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1. Introduction

Conventional wisdom views stock returns as less volatile over longer investment horizons. This

view seems consistent with various empirical estimates. For example, using over two centuries

of U.S equity returns, Siegel (2008) reports that variances realized over investment horizons of

several decades are substantially lower than short-horizon variances on a per-year basis. Such

evidence pertains to unconditional variance, but a similar message is delivered by studies that

condition variance on information useful in predicting returns. Campbell and Viceira (2002, 2005),

for example, report estimates of conditional variances that generally decrease with the investment

horizon. The long-run volatility of stocks is no doubt of interest to investors. Evidence of lower

long-horizon variance is cited in support of higher equity allocations for long-run investors (e.g,

Siegel, 2008) as well as the increasingly popular “life-cycle” mutual funds that allocate less to

equity as investors grow older (e.g., Gordon and Stockton, 2006, Greer, 2004, and Viceira, 2008).

We find that stocks are actually more volatile over long horizons. At a 30-year horizon, for

example, we find return variance per year to be 21 to 53 percent higher than the variance at a

1-year horizon. This conclusion stems from the fact that we assess variance from the perspective

of investors who condition on available information but realize their knowledge is limited in two

key respects. First, even after observing 206 years of data (1802–2007), investors do not know the

values of the parameters that govern the processes generating returns and observable “predictors”

used to forecast returns. Second, investors recognize that, even if those parameter values were

known, the predictors could deliver only an imperfect proxy for the conditional expected return.

Under the traditional random-walk assumption that returns are distributed independently and

identically (i.i.d.) through time, return variance per period is equal at all investment horizons.

Explanations for lower variance at long horizons commonly focus on “mean reversion,” whereby

a negative shock to the current return is offset by positive shocks to future returns, and vice versa.

Our conclusion that stocks are more volatile in the long run obtains despite the presence of mean

reversion. We show that mean reversion is only one of five components of long-run variance:

(i) i.i.d. uncertainty

(ii) mean reversion

(iii) uncertainty about future expected returns

(iv) uncertainty about current expected return

(v) estimation risk.

Whereas the mean-reversion component is strongly negative, the other components are all positive,

and their combined effect outweighs that of mean reversion.
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Of the four components contributing positively, the one making the largest contribution at

the 30-year horizon reflects uncertainty about future expected returns. This component (iii) is

often neglected in discussions of how return predictability affects long-horizon return variance.

Such discussions typically highlight mean reversion, but mean reversion—and predictability more

generally—require variance in the conditional expected return, which we denote by �t . That

variance makes the future values of �t uncertain, especially in the more distant future periods,

thereby contributing to the overall uncertainty about future returns. The greater the degree of

predictability, the larger is the variance of �t and thus the greater is the relative contribution of

uncertainty about future expected returns to long-horizon return variance.

Three additional components also make significant positive contributions to long-horizon vari-

ance. One is simply the variance attributable to unexpected returns. Under an i.i.d. assumption

for unexpected returns, this variance makes a constant contribution to variance per period at all in-

vestment horizons. At the 30-year horizon, this component (i), though quite important, is actually

smaller in magnitude than both components (ii) and (iii) discussed above.

Another component of long-horizon variance reflects uncertainty about the current �t . Com-

ponents (i), (ii), and (iii) all condition on the current value of �t . Conditioning on the current

expected return is standard in long-horizon variance calculations using a vector autoregression

(VAR), such as Campbell (1991) and Campbell, Chan, and Viceira (2003). In reality, though, an

investor does not observe �t . We assume the investor observes the histories of returns and a given

set of return predictors. This information is capable of producing only an imperfect proxy for �t ,

which in general reflects additional information. Pástor and Stambaugh (2008) introduce a predic-

tive system to deal with imperfect predictors, and we use that framework to assess long-horizon

variance and capture component (iv). When �t is persistent, uncertainty about the current �t con-

tributes to uncertainty about �t in multiple future periods, on top of the uncertainty about future

�t ’s discussed earlier.

The fifth and last component adding to long-horizon variance, also positively, is one we label

“estimation risk,” following common usage of that term. This component reflects the fact that, after

observing the available data, an investor remains uncertain about the parameters of the joint process

generating returns, expected returns, and the observed predictors. That parameter uncertainty adds

to the overall variance of returns assessed by an investor. If the investor knew the parameter values,

this estimation-risk component would be zero.

Parameter uncertainty also enters long-horizon variance more pervasively. Unlike the fifth

component, the first four components are non-zero even if the parameters are known to an investor.

At the same time, those four components can be affected significantly by parameter uncertainty.
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Each component is an expectation of a function of the parameters, with the expectation evaluated

over the distribution characterizing an investor’s parameter uncertainty. We find that Bayesian

posterior distributions of these functions are often skewed, so that less likely parameter values

exert a significant influence on the posterior means, and thus on long-horizon variance.

Variance that incorporates parameter uncertainty is known as predictive variance in a Bayesian

setting. In contrast, true variance excludes parameter uncertainty and is defined by setting param-

eters equal to their true values. True variance is the more common focus of statistical inference;

the usual sample variance, for example, is an estimate of true unconditional variance. We compare

long- and short-horizon predictive variances, which are relevant from an investor’s perspective.

Our objective is thus different from that of an extensive literature that uses variance ratios and

other statistics to test whether true return variances differ across investment horizons.1 The vari-

ance of interest in that hypothesis is generally unconditional, as opposed to being conditioned

on current information, but even ignoring that distinction leaves the results of such exercises less

relevant to investors. Investors might well infer from the data that the true variance, whether con-

ditional or unconditional, is probably lower at long horizons. At the same time, investors remain

uncertain about the values of the parameters, enough so that they assess the relevant variance from

their perspective to be higher at long horizons.

The effects of parameter uncertainty on the variance of long-horizon returns are analyzed

in previous studies, such as Stambaugh (1999), Barberis (2000), and Hoevenaars et al (2007).

Barberis discusses how parameter uncertainty essentially compounds across periods and exerts

stronger effects at long horizons. The above studies find that the Bayesian predictive variance is

substantially higher than variance estimates that ignore parameter uncertainty. However, all three

studies also find that long-horizon predictive variance is lower than short-horizon variance for the

horizons considered—up to 10 years in Barberis (2000), up to 20 years in Stambaugh (1999), and

up to 50 years in Hoevenaars et al (2007).2 In contrast, we find that predictive variance even at a

10-year horizon is higher than at a 1-year horizon.

A key difference between our analysis and the above studies is our inclusion of uncertainty

about the current expected return �t . The above studies employ VAR approaches in which ob-

served predictors perfectly capture �t , whereas we consider predictors to be imperfect, as ex-

plained earlier. We compare predictive variances under perfect versus imperfect predictors, and

find that long-run variance is substantially higher when predictors are imperfect. Predictor im-

1A partial list of such studies includes Fama and French (1988), Poterba and Summers (1988), Lo and MacKinlay

(1988, 1989), Richardson and Stock (1989), Kim, Nelson, and Startz (1991), and Richardson (1993).
2Instead of predictive variances, Barberis reports asset allocations for buy-and-hold, power-utility investors. His

allocations for the 10-year horizon exceed those for short horizons, even when parameter uncertainty is incorporated.
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perfection increases long-run variance both directly and indirectly. The direct effect, component

(iv) of predictive variance, is large enough at a 10-year horizon that subtracting it from predictive

variance leaves the remaining portion lower than the 1-year variance. The indirect effect is even

larger. It stems from the fact that once predictor imperfection is admitted, parameter uncertainty

is more important in general. That is, when �t is not observed, learning about its persistence and

predictive ability is more difficult than when �t is assumed to be given by observed predictors.

The effects of parameter uncertainty pervade all components of long-horizon returns, as noted ear-

lier. The greater parameter uncertainty accompanying predictor imperfection further widens the

gap between our analysis and the previous studies.3

The remainder of the paper proceeds as follows. Section 2 derives expressions for the five

components of long-horizon variance discussed above and analyzes their theoretical properties.

The effects of parameter uncertainty on long-horizon variance are first explored in Section 3 using

a simplified setting. Section 4 then presents our empirical analysis. We use a predictive system,

with 206 years of data, to examine the effects of parameter uncertainty on long-horizon predictive

variance and its components. Section 5 compares predictive variances computed using a predictive

system to those computed using a “perfect-predictor” framework that excludes uncertainty about

the current expected return. Section 6 returns to the above discussion of the distinction between an

investor’s problem and inference about true variance. Section 7 summarizes our conclusions.

2. Long-horizon variance and parameter uncertainty

Let rtC1 denote the continuously compounded return from time t to time t C 1. We can write

rtC1 D �t C utC1; (1)

where �t denotes the expected return conditional on all information at time t and utC1 has zero

mean. Also define the k-period return from period T C 1 through period T C k,

rT;T Ck D rT C1 C rT C2 C : : : C rT Ck: (2)

An investor assessing the variance of rT;T Ck uses DT , a subset of all information at time T . In our

empirical analysis in Section 4, DT consists of the full histories of returns as well as predictors

that investors use in forecasting returns.4 Importantly, DT typically reveals neither the value of

3Schotman, Tschernig, and Budek (2008) find that if the predictors are fractionally integrated, long-horizon vari-

ance of stock returns can exceed short-horizon variance. With stationary predictors, though, they find long-horizon

variance is smaller than short-horizon variance. By incorporating predictor imperfection as well as parameter uncer-

tainty, we find that long-horizon variance exceeds short-horizon variance even when predictors are stationary.
4We are endowing the investor with the same information set as the set that we use in our empirical analysis. In

that sense, we are putting investors and econometricians on an equal footing, in the spirit of Hansen (2007).
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�T in equation (1) nor the values of the parameters governing the joint dynamics of rt , �t , and the

predictors. Let � denote the vector containing those parameter values.

