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1. Introduction

Conventional wisdom views stock returns as less volatile over longer investment horizons. This

view seems consistent with various empirical estimates. For example, using two centuries of U.S.

equity returns, Siegel (2008) reports that variances realized over investment horizons of several

decades are substantially lower than short-horizon variances on a per-year basis. Such evidence

pertains to unconditional variance, but a similar message is delivered by studies that condition

variance on information useful in predicting returns. Campbell and Viceira (2002, 2005), for

example, report estimates of conditional variances that decrease with the investment horizon.

We find that stocks are actually more volatile over long horizons from an investor’s perspective.

Investors condition on available information but realize their knowledge is limited in two key

respects. First, even after observing 206 years of data (1802–2007), investors do not know the

values of the parameters of the return-generating process, especially the parameters related to

the conditional expected return. Second, investors recognize that observable “predictors” used to

forecast returns deliver only an imperfect proxy for the conditional expected return, whether or not

the parameter values are known. When viewed from this perspective, the return variance per year

at a 50-year horizon is at least 1.3 times higher than the variance at a 1-year horizon.

Variance that incorporates parameter uncertainty is known as predictive variance in a Bayesian

setting. In contrast, true variance excludes parameter uncertainty and is defined by setting param-

eters equal to their true values. True variance is the more common focus of statistical inference;

the usual sample variance, for example, is an estimate of true unconditional variance. We compare

long- and short-horizon predictive variances, which are relevant from an investor’s perspective.

Our objective is thus different from that of an extensive literature that uses variance ratios and

other statistics to test whether true return variances differ across investment horizons.1 Investors

might well infer from the data that the true variance is lower at long horizons, while at the same

time assessing the predictive variance to be higher at long horizons.

The distinction between predictive variance and true variance is readily seen in the simple case

where an investor knows the true variance of returns but not the true expected return. Uncertainty

about the expected return contributes to the investor’s overall uncertainty about what the upcoming

realized returns will be. Predictive variance includes that uncertainty, while true variance excludes

it. Expected return is notoriously hard to estimate. Uncertainty about current expected return and

about how expected return will change in the future is the key element of our story. This uncertainty

1A partial list of such studies includes Fama and French (1988), Poterba and Summers (1988), Lo and MacKinlay
(1988, 1989), Richardson and Stock (1989), Kim, Nelson, and Startz (1991), and Richardson (1993).
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plays an increasingly important role as the investment horizon grows, as long as investors believe

that expected return is “persistent,” i.e., likely to take similar values across adjacent periods.

Under the traditional random-walk assumption that returns are distributed independently and

identically (i.i.d.) through time, true return variance per period is equal at all investment hori-

zons. Explanations for lower true variance at long horizons commonly focus on “mean reversion,”

whereby a negative shock to the current return is offset by positive shocks to future returns, and

vice versa. Our conclusion that stocks are more volatile in the long run obtains despite the pres-

ence of mean reversion. We show that mean reversion is only one of five components of long-run

predictive variance:

(i) i.i.d. uncertainty

(ii) mean reversion

(iii) uncertainty about future expected returns

(iv) uncertainty about current expected return

(v) estimation risk.

Whereas the mean-reversion component is strongly negative, the other components are all positive,

and their combined effect outweighs that of mean reversion.

Of the four components contributing positively, the one making the largest contribution at long

horizons reflects uncertainty about future expected returns. This component (iii) is often neglected

in discussions of how return predictability affects long-horizon return variance. Such discus-

sions typically highlight mean reversion, but mean reversion—and predictability more generally—

require variance in the conditional expected return, which we denote by µt. That variance makes

the future values of µt uncertain, especially in the more distant future periods, thereby contributing

to the overall uncertainty about future returns. The greater the degree of predictability, the larger

is the variance of µt and thus the greater is the relative contribution of uncertainty about future

expected returns to long-horizon predictive variance.

Three additional components also make significant positive contributions to long-horizon pre-

dictive variance. One is simply the variance attributable to unexpected returns. Under an i.i.d.

assumption for unexpected returns, this variance makes a constant contribution to variance per pe-

riod at all investment horizons. At long horizons, this component (i), though quite important, is

actually smaller in magnitude than both components (ii) and (iii) discussed above.

Another component of long-horizon predictive variance reflects uncertainty about the current

µt. Components (i), (ii), and (iii) all condition on the current value of µt. Conditioning on the cur-

rent expected return is standard in long-horizon variance calculations using a vector autoregression
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(VAR), such as Campbell (1991) and Campbell, Chan, and Viceira (2003). In reality, though, an

investor does not observe µt. We assume the investor observes the histories of returns and a given

set of return predictors. This information is capable of producing only an imperfect proxy for µt,

which in general reflects additional information. Pástor and Stambaugh (2009) introduce a predic-

tive system to deal with imperfect predictors, and we use that framework to assess long-horizon

predictive variance and capture component (iv). When µt is persistent, uncertainty about the cur-

rent µt contributes to uncertainty about µt in multiple future periods, on top of the uncertainty

about future µt’s discussed earlier.

The fifth and last component adding to long-horizon predictive variance, also positively, is one

we label “estimation risk,” following common usage of that term. This component reflects the fact

that, after observing the available data, an investor remains uncertain about the parameters of the

joint process generating returns, expected returns, and the observed predictors. That parameter

uncertainty adds to the overall variance of returns assessed by an investor. If the investor knew the

parameter values, this estimation-risk component would be zero.

Parameter uncertainty also enters long-horizon predictive variance more pervasively. Unlike

the fifth component, the first four components are non-zero even if the parameters are known to

an investor. At the same time, those four components can be affected significantly by parameter

uncertainty. Each component is an expectation of a function of the parameters, with the expectation

evaluated over the distribution characterizing an investor’s parameter uncertainty. We find that

Bayesian posterior distributions of these functions are often skewed, so that less likely parameter

values exert a significant influence on the posterior means, and thus on long-horizon predictive

variance.

The effects of parameter uncertainty on the predictive variance of long-horizon returns are

analyzed in previous studies, such as Stambaugh (1999), Barberis (2000), and Hoevenaars et al

(2007). Barberis discusses how parameter uncertainty essentially compounds across periods and

exerts stronger effects at long horizons. The above studies find that predictive variance is substan-

tially higher than estimates of true variance that ignore parameter uncertainty. However, all three

studies also find that long-horizon predictive variance is lower than short-horizon variance for the

horizons considered—up to 10 years in Barberis (2000), up to 20 years in Stambaugh (1999), and

up to 50 years in Hoevenaars et al (2007).2 In contrast, we often find that predictive variance even

at a 10-year horizon is higher than at a 1-year horizon.

2Instead of actually reporting predictive variance, Barberis reports a closely related quantity: the asset allocation

for a buy-and-hold, power-utility investor. His allocations for the 10-year horizon exceed those for short horizons,

even when parameter uncertainty is incorporated.
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A key difference between our analysis and the above studies is our inclusion of uncertainty

about the current expected return µt. The above studies employ VAR approaches in which ob-

served predictors perfectly capture µt, whereas we consider predictors to be imperfect, as ex-

plained earlier. We compare predictive variances under perfect versus imperfect predictors, and

find that long-run variance is substantially higher when predictors are imperfect. Predictor im-

perfection increases long-run variance both directly and indirectly. The direct effect, component

(iv) of predictive variance, is large enough at a 10-year horizon that subtracting it from predictive

variance leaves the remaining portion lower than the 1-year variance. The indirect effect is even

larger. It stems from the fact that once predictor imperfection is admitted, parameter uncertainty

is more important in general. This result occurs despite the use of informative prior beliefs about

parameter values, as opposed to the non-informative priors used in the above studies. When µt is

not observed, learning about its persistence and predictive ability is more difficult than when µt is

assumed to be given by observed predictors. The effects of parameter uncertainty pervade all com-

ponents of long-horizon returns, as noted earlier. The greater parameter uncertainty accompanying

predictor imperfection further widens the gap between our analysis and the previous studies.3

Predictor imperfection can be viewed as omitting an unobserved predictor from the set of ob-

servable predictors used in a standard predictive regression. The degree of predictor imperfection

can be characterized by the increase in the R-squared of that predictive regression if the omitted

predictor were included. Even if investors assign a low probability to this increase being larger

than 2% for annual returns, such modest predictor imperfection nevertheless exerts a substantial

effect on long-horizon variance. At a 30-year horizon, for example, the predictive variance is 1.2

times higher than when the predictors are assumed to be perfect.

Our empirical results indicate that stocks should be viewed by investors as more volatile at

long horizons. Corporate Chief Financial Officers (CFO’s) indeed tend to exhibit such a view, as

we discover by analyzing survey evidence reported by Ben-David, Graham, and Harvey (2010).

In quarterly surveys conducted over eight years, Ben-David et al. ask CFO’s to express confidence

intervals for the stock market’s return over the next year as well as the average annual return over

the next ten years. From the reported results of these surveys, we infer that the typical CFO views

the annualized variance of ten-year returns to be at least twice the one-year variance.

The long-run volatility of stocks is of substantial interest to investors. Evidence of lower long-

horizon variance is cited in support of higher equity allocations for long-run investors (e.g, Siegel,

3Schotman, Tschernig, and Budek (2008) find that if the predictors are fractionally integrated, long-horizon vari-

ance of stock returns can exceed short-horizon variance. With stationary predictors, though, they find long-horizon

variance is smaller than short-horizon variance. By incorporating predictor imperfection as well as parameter uncer-

tainty, we find that long-horizon variance exceeds short-horizon variance even when predictors are stationary.
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2008) as well as the increasingly popular target-date mutual funds (e.g., Gordon and Stockton,

2006, Greer, 2004, and Viceira, 2008). These funds gradually reduce an investor’s stock allocation

by following a predetermined “glide path” that depends only on the time remaining until the in-

vestor’s target date, typically retirement. When the parameters and conditional expected return are

assumed to be known, we find that the typical glide path of a target-date fund closely resembles

the pattern of allocations desired by risk-averse investors with utility for wealth at the target date.

Once uncertainty about the parameters and conditional expected return is recognized, however, the

same investors find the typical glide path significantly less appealing. They instead prefer glide

paths whose initial and final stock allocations both decline as the target-date horizon lengthens.

The glide paths typical of target-date funds represent a special case of a more general result.

If investors commit to allocations in future periods, they choose downward-sloping glide paths

that allocate less to stocks in more distant periods. This result requires neither mean reversion nor

human-capital considerations. If investors view expected future returns as unknown and persistent,

they choose lower future allocations simply because they view single-period stock returns as more

volatile in more distant periods.

The remainder of the paper proceeds as follows. Section 2 derives expressions for the five

components of long-horizon variance discussed above and analyzes their theoretical properties.

