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1 Introduction

Empirical studies of asset pricing have uncovered a rich set of properties of the time series of

aggregate stock market returns, of the term structure of interest rates and of the cross-section

of stock returns. Average returns on the aggregate stock market are high relative to short-term

interest rates. Relative to dividends, aggregate stock returns are highly volatile. They are also

predictable; the return on the aggregate market in excess of the short-term interest rate is pre-

dictably high when the price-dividend ratio is low and predictably low when the price-dividend

ratio is high. The term structure of interest rates on U.S. government bonds is upward sloping,

and excess bond returns are predictable by yield spreads and by linear combinations of forward

rates. In the cross-section, stocks with low ratios of price to fundamentals (value stocks) have

higher returns than stocks with high ratios of price to fundamentals (growth stocks), despite the

fact that they have lower covariance with aggregate stock returns. These facts together are in-

consistent with popular benchmark models and therefore represent an important challenge for

theoretical modeling of asset prices.1

One approach to explaining these properties of asset prices is to propose a fully specified model

of investor preferences, endowments and cash flows on the assets of interest. Under this approach,

the returns investors demand for bearing risks (the prices of risk) are endogenously determined by

the form of preferences and the process for aggregate consumption. These prices of risk in turn

determine risk premia, volatility, and covariances on the assets in equilibrium. Models that follow

this approach typically have a small number of free parameters and generate tight implications

for asset prices. We refer to this as the equilibrium approach.

A second approach is to directly specify the stochastic discount factor (SDF) for the economy.

Foundational work by Harrison and Kreps (1979) demonstrates that, in the absence of arbitrage,

there exists a process (known as a stochastic discount factor) that determines current prices on the

basis of future cash flows. Given that such a process exists, this second approach specifies the SDF

process directly, without reference to preferences or endowments. The exogenously specified SDF

implies processes for the prices of risk which determine asset pricing properties. Models based on

the SDF typically have a large number of degrees of freedom and therefore allow for substantial

1See Campbell (2003) and Cochrane (1999) for recent surveys of the empirical literature and discussion of these

benchmark models.
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flexibility in matching asset prices. Indeed, the parameters of the SDF and of cash flows are often

backed out from asset prices. We refer to this as the SDF approach.

In this paper, we seek to explain the aggregate market, cross-sectional, and term structure

facts within a single model. To do so, we combine elements of both approaches described above.

We assume that only risk arising from aggregate cash flows is priced directly, thus maintaining

the strict discipline about the number and nature of priced factors imposed by the equilibrium

approach. We determine the parameters of the cash flow processes based on data from the cash

flows themselves. This modeling approach maintains the parsimony that is typical of equilibrium

models. However, rather than specifying underlying preferences, we directly specify the stochastic

discount factor as in the SDF approach. Our goal is to introduce a small but crucial amount of

flexibility in order to explain the facts listed in the first paragraph.

Our model’s ability to match the data stems in part from properties of the time-varying price of

risk, which results in time-varying risk premia on stocks and bonds. As in Brennan, Wang, and Xia

(2004) and Lettau and Wachter (2007), we assume first-order autoregressive (AR(1)) processes for

both the price of risk and the real interest rate. To model the nominal term structure of interest

rates, we introduce an exogenous process for the price level (Cox, Ingersoll, and Ross (1985),

Boudoukh (1993)) such that expected inflation follows an AR(1). Realized inflation can therefore

be characterized as an ARMA(1,1). Following Bansal and Yaron (2004) and Campbell (2003), we

assume an AR(1) process for the expected growth rate of aggregate cash flows.

We calibrate the dividend, inflation, and riskfree rate processes to their counterparts in U.S

data. The price of risk is then calibrated to match aggregate asset pricing properties. Several

properties of these processes key to the model’s ability to fit the data. First, a volatile price

of risk is necessary to capture the empirically demonstrated property that risk premia on stocks

and bonds are time-varying. This time-varying price of risk also allows the model to match the

volatility of stock and bond returns given low volatility of dividends, real interest rates, and

inflation. Second, the real riskfree rate is negatively correlated with fundamentals. This implies

a slightly upward-sloping real yield curve. Expected inflation is also negatively correlated with

fundamentals, implying a yield curve for nominal bonds that is more upward-sloping than the real

yield curve.

Our model illustrates a tension between the upward slope of the yield curve and the value
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premium. The value premium implies that value stocks, which are short-horizon equity, have

greater returns than growth stocks, which are long-horizon equity. Therefore the “term struc-

ture of equities” slopes downward, not upward. However, the very mechanism that implies an

upward-sloping term structure of interest rates, namely a negative correlation between shocks to

fundamentals and shocks to the real interest rate, also implies a growth premium. We show that

correlation properties of shocks to the price of risk are key to resolving this tension. Namely,

when the price of risk is independent of fundamentals, the model can simultaneously account for

the downward-sloping term structure of equities and the upward-sloping term structure of interest

rates.

To summarize, our model generates quantitively accurate means and volatilities for the ag-

gregate market and for Treasury bonds, while allowing for low volatilites in fundamentals. The

model can replicate the predictability in excess returns on the aggregate market, the negative

coefficients in Campbell and Shiller (1991) bond yield regressions and the tent-shaped coefficients

on forward rates found by Cochrane and Piazzesi (2005). Finally, besides capturing the relative

means of value and growth portfolios, our model also captures the striking fact that value stocks

have relatively low risk according to conventional measures like standard deviation and covariance

with the market. Therefore our model replicates the well-known outperformance of value, and

underperformance of growth relative to the capital asset pricing model.

Our paper builds on studies that examining the implications of the term structure of inter-

est rates for the stochastic discount factor. Dai and Singleton (2002, 2003) and Duffee (2002))

demonstrate the importance of a time-varying price of risk for explaining the predictability of

excess bond returns. Like these papers, we also construct a latent factor model in which bond

yields are linear. Ang and Piazzesi (2003), Bikbov and Chernov (2006) and Duffee (2006) intro-

duce macroeconomic time series into the SDF as factors; in our work macroeconomic time series

also are used to determine the SDF. Unlike our work, these papers focus exclusively on the term

structure.

We also build on a literature that seeks to simultaneously explain prices in bond and the

aggregate stock market (see Bakshi and Chen (1996), Bansal and Shaliastovich (2007), Bekaert,

Engstrom, and Grenadier (2004), Buraschi and Jiltsov (2007), Gabaix (2007), Lustig, Van Nieuwer-

burgh and Verdelhan (2008) and Wachter (2006)). We extend these studies by exploring the con-
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sequences of our pricing kernel for a cross-section of equities defined by cash flows. In particular,

we show that the model can reproduce the high premium on value stocks relative to growth stocks

and the fact that value stocks have a low variance and low covariance with the aggregate market.

Our paper also builds on work that seeks to simultaneously explain the aggregate market and

returns on value and growth stocks. Several studies link observed returns on value and growth

stocks to new sources of risk (Campbell and Vuolteenaho (2004), Campbell, Polk, and Vuolteenaho

(2008), Lustig and Van Nieuwerburgh (2005), Piazzesi, Schneider, and Tuzel (2007), Santos and

Veronesi (2006b) and Yogo (2006)). Others more closely relate to the present study in that they

model value and growth stocks based on their underlying cash flows (Berk, Green, and Naik

(1999), Carlson, Fisher, and Giammarino (2004), Gomes, Kogan, and Zhang (2003), Hansen,

Heaton, and Li (2008), Kiku (2006), Lettau and Wachter (2007), Santos and Veronesi (2006a)

and Zhang (2005)). Unlike these studies, our study also seeks to explain the upward slope of the

nominal yield curve and time-variation in bond risk premia. As we show, jointly considering the

term structure of interest rates and behavior of value and growth portfolios has strong implications

for the stochastic discount factor.

2 The Model

2.1 Dividend growth, inflation, and the stochastic discount factor

Following Duffie and Kan (1996) we assume an affine structure for the underlying state of the

economy. LetHt be an m×1 vector of state variables at time t and let εt+1 be an (m+2)×1 vector

of independent standard normal shocks. In what follows, we will use bold font to denote matrices

and vectors. We assume that the state variables evolve according to the vector autoregression

Ht+1 = Θ0 + ΘHt + σHεt+1, (1)

where Θ0 is m × 1, Θ is m ×m, and σH is m × (m + 2). In Sections 2.3 and 2.4 we put more

structure on Ht. The fundamentals in the economy are represented by aggregate dividends. Let

Dt denote the level of aggregate dividends at time t and dt = logDt. We assume that the log of

aggregate dividends are conditionally normally distributed with a time-varying mean zt that is an
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affine function of the state vector:

∆dt+1 = zt + σdεt+1 (2)

zt = δ0 + δ′Ht, (3)

where σd is a 1× (m+2) vector of loadings on the shocks ε and δ is an m×1 vector of loadings on

the variables Ht. The conditional standard deviation of dividend growth is σd =
√
σdσ′d. In what

follows we will use the notation σi (without bold) to refer to the conditional standard deviation

of i and σij = σiσ
′
j to refer to the conditional covariance between i and j.