This paper focuses on Var.rT;T Ck jDT /, the variance of rT;T Ck given the investor’s information

set. Since the investor is uncertain about �T and �, it is useful to decompose this variance as

Var.rT;T CkjDT / D EfVar.rT;T Ckj�T ; �; DT /jDT g C VarfE.rT;T Ck j�T ; �; DT /jDT g: (3)

The first term in this decomposition is the expectation of the conditional variance of k-period

returns. This conditional variance, which has been estimated by Campbell and Viceira (2002,

2005), is of interest only to investors who know the true values of �T and �. Investors who do

not know �T and � are interested in the expected value of this conditional variance, and they also

account for the variance of the conditional expected k-period return, the second term in equation

(3). As a result, they perceive returns to be more volatile and, as we show below, they perceive

disproportionately more volatility at long horizons. Whereas the conditional per-period variance of

stock returns appears to decrease with the investment horizon, we show that .1=k/Var.rT;T CkjDT /,

which accounts for uncertainty about �T and �, increases with the investment horizon.

The potential importance of parameter uncertainty for long-run variance is readily seen in the

special case where returns are i.i.d. with known variance �2 and unknown mean �. In this case, the

mean and variance of k-period returns conditional on � are both linear in k: the mean is k� and

the variance is k�2. An investor who knows � faces the same per-period variance, �2, regardless

of k. However, an investor who does not know � faces more variance, and this variance increases

with k. To see this, apply the variance decomposition from equation (3):

Var.rT;T CkjDT / D Efk�2jDT g C Varfk�jDT g
D k�2 C k2Var f�jDT g ; (4)

so that .1=k/Var.rT;T CkjDT / increases with k. In fact, .1=k/Var.rT;T CkjDT / ! 1 as k ! 1.

That is, an investor who believes that stock prices follow a random walk but who is uncertain about

the unconditional mean � views stocks as riskier in the long run.5

When returns are predictable, so that �t is time-varying, Var.rT;T CkjDT / can be above or

below its value in the i.i.d. case. Predictability can induce mean reversion, which reduces long-

5To assess the likely magnitude of this effect, consider the following back-of-the-envelope calculation. If uncer-

tainty about � is given by the standard error of the sample average return computed over T periods, or �=
p

T , then

.1=k/Var.rT;T CkjDT / D �2.1 C k=T /. With k D 30 years and T D 206 years, as in the sample that we use in

Section 4, .1 C k=T / D 1:1456, so the per-period predictive variance exceeds �2 by about one seventh. Based on

our 1802–2007 sample of annual real U.S. stock market returns, we estimate � D 17:18% per year, the standard error

of the sample mean is 1.20% per year, and the predictive standard deviation of 30-year returns is 18.39% per year.

Of course, if the sample mean estimate of � is computed from a sample shorter than 206 years (e.g., due to concerns

about nonstationarity), then uncertainty about � is larger and the effect on predictive variance is stronger.
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run variance, but predictability also introduces uncertainty about additional quantities, such as

future values of �t and the parameters that govern its behavior. It is not clear a priori whether

predictability makes long-run returns more or less volatile compared to the i.i.d. case.

For most of our analysis, we assume for simplicity that �t follows an AR(1) process,6

�tC1 D .1 � ˇ/Er C ˇ�t C wtC1; 0 < ˇ < 1: (5)

The AR(1) assumption for �t allows us to further decompose both terms on the right-hand side

of equation (3), providing additional insights into the components of Var.rT;T CkjDT /. The AR(1)

assumption also allows a simple characterization of mean reversion. Time variation in �t induces

mean reversion in returns if the unexpected return utC1 is negatively correlated with future values

of �t . Under the AR(1) assumption, mean reversion requires a negative correlation between utC1

and wtC1, or �uw < 0. If fluctuations in �t are persistent, then a negative shock in utC1 is

accompanied by offsetting positive shifts in the �tCi ’s for multiple future periods, resulting in a

stronger negative contribution to the variance of long-horizon returns.

2.1. Conditional variance

This section analyzes the conditional variance Var.rT;T Ckj�T ; �; DT /, which is an important

building block in computing the variance in equation (3). The conditional variance reflects nei-

ther parameter uncertainty nor uncertainty about �T , since it conditions on both �T and �. The

parameter vector � includes all parameters in equations (1) and (5): � D .ˇ; Er ; �uw ; �u; �w/,

where �u and �w are conditional standard deviations of utC1 and wtC1, respectively. Assum-

ing that equations (1) and (5) hold and that the conditional covariance matrix of ŒutC1 wtC1� is

constant, Var.rT;T Ckj�T ; �; DT / D Var.rT;T Ckj�T ; �/. Furthermore, we show in the Appendix

that

Var.rT;T Ckj�T ; �/ D k�2
u

�

1 C 2 Nd�uwA.k/ C Nd2B.k/
�

; (6)

where

A.k/ D 1 C 1

k

�

�1 � ˇ
1 � ˇk�1

1 � ˇ

�

(7)

B.k/ D 1 C 1

k

�

�1 � 2ˇ
1 � ˇk�1

1 � ˇ
C ˇ2 1 � ˇ2.k�1/

1 � ˇ2

�

(8)

Nd D
�

1 C ˇ

1 � ˇ

R2

1 � R2

�1=2

; (9)

6Our stationary AR(1) process for �t nests a popular model in which the stock price is the sum of a random walk

and a positively autocorrelated stationary AR(1) component (e.g., Summers, 1986, Fama and French, 1988). In that

special case, �uw as well as return autocorrelations at all lags are negative. See the Appendix.
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and R2 is the ratio of the variance of �t to the variance of rtC1, based on equation (1).

The conditional variance in (6) consists of three terms. The first term, k�2
u , captures the well-

known feature of i.i.d. returns—the variance of k-period returns increases linearly with k. The

second term, containing A.k/, reflects mean reversion in returns arising from the likely negative

correlation between realized returns and expected future returns (�uw < 0), and it contributes

negatively to long-horizon variance. The third term, containing B.k/, reflects the uncertainty

about future values of �t , and it contributes positively to long-horizon variance. When returns are

unpredictable, only the first term is present (because R2 D 0 implies Nd D 0, so the terms involving

A.k/ and B.k/ are zero). Now suppose that returns are predictable, so that R2 > 0 and Nd > 0.

When k D 1, the first term is still the only one present, because A.1/ D B.1/ D 0. As k increases,

though, the terms involving A.k/ and B.k/ become increasingly important, because both A.k/

and B.k/ increase monotonically from 0 to 1 as k goes from 1 to infinity.

Figure 1 plots the variance in (6) on a per-period basis (i.e., divided by k), as a function of the

investment horizon k. Also shown are the terms containing A.k/ and B.k/. It can be verified that

A.k/ converges to 1 faster than B.k/. (See Appendix.) As a result, the conditional variance in Fig-

ure 1 is U-shaped: as k increases, mean reversion exerts a stronger effect initially, but uncertainty

about future expected returns dominates eventually.7 The contribution of the mean reversion term,

and thus the extent of the U-shape, is stronger when �uw takes larger negative values. This effect

is illustrated in Figure 1. The contributions of mean reversion and uncertainty about future �T Ci ’s

both become stronger as predictability increases. These effects are illustrated in Figure 2, which

plots the same quantities as Figure 1, but for three different R2 values.

The key insight arising from Figures 1 and 2 is that, although mean reversion can significantly

reduce long-horizon variance, that reduction can be more than offset by uncertainty about future

expected returns. Both effects become stronger as R2 increases, but uncertainty about future ex-

pected returns prevails when R2 is high. In that case, long-horizon variance exceeds short-horizon

variance, even though � and the current �T are assumed to be known.

The persistence in expected return also plays an important role in multiperiod variance, albeit in

a more complicated fashion, since ˇ appears in Nd as well as in A.k/ and B.k/. Figure 3 illustrates

effects of ˇ, �uw and R2 by plotting the ratio of per-period conditional variances,

Vc.k/ D .1=k/Var.rT;T Ckj�T ; �/

Var.rT C1j�T ; �/
; (10)

7Campbell and Viceira (2002, pp. 95–96) also model expected return as an AR(1) process, but they conclude that

variance per period cannot increase with k when �uw < 0. They appear to equate conditional variances of single-

period returns across future periods, which would omit the uncertainty about future expected return.
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for k D 20 years. Note that Vc.20/ is generally not monotonic in ˇ. At lower values of R2 and

larger negative values of �uw , Vc.20/ is higher at ˇ D 0:99 than at the two lower ˇ values. At

higher R2 values, however, Vc.20/ is higher at ˇ D 0:85 than at both the higher and lower ˇ

values. At larger negative values of �uw , Vc.20/ exhibits a U-shape with respect to R2.

As observed above, uncertainty about future expected returns can cause the long-horizon vari-

ance per period to exceed the short-horizon variance, even in the presence of strong mean re-

version. Importantly, the long-horizon variance can be larger even without including uncertainty

about parameters � and the current �T . That additional uncertainty exerts a greater effect at longer

horizons, further increasing the long-horizon variance relative to the short-horizon variance.

2.2. Components of long-horizon variance

The variance of interest, Var.rT;T CkjDT /, consists of two terms on the right-hand side of equation

(3). The first term is the expectation of the conditional variance in equation (6), so each of the three

terms in (6) is replaced by its expectation with respect to �. (We need not take the expectation with

respect to �T , since �T does not appear on the right in (6).) The interpretations of these terms are

the same as before, except that now each term also reflects parameter uncertainty.

