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ABSTRACT

As health care costs continue to rise, governments and private payers are being forced to make difficult
coverage decisions about new health care treatments.  Cost-effectiveness (CE) analysis is the main
method used to prioritize this spending. The self-evident efficiency rationale for CE is that resources
should be spent where they have the highest health impact. This has led to perhaps the largest field
in health economics which attempts to provide better estimates of value through CE analysis. However,
the costs invariably used in CE analysis are prices set by producers rather than resources used to produce
treatments.  Therefore, observed CE levels are endogenous because the pricing of new technologies
is chosen to maximize profits. This is important because optimal prices, and hence observed CE levels,
are affected by demand factors such as patient/doctor demand and payer adoption policies.  This implies
that traditional measures of “costs” reflect these demand-determined mark-ups rather than resource
costs and moreover, CE-based reimbursement policies affect the endogenous CE levels payers observe.
 Reimbursement based on endogenous CE may therefore bear little relationship with efficient use of
scarce medical resources.  Using data from technology appraisals by the National Institute for Health
and Clinical Excellence (NICE), we test for conditions under which adoption based on standard CE
analysis may lead to adoption of more inefficient technologies in terms of resource use.
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1. Introduction 

New medical technologies are often argued to be a leading force behind the 

growth in health care spending.1  In order to manage the costs imposed by such 

technologies and to prioritize health care dollars, both public and private payers have 

increasingly relied on combined measures of the benefits and costs of new technologies. 

These measures include cost-effectiveness, cost-utility, or cost-benefit analysis, hereafter 

referred to collectively as CE analysis.2  It is self-evident that payers should attempt to 

maximize the returns in health they obtain from the limited resources available for health 

spending. Thus, CE analysis offers an important means to allocate scarce health care 

budgets, whether privately or publicly funded.  CE thresholds, which dictate that a given 

technology will be reimbursed only if the incremental costs per quality-adjusted life year 

(QALY) they provide are below a given threshold, is one way in which CE-based 

adoption is implemented in practice.  The most prominent examples are the UK’s 

National Institute for Clinical Excellence (NICE) and Australia’s Pharmaceutical 

Benefits Advisory Committee3.  As a consequence of the extensive use of CE analysis by 

payers, an enormous health economics literature has developed and shown the conditions 

under which CE analysis, when applied under a fixed budget constraint, can lead to gains 

in static efficiency.  Indeed, the amount of work done on the CE of medical technologies 

may perhaps be the largest field within health economics, particularly in European 

countries where such analysis guides a large share of public spending.  
                                                 
1 See e.g. Newhouse (1992). 
2 The literature on these methods is vast, but for examples, see Weinstein and Stason (1977), Johanneson  
and Weinstein (1993), Gold et al. (1996), Meltzer (1997), Drummond et al. (1997), Garber and Phelps 
(1997), Garber (2000), Cutler and McClellan (2001), and Cutler (2005). 
3 Bethan et al  (2001) report on Australia. While prior to 1993 no European countries formally required 
pharmacoeconomic assessments of new products (Drummond et al., 1993), most of the 13 European 
countries evaluated in a later analysis (Drummond , 1999) had or were in the process of developing formal 
agencies responsible for such assessments. 
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When CE analysis is used to guide reimbursement in practice, the costs 

incorporated into these assessments are the prices charged to payers by producers or 

innovators, rather than the societal resource costs used in production.  This is almost 

inevitable as producers in any industry are never eager to share their data on production 

costs.  Therefore, prices – marked up over costs – determine the CE levels observed for 

new patent-protected innovations, not the production costs which ordinarily determine 

the efficient use of resources.  

Because prices are chosen to maximize profits to producers, this implies that 

actual CE levels are endogenous and respond to a firm’s incentive to mark up 

technologies above their production cost.  This has the important implication that the 

demand-side factors that drive mark-ups also drive observed CE levels.  In fact, because 

producers face two customers, payers adopting the technologies and patients/doctors 

using them, the price-sensitivity of both parties jointly determines the mark-up. In 

particular, the CE levels observed depend on how CE assessments are used in technology 

adoption.  For example, if a payer only pays when technologies are cheaper than a fixed 

CE threshold, manufacturers may find it in their best interest to price up to that threshold 

regardless of production costs.  Therefore, when demand-side factors affect optimal 

mark-ups in this way, using CE assessments to guide resource allocation will not 

necessarily have the intended results; the highest “bang-for-the-buck” rationale for CE 

fails because demand factors are included in the “buck”.  In general, the main argument 

of this paper is that the rationale for using CE assessments for health care adoption is 

weakened when those affected by such adoption behavior act in their own self-interest.   