Because we are interested in pricing nominal bonds, we also specify a process for inflation. Let

Πt denote the price level and πt = log Πt. Inflation follows the process

∆πt+1 = qt + σπεt+1, (4)

qt = η0 + η′Ht, (5)

where σπ is 1 × (m + 2) and η is m × 1. The conditional standard deviation of inflation is

σπ =
√
σπσ′π.2 All quantities are in real terms unless otherwise stated.

Discount rates are determined by the real riskfree rate and by the price of risk. Let rf,t+1

denote the continuously-compounded riskfree return between times t and t + 1. We assume that

rft+1 is also an affine function of the state variables, and, because it is known at time t:

rft+1 = α0 +α′Ht, (6)

where α is m× 1. The variable that determines the price of risk, and therefore risk premia in this

homoscedastic model, is denoted xt. We assume

xt = ξ0 + ξ′Ht, (7)

where ξ is m× 1. To maintain a parsimonious model, we assume that only fundamental dividend

risk is priced directly implying that the price of risk is proportional to the vector σd. Other risks are

priced insofar as they covary with aggregate cash flows. Besides reducing the degrees of freedom in

2One could also include ∆dt+1 and ∆πt+1 in the state variable vector Ht. However, as will be shown, ∆dt+1

and ∆πt+1 do not directly affect price-dividend ratios and nominal prices of nominal bonds. For this reason, it is

more parsimonious to treat them separately.
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the model, this specification allows for easier comparison to models based on preferences, such as

those of Campbell and Cochrane (1999) and Menzly, Santos, and Veronesi (2004).3 The stochastic

discount factor (SDF) is given by

Mt+1 = exp

{
−rft+1 −

1

2
σ2
dx

2
t − xtσdεt+1

}
.

Because the SDF is a quadratic function of xt, the model is in the essentially affine class (Dai and

Singleton (2002), Duffee (2002)). Asset prices are determined by the Euler equation

Et [Mt+1Rt+1] = 1, (8)

where Rt+1 denotes the real return on a traded asset. Given the lognormal specification the

maximal Sharpe ratio is given by (Campbell and Cochrane (1999), Lettau and Uhlig (2002),

Lettau and Wachter (2007))

max
EtRt+1 −Rf

t+1

(Vart[Rt+1 −Rf
t+1])

1/2
=

(Vart[Mt+1])
1/2

Et[Mt+1]
=
√
ex

2
tσ

2
d − 1 ≈ |xt|σd.

Note that the maximal Sharpe ratio is proportional to xt and depends on the conditional standard

deviation of dividend growth.4

2.2 Prices and Returns on Bonds and Equities

Real bonds

Let P r
nt denote the real price of a zero-coupon bond with a fixed payoff of unity n periods from

now. Because this asset has no intermediate payoffs, its real return between t and t+ 1 equals

Rr
n,t+1 =

P r
n−1,t+1

P r
nt

. (9)

The prices of real bonds at any maturity are determined recursively from the Euler equation (8),

which implies that

Et
[
Mt+1P

r
n−1,t+1

]
= P r

nt, (10)

3The assumption that only dividends are priced does not affect the form of the solution. The formulas in the

Appendix allow for a general price of risk.
4The definition of Mt+1 is consistent with the riskfree rate rf

t+1 because, by conditional lognormality,

− logEt[Mt+1] = rf
t+1 +

1
2
σ2

dx
2
t −

1
2
σ2

dx
2
t = rf

t+1

and therefore (8) is satisfied for the riskfree asset.
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while the fact that the bond pays a single unit at maturity implies that P r
0t = 1. Appendix A

verifies that P r
nt takes the exponential affine form

P r
nt = exp{Arn +Br

nHt}, (11)

where Arn is a scalar and Br
n is a 1 × m vector. The sequences Arn and Br

n satisfy difference

equations, given in Appendix A, with boundary conditions Arn = 0 and Br
n = 01×m. We develop

economic intuition about the properties of the An and Bn coefficients in the context of a simplified

specification in section 2.3 below. Log yields are linear in the state variables:

yrnt = − 1

n
logP r

nt = − 1

n
(Arn +Br

nHt) .

Equity

Let P d
nt denote the price of the asset that pays the aggregate dividend n periods from now. It is

convenient to scale P d
nt by the aggregate dividend at time t to eliminate the need to consider Dt

as a state variable. The return on this zero-coupon equity claim is equal to

Rd
n,t+1 =

P d
n−1,t+1

P d
nt

=
P d
n−1,t+1/Dt+1

P d
nt/Dt

Dt+1

Dt

. (12)

The Euler equation implies that P d
nt also satisfies a recursion

Et

[
Mt+1

Dt+1

Dt

P d
n−1,t+1

Dt+1

]
=
P d
nt

Dt

, (13)

with boundary condition P d
0t/Dt = 1. The form of (13) is thus the same as that of (10). Appendix A

verifies that
P d
nt

Dt

= exp{Adn +Bd
nHt}, (14)

where Adn is a scalar and Bd
n is 1×m. The difference equations that define Adn and Bd

n are given

in Appendix A.

Nominal bonds

Let P π
nt denote the real price of a zero-coupon nominal bond maturing in n periods. The real

return on this bond equals

Rπ
n,t+1 =

P π
n−1,t+1

P π
nt

=
P π
n−1,t+1Πt+1

P π
ntΠt

Πt

Πt+1

. (15)
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This asset is directly analogous to the dividend claim above: the “dividend” is the reciprocal of

the price level, and the “price-dividend ratio” on this asset is its nominal price P π
ntΠt. The same

argument can therefore be applied to show that

P π
ntΠt = exp{Aπn +Bπ

nHt}, (16)

where the difference equations for Aπn and Bπ
n are reported in Appendix A. Following Campbell

and Viceira (2001), we use the superscript $ to denote nominal quantities for the nominal bond.

The nominal (continuously-compounded) yield to maturity on this bond is equal to

y$
nt = − 1

n
log (P π

ntΠt) = − 1

n
(Aπn +Bπ

nHt) (17)

and, like the yield on the real bond, is linear in the state variables. Finally, we use the notation

R$
n,t+1 to denote the nominal return on the nominal n-period bond:

R$
n,t+1 =

P π
n−1,t+1Πt+1

PntΠt

.

Risk premia

Given the solutions for prices, it is straightforward to solve for risk premia. Since price are

exponential affine functions of normally distributed random variables, returns on zero-coupon

instruments are lognormally distributed. Let rrn,t = logRr
n,t be the continuously compounded

return on the real zero-coupon bond of maturity n. It follows from the Euler equation (8) that

risk premia on real zero-coupon bonds satisfy

Et[r
r
n,t+1 − r

f
t+1] +

1

2
σ2
r,(n) = σr(n)σ

′
dxt, (18)

σr(n) = Br
n−1σH , (19)

where σr(n) equals the vector of loadings on the shocks for the return on the n-period bond. In

what follows, we let σr,(n) denote the standard deviation of the bond return. Note that σr,(n) =

σr(n)(σ
r
(n))
′. The second term on the left hand side of (18), 1

2
σ2
r,(n), is therefore an adjustment for

Jensen’s inequality. Analogous notation is used for risk premia on equities and nominal bonds,

as described below. The right hand side of (18) equals the covariance of the return on the bond

with the stochastic discount factor, which is proportional to the covariance of the return with the
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shock to dividends. Risk premia are time-varying and proportional to xt. The average level of the

risk premium for each bond is determined by Br
n−1σHσ

′
d, where Br

n−1 represents the effect of each

state variable on the bond price, and σHσ
′
d is the vector of covariances between fundamentals

(dividends) and the state variables.

Let rdn,t = logRd
n,t denote the continuously compounded return on zero-coupon equity of ma-

turity n. Risk premia on zero-coupon equity claims are equal to

Et[r
d
n,t+1 − r

f
t+1] +

1

2
σ2
d,(n) = σd(n)σ

′
dxt, (20)

σd(n) = σd +Bd
n−1σH , (21)

where σd(n) equals the vector of loadings on the shocks for the return on zero-coupon equity

maturing in n periods. As is the case for zero-coupon bond premia, risk premia on equities

depend on the loading on each state variable in Ht and the covariances of the elements of Ht with

fundamentals as captured by the vector σHσ
′
d. These covariances capture innovations to future

risk premia (through xt), innovations to the riskfree rate, and innovations to expected dividend

growth. There is also an additional term, σd, that represents cash flow risk due to unexpected

dividend growth in the next period.

