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1 Introduction

The dramatic rise in investors�and banks�perceived uncertainty is at the core of the 2007-

2009 U.S. �nancial crisis. All of a sudden, a �nancial world that was once rife with pro�t

opportunities for �nancial institutions (banks, for short), was perceived to be exceedingly

complex. Although the subprime shock was small relative to the �nancial institutions�

capital, banks acted as if most of their counterparties were severely exposed to the shock.

Confusion and uncertainty followed, triggering the worst case of �ight-to-quality that we

have seen in the U.S. since the Great Depression.

In this paper we present a model of the sudden rise in complexity, followed by wide-

spread panic in the �nancial sector. In the model, banks normally collect information

about their direct trading partners which serves to assure them of the soundness of these

relationships. However, when acute �nancial distress emerges in parts of the �nancial

network, it is not enough to be informed about these partners, but it also becomes impor-

tant for the banks to learn about the health of their trading partners. And as conditions

continue to deteriorate, banks must learn about the health of the trading partners of the

trading partners, of their trading partners, and so on. At some point, the cost of informa-

tion gathering becomes too large and banks, now facing enormous uncertainty, have no

option but to withdraw from loan commitments and illiquid positions. A �ight-to-quality

ensues, and the �nancial crisis spreads.

The starting point of our framework is a standard liquidity model where banks (rep-

resenting �nancial institutions more broadly) have bilateral linkages in order to insure

against local liquidity shocks. The whole �nancial system is a complex network of link-

ages which functions smoothly in the environments that it is designed to handle, even

though no bank knows with certainty all the many possible connections within the net-

work (that is, each bank knows the identities of the other banks but not their exposures).

However, these linkages may also be the source of contagion when an unexpected event

of �nancial distress arises somewhere in the network. Our point of departure with the

literature is that we use this contagion mechanism not as the main object of study but

as the source of confusion and �nancial panic. During normal times, banks only need to

understand the �nancial health of their neighbors, which they can learn at low cost. In

contrast, when a signi�cant problem arises in parts of the network and the possibility of

cascades arises, the number of nodes to be audited by each bank rises since it is possible

that the shock may spread to the bank�s counterparties. Eventually the problem becomes

too complex for them to fully �gure out, which means that banks now face signi�cant

uncertainty and they react to it by retrenching into liquidity-conservation mode.

1



This paper is related to several strands of literature. There is an extensive literature

that highlights the possibility of network failures and contagion in �nancial markets.

An incomplete list includes Allen and Gale (2000), Laguno¤ and Schreft (2000), Rochet

and Tirole (1996), Freixas, Parigi and Rochet (2000), Leitner (2005), Eisenberg and Noe

(2001), Cifuentes, Ferucci and Shin (2005) (see Allen and Babus (2008) for a recent

survey). These papers focus mainly on the mechanisms by which solvency and liquidity

shocks may cascade through the �nancial network. In contrast, we take these phenomena

as the reason for the rise in the complexity of the environment in which banks make

their decisions, and focus on the e¤ect of this complexity on banks�prudential actions.

In this sense, our paper is related to the literature on �ight-to-quality and Knightian

uncertainty in �nancial markets, as in Caballero and Krishnamurthy (2008), Routledge

and Zin (2004) and Easley and O�Hara (2005); and also to the related literature that

investigates the e¤ect of new events and innovations in �nancial markets, e.g. Liu, Pan,

and Wang (2005), Brock and Manski (2008) and Simsek (2009). Our contribution relative

to this literature is in endogenizing the rise in uncertainty from the behavior of the �nancial

network itself. More broadly, this paper belongs to an extensive literature on �ight-to-

quality and �nancial crises that highlights the connection between panics and a decline in

the �nancial system�s ability to channel resources to the real economy (see, e.g., Caballero

and Kurlat (2008), for a survey).

We build our argument in several steps. In Section 2 we describe the normal envi-

ronment, characterize the �nancial network, and describe a rare event as a perturbation

to the structure of banks�shocks. Speci�cally, one bank su¤ers an unfamiliar liquidity

shock for which it was unprepared. In Section 3, we show that if banks can costlessly

gather information about the network structure, the spreading of this shock into precau-

tionary responses by other banks is typically contained. This scenario with no network

uncertainty is the benchmark for our main results.

In Section 4 we make information gathering costly. In this context, if the cascade is

small, either because the liquidity shock is limited or because banks�bu¤ers are signi�cant,

banks are able to gather the information they need about their indirect exposure to the

liquidity shock and we are back to the full information results of Section 3. However,

once cascades are large enough, banks are unable to collect the information they need

to rule out a severe indirect hit. Their response to this uncertainty is to retrench on

their lending, which triggers a credit crunch. In Section 5 we show that under certain

conditions, the response in Section 4 can be so extreme, that the entire �nancial system

can collapse as a result of the �ight to quality. Somewhat paradoxically, this extreme

response is more likely to take place in a developed �nancial market than in one with
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limited precautionary options for banks. The paper concludes with a �nal remarks section

and several appendices.

2 The Environment

In this section we introduce the environment and the characteristics of the �nancial net-

work. We �rst describe the normal scenario in which the �nancial network facilitates

liquidity insurance. We then introduce a perturbation to this environment: A shock

which was unanticipated at the network formation stage (i.e. the �nancial network was

not designed to deal with this shock).

2.1 The Normal Environment

There are four dates f�1; 0; 1; 2g. There is a single good (one dollar) that serves as
numeraire, which can be kept in liquid reserves or it can be loaned to production �rms.

If kept in liquid reserves, a unit of the good yields one unit in the next date. Instead, if a

unit is loaned to �rms at date �1, it then yields R > 1 units at date 2 if it is not recalled
or unloaded before this date. The loans have a recall option at date 0 but at date 1 they

lose this option and become illiquid: One unit of loan recalled at date 0 yields one unit

to the lender. At date 1, the loan cannot be recalled, but the lender can unload the loan

(e.g. by settling it with the borrower at a discount) and receive r < 1 units. To simplify

the notation, we assume r � 0 throughout this paper.
The economy has 2n continuums of banks denoted by fbjg2nj=1. Each of these continu-

ums is composed of identical banks and, for simplicity, we refer to each continuum bj as

bank bj, which is our unit of analysis.1 At the beginning of date �1, each bank bj has
assets which consist of y units of liquid reserves and 1 � y units of loans, and liabilities
which consist of a measure one of demand deposit contracts. A demand deposit contract

pays l1 > 1 if the depositor is hit by a liquidity shock and l2 > l1 if the depositor is not

hit by a liquidity shock. Let !j 2 [0; 1] be the measure of liquidity-driven depositors of
bank bj (i.e. the size of the liquidity shock experienced by the bank), which takes one of

the three values in f�!; !L; !Hg with !H > !L and �! � (!H + !L) =2, and suppose

�y = l1�! and (1� �y)R = l2�!

so that the bank has assets just enough to pay l1 (resp. l2) to early (resp. late) depositors

1The only reason for the continuum is for banks to take other banks�decisions as given.
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if the size of the shock is �!.

However, the liquidity needs at date 1 may not be evenly distributed among banks.

There are three aggregate states of the world, denoted by s (0), s (r) and s (g), revealed at

date 0. In state s (0) all banks expect to receive at date 1 the same liquidity shock �!. The

states s (r) and s (g) are realized with equal probability and the liquidity shocks in these

states are heterogeneous across banks. More speci�cally, the banks in this economy are

divided half and half between two types: red and green. In state s (r) (resp. s (g)), the

banks with red type (resp. green type) expect to receive a high liquidity shock, !H , and

the other banks expect to receive a low liquidity shock, !L. This means that in states s (r)

and s (g) there is enough aggregate liquidity but there is a need to transfer liquidity across

banks, which highlights one of the (many) reasons for an interlinked �nancial network.

Given the �nancial network, banks make arrangements to transfer liquidity in states

s (r) and s (g) through bilateral demand deposit contracts signed at date�1. In particular,
let i 2 f1; ::; 2ng denote slots in a �nancial network and consider a permutation � :
f1; ::; 2ng ! f1; ::; 2ng that assigns bank b�(i) to slot i. We consider a �nancial network
denoted by:

b (�) =
�
b�(1) ! b�(2) ! b�(3) ! ::::! b�(2n) ! b�(1)

�
, (1)

where the arc! denotes that the bank in slot i (i.e., bank b�(i)) has a demand deposit in

the bank in the subsequent slot i+ 1 (i.e., bank b�(i+1) ) equal to

z = (�! � !L) ; (2)

where we use modulo 2n arithmetic for the slot index i.2 We refer to bank b�(i+1) as the

forward neighbor of bank b�(i) (and similarly, to bank b�(i) as the backward neighbor of

bank b�(i+1) ).

We say that the �nancial network is consistent if all odd slots (resp. all even slots)

contain banks of the same type, which means that red and green type banks alternate

around the �nancial circle. For analytical simplicity, we restrict the set of feasible networks

to consistent ones (as opposed to, for example, any circular network in which banks may

be arbitrarily ordered around the circle), since these networks ensure that each bank that

needs liquidity has deposits on a bank with excess liquidity, facilitating bilateral liquidity

insurance (see below) with the minimally required level of cross-deposits z.