3 
 

Section 2 of this paper begins by deriving a specific condition for when CE 

rankings based on endogenous measures will deliver different rankings than when based 

on exogenous production costs – we term this a ‘reversal.’  The possibility of such 

reversals is central to understanding whether the use of CE analysis by payers will lead to 

efficient adoption of the cheapest technologies with the largest health impacts.  Reversals 

occur when mark-ups are negatively related with exogenous CE levels, so that the 

treatments with the lowest resource use are also those marked up the most. 

Because the relationship between mark-ups and exogenous CE is what drives the 

possible discordance between exogenous and endogenous CE, we characterize what 

drives mark-ups in an environment of dual demand by  patients/doctors and  payers.  In 

the simplest case when payers accept all treatments, mark-ups depend only on standard 

demand elasticities of patients and doctors.  The focus of this paper, however, is on how 

adoption policies impact mark-ups and drive reversals in cost-effectiveness.  We show 

how public CE-based reimbursement determines mark-ups in conjunction with patient 

demand, and hence determines the level of endogenous cost-effectiveness chosen by 

firms seeking reimbursement.  We demonstrate that partial reversals may occur under 

common forms of technology adoption criteria, e.g. fixed CE thresholds partly utilized in 

the UK.  Moreover, we show that when political or bureaucratic factors impact adoption 

behavior, so that differences in cost-effectiveness alone do not fully explain adoption 

decisions, full reversals may occur.  This is because favorable adoption policies for 

certain disease classes drive up prices submitted by firms to payers, so much so that 

socially less cost-effective treatments in more favorably adopted classes may command 

higher prices than more cost-effective treatments in less favorably adopted classes. 
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Based on the analysis of the previous sections, section 3 proposes a test for 

whether a given adoption procedure leads to CE reversals.  Of course, an ideal empirical 

test of reversals would be to test how well exogenous and endogenous CE measures align 

by ranking treatments according to their exogenous and endogenous CE levels.  This is 

infeasible as mark-ups are unobservable, a standard and central empirical problem in 

industrial organization.  Our test therefore concerns whether observed patterns of 

treatment adoption based on CE could lead to reversals.  We find that reversals will 

always occur when political or bureaucratic factors lead to differential adoption behavior 

across classes of treatments.  A simple test for the possibility of reversals can therefore be 

implemented by testing for the significance of class-dummies in a regression of adoption 

on observed endogenous cost-effectiveness levels.  Using data on treatment adoption 

decisions by the National Institute for Health and Clinical Excellence (NICE) in the 

United Kingdom from 1999 to 2005, we find evidence suggestive of such class specific 

adoption behavior. 

In Section 4, we discuss some of the shortcomings of the paper and some of the 

many future research areas these suggest. 

 

2. Endogenous cost-effectiveness  

2.1 Basic framework 

This section derives the relationship between exogenous cost-effectiveness, which 

depends on exogenous resource costs of production, and endogenous cost-effectiveness, 

which relies on prices faced by payers.  As a basic framework, consider a single 

treatment that provides an exogenous, homogenous incremental benefit in health q over a 
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baseline treatment.  The treatment is assumed to be produced by a monopolist who 

charges an incremental price p.  The health benefit q may be the incremental extension in 

quality-adjusted life years due to treatment (as perhaps revealed by data from clinical 

trials) and can generally be interpreted in standard economic formulations as the quality 

of the product.  Compared to a baseline treatment, we assume there is a constant marginal 

cost c(q) of producing a treatment of a given quality level. 

In this framework, we define the exogenous incremental cost-effectiveness ratio 

(ICER) to be the cost per unit of quality as in: 

q
cCEX =          (1) 

The numerator is the exogenously determined incremental resource cost to society per 

person utilizing treatment, and the denominator is the incremental health benefit among 

those utilizing treatment.   

The endogenous cost-effectiveness ratio uses the price faced by public payers as 

the relevant cost, rather than the cost of resources utilized for production, and is given by: 

q
pCEN =          (2) 

If m denotes the mark-up above costs, it is defined as p = m·c(q).  It follows immediately 

that the two forms of cost-effectiveness are related by:     

XN CEmCE ⋅=         (3) 

This implies that resource allocation decisions based on endogenous cost-effectiveness 

may bear little relationship to the efficient choices that exogenous cost-effectiveness 

analysis would normally deliver. In particular, the difference between exogenous and 

endogenous CE is important because treatment adoption based on endogenous CE may 
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lead to the selection of less cost-effective treatments in terms of exogenous resource 

costs.  To illustrate, consider two treatments, the first of which is more cost-effective in 

terms of exogenous societal resource use: 

)2()1( XX CECE ≤         (4) 

Endogenous cost-effectiveness will lead to a reversal in the most cost-effective treatment 

if: 

)1(
)2()2()1(

2

1

X

X
NN CE

CE
m
mCECE >⇔>      (5) 

Such “CE-reversals” amount to changes in the ranking of CE levels from best to worst. 