Risk premia for nominal bonds also satisfy an equation analogous to (18):

Et[r
π
n,t+1 − r

f
t+1] +

1

2
σ2
π,(n) = σπ(n)σ

′
dxt, (22)

σπ(n) = −σπ +Bπ
n−1σH , (23)

where σπ(n) equals the vector of loadings on the shocks for the real return on the n-period nominal

bond. Real risk premia on nominal bonds are not only determined by the covariance of the state

variable Ht with fundamentals, but also the covariance of unexpected inflation with fundamentals,

σπσ
′
d. It is also of interest to compute risk premia on nominal bonds relative to the one-period

nominal bond (as opposed to the real bond, as in (22). It follows from the equation for nominal

prices (16) that

Et
[
r$
n,t+1 − y$

1t

]
+

1

2
σ2

$,(n) = σ$
(n)σ

′
dxt (24)

σ$
(n) = Bπ

n−1σH , (25)

where σ$
(n) equals the vector of loadings on the shocks for the nominal return on the nominal bond

and σ2
$,(n) is the variance of the return.
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This section shows that risk premia on all zero-coupon assets are proportional to xt. While

there is some conditional heteroscedasticity in the aggregate market that arises from time-varying

weights on zero-coupon equity, this effect is small. A natural way to drive a wedge between

time-variation in bond and stock premia is to allow for time-varying correlations as in Campbell,

Sunderam, and Viceira (2007). For simplicity and to maintain our focus on the slope of the term

structures of equity and interest rates, we do not pursue this route here.

2.3 A special case of four interpretable state variables

Consider a case where elements of Ht can be identified as expected dividend growth, expected

inflation, the riskfree rate and the price-of-risk variable. This allows for interpretable closed-form

solutions for the recursions in the previous section. We implement this special case by setting

δ =


1

0

0

0

 , η =


0

1

0

0

 , α =


0

0

1

0

 , ξ =


0

0

0

1

 . (26)

Further, we assume that each of these variables follows an AR(1) process, so that Θ is a diagonal

matrix:

Θ =


φz

φq

φr

φx

 . (27)

Setting Θ0 = 04×1 implies that δ0 is mean dividend growth, η0 is mean inflation, α0 is the mean

of the riskfree rate and ξ0 is the mean of xt. For notational simplicity, let g = δ0, q̄ = η0, r̄
f = α0

and x̄ = ξ0. Partition σH as

σH =


σz

σq

σr

σx

 . (28)

The calibration is described in more detail in section 3.1. All results in this section are for

parameter values given in Tables 1-3.
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These assumptions imply that the vectors of coefficients Br
n, Bd

n and Bπ
n can be written as

Br
n = [Br

zn, B
r
qn, B

r
rn, B

r
xn]

Bd
n = [Bd

zn, B
d
qn, B

d
rn, B

d
xn] (29)

Bπ
n = [Bπ

zn, B
π
qn, B

π
rn, B

π
xn].

The scalar terms with z subscripts are loading on expected dividend growth zt, the terms with

q subscripts are loadings on expected inflation qt, the terms with r subscripts are loadings on

the real riskfree rate rft , and terms with x subscripts are loadings on the price-of-risk variable xt.

Appendix B shows that the coefficients for expected dividend growth are

Br
zn = 0

Bd
zn =

1− φnz
1− φz

Bπ
zn = 0.

Expected dividend growth does not directly influence the price of real or nominal bonds so that

Br
zn = Bπ

zn = 0. For equities, the loadings on expected dividend growth Bd
zn are positive and

increase in maturity. An increase in expected dividend growth increases the price of the asset that

pays the aggregate dividend in the future. Because expected dividend growth is persistent, and

because Dt+n cumulates shocks between t and t+ n, the greater is the maturity n, the greater is

the effect of changes in zt on the price.

Expected inflation behaves like negative dividend growth for the nominal bond. Appendix B

shows that the coefficients are therefore

Br
qn = 0

Bd
qn = 0

Bπ
qn = −

1− φnq
1− φq

.

Expected inflation does not directly influence real bonds and equity claims because equity is a

claim on the real quantity Dt. The coefficients on the real riskfree rate are identical for all scaled

price ratios:

Br
rn = Bd

rn = Bπ
rn = −1− φnr

1− φr
.
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All Brn coefficients are negative because an increase in the interest rate increases discount rates of

all assets leading to lower current prices. Moreover, Br is decreasing in the maturity and increasing

in the persistence of the interest rate process. This is the duration effect: the further out the cash

flow, the larger the effect of a change in the one-period riskfree rate. This intuition holds for real

and nominal bonds as well as for equity.

The coefficients on the price-of-risk variable xt, Bxn, are more complicated and are given by

Br
xn = (φx − σdx)Br

xn−1 −
(
−1− φnr

1− φr
σdr

)
(30)

Bπ
xn = (φx − σdx)Bπ

xn−1 −
(
−σdπ −

1− φnr
1− φr

σdr −
1− φnq
1− φq

σdq

)
(31)

Bd
xn = (φx − σdx)Bd

xn−1 −
(
σ2
d −

1− φnr
1− φr

σdr +
1− φnz
1− φz

σdz

)
(32)

Figure 1 shows these coefficients, and, for comparison, the coefficients on the other state variables.

In our calibration, the covariance of unexpected dividend growth and interest rate shocks is neg-

ative (σdr < 0) implying from (30) that Br
xn < 0. In other words an increase in the price of risk

lowers prices of real zero-coupon bonds. Since σdπ = 0 and σdq < 0, (31) nominal zero-coupon

bond prices are more sensitive to changes in the price of risk than real zero-coupon bonds of the

same maturity. Moreover, Br
xn and Bπ

xn increase in magnitude with the maturity. This is again a

duration effect, which also is apparent in the coefficients Brn. Compared with Brn however, Bxn

initially declines slowly in maturity. This is because short-horizon assets do not have large risk

premia, and so their prices are not as sensitive to changes in the price of risk. Moreover, Bxn

levels off more slowly in maturity than Brn. As the horizon lengthens, risk premia increase, and

therefore the sensitivity to xt increases. The same effects are present for nominal bonds.

Figure 1 reveals that, in this calibration, the loading on xt for equities follows a very different

pattern than that for nominal and real bonds. Over a range of zero to ten years, Bd
xn decreases in

maturity. This is again the duration effect: the longer the maturity the more sensitive the price

is to changes in the risk premium. After ten years Bd
xn increases, and then asymptotes to a level

that is lower than Bd
x0. Given the duration effect, this decrease is surprising. It occurs because the

covariance of interest rate shocks and dividend growth σdr is more negative than the covariance of

expected dividend growth and dividend growth. Thus for short horizons, the last term in brackets

in (32) is positive and the sequence Bd
xn is decreasing. However, since the persistence of expected

dividend growth is higher than the persistence of interest rates, the term including the expected
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dividend covariance dominates for longer horizons and the expression in brackets on the right hand

side of (32) becomes positive. Intuitively, a negative correlation of expected dividend shocks and

unexpected dividend growth lowers the premium on long-horizon equity. Because long-horizon

equity has less of a premium, it is less sensitive to changes in xt than medium-horizon equity.

Figure 2 displays ratios of zero-coupon equity prices to aggregate dividends as a function of

maturity under the calibration described in Section 3.1. In all three panels, the solid line shows

ratios when the state variables are at their long-run mean. This solid line is decreasing in maturity,

as is necessary for convergence. The top panel varies expected dividend growth by plus and minus

two unconditional standard deviations, the middle panel the riskfree rate, and the lower panel the

price of risk. Prices are increasing functions of expected dividend growth zt, decreasing functions

of the real interest rate rft and decreasing functions of xt. This figure shows that, under our

calibration, most of the variation of prices at all maturities comes from variations in risk premia

as represented by xt. Variation in expected dividend growth becomes important at the longest

maturities, while variation in the real riskfree rate is relatively unimportant across all maturities.

Figure 3 plots the real yield to maturity on real zero coupon bonds as a function of maturity,

assuming parameter values described in Section 3.1 and for various values of the state variables

as described in the preceding paragraph. Real yields

yrnt = − 1

n
logP r

nt = − 1

n

(
Arn +Br

rn(rft+1 − r̄f ) +Br
xn(xt − x̄)

)
(33)

are functions of the current values of the real riskfree rate and of the price of risk variable xt. An

increase in either type of discount rate increases yields at all maturities since both Br coefficients

are negative. The two lower panels of Figure 3 show that the real riskfree rate has a greater effect

on short-term yields while xt has more of an effect for long-term yields.