Section 3 describes our empirical framework, which uses up to 206 years of data to implement two

predictive systems that allow us to analyze various properties of long-horizon variance. Section 4

explores the five components of long-horizon variance using a predictive system in which the con-

ditional expected return follows a first-order autoregression. Section 5 then gauges the importance

of predictor imperfection using an alternative predictive system that includes an unobservable pre-

dictor. Section 6 discusses the robustness of our results. Section 7 returns to the above discussion

of the distinction between an investor’s problem and inference about true variance. Section 8 con-

siders the implications of the CFO surveys reported by Ben-David et al. (2010). Section 9 analyzes

investment implications of our results in the context of target-date funds. Section 10 summarizes

our conclusions.

2. Long-horizon variance and parameter uncertainty

Let rt+1 denote the continuously compounded return from time t to time t + 1. We can write

rt+1 = µt + ut+1, (1)
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where µt denotes the expected return conditional on all information at time t and ut+1 has zero

mean. Also define the k-period return from period T + 1 through period T + k,

rT,T+k = rT+1 + rT+2 + . . . + rT+k. (2)

An investor assessing the variance of rT,T+k uses DT , a subset of all information at time T . In our

empirical analysis in Section 4, DT consists of the full histories of returns as well as predictors

that investors use in forecasting returns.4 Importantly, DT typically reveals neither the value of µT

in equation (1) nor the values of the parameters governing the joint dynamics of rt, µt, and the

predictors. Let φ denote the vector containing those parameter values.

This paper focuses on Var(rT,T+k|DT ), the predictive variance of rT,T+k given the investor’s

information set. Since the investor is uncertain about µT and φ, it is useful to decompose this

variance as

Var(rT,T+k|DT ) = E{Var(rT,T+k|µT , φ, DT )|DT} + Var{E(rT,T+k|µT , φ, DT )|DT}. (3)

The first term in this decomposition is the expectation of the conditional variance of k-period

returns. This conditional variance, which has been estimated by Campbell and Viceira (2002,

2005), is of interest only to investors who know the true values of µT and φ. Investors who do

not know µT and φ are interested in the expected value of this conditional variance, and they also

account for the variance of the conditional expected k-period return, the second term in equation

(3). As a result, they perceive returns to be more volatile and, as we show below, they perceive

disproportionately more volatility at long horizons. Whereas the conditional per-period variance of

stock returns appears to decrease with the investment horizon, we show that (1/k)Var(rT,T+k|DT ),

which accounts for uncertainty about µT and φ, increases with the investment horizon.

The potential importance of parameter uncertainty for long-run variance is readily seen in the

special case where returns are i.i.d. with known variance σ2 and unknown mean µ. In this case, the

mean and variance of k-period returns conditional on µ are both linear in k: the mean is kµ and

the variance is kσ2. An investor who knows µ faces the same per-period variance, σ2, regardless

of k. However, an investor who does not know µ faces more variance, and this variance increases

with k. To see this, apply the variance decomposition from equation (3):

Var(rT,T+k|DT ) = E{kσ2|DT} + Var{kµ|DT}
= kσ2 + k2Var {µ|DT} , (4)

4We are endowing the investor with the same information set as the set that we use in our empirical analysis. In

that sense, we are putting investors and econometricians on an equal footing, in the spirit of Hansen (2007).
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so that (1/k)Var(rT,T+k|DT ) increases with k. In fact, (1/k)Var(rT,T+k|DT ) → ∞ as k → ∞.

That is, an investor who believes that stock prices follow a random walk but who is uncertain about

the unconditional mean µ views stocks as more volatile in the long run.

To assess the likely magnitude of this effect, consider the following back-of-the-envelope cal-

culation. If uncertainty about µ is given by the standard error of the sample average return com-

puted over T periods, or σ/
√

T , then (1/k)Var(rT,T+k|DT ) = σ2(1 + k/T ). With k = 50 years

and T = 206 years, as in the sample that we use in Section 4, (1 + k/T ) = 1.243, so the per-

period predictive variance exceeds σ2 by a quarter. Of course, if the sample mean estimate of µ is

computed from a sample shorter than 206 years (e.g., due to concerns about nonstationarity), then

uncertainty about µ is larger and the effect on predictive variance is even stronger.

When returns are predictable, so that µt is time-varying, Var(rT,T+k|DT ) can be above or be-

low its value in the i.i.d. case. Predictability can induce mean reversion, which reduces long-run

variance, but predictability also introduces uncertainty about additional quantities, such as future

values of µt and the parameters that govern its behavior. It is not clear a priori whether predictabil-

ity makes returns more or less volatile at long horizons, compared to the i.i.d. case. At sufficiently

long horizons, uncertainty about the unconditional expected return will still dominate and drive

(1/k)Var(rT,T+k|DT ) to infinity. At long horizons of relevance to investors, whether or not that

per-period variance is higher than at short horizons is an empirical question that we explore.

In the rest of this section, we assume for simplicity that µt follows an AR(1) process,5

µt+1 = (1 − β)Er + βµt + wt+1, 0 < β < 1. (5)

The AR(1) assumption for µt allows us to further decompose both terms on the right-hand side

of equation (3), providing additional insights into the components of Var(rT,T+k|DT ). The AR(1)

assumption also allows a simple characterization of mean reversion. Time variation in µt induces

mean reversion in returns if the unexpected return ut+1 is negatively correlated with future values of

µt. Under the AR(1) assumption, mean reversion requires a negative correlation between ut+1 and

wt+1, or ρuw < 0. If fluctuations in µt are persistent, then a negative shock in ut+1 is accompanied

by offsetting positive shifts in the µt+i’s for multiple future periods, resulting in a stronger negative

contribution to the variance of long-horizon returns.

5Our stationary AR(1) process for µt nests a popular model in which the stock price is the sum of a random walk
and a positively autocorrelated stationary AR(1) component (e.g., Summers, 1986, Fama and French, 1988). In that

special case, ρuw as well as return autocorrelations at all lags are negative. See the Appendix.
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2.1. Conditional variance

This section analyzes the conditional variance Var(rT,T+k|µT , φ, DT ), which is an important build-

ing block in computing the variance in equation (3). The conditional variance reflects neither

parameter uncertainty nor uncertainty about the current expected return, since it conditions on

both φ and µT . The parameter vector φ includes all parameters in equations (1) and (5): φ =

(β, Er, ρuw, σu, σw), where σu and σw are conditional standard deviations of ut+1 and wt+1, re-

spectively. Assuming that equations (1) and (5) hold and that the conditional covariance matrix of

[ut+1 wt+1] is constant, Var(rT,T+k|µT , φ, DT ) = Var(rT,T+k|µT , φ). Furthermore, we show in the

Appendix that

Var(rT,T+k|µT , φ) = kσ2
u

[

1 + 2d̄ρuwA(k) + d̄2B(k)
]

, (6)

where

A(k) = 1 +
1

k

(

−1 − β
1− βk−1

1 − β

)

(7)

B(k) = 1 +
1

k

(

−1 − 2β
1 − βk−1

1 − β
+ β21 − β2(k−1)

1 − β2

)

(8)

d̄ =

[

1 + β

1 − β

R2

1 −R2

]1/2

, (9)

and R2 is the ratio of the variance of µt to the variance of rt+1, based on equation (1).

The conditional variance in (6) consists of three terms. The first term, kσ2
u, captures the well-

known feature of i.i.d. returns—the variance of k-period returns increases linearly with k. The

second term, containing A(k), reflects mean reversion in returns arising from the likely negative

correlation between realized returns and expected future returns (ρuw < 0), and it contributes

negatively to long-horizon variance. The third term, containing B(k), reflects the uncertainty

about future values of µt, and it contributes positively to long-horizon variance. When returns are

unpredictable, only the first term is present (because R2 = 0 implies d̄ = 0, so the terms involving

A(k) and B(k) are zero). Now suppose that returns are predictable, so that R2 > 0 and d̄ > 0.

When k = 1, the first term is still the only one present, because A(1) = B(1) = 0. As k increases,

though, the terms involving A(k) and B(k) become increasingly important, because both A(k)

and B(k) increase monotonically from 0 to 1 as k goes from 1 to infinity.

Figure 1 plots the variance in (6) on a per-period basis (i.e., divided by k), as a function of the

investment horizon k. Also shown are the terms containing A(k) and B(k). It can be verified that

A(k) converges to 1 faster than B(k). (See Appendix.) As a result, the conditional variance in

Figure 1 is U-shaped: as k increases, mean reversion exerts a stronger effect initially, but uncer-
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tainty about future expected returns dominates eventually.6 The contribution of the mean reversion

term, and thus the extent of the U-shape, is stronger when ρuw takes larger negative values. The

contributions of mean reversion and uncertainty about future µT+i’s both become stronger as pre-

dictability increases. These effects are illustrated in Figure 2, which plots the same quantities as

Figure 1, but for three different R2 values. Note that a higher R2 implies not only stronger mean

reversion but also a more volatile µt, which in turn implies more uncertainty about future µT+i’s.

The key insight arising from Figures 1 and 2 is that, although mean reversion significantly

reduces long-horizon variance, that reduction can be more than offset by uncertainty about future

expected returns. Both effects become stronger as R2 increases, but uncertainty about future ex-

pected returns prevails when R2 is high. A high R2 implies high volatility in µt and therefore high

uncertainty about µT+j . In that case, long-horizon variance exceeds short-horizon variance on a

per-period basis, even though φ and the current µT are assumed to be known. Uncertainty about

φ and the current µT exerts a greater effect at longer horizons, further increasing the long-horizon

variance relative to the short-horizon variance.

2.2. Components of long-horizon variance

The variance of interest, Var(rT,T+k|DT ), consists of two terms on the right-hand side of equation

(3). The first term is the expectation of the conditional variance in equation (6), so each of the three

terms in (6) is replaced by its expectation with respect to φ. (We need not take the expectation with

respect to µT , since µT does not appear on the right in (6).) The interpretations of these terms are

the same as before, except that now each term also reflects parameter uncertainty.