These reversals occur when the offsetting mark-up differences are larger than the 

exogenous cost-effectiveness differences.  This takes place when mark-ups are negatively 

related to production costs so that low-cost treatments are marked up relatively more.  

For example, compared to medical devices, small-molecule drugs may have smaller costs 

of production yet face larger mark-ups due to inelastic demand or lower competition. 

  

2.2 Dual demand and mark-ups  

 As the mark-up of prices over costs is the key determinant of the concordance 

between endogenous and exogenous CE, it is important to understand what drives mark-

ups. In privately or publicly insurance, mark-ups are non-standard as producers face two 

demand sides; the payer adopting the treatment and the patients or doctors using it.  

Therefore, the price-sensitivity of both sets of customers will affect optimal pricing.    

 More precisely, consider a producer who chooses a price p for a given treatment 

sold to a payer.  Assume that the patient cost-sharing is given by s(p) resulting in the 

quantity demanded D(s(p),q) given cost-sharing and quality.  If the technology is adopted 
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by the payer, the producer collects the variable profit induced by the pricing, but if it is 

not adopted he earns no profits.  Let the probability of adoption be denoted A(p) and 

assume that it is a differentiable and decreasing function of price.  A special case would 

be when the chance of coverage is decreasing in the cost-effectiveness ratio of the 

technology, i.e. A(p)≡ A(p/q).  The monopolist’s expected profits at the time of approval 

are his post-approval profits discounted by the probability of treatment adoption: 

)()()),(()]([)(max][ ppAqpsDqcppAE
p

π⋅=−⋅=Π    (6) 

The probability of technology adoption, the variable profits conditional on 

reimbursement, and the expected profits are illustrated in the figure below. 

 

FIGURE 1—Probability of treatment adoption, variable and expected profits 

 

These expected profits imply that in raising price, the producer must take into account 

two types of buyers—the third-party payer making the treatment adoption decision and 

0 

1 
A(p) 

Price, p 

A(p)π(p) 

π(p) 

Adoption Probability Profits 
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the patients or doctors using the product once adopted. The optimal price balances the 

profit impacts of the two demand sides and satisfies the necessary first-order condition: 

 0'' =+ ππ AA          (7) 

The gain in profits conditional on adoption at a higher price must be balanced with the 

larger chance of not being adopted.  Under the maintained assumptions, it follows that 

producers will not set price low enough to guarantee acceptance since the probability of 

rejection, 1-A, is strictly positive at the optimal price.  Producers take the risk of rejection 

in exchange for the larger profits obtained when the submitted treatment is adopted.  

However, since the probability of adoption falls with price, A’<0, the first-order condition 

directly implies that the price that maximizes expected profits (Aπ) is lower than the price 

that maximizes profits conditional on reimbursement (π).  Producers do not maximize ex-

post profits for fear of not getting the technology approved at such a high price.4     

Equation (7) can be rearranged to further elucidate the conditions which 

determine the profit-maximizing price: 

ππ /'/' =− AA         (8) 

Figure 2 illustrates that under standard conditions on profit functions (increasing and 

concave in output price), π’/π is downward sloping in price and there is a unique optimal 

price whenever h = -A’/A (the hazard rate of technology rejection) is weakly increasing. 

 

 

 

 

                                                 
4 Prices failing to satisfy the classic Lerner condition of optimal pricing may therefore still be consistent 
with profit-maximization. 
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FIGURE 2—Impact of adoption on optimal price 

 

We will maintain this sufficient condition on the adoption rule for a unique price 

throughout.  This figure therefore shows how both demand sides, patients and payers, 

affect pricing and mark-ups. The figure has the direct implication that the larger the 

chance of technology rejection, the higher the h curve is, and the lower is the optimal 

price.  For example, the case of a constant rejection hazard, A(p) = e -rp , would 

correspond to a horizontal h function at the level r, implying that the optimal price would 

be decreasing in r.  In the special instance in which the hazard r is equal to zero, so that 

all technologies are adopted regardless of the price, π’/π would intersect h at the x-axis 

and the optimal price would be that which maximizes ex-post profits.  

  

2.3 Reversals in cost-effectiveness 

 Given that both demand sides affect mark-ups according to a function denoted by 

m(A,D), differences in patient demand and competition, as well as differences in adoption 

π’/π h 
π’/π h 

Price, p 
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rules, may lead to differences between observed endogenous cost-effectiveness rankings 

and unobserved exogenous rankings.   