The second term on the right-hand side of equation (3) is the variance of the true conditional

expected return. This variance is taken with respect to � and �T . It can be decomposed into two

components: one reflecting uncertainty about the current �T , or predictor imperfection, and the

other reflecting uncertainty about �, or “estimation risk.” (See the Appendix.) Let bT and qT

denote the conditional mean and variance of the unobservable expected return �T :

bT D E.�T j�; DT / (11)

qT D Var.�T j�; DT /: (12)

The right-hand side of equation (3) can then be expressed as the sum of five components:

Var.rT;T CkjDT / D

E
˚

k�2
u jDT

	

„ ƒ‚ …

i.i.d. uncertainty

C E
˚

2k�2
u

Nd�uwA.k/jDT

	

„ ƒ‚ …

mean reversion

C E
˚

k�2
u

Nd2B.k/jDT

	

„ ƒ‚ …

future �T Ci uncertainty

C E

( �
1 � ˇk

1 � ˇ

�2

qT jDT

)

„ ƒ‚ …

current �T uncertainty

C Var

(

kEr C 1 � ˇk

1 � ˇ
.bT � Er/jDT

)

„ ƒ‚ …

estimation risk

: (13)
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Parameter uncertainty plays a role in all five components in equation (13). The first four com-

ponents are expected values of quantities that are viewed as random due to uncertainty about �,

the parameters governing the joint dynamics of returns and predictors. (If the values of these pa-

rameters were known to the investor, the expectation operators could be removed from those four

components.) Parameter uncertainty can exert a non-trivial effect on the first four components, in

that the expectations can be influenced by parameter values that are unlikely but cannot be ruled

out. The fifth component in equation (13) is the variance of a quantity whose randomness is also

due to parameter uncertainty. In the absence of such uncertainty, the fifth component is zero, which

is why we assign it the interpretation of estimation risk.

The estimation risk term includes the variance of kEr , where Er denotes the unconditional

mean return. This variance equals k2Var.Er jDT /, so the per-period variance .1=k/Var.rT;T CkjDT /

increases at rate k. Similar to the i.i.d. case, if Er is unknown, then the per-period variance grows

without bounds as the horizon k goes to infinity. For finite horizons that are typically of interest to

investors, however, the fifth component in equation (13) can nevertheless be smaller in magnitude

than the other four components. In general, the k-period variance ratio, defined as

V.k/ D .1=k/Var.rT;T CkjDT /

Var.rT C1jDT /
; (14)

can exhibit a variety of patterns as k increases. Whether or not V.k/ > 1 at various horizons k is

an empirical question.

3. Parameter uncertainty: A simple illustration

In Section 4, we compute Var.rT;T CkjDT / and its components empirically, incorporating param-

eter uncertainty via Bayesian posterior distributions. Before turning to that analysis, we use a

simpler setting to illustrate the effects of parameter uncertainty on multiperiod return variance.

Let ��b denote the correlation between �T and bT , conditional on all other parameters. If the

observed predictors capture �T perfectly, then ��b D 1; otherwise ��b < 1. We then have

qT D .1 � �2
�b/�2

� D .1 � �2
�b/R2�2

r ; (15)

where �2
� and �2

r are the unconditional variances of �t and rtC1, respectively. The parameter

vector is � D Œˇ; R2; �uw ; Er ; �r ; ��b�. We assume for this simple illustration that the elements

of � are distributed independently of each other and that zT � E.�T � Er jDT / is distributed

independently of �. (These properties are generally not true in the Bayesian analysis in the next
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section.) We define � such that

Var.Er/ D �E.�2
r / (16)

and set � D 1=200, so that the uncertainty about the unconditional mean return Er corresponds to

the imprecision in a 200-year sample mean. With the above independence assumption, equations

(15) through (16), and the fact that �2
u D .1 � R2/�2

r , it is easily verified that E.�2
r / can be

factored from each component in Var.rT;T Ck jDT / and thus does not enter the variance ratio in

(14). To specify the uncertainty for the remaining parameters, we choose the probability densities

displayed in Figure 4, whose medians are 0.86 for ˇ, 0.12 for R2, -0.66 for �uw , and 0.70 for

��b. The value of Var.rT;T CkjDT / also depends on z2
T , which we set to E.z2

T / D EŒVar.bT j�/� D
EŒ�2

�b
�2

�� D E.�2
�b

/E.R2/E.�2
r /.

Table 1 displays the 20-year variance ratio, V.20/, under different specifications of uncertainty

about the parameters. In the first row, ˇ, R2, �uw , and Er are held fixed, by setting the first three

parameters equal to their medians and by setting � D 0 in (16). Successive rows then specify one

or more of those parameters as uncertain, by drawing from the densities in Figure 4 (for ˇ, R2,

and �uw) or setting � D 1=200 (for Er ). For each row, ��b is either fixed at one of the values 0,

0.70 (its median), and 1, or it is drawn from its density in Figure 4. Note that the return variances

are unconditional when ��b D 0 and conditional on full knowledge of �T when ��b D 1.

Table 1 shows that when all parameters are fixed, V.20/ < 1 at all levels of conditioning (all

values of ��b). That is, in the absence of parameter uncertainty, the values in the first row range

from 0.95 at the unconditional level to 0.77 when �T is fully known. Thus, this fixed-parameter

specification is consistent with mean reversion playing a dominant role, causing the return variance

(per period) to be lower at the long horizon. Rows 2 through 5 specify one of the parameters ˇ, R2,

�uw , and Er as uncertain. Uncertainty about ˇ exerts the strongest effect, raising V.20/ by 17%

to 26% (depending on ��b), but uncertainty about any one of these parameters raises V.20/. In

the last row of Table 1, all parameters are uncertain, and the values of V.20/ substantially exceed

1, ranging from 1.17 (when ��b D 1) to 1.45 (when ��b D 0). Even though the density for �uw

in Figure 4 has almost all of its mass below 0, so that mean reversion is almost certainly present,

parameter uncertainty causes the long-run variance to exceed the short-run variance.

As noted earlier, uncertainty about Er implies V.k/ ! 1 as k ! 1. We can see from Table

1 that uncertainty about Er contributes nontrivially to V.20/, but somewhat less than uncertainty

about ˇ or R2 and only slightly more than uncertainty about �uw . With uncertainty about only

the latter three parameters, V.20/ is still well above 1, especially when ��b < 1. Thus, although

uncertainty about Er must eventually dominate variance at sufficiently long horizons, it does not

do so here at the 20-year horizon.
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The variance ratios in Table 1 increase as ��b decreases. In other words, less knowledge about

�T makes long-run variance greater relative to short-run variance. We also see that drawing ��b

from its density in Figure 4 produces the same values of V.20/ as fixing ��b at its median.

4. Long-horizon predictive variance: Empirical results

This section takes a Bayesian empirical approach to assess long-horizon return variance from an

investor’s perspective. After describing the data and the empirical framework, we specify prior

distributions for the parameters and analyze the resulting posteriors. Those posterior distributions

characterize the remaining parameter uncertainty faced by an investor who conditions on essen-

tially the entire history of U.S. equity returns. That uncertainty is incorporated in the Bayesian

predictive variance, which we then analyze along with its five components.

4.1. Empirical framework: Predictive system

It is commonly assumed that the conditional expected return �t is given by a linear combination

of a set of observable predictors, xt , so that �t D a C b0xt . This assumption is useful in many ap-

plications, but we relax it here because it understates the uncertainty faced by an investor assessing

the variance of future returns. Any given set of predictors xt is likely to be imperfect, in that �t is

unlikely to be captured by any linear combination of xt (�t ¤ a C b0xt ). The true expected return

�t generally reflects more information than what we assume to be observed by the investor—the

histories of rt and xt . To incorporate the likely presence of predictor imperfection, we employ

a predictive system, defined in Pástor and Stambaugh (2008) as a state-space model in which rt ,

xt , and �t follow a VAR with coefficients restricted so that �t is the mean of rtC1.8 We follow

that study in analyzing a simple predictive system consisting of equations (1) and (5) along with a

first-order VAR for the predictors, xt ,

xtC1 D � C Axt C vtC1: (17)

The vector of residuals in the system, Œut v0

t wt �, is assumed to be normally distributed, indepen-

dently across t , with a constant covariance matrix ˙ . We also assume that 0 < ˇ < 1 and that the

eigenvalues of A lie inside the unit circle. The parameter vector � now includes all parameters in

equations (1), (5), and (17): � D .ˇ; Er ; A; �; ˙/.

8State-space models have been used in a number of studies analyzing return predictability, including Conrad and

Kaul (1988), Lamoureux and Zhou (1996), Johannes, Polson, and Stroud (2002), Ang and Piazzesi (2003), Brandt

and Kang (2004), Dangl and Halling (2006), Duffee (2006), and Rytchkov (2007). Also note that the linear relation

�t D a C b0xt can arise as a special case of the predictive system.
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Our data consist of annual observations for the 206-year period from 1802 through 2007, as

compiled by Siegel (1992, 2008). The return rt is the annual real log return on the U.S. equity

market, and xt contains three predictors: the dividend yield on U.S equity, the first difference in

the long-term high-grade bond yield, and the difference between the long-term bond yield and the

short-term interest rate.9 We refer to these quantities as the “dividend yield,” the “bond yield,” and

the “term spread,” respectively. These three predictors seem reasonable choices given the various

predictors used in previous studies and the information available in Siegel’s dataset. Dividend

yield and the term spread have long been entertained as return predictors (e.g., Fama and French,

1989). Using post-war quarterly data, Pástor and Stambaugh (2008) find that the long-term bond

yield, relative to its recent levels, exhibits significant predictive ability in predictive regressions.

That evidence motivates our choice of the bond-yield variable used here.

Table 2 reports properties of the three predictors in the standard predictive regression,

rtC1 D a C b0xt C etC1: (18)

The first three regressions in Table 2 contain just one predictor, while the fourth contains all three.