The second term on the right-hand side of equation (3) is the variance of the true conditional

expected return. This variance is taken with respect to φ and µT . It can be decomposed into

two components: one reflecting uncertainty about the current µT , or predictor imperfection, and

the other reflecting uncertainty about φ, or “estimation risk.” (See the Appendix.) Let bT and qT

denote the conditional mean and variance of the unobservable expected return µT :

bT = E(µT |φ, DT ) (10)

qT = Var(µT |φ, DT ). (11)

The right-hand side of equation (3) can then be expressed as the sum of five components:

6Campbell and Viceira (2002, pp. 95–96) also model expected return as an AR(1) process, but they conclude that
variance per period cannot increase with k when ρuw < 0. They appear to equate conditional variances of single-

period returns across future periods, which would omit the uncertainty about future expected return.
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Var(rT,T+k|DT ) =

E
{

kσ2
u|DT

}

︸ ︷︷ ︸

i.i.d. uncertainty

+ E
{

2kσ2
ud̄ρuwA(k)|DT

}

︸ ︷︷ ︸

mean reversion

+ E
{

kσ2
ud̄

2B(k)|DT

}

︸ ︷︷ ︸

future µT+i uncertainty

+ E







(

1 − βk

1 − β

)2

qT |DT







︸ ︷︷ ︸

current µT uncertainty

+ Var






kEr +

1 − βk

1 − β
(bT − Er)|DT







︸ ︷︷ ︸

estimation risk

. (12)

Parameter uncertainty plays a role in all five components in equation (12). The first four com-

ponents are expected values of quantities that are viewed as random due to uncertainty about φ,

the parameters governing the joint dynamics of returns and predictors. (If the values of these pa-

rameters were known to the investor, the expectation operators could be removed from those four

components.) Parameter uncertainty can exert a non-trivial effect on the first four components, in

that the expectations can be influenced by parameter values that are unlikely but cannot be ruled

out. The fifth component in equation (12) is the variance of a quantity whose randomness is also

due to parameter uncertainty. In the absence of such uncertainty, the fifth component is zero, which

is why we assign it the interpretation of estimation risk.

The estimation risk term includes the variance of kEr, where Er denotes the unconditional

mean return. This variance equals k2Var(Er|DT ), so the per-period variance (1/k)Var(rT,T+k|DT )

increases at rate k. Similar to the i.i.d. case, if Er is unknown, then the per-period variance grows

without bounds as the horizon k goes to infinity. For finite horizons that are typically of interest to

investors, however, the fifth component in equation (12) can nevertheless be smaller in magnitude

than the other four components. In general, the k-period variance ratio, defined as

V (k) =
(1/k)Var(rT,T+k|DT )

Var(rT+1|DT )
, (13)

can exhibit a variety of patterns as k increases. Whether or not V (k) > 1 at various horizons k is

an empirical question.

3. Empirical framework: Predictive systems

It is commonly assumed that the conditional expected return µt is given by a linear combination of

a set of observable predictors, xt, so that µt = a + b′xt. This assumption is useful in many appli-

cations, but we relax it here because it understates the uncertainty faced by an investor assessing
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the variance of future returns. Any given set of predictors xt is likely to be imperfect, in that µt is

unlikely to be captured by any linear combination of xt (µt 6= a + b′xt). The true expected return

µt generally reflects more information than what we assume to be observed by the investor—the

histories of rt and xt. To incorporate the likely presence of predictor imperfection, we employ a

predictive system, defined in Pástor and Stambaugh (2009) as a state-space model in which rt, xt,

and µt follow a VAR with coefficients restricted so that µt is the mean of rt+1.7 As noted by Pástor

and Stambaugh, a predictive system can also be represented as a VAR for rt, xt, and an unobserved

additional predictor. We employ both versions here, as each is best suited to different dimensions

of our investigation. Our two predictive systems are specified as follows:

System 1

rt+1 = µt + ut+1 (14)

xt+1 = θ + Axt + vt+1 (15)

µt+1 = (1 − β)Er + βµt + wt+1. (16)

System 2

rt+1 = a + b′xt + πt + ut+1 (17)

xt+1 = θ + Axt + vt+1 (18)

πt+1 = δπt + ηt+1. (19)

In System 1, the conditional expected return µt is unobservable, and we assume 0 < β < 1.

System 2 includes πt as an unobserved additional predictor of return, and we assume 0 < δ < 1.

In both systems, the eigenvalues of A are assumed to lie inside the unit circle, and the vector

containing the residuals of the three equations is assumed to be normally distributed, independently

and identically across t.

System 1 is well suited for analyzing the components of predictive variance discussed in the

previous section, because the AR(1) specification for µt+1 in equation (16) is the same as that in

equation (5). Pástor and Stambaugh (2009) provide a detailed analysis of System 1, and we apply

their econometric methodology in this study. In the next section, we investigate empirically the

components of predictive variance using System 1.

System 2 is well suited for exploring the role of predictor imperfection in determining predic-

tive variance. To see this, let σ2
π denote the variance of πt+1 in equation (19). As σ2

π → 0, the

7State-space models have been used in a number of studies analyzing return predictability, including Conrad and

Kaul (1988), Lamoureux and Zhou (1996), Johannes, Polson, and Stroud (2002), Ang and Piazzesi (2003), Brandt and

Kang (2004), Dangl and Halling (2006), Duffee (2006), and Rytchkov (2007).
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predictors approach perfection, and equation (17) approaches the standard predictive regression,

rt+1 = a + b′xt + et+1. (20)

By examining results under various prior beliefs about the possible magnitudes of σ2
π, we can

assess the effect of predictor imperfection on predictive variance. We do so in Section 5.

We conduct analyses using both annual and quarterly data. Our annual data consist of obser-

vations for the 206-year period from 1802 through 2007, as compiled by Siegel (1992, 2008). The

return rt is the annual real log return on the U.S. equity market, and xt contains three predictors:

the dividend yield on U.S equity, the first difference in the long-term high-grade bond yield, and

the difference between the long-term bond yield and the short-term interest rate.8 We refer to these

quantities as the “dividend yield,” the “bond yield,” and the “term spread,” respectively. These

three predictors seem reasonable choices given the various predictors used in previous studies and

the information available in Siegel’s dataset. Dividend yield and the term spread have long been

entertained as return predictors (e.g., Fama and French, 1989). Using post-war quarterly data,

Pástor and Stambaugh (2009) find that the long-term bond yield, relative to its recent levels, ex-

hibits significant predictive ability in predictive regressions. That evidence motivates our choice of

the bond-yield variable used here. All three predictors exhibit significant predictive abilities in a

predictive regression as in (20), with an R2 in that regression of 5.6%.9 Our quarterly data consist

of observations for the 220-quarter period from 1952Q1 through 2006Q4. We use the same three

predictors in xt as Pástor and Stambaugh (2009): dividend yield, CAY, and bond yield.10

4. Components of predictive variance (System 1)

This section uses the first predictive system, specified in equations (14) through (16), to empiri-

cally assess long-horizon return variance from an investor’s perspective. In the first subsection, we

specify prior distributions for the system’s parameters and analyze the resulting posteriors. Those

posterior distributions characterize the parameter uncertainty faced by an investor who conditions

on essentially the entire history of U.S. equity returns. That uncertainty is incorporated in the

Bayesian predictive variance, which is the focus of the second subsection. We analyze the five

8We are grateful to Jeremy Siegel for supplying these data. The long-term bond yield series is constructed from

the yields of federal bonds and high-grade municipal bonds, as described in Siegel (1992).
9Details of the predictive regression results and the bootstrap significance tests are provided in an Internet Appendix

available on the author’s websites.
10See that study for more detailed descriptions of the predictors. Our quarterly sample ends in 2006Q4 because the

2007 data on CAY of Lettau and Ludvigson (2001) are not yet available as of this writing. Our quarterly sample begins

in 1952Q1, after the 1951 Treasury-Fed accord that made possible the independent conduct of monetary policy.
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components of predictive variance and their dependence on the investment horizon. For this anal-

ysis, we report results using annual data. Results based on quarterly data are summarized later in

Section 6; detailed results are reported in the Internet Appendix.

4.1. Priors and posteriors

For each of the three key parameters that affect multiperiod variance—ρuw, β, and R2—we im-

plement the Bayesian empirical framework under three different prior distributions, displayed in

Figure 3. The priors are assumed to be independent across parameters and follow the same func-

tional forms as in Pástor and Stambaugh (2009). For each parameter, we specify a “benchmark”

prior as well as two priors that depart from the benchmark in opposite directions but seem at least

somewhat plausible as alternative specifications. When we depart from the benchmark prior for

one of the parameters, we hold the priors for the other two parameters at their benchmarks, ob-

taining a total of seven different specifications of the joint prior for ρuw, β, and R2. We estimate

the predictive system under each specification to explore the extent to which a Bayesian investor’s

assessment of long-horizon variance is sensitive to prior beliefs.

The benchmark prior for ρuw, the correlation between expected and unexpected returns, has

97% of its mass below 0. This prior follows the reasoning of Pástor and Stambaugh (2009), who

suggest that, a priori, the correlation between unexpected return and the innovation in expected

return is likely to be negative. The more informative prior concentrates toward larger negative

values, whereas the less informative prior essentially spreads evenly over the range from -1 to 1.

The benchmark prior for β, the first-order autocorrelation in the annual expected return µt, has a

median of 0.83 and assigns a low (2%) probability to β values less than 0.4. The two alternative

priors then assign higher probability to either more persistence or less persistence. The benchmark

prior for R2, the fraction of variance in annual returns explained by µt, has 63% of its mass below

0.1 and relatively little (17%) above 0.2. The alternative priors are then either more concentrated

or less concentrated on low values. These priors on the true R2 are shown in Panel C of Figure 3.

Panel D displays the corresponding implied priors on the “observed” R2—the fraction of variance

in annual real returns explained by the predictors. Each of the three priors in Panel D is implied by

those in Panel C, while holding the priors for ρuw and β at their benchmarks and specifying non-

informative priors for the degree of imperfection in the predictors. Observe that the benchmark

prior for the observed R2 has much of its mass below 0.05.

We compute posterior distributions for the parameters using the Markov Chain Monte Carlo

(MCMC) method discussed in Pástor and Stambaugh (2009). These posteriors summarize the

13



parameter uncertainty faced by an investor after updating the priors using the 206-year history of

equity returns and predictors. Figure 4 plots the posteriors corresponding to the priors plotted in

Figure 3. The posteriors of β, shown in Panel B of Figure 4, reveal substantial persistence in the

conditional expected return µt. The posterior modes are about 0.9, regardless of the prior, and β

values smaller than 0.7 seem very unlikely. Comparing the posteriors with the priors in Figure 3,

we see that the data shift the prior beliefs in the direction of higher persistence. The posteriors of

the true R2, displayed in Panel C, lie to the right of the corresponding priors. For example, for the

benchmark prior, the prior mode for the true R2 is less than 0.05, while the posterior mode is nearly

0.1. The data thus shift the priors in the direction of greater predictability. The same message is

conveyed by the posteriors of the observed R2, plotted in Panel D.