 For example, first, consider the extreme case when all treatments are adopted, 

A=1, regardless of their cost-effectiveness. This is arguably the case in the US where 

FDA approval of a technology is sufficient for Medicare reimbursement.  In this setting, 

expected profits Aπ reduce to post-approval profits and optimal pricing satisfies the 

standard condition; π’=0.  In this standard case of mark-up determination, the elasticity 

of patient or doctor demand ε yields a mark-up of:  

 m = 1/(1+1/ε)         (9) 

Therefore, reversals may occur when the most cost-effective treatments are also the most 

inelastically demanded by patients or doctors.  In particular, a negative relationship 

between mark-ups and costs of production may occur when low cost treatments are 

produced in less competitive markets.  

Next consider when higher prices lower the chance of coverage, A’ < 0, as would 

be the case when cost-effectiveness drives adoption.  An adoption rule that leads to a 

negative relationship between the mark-up it induces and exogenous cost-effectiveness 

could possibly result in ranking reversals in cost-effectiveness.  To illustrate, consider 

when public payers follow a reservation price policy, adopting only treatments priced 

below the reservation price.  In the UK, this may be displayed by a strict “CE-threshold” 

policy in which technologies whose CE levels exceed a given threshold T are not adopted 

while those whose CE levels fall below are;  A(p/q) =0  if p/q > T and A(p/q) = 1 if p/q ≤ 

T.  Furthermore, suppose cost-sharing has no variable component, as might be true if 

there is a fixed payment for filling a given prescription, s(p) = s.  In this case, the 
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proportionate effect on profits is π’/π =1/(p-c) and the hazard function is zero below the 

threshold and infinite above it.  Optimal pricing would lead to the endogenous CE set to 

the threshold, which would in turn induce mark-ups that are inversely related to the 

exogenous CE levels:                                     

                            CEN = T   m·CEX = T   m = T/CEX 

The adoption rule A (represented by T) may therefore induce mark-ups that are negatively 

related to resource costs.  Because of this negative relationship, changes in real resource 

use – as reflected by exogenous CE levels – would have no impact on endogenous levels 

of CE used for payment purposes.5   

 Fixed CE thresholds highlight an instance in which treatments of differing 

exogenous CE may have identical endogenous CE levels.  Strict differences in exogenous 

CE would therefore be ranked the same way.  Adoption policies can more generally 

cause “full” reversals in cost-effectiveness to occur, a situation in which strictly more 

cost-effective treatments in an exogenous sense are strictly less cost-effective 

endogenously.  For example, suppose that payers employ differential adoption policies 

towards treatments based on disease.  For example, certain diseases may be deemed more 

politically important (e.g. HIV/AIDS or breast cancer in the US) and therefore face easier 

approval.  In this situation, factors other than a treatment’s submitted cost-effectiveness 

may play an important role in whether the treatment is ultimately adopted.  Holding 

quality constant, this would be reflected by shifts in the acceptance (A) and hazard (h) 

functions that lead to different optimal prices being charged for treatments of the same 

exogenous cost-effectiveness.  The effect of this heterogeneity in adoption is illustrated in 

                                                 
5 This is of course true as long as exogenous CE levels are not higher than the threshold, in which case the 
technology would presumably not be presented to the payer for adoption in the first place. 
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Figure 3. Among treatments of the same quality, this figure shows two curves that map 

out the optimal price of a treatment as a function of its exogenous CE level.  These curves 

therefore represent the intersection of the proportionate profit curve π’/π and the hazard 

curve h as the proportionate profit curve shifts outward due to increasing costs c for a 

given quality level.6 

FIGURE 3—Reversals in cost-effectiveness under differential adoption behavior 

 

Holding quality constant, the x-axis corresponds to both different cost levels and 

exogenous CE levels. The top line traces out the profit-maximizing price charged by a 

firm whose product treats a disease that has a high probability of public adoption at any 

given level of submitted cost-effectiveness.  Similarly, the lower line characterizes the 

optimal price for treatments in disease classes that, all else equal, are less favorably 

                                                 
6 Price is an increasing function of c as the level of profits is decreasing in costs and the marginal profits π’ 
is increasing in costs; d(π’)/dc=-D’>0. 
 
 

Price 

Costs and Exogenous CE  

Low Adoption 
p(c) 
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adopted.  Now, consider two treatments of differing costs of production, cL < cH.  For a 

given cost level, it is clear that the price will be higher in the higher approval class; that 

is, pL < pH for the same cost level cL.  This directly implies a change in rankings from 

treatments having the same exogenous CE to having strictly different endogenous CE 

levels.  