Finally, it follows from (17) that the nominal (continuously-compounded) yield to maturity on

a nominal zero coupon bond, is equal to

y$
nt = − 1

n
log (P π

ntΠt) = − 1

n

(
Aπn +Bπ

rn(rft+1 − r̄f ) +Bπ
qn(qt − q̄) +Bπ

xn(xt − x̄)
)
. (34)

Figure 4 plots nominal yields for the parameter values described in Section 3.1 and for various

values of the state variables as in the previous two figures. Nominal yields are functions of expected

inflation, the real riskfree rate, and risk premia. Yields are decreasing in expected inflation, and,
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like real yields, increasing in the riskfree rate and in risk premia, with the riskfree rate having

the greater impact for shorter maturities and risk premia having the greater impact for longer

maturities. Note that since yields depend on the current value of the price of risk, the expectations

hypothesis does not hold in this model. We will investigate the quantitative deviations from the

expectations hypothesis in detail below in the context of Campbell-Shiller type yield regressions.

2.4 Qualitative implications for the term structures of equity and in-

terest rates

Prior to describing the full calibration of the model and results from simulated data, we use the

results developed above to describe the model’s qualitative implications for risk premia on bonds

and stocks. We first illustrate the issues by comparing bonds and equity maturing in two periods

with those maturing in one period. It follows from (18) and (19) that the unconditional risk

premium of the real bond maturing in two-periods equals

E[rr2,t+1 − r
f
t+1] +

1

2
σ2
r,(2) = −σdrx̄.

The risk premium on the one-period real bond is, by definition, equal to zero. The term σdr equals

the conditional covariance between the real interest rate and dividend growth: a negative value of

this covariance leads to a positive risk premium on the two-period bond. If unexpected changes in

the riskfree interest rates are uncorrelated with unexpected dividend growth, the expected return

of the two-period bond is the same as the current riskfree rate. The same term is reflected in the

average yield spread between the one and the two-period bond:

E[yr2 − yr1] = −1

2
σdr −

1

2
σ2
r , (35)

where the second term represents an adjustment for Jensen’s inequality and is relatively small.

The unconditional risk premia on one and two-period equity claims are equal to

E[rd1,t+1 − r
f
t+1] +

1

2
σ2
d,(1) = σ2

dx̄ (36)

E[rd2,t+1 − r
f
t+1] +

1

2
σ2
d,(2) =

(
σ2
d − σdr + σdz − σ2

dσdx
)
x̄. (37)

The one-period equity premium depends only on the volatility of dividend shocks and x̄ while the

two-period equity claim is also exposed to unexpected changes in the interest rate, expected divi-

dend and the price of risk process. If these processes are correlated with the priced fundamental
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dividend factor, the risk premium of two-period equity claim will be different from the one-period

premium. These risk factors are represented by the covariance between shocks to expected div-

idends and unexpected dividends σdz, real interest rates and unexpected dividends σdr, and risk

premia on unexpected dividends σdx in (37). If σdz = σdr = σdx = 0, the two-period equity claim

has the same risk premium as the one-period claim; in other words the equity term structure is

flat.

However, the positive premium of value (short horizon) stocks over growth (long horizon) stocks

in the data suggests that the equity term structure is downward sloping. Thus the premium on

two-period equity should be less that on one-period equity. Comparing (35) to (36) and (37)

suggests that an upward sloping term structure of interest rates requires interest rate shocks to

be negatively correlated with dividend shocks (σdr < 0). Ceteris paribus, this effect leads also

to an upward sloping term structure of equity, which implies a growth premium rather than a

value premium. As shown in Lettau and Wachter (2007), a key parameter for the slope of the

equity term structure is the correlation of fundamental dividend risk and shocks to the price of

risk process xt. If σdx is negative, the equity term structure tends to be upward sloping, which is

again inconsistent with the large value premium in the data.

Note that if σdx = 1 and interest rate and expected dividend shocks are uncorrelated with

dividend shocks (σdr = σdz = 0), the two-period equity claim is riskless. Recall that returns of

zero-coupon equity depend on dividend growth and the change in the price-dividend ratio (see

(12)). If σdx = 1, positive dividend shocks are associated with positive price of risk shocks causing

price-dividend ratios to decrease. In this special case, these two effects exactly offset each other

creating a perfectly hedged one-period return. This example illustrates a general property of the

model. If dividend shocks are associated with positive price of risk shocks (σdx > 0), long-term

equity tends to be less risky than short-term equity.

Beyond two periods, the effect of changes in risk premia exacerbates this tension. The uncon-

ditional risk premium on the n-period real bond equals

E[rrn,t+1 − r
f
t+1] +

1

2
σ2
r,(n) =

(
−1− φn−1

r

1− φr
σdr +Br

x,n−1σdx

)
x̄ (38)

As Appendix B shows, Br
x,n−1 has the same sign as −σdr and is decreasing in maturity. A negative

correlation between interest rates and fundamentals implies that long-term bonds have positive risk

premia. Because bond prices are determined by risk premia, it follows that changes in risk premia
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are another source of risk for these bonds. If changes in risk premia are negatively correlated with

fundamentals, risk premia on bonds increase.

The risk premium on n-period equity is equal to

E[rdn,t+1 − r
f
t+1] +

1

2
σ2
d,(n) =

(
σ2
d −

1− φn−1
r

1− φr
σdr +

1− φn−1
z

1− φz
σdz +Bd

x,n−1σdx

)
x̄. (39)

As long as risk premia on zero-coupon equity are positive, Bd
x,n−1 is negative (see A.17). Just as in

the two-period case, the same features of the model that deliver positive risk premia on long-term

bonds causes risk premia of long-term equities to be higher than short-term equity premia. A

negative correlation between discount rates and fundamentals leads to higher expected returns

on long-term equities relative to short-term equities, the opposite of what cross-sectional asset

pricing data suggest. This is because duration operates for both bonds and equities; when shocks

to discount rates are priced risk premia on all long-term instruments are driven up relative to

short-term instruments.

In the calibration that follows, we show that it is indeed possible to match both the upward

slope of the term structure of interest rates and the downward slope of the term structure of

equities in a model where the riskfree rate and the risk premium vary. Part of the answer lies in

the role of expected dividend growth which appears in the equations for equities above and part

of the answer lies in the role of expected inflation which influences risk premia on nominal bonds.

3 Implications for Returns on Stocks and Bonds

To study our model’s implications for returns on the aggregate market, on real and nominal bonds,

and for portfolios sorted on scaled-price ratios, we simulate 50,000 quarters from the model. Given

simulated data on shocks εt, and on expected dividend growth zt, expected inflation qt, the real

riskfree rate rft , and the price-of-risk variable xt, we compute real prices of real bonds given

(11), ratios of prices to the aggregate dividend for zero-coupon equity (14), and nominal prices

of nominal bonds (16). We also compute a series for realized dividend growth (2) and realized

inflation (4). Real returns on zero-coupon instruments are then described by (9) for real bonds,

(15) for nominal bonds, and (12) for zero-coupon equity. Computation of the price-dividend ratio

for the market and for firms (which are then aggregated into portfolios) is described further below.
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3.1 Calibration

We calibrate the special case of the model in Sections 2.3 and 2.4. This preserves intuition for the

state variables. Means and autocorrelations are given in Table 1, conditional cross-correlations in

Table 2 and conditional standard deviations of shocks in Table 3. As far as is practical, parameters

for the dividend process and aggregate market are set as in Lettau and Wachter (2007). We

compare these to the century-long annual data set of Campbell (2003) (the instability of many

moments of the aggregate market in recent years makes a long data set especially desirable).

Lettau and Wachter (2007) describes these data in further detail. Parameters for inflation are

set as in Wachter (2006), and results for bond yields are compared to sample moments from the

Fama-Bliss data on CRSP. These data begin in 1952 and end in 2004.5 So that all data are at a

comparable frequency, we use annual rather than quarterly observations on yields.

Table 1 shows the means and autocorrelation of expected inflation growth zt, expected inflation

qt, the real riskfree rate rft and the price of risk σdxt.
6 The model is simulated at a quarterly

frequency. Table 1 shows annualized parameter values, i.e. the means are multiplied by 4 and the

autocorrelations are raised to the fourth power.

The mean of expected dividend growth is set at 2.28%, the mean of annual dividends on the

S&P 500 over the 1881-2002 period. The mean of expected inflation is 3.68%, the sample mean over

the 1952–2004 period. Given the mean of inflation, the mean of the riskfree rate implies reasonable

values for the average yield on the short-term nominal bond. The mean of xt determines Sharpe

ratios in this economy. This variable is set to produce Sharpe ratios that are close to those in

the data. The autocorrelations for expected dividend growth zt and for expected inflation qt are

determined based on dividend and inflation data respectively (see Lettau and Wachter (2007) and

Wachter (2006)). The autocorrelation for rft is set to match the autocorrelation of the short-term

nominal yield. The autocorrelation of xt is determined to produce a realistic autocorrelation of

the price-dividend ratio while still implying only a small amount of univariate mean reversion in

returns as in the data.