The posteriors of ρuw are displayed in Panel A of Figure 4. These posteriors are more concen-

trated toward larger negative values than any of the three priors of ρuw, suggesting strong mean

reversion in the data. The posteriors are similar across the three priors, consistent with observed

autocorrelations of annual real returns and the posteriors of R2 and β discussed above. Equations

(1) and (5) imply that the autocovariances of returns are given by

Cov(rt, rt−k) = βk−1
(

βσ2
µ + σuw

)

, k = 1, 2, . . . , (21)

where σ2
µ = σ2

w/(1 − β2). From (21) we can also obtain the autocorrelations of returns,

Corr(rt, rt−k) = βk−1
(

βR2 + ρuw

√

(1 − R2)R2(1 − β2)
)

, k = 1, 2, . . . , (22)

by noting that σ2
µ = R2σ2

r and that σ2
u = (1 − R2)σ2

r . The posterior modes of ρuw in Figure 4 are

about -0.9, and the posterior modes of R2 and β are about 0.1 and 0.9, as observed earlier. Eval-

uating (22) at those values gives autocorrelations starting at -0.028 for k = 1 and then increasing

gradually toward 0 as k increases. Such values are statistically indistinguishable from the observed

autocorrelations of annual real returns in our sample.11

11The first five autocorrelations in our 206-year sample are 0.02, -0.17, -0.04, 0.01, and -0.10. To assess the

compatibility of these sample autocorrelations with our predictive system, we proceed as follows. We first draw

the full set of system parameters from their posterior distribution. Using these parameters, we simulate a 206-year

sample of returns by drawing the error terms in equations (14) and (16) from their joint normal distribution. We

then compute the first five autocorrelations for this simulated sample. Repeating this procedure for many posterior
draws of parameters, we obtain many sets of sample autocorrelations simulated from the predictive system. These

simulated sets form a five-dimensional probability density because there are five autocorrelations. We then consider a

five-dimensional grid of autocorrelation values, spaced 0.03 apart, splitting the parameter space into a finite number

of five-dimensional ‘buckets’. We calculate the empirical frequency F with which the bucket containing the observed

set of autocorrelations (0.02, -0.17, -0.04, 0.01, -0.10) obtains in our simulations. Finally, we compute the p-value as
the fraction of the simulated sets of autocorrelations that fall in buckets whose empirical frequency is smaller than F .

The p-value based on 300,000 simulations is 37%, indicating that the predictive system cannot be rejected based on

sample autocorrelations.
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Panel A of Figure 5 plots the posterior, obtained under the benchmark prior, for the R2 in a

regression of the conditional mean µt on the three predictors in xt. This R2 quantifies the degree

of imperfection in the predictors (R2 = 1 if and only if the predictors are perfect). Recall from the

earlier discussion that predictor imperfection gives rise to the fourth component of return variance

in equation (12). The posterior in Panel A indicates a substantial degree of predictor imperfection,

in that the density’s mode is about 0.3, and values above 0.8 have near-zero probability.

Further perspective on the predictive abilities of the individual predictors is provided by Panel

B of Figure 5. This panel plots the posteriors of the partial correlations between µt and each

predictor, obtained under the benchmark priors. Dividend yield exhibits the strongest relation to

expected return, with the posterior for its partial correlation ranging between 0 and 0.9 and having

a mode around 0.6. Most of the posterior mass for the term spread’s partial correlation lies above

zero, but there is little posterior mass above 0.5. The bond yield’s marginal contribution is the

weakest, with much of the posterior density lying between -0.2 and 0.2. In the multiple regression

of returns on the three predictors, described at the end of Section 3., all predictors (rescaled to

have unit variances) have comparable OLS slope coefficients and t-statistics. When compared

to those estimates, the posteriors in Panel B indicate that dividend yield is more attractive as a

predictor but that bond yield is less attractive. These differences are consistent with the predictors’

autocorrelations and the fact that the posterior distribution of β, the autocorrelation of µt, centers

around 0.9. The autocorrelations for the three predictors are 0.92 for dividend yield, 0.65 for the

term spread, and -0.04 for the bond yield. The bond yield’s low autocorrelation makes it look less

correlated with µt, whereas dividend yield’s higher autocorrelation makes it look more like µt.

4.2. Multiperiod predictive variance and its components

Each of the five components of multiperiod return variance in equation (12) is a moment of a quan-

tity evaluated with respect to the distribution of the parameters φ, conditional on the information

DT available to an investor at time T . In our Bayesian empirical setting, DT consists of the 206-

year history of returns and predictors, and the distribution of parameters is the posterior density

given that sample. Draws of φ from this density are obtained via the MCMC procedure and then

used to evaluate the required moments of each of the components in equation (12). The sum of

those components, Var(rT,T+k|DT ), is the Bayesian predictive variance of rT,T+k.

Figure 6 displays the predictive variance and its five components for horizons of k = 1 through

k = 50 years, computed under the benchmark priors. The values are stated on a per-year basis

(i.e., divided by k). The predictive variance (Panel A) increases significantly with the investment
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horizon, with the per-year variance exceeding the one-year variance by about 45% at a 30-year

horizon and about 80% at a 50-year horizon. This is the main result of the paper.

The five variance components, displayed in Panel B of Figure 6, reveal the sources of the greater

predictive variance at long horizons. Over a one-year horizon (k = 1), virtually all of the variance

is due to the i.i.d. uncertainty in returns, with uncertainty about the current µT and parameter

uncertainty also making small contributions. Mean reversion and uncertainty about future µt’s

make no contribution for k = 1, but they become quite important for larger k. Mean reversion

contributes negatively at all horizons, consistent with ρuw < 0 in the posterior (cf. Figure 4), and

the magnitude of this contribution increases with the horizon. Nearly offsetting the negative mean

reversion component is the positive component due to uncertainty about future µt’s. At longer

horizons, the magnitudes of both components exceed the i.i.d. component, which is flat across

horizons. At a 10-year horizon, the mean reversion component is nearly equal in magnitude to

the i.i.d. component. At a 30-year horizon, both mean reversion and future-µt uncertainty are

substantially larger in magnitude than the i.i.d. component. In fact, the mean reversion component

is larger in magnitude than the overall predictive variance.

Both estimation risk and uncertainty about the current µT make stronger positive contributions

to predictive variance as the investment horizon lengthens. At the 30-year horizon, the contribution

of estimation risk is about two thirds of the contribution of the i.i.d. component. Uncertainty about

the current µT , arising from predictor imperfection, makes the smallest contribution among the

five components at long horizons, but it still accounts for almost a quarter of the total predictive

variance at the 30-year horizon.

Table 1 reports the predictive variance at horizons of 25 and 50 years under various prior

distributions for ρuw, β, and R2. For each of the three parameters, the prior for that parameter is

specified as one of the three alternatives displayed in Figure 3, while the prior distributions for the

other two parameters are maintained at their benchmarks. Also reported in Table 1 is the ratio of

the long-horizon predictive variance to the one-year variance, as well as the contribution of each

of the five components to the long-horizon predictive variance.

Across the different priors in Table 1, the 25-year variance ratio ranges from 1.15 to 1.42,

and the 50-year variance ratio ranges from 1.45 to 1.96. The variance ratios exhibit the greatest

sensitivity to prior beliefs about R2. The “loose” prior beliefs that assign higher probability to

larger R2 values produce the lowest variance ratios. When returns are more predictable, mean

reversion makes a stronger negative contribution to variance, but uncertainty about future µt’s

makes a stronger positive contribution. The contributions of these two components offset to a large

degree as the prior on R2 moves from tight to loose. Two other components of predictive variance,
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estimation risk and i.i.d. uncertainty, both decline as the prior on R2 moves from tight to loose.

Recall that i.i.d. uncertainty is the posterior mean of kσ2
u. This posterior mean declines as the prior

on R2 loosens up because greater posterior density on high values of R2 necessitates less density

on high values of σ2
u = (1 − R2)σ2

r , given that the sample is informative about the unconditional

return variance σ2
r . Prior beliefs about ρuw and β have a smaller effect on the predictive variance

and its components.12

In sum, when viewed by an investor whose prior beliefs lie within the wide range of priors

considered here, stocks are considerably more volatile at longer horizons. The greater volatility

obtains despite the presence of a large negative contribution from mean reversion.

5. Perfect predictors versus imperfect predictors (System 2)

This section uses the second predictive system, given in equations (17) through (19), to investigate

the extent to which long-run variance is affected by predictor imperfection. Recall that predictor

imperfection in System 2 is equivalent to σ2
π > 0. Incorporating predictor imperfection is a key

difference between our analysis and the studies by Stambaugh (1999) and Barberis (2000), which

analyze the effects of parameter uncertainty on long-run equity volatility. Those studies model

expected return as µt = a+b′xt, so that the observed predictors deliver expected return perfectly if

the parameters a and b are known. The latter “perfect-predictor” assumption yields the predictive

regression in (20), which obtains as the limit in System 2 when σ2
π approaches zero. Combining

the predictive regression in (20) with the VAR for xt in (18) then delivers implications for long-run

variance in the perfect-predictor setting, as in Stambaugh (1999) and Barberis (2000).

To assess the importance of predictor imperfection, we compute predictive variances under

various informative prior beliefs about σπ . Non-informative prior beliefs are specified for all other

parameters of the predictive system except δ, the autocorrelation of the additional unobserved

predictor.13 When using the annual data, we specify the prior distribution for δ to be the same as

the benchmark prior in System 1 for β, the autocorrelation of the conditional mean. We shift the

prior for δ somewhat closer to 1.0 when using the quarterly data, since a given persistence for the

expected annual return is likely to correspond to a higher persistence at the quarterly frequency.14

12This relative insensitivity to prior beliefs about ρuw and β appears to be specific to the long sample of real equity

returns. Greater sensitivity to prior beliefs appears if returns in excess of the short-term interest rate are used instead,

or if quarterly returns on a shorter and more recent sample period are used. In all of these alternative samples, we

obtain variance results that lead to the same qualitative conclusions.
13The Internet Appendix provides details of the Bayesian procedures, including the specification of priors and the

calculation of predictive variances.
14With the annual data, the prior for δ is a truncated normal, where the mean and standard deviation of the non-
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We specify three different priors for σπ. One of the priors has all of its mass at σπ = 0, which is

equivalent to an assumption of perfect predictors. The remaining two priors are displayed in Figure

7. Panel A shows the priors used with annual data, and Panel B shows those for the quarterly data.

The latter densities are shifted closer to zero, consistent with the higher frequency. The priors in

Panels A and B, when updated with the data, produce posterior beliefs that admit rather modest

degrees of predictor imperfection. The latter beliefs are summarized in Panels C and D of Figure

7, which display the posterior distributions for ∆R2, defined as the “true” R2 for predicting one-

period returns—the R2 when conditioning on both xt and πt—minus the “observed” R2 when

conditioning only on xt. For example, the specification with less predictor imperfection (solid

line) has the bulk of the posterior mass below ∆R2 = 0.02 for annual data. In other words, after

seeing the data, an investor in that case believes it is fairly unlikely that an unobserved predictor

could raise the R2 by more than two percent. With quarterly data, the corresponding posterior for

∆R2 concentrates on even smaller values.

Even when investors assess potential predictor imperfection to be relatively modest, as repre-

sented in the posteriors for ∆R2, the imperfection has important consequences for the predictive

variance of long-horizon returns. Predictive variances for horizons up to 50 years are shown in

Panel E of Figure 7 for the annual data, while Panel F shows the corresponding results for the

quarterly data. The importance of recognizing predictor imperfection emerges clearly from these

results. In Panel E, the predictive variances at the longest horizons are about 1.3 times higher

when predictor imperfection is recognized than when predictors are assumed to be perfect. For the

quarterly data, that ratio is well over 2.0.