 Furthermore, full reversals may occur when politically motivated adoption 

behavior is negatively related to resource costs. For example, suppose a treatment is more 

expensive to produce and is in the low acceptance disease class; the profit-maximizing 

price is pM.  If the lower-cost treatment is in the high acceptance class, then its profit-

maximizing price is pH which is higher than pM.  In this case, a full reversal will occur 

when the lower-cost treatment – in a resource sense – is in a class that is less politically 

favored. 

 More generally, this type of reversal will always occur under a compact support 

of costs of treatment, as long as there is heterogeneity in adoption behavior across 

classes. In that case, two costs that reverse rankings would always exist.  This result 

suggests that as coverage or adoption decisions grow to be increasingly politically 

motivated – being determined by forces other than and not implicitly or explicitly 

referencing cost-effectiveness – the possibility of reversals in cost-effectiveness will rise.  

While precisely identifying the presence of CE reversals is impossible since mark-ups are 

unobservable, our result implies that a sufficient generic condition for reversals to occur 

is that adoption behavior vary across classes of diseases.  In the section that follows, we 

test for this empirically using data on adoption behavior by the National Institute for 

Health and Clinical Excellence (NICE) in the UK. 
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3. Adoption behavior and reversals: An illustrative analysis of NICE 

Using data on treatment adoption decisions by the National Institute for Health and 

Clinical Excellence (NICE) in the United Kingdom, this section illustrates how one may 

test for CE reversals through heterogeneity in adoption behavior. 

 

3.1 Background on NICE  

Introduced in 1999 as a special health authority for England and Wales, the initial 

purview of NICE was to make recommendations to the British National Health Service 

(NHS) on the coverage of selected new and existing medical technologies and to develop 

clinical guidelines (Buxton, 2001).  Although other countries have developed similar 

organizations, NICE was the first national agency with the power to guide technology 

adoption for all new health technologies including pharmaceuticals, procedures, and 

devices (Schulper et al., 2001).  While NHS authorities were initially mandated to take 

into account but not necessarily follow NICE’s advice, in 2002 they became legally 

obligated to fund treatments recommended by NICE.  The initial spectrum of assessments 

by NICE included pharmaceuticals, medical devices, procedures, diagnostic and 

screening technologies, and health promotion programs, but most referrals to date have 

concerned either pharmaceuticals or devices.   

Following the selection of technologies to be assessed, NICE commissions or 

accepts reports from several sources, including manufacturers, independent academics, 

and professional and patients’ groups. The evidence typically gathered for a given 

technology includes its clinical effectiveness, cost per quality-adjusted-life-year (QALY) 

gained, and impact on costs borne by the NHS (Raftery, 2001).  After gathering this 
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information, NICE first issues a provisional appraisal, which is reviewed by the parties 

involved, followed by a final appraisal to the NHS.  According to guidelines set forth by 

the Secretary of State for Health, the final guidance rendered by NICE should account for 

the clinical priorities of the NHS, the need of patients under consideration, the cost-

effectiveness of the treatment, and the strength of clinical evidence and cost-effectiveness 

estimates (Buxton, 2001).  

The final guidance issued by NICE summarizes whether a treatment is 

recommended to the NHS and the reasoning behind the decision.  The appraisal 

committee makes one of four recommendations: the technology can be recommended 

with no restrictions, recommended with minor restrictions, recommended with major 

restrictions, or not recommended.  If a manufacturer is unsatisfied with the 

recommendation, it can appeal the decision. 

 

3.2 Data on technology appraisal by NICE 

Since its inception in 1999, NICE has published 141 guidances.  Our data 

analyzes the 86 guidances submitted to NICE between 1999 and 2005—the dates of 

guidance publication range from 2001 to 2007.7  We define a particular treatment as each 

combination of a drug or technology and the disease it addresses.  Since the same drug or 

technology may be used to treat multiple diseases or the drug or technology may have 

different parts that must be recommended separately, a single guidance may contain 

multiple treatments.  Our database, therefore, has 145 treatments in the 86 guidances we 

examine, and the unit of observation is a treatment.  Table 1 provides descriptive 

                                                 
7 We are thankful to James Raftery for providing us with his detailed collection of these guidances. 
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statistics on these guidances in terms of endogenous CE levels (p/q) as well as acceptance 

behavior (A). 

TABLE 1—Descriptive statistics of NICE guidance data 

Total no. of guidances 145   

Category of disease addressed by treatment Percent   
 Arthritis 6   
 Cancer 18   
 Diabetes 6   
 Heart 10   
 Influenza 6   
 Leukemia 3   
 Mental health 11   
 Surgery 3   
 Therapy, not mental Health 11   
 Other 26   
Treatments recommended by NICE Percent   
 Yes 30   
 Yes, with minor restrictions 32   
 Yes, with major restrictions 22   
 No 16   
No. of guidances with published CE 76   
Endogenous CE  (Cost per QALY (£))  by 
range of estimate 

No. of 
treatments Mean 

Std. 
Dev. 