Next we introduce three features � network uncertainty, auditing, and loan recall�

2In particular, i represents the slot with index i0 2 f1; ::; 2ng that is the modulo 2n equivalent of
integer i. For example, i = 2n+ 1 represents the slot with index 1.
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that play no role in the normal environment but that will prove central during a rare

event (de�ned as a perturbation to the normal environment).

Network uncertainty

Banks�types and the �nancial network are realized at date �1 as follows: First the types
of banks are realized at random (half of the banks become red type and the other half

green type); then a particular consistent �nancial network b (�) (with respect to these

types) is realized. We de�ne

B = fb (�) j � : f1; ::; 2ng ! f1; ::; 2ng is a permutationg ,

as the set of consistent �nancial networks from an ex-ante point of view (i.e. before the

types of the banks are realized) and we suppose:

Assumption (FS). Each bank has a prior belief f j (:) over B with full support.
Once the types are realized and a consistent �nancial network forms, each bank bj observes

its slot i = ��1 (j) and the identities (and types) of the banks in its neighboring slots i�1
and i+ 1. This information narrows down the potential networks to the set:

Bj (�) =

8><>:b (~�) 2 B j
264 ~� (i� 1) = � (i� 1)

~� (i) = � (i)

~� (i+ 1) = � (i+ 1)

375 , where i = ��1 (j)
9>=>; .

Note that the bank bj does not know the types of the remaining banks

(bj)j =2f�(i�1);�(i);�(i+1)g, nor does it know how these banks are assigned to the remaining

slots (see Figure 1). The latter means, and this is critical, that banks do not know how

these banks are connected to all other banks in the network.

Auditing Technology

Each bank bj can acquire more information about the �nancial network through an au-

diting technology. At the beginning of date 0 and after the realization of the aggregate

state in fs (0) ; s (r) ; s (g)g, a bank bj in slot i (i.e. with j = � (i)) can exert e¤ort to

audit its forward neighbor b�(i+1) in order to learn the identity of this bank�s forward

neighbor b�(i+2) . Continuing this way, a bank bj that audits a number, aj, of balance

sheets learns the identity of its aj + 1 forward neighbors and narrows the set of potential
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Figure 1: The �nancial network and uncertainty. The bottom-left box displays the
actual �nancial network. Each circle corresponds to a slot in the �nancial network, and in
this realization of the network, each slot i contains bank bi (i.e. � (i) = i). The remaining
boxes show the other networks that bank b1 �nds plausible after observing its neighbors
(i.e. the set B1 (�)). Bank b1 cannot tell the types of banks b3; b4; b5, nor can it tell how
they are ordered in slots i 2 f3; 4; 5g.
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�nancial networks to:

Bj
�
� j aj

�
=

8><>:b (~�) 2 B j
264 ~� (i� 1) = � (i� 1)

:::

~� (i+ aj + 1) = � (i+ aj + 1)

375 , where i = ��1 (j)
9>=>; .

We denote the posterior beliefs of bank bj with f j (: j �; aj) which has support equal to
Bj (�; aj) given assumption (FS). In the example illustrated in Figure 1, if bank b1 audits
one balance sheet, then it would learn that bank b3 is assigned to slot 3 and it would

narrow down the set of networks to the two boxes at the left hand side of the bottom row

in Figure 1.

Loan Recalls

After learning about the aggregate state and narrowing the �nancial network to Bj (� j aj),
each bank bj has updated information about its liquidity needs at date 1. The bank can

rearrange its portfolio by recalling a portion of its loans yj0 2 [0; �y0] and by keeping these
units in liquid reserves. After this portfolio reallocation, each bank has y+yj0 2 [y; y + �y0]
invested in liquid reserves and 1� y� yj0 in loans. The parameter �y0 2 [0; 1� y] captures
the �exibility of the banks in portfolio rearrangement. If �y0 = 0, the banks cannot recall

any loans, while if �y0 = 1� y, the banks can recall all of the loans they made at date �1.

Bank Preferences

Consider a bank bj and denote the bank�s actual payments to early and late depositors

by qj1 and q
j
2 (which may in principle be di¤erent than the contracted values l1 and l2).

Because banks are in�nitesimal, they make decisions taking the payments of the other

banks as given. The bank makes the audit and loan recall decisions, aj 2 f0; 1:; ::; 2n� 3g
and yj0 2 [0; �y0], at date 0. At date 1, the bank chooses to withdraw some of its deposits
on the neighbor bank, which we denote by zj 2 [0; z], and it may also unload some of
its outstanding loans. The bank makes these decisions to maximize qj1 until it can meet

its liquidity obligations to depositors, that is, until qj1 = l1. Increasing q
j
1 beyond l1 has

no bene�t for the bank, thus once it satis�es its liquidity obligations, it then tries to

maximize the return to the late depositors qj2.

We capture this behavior with the following objective function

v
�
1
�
qj1 � l1

	
qj1 + 1

�
qj1 � l1

	
qj2
�
� d

�
aj
�
, (3)
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where v : R+ ! R++ is a strictly concave and strictly increasing function and d (:) is an
increasing and convex function which captures the bank�s non-monetary disutility from

auditing. When the bank bj is making a decision that would lead to an uncertain outcome

for
�
qj1; q

j
2

�
(which will be the case in Section 4), then it maximizes the expectation of the

expression in (3) given its posterior beliefs f j (: j �; aj).
Suppose that the depositors�early/late liquidity shocks are observable, and a bank

which is able to pay its late depositors at least l1 at date 2 can refuse to pay the late

depositors if they arrive early.3 With this assumption, the continuation equilibrium for

bank bj at date 1 takes one of two forms. Either there is a no-liquidation equilibrium in

which the bank is solvent and pays

qj1 = l1; q
j
2 � l1, (4)

while the late depositors withdraw at date 2; or there is a liquidation equilibrium in which

the bank is insolvent, unloads all outstanding loans, and pays

qj1 < l1; q
j
2 = 0, (5)

while all depositors (including the late depositors) draw their deposits at date 1.

This completes the description of the normal environment with an uncertain �nancial

network. Figure 2 recaps the timeline of events in this economy. It can be checked, as we

do in the Appendix, that in equilibrium each bank bj is solvent and pays its depositors

the contracted values, q1 = l1 and q2 = l2, in each state of the world s (0) ; s (r) and s (g).

In states s (r) and s (g), the banks in need of liquidity meet their liquidity demands by

withdrawing their deposits in their forward neighbor banks, and the banks with excess

liquidity do not withdraw their deposits in order to receive higher returns at date 2.

Moreover, the banks do not audit or recall any loans at date 0. The �nancial network

facilitates liquidity insurance and enables liquidity to �ow across banks even though the

banks are uncertain about the network structure. In the next sections we show how things

change dramatically in the presence of a perturbation to this environment, especially when

banks face uncertainty about the �nancial network.

3Without this assumption, there could be multiple equilibria for late depositors�early/late withdrawal
decisions. In cases with multiple equilibria, this assumption selects the equilibrium in which no late
depositor withdraws.
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Figure 2: Timeline of events.

2.2 A Rare Event

Henceforth we consider the equilibrium following an unanticipated change in the structure

of shocks: At date 0 the banks learn that the actual state is s�j (0), which is just like s (0)

except for the fact that one bank, b�j, becomes distressed and loses � � y of its liquid

assets. Figure 2 describes the timeline in the perturbed environment. We formally de�ne

the equilibrium in this economy as follows.

De�nition 1. The equilibrium is a collection of bank auditing, loan recall, deposit with-

drawal, and payment decisions
h�
aj (�) ; yj0 (�) ; z

j (�) ; qj1 (�) ; q
j
2 (�)

	
j

i
b(�)2B

such that, for

each consistent realization of the �nancial network b (�) at date �1 and the realization of
the unanticipated aggregate state s�j (0) at date 0, each bank bj maximizes expected utility

in (3) given its prior belief f j (:) over B, the insolvent banks (with qj1 (�) < l1) unload all
of their outstanding loans at date 1 and the late depositors withdraw deposits early if and

only if qj2 (�) < l1 (cf. Eqs. (4) and (5)).

As we will see in the subsequent sections, the loan recall and auditing options become

useful in this scenario. The distressed bank b�j does not have enough liquid reserves to meet

the liquidity demand at date 1. This bank tries but cannot obtain liquidity from cross-

deposits (since the other banks do not have excess liquidity either), thus it bene�ts from
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recalling some of its loans at date 0. If the distressed bank is insolvent despite recalling

loans, it will pay less than l1 to its depositors, including its backward neighbor bank, and

the crisis will spread in this fashion to the other banks in the network. Anticipating this,

banks fbjgj 6=�j may also want to recall some loans. These banks may acquire additional
information about the �nancial network to make more accurate loan recall decisions. Note

that each bank bj 6= b�j knows that the bank b�j is distressed, but it does not necessarily
know the slot

�{ = ��1 (�j)

of the distressed bank. This is key, since it means that a bank bj 6= b�j does not necessarily
know how far removed it is from the distressed bank.