When all predictors are included, each one exhibits significant ability to predict returns, and the

overall R2 is 5.6%. The estimated correlation between etC1 and the estimated innovation in ex-

pected return, b0vtC1, is negative. Pástor and Stambaugh (2008) suggest this correlation as a

diagnostic in predictive regressions, with a negative value being what one would hope to see for

predictors able to deliver a reasonable proxy for expected return. Table 2 also reports the OLS t-

statistics and the bootstrapped p-values associated with these t-statistics as well as with the R2.10

For each of the three key parameters that affect multiperiod variance—�uw , ˇ, and R2—we

implement the Bayesian empirical framework under three different prior distributions, displayed

in Figure 5. The priors are assumed to be independent across parameters. For each parameter,

we specify a “benchmark” prior as well as two priors that depart from the benchmark in opposite

directions but seem at least somewhat plausible as alternative specifications. When we depart from

the benchmark prior for one of the parameters, we hold the priors for the other two parameters at

their benchmarks, obtaining a total of seven different specifications of the joint prior for �uw , ˇ,

9We are grateful to Jeremy Siegel for supplying these data. The long-term bond yield series is constructed from

the yields of federal bonds and high-grade municipal bonds, as described in Siegel (1992).
10In the bootstrap, we repeat the following procedure 20,000 times: (i) Resample T pairs of . Ovt ; Oet/, with replace-

ment, from the set of OLS residuals from regressions (17) and (18); (ii) Build up the time series of xt , starting from the

unconditional mean and iterating forward on equation (17), using the OLS estimates . O� ; OA/ and the resampled values

of Ovt ; (iii) Construct the time series of returns, rt , by adding the resampled values of Oet to the sample mean (i.e., under

the null that returns are not predictable); (iv) Use the resulting series of xt and rt to estimate regressions (17) and (18)

by OLS. The bootstrapped p-value associated with the reported t-statistic (or R2) is the relative frequency with which

the reported quantity is smaller than its 20,000 counterparts bootstrapped under the null of no predictability.
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and R2. We estimate the predictive system under each specification, to explore the extent to which

a Bayesian investor’s assessment of long-horizon variance is sensitive to prior beliefs. In addition

to the three priors displayed in Figure 5, we also use a fully noninformative prior in Section 5.

The benchmark prior for �uw , the correlation between expected and unexpected returns, has

97% of its mass below 0. This prior follows the reasoning of Pástor and Stambaugh (2008), who

suggest that, a priori, the correlation between unexpected return and the innovation in expected

return is likely to be negative. The more informative prior concentrates toward larger negative

values, whereas the less informative prior essentially spreads evenly over the range from -1 to 1.

The benchmark prior for ˇ, the first-order autocorrelation in the annual expected return �t , has a

median of 0.83 and assigns a low (2%) probability to ˇ values less than 0.4. The two alternative

priors then assign higher probability to either more persistence or less persistence. The benchmark

prior for R2, the fraction of variance in annual returns explained by �t , has 63% of its mass below

0.1 and relatively little (17%) above 0.2. The alternative priors are then either more concentrated

or less concentrated on low values. These priors on the true R2 are shown in Panel C of Figure 5.

Panel D displays the corresponding implied priors on the “observed” R2—the fraction of variance

in annual real returns explained by the predictors. Each of the three priors in Panel D is implied by

those in Panel C, while holding the priors for �uw and ˇ at their benchmarks and specifying non-

informative priors for the degree of imperfection in the predictors. Observe that the benchmark

prior for the observed R2 has much of its mass below 0.05.

We compute posterior distributions for the parameters using the Markov Chain Monte Carlo

(MCMC) method discussed in Pástor and Stambaugh (2008). Figure 6 plots posterior distributions

computed under the benchmark priors. These posteriors characterize the parameter uncertainty

faced by an investor after updating the priors using the 206-year history of equity returns and

predictors. Panel B displays the posterior of the true R2. The posterior lies to the right of the

benchmark prior, in the direction of greater predictability. The prior mode for R2 is less than 0.05,

while the posterior mode is nearly 0.1. The posterior of ˇ, shown in Panel C, lies to the right of

the prior, in the direction of higher persistence. The benchmark prior essentially admits values of

ˇ down to about 0.4, while the posterior ranges only to about 0.7 and has a mode around 0.9.

Compared to the benchmark prior, the posterior for �uw is more concentrated toward larger

negative values, even to a greater degree than the more concentrated prior. Very similar posteriors

for �uw are also obtained under the two alternative priors for �uw in Figure 5. These results are

consistent with observed autocorrelations of annual real returns and the posteriors of R2 and ˇ

discussed above. Equations (1) and (5) imply that the autocovariances of returns are given by

Cov.rt ; rt�k/ D ˇk�1
�

ˇ�2
� C �uw

�

; k D 1; 2; : : : ; (19)
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where �2
� D �2

w=.1 � ˇ2/. From (19) we can also obtain the autocorrelations of returns,

Corr.rt ; rt�k/ D ˇk�1
�

ˇR2 C �uw

p

.1 � R2/R2.1 � ˇ2/
�

; k D 1; 2; : : : ; (20)

by noting that �2
� D R2�2

r and that �2
u D .1 � R2/�2

r . The posterior mode of �uw in Figure 6 is

about -0.9, and the posterior modes of R2 and ˇ are about 0.1 and 0.9, as observed earlier. Eval-

uating (20) at those values gives autocorrelations starting at -0.028 for k D 1 and then increasing

gradually toward 0 as k increases. Such values seem consistent with observed autocorrelations that

are typically near or below zero. For example, the first five autocorrelations of annual real returns

in our 206-year sample are 0.02, -0.17, -0.04, 0.01, and -0.10.

Panel A of Figure 6 plots the posterior for the R2 in a regression of the conditional expected

return �t on the three predictors in xt . This R2 quantifies the degree of imperfection in the pre-

dictors (R2 D 1 if and only if the predictors are perfect). Recall from the earlier discussion that

predictor imperfection gives rise to the fourth component of return variance in equation (13). The

posterior for this R2 indicates a substantial degree of predictor imperfection, in that the density’s

mode is about 0.3, and values above 0.8 have near-zero probability.

Further perspective on the predictive abilities of the individual predictors is provided by Figure

7, which plots the posterior densities of the partial correlation coefficients between �t and each

predictor. Dividend yield exhibits the strongest relation to expected return, with the posterior for

its partial correlation ranging between 0 and 0.9 and having a mode around 0.6. Most of the

posterior mass for the term spread’s partial correlation lies above zero, but there is little posterior

mass above 0.5. The bond yield’s marginal contribution is the weakest, with much of the posterior

density lying between -0.2 and 0.2. In the multiple regression reported in the last row of Table 2, all

three variables (rescaled to have unit variances) have comparable slope coefficients and t-statistics.

When compared to those estimates, the posterior distributions in Figure 7 indicate that dividend

yield is more attractive as a predictor but that bond yield is less attractive. These differences are

consistent with the predictors’ autocorrelations and the fact that the posterior distribution of ˇ,

the autocorrelation of expected return �t , centers around 0.9. The autocorrelations for the three

predictors are 0.92 for dividend yield, 0.65 for the term spread, and -0.04 for the bond yield. The

bond yield’s low autocorrelation makes it look less correlated with �t , whereas dividend yield’s

higher autocorrelation makes it look more like �t .

4.2. Multiperiod predictive variance and its components

Each of the five components of multiperiod return variance in equation (13) is a moment of a quan-

tity evaluated with respect to the distribution of the parameters �, conditional on the information
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DT available to an investor at time T . In our Bayesian empirical setting, DT consists of the 206-

year history of returns and predictors, and the distribution of parameters is the posterior density

given that sample. Draws of � from this density are obtained via the MCMC procedure and then

used to evaluate the required moments of each of the components in equation (13). The sum of

those components, Var.rT;T CkjDT /, is the Bayesian predictive variance of rT;T Ck .

Figure 8 displays the predictive variance and its five components for horizons of k D 1 through

k D 30 years, computed under the benchmark priors. The values are stated on a per-year basis

(i.e., divided by k). The predictive variance (Panel A) increases significantly with the investment

horizon, with the per-year variance exceeding the one-year variance by about 8% at a 10-year

horizon and about 45% at a 30-year horizon. This is the main result of the paper.

The five variance components, displayed in Panel B of Figure 8, reveal the sources of the greater

predictive variance at long horizons. Over a one-year horizon (k D 1), virtually all of the variance

is due to the i.i.d. uncertainty in returns, with uncertainty about the current �T and parameter

uncertainty also making small contributions. Mean reversion and uncertainty about future �t ’s

make no contribution for k D 1, but they become quite important for larger k. Mean reversion

contributes negatively at all horizons, consistent with �uw < 0 in the posterior (cf. Figure 6), and

the magnitude of this contribution increases with the horizon. Nearly offsetting the negative mean

reversion component is the positive component due to uncertainty about future �t ’s. At longer

horizons, the magnitudes of both components exceed the i.i.d. component, which is flat across

horizons. At a 10-year horizon, the mean reversion component is nearly equal in magnitude to

the i.i.d. component. At a 30-year horizon, both mean reversion and future-�t uncertainty are

substantially larger in magnitude than the i.i.d. component. In fact, the mean reversion component

is larger in magnitude than the overall predictive variance.

Both estimation risk and uncertainty about the current �T make stronger positive contributions

to predictive variance as the investment horizon lengthens. At the 30-year horizon, the contribution

of estimation risk is about two thirds of the contribution of the i.i.d. component. Uncertainty about

the current �T , arising from predictor imperfection, makes the smallest contribution among the

five components at long horizons, but it still accounts for almost a quarter of the total predictive

variance at the 30-year horizon.

