Barro (2006) and Barro and Ursua (2008, 2009). In our model,the disaster risk premium depends on two main 
omponents: (i) the probability of disasters andthe impa
t of disasters on SDFs, and (ii) the 
arry trade payo�s in times of disaster. We use thefall 2008 episode to 
alibrate the latter and the values in Barro and Ursua (2008) to 
hara
terizethe former. These parameters imply a disaster risk premium of 2:8%, whi
h is higher than but
omparable to our estimate of 1:3%. This exer
ise should be viewed as a ba
k-of-the-envelope
al
ulation rather than a rigorous estimate, given that our inferen
e relies on a single disaster.Our paper is related to two di�erent literatures: the forward premium puzzle and its potentialexplanations; and option pri
ing with jumps. Sin
e the pioneering work of Hansen and Hodri
k(1980) and Fama (1984), many papers have reported deviations from the un
overed interest rateparity (UIP) 
ondition. These deviations are also known as the forward premium puzzle. In a4The implied volatility of an option is a 
onvenient normalization of the pri
e of this option as a fun
tion of itsstrike. The smile refers to the relationship between the implied volatility and the strike. We provide formal de�nitionsin Se
tion 3 of the paper. 5



re
ent 
ontribution, Lustig et al. (2008) build a 
ross-se
tion of 
urren
y ex
ess returns and showthat it 
an be explained by 
ovarian
es between returns and return-based risk fa
tors. In order torepli
ate this result, sto
hasti
 dis
ount fa
tors must have not only a 
ommon 
omponent a
ross
ountries but also heterogenous loadings on this 
ommon 
omponent. This paper builds on thedisaster risk literature to satisfy this 
ondition.5 Our model derives from Farhi and Gabaix (2008),who augment the standard 
onsumption-based model with disaster risk following Rietz (1988) andBarro (2006). World disaster risk is a 
ommon 
omponent, but 
ountries di�er in their exposuresto world disasters. As a result, this paper 
ontributes to the large literature on peso problems ininternational �nan
e.6Our paper also belongs to a re
ent literature using options to investigate the quantitative im-portan
e of disasters in 
urren
y markets. Bhansali (2007) was the �rst to do
ument the empiri
alproperties of hedged 
arry trade strategies. Brunnermeier, Nagel and Pedersen (2008) show thatrisk reversals in
rease with interest rates. In their view, the 
rash risk of the 
arry trade is due to apossible unwinding of hedge fund portfolios. This is 
onsistent with one interpretation of disasters.Most 
losely related to this paper, Jurek (2008) provides a 
omprehensive empiri
al investigation ofhedged 
arry trade strategies. He uses deep-out-of-the-money 
urren
y options to derive 
urren
y
rash risk. Jurek's main result { that disaster risk explains 30% to 40% of 
arry trade returns { is
onsistent with the �ndings of this paper, but our approa
h di�ers in several dimensions. First, ourmodel-based empiri
al strategy leads to a stru
tural interpretation of the results. Se
ond, the modelallows us to use a variety of option strikes, in
luding more-liquid at-the-money options, in order todisentangle Gaussian and disaster risk premia. Using at-the-money options, Burnside, Ei
henbaum,Klesh
helski and Rebelo (2008) also �nd that disaster risk 
an a

ount for the 
arry trade premium,where disaster risk 
omes in the form of a high value of the sto
hasti
 dis
ount fa
tor rather thanlarge 
arry trade losses. In 
ontrast to our approa
h, in their framework the only sour
e of riskpri
ed in 
arry trade returns is disaster risk.5Other 
onsumption-based models repli
ate the forward premium puzzle. Verdelhan (2009) uses habit preferen
es inthe vein of Campbell and Co
hrane (1999). Bansal and Shaliastovi
h (2008) build on the long-run risk model pioneeredby Bansal and Yaron (2004). Guo (2007) presents a disaster-based model with monetary fri
tions. Ait-Sahalia, Wangand Yared (2001), Ba
kus, Chernov and Martin (2009), Barro and Ursua (2009), Bates (2009), Bollerslev and Todorov(2009), Gabaix (2008), Gourio (2008), Julliard and Ghosh (2008), Liu, Pan and Wang (2005), Martin (2008), Pan(2002), Santa-Clara and Yan (2009) and Wa
hter (2008) all study disaster risk on equity and bond markets. Using swaprates, ex
hange rate returns, and pri
es of at-the-money 
urren
y options, Graveline (2006) estimates a two-
ountryterm stru
ture model that repli
ates the forward premium anomaly. Barro (2009) studies the welfare 
osts of raredisasters.6See Lewis (1995) for a survey. For example, Kaminsky (1993), extending the work of Engel and Hamilton (1990),
onsiders the possibility of rare events explaining investors' expe
tations about ex
hange rates. Rare events in her modelare infrequent swit
hes from 
ontra
tionary to expansionary monetary poli
y, and she provides eviden
e that investors'expe
tations are 
onsistent with the model. However, she does not examine the forward premium puzzle and 
onsidersonly one ex
hange rate (dollar{sterling) and a short time period.6



A related literature studies high-frequen
y data and option pri
ing with jumps, following pioneer-ing work by Bates (1996a, 1996b), who shows that ex
hange rate jumps are ne
essary to explainoption smiles. More re
ently, Carr and Wu (2007) �nd great variations in the riskiness of two 
ur-ren
ies (the yen and the British pound) against the U.S. dollar, and they relate it to sto
hasti
 riskpremia. Campa, Chang and Reider (1998) do
ument similar results for some European 
ross-rates.Bakshi, Carr and Wu (2008) �nd eviden
e that jump risk is pri
ed in 
urren
y options. However,the jumps they 
onsider are high-frequen
y jumps, whereas the disasters we have in mind are ofvery low frequen
y; in Barro (2006), disasters happen every 60 years. As a result, the e
onomi
analysis and our e
onometri
 te
hnique are very di�erent: we 
annot dire
tly measure disastersbe
ause they do not o

ur in our sample { unlike the small jumps that o

ur in studies su
h asBakshi et al. (2008).The paper is organized as follows. Se
tion 2 presents our model and derives its main impli
ations.Se
tion 3 reports our empiri
al results and Se
tion 4 
on
ludes. A separate appendix reports proofsand empiri
al robustness 
he
ks.2 TheoryWe provide a simple model that serves as the basis for our empiri
al strategy. In the model, expe
ted
arry trade returns Xe 
orrespond to the sum of two risk premia, a "normal times" or Gaussian riskpremium �G, and a disaster risk premium �D:Xe = �D + �G :Here and in what follows, G refers to Gaussian and D refers to disaster.Our main obje
tive is to devise a simple stru
tural estimation pro
edure to determine �G , �Dand the fra
tion of 
arry trade returns due to disaster risk. To a

omplish this, we use additionalinformation from hedged 
arry trade returns. Hedged 
arry trades are zero-investment trades wherethe investor borrows in the funding 
urren
y and then uses the pro
eeds to invest in the investment
urren
y and to pur
hase prote
tion against a large depre
iation of the investment 
urren
y through
urren
y put options.7 In the model, we derive 
losed-form solutions for the expe
ted returns ofhedged 
arry trades as a fun
tion of the option strikes. The expe
ted return Xehedged of a hedged
arry trade is Xehedged = (1 + �)�G :7In this simple overview, returns are 
omputed in units of the funding 
urren
y. Later in the paper, we also treatthe more general 
ase where returns are 
omputed in units of the investment 
urren
y.7



In this formula, � 2 (�1; 0) denotes the delta of the put option hedging the trade. The delta,whi
h we de�ne shortly, is in
reasing in the option strike. This is intuitive: the further away fromthe money, the more depre
iation risk the investor bears and the higher the expe
ted return of thehedged 
arry trade. We will make use of several strikes, with 
orresponding delta equal to �0:1 fordeep-out-of-the-money options, �0:25 for out-of-the-money options, and �0:5 for at-the-moneyoptions. Hen
e the expe
ted returns of a 
arry trade hedged deep out-of-the-money (10-delta),out-of-the-money (25-delta), and at-the-money (ATM) are respe
tively:Xehedged, 10-delta = 0:9�G ; Xehedged, 25-delta = 0:75�G ; Xehedged, ATM = 0:5�G :To the best of our knowledge, this simple de
omposition of hedged and unhedged returns is novel.The rest of the se
tion is devoted to setting up a model and deriving this result. Our modelingstrategy follows Ba
kus et al. (2001): we spe
ify a sto
hasti
 dis
ount fa
tor for ea
h 
ountry.These SDFs in
orporate both a traditional log-normal 
omponent as in Lustig et al. (2008) anda disaster 
omponent as in Farhi and Gabaix (2008). This is enough to 
ompute all relevantquantities, returns, and asset pri
es.2.1 Model SetupWe fo
us on two 
ountries, home and foreign, and develop a two-period model. In order to developour empiri
al appli
ation, in Se
tion 3 we explain how to in
orporate this building blo
k in a multi-
ountry, multi-period extension. There, we introdu
e a state variable 
t that des
ribes the state ofthe world. The parameters of our two-
ountry, two-period model depend on 
t. All the results inthis se
tion should be understood as returns 
onditional on 
t , but for notational simpli
ity we donot make this dependen
e expli
it. In parti
ular, all the expe
tations in this se
tion are 
onditionalon 
t.We assume that �nan
ial markets are 
omplete but that some fri
tions prevent perfe
t risksharing a
ross 
ountries.8 Be
ause we have data only for options on nominal ex
hange rates, we
hoose to 
onsider only nominal returns. Therefore, our SDFs should be thought of as nominalSDFs (i.e., in units of lo
al 
urren
y).98An example of su
h a fri
tion often used in the literature is the assumption that some goods are not traded. Theassumption of 
omplete markets is not ne
essary. Te
hni
ally, our theory requires only the absen
e of arbitrage andthat risk-free bonds and options with enough strikes be traded. In other words, we rely on the existen
e of SDFs butdo not need these SDFs to be unique.9The link with real pri
ing kernels is well known. If Qt;t+� is the 
hange in the quantity of real goods bought by oneunit of the lo
al 
urren
y and if MRt;t+� is the real SDF, then the nominal SDF is Mt;t+� = MRt;t+�Qt;t+� .8



In the home 
ountry, the log SDF evolves as:logMt;t+� = �g� + "p� � 12 var (") �+{ 0 if there is no disaster at time t + �, log (J) if there is a disaster at time t + � } :We use a supers
ript star to denote foreign variables. The log of SDF in the foreign 
ountry evolvesas: logM?t;t+� = �g?� + "?p� � 12 var ("?) �+{ 0 if there is no disaster at time t + �log (J?) if there is a disaster at time t + � } :Observe that the SDFs have two 
omponents. The �rst one, �g� + "p� � 12 var (") � , is a
ountry-spe
i�
 Gaussian risk with an arbitrary degree of 
orrelation a
ross 
ountries. The se
ond
omponent, log (J), 
aptures the impa
t of a disaster on the 
ountry's SDF.The probability of a disaster between t and t+� is given by p� . Note that disasters are perfe
tly
orrelated a
ross the two 
ountries: disasters are world disasters. Here, g and g? are 
onstants.The random variables ("; "?) are jointly normally distributed with mean 0 and may be 
orrelated.However, ("; "?) are independent of the nonnegative random variables J and J?, whi
h measurethe magnitudes of the disaster event. All these variables are independent of the realization of thedisaster event.The \disaster" 
an have several interpretations. One, 
hampioned by Rietz (1988) and Barro(2006), is that of a ma
roe
onomi
 drop in aggregate 
onsumption, perhaps due to a war or a majore
onomi
 
risis that a�e
ts many 
ountries. Another interpretation is that of a �nan
ial stress or
risis a�e
ting parti
ipants in world �nan
ial markets, perhaps via a drasti
 liquidity shortage anda violent drop in asset valuations. Both interpretations have merit, and we do not need to take astand on the pre
ise nature of a disaster.This model is extremely tra
table. Indeed, it yields 
losed-form solutions for a number of keymoments of interest. However, this tra
tability does not 
ome for free. It relies on a few importantassumptions: that � and �� are jointly normal and independent of the realization of the disaster. Aswe shall soon see, our model implies that, 
onditional on no disasters, the 
hange in the ex
hangerate between home and foreign is an aÆne transformation of �� � �. In Se
tion 3 it is shown that,within our sample, we 
annot reje
t the hypothesis that the distribution of monthly log ex
hangerate 
hanges 
onditional on no disaster being lognormal.10 This validates our assumption that10At very high frequen
ies, ex
hange rates exhibit fat-tailed distributions. In line with the 
entral limit theorem,9