More speci�cally, note that for each �nancial network b (�) and for each bank bj, there

exists a unique k 2 f0; ::; 2n� 1g such that

j = � (�{� k) ,

which we de�ne as the distance of bank bj from the distressed bank. As we will see, the

distance k will be the payo¤ relevant information for a bank bj that decides how many of

the loans to recall since it will determine whether or not the crisis that originates at the

distressed bank b�j will cascade to bank bj.

The banks b�(�{�1); b�(�{); b�(�{+1), respectively with distances 1; 0 and 2n � 1, know their
distances, but the remaining banks (with distances k 2 f2; ::; 2n� 2g) do not have this
information a priori and they assign a positive probability to each ~k 2 f2; ::; 2n� 2g (they
rule out ~k 2 f1; 2n� 1g by observing their forward and backwards neighbors). Note,
however, that the bank bj can use the auditing technology to learn about the �nancial

network and, in particular, about its distance from the distressed bank. A bank b�(�{�k)

(with distance k) that audits aj � 1 banks either learns its distance k (if k � aj + 1) or
it learns that k � aj + 2.
We next turn to the characterization of equilibrium in the perturbed environment.

3 Free-Information Benchmark

We �rst study a benchmark case in which auditing is free so each bank b�(�{�k) chooses full

auditing a�(�{�k) = 2n � 3. In this context banks learn the whole �nancial network b (�)
and, in particular, their distances k.

All banks receive a liquidity shock, �!, and have liquid reserves equal to y = �!l1, except

10



for bank b�j = b�(�{) which has liquid reserves y � �. At date 1, the distressed bank b�(�{)

withdraws its deposits from the forward neighbor bank. As we show in the Appendix,

this triggers further withdrawals until, in equilibrium, all cross deposits are withdrawn.

That is

zj = z 8 j 2 f1; ::; 2ng . (6)

In particular, bank b�(��) tries, but cannot, obtain any net liquidity through cross with-

drawals. The bank also cannot obtain any liquidity by unloading the loans at date 1,

since each unit of unloaded loan yields r � 0. Anticipating that it will not be able to

obtain additional liquidity at date 1, the distressed bank b�(�{) tries to obtain liquidity by

recalling some of its loans at date 0.

In order to promise late depositors at least l1, a bank with no liquid reserves left at

the end of date 1 must have at least

1� y � �yn0 =
(1� �!) l1

R
(7)

units of loans. The level �yn0 is a natural limit on a bank�s loan recalls (which plans to

deplete all of its liquidity at date 1) since any choice above this would make the bank

necessarily insolvent. If the actual limit on loan recalls �y0 is greater than �yn0 , then the

bank can recall at most �yn0 loans while remaining solvent; or else it can recall �y0 loans.

Combining the two cases, a bank�s bu¤er is given by

� = min f�y0; �yn0 g .

A bank can accommodate losses in liquid reserves up to the bu¤er �, but becomes insolvent

when losses are beyond �. It follows that the distressed bank b�(��) will be insolvent

whenever

� > �; (8)

that is, whenever its losses in liquid reserves are greater than its bu¤er. Suppose this is

the case so bank b�(��) is insolvent. Anticipating insolvency, this bank will recall as many

of its loans as it can y�(��)0 = �y0 (since it maximizes q
�(�{)
1 ) and unloads all remaining loans

at date 1. Since the bank is insolvent, all depositors (including late depositors) arrive

early and the bank pays

q
�(��)
1 =

y + �y0 � � + zq�(��+1)1

1 + z
< l1, (9)
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where recall that q�(��+1)1 denotes bank b�(��+1)�s payment to early depositors (which is equal

to l1 if bank b�(��+1) is solvent).

Partial Cascades. Since bank b�(�{) is insolvent, its backward neighbor bank b�(�{�1) will

experience losses in its cross deposit holdings, which, if severe enough, may cause bank

b�(�{�1)�s insolvency. Once the crisis cascades to bank b�(�{�1), it may then similarly cascade

to bank b�(�{�2), continuing its cascade through the network in this fashion.

We conjecture that, under appropriate parametric conditions, there exists a threshold

K 2 f1; ::; 2n� 2g such that all banks with distance k � K � 1 are insolvent (there are
K such banks) while the banks with distance k � K remain solvent. In other words, the

crisis will partially cascade through the network but will be contained after K � 2n � 2
banks have failed. We refer to K as the cascade size.

Under this conjecture, bank b�(��+1), which has a distance 2n� 1, is solvent. Therefore
q
�(��+1)
1 = l1 and q

�(��)
1 in Eq. (9) can be calculated explicitly. Consider now the bank

b�(���1) with distance 1 from the distressed bank. To remain solvent, this bank needs to

pay l1 on its deposits to bank b�(���2) but it receives only q
�(��)
1 < l1 on its deposits from the

distressed bank b�(��), so it loses z
�
l1 � q�(��)1

�
in cross-deposits. Hence, bank b�(���1) will

also go bankrupt if and only if its losses from cross-deposits are greater than its bu¤er,

z
�
l1 � q�(��)1

�
> �, which can be rewritten as

q
�(��)
1 < l1 �

�

z
. (10)

If this condition fails, then the only insolvent bank is the original distressed bank and the

cascade size is K = 1. If this condition holds, then bank b�(���1) anticipates insolvency, it

will recall as many loans as it can, i.e. y�(���1)0 = �y0 and it will pay all depositors

q
�(���1)
1 = f

�
q
�(��)
1

�
� y + �y0 + zq

�(��)

1 + z
. (11)

From this point onwards, a pattern emerges. The payment by an insolvent bank b�(i�k)

(with k � 1) is given by
q
�(���k)
1 = f

�
q
�(���(k�1))
1

�
and this bank�s backward neighbor b�(i�(k+1)) is also insolvent if and only if q�(���k)1 < l1� �

z
.

Hence, the payments of the insolvent banks converge to the �xed point of the function

12



f (:) given by y + �y0, and if4

y + �y0 > l1 �
�

z
, (12)

then (under Eq. (10)) there exists a unique K � 2 such that

q
�(���k)
1 < l1 �

�

z
for each k 2 f0; ::; K � 2g (13)

and q�(���(K�1))1 � l1 �
�

z
.

If 2n� 2 is greater than the solution, K, to this equation, i.e. if

2n� 2 � K; (14)

then, Eq. (13) shows that (in addition to the trigger-distressed bank b�(�{)) all banks

b�(���k) with distance k 2 f1; ::; K � 1g are insolvent since their losses from cross deposits

are greater than their corresponding bu¤ers. In contrast, bank b�(�{�K) (that receives

q
�(���(K�1))
1 from its forward neighbor) is solvent, since it can meet its losses from cross

deposits by recalling loans while still promising the late depositors at least l1 (i.e. q
�(���K)
2 �

l1). Since bank b�(�{�K) is solvent, all banks b�(���k) with distance k 2 fK + 1; ::; 2n� 1g
are also solvent since they do not incur losses in cross-deposits. Hence these banks do not

recall any loans y�(���k)0 = 0 and pay
�
q
�(���k)
1 = l1; q

�(���k)
2 = l2

�
, verifying our conjecture

for a partial cascade of size K under conditions (12) and (14).

Since our goal is to study the role of network uncertainty in generating a credit crunch,

we take the partial cascades as the benchmark. The next proposition summarizes the

above discussion and also characterizes the aggregate level of recalled loans, which we use

as a benchmark in subsequent sections.

Proposition 1. Suppose the �nancial network is realized as b (�), auditing is free, and
conditions (8), (12) and (14) hold. Let �{ = ��1 (�j) denote the slot of the distressed bank.

Then, the banks�equilibrium payments
�
q
�(���k)
1 ; q

�(���k)
2

�
are (weakly) increasing with re-

spect to their distance k from the distressed bank, and there is a partial cascade of size

K � 2n � 2 where K is de�ned by Eq. (13). Banks
�
b�(���k)

	K�1
k=0

(with distance from

the distressed bank k � K � 1) are insolvent while the remaining banks
�
b�(���k)

	2n�1
k=K

(with distance k � K) are solvent. Banks
�
b�(���k)

	K�1
k=0

recall all of the loans they can

and unload all of the remaining loans at date 1, while banks
�
b�(���k)

	2n�1
k=K+1

do not recall

or unload any loans. Bank b�(���K) recalls a level of loans y�(�{�K)0 = z
�
l1 � q�(�{�(K�1))1

�
4If condition (12) fails, then the sequence

�
q
�(���k)
1 = f

�
q
�(���(k�1))
1

��
k
always remains below l1 � �

z ,

and it can be checked that there is a full cascade, i.e. all banks are insolvent.