Table 3 reports the predictive variance at horizons of 15 and 30 years under various prior

distributions for �uw , ˇ, and R2. For each of the three parameters, the prior for that parameter is

specified as one of the three alternatives displayed in Figure 5, while the prior distributions for the

other two parameters are maintained at their benchmarks. Also reported in Table 3 is the ratio of

the long-horizon predictive variance to the one-year variance, as well as the contribution of each
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of the five components to the long-horizon predictive variance.

Across the different priors in Table 3, the 15-year variance ratio ranges from 1.03 to 1.20,

and the 30-year variance ratio ranges from 1.21 to 1.53. The variance ratios exhibit the greatest

sensitivity to prior beliefs about R2. The “loose” prior beliefs that assign higher probability to

larger R2 values produce the lowest variance ratios. When returns are more predictable, mean

reversion makes a stronger negative contribution to variance, but uncertainty about future �t ’s

makes a stronger positive contribution. The contributions of these two components offset to a large

degree as the prior on R2 moves from tight to loose. At both horizons, the decline in predictive

variance as the R2 prior moves from tight to loose is accompanied by a decline of similar magnitude

in estimation risk. The reason why greater predictability implies lower estimation risk involves ˇ.

The estimation-risk term in equation (13) contains the expression .1 � ˇk/=.1 � ˇ/ inside the

variance operator, so we can roughly gauge the relative effects of changing ˇ by squaring that

expression. As the prior for R2 moves from tight to loose, the posterior median of ˇ declines

from 0.90 to 0.83, and the squared value of .1 � ˇk/=.1 � ˇ/ declines by 30% for k D 15 and

by 39% for k D 30. These drops are comparable to those in the estimation-risk component: 39%

for k D 15 and 49% for k D 30. To then understand why making higher R2 more likely also

makes lower ˇ more likely, we turn again to the return autocorrelations in (20). Recall that the

posterior for �uw is concentrated around -0.9 and is relatively insensitive to prior beliefs. Holding

�uw roughly fixed, therefore, an increase in R2 requires a decrease in ˇ in order to maintain the

same return autocorrelations (for R2 within the range relevant here). Since the sample is relatively

informative about such autocorrelations, the prior (and posterior) that makes higher R2 more likely

is thus accompanied by a posterior that makes lower ˇ more likely.

As the prior for R2 becomes looser, we also see a smaller positive contribution from i.i.d.

uncertainty, which is the posterior mean of k�2
u . This result is expected, as greater posterior density

on high values of R2 necessitates less density on high values of �2
u D .1 � R2/�2

r , given that the

sample is informative about the unconditional return variance �2
r . Finally, prior beliefs about �uw

and ˇ have a smaller effect on the predictive variance and its components.11

In sum, when viewed by an investor whose prior beliefs lie within the wide range of priors

considered here, stocks are considerably more volatile at longer horizons. The greater volatility

obtains despite the presence of a large negative contribution from mean reversion.

11This relative insensitivity to prior beliefs about �uw and ˇ appears to be specific to the long sample of real equity

returns. Greater sensitivity to prior beliefs appears if returns in excess of the short-term interest rate are used instead,

or if quarterly returns on a shorter and more recent sample period are used. In all of these alternative samples, we

obtain variance results that lead to the same qualitative conclusions.
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4.3. Robustness

Our main empirical result—that long-run predictive variance of stock returns is larger than short-

run variance—is robust to various sample and specification changes. We describe these changes

below, along with the corresponding results. We do not tabulate the results to save space.

First, we conduct subperiod analysis. We split the 1802–2007 sample in half and estimate the

predictive variances separately at the ends of both subperiods. In the first subperiod, the predictive

variance per period rises monotonically with the horizon, under the benchmark priors. In the

second subperiod, the predictive variance exhibits a U-shape with respect to the horizon: it initially

decreases, reaching its minimum at the horizon of 7 years, but it increases afterwards, rising above

the 1-year variance at the horizon of 18 years. That is, the negative effect of mean reversion

prevails at short horizons, but the combined positive effects of estimation risk and uncertainty

about current and future �t ’s prevail at long horizons. For both subperiods, the 30-year predictive

variance exceeds the 1-year variance across all prior specifications. The 30-year predictive variance

ratios, which correspond to the ratios reported in the first row of Panel B in Table 3, range from

1.03 to 1.67 across the 14 specifications (seven prior specifications times two subperiods).

Second, we analyze excess returns instead of real returns. We compute annual excess stock

returns in 1802–2007 by subtracting the short-term interest rate from the realized stock return.

The predictive variance again exhibits a U-shape under the benchmark priors: it slightly decreases

before reaching the bottom at the horizon of 3 years, but it quickly rises thereafter. The 30-year

predictive variance ratios range from 1.18 to 1.35 across the seven prior specifications.

Third, instead of using three predictors, we use only one, the dividend yield. The predictive

variance is U-shaped again in the benchmark case, and the 30-year predictive variance ratio is 1.09.

Across the seven prior specifications, the variance ratios range from 0.92 to 1.25.

Fourth, we replace our annual 1802–2007 data by quarterly 1952Q1–2006Q4 data. In the

postwar period, the data quality is higher, and the available predictors of stock returns have more

predictive power. We use the same three predictors as Pástor and Stambaugh (2008): dividend

yield, CAY, and bond yield.12 The R2 from the predictive regression of quarterly real stock returns

on the three predictors is 11.1%, twice as large as the corresponding R2 in our annual 206-year

sample. We adjust the prior distributions to reflect the different data frequency: we shift the priors

for R2 and �uw to the left and for ˇ to the right. We find that the results in this quarterly sample

12See that paper for more detailed descriptions of the predictors. Our quarterly sample ends in 2006Q4 because

the 2007 data on CAY are not yet available as of this writing. Our quarterly sample begins in 1952Q1, after the 1951

Treasury-Fed accord that made possible the independent conduct of monetary policy.
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are even stronger than the results in our annual sample. Using our benchmark priors, the 15-year

predictive variance is 44% larger than the 1-year variance, and the 30-year predictive variance is

more than double the 1-year variance. Across our seven prior specifications, the 30-year predictive

variance ratios range from 2.02 to 2.44.

Finally, we consider a different specification of a predictive system. Instead of assuming that

�t follows the AR(1) process in (5) and that xt obeys the VAR in (17), we allow rt , xt and �t

jointly to follow a first-order VAR. Consistent with �t defined as expected return, the coefficients

relating rtC1 to rt and xt are set to zero, and the coefficient relating rtC1 to �t is set to one.13 The

remaining coefficients in the VAR are unrestricted, except for the condition that all variables are

stationary. We estimate this VAR with non-informative priors using the annual 1802–2007 data.

An MCMC procedure allows us to compute the predictive variance of return, relying again on

equation (3).14 As before, predictive variances are greater at long horizons, with variance ratios of

1.10 at 20 years and 1.22 at 30 years. In short, our empirical results seem robust.

In our baseline estimation, we assume that all parameters of the predictive system are constant

over 206 years. This strong assumption seems conservative in that it minimizes parameter uncer-

tainty. As discussed earlier, parameter uncertainty increases long-horizon variance by more than

short-horizon variance. If we allowed the unknown parameters to vary over time, an investor’s un-

certainty about the current parameter values would most likely increase, and the larger parameter

uncertainty would then further increase the long-horizon predictive variance ratios.

Time variation in the parameters, if present, need not change our algebraic results. For example,

suppose there is time variation in the conditional covariance matrix of �t D Œut v0

t wt �, the vector

of residuals in the predictive system. Let ˙t denote this conditional covariance matrix, and let

˙ D E.˙t/ denote the unconditional covariance matrix. It seems plausible to assume that, if

˙t D ˙ at a given time t , then Et

�

�tCk�0

tCk

�

D ˙ for all k > 0.15 Under this assumption, the

conditional variance of the k-period return in equation (6) is unchanged, provided we interpret it as

Var.rT;T Ckj�T ; �; ˙T D ˙/. The introduction of parameter uncertainty is also unchanged, under

the interpretation that ˙ is uncertain but that, whatever it is, it also equals ˙T . Setting ˙T D ˙

removes horizon effects due to mean-reversion in ˙T . If instead ˙T were low relative to ˙ , for

example, then the reversion of future ˙T Ci ’s to ˙ could also contribute to volatility that is higher

over longer horizons. Setting ˙T D ˙ excludes such a contribution to higher long-run volatility.

13As noted by Pástor and Stambaugh (2008), such a predictive system can be viewed alternatively as an unrestricted

first-order VAR for rt , xt , and a set of unobserved additional predictors.
14Details of the calculations are provided in a technical appendix available on the authors’ websites.
15Such a property is satisfied, for example, by a stationary first-order multivariate GARCH process, vech.˙tC1/ D

c0 C C1vech.�tC1�0

tC1/C C2vech.˙t /; where vech.:/ stacks the columns of the lower triangular part of its argument.
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5. Perfect predictors versus imperfect predictors

When predictors are imperfect, the current expected return remains uncertain even if the parameters

of the processes generating returns and predictors are known. Incorporating predictor imperfection

is a key difference between our analysis and earlier studies by Stambaugh (1999) and Barberis

(2000) that investigate the effects of parameter uncertainty on long-run equity volatility. Those

studies model expected return as �t D a C b0xt , so that the observed predictors deliver expected

return perfectly if the parameters a and b are known. The latter “perfect-predictor” assumption

implies the predictive regression in (18). Combining that equation with the VAR for xt in (17)

delivers implications for long-run variance, as in Stambaugh (1999) and Barberis (2000).