�� � � is normally distributed and independent of the realization of disasters. However, our modelpresumes not only that �� � � is normal but also that � and �� are both normal.11 This assumptionon pri
ing kernels is harder to 
onfront dire
tly with the data. Se
tion 3.2 provides an overall testof the �t of the model and fails to reje
t it. This result validates our overall strategy of building asimple and parsimonious model that is 
onsistent with the data.2.2 Interest Rates and Ex
hange RatesIn a 
omplete markets e
onomy su
h as ours, the 
hange in the (nominal) ex
hange rate is givenby the ratio of the SDFs (Ba
kus et al., 2001):St+�St = M?t;t+�Mt;t+� ;where S is measured in home 
urren
y per foreign 
urren
y. An in
rease in S represents an appre-
iation of the foreign 
urren
y. The ex
hange rate moves both in normal times and in disasters.In normal times, the ex
hange rate in
reases following a good realization of the home Gaussianrisk " or a bad realization of the foreign Gaussian risk "?. In disasters, the ex
hange rate in
reasesfollowing a good realization of J or a bad realization of J?.It is important to note that a low realization of J? 
orresponds to a depre
iation of the foreign
urren
y. Hen
e, a 
ountry's exposure to disaster risk in
reases when the distribution of J? de
reasesin the �rst-order sto
hasti
 dominan
e sense. A
tually, we will see shortly that a summary stati
sfor the foreign 
ountry's exposure to disaster risk is �pE[J? � 1℄.The home interest rate r is determined by the Euler equation 1 = E [Mt;t+�er� ℄:r = g � log (1 + p�E [J � 1℄) =�: (1)A similar expression determines the foreign interest rate. In the limit of small time intervals, thisexpression takes a very simple form.Proposition 1. In the limit of small time intervals � ! 0, the interest rate r in the home 
ountryis given by r = g � pE [J � 1℄ :A similar formula holds for the foreign interest rate. Ceteris paribus, if the foreign 
ountry hasa higher average disaster risk or a lower pE [J� � 1℄, then it also has a higher interest rate. Thishowever, monthly 
hanges in ex
hange rates very often appear to be Gaussian.11In Se
tion 3, we return to this issue and dis
uss how relaxing this hypothesis 
ould potentially help us redu
e thesensitivity of the estimated disaster risk premium on the strikes of the options used for its estimation.10



higher interest 
an be understood as 
ompensation for the risk of holding a 
urren
y that tends todepre
iate in disasters when the SDF is high.2.3 OptionsTo determine the payo�s of hedged 
arry trades, we need to spe
ify some option-related notation.We denote by Pt;t+� (K) and Ct;t+� (K) the pri
es of one-period puts and 
alls on the home{foreign
urren
y pair: Pt;t+� (K) is the home 
urren
y pri
e of a put yielding (K � St+�=St)+ in the home
urren
y, and Ct;t+�(K) is the home 
urren
y pri
e of a 
all yielding (St+�=St � K)+ in the home
urren
y.12The Bla
k{S
holes formula. Our 
losed-form solutions for hedged 
arry trade returns build ona version of the Bla
k-S
holes formula. This formula, developed originally by Bla
k and S
holes(1973) in the 
ontext of sto
ks, was adapted to a foreign ex
hange setting by Garman and Kohlha-gen (1983). We denote by V PBS(S;K; �; r; r ?; �) and V CBS(S;K; �; r; r ?; �) the Bla
k{S
holes pri
efor a put and a 
all, respe
tively, when the spot is S; the strike is K, the volatility is �, the timeto maturity is � , the home interest rate is r , and the foreign interest rate is r ?. For example, theBla
k{S
holes pri
e of a put is given byV PBS(S;K; �; r; r ?; �) = Ke�r�N(�d2)� Se�r ?�N(�d1);where N is the 
umulative distribution fun
tion of a Gaussian and whered1 = log(S=K) + (r � r ? + �2=2)��p� ; d2 = d1 � �p�:The Bla
k{S
holes formula has a simple s
aling property with respe
t to the time to maturity� and the interest rates r and r ?:V PBS(S;K; �; r; r ?; �) = V PBS(Se�r ?� ; Ke�r� ; �p�; 0; 0; 1):This s
aling property means that we 
an use the formula whenever the time to maturity is equalto 1 and both interest rates are 0. For notational 
onvenien
e, we will omit the arguments 0 and1 and simply write V PBS(S;K; �) � V PBS(S;K; �; 0; 0; 1):12We use the notation: y+ � max (0; y). 11



The delta of options. The delta of an option is the sensitivity (or the partial derivative) of theoption pri
e to a 
hange in the underlying ex
hange rate. The delta of a put is negative be
ausethe value of a put in
reases when the underlying 
urren
y depre
iates. The delta de
reases withthe strike of a put: a deep-out-of-the-money put has a delta 
lose to 0, while a deep-in-the-moneyhas a delta 
lose to �e�r ?� . For example, in the Bla
k{S
holes model, the delta of a put is givenby �V PBS(S;K; �; r; r ?; �)=�S = �e�r ?�N(�d1):We will often 
onsider the limit of short time to maturity. The delta of the option then has asimple interpretation: it is the probability that the put will be exer
ised. More formally, the deltaof a put option with time to maturity � and strike Se�p� has the following limit:13�PBS(�) � lim�!0 �V PBS(S; Se�p� ; �; r; r ?; �)=�S = �N(�=�) 2 (�1; 0);where the partial derivative is taken with respe
t to the �rst argument.For example, � = 0 for at-the-money options and so the delta of an ATM put is �1=2.2.4 Hedged and Unhedged Carry Trade ReturnsWe 
ompute returns in units of the home 
urren
y. However, we want to allow for the possibilitythat home might be both the funding 
urren
y (if r < r ?) and the investment 
urren
y (if r > r ?).Hen
e we de�ne two 
arry trade payo�s X and Y that 
orrespond to these two 
ases:Xt;t+� = er ?� St+�St � er� ;Yt;t+� = �Xt;t+� :The payo� Xt;t+� 
orresponds to the following trade: at date t, borrow one unit of the home
urren
y at rate r and invest the pro
eeds in the foreign 
urren
y at rate r ?. At the end of thetrade, at date t+� , 
onvert the pro
eeds ba
k into the home 
urren
y. The payo� Yt;t+� = �Xt;t+�
orresponds to the opposite trade.In the main text, we treat the 
ase where the home 
urren
y is the funding 
urren
y (r <r �). The 
orresponding derivations 
an be found in Appendix A. In Appendix B, we derive the
orresponding results for the 
ase where home is the investment 
urren
y.We now 
onstru
t the hedged 
arry trade returns, Xt;t+�(K). The return Xt;t+�(K) is thepayo� of the following zero-investment trade: borrow one unit of the home 
urren
y at interest13In this equation, � is a normalized measure of the moneyness of the option.12



rate r ; use the pro
eeds to buy �Pt;t+�(K) puts with strike K, prote
ting against a depre
iation inthe foreign 
urren
y; and invest the remainder (1� �Pt;t+�(K)Pt;t+�(K)) in the foreign 
urren
y atinterest rate r ?. Here Pt;t+� (K) is the home 
urren
y pri
e of a put yielding (K � St+�=St)+ inthe home 
urren
y,Xt;t+�(K) = (1� �Pt;t+� (K)Pt;t+�(K)) er ?� St+�St + �Pt;t+� (K)(K � St+�St )+ � er� ;where we 
hoose the hedge ratio �Pt;t+� (K) to eliminate disaster risk:�Pt;t+� (K) = er ?�= (1 + P (K) er ?�) :Of foremost interest to us is the annualized expe
ted returns, 
onditional on no disasters, oftwo strategies: the unhedged 
arry trade, Xe, and the hedged 
arry trades, Xe(�), at strike e�p�over short horizons � . These returns 
orrespond to the following limiting 
ases:Xe = lim�!0END [Xt;t+� ℄ =�;Xe(�) = lim�!0END [Xt;t+� (e�p�)] =�:To summarize our notation: Xt;t+� denotes the 
arry trade return and Xe is its expe
ted value;Xt;t+�(e�p�) denotes the hedged 
arry trade return with strike K = e�p� and Xe(�) is the expe
tedvalue of that hedged 
arry trade return. END denotes expe
tations under the assumption of nodisaster.The following proposition o�ers a de
omposition of these returns in terms of disaster andGaussian risk premia.Proposition 2. In the limit of small time intervals (� ! 0), 
arry trade expe
ted returns (
onditionalon no disasters) are given by Xe = pE [J � J?℄ + 
ov ("; "� "?) : (2)In the same limit, hedged 
arry trade expe
ted returns (
onditional on no disasters) are given byXe(�) = �pE [(J? � J)+]+ 
ov ("; "� "?) (1 + �PBS(�)) : (3)The �rst term in equation (2) is the risk premium asso
iated with disaster risk:�D � pE [J � J?℄ :13



If the foreign 
ountry is riskier, then E [J � J?℄ > 0 and the expe
ted return due to disaster risk ispositive. The se
ond term in (2) is the risk premium asso
iated with \Gaussian risk"�a la Ba
kus etal. (2001):14 �G � 
ov ("; "� "?) ;this is the 
ovarian
e between the home SDF and the bilateral ex
hange rate St+�=St. In ourmodel, the expe
ted return of the 
arry trade 
ompensates for the exposure to these two sour
esof risk.The pur
hase of prote
tion against extreme depre
iation a�e
ts the loading of the 
arry tradepayo� on the two sour
es of risk in the model. This is re
e
ted in the expression for the expe
tedvalue of the hedged 
arry trade return in equation (3). The disaster risk premium �D is redu
ed topE [(J? � J)+℄, whi
h equals zero if J > J? almost surely. The Gaussian risk premium �G is redu
edto 
ov ("; "� "?) (1 + �PBS(�)). This 
an be understood as follows: be
ause the put option has asensitivity to 
urren
y 
hanges that is equal to the option delta �PBS(�), hedging redu
es the riskpremium 
orresponding to Gaussian risk by 
ov ("; "� "?) j�PBS(�)j. We will expand on the intuitionfor this term in Se
tion 2.5.Implied volatilities. To put Proposition 2 to work, we use implied volatilities. The implied volatility�̂t;t+� (K) of a put with strike K is de�ned impli
itly as the volatility that would make the Bla
k{S
holes pri
e mat
h the observed pri
e of the option:Pt;t+�(K) = e�r ��V PBS (1; Ke(r ?�r)� ; �̂t;t+� (K)p�) :A similar de�nition holds for 
all options. By the put{
all parity formula, the implied volatility ofa put and a 
all having the same strike and maturity are equal. We now state a lemma that willsimplify the empiri
al analysis.Lemma 1. In the limit of small time intervals (� ! 0), the Bla
k{S
holes implied volatility�̂t;t+� (e�p�) of a put or a 
all with strike e�p� is given by var ("? � ")1=2.Lemma 1 states that, in the limit of small time intervals, the implied volatility is equal to the14Ba
kus et al. (2001) show that, if markets are 
omplete and SDFs are log normal, then expe
ted log 
urren
yex
ess returns are equal to E(logRe) = 1=2V ar(logM) � 1=2V ar(logM?). We fo
us here instead on the log ofexpe
ted 
urren
y ex
ess returns, but the two expressions are naturally 
onsistent. Starting from Ba
kus et al. (2001),we obtain: logE(Re) = E(logRe) + 12var(Re) = 12var(")� 12var("?) + 12var("� "?)= var(")� 
ov("; "?); 14



physi
al Gaussian volatility of the bilateral ex
hange rate, var ("? � ")1=2. This is true even thoughour model 
ontains both normal-times risk and disaster risk. The intuition is as follows. For options
lose to the money, the value of the option due to disasters is proportional to p� , the probabilitythat the disaster will o

ur during the lifetime � of the option. This is very small 
ompared to thevalue of the option due to normal-times volatility, whi
h is proportional to p� . Hen
e, for smallmaturities and strikes 
lose to the money, most of the value of the option 
omes from Gaussian riskrather than disaster risk. Correspondingly, the implied volatility of the option is well approximatedby the physi
al volatility of the ex
hange rate.In the 
ase of short-dated options with near-the-money strikes, Lemma 1 implies that we 
anuse the Bla
k{S
holes implied volatilities �̂t;t+� (e�p�) instead of the physi
al Gaussian volatilityvar ("? � ")1=2 when 
omputing �PBS(�) in equation (3). This is true even though { owing to thepresen
e of disasters { the assumptions of the Bla
k{S
holes model do not hold.As a result, we need not to fore
ast future volatility 
ountry by 
ountry (whi
h would be diÆ
ultgiven that market parti
ipants have more information than we do). We 
an instead rely on option-implied volatilities. The quality of this approximation deteriorates for out-of-the-money options, inwhi
h 
ases the implied volatility is larger than the physi
al volatility. Our pro
edure will then biasour estimates of option deltas away from 0, leading to an overestimation of Gaussian risk premiaand an underestimation of disaster risk premia.Rather than using the underlying options strike, traders in pra
ti
e routinely use its Bla
k{S
holes delta, whi
h is a 
onventional quantity 
omputed as�e�r ��N(�p� + (r � r � � �̂2=2) ��̂p� ) :Note that this quantity might di�er from the true sensitivity of the option with respe
t to thefundamental. However, it 
onverges to �PBS(�) = �e�r ?�N(�d1) in the limit of small time intervals.Using Lemma 1 therefore provides us with a useful simpli�
ation: in the limit of small timeintervals, the 
onventional deltas that traders use to quote 
urren
y options 
oin
ide not only withthe true deltas of the options but also with the quantity �PBS(�) featured in our model.In pra
ti
e, this approximation is valid when the disaster risk premium p(J� � J)� is small inabsolute value 
ompared to the option pri
e, whi
h is of order ��p� (where � > 0 depends on �).Therefore, our approximation will be valid only if � � (��= (p jJ � J?j))2. Numeri
ally, with yearlyunits volatility is about 10% so � ' 0:1. The disaster part of the 
arry trade risk premium is, inorder of magnitude, 1.5%, so p jJ� � Jj ' 0:015.15 Thus we need � � 44�2. For at-the-moneyoptions, � = 1=p2� and the 
ondition is � � 44�2 = 6:9 years. Be
ause we use one-month options15For this analysis we need not to de
ompose the relative 
ontributions of p and J�� J, as Farhi and Gabaix (2008)do. Only the value of the disaster risk premium, p(J? � J)� , matters.15