13



0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

Figure 3: The free-information benchmark. The top �gure plots the cascade size K
as a function of the losses in the originating bank �, for di¤erent levels of the �exibility
parameter �y0. The bottom �gure plots the aggregate level of loan recalls, F , for the same
set of f�y0g.

which is just enough to meet its losses from cross deposits (and does not unload any

loans). This bank pays
�
q
�(���K)
1 = l1; q

�(���K)
2 � l2

�
while all other solvent banks pay�

q
�(�{�k)
1 = l1; q

�(�{�k)
2 = l2

�
. The payments of the insolvent banks are determined by the

sequence
�
q
�(���k)
1 = f

�
q
�(���(k�1))
1

��K�1
k=0

, where the initial value q�(��)1 is solved from Eq.

(9) after substituting q�(��+1)1 = l1.

The aggregate level of recalled loans is:

F �
X
j

yj0 = K�y0 + y
�(���K)
0 . (15)

Discussion. Proposition 1 shows that the loan recall decisions and the payments of a

bank bj = b�(�{�k) only depends on its distance k, and that the aggregate level of recalled

loans, F , is roughly linear in the size of the cascade K (and is roughly continuous in �)

for any given level of �y0. Figure 3 demonstrates this result for particular parameterization

of the model.

The top panel of the �gure plots the cascade size K as a function of the losses in the

originating bank � for di¤erent levels of the �exibility parameter �y0. This plot shows that

the cascade size is increasing in the level of losses � and decreasing in the level of �exibility

�y0. Intuitively, with a higher � and a lower �exibility parameter �y0, there are more losses

14



to be contained and the banks have less emergency reserves to counter these losses, thus

increasing the spread of insolvency.

The bottom panel plots the aggregate level of loan recalls F , which is a measure of
the severity of the credit crunch, as a function of �. This plot shows that F also increases
with � and falls with �y0. This is an intuitive result: In the free-information benchmark

only the insolvent banks (and one transition bank) recall loans, thus the more banks are

insolvent (i.e. the greater K) the more loans are recalled in the aggregate. Note also that

F increases �smoothly�with �.

These results o¤er a benchmark for the next sections. There we show that once

auditing becomes costly, both K and F may be non-monotonic in �y0 and can jump with

small increases in �.

4 Endogenous Complexity and the Credit Crunch

We have now laid out the foundation for our main result. In this section we add the

realistic assumption that auditing is costly and demonstrate that a massive credit crunch

can arise in response to an endogenous increase in complexity once a bank in the network

is su¢ ciently distressed. In other words, when K is large, it becomes too costly for banks

to �gure out their indirect exposure. This means that their perceived uncertainty rises

and they eventually respond by recalling their loans as a precautionary measure (i.e., F
spikes).

Note that, unlike in Section 3, we cannot simplify the analysis by solving the equilib-

rium for a particular �nancial network b (�) in isolation, since, even when the realization

of the �nancial network is b (�), each bank also assigns a positive probability to other

�nancial networks b (~�) 2 B. As such, for a consistent analysis we must describe the
equilibrium for any realization of the �nancial network b (�) 2 B (cf. De�nition 1).
Solving this problem in full generality is cumbersome but we make assumptions on the

form of the adjustment cost function, the banks�objective function, and on the �exibility

of the loan-recall limit, that help simplify the exposition. First, we consider a convex and

increasing cost function d (:) that satis�es

d (1) = 0 and d (2) > v (l1 + l2)� v (0) . (16)

This means that banks can audit one balance sheet for free but it is very costly to audit

the second balance sheet. In particular, given the bank�s preferences in (3), the bank will

never choose to audit the second balance sheet and thus each bank audits exactly one
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balance sheet,
h
faj (�) = 1gj

i
b(�)2B

. Given these audit decisions and the actual �nancial

network b (�), a bank bj has a posterior belief f j (:j�;1) with support Bj (�;1), which is
the set of �nancial networks in which the bank j knows the identities of its neighbors

and its second forward neighbor. In particular, the bank b�(���2) learns its distance from

the distressed bank b�(��) (in addition to banks b�(���1); b�(��); b�(��+1) which already have this

information from the outset of date 0). We denote the set of banks that know the slot of

the distressed bank (and thus their distance from this bank) by

Bknow (�) =
�
b�(���2); b�(���1); b�(��); b�(��+1)

	
.

On the other hand, each bank b�(���k) with k 2 f3; ::; 2n� 2g learns that its distance
is at least 3 (i.e. ~k � 3), but otherwise assigns a probability in (0; 1) to all distances
~k 2 f3; ::; 2n� 2g. We denote the set of banks that are uncertain about their distance by

Buncertain (�) =
�
b�(���3); b�(���4); :::; b�(�{�(2n�2))

	
.

Second, we assume that the preference function v (:) in (3) is Leontie¤ v (x) =

(x1�� � 1) = (1� �) with � !1, so that the bank�s objective is:

min
b(~�)2Bj(�;1)

�
1
�
qj1 (~�) � l1

	
qj1 (~�) + 1

�
qj1 (~�) � l1

	
qj2 (~�)

�
� d

�
aj (�)

�
. (17)

This means that banks evaluate their decisions according to the worst possible network

realization, b (~�), which they �nd plausible.

The third and last assumption is that

�y0 � �yn0 : (18)

That is, the actual limit on loan recalls is below the natural limit de�ned in Eq. (7)

(which also implies that the bu¤er is given by � = �y0). This condition ensures that,

in the continuation equilibrium at date 1, the banks that have enough liquidity are also

solvent (since they have enough loans to pay the late depositors at least l1 at date 2). We

drop this condition in the next section.

We next turn to the characterization of the equilibrium under these simplifying as-

sumptions. The banks make their loan recall decision at date 0 and deposit withdrawal

decision at date 1 under uncertainty (before their date 1 losses from cross-deposits are

realized). At date 1 the distressed bank b�(�{) withdraws its deposits from the forward

neighbor which leads to the withdrawal of all cross deposits (see Eq. (6) and the Appen-
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dix) as in the free-information benchmark. Thus, for any distressed bank, the only way

to obtain additional liquidity at date 1 is through ex-ante (date 0) loan recalls, which we

characterize next.

A Su¢ cient Statistic for Loan Recalls. Consider a bank b�(�{�k) other than the

original distressed bank (i.e. suppose k > 0). A su¢ cient statistic for this bank to

make the loan recall decision is q�(�{�(k�1))1 (~�) � l1, which is the amount it receives in

equilibrium from its forward neighbor. In other words, to decide how many of its loans

to recall, this bank only needs to know whether (and how much) it will lose in cross-

deposits. For example, if it knows with certainty that q�(�{�(k�1))1 (~�) = l1 (i.e. its forward

neighbor is solvent), then it recalls no loans y�(�{�k)0 = 0. If it knows with certainty that

q
�(�{�(k�1))
1 (~�) < l1 � �=z (i.e. its forward neighbor will pay so little that this bank will
also be insolvent), then it recalls as many loans as it can y�(�{�k)0 = �y0. More generally,

if the bank b�(�{�k) chooses some y00 2 [0; �y0] at date 0 and its forward neighbor pays

x � q�(�{�(k�1))1 (~�) at date 1, then this bank�s payment can be written as

q
�(�{�k)
1 (~�) = q1 [y

0
0; x] and q

�(�{�k)
2 (~�) = q2 [y

0
0; x] , (19)

where the functions q1 [y00; x] and q2 [y
0
0; x] are characterized in Eqs. (25) and (26) in the

Appendix. At date 0, the bank does not necessarily know x = q�(�{�(k�1))1 (~�) and it has to

choose the level of loan recalls under uncertainty.

The characterization in the Appendix also shows that q1 [y00; x] and q2 [y
0
0; x] are

(weakly) increasing in x for any given y00. That is, the bank�s payment is increasing

in the amount it receives from its forward neighbor regardless of the ex-ante loan recall

decision. Using this observation along with Eq. (19), the bank�s objective value in (17)

can be simpli�ed and its optimization problem can be written as

max
y002[0;�y0]

(1 fq1 [y00; xm] � l1g q1 [y00; xm] + 1 fq1 [y00; xm] � l1g q2 [y00; xm]) , (20)

s.t. xm = min
n
x j x = q�(�{�(k�1))1 (~�) ; b (~�) 2 Bj (�;1)

o
.

In words, a bank b�(�{�k) (with k > 0) recalls loans as if it will receive from its forward

neighbor the lowest possible payment xm.

Distance Based and Monotonic Equilibrium. Next we de�ne two equilibrium al-

location notions that are useful for further characterization. First, we say that the equi-

librium allocation is distance based if the bank�s equilibrium payment can be written only
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as a function of its distance k from the distressed bank, that is, if there exists payment

functions Q1; Q2 : f0; ::; 2n� 1g ! R such that�
q
�(i�k)
1 (�) ; q

�(i�k)
2 (�)

�
= (Q1 [k] ; Q2 [k])

for all b (�) 2 B and k 2 f0; ::; 2n� 1g. Second, we say that a distance based equilibrium
ismonotonic if the payment functionsQ1 [k] ; Q2 [k] are (weakly) increasing in k. In words,

in a distance based and monotonic equilibrium, the banks that are further away from the

distressed bank yield (weakly) higher payments.