To assess the importance of recognizing predictor imperfection, we compute long-run predic-

tive variances in the above perfect-predictor framework and compare them to predictive variances

obtained using our (imperfect-predictor) predictive system. We conduct this comparison using

non-informative priors for both settings, noting that Stambaugh and Barberis use non-informative

priors as well.16 Panel A of Figure 9 displays results based on annual data for the 1802–2007

period, while Panel B displays results based on quarterly data for the 1952Q1–2006Q4 period. All

results are based on real returns and three predictors (described earlier).

For the 1802–2007 period, predictive variance computed using the predictive system (solid

line) increases with horizon to produce a variance ratio of 1.70 at 30 years. This value, obtained

with non-informative priors, is even higher than the 30-year ratio of 1.45 obtained with the bench-

mark informative priors (see Figure 8 and Table 3). The results under both priors deliver the same

message: volatility is substantially higher in the long run when predictors are imperfect. In con-

trast, predictive variance computed using the perfect-predictor framework (dashed line) is much

flatter across horizons, with a 30-year variance ratio of 1.08.

Stambaugh (1999) and Barberis (2000) use data beginning in 1952 to investigate the effects of

parameter uncertainty at longer horizons. For a similar post-1951 period (Panel B of Figure 9), we

find that the effect of predictor imperfection is especially large. Consistent with Stambaugh and

Barberis, we find that predictive variance under perfect predictors is substantially lower at a 120-

quarter horizon than a 1-quarter horizon, with a variance ratio of 0.45. In dramatic contrast, this

variance ratio is 3.73 when predictor imperfection is incorporated. That is, accounting for predictor

imperfection increases the 30-year variance ratio from well below 1 to well above 1, reversing the

answer to the question of whether stocks are less volatile in the long run.

16Details of the calculations are provided in a technical appendix available on the authors’ websites.
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We also see that the findings of Stambaugh and Barberis, indicating stocks are less volatile

at longer horizons even after incorporating parameter uncertainty, do not obtain over the longer

206-year period. As noted earlier, the predictive variances in Panel A are actually slightly higher

at longer horizons in the perfect-predictor case. For both sample periods, however, we see that

predictor imperfection produces long-run variances that substantially exceed not only short-run

variance but also long-run variances computed under a perfect-predictor assumption.

6. Predictive variance versus true variance

We have thus far analyzed return variance from the perspective of an investor who conditions on

the historical data but remains uncertain about the true values of the parameters. This “predictive

variance” is different from the “true variance,” defined as the variance conditional on the true

parameter values. The predictive variance and the true variance coincide only if the data history is

infinitely long, in which case the parameters are estimated with infinite precision.

When conducting inference about the true variance, a commonly employed statistic is the sam-

ple long-horizon variance ratio. Values of such ratios are often less than 1 for stocks, suggesting

lower unconditional variances per period at long horizons. Figure 10 plots sample variance ratios

for horizons of 2 to 30 years computed with the 206-year sample of annual real log stock returns

analyzed above. The calculations use overlapping returns and unbiased variance estimates.17 Also

plotted are percentiles of the variance ratio’s Monte Carlo sampling distribution under the null hy-

pothesis that returns are i.i.d. normal. That distribution exhibits positive skewness and has nearly

60% of its mass below 1. The realized value of 0.28 at the 30-year horizon attains a Monte Carlo

p-value of 0.01, supporting the inference that the true 30-year variance ratio lies below 1 (setting

aside the multiple-comparison issues of selecting one horizon from many). Panel A of Figure 11

plots the posterior distribution of the 30-year ratio for true unconditional variance, based on the

benchmark priors. The posterior probability that this ratio lies below 1 is 63%. We thus see that the

variance ratio statistic in a frequentist setting and the posterior distribution in a Bayesian setting

both favor the inference that the true unconditional variance ratio is below 1.

Inference about unconditional variance ratios is of limited relevance to investors, for two rea-

sons. First, even if the parameters and the conditional mean �T were known, the unconditional

variance would not be the appropriate measure from an investor’s perspective, because conditional

variance is more relevant when returns are predictable. The ratio of true unconditional variances

17Each ratio is computed as VR.q/ in equation (2.4.37) of Campbell, Lo, and MacKinlay (1997).

20



can be less than 1 while the ratio of true conditional variances exceeds 1, or vice versa. At a hori-

zon of k D 30 years, for example, parameter values of ˇ D 0:60, R2 D 0:30, and �uw D �0:55

imply a ratio of 0.90 for unconditional variances but 1.20 for conditional variances.18

The second and larger point is that inference about true variance, conditional or unconditional,

is distinct from assessing the predictive variance perceived by an investor who does not know the

parameters. This distinction can be drawn clearly in the context of the variance decomposition,

Var.rT;T CkjDT / D E fVar.rT;T Ckj�; DT /jDT g C Var fE.rT;T Ckj�; DT /jDT g : (21)

The variance on the left-hand side of (21) is the predictive variance. The quantity inside the expec-

tation in the first term, Var.rT;T Ckj�; DT /, is the true variance, relevant only to an investor who

knows the true parameter vector � (but not �T , thus maintaining predictor imperfection). The data

can imply that this true variance is probably lower at long horizons than at short horizons while

also implying that the predictive variance is higher at long horizons. In other words, investors

who observe DT can infer that if they were told the true parameter values, they would probably

assess 30-year variance to be less than 1-year variance. These investors realize, however, that they

do not know the true parameters. As a consequence, they evaluate the posterior mean of the true

variance, the first term in (21). That posterior mean can exceed the most likely values of the true

variance, because the posterior distribution of the true variance can be skewed (we return to this

point below). Moreover, investors must add to that posterior mean the posterior variance of the

true conditional mean, the second term in (21), which is the same as the estimation-risk term in

equation (13). In a sense, investors do conduct inference about true variance—they compute its

posterior mean—but they realize that estimate is only part of predictive variance.

The results based on our 206-year sample illustrate how predictive variance can be higher at

long horizons while true variance is inferred to be most likely higher at short horizons. Panel B of

Figure 11 plots the posterior distribution (using benchmark priors) of the variance ratio

V �.k/ D .1=k/Var.rT;T Ckj�; DT /

Var.rT C1j�; DT /
; (22)

for k D 30 years. The posterior probability that this ratio of true variances lies below 1 is 76%, and

the posterior mode is below 0.5. In contrast, recall that 30-year predictive variance is substantially

greater than 1-year variance, as shown earlier in Figure 8 and Table 3.

The true variance Var.rT;T Ckj�; DT / is the sum of four quantities, the first four components

in equation (13) with the expectations operators removed. The posterior distributions of those four

18The relation between the ratios of conditional and unconditional variances is derived in the Appendix. Campbell

and Viceira (2002, p. 96) state that the unconditional variance ratio is always greater than the conditional ratio, but it

appears they equate single-period conditional and unconditional variances in reaching that conclusion.
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quantities are displayed in Figure 12, again using benchmark priors. Three of the four distributions

exhibit significant asymmetry. As a result, less likely values of these quantities exert a dispropor-

tionate effect on the posterior means and, therefore, on the first term of the predictive variance in

(21). The components reflecting uncertainty about current and future �t are positively skewed, so

their contributions to predictive variance exceed what they would be if evaluated at the most likely

parameter values. This feature of parameter uncertainty also helps drive predictive variance above

what one would infer true variance is most likely to be.

7. Conclusions

We use a predictive system and 206 years of data to compute long-horizon variance of annual real

stock returns from the perspective of an investor who recognizes that parameters are uncertain and

predictors are imperfect. Mean reversion reduces long-horizon variance considerably, but it is more

than offset by other effects. As a result, long-horizon variance substantially exceeds short-horizon

variance on a per-year basis. A major contributor to higher long-horizon variance is uncertainty

about future expected returns, a component of variance that is inherent to return predictability,

especially when expected return is persistent. Estimation risk is another important component of

predictive variance that is higher at longer horizons. Uncertainty about current expected return,

arising from predictor imperfection, also adds considerably to long-horizon variance. Accounting

for predictor imperfection is key in reaching the conclusion that stocks are substantially more

volatile in the long run. Overall, our results show that long-horizon stock investors face more

volatility than short-horizon investors, in contrast to previous research.

In computing predictive variance, we assume that the parameters of the predictive system re-

main constant over the 206-year sample period. While such an assumption is certainly strong, it

also allows us to be conservative in concluding that stocks are more volatile at long horizons. Pa-

rameter uncertainty, which already contributes substantially to that conclusion, would generally be

even greater under alternative scenarios in which investors would effectively have less information

about the current values of the parameters.

We find that stock volatility is greater at long horizons than at short horizons, thereby making

stocks less appealing to long-horizon investors than conventional wisdom would suggest. This

finding does not necessarily imply that long-horizon investors should hold less stock than short-

horizon investors. Stock volatility is only one key ingredient in a problem that no doubt involves

other considerations of first-order importance, such as human capital and bond volatility, that are
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beyond the scope of this study.19 Investigating asset-allocation decisions while allowing the higher

long-run stock volatility to enter the problem offers an interesting direction for future research.