(� = 1=12), our approximation is expe
ted to be valid in pra
ti
e. Furthermore, in pra
ti
e the ratioof the implied volatility of 10-delta and 25-delta options to the implied volatility of ATM optionstypi
ally lies between 1 and 1.2. Hen
e, using the volatility ATM rather than the implied volatilityat 10-delta would 
hange the fa
tor 1 + � of 10-delta options from 0.9 to 0.94; for the 25-deltaoptions, the 1 + � fa
tor would be equal to 0.79 instead of 0.75.16 These 
orre
tions would implyonly trivial modi�
ations to our empiri
al estimates, mu
h below their reported standard errors.2.5 Estimating the Contribution of DisastersThe expe
ted return of the unhedged 
arry trade in equation (2) 
an be re-expressed asXe = �D + �G : (4)Assume that J? < J almost surely: this means that the ex
hange rate of the foreign 
ountry willdepre
iate with respe
t to the home 
ountry in 
ase of a disaster. A put option prote
ts the investoragainst a large depre
iation asso
iated with disasters and also against more a modest depre
iationresulting from Gaussian risk. As a 
onsequen
e, the hedged 
arry trade is less risky and 
ommandsa lower risk premium. The further out of the money the put option is, the more risk the investorbears, and so the higher the hedged 
arry trade return. Indeed, we 
an re-express (3) asXe(�) = �G (1 + �PBS(�)) :For instan
e, take the 
arry trade hedged with at-the-money options (� = 0). In this 
ase,�PBS(�) = �1=2 and Xe(�) = 0:5�G . The expe
ted return of the 
arry trade hedged at the moneyis equal to half of the no-disaster risk premium �G .17The intuition here is that the hedge eliminates all the disaster risk and half the Gaussian risk.That exa
tly half of the Gaussian risk is eliminated might seem surprising, given that the SDF putsmore weight on depre
iation of the foreign 
urren
y than on its appre
iation. The intuition is asfollows. In the limit of small time horizons � ! 0, the shape of the distribution is a Gaussian withstandard deviation �p� , whereas the adjustments for risk that govern the di�eren
e between thephysi
al and risk-adjusted probability are mu
h smaller { of the order of magnitudes of � . Togetherwith the fa
t that the Gaussian distribution is symmetri
 around 0, this implies Xe(0) = 0:5�G .16With an upper bound of 1.1, the numbers are 0.92 and 0.77; with an upper bound of 1.3, they are 0.95 and 0.81.17An informal explanation runs as follows. The 
arry trade has a \disaster beta" of 1, and a \Gaussian" beta of 1.Hen
e, its risk premium is �D + �G . On the other hand, the 
arry trade hedged at the money has a disaster beta of0 and a Gaussian risk beta of 1=2 (as we saw earlier, it eliminates half the Gaussian risk). Hen
e, its risk premium is0:5�G. Likewise, the 
arry trade hedged at 10 delta has a disaster beta of 0 and a Gaussian risk beta of 0:9 (be
auseit eliminates 10% of the Gaussian risk), so its risk premium is 0:9�G.16



Next, take the 
arry trade hedged with a put option at 25 delta. In the language of 
urren
ytraders, this means that the strike is su
h that the delta of the put is �0:25; thus Xe(�) = 0:75�G .Likewise, for the 
arry trade hedged at 10 delta, we get Xe(�) = 0:9�G . Again, the intuition isthat, sin
e that the hedge uses a relatively deep-out-of-the-money put, investors bear mu
h of theGaussian risk but not all of it: they bear 90% of the risk, so that the expe
ted return of the 
arrytrade at 10 delta is 0:9 times the Gaussian risk premium.The method behind our estimation pro
edure is to use expe
ted returns of di�erent investmentstrategies with di�erent loadings on disaster and Gaussian risks to derive �G and �D. Alternatively,option pri
es 
an also be used dire
tly to make some inferen
e about those risk premia. We turnto this issue in the next se
tion.2.6 Risk ReversalsRoughly speaking, if the foreign 
urren
y is riskier than the home 
urren
y, then out-of-the-moneyput pri
es on the 
urren
y pair (home, foreign) should be higher than out-of-the-money 
all pri
es,sin
e the pri
e of prote
tion against a devaluation of the foreign 
urren
y should be high. In thisse
tion we 
onstru
t a simple metri
 { risk reversals { to measure the gap between the out-of-the-money puts and out-of-the money 
alls.One tradition is to 
onstru
t risk reversals as the implied volatility of an out-of-the-money put,minus the implied volatility of a symmetri
 out-of-the-money 
all. A more theoreti
ally appealingde�nition for our purposes involves looking at the di�eren
e between the pri
es of put and 
allsrather than at the di�eren
e between their implied volatilities. More pre
isely, we 
all F = e(r�r ?)�the forward rate of the bilateral ex
hange rate St+�=St. We use k , whi
h in pra
ti
e is 
lose to 1,in order to indi
ate the moneyness of the options. For instan
e, for puts and 
alls 
orrespondingto movements of 10% from the forward rate, k = 1:1. We de�ne the risk reversal to beRR(Fk) = P (Fk�1)� k�1C (Fk) : (5)Risk reversals are the pri
e of one put with strike Fk�1 minus k�1 
alls with strike Fk , whi
his symmetri
 with respe
t to the money forward rate F . For instan
e, in the previous 
ase wherek = 1:1, the risk reversal is the pri
e of a put prote
ting against a 10% depre
iation of the foreign
urren
y minus 0.9 units of a 
all paying o� symmetri
ally (i.e., if the foreign 
urren
y appre
iatesby 10%).The next lemma gives the reason for the de�nition in equation (5): if there is only Gaussianrisk, then the risk reversal is exa
tly 0. 17



Lemma 2. If there is no disaster risk, then the risk reversal is exa
tly zero, for all strikes: RR (Fk) =0 for all k > 0.On the other hand, if there is disaster risk then the risk reversal is basi
ally the pri
e of an out-of-the-money put (in the previous example, prote
ting against a 10% depre
iation of the foreign
urren
y) minus the pri
e of a symmetri
 
all (e.g., prote
ting against a 10% appre
iation of theforeign 
urren
y). Hen
e, if the foreign 
ountry has more 
rash risk than the home 
ountry, its riskreversal is positive.In the next proposition, we 
hara
terize the limit pri
e of risk reversals for strikes in the parametri

lass e�p� :Proposition 3. In the limit of small time intervals, the pri
e of risk reversals is given bylim�!0RR(Fe�p�)=� = pE [(J � J?)+ � (J? � J)+]+ 2(1 + �PBS(�))pE [(J? � J)℄ : (6)Consider a risk reversal at-the-money forward (� = 0) in the 
ase where J > J? almost surely.Then, �PBS(0) = �1=2 and lim�!0RR(Fe�p�)=� = 0. In other words, disaster risk generates nontrivial risk reversals only for strikes away from the money.Risk reversals on the 
urren
y pair (home, foreign) essentially 
apture the relative loadings ondisaster risk of the home 
urren
y and the foreign 
urren
y in the following sense. If the distributionof J? de
reases in a �rst-order sto
hasti
 dominan
e sense (i.e., if the foreign 
urren
y bears more
rash risk), then the value of the risk reversal is weakly higher (lim�!0RR(Fe�p�)=� is weaklyhigher).We 
an also 
onsider strikes that do not s
ale as �p� in the limit of short time horizons. Ifinstead the strike is 
onstant at K > 0, then the delta of the 
orresponding put option is equal to�1. In this 
ase, the pri
e of deep-out-of-the money risk reversals islim�!0RR(K)=� = pE [(K�1J � J?)+ � (K�1J? � J)+] : (7)We 
on
lude this se
tion with a proposition linking risk reversals to interest rates.Proposition 4. In the domain where the foreign 
ountry has more disaster risk than the home
ountry (J > J�), 
eteris paribus, the more the foreign 
ountry is exposed to disaster risk (the loweris J? in the sense of �rst-order sto
hasti
 dominan
e), the higher are the interest rate di�erentialr � � r and the short-maturity risk reversal.Proposition 4 is natural. Riskier 
ountries should have higher interest rates as we have alreadyseen, and they should have higher pri
es of put premia be
ause they bear important 
rash risk: their18



risk reversals are higher. An analogous proposition naturally holds if the foreign 
ountry has lessdisaster risk than the home 
ountry.3 EstimationThe theoreti
al results presented in the previous se
tion guide our empiri
al work on 
arry tradereturns. From a methodologi
al perspe
tive, the model has two main impli
ations: 
urren
y ex
essreturns in
rease with interest rates, and 
urren
y options allow the estimation of disaster riskpremia. We follow these two insights. Be
ause the forward premium puzzle implies that risk premiaare time-varying, we build portfolios of 
urren
y ex
ess returns by sorting 
ountries based on theirinterest rates. By doing so, we obtain 
urren
y ex
ess returns that are signi�
antly di�erent fromzero and 
apture expe
ted ex
ess returns from 
urren
y markets. We apply this methodology tounhedged and hedged 
urren
y ex
ess returns. As a result, we obtain the empiri
al 
ounterpartsto the expe
ted ex
ess returns des
ribed in the previous se
tion. Using the 
losed-form expressionsderived there, we estimate the market 
ompensation for 
rash risk.3.1 DataWe �rst des
ribe our data set and how we build 
urren
y portfolios, and then turn to our results ondisaster risk premia. We start o� with spot, forward, and option 
ontra
ts on 
urren
y markets.Spot, forward, and 
urren
y options. All ex
hange rates in our sample are in U.S. dollar perforeign 
urren
y. As a result, an in
rease in the ex
hange rate 
orresponds to an appre
iation ofthe foreign 
urren
y and a de
line of the U.S. dollar. For ea
h 
urren
y, our sample presents spotand forward ex
hange rates at the end of the month and implied volatilities from 
urren
y optionsfor the same dates. We 
onsider one-month forward rates and options with one-month maturity.Longer-term 
ontra
ts are available but mu
h less traded. We 
onstru
t foreign interest rates usingforward 
urren
y rates and the U.S. LIBOR, assuming that the 
overed interest rate parity 
onditionholds.18Options are quoted using their Bla
k and S
holes implied volatilities for �ve di�erent deltas.19Our sample 
omprises deep-out-of-the-money puts (denoted 10 delta puts), out-of-the-money puts18In normal 
onditions, forward rates satisfy the 
overed interest rate parity 
ondition (CIP): forward dis
ounts (e.g.,the log di�eren
es between forward and spot rates) equal the interest rate di�erentials between two 
ountries. Akram,Rime and Sarno (2008) study high-frequen
y deviations from CIP and 
on
lude that CIP holds at daily and lowerfrequen
ies.19Jorion (1995), Carr and Wu (2007) and Corte, Sarno and Tsiakas (2009) study the features of these 
urren
yoptions. 19



(25 delta puts), at-the-money puts and 
alls, out-of-the money 
alls (25 delta 
alls) and deep-out-of-the money 
alls (10 delta 
alls) for the 1996{2008 period.20 Figure 3 presents, as an example, theimplied volatilities of the 
urren
y options in our sample at the end of August 2008. If the underlyingrisk-neutral distributions of ex
hange rates were purely log-normal, then these lines would be 
at:implied volatilities would not di�er a
ross strike pri
es. This is 
learly not the 
ase here. Notefor instan
e that the implied volatility 
urve is de
reasing for Australia or New Zealand (two high{interest rate 
ountries at that time) and in
reasing for Japan or Switzerland (two low{interest rate
ountries). These 
urves signal departures from the normality assumption. Let us take a simpleexample. A high implied volatility for an out-of-the-money 
all option implies that the probability ofa foreign 
urren
y appre
iation is higher than in a normal distribution. At the end of August 2008,option pri
es re
e
t large probabilities of appre
iation for the Japanese yen and Swiss fran
 as wellas large probabilities of depre
iation for the Australian and New Zealand dollars. These expe
ted
hanges a
tually o

urred in the next months.Using these spot, forward, and option 
ontra
ts, we now build unhedged and hedged 
urren
yex
ess returns following the de�nitions presented in Se
tion 2.4.Portfolios of unhedged and hedged 
urren
y ex
ess returns. For ea
h individual 
urren
y, we
onstru
t the 
orresponding ex
ess return from the perspe
tive of a U.S. investor. We 
onsidertwo 
ases: the investor goes either long or short in the foreign 
urren
y. In ea
h 
ase, we build thehedged ex
ess return obtained by buying prote
tion on the option market against an unfavorable
hange in the foreign 
urren
y. When the U.S. investor is long in the foreign 
urren
y he buys aput 
ontra
t, thereby prote
ting himself against a depre
iation of the foreign 
urren
y. When he isshort, he buys a 
all 
ontra
t. Again, the strike pri
e of these options 
ontra
ts is either far out ofthe money (at 10 delta), out of the money (at 25 delta), or at the money.We sort 
urren
ies on their forward dis
ounts and allo
ate them into three portfolios, rebalan
ingevery month. The �rst portfolio 
ontains the lowest{interest rate 
urren
ies while the last portfolio
ontains the highest{interest rate 
urren
ies. By sorting 
urren
ies on their risk 
hara
teristi
s,we fo
us on sour
es of aggregate risk and average out idiosyn
rati
 variations. When 
omputingportfolio averages, we use equal weights for all 
urren
ies. We obtain average 
urren
y ex
essreturns, average implied volatilities, and average risk reversals for ea
h portfolio.2120By using data from the Chi
ago Mer
antile Ex
hange, we 
ould have extended the sample to 1986 for three
urren
ies (Canadian dollar, Swiss fran
, and yen) and to 1994 for two others (Australian dollar and British pound).Unfortunately CME data do not provide at ea
h date a 
onstant variety of option strikes, whi
h is 
ru
ial for ourestimation pro
edure.21Note that the hedge strategy requires buying one option for every 
urren
y in the portfolio. In essen
e, thisamounts to buying prote
tion against adverse movements of every 
urren
y in the portfolio against the U.S. dollar.Another potentially interesting strategy 
onsists of buying a single option to prote
t against an adverse movement of20