We next conjecture that the equilibrium is distance based and monotonic (which we

verify below). Then, a bank b�(�{�k)�s uncertainty about the forward neighbor�s payment

x = q
�(�{�(k�1))
1 (~�) = Q1 [k � 1] reduces to its uncertainty about the forward neighbor�s

distance k � 1, which is equal to one less than its own distance k. Hence, the problem
in (20) can further be simpli�ed by substituting q�(i�(k�1))1 (~�) = Q1 [k � 1]. In particular,
since a bank b�(i�k) 2 Bknow (�) (for k > 0) knows its distance k, it solves problem (20)

with xm = Q1 [k � 1].
On the other hand, a bank b�(i�k) 2 Buncertain (�) assigns a positive probability to all

distances ~k 2 f3; :::; 2n� 2g. Moreover, since the equilibrium is monotonic, its forward

neighbor�s payment Q1
h
~k � 1

i
is minimal for the distance ~k = 3, hence a bank b�(i) 2

Buncertain (�) solves problem (20) with xm = Q1 [2].

We are now in a position to state the main result of this section, which shows that all

banks that are uncertain about their distances to the distressed bank recall loans as if they

are closer to the distressed bank than they actually are.

More speci�cally, all banks in Buncertain (�) recall the level of loans that the bank with

distance ~k = 3 would recall in the free-information benchmark. When the cascade size is

su¢ ciently large (i.e. K � 3) so that the bank with distance ~k = 3 in the free-information
benchmark would recall many of its loans, all banks in Buncertain (�) with actual distances

k > K also recall many of their loans, even though ex-post they end up not needing

liquidity.

To state the result, we let
�
yj0;free (�) ; q

j
1;free (�) ; q

j
2;free (�)

�
j
denote the loan recall

decisions and payments of banks in the free-information benchmark for each �nancial

network b (�) 2 B (characterized in Proposition 1).

Proposition 2. Suppose assumptions (FS), (16), and (17) are satis�ed and conditions
(8), (12), (14), and (18) hold. For a given �nancial network b (�), let �{ = ��1 (j) denote

the slot of the distressed bank.

(i) For the continuation equilibrium (at date 1): The equilibrium allocation
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h�
qj1 (�) ; q

j
2 (�)

	
j

i
b(�)2B

is distance based and monotonic. The cascade size in the con-

tinuation equilibrium is the same as in the free-information benchmark, that is, at date 1,

banks
�
b�(�{�k)

	K�1
k=0

are insolvent while banks
�
b�(�{�k)

	2n�1
k=K

are solvent where K is de�ned

in Eq. (13).

(ii) For the ex-ante equilibrium (at date 0): Each bank bj 2 Bknow (�) recalls the same
level of loans yj0 (�) = yj0;free (�) as in the free-information benchmark, while each bank

bj 2 Buncertain (�) recalls yj0 (�) = y
�(���3)
0;free (�) of its loans, which is what bank b

�(�{�3) would

choose in the free-information benchmark.

For the aggregate level of recalled loans, there are three cases depending on the cascade

size K:

If K � 2, then the crisis in the free-information benchmark would not cascade to bank
b�(�{�3), which would recall no loans y�(�{�3)0;free (�) = 0. Thus, each bank bj 2 Buncertain (�)
recalls no loans and the aggregate level of recalled loans is equal to the benchmark Eq.

(15).

If K = 3, then the crisis in the free-information benchmark would cascade to and stop

at bank b�(�{�3), which would recall an intermediate level of loans y�(�{�3)0;free (�) 2 [0; �y0]. Thus,
each bank bj 2 Buncertain (�) recalls y�(�{�3)0;free (�) of its loans and the aggregate level of recalled

loans is:

F =
X
j

yj0 = 3�y0 + (2n� 4) y
�(���3)
0;free . (21)

If K � 4, then in the free-information benchmark bank b�(�{�3) would be insolvent and
would recall as many of its loans as it can y�(�{�3)0free = �y0. Thus, each bank b

j 2 Buncertain (�)
recalls as many of their loans as they can and the aggregate level of recalled loans is:

F =
X
j

yj0 = (2n� 1) �y0. (22)

The proof of this result is relegated to the appendix since most of the intuition is

provided in the discussion preceding the proposition. Among other features, the proof

veri�es that the equilibrium allocation at date 1 is distance based and monotonic, and

that the cascade size is the same as in the free-information benchmark. The date 0

loan recall decisions are characterized as in part (ii) since the payments Q1 [k � 1] for
k 2 f1; 2; 2n� 1g (that a bank b�(�{�k) 2 Bknow (�) with k > 0 expects to receive) and the
payment Q1 [2] (that the banks in Buncertain (�) e¤ectively expect to receive) are the same

as their counterparts in the free-information benchmark.
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Figure 4: The costly-audit equilibrium. The top panel plots the cacade size K as
a function of the losses in the originating bank � for di¤erent levels of the �exibility
parameter �y0. The bottom panel plots aggregate level of loan recalls F for the same set
of f�y0g. The dashed lines in the bottom panel reproduce the free-information benchmark
in Figure 3 for comparison.

Discussion. The plots in Figure 4 are the equivalent to those in the free-information

case portrayed in Figure 3. The top panel plots the cascade size K as a function of

the losses in the originating bank �. The parameters satisfy condition (18) so that the

cascade size in this case is the same as the cascade size in the free-information benchmark

characterized in Proposition 1, and both �gures coincide.

The key di¤erences are in the bottom panel, which plots the aggregate level of loan

recalls F as a function of �. The solid lines correspond to the costly audit equilibrium

characterized in Proposition 2, while the dashed lines reproduce the free-information

benchmark also plotted in Figure 3. These plots demonstrate that, for low levels of K

(i.e. for K < 3), the aggregate level of loan recalls with costly-auditing is the same as the

free-information benchmark, in particular, it increases roughly continuously with �. As

K switches from below 3 to above 3, the loan recalls in the costly audit equilibrium make

a very large and discontinuous jump. That is, when the losses (measuring the severity of

the initial shock) are beyond a threshold, the cascade size becomes so large that banks

are unable to tell whether they are connected to the distressed bank. All uncertain banks

act as if they are closer to the distressed bank than they actually are, recalling many

more loans than in the free-information benchmark and leading to a severe credit crunch

episode. This is our main result.
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Note also that the aggregate level of loan recalls (and the severity of the credit crunch)

is not necessarily monotonic in the level of �exibility in loan recalls �y0. For example,

when � = 0:5, Figure 4 shows that providing more �exibility to the banks by increasing

�y0 actually increases the level of aggregate loan recalls. That is, at low levels of �, an

increase in �exibility stabilizes the system but the opposite may take place when the

shock is su¢ ciently large. Intuitively, if the increase in �exibility is not su¢ cient enough

to contain the �nancial panic (by reducing the cascade size to manageable levels), more

�exibility back�res since it enables banks to recall more loans and therefore exacerbate

the credit crunch.

5 The Collapse of the Financial System

Until now, the uncertainty that arises from endogenous complexity a¤ects the extent of

the credit crunch but not the number of banks that are insolvent, K. In this section we

show that if banks have �too much��exibility, in the sense that condition (18) no longer

holds and

�y0 2 (�yn0 ; 1� y] (23)

(which also implies � = �yn0 ), then the rise in uncertainty itself can increase the number of

insolvent banks.

The reason is that a large precautionary loan-recall compromises banks� long run

pro�tability by swapping high return R for low return 1. In this context, even if the

worst outcome anticipated by a bank does not materialize, it may still become insolvent

if su¢ ciently close (but farther than K) from the distressed bank. In other words, a

bank�s large precautionary reaction improves its liquidation outcome when very close to

the distressed bank but it does so at the cost of raising its vulnerability with respect to

more benign scenarios. Since ex-post a large number of banks may �nd themselves in the

latter situation, there can be a signi�cant rise in the number of insolvencies as a result of

the additional �exibility.

The analysis is very similar to that in the previous section. In particular, a bank�s

payment still depends on its choice y00 2 [0; �y0] at date 0 and its forward neighbor�s

payment x � q�(�{�(k�1))1 (~�) at date 1. That is:

q
�(�{�k)
1 (~�) = q1 [y

0
0; x] and q

�(�{�k)
2 (~�) = q2 [y

0
0; x]

for some functions q1 [y00; x] and q2 [y
0
0; x]. However, the characterization of the piecewise
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functions q1 [y00; x] and q2 [y
0
0; x] changes a little when condition (18) is not satis�ed. In

particular, these functions are identical to those in (25) and (26) in the Appendix (as in

Section 4) but now there is an additional insolvency region:

y00 > y
u
0 [(l1 � x) z] :

The critical new element is the bound yu0 [(l1 � x) z]. This is a function of the losses
from cross-deposits and is calculated as the level of loan recalls above which the bank�s

remaining loans and liquid reserves (net of losses) would not be su¢ cient to pay the late

depositors at least l1. That is, yu0 [(l1 � x) z] is the solution to

R (1� y � yu0 [(l1 � x) z]) + yu0 [(l1 � x) z]� (l1 � x) z = l1 (1� �!) .