19See Benzoni et al. (2007) for a recent analysis of the role of human capital in portfolio choice.
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Appendix

A.1. Derivation of the conditional variance Var.rT;T Ckj�T ; �/

We can rewrite the AR(1) process for �t in equation (5) as an MA(1) process

�t D Er C
1

X

iD0

ˇiwt�i ; (A1)

given our assumption that 0 < ˇ < 1. From (1) and (A1), the return k periods ahead is equal to

rT Ck D .1 � ˇk�1/Er C ˇk�1�T C
k�1X

iD1

ˇk�1�i wT Ci C uT Ck: (A2)

The multiperiod return from period T C 1 through period T C k is then

rT;T Ck D
k

X

iD1

rT Ci D kEr C 1 � ˇk

1 � ˇ
.�T � Er/ C

k�1
X

iD1

1 � ˇk�i

1 � ˇ
wT Ci C

k
X

iD1

uT Ci : (A3)

The conditional variance of the k-period return can be obtained from equation (A3) as

Var .rT;T Ckj �T ; �/ D k�2
u C �2

w

.1 � ˇ/2

�

k � 1 � 2ˇ
1 � ˇk�1

1 � ˇ
C ˇ2 1 � ˇ2.k�1/

1 � ˇ2

�

C 2�uw

1 � ˇ

�

k � 1 � ˇ
1 � ˇk�1

1 � ˇ

�

: (A4)

Equation (A4) can then be written as in equations (6) to (9), where Nd arises from the relation

�2
w D �2

�.1 � ˇ2/ D �2
r R2.1 � ˇ2/ D .�2

u=.1 � R2//R2.1 � ˇ2/: (A5)

A.2. Properties of A.k/ and B.k/

1. A.1/ D 0, B.1/ D 0

2. A.k/ ! 1 as k ! 1, B.k/ ! 1 as k ! 1

3. A.k C 1/ > A.k/ 8k, B.k C 1/ > B.k/ 8k

4. A.k/ � B.k/ 8k, with a strict inequality for all k > 1

5. 0 � A.k/ < 1, 0 � B.k/ < 1

6. A.k/ converges to one more quickly than B.k/

24



Properties 1 and 2 are obvious. Properties 3 and 4 are proved below. Property 5 follows from

Properties 1–3. Property 6 follows from Properties 1–4.

Proof that A.k C 1/ > A.k/ 8k:

A.k C 1/ D 1 C 1

k C 1

h

�1 � ˇ.1 C ˇ C : : : C ˇk�2 C ˇk�1/
i

D 1 C k

k C 1

1

k

h

�1 � ˇ.1 C ˇ C : : : C ˇk�2 C ˇk�1/
i

D 1 C k

k C 1

�

A.k/ � 1 � ˇk

k

�

;

which exceeds A.k/ if and only if A.k/ < 1 � ˇk . This is indeed true because

A.k/ D 1� 1

k
� 1

k

h

ˇ1 C : : : C ˇk�1
i

D 1� 1

k

h

ˇ0 C ˇ1 C : : : C ˇk�1
i

< 1� 1

k

h

kˇk
i

D 1�ˇk:

Proof that B.k C 1/ > B.k/ 8k:

B.k C 1/

D 1 C 1

k C 1

h

�1 � 2ˇ.1 C ˇ C : : : C ˇk�2 C ˇk�1/ C ˇ2.1 C ˇ2 C : : : C .ˇ2/k�2 C .ˇ2/k�1/
i

D 1 C k

k C 1

1

k

hn

�1 � 2ˇ.1 C ˇ C : : : C ˇk�2/ C ˇ2.1 C ˇ2 C : : : C .ˇ2/k�2/
o

� 2ˇk C ˇ2k
i

D 1 C k

k C 1

�

B.k/ � 1 C 1

k

�

�2ˇk C ˇ2k
��

;

which exceeds B.k/ if and only if B.k/ < 1 C ˇ2k � 2ˇk . This is indeed true because

B.k/ D 1 � 2
1

k
C 1

k
� 2

1

k

�

ˇ C : : : C ˇk�2 C ˇk�1
�

C 1

k

�

ˇ2 C : : : C .ˇ2/k�2 C .ˇ2/k�1
�

D 1 C 1

k

h�

.ˇ2/0 � 2ˇ0
�

C
�

.ˇ2/1 � 2ˇ1
�

C : : : C
�

.ˇ2/k�1 � 2ˇk�1
�i

< 1 C 1

k

h

k
�

.ˇ2/k � 2ˇk
�i

D 1 C ˇ2k � 2ˇk;

where the inequality follows from the fact that the function f .x/ D .ˇ2/x � 2ˇx is increasing in

x (because f 0.x/ D 2.lnˇ/ˇx.ˇx � 1/ > 0, for 0 < ˇ < 1).

Proof that A.k/ > B.k/ 8k > 1:

B.k/ � A.k/ D 1

k

�

ˇ2 1 � ˇ2.k�1/

1 � ˇ2
� ˇ

1 � ˇk�1

1 � ˇ

�

D 1

k

h

ˇ2 C : : : C .ˇ2/k�1 �
�

ˇ C : : : C ˇk�1
�i

D 1

k

k�1
X

iD1

�

ˇ2i � ˇi
�

D 1

k

k�1
X

iD1

ˇi
�

ˇi � 1
�

< 0:
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A.3. Decomposition of VarfE.rT;T Ckj�T ; �; DT /jDT g

Let ET;k D E.rT;T Ckj�T ; �; DT /. The variance of ET;k given DT can be decomposed as

VarfET;kjDT g D EfVarŒET;kj�; DT �jDT g C VarfEŒET;kj�; DT �jDT g: (A6)

To simplify each term on the right-hand side, observe from equations (1), (5), and (2), that

ET;k D E.rT C1 C rT C2 C : : : C rT Ckj�T ; �; DT /

D E.�T C �T C1 C : : : C �T Ck�1j�T ; �/

D kEr C 1 � ˇk

1 � ˇ
.�T � Er/: (A7)

Taking the first and second moments of (A7), using (11) and (12), then gives

EŒET;k j�; DT � D kEr C 1 � ˇk

1 � ˇ
.bT � Er/ (A8)

VarŒET;k j�; DT � D
�

1 � ˇk

1 � ˇ

�2

qT : (A9)

Substituting (A8) and (A9) into (A6) then gives the fourth and fifth terms in (13), using (3).

A.4. Relation between conditional and unconditional variance ratios

The unconditional variance (which does not condition on �T ) is given by

Var.rT;T Ckj�/ D EŒVar.rT;T Ckj�T ; �; DT /j�� C VarŒE.rT;T Ckj�T ; �; DT /j��

D Var.rT;T Ckj�T ; �/ C
�

1 � ˇk

1 � ˇ

�2

Var.�T j�/

D Var.rT;T Ckj�T ; �/ C
�

1 � ˇk

1 � ˇ

�2

�2
u

�
R2

1 � R2

�

; (A10)

using equation (A7). It follows from equation (6) that

Var.rT;T C1j�T ; �/ D �2
u : (A11)

Combining equations (A10) and (A11) for k D 1 gives

Var.rT;T C1j�/ D Var.rT;T C1j�T ; �/ C �2
uR2

1 � R2
D �2

u

1 � R2
D Var.rT;T C1j�T ; �/

1 � R2
: (A12)

The unconditional variance ratio Vu.k/ and the conditional variance ratio Vc.k/ can then be related

as follows, combining (A10), (A12), and (10):

Vu.k/ D .1=k/Var.rT;T Ckj�/

Var.rT;T C1j�/
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D .1=k/Var.rT;T Ckj�/.1 � R2/

Var.rT;T C1j�T ; �/

D .1=k/Var.rT;T Ckj�T ; �/.1 � R2/

Var.rT;T C1j�T ; �/
C 1

k

�
1 � ˇk

1 � ˇ

�2

R2

D .1 � R2/Vc.k/ C 1

k

�
1 � ˇk

1 � ˇ

�2

R2: (A13)

A.5. Permanent and temporary price components in our setting

Fama and French (1988), Summers (1986), and others employ a model in which the log stock price

pt is the sum of a random walk st and a stationary component yt that follows an AR(1) process:

pt D st C yt (A14)

st D � C st�1 C �t (A15)

yt D byt�1 C et ; (A16)

where et and �t are mean-zero variables independent of each other, and jbj < 1. Noting that

rtC1 D ptC1 � pt , it is easy to verify that equations (A14) through (A16) deliver a special case of

our model in equations (1) and (5), in which

Er D � (A17)

ˇ D b (A18)

�t D � � .1 � b/yt (A19)

utC1 D �tC1 C etC1 (A20)

wtC1 D �.1 � b/etC1: (A21)

This special case has the property

�uw D Cov.utC1; wtC1/ D �.1 � b/�2
e < 0; (A22)

implying the presence of mean reversion. We also see

�2
� D Var.�t/ D .1 � b/2�2

y D .1 � b/2 �2
e

1 � b2
D 1 � b

1 C b
�2

e (A23)

and, therefore, using (19),

Cov.rtC1; rt / D ˇ�2
� C �uw D b.1 � b/

1 C b
�2

e � .1 � b/�2
e D � 1 � b

1 C b
�2

e < 0: (A24)

Thus, under (A14) through (A16) with b > 0, all autocovariances in (19) are negative and all

unconditional variance ratios are less than 1.
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Table 1

Effects of Parameter Uncertainty on 20-Year Variance Ratio

The table displays the ratio .1=20/Var.rT;T C20jDT /=Var.rT C1jDT /, where DT is information used by an investor at

time T . The value of the ratio is computed under various parametric scenarios for ˇ (autocorrelation of the conditional

expected return �t ), R2 (fraction of variance in rtC1 explained by �t ), �uw (correlation between unexpected returns

and innovations in expected returns), ��b (correlation between �T and its best available estimate given DT ), and Er

(the unconditional mean return). For ˇ, R2, �uw , and ��b, each parameter is either drawn from its density in Figure 4

when uncertain or set to a fixed value. The parameters ˇ, R2, and �uw are set to their medians when held fixed, while

��b is fixed at its median as well as 0 and 1. The medians are 0.86 for ˇ, 0.12 for R2, -0.66 for �uw , and 0.70 for ��b .