We also see in Figure 7 that predictive variances are substantially greater at long horizons than

at short horizons, once predictor imperfection is recognized. Thus, the results for System 2 deliver

the same overall message as the earlier results for System 1. In Panel E, using annual data, the

predictive variance at the 50-year horizon is 1.4–1.5 times the 1-year variance, depending on the

degree of predictor imperfection. In Panel F, using quarterly data, the 50-year variance is 1.3–1.4

times the 1-year variance.

Stambaugh (1999) and Barberis (2000) investigate the effects of parameter uncertainty using

data beginning in 1952, the same year that our quarterly data begin. With these data, predictor im-

perfection plays an especially large role—more than doubling the variance at long horizons. With

perfect predictors, consistent with Stambaugh and Barberis, predictive variance is substantially

lower at long horizons: the 50-year variance ratio is then 0.6. In contrast, when predictor imper-

fection is incorporated, the 50-year variance ratio is 1.3–1.4, as observed above. Thus, when using

truncated distribution are 0.99 and 0.25. The latter values are 0.99 and 0.15 with the quarterly data.

18



post-1951 data, accounting for predictor imperfection rather dramatically reverses the answer to

the question of whether stocks are less volatile in the long run.

We also see that the findings of Stambaugh and Barberis, indicating stocks are less volatile at

longer horizons even after incorporating parameter uncertainty, do not obtain over the longer 206-

year period. The predictive variances in Panel E are actually higher at long horizons, given perfect

predictors, with a 50-year variance ratio just below 1.2. In all of our results, however, admitting

predictor imperfection produces long-run variance that substantially exceeds not only short-run

variance but also long-run variance computed assuming perfect predictors.

6. Robustness

6.1. Alternative samples

Our main empirical message—that long-run predictive variance of stock returns exceeds short-

run variance—is robust to various sample specifications for both predictive systems.15 First, we

extend the results for System 1 to the quarterly data included in the results for System 2. We adjust

the prior distributions in System 1 to reflect the different data frequency, shifting the priors for

R2 and ρuw to the left and for β to the right. We find that the results with the quarterly data are

even stronger than those with our annual data. Using the benchmark priors, the 25-year predictive

variance is 92% larger than the 1-year variance, and the 50-year predictive variance is nearly 3

times the 1-year variance.

Second, instead of using real returns, we compute excess stock returns by subtracting the short-

term interest rate from the realized stock return, and we then repeat the analyses for both predictive

systems using both annual and quarterly data. The results are similar to those with real returns:

all of the 50-year predictive variances exceed short-run variance by substantial amounts. Third,

instead of using three predictors, we use only one, dividend yield, and repeat the analyses for

both predictive systems using both annual and quarterly data. The results are again similar to the

original three-predictor results: consistently higher predictive variances at long horizons.

Fourth, we conduct subperiod analyses for the results based on annual data. For both predictive

systems, we split the 1802–2007 sample in half and estimate the predictive variances separately

as of the ends of both subperiods. Under the same priors used in Figures 6 and 7, the predictive

variance per period rises monotonically with the horizon under both systems in the first subperiod.

15Detailed results are reported in the Internet Appendix.
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In the second subperiod, the predictive variance rises monotonically under System 2, while under

System 1 it exhibits a U-shape with respect to the horizon. In the latter case, the variance decreases

through a horizon of 7 years but thereafter increases, exceeding the 1-year variance beyond an 18-

year horizon. That is, the negative effect of mean reversion prevails at short horizons, but the

combined positive effects of estimation risk and uncertainty about current and future µt’s prevail at

long horizons. For both subperiods and both predictive systems, long-horizon predictive variance

exceeds short-run variance across all specifications: the 50-year variance ratio is at least 1.25 under

System 1 and at least 1.8 under System 2.

6.2. Time-varying volatility

Our implementation of predictive systems assumes that the covariance matrix of the disturbances

is constant over time. This assumption may seem unappealing, given evidence of time-varying

volatility reported in a large literature on that topic. The assumption offers two advantages for

this study. First, it permits a more tractable framework for exploring the importance of parameter

uncertainty and predictor imperfection for long-horizon volatility. We show that much of long-

horizon volatility is induced by various aspects of uncertainty about expected returns, such as

uncertainty about the current and future values of µt as well as about the parameters characterizing

the process for µt. Uncertainty related to µt affects the perception of returns over many future

periods; as a result, this uncertainty exerts an increasingly large effect on multiperiod volatility as

the investment horizon increases. It is well known that µt is difficult to estimate, and this difficulty

is highlighted once we recognize that predictors are imperfect. All of these arguments would

remain valid if we allowed the covariance matrix of the disturbances to vary over time.

The second advantage of the constant-covariance-matrix assumption is that it allows us to ab-

stract from fluctuations in short-run volatility that would complicate the question of whether stocks

are more volatile in the long run. To see the latter point, consider a period (such as the fall of 2008)

when the current short-run volatility greatly exceeds its typical level. When looking forward from

that point in time, investors almost surely see stocks as less volatile over longer investment hori-

zons, due to the well-documented mean reversion in short-run volatility. Conversely, when short-

run volatility is unusually low, investors may view stocks as more volatile in the long run simply

because they expect volatility to increase toward its long-run mean. Such observations seem less

interesting than asking whether stocks are less volatile over long horizons, abstracting from effects

that can flip the answer back and forth through time. This question is also the focus of previous

studies, cited earlier, that address long-horizon versus short-horizon equity volatility.
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Allowing time-varying volatility need not change the analytical results in Section 2. To see

this, suppose there is time variation in the conditional covariance matrix of κt = [ut v′

t wt], the

vector of residuals in System 1. Let Σt denote the conditional covariance matrix at time t of κt+1.

It seems plausible to assume that, if Σt = Σ at a given time t, then

Et

(

κt+iκ
′

t+i

)

= Σ for all i > 0. (23)

Such a property is satisfied, for example, by a stationary first-order multivariate GARCH process

of the form

vech(Σt) = c0 + C1vech(κtκ
′

t) + C2vech(Σt−1), (24)

where vech(·) stacks the columns of the lower triangular part of its argument. With (23), the

conditional variance of the k-period return in equation (6) is unchanged, provided we interpret it

as Var(rT,T+k|µT , φ, ΣT = Σ). The introduction of parameter uncertainty is also unchanged, under

the interpretation that Σ is uncertain but that, whatever it is, it also equals ΣT . Setting ΣT = Σ

removes horizon effects due to the mean reversion in ΣT discussed earlier. If ΣT were instead

low relative to Σ, for example, then the reversion of future ΣT+is to Σ could also contribute to

long-run volatility. Setting ΣT = Σ excludes such a contribution, producing a cleaner assessment

of long-run volatility.

7. Predictive variance versus true variance

We have thus far analyzed return variance from the perspective of an investor who conditions on

the historical data but remains uncertain about the true values of the parameters. This “predictive

variance” is different from the “true variance,” defined as the variance conditional on the true

parameter values. The predictive variance and the true variance coincide only if the data history is

infinitely long, in which case the parameters are estimated with infinite precision.16

When conducting inference about the true variance, a commonly employed statistic is the sam-

ple long-horizon variance ratio. Values of such ratios are often less than 1 for stocks, suggesting

lower unconditional variances per period at long horizons. Figure 8 plots sample variance ratios

for horizons of 2 to 50 years computed with the 206-year sample of annual real log stock returns

analyzed above. The calculations use overlapping returns and unbiased variance estimates.17 Also

16The predictive variance, representing the variance from an investor’s perspective, is relevant in portfolio applica-

tions. Estimates of the true variance can also be relevant in other applications, such as option pricing.
17Each ratio is computed as V R(q) in equation (2.4.37) of Campbell, Lo, and MacKinlay (1997).
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plotted are percentiles of the variance ratio’s Monte Carlo sampling distribution under the null hy-

pothesis that returns are i.i.d. normal. That distribution exhibits positive skewness and has nearly

60% of its mass below 1. The realized value of 0.28 at the 30-year horizon attains a Monte Carlo

p-value of 0.01, supporting the inference that the true 30-year variance ratio lies below 1 (setting

aside the multiple-comparison issues of selecting one horizon from many). Panel A of Figure 9

plots the posterior distribution of the 30-year ratio for true unconditional variance, based on the

benchmark priors. Even though the posterior mean of this ratio is 1.34, the distribution is positively

skewed and 63% of the posterior probability mass lies below one. We thus see that the variance

ratio statistic in a frequentist setting and the posterior distribution in a Bayesian setting both favor

the inference that the true unconditional variance ratio is below 1.

Inference about unconditional variance ratios is of limited relevance to investors, for two rea-

sons. First, even if the parameters and the conditional mean µT were known, the unconditional

variance would not be the appropriate measure from an investor’s perspective, because conditional

variance is more relevant when returns are predictable. The ratio of true unconditional variances

can be less than 1 while the ratio of true conditional variances exceeds 1, or vice versa. At a hori-

zon of k = 30 years, for example, parameter values of β = 0.60, R2 = 0.30, and ρuw = −0.55

imply a ratio of 0.90 for unconditional variances but 1.20 for conditional variances.18

The second and larger point is that inference about true variance, conditional or unconditional,

is distinct from assessing the predictive variance perceived by an investor who does not know the

parameters. This distinction can be drawn clearly in the context of the variance decomposition,

Var(rT,T+k|DT ) = E {Var(rT,T+k|φ, DT )|DT} + Var {E(rT,T+k|φ, DT )|DT} . (25)

The variance on the left-hand side of (25) is the predictive variance. The quantity inside the ex-

pectation in the first term, Var(rT,T+k|φ, DT ), is the true variance, relevant only to an investor who

knows the true parameter vector φ (but not µT , thus maintaining predictor imperfection). The data

can imply that this true variance is probably lower at long horizons than at short horizons while

also implying that the predictive variance is higher at long horizons. In other words, investors

who observe DT can infer that if they were told the true parameter values, they would probably

assess 30-year variance to be less than 1-year variance. These investors realize, however, that they

do not know the true parameters. As a consequence, they evaluate the posterior mean of the true

variance, the first term in (25). That posterior mean can exceed the most likely values of the true

variance, because the posterior distribution of the true variance can be skewed (we return to this

18The relation between the ratios of conditional and unconditional variances is derived in the Appendix. Campbell

and Viceira (2002, p. 96) state that the unconditional variance ratio is always greater than the conditional ratio, but it
appears they equate single-period conditional and unconditional variances in reaching that conclusion.
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point below). Moreover, investors must add to that posterior mean the posterior variance of the

true conditional mean, the second term in (25), which is the same as the estimation-risk term in

equation (12). In a sense, investors do conduct inference about true variance—they compute its

posterior mean—but they realize that estimate is only part of predictive variance.