5As is customary in term structure and inflation studies, we calibrate inflation and yields to data after 1952

because of the Fed-Treasury accord (Campbell and Viceira (2001)).
6In Tables 1 and 3, we report statistics for σdxt rather than xt. Because of its relation to the maximal Sharpe

ratio, σdxt is the more intuitive quantity. Note that for Table 2, using σdxt of xt would lead to the same answers.
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Table 2 shows conditional cross-correlations of the shocks to the economy. The four state

variables account for four shocks; there is also a shock to realized dividend growth and to realized

inflation. To maintain a parsimonious model, we set many correlations to zero. Sharpe ratios

in this model are determined by the correlation of the state variables with realized dividend

growth. The correlation between expected and realized dividend growth is -0.83 is determined

from dividend data (see Lettau and Wachter (2007)). The correlation between expected inflation

qt and realized dividend growth determines the premium for nominal over real bonds. A value

of -0.20 implies that nominal bonds will carry a premium over real bonds, and moreover, that

this premium increases in maturity. It is also consistent with the negative correlation of dividend

growth and inflation in the data. The correlation between the real riskfree rate and expected

dividend growth is -0.40. This implies an upward sloping real term structure. The correlations

between dividend growth, qt and rt are consistent with empirical evidence that yields on indexed

Treasury bonds are increasing in maturity, but that this slope is less than for nominal bonds (Roll

(2004)). The implications of these parameters are discussed further in Section 3.3.

As in Lettau and Wachter (2007), the correlation between x and dividend growth is set to be

zero. The implication of this parameter choice is discussed further in Section 3.4. The correlations

between x and shocks to ∆πt, between x and z and between x and q are set to ensure that dividend

growth and interest rates have reasonable time-series properties as explained below. The precise

choice of the correlation between realized and expected inflation, set to be 0.50, has a very minor

impact on asset prices. However, values that are too high or too low result in variance-covariance

matrices for which the Cholesky decomposition does not exist.

Table 3 shows the conditional standard deviation of shocks. The shock to realized dividend

growth is 10% per annum. This value falls between estimates in the long data (∼ 14%), and in

the post-war sample (∼ 6%). The conditional standard deviation of expected dividend growth

and its first-order autocorrelation are set at the same value as Lettau and Wachter (2007). The

variance of expected inflation, as well as the first-order autocorrelation is determined by the ARMA

estimation in Wachter (2006). While Wachter assumes perfect correlation between the shocks to

expected and realized growth, the estimates can be adjusted so that the correlation is not perfect

but that the likelihood function is the same as shown in the appendix to that paper. The standard

deviation of the real riskfree rate is 0.15% per annum. This is set so that, given our process for
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inflation, our model implies nominal bond yield volatility close to that in the data. The standard

deviation of σdx is set to 40; this high value is necessary to capture high volatility of stock returns

and price-dividend ratios.

In this calibration we have set a number of interaction terms equal to zero. Richer models

that are used to estimate the term structure allow nonzero off-diagonal elements in the matrix

Θ1 and arbitrary cross-correlations of shocks (see Dai and Singleton (2003) and Duffee (2002)).

Results from these studies suggest that such interactions may be important for fully capturing the

dynamics of the term structure of interest rates. We could introduce these effects without changing

the analytic form of prices, as Section 2.2 shows. However, it is not clear how to cleanly identify

these parameters with our macro-based approach. Moreover, our simpler model has the advantage

that it is easier to connect the calibrated parameters with the results. While our model may miss

some of the term structure properties captured by the more complex models, it nonetheless seems

appropriate for our current purpose.

3.2 The Aggregate Market

Table 4 shows statistics for the aggregate market in simulated and in historical data. In our model,

the aggregate market is the claim to all future dividends. Therefore its price-dividend ratio is given

by
Pm
t

Dt

=
∞∑
n=1

Pnt
Dt

=
∞∑
n=1

exp
{
Adn +Bd

nHt

}
(40)

Appendix C describes necessary and sufficient conditions on the parameters such that (40) con-

verges for all values of Ht. The return on the aggregate market equals

Rm
t+1 =

Pm
t+1 +Dt

Pm
t

=
(Pm

t+1/Dt+1) + 1

Pm
t /Dt

Dt+1

Dt

(41)

In simulated, data, we calculate quarterly returns and compound to an annual frequency. We

create an annual price-dividend ratio in simulated data by dividing price by dividends over the

previous year.

As Table 4 shows, the volatility and the autocorrelation of the price-dividend ratio are close

to those found in the data. This is not a surprise as model parameters were chosen in part to

produce reasonable values for these moments. The model produces a mean price-dividend ratio of
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18.6, while the mean in the data is 25.6. Matching this statistic is a common difficulty for models

of this type: Campbell and Cochrane (1999), for example, find an average price-dividend ratio of

18.2. As they explain, this statistic is poorly measured due to the persistence of the price-dividend

ratio. The present model fits the volatility of equity returns (19.1% in the model versus 19.4%

in the data), though it produces an equity premium that is slightly higher than that in the data

(8.45% in the model versus 6.33% in the data). Like the mean of the price-dividend ratio, this

number is estimated with substantial noise. The annual autocorrelation of returns is near zero for

both model and data.

Motivated by the substantial literature on return predictability, we report results of regressing

excess aggregate market returns on the log of the price-dividend ratio and on the yield spread.

Panel A of Table 5 reports results of long-horizon regressions of continuously compounded excess

returns on the log price-dividend ratio. The model accounts for economically significant stock

return predictability on the basis of the price-dividend ratio. The R2 is equal to 11% at an annual

horizon and rises to 39% at a ten-year horizon. These values are well within the range of empirical

estimates (e.g. Campbell and Shiller (1988), Cochrane (1992), Fama and French (1989) and Keim

and Stambaugh (1986)). Panel B reports results from regressing long-horizon excess returns on the

difference between the five-year and the three-month nominal yields. R2 values on this regression

range from 7% for 1-year returns to 27% for ten-year returns. These values are again well within

the range of estimates for stock return predictability by the yield spread (see Campbell (2003)).

Table 6 reports the results of long-horizon regressions of dividend growth on the price-dividend

ratio and on yield spreads. Evidence indicates that there is little predictability in dividend growth

by either variable (Ang and Bekaert (2007), Cochrane (2008), Lettau and Ludvigson (2005) and

Lettau and Van Nieuwerburgh (2008)). Despite the fact that the mean of dividend growth is

time-varying in our model, neither the price-dividend ratio, nor the yield spread, predicts dividend

growth with R2 values that exceed 2%, even at long horizons. This is both because the variation

in expected dividend growth is relatively low, and because expected dividend growth is positively

correlated with the price of risk xt. Thus risk premia and expected dividend growth are negatively

correlated, leading to less dividend growth predictability than what one would expect given the

present-value nature of this model.

Our model does imply that dividend growth may be predictable by variables other than scaled
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price ratios or yields. The bottom panel of Table 6 highlights this effect by regressing long horizon

dividend growth on its expectation zt. R
2 values range from 7% for a 1-year horizon to 35% for a

ten-year horizon. Thus our model is consistent with findings of Lettau and Ludvigson (2005) that

show that the cointegrating relation between consumption, dividends, and labor income predicts

dividend growth.

3.3 The Term Structure of Interest Rates

Table 7 shows the implications of the model for means, standard deviations, and annual autocorre-

lations of nominal and real bond yields. Data moments for bond yields using the CRSP Fama-Bliss

data set are provided for comparison. The mean of the 3-month nominal yield matches its value

in the data. The mean for the 3-month real yield is lower, reflecting both a term for expected

inflation, and a small, positive inflation premium. Both the real and nominal yield curves are

upward sloping. This occurs because of the negative correlation between the real riskfree rate and

fundamentals. Because bond prices fall when the real riskfree rate rises, bond prices fall when

growth in fundamentals are low. This leads both real and nominal bonds to command a positive

risk premium and implies an upward-sloping yield curve. In the case of nominal bonds, there

is an additional effect arising from the negative correlation between fundamentals and expected

inflation. This negative correlation, which is present in the data (Piazzesi and Schneider (2006),

Wachter (2006)) implies that nominal bond prices fall when fundamentals are low, leading to a

positive inflation risk premium.

The model implies volatilities for nominal bonds that are close to those in the data (the

volatility on the short-term nominal bond is 2.9% in both data and model). Moreover, volatilities

decrease in maturity, as in the data. This decrease follows from the stationary autoregressive

nature of the underlying processes. Finally, the first-order autocorrelation of the three-month

nominal yield is 0.82 per annum. This compares with 0.83 in the data.