 Low estimate 35 12,297 11,704 
 High estimate 37 43,673 35,701 
 Mean estimate 51 28,132 18,798 
Endogenous CE (Cost per LYG (£) ) by range 
of estimate    
 Low estimate 20 8,276 6,304 
 High estimate 22 19,506 13,744 
 Mean estimate 26 17,397 11,404 
Avg. of est. mean cost per QALY or LYG (£) 76 24,710 17,380 

Range of est. mean cost per QALY or LYG Percent   
 Less than £10,000 22   

 Between £10,000 and £20,000 25   

 Between £20,000 and £30,000 18   

 Between £30,000 and £40,000 16   
 More than £40,000 18   
Source: NICE published treatment guidances, 1999 – 2005. 
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The 145 NICE guidances present in our data span a relatively large group of diseases and 

categories of treatment.  The largest share of guidances dealt with treatments for cancer 

(18%), heart disease (10%), and mental health (11%).  Of the treatments included in our 

data, 23 (16%) were not recommended by NICE, 32 (22%) were recommended with 

major restrictions, 46 (32%) were recommended with minor restrictions, and 44 (30%) 

were recommended with no restrictions.  A “no” recommendation is given for either poor 

cost-effectiveness or insufficient evidence to warrant the use of the treatment.  While 

treatments with major restrictions are still recommended by NICE, such treatments are 

only recommended for either second-line use by those refractory to alternative treatments 

or by targeted subgroups with severe disease.  Recommendations with minor restrictions 

limit use in one of several ways; e.g. recommendations may require the particular 

treatment to be the least costly option, may require specialist supervision, or may require 

treatment monitoring.  The treatments that are recommended as “yes” without any 

restrictions can be used routinely and as the primary treatment for a disease.  Overall, 

84% of treatments included in our data were recommended with or without restrictions. 

  As shown in Table 1, NICE does not always explicitly calculate or report cost-

effectiveness for each treatment so estimates only exist for roughly half (76/145) of the 

observations in our data.  For those guidances for which cost-effectiveness estimates do 

exist, NICE measures CE in two ways, cost per quality-adjusted life year (QALY) gained 

and cost per life year (LY) gained, both measured relative to some baseline treatment.  

Quality-adjusted life years differ from life years gained by incorporating both quality and 

quantity of life into measures of a treatment’s effectiveness.  Cost-effectiveness ratios are 

calculated in the usual manner.  For example, if a new drug costs £15,000 and the 
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existing treatment costs £5,000, the numerator in the cost per QALY (or LY) gained 

measurement is £10,000.  If the new treatment adds 0.9 QALYs and the previous 

treatment added 0.4 QALYs, the denominator is 0.5 QALYs.  Therefore, the cost per 

QALY is £10,000/0.5 = £20,000. 

Because measuring effectiveness precisely can be difficult, NICE guidances often 

report high, mean, and low estimates of cost per quality-adjusted life year or standard life 

year gained for each treatment.  For those treatments for which high and low estimates 

exist, Table 1 presents the average cost per QALY or LY gained within each range.  The 

within-treatment uncertainty in these estimates is clear—the estimates of average cost per 

QALY or LY gained vary from roughly £12,000 (low-estimate group) to £44,000 (high 

estimate group) in our data.  There is substantial variation across treatments as well.  

Among those guidances reporting only costs per QALY gained, the mean cost per QALY 

was just over £28,000, with a standard deviation of nearly £19,000.  At the same, among 

those guidances reporting only life years gained, the mean cost per LY was roughly 

£27,000 with a standard deviation of approximately £11,000.  In order to have a unified 

cost-effectiveness measure for our subsequent analysis, we do not distinguish between 

QALYs and standard LYs and assume that the cost per QALY or LY gained takes on 

either the mean cost per QALY gained or mean cost per LY gained, depending on which 

variable exists for a given treatment.  Under this measure, the mean cost per QALY or 

LY gained is approximately £24,710 with a standard deviation of £17,380. 

 Table 1 also provides information about the distribution of estimated mean cost-

effectiveness levels present in the data.  We group the mean cost per QALY or LY gained 

into five categories: less than £10,000, between £10,000 and £20,000, between £20,000 
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and £30,000, between £30,000 and £40,000, and more than £40,000.  The proportion of 

treatments within each range is fairly similar, with approximately 34% of treatments 

having cost-effectiveness levels above commonly reported thresholds of NICE adoption 

(~£30,000). 