The results based on our 206-year sample illustrate how predictive variance can be higher at

long horizons while true variance is inferred to be most likely higher at short horizons. Panel B of

Figure 9 plots the posterior distribution (using benchmark priors) of the variance ratio

V ∗(k) =
(1/k)Var(rT,T+k|φ, DT )

Var(rT+1|φ, DT )
, (26)

for k = 30 years. The posterior probability that this ratio of true variances lies below 1 is 76%, and

the posterior mode is below 0.5. In contrast, recall that 30-year predictive variance is substantially

greater than 1-year variance, as shown earlier in Figure 6 and Table 1.

The true variance Var(rT,T+k|φ, DT ) is the sum of four quantities, the first four components

in equation (12) with the expectations operators removed. The posterior distributions of those

quantities (not shown to save space) exhibit significant asymmetries. As a result, less likely values

of these quantities exert a disproportionate effect on the posterior means and, therefore, on the

first term of the predictive variance in (25). The components reflecting uncertainty about current

and future µt are positively skewed, so their contributions to predictive variance exceed what they

would be if evaluated at the most likely parameter values. This feature of parameter uncertainty

also helps drive predictive variance above the most likely value of true variance.

8. Long-horizon variance: Survey evidence

Our empirical results show investors should view stocks as more volatile over long horizons than

over short horizons. Corporate CFO’s indeed appear to exhibit such a view, as can be inferred from

survey results reported by Ben-David, Graham, and Harvey (2010). Their survey asks each CFO

to give the 10th and 90th percentiles of a confidence interval for the annualized (average) excess

equity return to be realized over the upcoming 10-year period. The same question is asked for a

1-year horizon. For each horizon (k), the authors use the 10th and 90th percentiles to approximate

Var(r̄k), the variance of the CFO’s perceived distribution of the annualized return. The resulting

standard deviations are then averaged across CFO’s. If we treat the averaged standard deviations

as those perceived by a “typical” CFO, we can infer the typical CFO’s views about long-horizon

variance.
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The relation between Var(r̄k) and the annualized variance of the k-year return, (1/k)Var(rT,T+k),

which is our object of interest, must obey

(1/k)Var(rT,T+k) = (1/k)Var(
K∑

i=1

rT+i)

= (1/k)Var(kr̄k)

= kVar(r̄k). (27)

If CFO’s perceive stocks as equally volatile at all horizons, as in the standard i.i.d. setting with

no parameter uncertainty, then (1/k)Var(rT,T+k) = Var(rT,T+1) and Var(r̄k) = Var(rT,T+1)/k. In

that case, the perceived standard deviation of the 1-year return should be 3.2 (=
√

10) times the

perceived standard deviation of the annualized 10-year return. In the survey results reported by

Ben-David et al., we observe that the ratios of 1-year standard deviation to the 10-year standard

deviation are substantially below 3.2. Across 33 quarterly surveys from the first quarter of 2002

through the first quarter of 2010, the ratio ranges from 1.25 to 2.14, and its average value is 1.54.

Even the maximum ratio of 2.14 implies

Var(r̄1)

Var(r̄10)
= (2.14)2, (28)

or, applying (27), a 10-year variance ratio given by

(1/10)Var(rT,T+10)

Var(rT,T+1)
=

10

(2.14)2
= 2.18, (29)

as compared to the value of 1.0 when stocks are equally volatile over long and short horizons. In

other words, the typical CFO appears to view stock returns as having at least twice the variance

over a 10-year horizon than over a 1-year horizon.

9. Target-date funds

This section explores the long-run riskiness of stocks from the perspective of a very popular in-

vestment strategy. Target-date funds, also known as life-cycle funds, represent one of the fastest-

growing segments of the investment industry. Since the inception of these funds in the mid-1990’s,

their assets have grown to about $280 billion in 2010, including a net cash inflow of $42 billion

during the tumultuous year 2008.

Target-date funds follow a predetermined asset allocation policy that gradually reduces the

stock allocation as the target date approaches, with the aim of providing a more conservative asset
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mix to investors approaching retirement.19 A predetermined allocation policy sacrifices the ability

to rebalance in response to future events, an ability analyzed in numerous studies of dynamic asset

allocation.20 We venture off the well-trod path of that literature to consider a long-horizon strategy

that, while suboptimal in theory, has become important in practice.

To analyze target-date funds using a simple model, we consider an investor who can invest in

two assets, the stock market and a real riskless asset. The investor’s horizon is K years, and his

utility for end-of-horizon wealth WK is given by W 1−A
K /(1 − A). The investor commits at the

outset to an investment strategy in which the stock allocation evolves linearly from the first-period

allocation w1 to the final-period allocation wK . The investor solves for the values of w1 and wK

that maximize expected utility.

Target-date funds are often motivated by arguments that involve human capital. A typical

argument goes as follows.21 Human capital is bond-like as it offers a steady stream of labor income.

Younger people have more human capital because they stand to collect labor income over a longer

time period. Younger people thus have a larger implicit position in bonds. To balance that position,

younger people should invest a bigger fraction of their financial wealth in stocks, and they should

gradually reduce their stock allocation as they grow older. To capture this intuition, we endow our

investor with human capital in a simple way.22

We assume that the investor’s financial wealth evolves as

Wt+1 = Wt [1 + wtrS,t+1 + (1 − wt)rf ] + sLt+1 , (30)

where rS,t is the simple stock return at time t, rf is the risk-free rate, Lt is the investor’s labor

income, and s is the savings rate.23 We set s = 2.20%, which is the average annual ratio of

aggregate personal saving to personal income over the past 5 years (2005–2009), as reported by

the Bureau of Economic Analysis. We assume that labor income evolves as

Lt+1 = Lt [1 + ξrS,t+1 + (1 − ξ)rf ] . (31)

19About 84% of target-date fund assets are held in retirement accounts as of first-quarter 2010, according to the
Investment Company Institute. See Viceira (2008) for a more detailed discussion of target-date funds.

20Recent examples include Balduzzi and Lynch (1999), Barberis (2000), Brandt, Goyal, Santa-Clara, and Stroud

(2005), Brandt, Santa-Clara, and Valkanov (2009), Detemple, Garcia, Rindesbacher (2003), Lynch and Balduzzi

(2000), and Lynch (2001), among others. Wachter (2010) provides a review of the asset-allocation literature.
21See, for example, Bodie, Merton, and Samuelson (1992), Viceira (2001), Cocco, Gomes, and Maenhout (2005),

and Gordon and Stockton (2006). Other recent studies that analyze portfolio choice in the presence of labor income
include Gomes and Michaelides (2005), Benzoni, Collin-Dufresne, and Goldstein (2007), Gomes, Kotlikoff, and

Viceira (2008), and Lynch and Tan (2009), among others.
22An earlier version of the paper solved this problem in the absence of human capital, reaching the same conclusions.
23There is no intermediate consumption since the investor is concerned only about terminal wealth.
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This simplifying assumption views human capital as a portfolio of the stock market and a risk-free

bond, where ξ denotes the stock weight. When ξ = 0, labor income grows risk-free and human

capital is entirely bond-like. We consider two values of ξ, ξ = 0 and ξ = 0.3.

To capture the fact that younger people (those with higher values of K) tend to have less

financial wealth, we specify the initial ratio of financial wealth to labor income, denoted by FK =

W0/L0, as a decreasing function of horizon K. Assuming the retirement age of 65, FK is the ratio

of financial wealth to labor income for an investor of age 65 − K. We specify FK as

FK = exp
(

− 4

45
K
)

. (32)

The function in equation (32) is empirically motivated by data from the 2007 Panel Study of

Income Dynamics (PSID) compiled by the University of Michigan. For all ages between 20 and

65, we compute the median ratio of financial wealth to labor income across all households headed

by a person of that age.24 The natural logarithm of this median ratio is an approximately linear

function of age, and its value is about -4 for age 20 and about 0 for age 65. Adopting this linear

approximation and recognizing that K = 65 − age, we quickly obtain equation (32).

As noted earlier, the investor commits to a predetermined linear investment policy whose initial

stock allocation is w1 and whose final allocation is wK . The investor chooses w1 and wK within

the (0, 1) interval to maximize expected power utility of terminal wealth, where wealth evolves

according to equation (30). We solve the problem numerically, setting relative risk aversion A to

10 and the riskless real rate to 2% per year.

Figure 10 plots the optimal initial and final stock allocations, w1 (solid line) and wK (dashed

line), for investment horizons ranging from 1 to 30 years. In Panels A and B, parameter uncertainty

is ignored, in that the parameters characterizing the return process are treated as known and equal

to their posterior means. In Panels C and D, parameter uncertainty is incorporated by using the

posterior distributions from the 1802–2007 sample with three predictors and the benchmark prior.

We set ξ = 0 in Panels A and C, but ξ = 0.3 in Panels B and D. We equate the conditional expected

stock return at the beginning of each horizon, µT , to the unconditional expected return Er. This

specification removes the effect that a non-zero value of µT − Er would have on an investor’s

desired pattern of stock allocations over the investment horizon.

The optimal allocations in Panels A and B of Figure 10 are strikingly similar to those selected

by real-world target-date funds. The initial allocation w1 decreases steadily as the investment

horizon shortens, declining from 100% at long horizons such as 25 or 30 years to about 23%

24The financial wealth of each household is computed by adding up items S805, S811, S815, and S819 in PSID.
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at the one-year horizon, whereas the final allocation wK is roughly constant at about 25-35%

across all horizons. Investors in real-world target-date funds similarly commit to a stock allocation

schedule, or “glide path,” that decreases steadily to a given level at the target date. The final

stock allocation in a target-date fund does not depend on when investors enter the fund, but the

initial allocation does—it is higher for investors entering longer before the target date. Not only

the patterns but also the magnitudes of the optimal allocations in Panels A and B resemble those

of target-date funds. For example, Viceira (2008) reports that the target-date funds offered by

Fidelity and Vanguard reduce their stock allocations from 90% at long horizons to about 30% at

short horizons. In addition, Vanguard’s funds keep their 90% allocation fixed for all horizons of 25

years or longer (see Viceira’s Figure 5.2), which corresponds nicely to the flat portions of the solid

lines in Panels A and B.25 In short, target-date funds seem appealing to investors who maximize

expected power utility of wealth at the target date and who ignore parameter uncertainty.

In contrast, target-date funds do not appear desirable if the same investors incorporate parame-

ter uncertainty, as shown in Panels C and D. For short investment horizons, the results look similar

to those in Panels A and B, but for longer horizons, neither w1 nor wK are roughly invariant to the

horizon; instead, they both decrease with K. For example, in Panel D, an investor with a 10-year

horizon chooses to glide from w1 = 51% to w10 = 31%, but an investor with a 30-year horizon

chooses lower stock allocations, gliding from w1 = 32% to w30 = 7%. The long-horizon stock

allocations are lower in Panels C and D because investors perceive disproportionately more pa-

rameter uncertainty at long horizons. The stock allocations also depend on the riskiness of human

capital. An investor with ξ = 0.3 generally invests less in stocks than an investor with ξ = 0

because the former investor is already exposed to the stock market implicitly through his human

capital. Our basic conclusions about target-date funds are the same for both values of ξ.