Table 8 shows the outcome of regressions

yrn−1,t+1 − yrnt = αn + βn
1

n− 1
(yrnt − yr1t) + et,

for real bonds and

y$
n−1,t+1 − y$

nt = αn + βn
1

n− 1

(
y$
nt − y$

1t

)
+ eπt
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for nominal bonds in simulated and historical data. These “long-rate” regressions are performed

by Campbell and Shiller (1991) to test the hypothesis of constant risk premia on bonds.

The relation between risk premia and these regressions can be uncovered using the definition

of yields and returns. For real bonds:

rrn,t+1 = yrnt − (n− 1)
(
yrn−1,t+1 − yrnt

)
Rearranging and taking expectations implies:

Et
[
yrn−1,t+1 − yrnt

]
=

1

n− 1
(yrnt − yr1t)−

1

n− 1
Et
[
rrn,t+1 − yr1t

]
(42)

For nominal bonds, the analogous equation is

Et
[
y$
n−1,t+1 − y$

nt

]
=

1

n− 1

(
y$
nt − y$

1t

)
− 1

n− 1
Et
[
r$
n,t+1 − y$

1t

]
(43)

Thus the coefficient of a regression of changes in yields on the scaled yield spread produces a

coefficient of one only if risk premia on bonds are constant. As found by Campbell and Shiller,

the data coefficients are not only less than one, they are negative, indicating risk premia on bonds

that strongly vary over time.

As Table 8 shows, the model captures the failure of the expectations hypothesis seen in the

data. Coefficients βn are negative for all maturities. Risk premia on bonds are time-varying in the

model because of the time-varying price of risk xt. Thus the model can parsimoniously explain

both predictability in stock returns, and time-variation in risk premia on long-term bonds.7

Using the model, it is possible to write the coefficients βn in terms of more fundamental

quantities. This sheds light on the aspects of the model that lead to the failure of the expectations

hypothesis, as well as tensions inherent in the model. For real bonds, by definition

βn =
Cov(yrn−1,t+1 − yrn, yrnt − yr1t)

Var(yrn−1,t+1 − yr1t)
(n− 1)

7The failure of the expectations hypothesis is not as extreme as that seen in the data. This reflects the difficulty

that models with a single homoscedastic factor have in matching these data. Indeed, Dai and Singleton (2002) find,

within the affine class, only a model with three factors driving the price of risk is capable of fully matching the failure

of the expectations hypothesis. In contrast, a single-factor model that allows for significant heteroscedasticity in

the state variable can successfully match these data (Wachter (2006)). It is also possible that part of the deviation

in the data is reflective of a peso problem (Bekaert, Hodrick, and Marshall (2001)).
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Substituting in for changes in yields from (42), and noting that time-(t + 1) shocks have zero

correlation with time-t yields, we have

βn =
Cov(yrnt − yr1t − Et

[
rrn,t+1 − yr1t

]
, yrnt − yr1t)

Var(yrn−1,t+1 − yr1t)

= 1− σr(n)σ
′
d

Cov(xt, y
r
nt − yr1t)

Var(yrn−1,t+1 − yr1t)
, (44)

where the second line follows from (18). If xt were constant, then the covariance term in this

expression would be zero and βn = 1, its value implied by the expectations hypothesis. The

deviation from the expectations hypothesis depends on two quantities. The first is σr(n)σ
′
d. This is

the covariance between bond returns and fundamentals, and directly determines the risk premium

on the bond as indicated by (18). The greater are risk premia on bonds, the greater the deviation

from the expectations hypothesis. The second term is the coefficient from a regression of xt on

the yield spread. The more risk premia covary with yield spreads, then, the greater the deviation

from the expectations hypothesis. Similar reasoning leads to the formula for nominal bonds:

βn = 1− σ$
(n)σ

′
d

Cov(xt, y
$
nt − y$

1t)

Var(y$
n−1,t+1 − y$

1t)
. (45)

Figure 5 displays σ(n)σ
′
d, Cov(xt, ynt − y1t)/Var(yn−1,t+1 − y1t), and βn for real and nominal

bonds.8 As Panel A shows, the terms σ(n)σ
′
d are increasing in maturity, reflecting the fact that

risk premia increase in maturity and that the term spread is upward-sloping. Risk premia are

greater for nominal bonds then for real bonds, and increase faster in the maturity. Despite this,

as shown in Panel C, the model implies a greater deviation from the expectations hypothesis for

real bonds than for nominal bonds. Moreover, the model predicts coefficients that are roughly

constant in maturity over the range of zero to 5 years, while risk premia are upward sloping.

The reason is that the upward slope for risk premia is canceled out by a downward slope in

Cov(xt, ynt−y1t)/Var(yn−1,t+1−y1t), which results from the mean-reverting nature of xt. Moreover,

nominal bonds, whose yields are driven by expected inflation as well as by discount rates, have

lower values of Cov(xt, ynt − y1t)/Var(yn−1,t+1 − y1t). This explains why the model produces a

less dramatic failure of the expectations hypothesis for nominal bonds, despite their higher risk

premia.

8While (42) and (43) can be interpreted at any frequency and are run at an annual frequency in the data and

the model for Table 8, (44) and (45) require that the frequency be the same as the frequency at which the model

is simulated, namely, quarterly. The implied differences for the coefficients βn are very slight.
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Finally, we ask whether the model can explain the findings of Cochrane and Piazzesi (2005).

Cochrane and Piazzesi regress annual excess bond returns on a linear combination of forward rates,

where the forward rate for loans between periods t+ n and t+ n+ 1 is defined as

fπnt = logP π
n−1,t − logP π

nt.

(in what follows, we refer to n as the forward rate maturity). Cochrane and Piazzesi show that

the regression coefficients on the forward rates form a tent-shape pattern as a function of maturity

(see also Stambaugh (1988)). Moreover, they show that a single linear combination of forward

rates has substantial predictive power for bond returns across maturities.

These results offer support for our model’s assumptions in that they imply that a single pre-

dictive factor drives much of the predictability in bond returns. In our model, that factor is

represented by the latent variable xt. Forward rates, like bond prices, are linear combinations of

factors; therefore some linear combination of forward rates will uncover xt. The model therefore

predicts that some linear combination of forward rates will be the best predictor of bond returns,

and that the regression coefficients for bonds of various maturities should be the same up to a

constant of proportionality (as the true premia are all proportional to xt). Given the 3-factor

affine structure of the model, it is straightforward to solve for the linear combination of any three

forward yields that is proportional to xt. For example, the linear combination

−φ2
qφ

2
rf1t + (φ2

q + φ2
r)f3t − f5t (46)

of 1, 3 and 5 period forwards is perfectly proportional to xt and is therefore the most powerful

variable to predict excess bond holding returns. Consistent with Cochrane and Piazzesi (2005),

the coefficients in (46) have a “tent” (−+−) pattern. Moreover, the coefficients depend only on

the persistence parameters of the state variables rft and qt. Intuitively, forward rates depend on all

state variables but forwards of different maturities are affected differently by the state variables

because of their different degrees of persistence. Thus the linear combination of forwards that is

independent of rft and qt is a function of φr and φq.

Equation (46) holds on the same data frequency that is used for calibration but does not

hold exactly in time-aggregated data. Since the model is simulated on a quarterly frequency and

aggregated to annual data, we replicate the Cochrane and Piazzesi (2005) analysis in our simulated
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data. We report results for forward rates with n = 1, 3 and 5 years but the results are robust to

alternative choices. Figure 6 shows the regression coefficients as a function of the forward rate

maturity. As this figure shows, the model reproduces the tent shape in regression coefficients. 9

3.4 The Cross-section of Equities

This section shows the implications of the model for portfolios formed by sorting on price ratios.

As in Menzly, Santos, and Veronesi (2004) and we exogenously specify a share process for cash

flows on long-lived assets. For each year of simulated data, we sort these assets into deciles formed

on the ratio of price to fundamentals and form portfolios of the assets within each decile. We then

calculate returns over the following year. This follows the procedure used in empirical studies

of the cross section (e.g. Fama and French (1992)). We then perform statistical analysis on the

portfolio returns.

We specify our share process so that assets pay a nonzero dividend at each time, so that the

total dividends sum up to the aggregate dividend of the market, and so that the cross-sectional

distribution of dividends, returns, and price ratios is stationary. The continuous-time framework of

Menzly, Santos, and Veronesi (2004) allows the authors to specify the share process as stochastic,

and yet keep shares between zero and one. This is more difficult in discrete time, and for this

reason we adopt the simplifying assumption that the share process is deterministic. We assume

the same process as in Lettau and Wachter (2007): shares grow at a constant rate of 5% per

quarter for 100 quarters, and then shrink at the same rate for the next 100 quarters. Lettau and

Wachter show that these parameters imply a cross-sectional distribution of dividend and earnings

growth similar to that in the data.