 Using these data, Figure 4 plots the negative relationship between a treatment’s 

endogenous CE and the probability of NICE recommendation—the reduced form of the 

acceptance function A(p/q) in our analysis.  In particular, it plots the proportion of 

treatments that are recommended by NICE within six groups of cost-effectiveness: less 

than £10,000, £10,000 - £20,000, £20,000 - £30,000, £30,000 - £40,000, £40,000 - 

£50,000, and above £50,000. 

FIGURE 4—Endogenous cost-effectiveness and the probability of treatment acceptance, 
NICE 1999-2005 
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Source: NICE published treatment guidances, 1999 – 2005. 
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Among the most cost-effective treatments, the probability of a positive NICE 

recommendation is nearly unanimous and generally declines with the level of the cost-

effectiveness ratio.  Figure 4 is consistent with the discussed prediction that under 

probabilistic reimbursement, optimal pricing will result in a strictly positive fraction of 

treatments being rejected as firms trade off higher ex-post profits due to higher prices 

with the increased probability of rejection that these higher prices induce.  

 

3.3 Class heterogeneity and reversals: NICE adoption behavior by disease class 

 Our analysis implied that differences in treatment adoption behavior across 

disease classes will induce reversals in CE rankings.  To test for heterogeneity in 

adoption behavior across classes, Table 2 further characterizes NICE’s adoption process 

by specifying how the probability of acceptance of treatments by NICE has varied by 

disease class and endogenous cost-effectiveness. 

 
TABLE 2—Number of treatments submitted and accepted by disease class and 

endogenous cost-effectiveness, NICE 1999-2005 
 

 Endogenous Cost-effectiveness (1,000£/QALY) 
Disease Class < 10 10 - 20 20 - 30 30 - 40 40 - 50 > 50 
Arthritis 0/0 5/5 0/0 2/2 0/0 0/1 
Cancer 6/6 8/8 3/4 5/5 2/3 0/0 
Heart 6/6 1/1 4/4 0/0 0/0 0/0 
Infectious 2/2 0/0 2/2 0/3 1/1 ¼ 
Mental 0/1 4/4 0/0 1/2 0/0 0/1 
Prevention 1/1 1/1 2/2 0/0 0/0 0/0 
Other 2/2 1/1 1/1 1/1 1/1 1/1 
Source: NICE published treatment guidances, 1999 – 2005.  Each cell 
reports the number of accepted treatments/submitted treatments for a 
given disease class and endogenous cost-effectiveness range. 

 
  
For a given range of cost-effectiveness, each row of Table 2 displays both the number of 
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treatments accepted by and submitted to NICE for a given disease.  For example, out of 6 

treatments for cancer with submitted CE levels below 10,000 £/QALY, 6 were accepted 

by NICE with minor, major, or no restrictions.  For cancer treatments with submitted CE 

levels in the range of 20,000 – 30,000 £/QALY, 3 out of 4 treatments were adopted by 

NICE, while in the range of 30,000 – 40,000 £/QALY, all 5 submitted treatments were 

accepted.  Importantly, however, in the same range of 30,000 – 40,000 £/QALY, 0 out of 

3 treatments for infectious disease were accepted as well as 1 out of 2 submitted 

treatments for mental health.  This table suggests that differential adoption behavior by 

NICE towards specific diseases may exist.  This should, of course, be qualified by the 

power issues that are present—the data at hand are clearly limited by the number of 

guidances issued to date and the broad range of diseases covered. 

 The data in Table 2 suggest a general methodology to test for the potential of CE 

reversals, namely by testing for whether the probability of treatment acceptance depends 

not only on submitted cost-effectiveness, but on the disease being treated as well.  Table 

3 specifies such a test and reports the coefficients of a linear probability model of the 

impact of cost-effectiveness and disease class on the probability of treatment acceptance 

by NICE.  The linear probability model was selected due to well-known problems with 

logit or probit specifications in fitting the full acceptance levels displayed in the 

descriptive table. While sample size considerations prohibit a fully interacted model of 

the differential impact of disease class on the CE-adoption relationship, our model 

employs indicators for disease classes to determine how and whether specific diseases 

shift the relationship between submitted CE levels and the probability of adoption.   
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TABLE 3—Impact of endogenous cost-effectiveness and disease class on probability of 
treatment acceptance 

 
Probability of treatment acceptance   
Mean cost-effectiveness (1,000£/QALY) -0.009* 
 (0.002) 
Cancer -0.034 
 (0.098) 
Heart -0.031 
 (0.122) 
Infectious -0.322* 
 (0.120) 
Mental health -0.310* 
 (0.132) 
Prevention -0.008 
 (0.171) 
Constant 1.154 
 (0.096) 
R2 0.38 
F-test of equality of disease indicators p = 0.03 
Source: NICE published treatment guidances, 1999 – 
2005.  Table presents coefficients of a linear 
probability model of the impact of cost-effectiveness 
and disease class (excluded class: diabetes) on the 
probability of treatment adoption by NICE.  Standard 
errors are in parentheses.  * Significant at p < 0.05. 