In Figure 10, investors always optimally choose downward-sloping glide paths, wK < w1, for

all K > 1. This choice is not driven by mean reversion; wK < w1 remains optimal even if mean

reversion is eliminated by setting ρuw = 0. Instead, the driving force is that future expected returns

µT+j are unknown and likely to be persistent. As j increases, the future values µT+j become

increasingly uncertain from the perspective of investors at time T . As a result, the future returns

rT+j+1 = µT+j + uT+j+1 become increasingly volatile from the investors’ perspective. In other

words, investors perceive distant future returns to be more volatile than near-term returns. Facing

the need to predetermine their future allocations, investors commit to invest less in stocks in the

more uncertain distant future. This simple logic shows that neither mean reversion nor human

capital are necessary to justify downward-sloping glide paths. If investors must commit to a fixed

25The fact that Vanguard’s allocation flattens out at 90% instead of 100% as in Figure 10 could simply reflect a
different upper bound on stock allocations in their optimization problem.
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schedule of future stock allocations, they will choose lower allocations at longer horizons simply

because they view single-period stock returns as more volatile at longer horizons.

The results in Figure 10 demonstrate how parameter uncertainty makes target-date funds un-

desirable in a setting where they would otherwise be virtually optimal. It would be premature,

however, to conclude that parameter uncertainty makes target-date funds undesirable in all set-

tings. The simple portfolio problem analyzed above abstracts from many important considerations

faced by investors, such as intermediate consumption, housing, etc. Our objective in this section

is simply to show that parameter uncertainty reduces the optimal stock allocations of long-horizon

investors, consistent with our results about long-horizon volatility.

Our findings about long-run volatility seem relevant to all long-term investors, not just those

who buy and hold or commit to predetermined rebalancing schedules. Consider two otherwise

identical worlds in which short-run variances are the same but long-run variances are different.

Even investors who rebalance frequently will generally care about which of the two worlds they

are in. The higher long-run predictive variance is indicative of higher uncertainty about parameters

affecting returns in the long run, such as the unconditional mean return, and such uncertainty could

well lead even frequently rebalancing investors to reduce their stock allocations.

10. Conclusions

We use predictive systems and up to 206 years of data to compute long-horizon variance of real

stock returns from the perspective of an investor who recognizes that parameters are uncertain and

predictors are imperfect. Mean reversion reduces long-horizon variance considerably, but it is more

than offset by other effects. As a result, long-horizon variance substantially exceeds short-horizon

variance on a per-year basis. A major contributor to higher long-horizon variance is uncertainty

about future expected returns, a component of variance that is inherent to return predictability,

especially when expected return is persistent. Estimation risk is another important component of

predictive variance that is higher at longer horizons. Uncertainty about current expected return,

arising from predictor imperfection, also adds considerably to long-horizon variance. Accounting

for predictor imperfection is key in reaching the conclusion that stocks are substantially more

volatile in the long run. Overall, our results show that long-horizon stock investors face more

volatility than short-horizon investors, in contrast to previous research.

In computing predictive variance, we assume that the parameters of the predictive system re-

main constant over the given sample period (206 years of annual data or 55 years of quarterly data).
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While such an assumption is certainly strong, it allows us to be conservative in our treatment of

parameter uncertainty. Our objective in assuming constant parameters over long periods of time

is to minimize parameter uncertainty. This uncertainty, which already contributes substantially

to long-horizon variance, would generally be even greater under alternative scenarios in which

investors would effectively have less information about the current values of the parameters.

Our finding that predictive variance of stock returns is higher at long horizons makes stocks

less appealing to long-horizon investors than conventional wisdom would suggest. A clear illustra-

tion of such long-horizon effects emerges from our analysis of target-date funds. We demonstrate

that a simple specification of the investment objective makes such funds appealing in the absence

of parameter uncertainty but less appealing in the presence of that uncertainty. However, one must

be cautious in drawing conclusions about the desirability of stocks for long-horizon investors in

settings with additional risky assets, such as nominal bonds, and additional life-cycle considera-

tions, such as intermediate consumption. Investigating asset-allocation decisions in such settings,

while allowing the higher long-run stock volatility to enter the problem, is beyond the scope of this

study but offers interesting directions for future research.
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Appendix

A.1. Derivation of the conditional variance Var(rT,T+k|µT , φ)

We can rewrite the AR(1) process for µt in equation (5) as an MA(∞) process

µt = Er +
∞∑

i=0

βiwt−i, (A1)

given our assumption that 0 < β < 1. From (1) and (A1), the return k periods ahead is equal to

rT+k = (1 − βk−1)Er + βk−1µT +
k−1∑

i=1

βk−1−iwT+i + uT+k. (A2)

The multiperiod return from period T + 1 through period T + k is then

rT,T+k =
k∑

i=1

rT+i = kEr +
1 − βk

1 − β
(µT − Er) +

k−1∑

i=1

1 − βk−i

1 − β
wT+i +

k∑

i=1

uT+i. (A3)

The conditional variance of the k-period return can be obtained from equation (A3) as

Var (rT,T+k|µT , φ) = kσ2
u +

σ2
w

(1 − β)2

[

k − 1 − 2β
1 − βk−1

1 − β
+ β21 − β2(k−1)

1 − β2

]

+
2σuw

1 − β

[

k − 1 − β
1− βk−1

1 − β

]

. (A4)

Equation (A4) can then be written as in equations (6) to (9), where d̄ arises from the relation

σ2
w = σ2

µ(1 − β2) = σ2
rR

2(1 − β2) = (σ2
u/(1 − R2))R2(1 − β2). (A5)

A.2. Properties of A(k) and B(k)

1. A(1) = 0, B(1) = 0

2. A(k) → 1 as k → ∞, B(k) → 1 as k → ∞

3. A(k + 1) > A(k) ∀k, B(k + 1) > B(k) ∀k

4. A(k) ≥ B(k) ∀k, with a strict inequality for all k > 1

5. 0 ≤ A(k) < 1, 0 ≤ B(k) < 1

6. A(k) converges to one more quickly than B(k)
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Properties 1 and 2 are obvious. Properties 3 and 4 are proved below. Property 5 follows from

Properties 1–3. Property 6 follows from Properties 1–4.

Proof that A(k + 1) > A(k) ∀k:

A(k + 1) = 1 +
1

k + 1

[

−1 − β(1 + β + . . . + βk−2 + βk−1)
]

= 1 +
k

k + 1

1

k

[

−1 − β(1 + β + . . . + βk−2 + βk−1)
]

= 1 +
k

k + 1

[

A(k)− 1 − βk

k

]

,

which exceeds A(k) if and only if A(k) < 1 − βk. This is indeed true because

A(k) = 1 − 1

k
− 1

k

[

β1 + . . . + βk−1
]

= 1 − 1

k

[

β0 + β1 + . . . + βk−1
]

< 1 − 1

k

[

kβk
]

= 1 − βk.

Proof that B(k + 1) > B(k) ∀k:

B(k + 1)

= 1 +
1

k + 1

[

−1 − 2β(1 + β + . . . + βk−2 + βk−1) + β2(1 + β2 + . . . + (β2)k−2 + (β2)k−1)
]

= 1 +
k

k + 1

1

k

[{

−1 − 2β(1 + β + . . . + βk−2) + β2(1 + β2 + . . . + (β2)k−2)
}

− 2βk + β2k
]

= 1 +
k

k + 1

[

B(k) − 1 +
1

k

(

−2βk + β2k
)]

,

which exceeds B(k) if and only if B(k) < 1 + β2k − 2βk. This is indeed true because

B(k) = 1 − 2
1

k
+

1

k
− 2

1

k

(

β + . . . + βk−2 + βk−1
)

+
1

k

(

β2 + . . . + (β2)k−2 + (β2)k−1
)

= 1 +
1

k

[(

(β2)0 − 2β0
)

+
(

(β2)1 − 2β1
)

+ . . . +
(

(β2)k−1 − 2βk−1
)]

< 1 +
1

k

[

k
(

(β2)k − 2βk
)]

= 1 + β2k − 2βk,

where the inequality follows from the fact that the function f(x) = (β2)x − 2βx is increasing in x

(because f ′(x) = 2(lnβ)βx(βx − 1) > 0, for 0 < β < 1).

Proof that A(k) > B(k) ∀k > 1:

B(k) −A(k) =
1

k

[

β21 − β2(k−1)

1 − β2
− β

1 − βk−1

1 − β

]

=
1

k

[

β2 + . . . + (β2)k−1 −
(

β + . . . + βk−1
)]

=
1

k

k−1∑

i=1

(

β2i − βi
)

=
1

k

k−1∑

i=1

βi
(

βi − 1
)

< 0.
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A.3. Decomposition of Var{E(rT,T+k|µT , φ, DT )|DT }

Let ET,k = E(rT,T+k|µT , φ, DT ). The variance of ET,k given DT can be decomposed as

Var{ET,k|DT} = E{Var[ET,k|φ, DT ]|DT} + Var{E[ET,k|φ, DT ]|DT}. (A6)

To simplify each term on the right-hand side, observe from equations (1), (5), and (2), that

ET,k = E(rT+1 + rT+2 + . . . + rT+k|µT , φ, DT )

= E(µT + µT+1 + . . . + µT+k−1|µT , φ)

= kEr +
1 − βk

1 − β
(µT −Er). (A7)

Taking the first and second moments of (A7), using (10) and (11), then gives

E[ET,k|φ, DT ] = kEr +
1 − βk

1 − β
(bT − Er) (A8)

Var[ET,k|φ, DT ] =

(

1 − βk

1 − β

)2

qT . (A9)

Substituting (A8) and (A9) into (A6) then gives the fourth and fifth terms in (12), using (3).