The 
onne
tion with the theory developed in Se
tion 2 is as follows. The di�erent 
ountriesare indexed by i 2 I. A state variable 
t des
ribes the state of the world at date t. This statevariable follows an arbitrary stationary sto
hasti
 pro
ess. All the parameters of the model arearbitrary fun
tions of 
t: p, gi , Ji and 
ov("i ; "j). Correspondingly all the 
omputed variables ri ,Xei , Xe(�)i , �Di and �Gi depend on 
t . Underlying our three portfolios are the three state-dependentsets I1(
t), I2(
t), and I3(
t).High interest rates ri 
an be due to high values of g i or to low values of pE[Ji � 1℄. If disasterrisk is an important determinant of 
ross-
ountry variations in interest rates, then a portfolio formedby sele
ting 
ountries with high{interest rates will, on average, sele
t 
ountries that feature highdisaster risk, �E[Ji ℄. The empiri
al analysis that follows indeed 
on�rms that.Sample. Our data set 
omes from JP Morgan. It 
ontains 32 
urren
ies: Argentina, Australia,Brazil, Canada, Chile, China, Columbia, Cze
h Republi
, Denmark, Euro area, Hong Kong, India,Indonesia, Israel, Japan, Malaysia, Mexi
o, New Zealand, Norway, Peru, Philippines, Poland, Singa-pore, South Afri
a, South Korea, Sweden, Switzerland, Taiwan, Thailand, Turkey, United Kingdom,and Venezuela. Following the World E
onomi
 Outlook (IMF, 2008) 
lassi�
ation, we split thesample between advan
ed 
ountries and emerging 
ountries.22There are two main reasons to fo
us on advan
ed 
ountries: the higher liquidity of their optionmarkets and the normality of their returns. We fo
us here on normality tests and investigate laterthe impa
t of transa
tion 
osts.Our model implies that, as long as a 
urren
y 
rash does not o

ur in sample, 
hanges inex
hange rate are 
onditionally normally distributed. We 
he
k this impli
ation in our data, limiting�rst our attention to the 1/1996 { 8/2008 period. We ex
lude the last four months of our samplebe
ause, during the fall of 2008, high{interest rate 
urren
ies depre
iated and low{interest rate
urren
ies appre
iated sharply. Carry trades thus paid very badly in the fall of 2008, when sto
kmarkets tumbled worldwide and liquidity dried up. We take the view that this period represents anexample of disasters in our sample and will pay spe
ial attention to this parti
ular period in the nextse
tion. For now, we ex
lude it from our sample.Table 9 in Appendix C reports higher moments of 
hanges in ex
hange rates along with thestandard Jarque and Bera (1980) and Lilliefors (1967) normality tests for ea
h 
urren
y availableover this period. The left panel fo
uses on advan
ed 
ountries. Bootstrapping the skewness andkurtosis statisti
s, we �nd that the sample values are not signi�
antly di�erent from the Gaussianthe basket of 
urren
ies in this portfolio. However, we do not have data on basket options and so we do not pursuethat route.22The Word E
onomi
 Outlook 
lassi�
ation 
ombines three 
riteria: (i) per 
apita GDP, (ii) export diversi�
ation,and (iii) integration into the global �nan
ial system. 21



ones for all 
ountries, ex
ept for South Korea and Singapore. The Lilliefors test leads to thesame 
on
lusion. The Jarque{Bera test reje
ts normality more often (adding the United Kingdomand Japan to the list), but the test is known to over-reje
t in short samples. The 
omparisonwith the right panel, whi
h fo
uses on emerging 
ountries, is striking. There, most ex
hange ratedistributions di�er from normality. Most reje
tions 
ome from high kurtosis.23 If we in
lude fall2008 in our sample, the re
ent large 
hanges in ex
hange rates lead to reje
tion of the normaldistribution even for many advan
ed 
ountries.Our model implies that 
onditional 
hanges in ex
hange rates are normal. Yet the normalitytests reported so far are un
onditional, and ex
hange rates tend to exhibit time-varying volatility.To take into a

ount su
h heteros
edasti
ity, we estimate a GARCH (1, 1) model for ea
h 
urren
y.We then run normality tests on ex
hange rate 
hanges normalized by their volatility. To save spa
e,we report results in Table 10 in Appendix C. After the GARCH (1, 1) 
orre
tion, all advan
ed
ountries, ex
ept South Korea, exhibit 
onditionally Gaussian ex
hange rates in our sample. Mostemerging 
ountries, however, still fail normality tests.As a result, we fo
us here on our sample of advan
ed 
ountries (ex
luding South Korea) over the1/1996{8/2008 period.24 We turn now to our main empiri
al results. Note that results obtainedwith the whole sample of advan
ed and emerging 
ountries are reported in Appendix C as robustness
he
ks. In that appendix we also 
onsider a smaller sample of the nine most advan
ed 
ountries asin Jurek (2008).3.2 ResultsWe �rst present the key 
hara
teristi
s of our 
urren
y portfolios and then fo
us on measures ofdisaster risk premia.Portfolio 
hara
teristi
s. Forming portfolios is a way to 
ompute moments 
onditional on thethree sets I1, I2, and I3. Of parti
ular interest to us will be three of these moments: 
arry tradereturns and the 
orresponding disaster and Gaussian risk premia. For instan
e, the expe
ted returnon portfolio k is simply the average return over the 
ountries in the portfolio:Xek = E [∑i2Ik (
t)Xei (
t)#Ik(
t) ] ;23We also report, in Appendix C, higher moments and normality tests for our portfolios of 
urren
y ex
ess returns. Inour ben
hmark sample of advan
ed 
ountries, the Lilliefors test 
annot reje
t the normality assumption for any of ourportfolios. In our large sample of advan
ed and emerging 
ountries, however, the high{interest rate portfolios exhibitfat tails and thus 
learly depart from normality.24Our sample 
onsists of Canada, Cze
h Republi
, Denmark, Euro area, Israel, Japan, New Zealand, Norway, Poland,Singapore, Sweden, Switzerland, Thailand, and United Kingdom22



where Ik denotes the set of 
urren
ies in portfolio k . Similarly, the expe
ted hedged return onportfolio k is: Xek(�) = E [∑i2Ik (
t)Xei (
t)(�)#Ik(
t) ] :Table 1 reports average 
urren
y ex
ess returns that are either unhedged, hedged at 10 delta,hedged at 25 delta, or hedged at the money. Average 
urren
y ex
ess returns in
rease monotoni
allyfrom the �rst to the last portfolio. This is not a surprise: we know from the empiri
al literature onthe un
overed interest rate parity that high{interest rate 
urren
ies tend to appre
iate on average.As a result, investors in these 
urren
ies gain both the interest rate di�erential and the foreignex
hange rate appre
iation. Hedging downside risks de
reases average returns. A hedge at 10 deltaprote
ts the investor against large drops in foreign 
urren
ies, whereas a hedge at the money prote
tsthe investor against any depre
iation of the foreign 
urren
y: the latter insuran
e is obviously moreexpensive be
ause it 
overs more states of nature and thus leads to lower ex
ess returns.For ea
h portfolio, we also report in Table 2 the average implied volatility at di�erent strikes.One result stands out: the average implied volatility of high{interest rate 
urren
ies (e.g., portfolio3) is mu
h higher for out-of-the-money put options than for other strikes and other portfolios.Option markets pri
e a large depre
iation risk for high{interest rate 
urren
ies. The same insightis apparent in risk reversals.The last panel of Table 2 presents average risk reversals at delta 10 and 25 delta:RRk = E [∑i2Ik (
t)RRi(
t)#Ik(
t) ] :Re
all that risk reversals 
orrespond to positions that are long put and short 
all options. Asa result, higher levels of risk reversals indi
ate higher probabilities of depre
iation for the foreign
urren
y. We report risk reversals quoted in terms of implied volatilities. As in the model, riskreversals in
rease monotoni
ally with interest rates. Higher{interest rate 
urren
ies have higherprobabilities of depre
iation. This result is in line with the premises of our model, whi
h introdu
esthe risk of large-s
ale depre
iation in 
urren
y markets.The strong link between interest rates and risk reversals suggests a 
omparable sorting that usesrisk reversals instead of interest rates. Underlying this 
onstru
tion are three di�erent portfolio setswith their 
orresponding 
onditional moments. Here again we obtain a monotoni
ally in
reasing
ross-se
tion of ex
ess returns. Table 3 reports hedged and unhedged average ex
ess returns.Countries with higher levels of risk reversals tend to o�er higher 
urren
y returns on average. Thedi�eren
e in unhedged returns between the last and �rst portfolio is lower than in our previousportfolios, but it is still signi�
ant.We now turn to the dire
t estimation of the market's 
ompensation for bearing disaster risk.23



Disaster risk premia. In order to estimate disaster risk premia, we fo
us on a zero-investmentstrategy that goes long on high{interest rate 
urren
ies and short on low{interest rate 
urren
ies.This strategy 
orresponds to usual 
urren
y 
arry trades.The expe
ted return of the 
arry trade is Xe = Xe3 � Xe1. It 
an be de
omposed as the sumof a disaster risk premium �D and a Gaussian risk premium �G. The disaster risk premium is thedi�eren
e between the average disaster risk premium in portfolio 3 and the average disaster riskpremium in portfolio 1:�D = E [∑i2I3(
t) �Di (
t)#I3(
t) ]� E [∑i2I1(
t) �Di (
t)#I1(
t) ] :Similarly, the Gaussian risk premium is the di�eren
e between the average Gaussian risk premiumin portfolio 3 and the average Gaussian risk premium in portfolio 1:�G = E [∑i2I3(
t) �Gi (
t)#I3(
t) ]� E [∑i2I1(
t) �Gi (
t)#I1(
t) ] :The average unhedged return of this strategy is equal to 6.5% per year in our sample. It
orresponds to the sum of the average return on the third portfolio in the left panel of Table1 (when the investor is long on the foreign 
urren
y) and the �rst portfolio in the right panel(when the investor is short on the foreign 
urren
y). We also report hedged 
arry trades at 10delta, 25 delta, and at-the-money (ATM). They 
orrespond to Xe(�) = Xe3(�) � Xe1(�). The�rst panel of Table 4 presents these average 
arry ex
ess returns and their standard errors. Thelatter are obtained by bootstrapping the monthly ex
ess returns under the assumption that they areindependent and identi
ally distributed (i.i.d.). As a result, these standard errors take into a

ountthe short sample size. Carry ex
ess returns that are either unhedged or hedged at 10 delta and 25delta are statisti
ally di�erent from zero. Carry returns hedged at the money are positive but notsigni�
ant. The di�eren
es between unhedged and hedged returns are all positive and signi�
ant.The se
ond panel of Table 4 reports stru
tural estimates of the disaster risk 
omponent (�D)and the Gaussian risk 
omponent (�G). We start with simple estimates that only require 
omputingaverages, and then we turn to GMM estimates.As derived in the previous se
tion, unhedged ex
ess returns 
orrespond to the sum of �D and�G. Hedged ex
ess returns are approximately equal to �G multiplied by a 
orre
tion fa
tor relatedto the delta of the option. To estimate �D and �G, we �rst 
orre
t ea
h average hedged returnfor its delta 
omponent: X̂e(�) = Xe(�)=(1 + ��);24



where Xe(�) 
orresponds to the average 
arry return hedged at delta � (� = 10, 25, or at-the-money) and �� denotes the option delta (respe
tively equal to �0:1, �0:25, and �0:5). Se
tion2.5 shows that the expe
ted value of ea
h X̂e(�) is simply �G. So, we form our estimate of theGaussian risk premium as a simple weighted average of the delta-
orre
ted hedged 
arry tradereturns:25 �̂G = ∑�2I X̂e(�)N ; (8)where N is the number of hedged ex
ess returns 
onsidered. For instan
e, N = 1 when we useATM options only and N = 3 when we use 10 delta, 25 delta and ATM options.As warranted by the analysis in Se
tion 2.5, our estimate of the disaster risk premium is theaverage unhedged 
arry trade return, Xe, minus the estimate of the Gaussian premium:�̂D = Xe � �̂G : (9)We report four sets of estimates obtained using the methodology just des
ribed and four di�erentsets of hedged returns: 10 delta (�rst 
olumn), 25 delta (se
ond 
olumn), at-the-money (third
olumn) hedged returns along with the previous three hedged returns 
ombined together (fourth
olumn). Note that we estimate two risk premia, �D and �G, using either two (�rst, se
ond,and third 
olumns) or four moments (fourth 
olumn). Again, standard errors are obtained bybootstrapping the monthly ex
ess returns under the assumptions that they are i.i.d. Depending onthe spe
i�
ation, Gaussian risk premia range from 3.4% to 5.3%; disaster risk premia amount to1.2% to 3.1% annually. The latter a

ount for approximately 20% to 50% of the average 
arrytrade returns in our sample. The lower estimate is obtained when using only deep-out-of-the-moneyoptions. Disaster risk premia are signi�
antly di�erent from zero in all 
ases, ex
ept when usingsolely at-the-money options.Our previous estimates of disaster risk premia, obtained with simple averages, 
orrespond to theminimization of the sum of squared di�eren
es between empiri
al and theoreti
al ex
ess returns.We now turn to Hansen's (1982) GMM estimates of disaster risk premia. We use all the availableunhedged and hedged ex
ess returns and thus have four moments to estimate two parameters. Theother 
ases reported previously are just-identi�ed with two moments to determine two parameters.2625This estimate 
orresponds to the minimization of:(Xe � �D � �G)2 +∑�2I (X̂e(�)� �G)2:26This estimate 
orresponds to the minimization of g0TW�1gT ; where W is the varian
e{
ovarian
e matrix of allhedged and unhedged returns and where gT des
ribes all moment 
onditions: gT = [(Xe � �D � �G); (X̂e(�1) ��G); :::; (X̂e(�3) � �G)℄. If W�1 = A0A then the estimate minimizes g0TA0AgT ; this 
orresponds to the "square" of25