We refer to scenarios where y00 > y
u
0 [(l1 � x) z] as, for lack of a better jargon, scenarios

of precautionary insolvency.

The functions q1 [y00; x] and q2 [y
0
0; x] remain (weakly) increasing in x. Moreover, we

conjecture as before that the equilibrium is monotonic and distance based (which we verify

below), so the banks�loan recall decisions still solve problem (20). It can be veri�ed that

all banks (except potentially bank b�(�{+1)) recall the level of loans as characterized in

part (ii) of Proposition 2. In particular, all banks bj 2 Buncertain (�) choose the level of
insurance the bank with distance ~k = 3 would choose in the free-information benchmark.

However, part (i) of the proposition, which characterizes the equilibrium at date 1, changes

once �y0 exceeds �yn0 .

We divide the cases by the cascade size: K � 2; K = 3, and K � 4. In the �rst

two of these cases there is no additional panic relative to the case where banks��exibility

is limited. If K � 2, each bank bj 2 Buncertain (�) recalls yj0 = 0. The date 1 equilib-

rium in this case is as described in part (i) of Proposition 2, in particular, there are no

precautionary insolvencies and the cascade size is equal to K. Similarly, if K = 3, each

bank bj 2 Buncertain (�) recalls yj0 = y
�(�{�3)
0;free � �yn0 ; where the inequality follows since the

transition bank b�(�{�3) is solvent in the free-information benchmark. Since yj0 � �yn0 , it can
be seen that yj0 � yu0 [(l1 � x) z], so the banks in Buncertain (�) are solvent.5 It follows that
there are no precautionary insolvencies and the equilibrium is again as described in part

(i) of Proposition 2, with a cascade size equal to K = 3.

5To see this, �rst note that yj0 � �yn0 , which implies

(R� 1) yj0 � R�yn0 � y
j
0 = (1� y)R� (1� �!) l1 � y

j
0,

where the equality follows from Eq. (7). Combining this inequality with the inequality yj0 � (l1 � x) z
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The new scenarios arise when K � 4. In this case, each bank bj 2 Buncertain (�) recalls
yj0 = �y0 > �y

n
0 loans, and may experience a precautionary insolvency depending on its losses

from cross-deposits. Note also that, in this case, all banks bj 2
�
b�(�{); :::; b�(�{�(2n�2))

	
recall

�y0 while bank b�(�{+1) (which is the only informed bank far away from the distressed bank)

may recall a smaller amount.

To analyze this case, �rst note that the bound yu0 [(l1 � x) z] is decreasing in (l1 � x) z,
and thus increasing in x. That is, the more a bank receives from its forward neighbor, the

higher the bound above which it will experience a precautionary insolvency. Second, note

the inequality, yu0 [0] < 1�y, which follows from some algebra and using l2=l1 < R. Then,
there are two subcases to consider depending on whether or not the �exibility parameter

�y0 is greater than yu0 [0] (which is the highest value of the bound y
u
0 [(l1 � x) z]).

Subcase 1. If �y0 is in the interval (yu0 [0] ; 1 � y], then �y0 is always greater than the
upper bound yu0 [(l1 � x) z] and a bank bj experiences a precautionary insolvency regard-
less of the amount x it receives from its forward neighbor. In particular, all banks in�
b�(�{); :::; b�(�{�(2n�2))

	
are insolvent. It can be veri�ed that the informed bank b�(�{+1) averts

insolvency by choosing some y�(�{+1)0 � �yn0 (see the Appendix).
Subcase 2. If �y0 2 (�yn0 ; yu0 [0]), then there exists a unique x [�y0] 2 (l1 � �yn0 =z; l1) that

solves

yu0 [(l1 � x [�y0]) z] = �y0. (24)

In this case, a bank bj that has recalled �y0 loans is insolvent if and only if it receives from

its forward neighbor x < x [�y0] (so that its upper bound yu0 [(l1 � x) z] is below its loan
recalls �y0). By a similar analysis to that in Section 3 for the partial cascades (which we

carry out in the Appendix), it can be checked that there exists K̂ 2 [K; 2n� 1] such that
the banks

n
b�(�{); ::; b�(�{�(K̂�1))

o
are insolvent while the banks

n
b�(�{�K̂); ::; b�(�{�(2n�1))

o
are solvent. In other words, there is a partial cascade which is at least as large as (and

potentially greater than) the partial cascade in the free-information benchmark.

We summarize our �ndings in the following proposition.6

(since K � 3, the banks in Buncertain (�) have su¢ cient liquid reserves at date 1) leads to

yj0 �
(1� y)R� (1� �!) l1 � (l1 � x) z

R� 1 = yu0 [(l1 � x) z] :

Note also that condition (18) implies yj0 � �y0 � �yn0 and thus rules out precautionary insolvencies by
the above steps.

6Given the possibility of precautionary insolvencies, one may also wonder whether there could be
multiple equilibria due to banks�coordination failures. Suppose, for example, K = 3, so that the crisis is
contained after 3 banks fail. Could there also be a bad equilibrium in which all banks recall the maximum
level of loans, and their recall decisions are justi�ed since their forward neighbors also recall the maximum
level of loans and experience a precautionary insolvency (thus paying a small qj1)?
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Proposition 3. Suppose assumptions (FS), (16) and (17) are satis�ed and conditions
(8), (12), (14) hold. Suppose also that condition (23) (which is the opposite of condition

(18)) holds. For a given �nancial network b (�), let �{ = ��1 (j) denote the slot of the

distressed bank.

(i) For the ex-ante equilibrium (at date 0): Each bank bj 2
�
b�(�{); b�(�{�1); b�(�{�2)

	
�

Bknow (�) recalls the same level of loans yj0 (�) = y
j
0;free (�) as it would recall in the free-

information benchmark, while each bank bj 2 Buncertain (�) recalls yj0 (�) = y
�(���3)
0;free (�),

which is what the bank b�(�{�3) would recall in the free-information benchmark. The bank

bj 2 b�(�{+1) recalls y�(�{+1)0 (�) � �yn0 just enough to avert insolvency.
(ii) For the continuation equilibrium (at date 1): The equilibrium allocationh�
qj1 (�) ; q

j
2 (�)

	
j

i
b(�)2B

is distance based and monotonic. There exists a unique

K̂ 2 [K; 2n� 1] such that banks
n
b�(�{); ::; b�(�{�(K̂�1))

o
are insolvent while banksn

b�(�{�K̂); ::; b�(�{�(2n�1))
o
are solvent. The cascade size K̂ is potentially larger than the

cascade size K in the free-information benchmark. In particular, there are two cases:

If K � 3, then each bank bj 2 Buncertain (�) chooses some yj0 (�) � �yn0 , and avoids a

precautionary insolvency. The cascade size in this case is identical to the free-information

benchmark, i.e. K̂ = K.

If K � 4, then each bank bj 2 Buncertain (�) chooses yj0 (�) = �y0 > �yn0 , which may lead
to a precautionary insolvency. There are two sub-cases:

If �y0 2 (yu0 [0] ; 1 � y], all banks bj 2 Buncertain (�) are insolvent and the cascade
size is given by K̂ = 2n� 1 > K � 4.

If �y0 2 (�yn0 ; yu0 [0]], there exists a unique x [�y0] 2 (l1 � �yn0 =�; l1) characterized by
Eq. (24) such that bank bj 2 Buncertain (�) is insolvent if and only if its forward neighbor�s
payment is below x [�y0]. The cascade size is an intermediate level K̂ 2 [K; 2n� 1].

Discussion. Figure 5 plots the cascade size K̂ as a function of �, for di¤erent levels of

the �exibility parameter �y0. For comparison, the dashed lines plot the cascade size K in

the free-information benchmark for the same parameters. The top panel corresponds to

the case in which �y0 � �yn0 , i.e. when condition (18) holds. By Proposition 2, in this case

This kind of coordination failure is not possible in our setup, precisely because of conditions (12) and
(14). These conditions ensure that bank b�(�{+1) is always solvent, even if all other banks choose the
maximum level of loans and experience precautionary insolvencies. To see this, note that the losses from
cross-deposits decrease as we move away from the distressed bank and eventually q�(�{+2) � l1 � �=z.
Since bank b�(�{+1) expects to receive at least l1 � �=z from its forward neighbor, it can avoid insolvency
by choosing an intermediate level of loan recalls. Hence, it is never optimal for bank b�(�{+1) to undergo a
precautionary insolvency. But once we �x q�(�{+1) = c1, the rest of the equilibrium is uniquely determined
as described above, that is, there is no coordination failure among banks.
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Figure 5: The costly-audit equilibrium with precautionary insolvencies. Each
one of the four panels plots the cascade size K̂ as a function of � for a di¤erent level of
the �exibility parameter �y0 (in increasing order of �y0 from top to bottom). The dashed
lines plot the cascade size K in the free-information benchmark.