A.4. Relation between conditional and unconditional variance ratios

The unconditional variance (which does not condition on µT ) is given by

Var(rT,T+k|φ) = E[Var(rT,T+k|µT , φ, DT )|φ] + Var[E(rT,T+k|µT , φ, DT )|φ]

= Var(rT,T+k|µT , φ) +

(

1 − βk

1 − β

)2

Var(µT |φ)

= Var(rT,T+k|µT , φ) +

(

1 − βk

1 − β

)2

σ2
u

(

R2

1 − R2

)

, (A10)

using equation (A7). It follows from equation (6) that

Var(rT,T+1|µT , φ) = σ2
u. (A11)

Combining equations (A10) and (A11) for k = 1 gives

Var(rT,T+1|φ) = Var(rT,T+1|µT , φ) +
σ2

uR
2

1 − R2
=

σ2
u

1 − R2
=

Var(rT,T+1|µT , φ)

1 − R2
. (A12)

Denote the conditional variance ratio Vc(k) and the unconditional variance ratio Vu(k) as follows:

Vc(k) =
(1/k)Var(rT,T+k|µT , φ)

Var(rT+1|µT , φ)
; Vu(k) =

(1/k)Var(rT,T+k|φ)

Var(rT,T+1|φ)
. (A13)
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These ratios can then be related as follows, combining (A10), (A12), and (A13):

Vu(k) =
(1/k)Var(rT,T+k|φ)(1 − R2)

Var(rT,T+1|µT , φ)

=
(1/k)Var(rT,T+k|µT , φ)(1 − R2)

Var(rT,T+1|µT , φ)
+

1

k

(

1 − βk

1 − β

)2

R2

= (1 − R2)Vc(k) +
1

k

(

1 − βk

1 − β

)2

R2. (A14)

A.5. Permanent and temporary price components in our setting

Fama and French (1988), Summers (1986), and others employ a model in which the log stock price

pt is the sum of a random walk st and a stationary component yt that follows an AR(1) process:

pt = st + yt (A15)

st = µ + st−1 + εt (A16)

yt = byt−1 + et, (A17)

where et and εt are mean-zero variables independent of each other, and |b| < 1. Noting that

rt+1 = pt+1 − pt, it is easy to verify that equations (A15) through (A17) deliver a special case of

our model in equations (1) and (5), in which

Er = µ (A18)

β = b (A19)

µt = µ − (1 − b)yt (A20)

ut+1 = εt+1 + et+1 (A21)

wt+1 = −(1 − b)et+1. (A22)

This special case has the property

σuw = Cov(ut+1, wt+1) = −(1 − b)σ2
e < 0, (A23)

implying the presence of mean reversion. We also see

σ2
µ = Var(µt) = (1 − b)2σ2

y = (1 − b)2 σ2
e

1 − b2
=

1 − b

1 + b
σ2

e (A24)

and, therefore, using (21),

Cov(rt+1, rt) = βσ2
µ + σuw =

b(1 − b)

1 + b
σ2

e − (1 − b)σ2
e = −1 − b

1 + b
σ2

e < 0. (A25)

Thus, under (A15) through (A17) with b > 0, all autocovariances in (21) are negative and all

unconditional variance ratios are less than 1.
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Table 1

Variance Ratios and Components of Long-Horizon Variance

The first row of each panel reports the ratio (1/k)Var(rT,T+k|DT )/Var(rT+1|DT ), where Var(rT,T+k|DT ) is the

predictive variance of the k-year return based on 206 years of annual data for real equity returns and the three predictors

over the 1802–2007 period. The second row reports Var(rT,T+k|DT ), multiplied by 100. The remaining rows report

the five components of Var(rT,T+k|DT ), also multiplied by 100 (they add up to total variance). Panel A contains

results for k = 25 years, and Panel B contains results for k = 50 years. Results are reported under each of three priors

for ρuw, R2, and β. As the prior for one of the parameters departs from the benchmark, the priors on the other two

parameters are held at the benchmark priors. The “tight” priors, as compared to the benchmarks, are more concentrated

towards −1 for ρuw, 0 for R2, and 1 for β; the “loose” priors are less concentrated in those directions.

ρuw R2 β

Prior Tight Bench Loose Tight Bench Loose Tight Bench Loose

Panel A. Investment Horizon k = 25 years

Variance Ratio 1.30 1.36 1.26 1.31 1.36 1.15 1.42 1.36 1.34

Predictive Variance 3.82 3.99 3.68 3.92 3.99 3.28 4.17 3.99 3.93

IID Component 2.59 2.60 2.59 2.75 2.60 2.43 2.58 2.60 2.60

Mean Reversion -4.13 -4.01 -4.10 -3.04 -4.01 -4.51 -4.28 -4.01 -3.97

Uncertain Future µ 2.91 2.86 2.84 1.70 2.86 3.51 3.14 2.86 2.79

Uncertain Current µ 0.97 0.96 0.94 0.75 0.96 0.92 1.17 0.96 0.93

Estimation Risk 1.48 1.58 1.41 1.75 1.58 0.93 1.56 1.58 1.57

Panel B. Investment Horizon k = 50 years

Variance Ratio 1.76 1.82 1.64 1.72 1.82 1.45 1.96 1.82 1.79

Predictive Variance 5.14 5.34 4.79 5.14 5.34 4.13 5.75 5.34 5.27

IID Component 2.59 2.60 2.59 2.75 2.60 2.43 2.58 2.60 2.60

Mean Reversion -5.52 -5.36 -5.42 -4.32 -5.36 -5.61 -5.80 -5.36 -5.28

Uncertain Future µ 5.40 5.31 5.13 3.60 5.31 5.54 5.97 5.31 5.16

Uncertain Current µ 0.95 0.94 0.91 0.90 0.94 0.73 1.16 0.94 0.92

Estimation Risk 1.72 1.85 1.59 2.21 1.85 1.03 1.85 1.85 1.87
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Figure 1. Conditional multiperiod variance and its components for different values of ρuw. Panel A

plots the conditional per-period variance of multiperiod returns from equation (6), Var(rT,T+k|µT , φ)/k, as

a function of the investment horizon k, for three different values of ρuw. Panel B plots the component of

the variance that is due to mean reversion in returns, σ2
u2d̄ρuwA(k). Panel C plots the component of this

variance that is due to uncertainty about future values of the expected return, σ2
ud̄2B(k). For all three values

of ρuw , variances are computed with β = 0.85, R2 = 0.12, and an unconditional standard deviation of

returns of 20% per year.
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Figure 2. Conditional multiperiod variance and its components for different values of R2. Panel A

plots the conditional per-period variance of multiperiod returns from equation (6), Var(rT,T+k|µT , φ)/k, as

a function of the investment horizon k, for three different values of R2. Panel B plots the component of

the variance that is due to mean reversion in returns, σ2
u2d̄ρuwA(k). Panel C plots the component of this

variance that is due to uncertainty about future values of the expected return, σ2
ud̄2B(k). For all three values

of R2, variances are computed with β = 0.85, ρuw = −0.6, and an unconditional standard deviation of

returns of 20% per year.
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Figure 3. Prior distributions of parameters. The plots display the prior distributions for β, ρuw, the true

R2 (fraction of variance in the return rt+1 explained by the conditional mean µt), and the “observed” R2

(fraction of variance in rt+1 explained by the observed predictors xt). The priors shown for the observed

R2 correspond to the three priors for the true R2 and the benchmark priors for β and ρuw.
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Figure 4. Posterior distributions of parameters. Panel A plots the posteriors of ρuw , the correlation

between expected and unexpected returns. Panel B plots the posteriors of β, the persistence of the true

conditional expected return µt. Panel C plots the posteriors of the true R2 (fraction of variance in the return

rt+1 explained by µt). Panel D plots the posteriors of the “observed” R2 (fraction of variance in rt+1

explained by the observed predictors xt). The results are obtained by estimating the predictive system on

annual real U.S. stock market returns in 1802-2007. Three predictors are used: the dividend yield, the bond

yield, and the term spread.
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Figure 5. Posterior distributions of parameters related to predictor imperfection. Panel A plots the

posterior of the fraction of variance in the conditional expected return µt that can be explained by the

predictors. The values smaller than one indicate predictor imperfection. Panel B plots the posteriors of

partial correlations between each of the three predictors and µt. The posteriors correspond to the benchmark

priors. The results are obtained by estimating the predictive system on annual real U.S. stock market returns

in 1802-2007. Three predictors are used: the dividend yield, the bond yield, and the term spread.
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Panel A.  Predictive Variance of Stock Returns
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Figure 6. Predictive variance of multiperiod return and its components. Panel A plots the variance

of the predictive distribution of long-horizon returns, Var(rT,T+k|DT ). Panel B plots the five components

of the predictive variance. All quantities are divided by k, the number of periods in the return horizon.

The results are obtained by estimating the predictive system on annual real U.S. stock market returns in

1802-2007. Three predictors are used: the dividend yield, the bond yield, and the term spread.
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Figure 7. Predictive variance and predictor imperfection. The plots display results under the predictive

system (System 2) in which expected return depends on a vector of observable predictors, xt, as well as

a missing predictor, πt, that obeys an AR(1) process. The top panels display prior distributions for σπ ,

the standard deviation of πt, under different degrees of predictor imperfection. The middle panels display

the corresponding posteriors of ∆R2, the “true” R2 for one-period returns minus the “observed” R2 when

conditioning only on xt. The bottom panels display the predictive variances for the two imperfect-predictor

cases as well for the case of perfect predictors (σπ = ∆R2 = 0). The left-hand panels are based on annual

data from 1802–2007 for real U.S. stock returns and three predictors: the dividend yield, the bond yield, and

the term spread. The right-hand panels are based on quarterly data from 1952Q1–2006Q4 for real returns

and three predictors: the dividend yield, CAY, and the bond yield.
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Figure 8. Sample variance ratios of annual real equity returns, 1802–2007. The plot displays the sample

variance ratio V̂ (k) = V̂ar(rt,t+k)/(kV̂ar(rt,t+1)), where V̂ar(rt,t+k) is the unbiased sample variance of k-

year log returns, computed at an overlapping annual frequency. Also shown are the 1st, 10th, and 50th

percentiles of the Monte Carlo sampling distribution of V̂ (k) under the hypothesis that annual log returns

are independently and identically distributed as normal.
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Figure 9. Posterior distributions for 30-year variance ratios. Panel A plots the posterior distribution of

the unconditional variance of 30-year stock market returns, Var(rT,T+30|φ), divided by 30 times the uncon-

ditional variance of one-year returns, Var(rT+1|φ). Panel B plots the analogous ratio for the conditional

variance, Var(rT,T+30|DT , φ). (The posterior mean of that variance is the first term of the predictive vari-

ance in equation (25).) The results are obtained by estimating the predictive system on annual real U.S.

stock market returns in 1802-2007. Three predictors are used: the dividend yield, the bond yield, and the

term spread.
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Figure 10. Parameter uncertainty and target-date funds. The figure plots equity allocations w1 (solid

line) and wK (dashed line) for a long-horizon investor with utility for end-of-horizon wealth (W ) given by

W 1−A/(1 − A). At the beginning of a K-period horizon, the investor commits to a strategy in which the

equity allocation evolves linearly from the first-period allocation w1 to the final-period allocation wK . The

remaining portion of the investor’s portfolio is allocated to a riskless asset, assumed to provide a constant

real return of 2% per year. Relative risk aversion (A) equals 10. The investor chooses both w1 and wK on

the interval (0, 1) to maximize expected utility. The investor incorporates parameter uncertainty in Panels

C and D but not in Panels A and B. The investor’s labor income is completely risk-free in Panels A and C

(ξ = 0) but not in Panels B and D (ξ = 0.3), in which it is also affected by the stock market return.
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