In order to weight the di�erent moments, we use the 
ovarian
e matrix of all hedged and unhedgedreturns. We do not use a spe
tral density matrix be
ause of the short length of our sample. Weobtain a disaster risk premium of 1% (with a standard error of 0.4) and a Gaussian risk premiumof 4.8% (with a standard error of 1.9). The disaster risk premium obtained with all hedged returnsis 
lose to the one obtained with 10-delta returns. This happens be
ause the standard deviation ofdelta-
orre
ted ATM hedged returns is mu
h higher than the other ones. As a result, the GMMestimation underweights this moment, whi
h previously delivered the higher estimate of disaster riskpremia. This pro
edure thus gives a lower bound on disaster risk premia. Note also that the GMMestimation does not impose the 
ondition that unhedged ex
ess returns are the sum of disaster andGaussian risk premia.We 
he
k our results on di�erent portfolios that feature either di�erent sorts or di�erent 
oun-tries. We obtain similar results on portfolios of 
urren
y ex
ess returns sorted on risk reversals.Re
all that these portfolios deliver a monotoni
 
ross-se
tion of returns and o�er a 
arry ex
essreturn of 3.2% annually. Table 5 reports estimates of the 
orresponding Gaussian and disaster riskpremia. The former varies from 1.3% to 1.7%, and the latter ranges from to 1.4% to 1.9%. Again,all estimates ex
ept the one using solely at-the-money options, are statisti
ally signi�
ant. Disasterrisk premia a

ount for approximately 40%{60% per
ent of the long{short returns on these riskreversal{based portfolios.As robustness 
he
ks, we 
onsider two additional samples: either all the developed and emerging
ountries in our data set or a subset of nine developed 
ountries (Australia, Canada, Euro area,Japan, New Zealand, Norway, Sweden, Switzerland, and United Kingdom). To save spa
e, we reportall tables in Appendix C.27 We obtain very similar estimates on the small sample of nine developed
ountries as before on our larger sample of advan
ed 
ountries. Using GMM, we obtain a disasterrisk premium of 1.1%, whi
h a

ounts for 25% of the 
arry trade returns. We obtain somehow lowerdisaster risk premia on our large sample of advan
ed and emerging 
ountries. Emerging markets,however, present lower liquidity and higher bid{ask spreads as we have seen; moreover most failnormality tests. Taking transa
tion 
osts into a

ount helps re
on
ile the results obtained on bothsamples.We view these estimates of disaster risk premia as the main empiri
al 
ontribution of this paperbe
ause they are derived within a theoreti
al framework that allows us to in
orporate a varietyof options. We draw two 
lear 
on
lusions from this experiment. First, disaster risk is pri
ed onlinear 
ombinations of our original moments. As a result, the minimization does not imply that Xe = �D + �G . TheJ-statisti
 is equal to gT var(gT )�1gT � �2(#moments �#parameters); 
f Co
hrane (2005).27Table 13 presents disaster risk premia for the nine developed 
ountries. Table 14 reports average 
urren
y ex
essreturns a
ross portfolios when we sort developed and emerging 
ountries based on interest rates. Table 15 presentsimplied volatilities and risk reversals for developed and emerging 
ountries. Table 16 reports estimates of disaster riskpremia in the same sample. 26




urren
y markets. Se
ond, there are signi�
ant di�eren
es in the amounts of disaster risk a
ross
ountries. If all 
ountries bore the same amount of disaster risk, then it would 
an
el out in ourlong{short ex
ess returns.The estimate of disaster risk premia �D is higher when using at-the-money options than out-of-the-money options. In light of the model, out-of-the-money options seem \too 
heap" 
ompared toat-the-money options. Note, however, that di�eren
es in disaster risk premia a
ross these optionsare not statisti
ally signi�
ant. Take for example the GMM estimate as a ben
hmark. Then theother estimates, obtained using simple averages, di�er by 0:15, 0:62, 2:09, and 0:95 per
entagepoints (see Table 4). But the 
orresponding standard errors on these di�eren
es are 0:57, 0:96,1:72, and 1:01 per
entage points. Therefore, the estimates of disaster premia are not statisti
allydi�erent a
ross strikes. With this 
aveat in mind, we turn to potential explanations for thesedi�erent point estimates. We see three possible explanations: illiquidity, 
ounterparty risk, andmodel misspe
i�
ation.The illiquidity explanation runs as follows. The JP Morgan market maker simply gives indi
ativepri
es by using the Bla
k{S
holes formula (whi
h generates a low option pri
e), but there is littletrading of out-of-the-money options. If someone wanted to aggressively buy these options, thenshe would end up moving pri
es against herself and paying higher pri
es. So the potential tradingpri
es are higher than the indi
ative pri
es we have in our data.In the 
ounterparty risk explanation, the seller of a put might a
tually default during a disaster.Put premia take that risk into a

ount and are lower than in the model. This issue, of 
ourse,a�e
ts not only 
urren
y options but also sto
k options, 
redit default swaps, and the like. Weexpand on this issue in Se
tion 3.4.Finally, the model may simply be misspe
i�ed. The model might generate too small a risk-neutralprobability for small depre
iations. One way to in
orporate this possibility in our model would be toallow for two kinds of disasters: large disasters and small disasters. In su
h a spe
i�
ation, out-of-the-money options o�er no prote
tion against small disasters and would therefore be 
heaper thanat-the-money options.We do not attempt to enri
h the model to 
apture liquidity and 
ounterparty risks or smalldisasters, leaving this for future resear
h. In this paper, we fo
us on the simplest model that isnot reje
ted by the data. We 
an formally test if the model is reje
ted with our GMM estimation.Following Hansen (1982), we 
ompute the J-test of the model's pri
ing errors. This statisti
 isdistributed as a 
hi-square with two degrees of freedom. The J-statisti
 is 2:51, leading to a p-valueof 0:28. The model is thus not reje
ted in our sample.27



3.3 Transa
tion CostsSo far, our estimates of disaster risk premia do not take into a

ount bid{ask spreads on 
urren
ymarkets. Transa
tion 
osts on forward and spot 
ontra
ts would redu
e unhedged ex
ess returns.Transa
tion 
osts on 
urren
y options would in
rease insuran
e 
osts against disasters. As a result,these 
osts would in
rease the share of disaster risk premia. In this respe
t, the numbers previouslyreported in this paper 
onstitute a lower bound.Bid and ask spreads are not available in the JP Morgan dataset. For the spot and forwardmarkets, we rely on Reuters daily quotes available on Datastream. Measured in our sample, thesequotes imply average spreads (divided by the mid rate) of 9 basis points for forwards and 8 basispoints for spot rates. When implementing 
arry trades through forward markets, investors who golong on high{interest rate 
urren
ies buy forward 
ontra
ts at the ask pri
e. When they re
eive the
orresponding foreign 
urren
ies at the end of the 
ontra
t, they 
onvert their pro
eeds ba
k intoU.S. dollars at the bid pri
e. As a result, they in
ur half the bid{ask spread on both the forwardand spot 
ontra
ts. Assuming a spread of 8 basis points and 12 trades per year, the annual 
ostis equal to about 100 basis points or 1%. Gilmore and Hayashi (2008) argue that su
h spreadsoverstate transa
tion 
osts on 
urren
y markets be
ause investors might roll over their positionsea
h month instead of 
losing them to re-open them the next day. With an example based on theSouth Afri
an rand, they show that forward markets imply an annual 
arry 
ost of 192 basis pointswhereas rolling over positions would 
ost only 13 basis points i.e., 15 times less; 
f. Appendix 2 oftheir paper. This estimate, however, assumes that a given 
urren
y remains in the 
arry portfoliofor �ve years, and thus it underestimates the 
osts due to portfolio rebalan
ing. As a result, weassume that the average a
tual transa
tion 
osts on our unhedged 
arry portfolio are in betweenthese two estimates. We take an annual value of 0.25% for advan
ed 
ountries and 2% for emerging
ountries.We should like to assess transa
tion 
osts on 
urren
y option markets but unfortunately wedo not have a

ess to time{series of bid{ask spreads on these markets. To obtain an order ofmagnitude, we 
olle
ted bid{ask spreads on November 10, 2008 and January 20, 2009 for di�erent
urren
y pairs.28 Table 12 in Appendix C presents these bid{ask spreads on 
urren
y options quotedin terms of implied volatilities. Be
ause of the global �nan
ial 
risis, implied volatilities are mu
hhigher than in the rest of our sample. For most 
urren
y pairs, implied volatilities in November2008 are more than twi
e their sample means. A

ording to market parti
ipants, bid{ask spreadsin November 2008 were also mu
h higher than in our sample. These spreads rea
hed 30% of theunderlying midpoint (mean of bid and ask) values for out-of-the-money options on emerging market
urren
ies. Bid{ask spreads are mu
h tighter for the 
urren
ies of the most advan
ed 
ountries.28We thank the Bank of Fran
e for sharing these data with us.28



In January 2009, most implied volatilities were lower but spreads remained around 10%. A

ordingto market parti
ipants, these spreads are abnormally large. To estimate the impa
t of transa
tion
osts on our results, we assume bid{ask spreads of 5% for advan
ed 
ountries and 10% for theothers. As a result, spreads widen when implied volatilities in
rease, but not fully to the levelsobserved during fall 2008. We 
onvert these implied volatilities spreads into bid{ask pri
es and thenre-estimate hedged ex
ess returns.We test the robustness of our results to the in
lusion of these transa
tion 
osts. As expe
ted,transa
tion 
osts in
rease the share of disaster risk; the results are reported in Table 6. Using simpleaverages, Gaussian risk premia now range from 1.6% to 4.7%. Disaster risk premia also range from1.6% to 4.7% annually, a

ounting for approximately 25%{70% of the average 
arry trade in oursample. Disaster risk premia are signi�
antly di�erent from zero. Using GMM, we obtain a disasterrisk premium of 1.3% It is three standard errors away from zero and represents one fourth of the
arry trade ex
ess returns. We 
onsider this value as our best estimate of the 
ompensation fordisaster risk 
onsidering the data available. It is, however, a lower bound be
ause it does not takeinto a

ount default probabilities on option markets.3.4 Counterparty RiskSo far we have assumed that there is no 
ounterparty risk for options. However, it is reasonableto think that the seller of a put might default with some probability � if a disaster o

urs. In that
ase, an agent engaging in hedged 
arry trade still bears some disaster risk. Indeed, the expe
tedex
ess return of the hedged 
arry trade is then:Xehedged = (1 + �)�G + ��D:Sin
e with probability � the agent is exposed to disasters, the 
ompensation for the disaster riskis then ��D. Our estimation pro
edure to un
over disaster risk premia must now be amended asfollows: �D = Xe � Xe(�)=(1 + ��)1� �=(1 + ��) : (10)For instan
e, take the 
ase of deep-out-of-the-money options (� = �0:1). Equation (10) showsthat the estimate of �D that does not take into a

ount 
ounterparty risk must now be multipliedby approximately 1=(1 � 1:1�). When � = 0:1, �D is multiplied by 1.12; when � = 0:25, it ismultiplied by 1.38. For ATM options (� = �0:5) the adjustment is even larger: when � = 0:1, �Dis multiplied by 1.25; when � = 0:25, it is multiplied by 2.This se
tion demonstrates that 
ounterparty risk 
an substantially in
rease our estimate of29