At the start of each year in the simulation, we sort firms into deciles based on their price-

dividend ratio. We then form equal-weighted portfolios of firms within each decile. As firms

move through the life-cycle, they slowly shift (on average) from the growth category to the value

category, and then revert back to the growth category. Having sorted firms into portfolios, we

compute statistics on portfolio returns over the subsequent year.

Panel A of Table 9 shows moments implied by the model. We compute the expected excess

9The regression coefficients are larger in magnitude than those shown in Cochrane and Piazzesi (2005); this

occurs because the correlation between bond returns in our model is greater than that in the data.
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return, the volatility of the excess return and the Sharpe ratio. We also compute the abnormal

return relative to the CAPM (αi), and the coefficient on the market portfolio (βi) from a time

series regression of expected excess portfolio returns on expected excess market returns. Panel B

shows counterparts from the data when portfolios are formed on the book-to-market ratio. Lettau

and Wachter (2007) show that very similar results occur when portfolios are formed on earnings-

to-price or cash-flow-to-price ratios.

Comparing the first line of Panel A with that of Panel B shows that the model is capable of

matching the spread between expected returns on value and growth stocks. In both the model and

the data, the expected excess return increases from about 6% per annum for the extreme growth

portfolio to about 11% per annum for the extreme value portfolio. Comparing the second line

of Panel A with that of Panel B shows that, in the model, the risk of value stocks is lower than

that of growth stocks, just as in the data. Sharpe ratios increase from about 0.3 for the extreme

growth portfolio to about 0.6 for the extreme value portfolio.

More importantly, the model is able to match the value puzzle. Even though the model predicts

that value stocks have high expected returns, value stocks in the model have lower CAPM βs than

growth stocks. The CAPM α in the model is -2.3% per annum for the extreme growth portfolio

and rises to 3.33% per annum for the extreme value portfolio. The corresponding numbers in the

data are -1.66% per annum and 3.97% per annum.

These results for value and growth stocks may at first seem counter-intuitive, especially given

the implications of the model for the term structure of interest rates. The term structure results

in the previous section show that long-run assets require higher expected returns than short-run

assets. The results in this section show that the opposite is true for equities. For equities, it is

the short-run assets that require high expected returns.

The model resolves this tension between the downward sloping term structure of equities and

the upward-sloping term structure of interest rates by the dividend process, the inflation process,

and the price-of-risk process x. As implied by the data, expected dividend growth is negatively

correlated with realized dividend growth. This makes growth stocks a hedge and reduces their risk

premium relative to what would be the case if, say, expected inflation were constant. Moreover,

expected inflation is negatively correlated with realized dividend growth. This makes long-term

nominal bonds riskier than short-term nominal bonds and riskier than real bonds.
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The prices of inflation and dividend risks are important for accounting for the combined be-

havior of equities and bonds. However, they are not sufficient. As the discussion in Section 2.4

indicates, characteristics of the price-of-risk process x are also crucial. Because equities carry a

higher risk premium than bonds, they are more sensitive to changes in x in the sense that a greater

proportion of their variance comes from x than from rf as compared to both real and nominal

bonds. In our specification, variation in the price of risk is itself unpriced. This implies variability

in returns on growth stocks (on account of duration), but, at the same time, low expected returns

because this variability comes in the form of risk that the representative investor does not mind

bearing.

4 Conclusion

This paper has shown that properties of the cross-section of returns, the aggregate market and the

term structure of interest rates can all be understood within a single framework. We introduced

a parsimonious model for the pricing kernel capable of accounting for the behavior of value and

growth stocks, nominal bonds, and the aggregate market. At the root of the model are dividend,

inflation, and interest rate processes calibrated to match their counterparts in the data. Time-

varying preferences for risk, modeled using a first-order autoregressive process for the price of

risk, capture the observed volatility in equity returns and bond yields, as well as time-varying risk

premia in the equity and the bond market.

Our model highlights a challenge for any model that attempts to explain both bonds and the

cross-section of equities. The upward-sloping yield curve for bonds indicates that investors require

compensation in the form of a positive risk premium for holding high-duration assets. However,

data on value and growth stocks imply the opposite: investors require compensation for holding

value stocks, which are short-horizon equity. Our model addresses this tension by specifying a

real riskfree rate that is negatively correlated with fundamentals and a price of risk shock that

has zero correlation with fundamentals. We hope that future work will suggest microeconomic

foundations for these specifications.
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Appendix

A General Solution

In this section, we assume that the vector of state variables Ht follows the process (1), that the riskfree
rate equals (6), that inflation follows the process (4) and that dividend growth follows (2). The variable
xt is given by (7). We assume a slightly more general form for the intertemporal marginal rate of
substitution:

Mt+1 = exp
{
−rft+1 −

1
2
||λ||2x2

t − xtλ′εt+1

}
. (A.1)

The price of risk is therefore xtλ. In the main text, we impose the restriction λ = σ′d. The more general
formulas that follow are convenient in that they allow for a separation between the role of σd as the
loadings on shocks for dividend growth and as the price of risk.

We describe the solution method for the case of zero-coupon equity. We conjecture a solution (14) to
the recursion (13). Expanding out the exponential in the recursion implies

Et

[
exp

{
−α0 −α′Ht −

1
2

(ξ0 + ξ′Ht)2||λ||2 − (ξ0 + ξ′Ht)λ′εt+1 + δ0 + δ′Ht + σdεt+1 +

Adn−1 +Bd
n−1 (Θ0 + ΘHt + σHεt+1)

}]
= exp

{
Adn +Bd

nHt

}
.

It follows from properties of the lognormal distribution that

exp
{
−α0 −α′Ht −

1
2

(ξ0 + ξ′Ht)2||λ||2 + δ0 + δ′Ht +Adn−1 +Bd
n−1 (Θ0 + ΘHt) +

1
2

(
σd − (ξ0 + ξ′Ht)λ′ +Bd

n−1σH

)(
σd − (ξ0 + ξ′Ht)λ′ +Bd

n−1σH

)′}
=

exp
{
Adn +Bd

nHt

}
.

Matching coefficients implies:10

Bd
n = −α′ + δ′ +Bd

n−1Θ− (σd +Bd
n−1σH)λξ′ (A.2)

Adn = −α0 + δ0 +Adn−1 +Bd
n−1Θ0 − (σd +Bd

n−1σH)λξ0 +
1
2
σdσ

′
d +Bd

n−1σHσ
′
d +

1
2
Bd
n−1σHσ

′
HB

d ′
n−1, (A.3)

with Bd
0 = 01×m and Ad0 = 0. Note that the terms that are quadratic in Ht cancel.

For real bonds, we note that (10) takes the same form as (13), except that there is no dividend growth
term. We can therefore apply (A.2) and (A.3) directly, replacing δ0 with 0, δ1 with 0m×1 and σd with

10Because ξ′Ht and λ′(σd +Bd
n−1σH)′ are each scalars,

ξ′Htλ
′(σd +Bd

n−1σH)′ = λ′(σd +Bd
n−1σH)′ξ′Ht

= (σd +Bd
n−1σH)λξ′Ht.



01×(m+2) to obtain

Br
n = −α′ +Br

n−1Θ−Br
n−1σHλξ

′ (A.4)

Arn = −α0 +Arn−1 +Br
n−1Θ0 −Br

n−1σHλξ0 +
1
2
Br
n−1σHσ

′
HB

r ′
n−1, (A.5)

with Br
0 = 01×m and Ar0 = 0.

For nominal bonds, the Euler equation (8) implies that

Et

[
Mt+1

Πt

Πt+1
P πn−1,t+1Πt+1

]
= P πntΠt

This recursion has a form that is similar to (13), with −η0 taking the place of δ0, −η taking the places
of δ and −σπ taking the place of σd. We apply the same equation again to obtain

Bπ
n = −α′ − η′ +Bπ

n−1Θ− (−σπ +Bπ
n−1σH)λξ′ (A.6)

Aπn = −α0 − η0 +Aπn−1 +Bπ
n−1Θ0 − (−σπ +Bπ

n−1σH)λξ0 +
1
2
σπσ

′
π −Bπ

n−1σHσ
′
π +

1
2
Bπ
n−1σHσ

′
HB

π ′
n−1, (A.7)

and Bπ
0 = 01×m and Aπ0 = 0.

B Special Case

We now specialize the above formulas under the assumptions of Section 2.3. We continue to assume that
the intertemporal marginal rate of substitution is defined by (A.1). Setting λ = σ′d generates the results
in Section 2.3.

For real bonds, (A.4) and (A.5) imply that

Br
zn = Br

z,n−1φz (A.8)

Br
qn = Br

q,n−1φq (A.9)

Br
rn = −1 +Br

r,n−1φr (A.10)

Br
xn = Br

x,n−1φx − σr(n)λ (A.11)

Arn = −r̄f +Arn−1 − σr(n)λx̄+
1
2
||σr(n)||

2, (A.12)

where σr(n) is defined in Section 2.2 as the vector of loadings on the shocks for the return on the n-period
real bond. Under the assumptions in Section 2.3,

σr(n) = Br
r,n−1σr +Br

q,n−1σq +Br
z,n−1σz +Br

x,n−1σx.