there are no precautionary insolvencies and the cascade size is the same as the cascade

size in the free-information benchmark. The second panel corresponds to a higher level

of �y0 that satis�es �y0 > �yn0 . In this case, precautionary insolvencies are possible, and for

su¢ ciently large � more banks are insolvent in the costly audit benchmark than in the

free-information benchmark, i.e. K̂ > K. The third panel shows that, as we increase

�y0, a su¢ ciently large shock � may trigger a collapse of the whole �nancial system (i.e.,

K̂ = 2n� 1).
The bottom panel in Figure 5 shows that as �y0 continues to rise, then at some point the

ampli�cation disappears and again K̂ = K. That is, the e¤ect of the �exibility parameter

�y0 on the size of the cascade K̂ is non-monotonic: The whole �nancial system collapses

with an intermediate level of �y0, but the health of the �nancial system is restored (and, in

fact, is stronger) with su¢ ciently high levels of �y0. The intuition for this non-monotonicity

is the same as the intuition for the non-monotonic e¤ect of �y0 on F . Increasing the
�exibility parameter �y0 reduces the cascade size K in the free-information benchmark. If

this increase in �exibility is not su¢ ciently large, K does not fall to manageable levels

and the �nancial panic remains. As long as there is a �nancial panic, the increase in

�y0 back�res and, in the current case, it also ampli�es the cascade by generating more

precautionary insolvencies. However, if the increase in �y0 is su¢ ciently large, it may end

the �nancial panic and restore the health of the �nancial system.
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6 Final Remarks

Our model captures what appears to be a central feature of �nancial panics: During

severe �nancial crises the complexity of the environment rises dramatically, and this in

itself causes confusion and �nancial retrenchment. The perception of counterparty risk

arises even in transactions among apparently sound �nancial institutions engaged in long

term relationships. All of a sudden, economic agents are faced with massive uncertainty

as things are no longer business-as-usual. The collapse of Lehman Brothers during the

current �nancial crisis is one such instance, which froze essentially all private credit mar-

kets and triggered massive run downs of credit lines and withdrawals even from the safest

money market funds.

In the model we capture the complexity of the environment with the size of the partial

cascades. When these cascades are small, banks only need to understand the �nancial

health of their immediate neighbors to make their decisions. In contrast, when �nancial

conditions worsen and cascades grow, banks need to understand and be informed about a

larger share of the network. At some point, this is simply too costly and banks withdraw

from intermediation rather than risk exposure to enormous uncertainty, which triggers a

�ight to quality.

We also showed that banks��exibility, de�ned as their ability to terminate long term

loans or sell illiquid assets while in distress, makes it harder for large cascades to develop,

but if they do develop they can trigger more severe credit crunches and even a collapse

in the �nancial system. Intuitively, a gain in �exibility is very useful if it succeeds in

containing panic, but it can be counterproductive if it does not as it facilitates banks�

withdrawal from intermediation.

An aspect we did not explore in this paper but one which we are currently pursuing

in a related work, is that of secondary markets for loans at date 0. Our preliminary

�ndings point to yet another ampli�cation aspect of the mechanism we highlight in this

paper: With full information, the distant banks (i.e., the banks with k > K) are the

natural buyers of the loans sold by the distressed banks. However, once distant banks

face uncertainty and become worried that they may be too close to the distressed bank,

they cease to buy loans from these banks as they would rather hoard their liquidity, which

exacerbates the network�s distress.

There are some obvious policy conclusions that emerge from our framework. For ex-

ample, there is clearly scope for having banks hold a larger bu¤er than they would be

privately inclined to do. Also, transparency measures, by reducing the cost of gathering

information, increase the resilience of the system to a lengthening in potential cascades.
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There is even an argument to limit banks��exibility to undo their �nancial positions.

However, we are interested in going beyond these observations, and in particular in ex-

ploring the impact of policies that modify the structure of the network. For example,

there is an emerging consensus that the prevalence of bilateral OTC markets for CDS

transactions compounded the confusion and complexity of the current �nancial crisis,

and that it is imperative to organize these transactions in well capitalized exchanges to

prevent a recurrence. Our framework can help with the formal analysis of this type of

policy considerations. We leave this analysis for future research.

7 Appendix

Equilibrium in the Normal Environment. We claim that, in the normal environ-

ment described in Section 2.1, the equilibrium with the uncertain �nancial network facili-

tates liquidity �ow and enables each bank bj to pay the contracted values
�
qj1 = l1; q

j
2 = l2

�
in each state of the world. Suppose that a consistent �nancial network, b (�), is realized

at date �1 and state s (r) is realized at date 0, and suppose without loss of generality that
red type banks are assigned to odd slots (the case in which red type banks are assigned to

even slots is symmetric). It su¢ ces to prove the statement for this case since the case in

which s (g) is realized is symmetric to the s (r) case, and the case in which s (0) is realized

is trivial.

We conjecture (and verify below) that each bank bj chooses not to audit (for any

positive audit costs d (:) > 0) and not to recall any loans, i.e. aj = 0 and yj0 = 0.

Consider the equilibrium at date 1. A red type bank, b�(2i�1), (which is assigned to an

odd slot by assumption) needs liquidity so it draws its deposits from the forward neighbor

bank, i.e. chooses z�(2i�1) = z. For each green type bank, b�(2i), regardless of the �nancial

network in B�(2i) (�), drawing z�(2i) 2 [0; z] deposits leads to the payments q�(2i) = l1 and

q
�(2i)
2 =

(1� y)R + z�(2i)l1 +
�
z � z�(2i)

�
l2

1� !L
.

Since l2 > l1 and the preferences are given by (3), the green type banks do not draw

their deposits regardless of their beliefs f�(2i) (: j �), i.e. they choose z�(2i) = 0. It follows
that liquidity �ows through the network at date 1 even though each bank is uncertain

about the network structure. In particular, for each bank bj, there is a no-liquidation

equilibrium at date 1 (cf. Eq. (4)) and the bank pays
�
qj1 = l1; q

j
2 = l2

�
.

We next consider the equilibrium at date 0 and verify our conjecture that the banks
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choose not to audit and not to recall any loans. First note that a bank b�(i) in need of

liquidity at date 1 is able to obtain it by withdrawing its deposits in the forward neighbor

at a cost of l2=l1 units at date 2 for each unit of liquidity. The bank could also obtain

liquidity by recalling loans at date 0 but this would cost R > l2=l1 units for each unit of

liquidity (since R > l2 > l1 > 1). Therefore, each bank b�(i) optimally chooses not to recall

any loans at date 0. Second note that a bank�s, b�(i), optimal actions (for loan recall at

date 0 and deposit withdrawal at date 1) only depend on its slot i (and only on its parity),

and in particular, it is independent of the �nancial network in B�(i) (�). Thus the bank
does not bene�t from auditing and optimally chooses not to audit, a�(i) = 0 (whenever

d (:) > 0), thus verifying our conjecture. This completes the proof of our claim that,

in the normal environment, the �nancial network facilitates liquidity �ow across banks

and enables each bank bj to pay the contracted values
�
qj1 = l1; q

j
2 = l2

�
in each aggregate

state.

Proof of Eq. (6) for Sections 3 and 4. We claim that all cross-deposits are fully

withdrawn, i.e. Eq. (6) holds, in both the free-information benchmark analyzed in Sec-

tion 3 and the costly audit model analyzed in Section 4. By condition (8), the original

distressed bank, b�(�{), is insolvent thus it withdraws all of its deposits, i.e. z�(�{) = z.

Suppose that, for some k 2 f0; ::; 2n� 1g, bank b�(�{�(k+1)) withdraws all of its deposits in
bank b�(�{�k). We claim that bank b�(�{�k) also withdraws deposits, i.e. z�(�{�k) = z, which

proves Eq. (6) by induction.

To prove the claim, we �rst consider the free-information benchmark and analyze two

cases in turn. As the �rst case, suppose that the forward neighbor of bank b�(�{�k) is

insolvent (i.e. it pays q�(i�(k�1))1 < l1 and q
�(i�(k�1))
2 = 0). Recall that bank b�(�{�k) is small

and takes the payment of its forward neighbor as given (see footnote 1), in particular,

it cannot potentially bail out its forward neighbor by withdrawing less than z. This

further implies that the bank withdraws all of its deposits from its forward neighbor, i.e.

z�(�{�k) = z. As the second case, suppose that the forward neighbor bank, b�(�{�(k�1)), is

solvent, i.e. q�(�{�(k�1))1 = l1. In this case, bank b�(�{�k) needs liquidity z (to pay its backward

neighbor) and it can obtain this liquidity either by withdrawing its deposits, which costs

l2=l1 units at date 2 per unit of liquidity, or by recalling loans, which costs R > l2=l1 units

per unit of liquidity. Since the former is a cheaper way to obtain liquidity, bank b�(�{�k)

withdraws all of its deposits from its forward neighbor, proving our claim that z�(�{�k) = z.