disaster risk premia. However, we la
k data to pin down default probabilities on option markets.As a result, our estimate of disaster risk premia should be 
onsidered as a lower bound. Oneapproa
h to estimate default probabilities 
ould be to use information from the 
redit default swapor 
orporate bond markets, but this is beyond the s
ope of this paper and we leave it for furtherresear
h. Instead, we now 
ompare our estimate of disaster risk premia to the ma
roe
onomi
literature on disasters, starting with a 
ase study of fall 2008.3.5 Fall 2008 and Comparison with Barro and Ursua (2008)We view this re
ent period as the unique example of disaster in our data. As noted earlier, itsin
lusion in our sample is enough to reje
t the normality assumption for many 
ountries. In thisse
tion, we provide a brief des
ription of what happened in 
urren
y markets. Both spot and optionmarkets support the 
hara
terization of this period as a �nan
ial disaster.Fall 2008. In our sample, fall 2008 stands out as the worst time for 
arry traders. This is obviousfor spe
i�
 
urren
ies, but it also holds for 
urren
y portfolio returns. We start with a simpleexample using two bilateral ex
hange rates; in the re
ent period, the New Zealand dollar has beena high{interest rate 
urren
y while the Japanese yen has been a low{interest rate one. Figure 4plots monthly 
hanges in these ex
hange rates against the U.S. dollar. We start our graph at thebeginning of the subprime 
risis on �nan
ial markets; the sample period is thus 7/2007 { 12/2008.Clearly, the Japanese yen appre
iated and the New Zealand dollar depre
iated during that period,with both movements hurting 
arry traders. The same �gure also reports the return index on a
arry trade strategy that borrows in yen to invest in the New Zealand dollar. The index starts at100 in July 2007. At the end of De
ember 2008, the index is slightly above 60, and most of thelosses have o

urred in the last four months of the sample. These losses are not spe
i�
 to theNew Zealand dollar{Japanese yen pair; we obtain similar results with our baskets of 
urren
ies.The average return of our 
arry trade strategy was minus 4.5% in the fall 2008, for a 
umulativede
line from September to De
ember that amounts to 17.8%. This is a large drop, as the standarddeviation of monthly returns over the whole sample is just 2%. Almost all of the 17.8% de
line isdue to losses on high{interest rate 
urren
ies, whi
h depre
iated sharply.Similar 
on
lusions arise in the 
ase of 
urren
y options. Large 
hanges in ex
hange ratestriggered exer
ise of 
urren
y options embedded in our portfolios. Figure 5 plots the frequen
y of
all and put options exer
ised on 
urren
ies allo
ated in the �rst and last portfolios, respe
tively.At ea
h moment in time, the frequen
y is obtained as the number of options exer
ised divided bythe number of 
urren
ies in the portfolio at that time. Re
all that the �rst portfolio 
ontains low{interest rate 
urren
ies and thus funding 
urren
ies. Investors want to buy 
all options to insure30



themselves against large appre
iation of su
h 
urren
ies. The last portfolio 
ontains high{interestrate 
urren
ies. There, investors 
onsider put options. The �gure shows 
learly that the frequen
yof 10-delta put options exer
ised rea
hes an all-time high in the fall of 2008. The proportion of 
alloptions triggered was also high, but not at its maximum value in the sample.These very low returns on 
urren
y markets o

urred in bad times for U.S. investors. Duringfall 2008, the U.S. sto
k market de
lined by 33% in terms of the MSCI index.29 Figure 6 
omparesequity and 
urren
y ex
ess returns over our sample. The 
orrelation between these ex
ess returnsis parti
ularly high, rea
hing 0.7 sin
e the start of the subprime mortgage 
risis in July 2007.Standard risk measures beyond those from equity markets point in the same dire
tion in oursample: the equity option{implied volatility index VIX, its bond equivalent MOVE, and 
redit spreadswere at their all-time high in the fall of 2008. Figure 7 presents all these variables in a standardizedway: 
urren
y returns and risk measures are all de-meaned and then divided by their standarddeviations. The events of fall 2008 represent up to �ve standard deviations in these series. Verylow 
urren
y ex
ess returns (four standard deviations below their means) happened exa
tly whenvolatilities in equity and bond markets and 
redit spreads were high (four standard deviations abovetheir means) | that is, in bad times. Our sample in this paper is short, but our �ndings are in linewith the literature. As Lustig et al. (2008) show, 
arry trades tend to pay poorly during times of
rises, exa
tly when sto
k markets tank. This high 
orrelation between sto
k and 
urren
y marketsalso o

urred during the 1987 sto
k market 
rash and during the Mexi
an, Asian, and Russian
rises. These market-based indi
es o�er real-time measures of risk that 
omplement the approa
hbased on marginal utilities and real 
onsumption growth rates. Figure 8 fo
uses on 
onsumptiongrowth, and the same 
on
lusion emerges here. Preliminary estimates of U.S. national a

ountstatisti
s point toward an annualized de
rease of 4.3% in real personal 
onsumption expendituresin the fourth quarter of 2008, following an annualized de
rease of 3.8% in the third quarter. Thesesho
ks represent de
lines of more than three standard deviations in the mean 
onsumption growthrate. As reported in Lustig and Verdelhan (2007) on an earlier sample, low 
arry trade ex
essreturns tend to o

ur in times of low 
onsumption growth.Finally, note that the link between risk reversals and subsequent 
urren
y appre
iations di�erduring 
risis and normal times. In normal times, a

ording to the model, high levels of risk reversalsshould predi
t foreign 
urren
y appre
iations. Using a
tual data, however, we did not �nd mu
hsigni�
ant predi
tability though. During times of 
risis, high risk reversals should predi
t foreign
urren
y depre
iation. This is what happened during the fall of 2008: foreign 
urren
y depre
iationseemed to follow high risk reversals. This behavior is line with the model if we interpret the fall of29The 
losest event to this very strong de
line in equity and 
urren
y returns is the 1987 sto
k market 
rash. FromSeptember to November 1987, the U.S. sto
k market lost 32.6%. This period is not in our sample be
ause we do nothave 
urren
y option data before January 1996. 31



2008 as a disaster. The eviden
e is, of 
ourse, very limited be
ause we have only one disaster in oursample. As a 
onsequen
e, we do not attempt to quantify this point and instead simply present, inFigure 9, ex
hange rate appre
iations and risk reversals for ea
h month and ea
h 
urren
y in thefall of 2008.A

ording to many markets and risk fa
tors, the fall of 2008 
onstitutes a disaster. We use thisexample to 
onne
t our �ndings with the previous ma
roe
onomi
 literature on disasters.Comparison with Barro and Ursua (2008). In a disaster, the sto
hasti
 dis
ount fa
tor is mul-tiplied by an amount J. To relate this J to more primitive e
onomi
 quantities, we use the model ofFarhi and Gabaix (2008). In that model, J = B�
F where B�
 is the growth of real marginal utilityduring a disaster and F is the growth of the value of one unit of the lo
al 
urren
y in terms of interna-tional goods during the same disaster. Hen
e �D = pE[J℄1�pE[J℄3 = pE[B�
(F )℄1�pE[B�
(F )℄3.Therefore, the disaster risk premium depends on the probability of disasters p, the relative valueof the SDF B�
, and the payo� of the 
arry trade in disasters through the suÆ
ient statisti
pE[B�
(F )℄1 � pE[B�
(F )℄3. Using the episode of fall 2008 to 
alibrate the value of F 1 � F 3and assuming away a potential 
orrelation between B�
 and F 1 � F 3, we 
an shed some light onthe typi
al value of pB�
. This exer
ise should be viewed as a ba
k-of-the-envelope 
al
ulationrather than a rigorous estimate, sin
e our inferen
e of F 1 � F 3 relies on a single disaster that isstill unfolding as this paper is written. Thus we 
annot observe the full path to re
overy and, asGourio (2008) shows, we might overestimate the impa
t of disasters. With this 
aveat in mind, ifwe retain a value for F 1 � F 3 of 20% then a value for pE[B�
℄ of 6:5% is ne
essary to generate adisaster risk premium �D of the order of magnitude that we estimate in the data.We 
ompare this value to Barro and Ursua's (2008b) estimates. These authors use long samplesof 
onsumption series for a large set of 
ountries.30 Their �ndings are broadly 
onsistent with theestimates from Barro (2006), whi
h are based on GDP disasters. Barro and Ursua (2008b) estimatea probability of disasters p equal to 3:63%. A 
oeÆ
ient of relative risk aversion 
 = 3:5 thenimplies that E[B�
℄ = 3:88, leading to a value of pE[B�
℄ equal to 14%. The authors show thatthese values 
an rationalize the equity premium.Using a value of 14% for pE[B�
 ℄ and a value of 20% for F 1�F 3 leads to a disaster risk premiumof 0:14 � 0:2 = 2:8%, whi
h is higher than but still 
omparable to our point estimate. Therefore,we view our estimates as being broadly 
onsistent with Barro and Ursua (2008b)'s �ndings. Weend this paper with a review of the link between volatility smiles, risk reversals, and ex
hange rates.30Note, however, that interpreting our pri
ing kernel stri
tly as a simple fun
tion of 
onsumption growth would opena large debate that is beyond the s
ope of this paper. Constant relative risk aversion and 
omplete markets imply, forexample, a very high 
orrelation between 
onsumption growth and ex
hange rates, a high 
orrelation that is not evidentin the data (Ba
kus and Smith, 1993). 32



3.6 Volatility Smiles, Risk Reversals, and Ex
hange RatesWe �rst provide a simple 
alibration of the model in order to 
he
k that it simultaneously a

ountsfor the volatility smile observed in the data and the disaster risk premium that we have estimated.We then test the 
ontemporaneous relationship between risk reversals and ex
hange rates, and thepredi
tive 
ontent of risk reversals for 
urren
ies.A

ounting for the smile. In this se
tion we examine the impli
ations of our model for thevolatility smile { that is, the relationship between the implied volatility and the strike of 
urren
yoptions. The exa
t value of a put with strike K is given byPt;t+� (K) = (1� p�) e�g��V PBS (1; Ke�(g�g�)� ; �p�)+ p�e�g��E [J�V PBS (1; Ke�(g�g�)�J=J�; �t;t+�p�)] ;where �t;t+� = √var ("� "�) and the expe
tation operator E is over the joint distribution of Jand J�:The implied volatility �̂t;t+� is 
omputed by solving the following impli
it equation:Pt;t+� (K) = e�r ��V PBS (1; Ke�(r�r �)� ; �̂t;t+�p�) ;where r = g � log (1 + p�E [J � 1℄) =� and r � = g� � log (1 + p�E [J� � 1℄) =� . Re
all that whenquoting options, traders routinely use the delta of the underlying option rather than its strike, whi
his a 
onventional quantity 
omputed as�e�r ��N( log (K)� (r � r � + �̂2t;t+�=2) ��̂t;t+�p� ) :Note that this quantity might di�er from the true sensitivity of the option with respe
t to thefundamental.All our 
urren
y options are options on ex
hange rates against the U.S dollar. It is thereforemost natural to attempt to 
alibrate our model to �t the average volatility smile of a given portfolio.We 
hoose to fo
us on portfolio 3 whi
h represents a 
arry trade where the funding 
urren
y is theU.S. dollar. To 
alibrate the model, we 
hoose the parameters as follows. We take J and J� tobe deterministi
. We assume that the values of p and J for the United States are 
onsistent withthe estimation of Barro and Ursua: J = B�
 = 3:88 and p = 3:63%. We 
hoose J� to mat
h avalue of �D = 1:6%, a number that is roughly in the middle of our range of estimates. We shallinvestigate the sensitivity of the 
alibration to the exa
t value retained for �D, whi
h implies that33



J� = J (1� �D= (pB�
)) = 3:44. We 
hoose the physi
al volatility of the ex
hange rate to mat
han implied volatility at the money in portfolio 3 of 10%. This leads us to pi
k �t;t+� = 9:6%. Wepi
k g = 13:4 and g� = 14:6% in order to mat
h the average U.S. interest rate (r = 3%) and theaverage interest rate in portfolio 3 (r � = 5:8%) over the sample.The resulting implied volatilities as a fun
tion of the delta of the option in this 
alibration are asfollows. For a 10-delta put, the implied volatility is 11:4%. For a 25-delta put, the implied volatilityis 10:4%. At the money, the implied volatility is 10:0%. For a 25-delta 
all, the implied volatility is9:9%. Finally, for a 10-delta 
all, the implied volatility is 9:8%.31These values should be 
ompared with the implied volatilities for portfolio 3 in the data. Fora 10-delta put, the implied volatility is 11:5%. For a 25-delta put, the implied volatility is 10:6%.At the money, the implied volatility is 10:0%. For a 25-delta 
all, the implied volatility is 10:0%.Finally, for a 10-delta 
all, the implied volatility is 10:4%. The overall �t of our model is quite good.It is better for out-of-the-money puts than for out-of-the-money 
alls. Note, however, that weobtain these values by assuming 
onstant J and J?. The �t 
ould be further improved by 
hoosingan appropriate probability distribution for J and J�.Risk reversals and ex
hange rates. The model implies that (i) in
reases in risk reversals areasso
iated with 
ontemporaneous ex
hange rate depre
iations, and (ii) high levels of risk reversalspredi
t future 
urren
y returns. We test these predi
tions both on panel data and on portfolioseries.In order to test for the �rst predi
tion, we �rst regress monthly 
hanges in nominal ex
hangerates on monthly 
hanges in risk reversals. We use risk reversals measured in pri
es at 10 and 25deltas. Be
ause these deltas imply di�erent deviations from forward rates a
ross 
ountries, we also
he
k our �ndings on risk reversals that are normalized: these risk reversals 
orrespond to strikesthat are 5% or 10% away from forward rates. We de-mean both the regressor and the dependantvariable so as to remove the 
entral role played by the U.S. dollar. The results on portfolios arereported in Table 7. Tables 18 and 19 in Appendix C report panel results for advan
ed e
onomies andthe whole sample, respe
tively. All panel spe
i�
ations in
lude 
urren
y �xed e�e
ts, and standarderrors are obtained by bootstrap. We �nd a highly robust negative 
orrelation between 
hangesin risk reversals and 
hanges in ex
hange rates. This negative relationship is robust to alternative31Following the same 
alibration pro
edure but using a value of 2% for �D leads to the following implied volatilities.For a 10-delta put, the implied volatility is 12:1%. For a 25-delta put, the implied volatility is 10:6%. At the money,the implied volatility is 10:0%. For a 25-delta 
all, the implied volatility is 9:9%. Finally, for a 10-delta 
all, the impliedvolatility is 9:8%. We also report the implied volatilities when the retained value for �D is 1%. For a 10-delta put, theimplied volatility is 10:5%. For a 25-delta put, the implied volatility is 10:2%. At the money, the implied volatility is10:0%. For a 25-delta 
all, the implied volatility is 10:0%. Finally, for a 10-delta 
all, the implied volatility is 9:9%.34