 
 

Because individual guidances issued by NICE often include a range of CE estimates, we 

estimate the impact of CE on adoption by using the mean endogenous CE level reported 

by NICE.  The excluded disease class was the smallest class, diabetes.  Consistent with 

the descriptive data reported above, Table 3 demonstrates a statistically significant 

negative relationship between submitted cost-effectiveness and the probability of 

treatment acceptance; the probability of acceptance declines by an estimated 0.009 

(0.002) for every 1,000 £/QALY increase in the submitted CE level.  In addition, 

compared to the excluded class of diabetes, each of the diseases presented in Table 3 has 

a lower estimated probability of acceptance, with infectious disease and mental health 
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being the only diseases with statistically significant effects (-0.322 (0.120) and -0.310 

(0.132), respectively).  Because several of the estimated disease effects are significantly 

different from zero, this suggests the possibility of heterogeneity in treatment acceptance 

across disease classes, holding submitted CE constant.  In fact, a simple F-test rejects the 

null hypothesis that adoption behavior is identical across disease classes (p = 0.03). 

 

4. Conclusion 

This paper examines CE-based technology adoption in the presence of optimal 

pricing by firms. Such pricing implies that that observed cost-effectiveness levels are 

endogenous to the criteria used to guide treatment adoption decisions.  Our main finding 

is that endogenous cost-effectiveness may not relate in any systematic way to exogenous 

measures that reflect true resource costs. This occurs because both demand factors and 

adoption policies determine prices; prices, in turn, affect endogenous CE rankings but not 

exogenous CE rankings. This implies that the intended value of using cost-effectiveness, 

to economize on resource costs used to deliver health care, may not be present.   

Our analysis has several important limitations that future research may 

successfully attempt to deal with.  First, one major identification issue facing any analyst 

is that actual production costs are unobservable to both econometricians and 

reimbursement authorities.  Endogenous CE rankings are observable while exogenous CE 

rankings are not.  The fact that mark-ups are unobservable is, of course, well-known and 

long-recognized in empirical industrial organization.  This issue lead us to state our 

results as a failure of a given reimbursement procedure, rather than a failure in the sample 
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at hand.  More work is needed to derive results that apply to a given sample of observed 

quality-, price- and demand data, such as those reflected in the NICE data analyzed here. 

Second, we do not consider the possibility of endogenous effectiveness or quality 

induced by technology adoption criteria.  This would be important when pricing affects 

effectiveness through demand.  For example, in the case of vaccines, lower prices lead to 

greater vaccination and socially beneficial “herd immunity”, thereby raising 

effectiveness.   Similar issues may arise for other links between demand and 

effectiveness, for instance “learning by doing” in the adoption of new technologies.   For 

example, reductions in price for a device used in surgery would lead to increased 

utilization, greater learning by doing, and ultimately increased effectiveness.  The full 

endogeneity of both prices and effectiveness deserves further analysis in order to better 

understand the efficiency implications of cost-effectiveness based reimbursement.  In 

fact, adaptive cost-effectiveness adoption in which future prices are not restricted by 

initial launch prices may be an efficient method of dealing with both endogenous costs 

and effectiveness. 

Third, our analysis does not consider the comparative effectiveness of multiple 

competing treatments.  Such an analysis would consider the duopoly and oligopoly 

pricing implications of making reimbursement decisions contingent on the vector of 

industry prices and quality levels, as opposed to the single price of a monopolist.  When 

setting prices, producers presumably take into account how reimbursement authorities 

use CE levels of competing treatments, whether branded or generic, for similar 

conditions.  The industrial organization of endogenous cost-effectiveness analysis, and its 



25 
 

impact on the growth of public health care spending, is an important area of future 

research. 

Lastly, we do not analyze how transparency of public decision-making affects 

cost-effectiveness reversals.  In our analysis of the NICE data, endogenous CE levels do 

not perfectly predict adoption decisions.  This suggests that other unspecified political 

considerations affect adoption. Making such criteria explicit would lead to increased 

efficiency if producers did not waste development and application costs on rejected 

treatments.  This efficiency role of transparency needs to be better understood and can be 

assessed by the goodness-of-fit of stated criteria in explaining public adoption decisions. 

Despite the shortcomings of our analysis, however, we believe the overall concern 

that we raise deserves serious consideration in interpreting the impact of CE-based 

adoption policies on public health care spending. These adoption policies may not have 

their intended goals when those affected by them act in their own interest. 
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