Next consider the costly audit model of Section 4. Recall that bank b�(�{�k) makes

the deposit withdrawal decision before the resolution of uncertainty for cross-deposits

(see Figure 2). As the �rst case, suppose that bank b�(�{�k) assigns a positive probability
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to a network structure b (~�) such that q�(i�(k�1))1 (~�) < l1 (that is, suppose the bank

assigns a positive probability that its forward neighbor will be insolvent). Since the bank

takes the payment of its forward neighbor as given and its preferences are given by the

Leontie¤ form in (17), in this case the bank necessarily withdraws all of its deposits, i.e.

z�(�{�k) = z. Next suppose bank b�(�{�k) believes that q�(i�(k�1))1 (~�) = l1 with probability 1

(that is, the bank knows that its forward neighbor is solvent). In this case, as in the free-

information benchmark, the bank withdraws z�(�{�k) = z to meet its liquidity obligations

to its backward neighbor. This completes the proof of the claim and proves Eq. (6) by

induction.

Proof of Proposition 1. Contained in the discussion preceding the proposition.

Characterization of Banks�Payment Functions q1 [y00; x] and q2 [y
0
0; x] in Section

4. If bank b�(�{�k) chooses some y00 2 [0; �y0] at date 0, and its forward neighbor pays

x = q
�(�{�(k�1))
1 (~�) at date 1 (and if condition (18) holds), then this bank�s payment is

given by functions q1 [y00; x] and q2 [y
0
0; x] which are characterized as follows:

Case 1. If x 2 [l1 � �=z; l1] and y00 � (l1 � x) z, then

q1 = l1 and q2 =
y00 � (l1 � x) z + (1� y � y00)R

1� �! � l1. (25)

Case 2. If x < l1 � �=z or y00 < (l1 � x) z, then

q1 =
y + y00 + zx

1 + z
� l1 and q2 = 0. (26)

The �rst case characterizes the payment when the bank�s losses from cross-deposits do

not exceed its bu¤er and the bank has recalled enough loans to counter these losses. In

this case, the bank is solvent and pays according to (25). The second case characterizes

the payment when the bank�s losses from cross-deposits exceed its bu¤er, or when the

losses do not exceed the bu¤er but the bank has not recalled enough loans to counter

these losses. In this case, the bank is insolvent and pays according to (26).

Proof of Proposition 2. First consider part (i) taking as given the characterization

of the loan recall decisions in part (ii). Note that the loan recall decision of each bank

depends only on its distance from the distressed bank, which implies that the payments of

banks in the continuation equilibrium can be written as a function of their distances, i.e.

that the equilibrium is distance based. The characterization in part (ii) shows that each
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bank b�(�{�k) 2
�
b�(�{); b�(�{�1); ::; b�(�{�(K�1))

	
that would be insolvent in the free-information

benchmark chooses yj0 = �y0, and thus it pays the same allocation it would pay in the

free-information benchmark:

Q1 [k] � q�(�{�k)1;free (�) � l1 and Q2 [k] � q
�(�{�k)
2;free (�) = 0 for k 2 f0; ::; K � 1g . (27)

The bank b�(�{�K) recalls at least as many loans as it would recall in the free-information

benchmark, thus it is solvent given condition (18) (which ensures that recalling too many

loans does not cause insolvency) and pays (cf. Eq. (25)):

Q1 [K] = l1 and Q2 [K] � l1. (28)

The banks b�(�{�k) 2
�
b�(�{�(K+1)); b�(�{�(K+2)); ::; b�(�{�(2n�1))

	
are solvent and thus pay (cf.

Eq. (25)):

Q1 [k] = l1 and Q2 [k] =
y
�(�{�k)
0 +

�
1� y � y�(�{�k)0

�
R

1� �! � l1, for k 2 fK + 1; ::; 2n� 1g .
(29)

In particular, the size of the cascade is K as it is in the free-information benchmark. Since

q
�(i�k)
1;free (�) is increasing in k (see Proposition 1), the characterization in (27) through (29)

also implies that the payments, Q1 [k] and Q2 [k], are increasing in k and proves that the

distance based equilibrium is monotonic.

We next turn to loan recall decisions at date 0 and prove that the choices prescribed

in part (ii) are optimal. Consider �rst the banks in Bknow (�). Comparing the charac-

terization of the continuation equilibrium in (27) through (29) to the characterization in

Proposition 1, each bank bj 2 Bknow (�) expects to receive the same payment from its

forward neighbor compared to what it would receive in the free-information benchmark

(i.e. each bank bj 2 Bknow(�) solves problem (20) with xm = q
�(�{�(k�1))
1;free ). Thus it also

recalls the same level of loans that it would recall in the free-information benchmark.

Next we consider a bank bj 2 Buncertain (�) which solves problem (20) with xm = Q1 [2].
We claim that Q1 [2] characterized in Eqs. (27) through (29) is equal to q�(2)1;free (the

payment of the forward neighbor of bank b�(�{�3) in the free-information benchmark), which

in turn proves that the bank bj recalls the same level of loans y�(�{�3)0;free that b
�(�{�3) would

recall in the free-information benchmark. To prove the claim that Q1 [2] = q
�(2)
1;free, �rst

suppose that K � 2. Note that in this case Q1 [2] is given by Eq. (28) or Eq. (29) and in
either case Q1 [2] = l1. Note that by Proposition 1, q

�(2)
1;free = l1when K � 2, proving the

claim in this case. Next suppose K � 3 and note that in this case Q1 [2] is given by Eq.
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(27) which shows Q1 [2] = q
�(�{�2)
1;free (�), completing the proof of part (ii).

The characterization for the aggregate level of recalled loans for the casesK � 2; K = 3

andK � 4 then trivially follow from part (ii) and Proposition 1, thus completing the proof.

Proof of Proposition 3. Most of the proof is contained in the discussion preceding

the proposition. Here, we consider in turn the subcases 1 and 2 (for case K � 4) and we
verify the claims in the main text. We also verify the conjecture that the equilibrium is

distance based and monotonic.

Subcase 1. If �y0 2 (yu0 [0] ; 1� y], then

�y0 > y
u
0 [0] � yu0 [(l1 � x) z]

for any x 2 [0; l1]. This implies that all banks in
�
b�(�{); :::; b�(�{�(2n�2))

	
are insolvent since

they recall loans greater than their corresponding upper limits. These banks�payments

are characterized by the system of equations

q
�(���k)
1 = f

�
q
�(���(k�1))
1

�
for each k 2 f1; ::; 2n� 2g , (30)

where f (:) is de�ned in Eq. (11) and the initial condition q�(�{)1 is given by Eq. (9) (after

plugging in q�(�{+1)1 = l1).

By condition (12), the solution to the above system is increasing (and converges to

the �xed point y + �y0 � 1 < l1), verifying our conjecture that the equilibrium is distance

based and monotonic. By condition (14), we haveK � 2n�2, which implies q�(�{�(2n�2))1 >

q
�(�{�(K�1))
1 = q

�(�{�(K�1))
1;free . Then, since bank b�(�{�K) in the free-information benchmark is

able to avert insolvency by choosing some y�(�{�K)0;free � �yn0 , the informed bank b
�(�{+1) in this

case can also avert insolvency by choosing some y�(�{+1)0 � �yn0 . It follows that the cascade

size is K̂ = 2n � 1, which is greater than the free-information cascade size K (under

condition (14)), completing the characterization of the date 1 equilibrium in this case.

Subcase 2. If �y0 2 (�yn0 ; yu0 [0]), there exists a unique x [�y0] 2 (l1 � �yn0 =z; l1), character-
ized in Eq. (24) and increasing in �y0, such that a bank bj 2 Buncertain (�) is insolvent
if and only if receives from its forward neighbor x < x [�y0]. Using the conjecture that

the equilibrium is distance based and monotonic, we further conjecture that the banksn
b�(�{); ::; b�(�{�(K̂�1))

o
are insolvent while the banks

n
b�(�{�K̂); ::; b�(�{�(2n�1))

o
are solvent.

The payments of the banks in
n
b�(�{); ::; b�(�{�(K̂�1))

o
are characterized by

q
�(���k)
1 = f

�
q
�(���(k�1))
1

�
for each k 2

n
1; ::; K̂ � 1

o
, (31)
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which is an increasing sequence (by condition (12)). Then, either q�(�{�(2n�2))1 < x [�y0] and

we are back to subcase 1 (i.e. K̂ = 2n� 1), or there exists a unique K̂ 2 [K; 2n� 1] such
that

q
�(�{�(K̂�2))
1 < x [�y0] � q

�(�{�(K̂�1))
1 . (32)

In the latter case, the banks in
n
b�(�{�K); ::; b�(�{�(K̂�1))

o
� Buncertain (�) are insolvent

(since they receive less than x [�y0] from their forward neighbor) but the bank b�(�{�K̂)

is solvent since it receives at least x [�y0] from its forward neighbor. The banks inn
b�(�{�(K̂+1)); ::; b�(�{�(2n�2))

o
are also solvent since they receive l1 � x [�y0] from their for-

ward neighbors. The informed bank b�(�{+1) is also solvent as in subcase 1. Finally, this

analysis implies that the equilibrium is distance based and monotonic, completing the

characterization of the date 1 equilibrium in this case.
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