risk-reversal measures and to 
ontrolling for the e�e
t of the dollar.32 With portfolios and riskreversals at either 10 or 25 deltas, R2 values range from 25% to 40%. In our panel estimates usingdemeaned 
ountry-level ex
hange rates, R2 values are 
lose to 5%. In both 
ases, risk reversalsare statisti
ally signi�
ant. Their e�e
t is also e
onomi
ally signi�
ant: a one-standard-deviation
hange in risk reversals is asso
iated with a 1% to 2:3% variation in ex
hange rates, whi
h is slightlybelow the monthly standard deviation of nominal ex
hange rate 
hanges (2:8%).In order to test for the se
ond predi
tion, we augment standard UIP regressions with riskreversals. Equivalent regressions are run against ex
ess returns instead of 
hanges in ex
hangerates. The null hypothesis of UIP is a 
oeÆ
ient of 1 for the interest di�erential (de�ned asthe di�eren
e between domesti
 and foreign interest rate in the spe
i�
ation with ex
hange rate
hange) and a 
oeÆ
ient of 0 in the spe
i�
ation with ex
ess returns. We re
over the usual negative
oeÆ
ient on the interest rate di�erential. Adding risk reversals to the usual UIP regressions doesnot improve one-month-ahead ex
hange rate fore
asts, and no risk reversal signi�
antly predi
ts
urren
y ex
ess returns or 
hanges in nominal ex
hange rates in panel data, as shown in Table 8.To save spa
e, we report equivalent panel results in Tables 20 and 21 in Appendix C. Curren
yportfolios suggest a 
lear positive relationship between average 
urren
y ex
ess returns and averagerisk reversals a
ross portfolios. As previously noted, the last panel of Table 2 reports an in
rease inaverage risk reversals from the �rst to the last portfolio. Equivalent results are obtained for othermeasures of risk reversals and for the whole sample of advan
ed and emerging 
ountries. However,within portfolios, there is no one-month-ahead predi
tability of risk reversals on 
urren
y ex
essreturns; this is shown in Table 8.Overall we �nd strong eviden
e in favor of a 
ontemporaneous link between ex
hange rates andrisk reversals, but we �nd more limited eviden
e of ex
hange rate predi
tability.4 Con
lusionThe obje
tive of this paper is to provide a simple model-based estimation of the share of 
arrytrade returns that 
an be attributed to disaster risk. Our main empiri
al result shows that disasterpremia explain one fourth of 
arry trade returns. This result suggests that the introdu
tion of atime-varying disaster risk in ex
hange rate models, as in Farhi and Gabaix (2008), is empiri
allyrelevant.Although we �nd that disaster risk plays a signi�
ant role in explaining 
urren
y returns, we fallshort of fully solving the 
arry trade puzzle though disasters. In fa
t, our �ndings suggest that32Carr and Wu (2007) also report high 
ontemporaneous 
orrelation between 
urren
y ex
ess returns and risk reversalsfor the yen and the British pound against the U.S. dollar.35



a typi
al investor 
an still obtain signi�
ant 
arry trade returns while being hedged against large
urren
y 
rashes. Several interpretations of these hedged ex
ess returns are possible. First, theinvestor naturally expe
ts to be 
ompensated for the remaining Gaussian, non{disaster risk. Inbad times high{interest rate 
urren
ies tend to depre
iate and low{interest rate 
urren
ies tendto appre
iate. Se
ond, out-of-the-money options might be relatively 
heap in our sample. Theseoptions are not default-free, and 
ounterparty risk might push their pri
es downward.
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Table 1: Ex
ess Returns: Advan
ed Countries Sorted on Interest RatesPortfolios 1 2 3 1 2 3Going Long Going ShortPanel I: UnhedgedMean �1:37 1:45 5:13 1:37 �1:45 �5:13[2:08℄ [2:25℄ [2:08℄ [2:02℄ [2:14℄ [1:99℄Sharpe Ratio �0:19 0:19 0:71 0:19 �0:19 �0:71Panel II: Hedged at 10 deltaMean �2:30 0:65 4:06 0:74 �1:58 �5:33[1:93℄ [1:99℄ [1:90℄ [1:86℄ [1:94℄ [1:87℄Sharpe Ratio �0:33 0:09 0:60 0:11 �0:23 �0:81Panel III: Hedged at 25 deltaMean �2:14 0:59 3:03 0:62 �1:21 �4:68[1:72℄ [1:82℄ [1:66℄ [1:48℄ [1:59℄ [1:53℄Sharpe Ratio �0:36 0:09 0:51 0:12 �0:21 �0:86Panel IV: Hedged ATMMean �1:33 0:61 1:68 0:02 �0:86 �3:47[1:27℄ [1:40℄ [1:26℄ [1:07℄ [1:13℄ [1:10℄Sharpe Ratio �0:31 0:13 0:39 0:00 �0:21 �0:91Notes: This table reports average 
urren
y ex
ess returns that are unhedged or hedged at 10 delta, at 25 delta, andat-the-money for our three portfolios. In the left se
tion, we assume that the U.S. investor goes long in the foreign
urren
y; in the right se
tion, we assume that the U.S. investor goes short in the foreign 
urren
y. In ea
h 
ase,we report the mean ex
ess return, its standard error, and the 
orresponding Sharpe ratio. The mean and standarddeviations are annualized (multiplied respe
tively by 12 and p12). The Sharpe ratio 
orresponds to the ratio of theannualized mean to the annualized standard deviation. Standard errors are obtained by bootstrapping the monthlyex
ess returns under the assumptions that they are i.i.d. Portfolio 1 
ontains 
urren
ies with the lowest interest rates;portfolio 3 
ontains 
urren
ies with the highest interest rates. The horizon of the ex
ess returns and the option maturityis one month for ea
h. Data are monthly, from JP Morgan. The sample period is 1/1996 { 8/2008.
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Table 2: Implied Volatilities and Risk Reversals: Advan
ed Countries Sorted on Interest RatesPortfolios 1 2 3Panel I: Implied Volatilities10Æ Put 9:78 10:09 11:50[0:14℄ [0:17℄ [0:20℄25Æ Put 9:38 9:56 10:60[0:15℄ [0:16℄ [0:17℄ATM 9:33 9:31 10:02[0:14℄ [0:16℄ [0:17℄25Æ Call 9:78 9:55 10:02[0:15℄ [0:16℄ [0:15℄10Æ Call 10:51 10:05 10:39[0:16℄ [0:17℄ [0:16℄Panel II: Risk Reversals (Implied Volatilities)Mean RR10 �0:73 0:05 1:12[0:06℄ [0:05℄ [0:06℄Mean RR25 �0:40 0:01 0:58[0:03℄ [0:03℄ [0:03℄Notes: This table reports average implied volatilities and risk reversals by portfolios. The �rst panel reports averageimplied volatilities on put and 
all 
ontra
ts for strike pri
es at 10 delta, at 25 delta, and at-the-money. The se
ondpanel reports risk reversals at 10 delta and 25 delta measured in terms of implied volatilities. The �gures are quoted inannual per
entages. Standard errors are obtained by bootstrapping the monthly ex
ess returns under the assumptionsthat they are i.i.d. Portfolio 1 
ontains 
urren
ies with the lowest interest rates; portfolio 3 
ontains 
urren
ies withthe highest interest rates. The horizon of the ex
ess returns and the option maturity is one month for ea
h. Data aremonthly, from JP Morgan. The sample period is 1/1996 { 8/2008.
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Table 3: Ex
ess Returns: Advan
ed Countries Sorted on Risk ReversalsPortfolios 1 2 3 1 2 3Going Long Going ShortPanel I: UnhedgedMean 0:48 1:22 3:70 �0:48 �1:22 �3:70[2:10℄ [2:11℄ [1:95℄ [2:06℄ [2:05℄ [1:87℄Sharpe Ratio 0:06 0:16 0:54 �0:06 �0:16 �0:54Panel II: Hedged at 10 deltaMean �0:38 0:47 2:57 �1:00 �1:39 �3:96[2:02℄ [2:05℄ [1:83℄ [1:98℄ [1:90℄ [1:76℄Sharpe Ratio �0:05 0:07 0:39 �0:14 �0:20 �0:62Panel III: Hedged at 25 deltaMean �0:21 0:05 1:83 �0:68 �1:29 �3:45[1:68℄ [1:70℄ [1:51℄ [1:66℄ [1:61℄ [1:45℄Sharpe Ratio �0:03 0:01 0:33 �0:12 �0:23 �0:65Panel IV: Hedged ATMMean �0:03 �0:09 1:17 �0:53 �1:33 �2:55[1:28℄ [1:31℄ [1:10℄ [1:12℄ [1:16℄ [1:06℄Sharpe Ratio �0:01 �0:02 0:29 �0:13 �0:32 �0:69Notes: This table reports average 
urren
y ex
ess returns that are unhedged or hedged at 10 delta, at 25 delta, andat the money for our three portfolios. In the left se
tion, we assume that the U.S. investor goes long in the foreign
urren
y; in the right se
tion, we assume that the U.S. investor goes short in the foreign 
urren
y. In ea
h 
ase,we report the mean ex
ess return, its standard error, and the 
orresponding Sharpe ratio. The mean and standarddeviations are annualized (multiplied respe
tively by 12 and p12). The Sharpe ratio 
orresponds to the ratio of theannualized mean to the annualized standard deviation. Standard errors are obtained by bootstrapping the monthlyex
ess returns under the assumptions that they are i.i.d. Portfolio 1 
ontains 
urren
ies with the lowest risk reversalsat 10 delta; portfolio 3 
ontains 
urren
ies with the highest risk reversals at 10 delta. The horizon of the ex
ess returnsand the option maturity is one month for ea
h. Data are monthly, from JP Morgan. The sample period is 1/1996 {8/2008.
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Table 4: Disaster Risk Premia - Advan
ed Countries Sorted on Interest RatesPanel I: Carry Ex
ess ReturnsUnhedged Carry Hedged at 10Æ Hedged at 25Æ Hedged ATMMean 6:50 4:80 3:65 1:70[1:88℄ [1:59℄ [1:41℄ [1:12℄Mean Spread 1:70 2:85 4:80[0:41℄ [0:85℄ [1:32℄Panel II: Estimations10Æ 25Æ ATM 10Æ; 25Æ, GMMand ATM 2nd Stage�D 1:16 1:63 3:10 1:96 1:01[0:41℄ [0:87℄ [1:68℄ [0:93℄ [0:36℄�G 5:33 4:87 3:40 4:53 4:77[1:79℄ [1:87℄ [2:21℄ [1:87℄ [1:92℄�D � �G �4:17 �3:23 �0:30 �2:57 �3:76[1:90℄ [2:31℄ [3:51℄ [2:35℄ [2:02℄Notes: This �rst panel of this table reports average returns on hedged and unhedged 
urren
y 
arry trades and theirstandard errors. We use the 
urren
y portfolios presented in Table 1. Carry trades 
orrespond to returns on the lastminus returns on the �rst portfolio. We 
onsider di�erent hedges: 10-delta, 25-delta and at-the-money. We also reportthe average di�eren
e between unhedged and hedged 
arry trades. The se
ond panel reports stru
tural estimates. Here�D denotes the part of the 
arry ex
ess return linked to disaster risk and �G 
orresponds to the Gaussian, non-disasterpart of the same ex
ess return. These estimates are obtained using hedged returns at 10 delta (�rst 
olumn), 25 delta(se
ond 
olumn), and ATM (third 
olumn) or at 10 delta, at 25 delta, and ATM 
ombined (fourth and �fth 
olumns).Standard errors are obtained by bootstrapping the monthly ex
ess returns under the assumptions that they are i.i.d.Data are monthly, from JP Morgan. The sample period is 1/1996 { 8/2008.
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Table 5: Disaster Risk Premia : Advan
ed Countries Sorted on Risk ReversalsPanel I: Carry Ex
ess ReturnsUnhedged Carry Hedged at 10Æ Hedged at 25Æ Hedged ATMMean 3:22 1:57 1:15 0:64[1:66℄ [1:53℄ [1:29℄ [1:14℄Mean Spread 1:65 2:07 2:58[0:36℄ [0:80℄ [1:32℄Panel II: Estimations10Æ 25Æ ATM 10Æ; 25Æ, GMMand ATM 2nd Stage�D 1:48 1:68 1:94 1:70 1:41[0:36℄ [0:87℄ [1:72℄ [0:94℄ [0:32℄�G 1:74 1:54 1:28 1:52 1:67[1:67℄ [1:74℄ [2:11℄ [1:74℄ [1:78℄�D � �G �0:26 0:14 0:66 0:18 �0:27[1:79℄ [2:22℄ [3:49℄ [2:28℄ [1:90℄Notes: This �rst panel of this table reports average returns on hedged and unhedged 
urren
y 
arry trades and theirstandard errors. We use the 
urren
y portfolios presented in Table 3. Carry trades 
orrespond to returns on the lastminus returns on the �rst portfolio. We 
onsider di�erent hedges: 10-delta, 25-delta and at-the-money. We also reportthe average di�eren
e between unhedged and hedged 
arry trades. The se
ond panel reports stru
tural estimates. Here�D denotes the part of the 
arry ex
ess return linked to disaster risk and �G 
orresponds to the Gaussian, non-disasterpart of the same ex
ess return. These estimates are obtained using hedged returns at 10 delta (�rst 
olumn), 25 delta(se
ond 
olumn), and ATM(third 
olumn) or at 10 delta, at 25 delta and ATM 
ombined (fourth and �fth 
olumns).Standard errors are obtained by bootstrapping the monthly ex
ess returns under the assumptions that they are i.i.d.Data are monthly, from JP Morgan. The sample period is 1/1996 { 8/2008.
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Table 6: Disaster Risk Premia - Advan
ed Countries Sorted on Interest Rates with Transa
tionCosts Panel I: Carry Ex
ess ReturnsUnhedged Carry Hedged at 10Æ Hedged at 25Æ Hedged ATMMean 6:25 4:21 2:83 0:78[1:83℄ [1:67℄ [1:44℄ [1:14℄Mean Spread 2:04 3:42 5:47[0:43℄ [0:85℄ [1:34℄Panel II: Estimations10Æ 25Æ ATM 10Æ; 25Æ, GMMand ATM 2nd Stage�D 1:57 2:47 4:69 2:91 1:28[0:41℄ [0:87℄ [1:68℄ [0:93℄ [0:37℄�G 4:67 3:78 1:56 3:34 4:02[1:81℄ [1:91℄ [2:29℄ [1:91℄ [1:96℄�D � �G �3:10 �1:31 3:14 �0:42 -2.74[1:91℄ [2:35℄ [3:60℄ [2:41℄ [2.04℄Notes: This �rst panel of this table reports average returns on hedged and unhedged 
urren
y 
arry trades and theirstandard errors. We use the 
urren
y portfolios presented in Table 1. Carry trades 
orrespond to returns on the lastminus returns on the �rst portfolio. We 
onsider di�erent hedges: 10-delta, 25-delta and at-the-money. We also reportthe average di�eren
e between unhedged and hedged 
arry trades. The se
ond panel reports stru
tural estimates. Here�D denotes the part of the 
arry ex
ess return linked to disaster risk and �G 
orresponds to the Gaussian, non-disasterpart of the same ex
ess return. These estimates are obtained using hedged returns at 10 delta (�rst 
olumn), 25 delta(se
ond 
olumn), and ATM (third 
olumn) or at 10 delta, at 25 delta, and ATM 
ombined (fourth and �fth 
olumns).Standard errors are obtained by bootstrapping the monthly ex
ess returns under the assumptions that they are i.i.d.Data are monthly, from JP Morgan. The sample period is 1/1996 { 8/2008. We assume annual transa
tion 
osts of0:25% on unhedged returns and bid{ask spreads of 5% on implied volatilities.
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Table 7: Changes in Risk Reversals and Ex
hange Rates: Contemporaneous Spe
i�
ations withinPortfoliosDependant Variable: Ex
hange RatesPanel I: Raw Variables Panel II: De-meaned VariablesPortfolios P1 P2 P3 P1 P2 P3Risk Reversals -126.63 -131.82 -105.18 -119.95 -132.09 -145.43Strike: Delta 10 [12.93℄*** [24.22℄*** [28.46℄*** [27.30℄*** [18.09℄*** [17.87℄***Observations 155 155 155 155 155 155R2 0.4 0.28 0.41 0.37 0.42 0.35Risk Reversals -77.56 -62.66 -49.29 -54.95 -62 -74.57Strike: Delta 25 [8.46℄*** [18.28℄*** [16.76℄*** [19.08℄*** [17.25℄*** [14.26℄***Observations 155 155 155 155 155 155R2 0.38 0.25 0.36 0.32 0.36 0.31Risk Reversals -61.64 -39.38 -30.31 -96.83 -45.76 -69.08Strike: Forward +/- 10% [14.66℄*** [36.52℄ [13.61℄** [60.45℄ [12.88℄*** [30.00℄**Observations 96 125 133 96 125 133R2 0.22 0.14 0.28 0.05 0.25 0.16Risk Reversals -40.08 -48.97 -46.8 -50.99 -52.8 -47.9Strike: Forward +/- 5% [4.69℄*** [6.05℄*** [7.66℄*** [7.51℄*** [5.08℄*** [6.80℄***Observations 147 155 144 147 155 144R2 0.39 0.3 0.46 0.42 0.44 0.32Notes: This table do
uments 
ontemporaneous relationships between 
hanges in nominal ex
hange rates and 
hangesin risk reversals. Constant terms are in
luded but not reported. Panel I presents results based on raw variables; panelII uses 
ross-se
tionally de-meaned variables to 
ontrol for the spe
i�
 role of the U.S. dollar. Changes in ex
hangerates 
orrespond to monthly log 
hanges; 
hanges in risk reversals 
orrespond to �rst di�eren
es. Ea
h horizontalpanel presents the results of regressions in
luding a di�erent risk-reversal measure. Standard errors obtained frombootstrap pro
edures using 1000 repli
ations are presented below the point estimates. The symbols ***, **, and *indi
ate statisti
al signi�
an
e at 1%, 5%, and 10% 
on�den
e levels respe
tively. The sample 
omprises 
urren
iesfrom advan
ed 
ountries (ex
luding observations with non 
oating ex
hange rate a