The variance of Er given DT is either 0 (when fixed) or 1/200 times the expected variance of one-year returns (when

uncertain).

fixed (F) or

uncertain (U) ��b fixed at ��b

ˇ R2 �uw Er 0 0.70 1 uncertain

F F F F 0.95 0.87 0.77 0.87

U F F F 1.20 1.06 0.90 1.06

F U F F 1.05 0.97 0.87 0.97

F F U F 1.02 0.94 0.84 0.94

F F F U 1.05 0.97 0.88 0.97

U U U F 1.36 1.22 1.06 1.22

U U U U 1.45 1.32 1.17 1.32

28



Table 2

Predictive Regressions

1802–2007

This table summarizes the results from predictive regressions rt D a C b0xt�1 C et , where rt denotes annual real log

stock market return and xt�1 contains the predictors (listed in the column headings) lagged by one year. Innovations

in expected returns are constructed as b0vt , where vt contains the disturbances estimated in a vector autoregression for

the predictors, xt D � CAxt�1 Cvt . The table reports the estimated slope coefficients Ob, the correlation Corr.et ; b0vt /

between unexpected returns and innovations in expected returns, and the (unadjusted) R2 from the predictive regres-

sion. The independent variables are rescaled to have unit variance. The correlations and R2’s are reported in percent

(i.e., �100). The OLS t-statistics are given in parentheses “( )”. The t-statistic of Corr.et ; b0vt / is computed as the t-

statistic of the slope from the regression of the sample residuals Oet on Ob Ovt . The p-values associated with all t-statistics

and R2’s are computed by bootstrapping and reported in brackets “[ ]”.

Dividend Yield Term Spread Bond Yield Corr.et ; b0vt/ R2

0.023 -56.515 1.714

(1.891) (-9.808) [0.070]

[0.057] [1.000]

0.008 22.445 0.232

(0.690) (3.298) [0.498]

[0.236] [0.000]

0.025 -19.231 2.163

(2.129) (-2.806) [0.034]

[0.018] [0.997]

0.031 0.028 0.028 -13.754 5.558

(2.383) (2.137) (2.373) (-1.988) [0.013]

[0.021] [0.017] [0.010] [0.973]

29



Table 3

Variance Ratios and Components of Long-Horizon Variance

The first row of each panel reports the ratio .1=k/Var.rT;T CkjDT /=Var.rT C1jDT /, where Var.rT;T Ck jDT / is the

predictive variance of the k-year return based on 206 years of annual data for real equity returns and the three predictors

over the 1802–2007 period. The second row reports Var.rT;T Ck jDT /, multiplied by 100. The remaining rows report

the five components of Var.rT;T Ck jDT /, also multiplied by 100 (they add up to total variance). Panel A contains

results for k D 15 years, and Panel B contains results for k D 30 years. Results are reported under each of three

priors for �uw , R2, and ˇ. As the prior for one of the parameters departs from the benchmark, the priors on the

other two parameters are held at the benchmark priors. The “tight” priors, as compared to the benchmarks, are more

concentrated towards �1 for �uw , 0 for R2, and 1 for ˇ; the “loose” priors are less concentrated in those directions.

�uw R2 ˇ

Prior Tight Bench Loose Tight Bench Loose Tight Bench Loose

Panel A. Investment Horizon k D 15 years

Variance Ratio 1.13 1.17 1.10 1.15 1.17 1.03 1.20 1.17 1.15

Predictive Variance 3.30 3.43 3.24 3.45 3.43 2.94 3.52 3.43 3.39

IID Component 2.59 2.60 2.59 2.75 2.60 2.43 2.58 2.60 2.60

Mean Reversion -3.05 -2.96 -3.04 -2.15 -2.96 -3.51 -3.13 -2.96 -2.94

Uncertain Future � 1.60 1.57 1.58 0.86 1.57 2.16 1.70 1.57 1.55

Uncertain Current � 0.89 0.89 0.88 0.60 0.89 1.00 1.07 0.89 0.86

Estimation Risk 1.26 1.34 1.22 1.39 1.34 0.85 1.30 1.34 1.33

Panel B. Investment Horizon k D 30 years

Variance Ratio 1.40 1.45 1.33 1.39 1.45 1.21 1.53 1.45 1.43

Predictive Variance 4.09 4.27 3.91 4.16 4.27 3.46 4.49 4.27 4.20

IID Component 2.59 2.60 2.59 2.75 2.60 2.43 2.58 2.60 2.60

Mean Reversion -4.51 -4.38 -4.47 -3.37 -4.38 -4.84 -4.70 -4.38 -4.33

Uncertain Future � 3.49 3.43 3.38 2.11 3.43 4.03 3.80 3.43 3.34

Uncertain Current � 0.97 0.97 0.95 0.80 0.97 0.88 1.18 0.97 0.94

Estimation Risk 1.54 1.65 1.46 1.87 1.65 0.95 1.64 1.65 1.65
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Figure 1. Conditional multiperiod variance and its components for different values of �uw. Panel A

plots the conditional per-period variance of multiperiod returns from equation (6), Var.rT;T Ckj�T ; �/=k,

as a function of the investment horizon k, for three different values of �uw . Panel B plots the component

of the variance that is due to mean reversion in returns, �2
u2 Nd�uwA.k/. Panel C plots the component of

this variance that is due to uncertainty about future values of the expected return, �2
u

Nd2B.k/. For all three

values of �uw , variances are computed with ˇ D 0:85, R2 D 0:12, and an unconditional standard deviation

of returns of 20% per year.
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Figure 2. Conditional multiperiod variance and its components for different values of R2. Panel A

plots the conditional per-period variance of multiperiod returns from equation (6), Var.rT;T Ckj�T ; �/=k,

as a function of the investment horizon k, for three different values of R2. Panel B plots the component of

the variance that is due to mean reversion in returns, �2
u2 Nd�uwA.k/. Panel C plots the component of this

variance that is due to uncertainty about future values of the expected return, �2
u

Nd2B.k/. For all three values

of R2, variances are computed with ˇ D 0:85, �uw D �0:6, and an unconditional standard deviation of

returns of 20% per year.
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Figure 3. Variance ratios at the 20-year horizon. This figure plots Vc.k/ for k D 20 years, where Vc.k/

denotes the ratio of the conditional variance of k-period returns to the conditional variance of 1-period

returns. This ratio is formally defined in equation (10).
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Figure 4. Distributions for uncertain parameters The plots display the probability densities used to

illustrate the effects of parameter uncertainty on long-run variance. In the R2 panel, the solid line plots

the density of the true R2 (predictability given �T ), and the dashed line plots the implied density of the

R-squared in a regression of returns on bT . The dashed line incorporates the uncertainty about ��b.
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Figure 5. Prior distributions of parameters. The plots display the prior distributions for ˇ, �uw , the true

R2 (fraction of variance in the return rtC1 explained by the conditional mean �t ), and the “observed” R2

(fraction of variance in rtC1 explained by the observed predictors xt ). The priors shown for the observed

R2 correspond to the three priors for the true R2 and the benchmark priors for ˇ and �uw .
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Figure 6. Posterior distributions of parameters. Panel A plots the posterior of the fraction of variance in

the conditional expected return �t that can be explained by the predictors. Panel B plots the posterior of the

true R2 (fraction of variance in the return rtC1 explained by �t ). Panel C plots the posterior of ˇ, and Panel

D plots the posterior of �uw . These posteriors are obtained under the benchmark priors for ˇ, �uw , and

R2. The results are obtained by estimating the predictive system on annual real U.S. stock market returns in

1802-2007. Three predictors are used: the dividend yield, the bond yield, and the term spread.
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Figure 7. Posterior distributions of partial correlations between each of the three predictors and the

conditional expected return �t . The results are obtained by estimating the predictive system on annual

real U.S. stock market returns in 1802-2007. Three predictors are used: the dividend yield, the bond yield,

and the term spread.
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Figure 8. Predictive variance of multiperiod return and its components. Panel A plots the variance

of the predictive distribution of long-horizon returns, Var.rT;T CkjDT /. Panel B plots the five components

of the predictive variance. All quantities are divided by k, the number of periods in the return horizon.

The results are obtained by estimating the predictive system on annual real U.S. stock market returns in

1802-2007. Three predictors are used: the dividend yield, the bond yield, and the term spread.
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Figure 9. Predictive variance with perfect predictors versus imperfect predictors. The plots display

the predictive variance computed under two alternative frameworks: a predictive system allowing imperfect

predictors (solid line) and a predictive regression/VAR assuming perfect predictors (dashed line). Panel A

is based on annual data from the 1802–2007 period for real U.S. stock returns and three predictors: the

dividend yield, the bond yield, and the term spread. Panel B is based on quarterly data from the 1952Q1–

2006Q4 period for real returns and three predictors: the dividend yield, CAY, and the bond yield.
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Figure 10. Sample variance ratios of annual real equity returns, 1802–2007. The plot displays the sam-

ple variance ratio OV .k/ D OVar.rt;tCk/=.k OVar.rt;tC1//, where OVar.rt;tCk/ is the unbiased sample variance

of k-year log returns, computed at an overlapping annual frequency. Also shown are the 1st, 10th, and 50th

percentiles of the Monte Carlo sampling distribution of OV .k/ under the hypothesis that annual log returns

are independently and identically distributed as normal.
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Figure 11. Posterior distributions for 30-year variance ratios. Panel A plots the posterior distribution

of the unconditional variance of 30-year stock market returns, Var.rT;T C30j�/, divided by 30 times the

unconditional variance of one-year returns, Var.rT C1j�/. Panel B plots the analogous ratio for the condi-

tional variance, Var.rT;T C30jDT ; �/. (The posterior mean of that variance is the first term of the predictive

variance in equation (21).) The results are obtained by estimating the predictive system on annual real U.S.

stock market returns in 1802-2007. Three predictors are used: the dividend yield, the bond yield, and the

term spread.
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Figure 12. Posterior distributions for the first four components of 30-year predictive variance. The

results are obtained by estimating the predictive system on annual real U.S. stock market returns in 1802-

2007. Three predictors are used: the dividend yield, the bond yield, and the term spread.
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