ording to the IMF de fa
to
lassi�
ation). Data are monthly, from JP Morgan. The sample period is 02/1996 { 08/2008.
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Table 8: Risk Reversals, Ex
hange Rate Changes and Curren
y Ex
ess Returns: Predi
tive Spe
i-�
ations within PortfoliosDependant Variable: Panel I: Ex
hange Rates Panel II: Curren
y Ex
ess ReturnsPortfolios P1 P2 P3 P1 P2 P3Interest Rate Di�erentials -1.27 -4.16 -0.97 -2.27 -5.17 -1.97[1.52℄ [1.77℄** [1.08℄ [1.49℄ [1.74℄*** [1.06℄*Risk Reversals: (+/- 10%) 13.1 -1.12 -3.7 13.11 -1.14 -3.72[13.36℄ [37.33℄ [19.30℄ [14.94℄ [40.95℄ [19.38℄Observations 109 129 138 109 129 138R2 0.02 0.04 0.01 0.04 0.06 0.03Interest Rate Di�erentials -2.78 -3.49 -0.96 -3.78 -4.5 -1.97[1.28℄** [1.72℄** [1.15℄ [1.27℄*** [1.79℄** [1.16℄*Risk Reversals: (+/- 5%) 0.81 -2.37 -3.44 0.81 -2.39 -3.47[5.52℄ [9.54℄ [7.53℄ [5.55℄ [9.69℄ [7.26℄Observations 109 129 138 109 129 138R2 0.03 0.04 0.01 0.05 0.06 0.02Interest Rate Di�erentials -2.5 - 3.48 -0.7 -3.5 -4.49 -1.71[1.21℄** [1.71℄** [1.02℄ [1.22℄*** [1.65℄*** [1.06℄Risk Reversals: Delta 10 4.18 -8.18 -7.39 4.17 -8.23 -7.44[16.66℄ [25.22℄ [18.81℄ [17.10℄ [26.06℄ [18.55℄Observations 155 155 155 155 155 155R2 0.02 0.04 0.01 0.05 0.06 0.02Interest Rate Di�erentials -2.51 -3.49 -0.76 -3.52 -4.5 -1.76[1.26℄** [1.69℄** [1.07℄ [1.23℄*** [1.68℄*** [1.12℄Risk Reversals: Delta 25 0.39 -5.32 -5.06 0.38 -5.35 -5.09[9.31℄ [13.27℄ [10.02℄ [9.41℄ [14.19℄ [10.90℄Observations 155 155 155 155 155 155R2 0.02 0.04 0.01 0.05 0.06 0.02Notes: This table presents results of predi
tability tests. We regress monthly 
hanges in nominal ex
hange rates (panelI) or monthly 
urren
y ex
ess returns (panel II) on risk reversals and interest di�erentials. The interest di�erential isde�ned as the di�eren
e between the domesti
 and the foreign interest rate. The null hypothesis of UIP not beingreje
ted is a 
oeÆ
ient of 1 for the interest rate di�erential in panel I and a 
oeÆ
ient of 0 in panel II. Constantterms are in
luded but not reported. Standard errors obtained from a bootstrap pro
edure using 1000 repli
ationsare presented below their respe
tive point estimates. The symbols ***, **, and * indi
ate statisti
al signi�
an
e at1%, 5%, and 10% 
on�den
e levels respe
tively. The sample 
omprises 
urren
ies from advan
ed 
ountries (ex
ludingobservations with non 
oating ex
hange rate a

ording to the IMF de fa
to 
lassi�
ation.) Data are monthly, from JPMorgan. The sample period is 02/1996 { 08/2008. 48



Prices and Strikes

Long Put (Strike K)

Long Call (Strike K*)

Long Risk Reversal (Long Put with Strike K; Short Call

with Strike K*)

K

0

K*Figure 1: Option Payo�sThis �gure presents the payo�s of di�erent option investments as a fun
tion of the underlying asset pri
es and strikes.We 
onsider the payo� of buying a 
all (with strike K?) or buying a put option (with strike K). Finally, we 
onsider arisk reversal that 
orresponds to selling a 
all (with strike K?) and simultaneously buying a put (with strike K).
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Figure 2: DeltasThis �gure presents the deltas of put options as a fun
tion of their pri
es. The delta of an option is de�ned as the rateof 
hange of the option pri
e with respe
t to the pri
e of the underlying asset. The delta of a put varies between 0 forthe most deep-out-of-the-money options and �1 for the most deep-in-the-money options. The �gure is 
omputed fora 
urren
y put option with a one-month maturity, an annualized implied volatility of 10%, and foreign and domesti
interest rates both set equal to 4% per annum.
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Figure 3: One-Month Option-Implied Volatility Smiles, August 2008This �gure plots, for ea
h 
urren
y in our sample, implied volatilities for di�erent strike pri
es. Implied volatilities arein per
entages; strike pri
es are s
aled by spot rates.
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Figure 4: New Zealand Dollar and Japanese YenThis �gure plots monthly 
hanges in ex
hange rates for the New Zealand dollar and the Japanese yen as well thereturn index on a 
arry trade strategy that borrows in yen to invest in New Zealand dollars. The sample period is7/2007{12/2008.
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Figure 5: Options Exer
isedThis �gure plots the frequen
y of 
all and put options exer
ised (respe
tively) in the �rst and last portfolios. At ea
hmoment in time, the frequen
y is obtained as the number of options exer
ised divided by the number of 
urren
ies inthe portfolio at that time. We 
onsider only options at 10 delta. The sample period is 2/1996 { 12/2008.
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Figure 6: Curren
y Carry Trades and Equity ReturnsThis �gure plots monthly 
urren
y 
arry trades and U.S. equity returns. Carry ex
ess returns (blue bars) 
orrespond toour sample of advan
ed 
ountries. Data are monthly, from JP Morgan (IMF). Equity returns (red line) 
orrespond tothe U.S. MSCI index. The sample period is 2/1996 { 12/2008.
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Figure 7: Carry Returns and Risk MeasuresThis �gure plots 
arry ex
ess returns and di�erent risk measures. The upper panel uses the equity option{impliedvolatility index VIX; below are the bond option{implied volatility MOVE index and the 
redit spread (measured as theyield spreads between BAA bonds and 10-year U.S. Treasury bonds). Curren
y returns (blue bars) and risk measures(red lines) are all de-meaned and then divided by their standard deviations. The sample period is 2/1996{12/2008.
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Figure 8: Carry Returns and Consumption GrowthThis �gure presents quarterly 
arry ex
ess returns and real 
onsumption growth per 
apita. Curren
y returns (bluebars) and 
onsumption growth (red line) are all de-meaned and then divided by their standard deviations. The sampleperiod is 2/1996{12/2008.
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Figure 9: Risk Reversals and Changes in Ex
hange Rates, Fall 2008This �gure plots risk reversals at 10 delta and subsequent one-month 
hanges in ex
hange rates for ea
h month offall 2008. Risk reversal pri
es are in basis points; 
hanges in ex
hange rates are in per
entages. In
reases in ex
hangerates 
orrespond to depre
iation of the U.S. dollar. Ex
hange rate 
hanges between date t and t + 1 are dated t + 1.The sample fo
uses on advan
ed 
ountries and 
overs the period from 9/2008 to 12/2008.
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