The boundary conditions are Br
zn = Br

qn = Br
rn = Br

xn = Arn = 0. Equations (A.8) and (A.9) together
with the boundary conditions imply that Br

zn = Br
qn = 0. The solution to (A.10) is given in the main

text. The solution to (A.11) is

Br
xn =

σrλ

1− φr
1− φnλ
1− φλ

− σrλ

1− φr
φnr − φnλ
φr − φλ

, (A.13)



where
φλ = φx − σxλ.

In the case of equities, (A.2) and (A.3) imply that

Bd
zn = 1 +Bd

z,n−1φz (A.14)

Bd
qn = Bd

q,n−1φq (A.15)

Bd
rn = −1 +Bd

r,n−1φr (A.16)

Bd
xn = Bd

x,n−1φx − σd(n)λ (A.17)

Adn = −r̄f + g +Adn−1 − σd(n)λx̄+
1
2
||σd(n)||

2, (A.18)

where
σd(n) = σd +Bd

r,n−1σr +Bd
q,n−1σq +Bd

z,n−1σz +Bd
x,n−1σx

is the vector of loadings on the shocks for the return on n-period zero-coupon equity as defined in
Section 2.2. The boundary conditions are Bd

zn = Bd
qn = Bd

rn = Bd
xn = Adn = 0. Equation (A.15) together

with the boundary condition implies that Bd
qn = 0. The solutions to (A.14) and (A.16) are given in the

main text. The solution to (A.17) is

Bd
xn =

(
−σdλ+

σrλ

1− φr
− σzλ

1− φz

)
1− φnλ
1− φλ

− σrλ

1− φr
φnr − φnλ
φr − φλ

+
σzλ

1− φz
φnz − φnλ
φz − φλ

. (A.19)

In the case of nominal bonds, (A.6) and (A.7) imply that

Bπ
zn = Bπ

z,n−1φz (A.20)

Bπ
qn = −1 +Bπ

q,n−1φq (A.21)

Bπ
rn = −1 +Bπ

r,n−1φr (A.22)

Bπ
xn = Bπ

x,n−1φx − σπ(n)λ (A.23)

Aπn = −r̄f − q̄ +Aπn−1 − σπ(n)λx̄+
1
2
||σπ(n)||

2, (A.24)

where
σπ(n) = −σπ +Bπ

r,n−1σr +Bπ
q,n−1σq +Bπ

x,n−1σx

is the vector of loadings on the shocks for the return on the n-period nominal bond as defined in Section 2.2.
The boundary conditions are Bπ

zn = Bπ
qn = Bπ

rn = Bπ
xn = Aπn = 0. Equation (A.20) together with the

boundary condition implies that Bπ
zn = 0. The solutions to (A.21) and (A.22) are given in the main text.

The solution to (A.23) is

Bπ
xn =

(
σπλ+

σrλ

1− φr
+

σqλ

1− φq

)
1− φnλ
1− φλ

− σrλ

1− φr
φnr − φnλ
φr − φλ

− σqλ

1− φq
φnq − φnλ
φq − φλ

. (A.25)



C Convergence

This Appendix derives conditions on the convergence of the price-dividend ratio. Let K1 = Θ− σHλξ′

and K2 = −α′ + δ′ − σdλξ′. Then (A.2) can be rewritten as

Bd
n = Bd

n−1K1 +K2.

The limit of Bd
n as n goes to infinity is the fixed point of this equation. A necessary and sufficient

condition for a fixed point to exist is that the eigenvalues of K1 have absolute value less than 1. In this
case Im −K1 is invertible, and the fixed point is

B = K2(Im −K1)−1.

It follows that for N sufficiently large,

Adn ≈ Ān+ constant,

for n ≥ N , where

Ā = −α0 + δ0 +BΘ0 − (σd +BσH)λξ0 +
1
2
σdσ

′
d +BσHσ′d +

1
2
BσHσ

′
HB

′
.

Moreover,
∞∑
n=N

exp
{
Adn +Bd

nHt

}
≈ exp

{
constant +BHt

} ∞∑
n=N

exp
{
Ān
}
.

Therefore necessary and sufficient conditions for convergence are that K1 has eigenvalues inside the unit
circle, and that Ā is negative.

D Cochrane-Piazzesi Regressions

Up to an additive constant, the n-period forward rate can be written as fnt = −φn−1
r (rft − r̄

f
t )−φn−1

q (qt−
q̄t)− (Bπ

n−1,x −Bπ
nx)(xt − x̄). Hence fit

fjt

fkt

 =

 −φ
i−1
r −φi−1

q −(Bπ
i−1,x −Bπ

ix)
−φj−1

r −φj−1
q −(Bπ

j−1,x −Bπ
jx)

−φk−1
r −φk−1

q −(Bπ
k−1,x −Bπ

kx)


 rft

qt

xt

 ,

or ft = Θ (rft , qt, xt)
′, where ft is a vector of any three forwards rates with maturities i, j and k, and

Θ is a 3x3 matrix of known coefficients. Thus xt = e′3Θ
−1ft where e3 = (0 0 1)′. Since the first two

columns of Θ only depend on φr and φq, it follows that xt is proportional to a linear combination of the
three forward rates in ft with coefficients that depend only on φr and φq. In other words, any 3x1 vector
θ with the property

θ′

 −φ
i−1
r −φi−1

q

−φj−1
r −φj−1

q

−φk−1
r −φk−1

q

 = (0 0)



implies that θ′ft is independent of rft and qt and thus proportional to xt. Note that θ is not identified up
to a proportionality factor. (46) shows θ for ft = (f1t, f3t, f5t)′ where the third element of θ is normalized
to -1. Hence e′3Θ

−1 = Gθ′ where G is a scalar. Since the expected excess bond return is linear in xt

(see (24-25)), we can solve for the Cochrane-Piazzesi expression that links risk premia to forward rates
in closed form:

Et[r$n,t+1 − r
f
t+1] +

1
2
σ2

$,(n) = σ$
(n)σ

′
dG(θ′ft). (A.26)

θ′ft corresponds to the common “tent” shaped factor of forwards (given a normalization) while σd(n)σ
′
dG

is the loading of the n-period bond. As noted above θ depends only the persistence parameters φr and
φq. The term σ$

(n)σ
′
πG is function of the other model parameters.

Let Jn = σ$
(n)σ

′
dG and write (A.26) as

Et[r$n,t+1 − r
f
t+1] +

1
2
σ2

$,(n) = Jnθ
′ft (A.27)

and normalize θ setting the third element to -1 as in (46). Jn can be compared to the corresponding OLS
coefficients Ĵn in Cochrane-Piazzesi where the tent coefficients θ̂ are normalized in the same way (i.e. by
setting the third element of the tent to -1). The θ coefficients in the model are quite close to θ̂ in the
data, however the elements in Jn are much larger that the elements in Ĵn (in absolute value) as shown
in Figure 6. Yet, it turns out that the volatility of fitted values of the Cochrane-Piazzesi regressions are
close to the volatility of expected returns in the model, i.e. Jnθ′ft and Ĵnθ̂

′ft have similar volatilities.
This implies that our model generates variations in expected returns that are reasonable, however, θ′ft
is “too smooth” compared to θ̂′ft in the data. The reason is that forward rates in the model are more
highly correlated than in the data causing the linear combination θ′ft to be too smooth compared to
θ̂′ft in the data.
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Table 1: State Variable Means and Autocorrelations

State variable Unconditional Mean Autocorrelation

Expected dividend growth zt 2.28% 0.89

Expected inflation qt 3.68% 0.81

Real riskfree rate rft 1.76% 0.89

Price of risk σdxt 0.85 0.85

Notes: The second column reports means of state variables; means of expected dividend growth,

expected inflation, and the real riskfree rate are in annual terms (i.e. multiplied by 4). Autocor-

relations for all state variables are in annual terms (i.e. raised to the 4th power). The model is

simulated at a quarterly frequency.

Table 2: Conditional Cross-correlations of Shocks

Variable ∆dt ∆πt zt qt rft xt

∆dt 1 0 -0.83 -0.20 -0.40 0

∆πt 1 0 0.50 0 0.40

zt 1 0 0 0.30

qt 1 0 0.20

rft 1 0

xt 1

Notes: Conditional cross-correlations of shocks to dividend growth ∆dt, inflation ∆πt, expected

dividend growth zt, expected inflation qt, the real continuously compounded riskfree rate rft , and

the price-of-risk variable xt. The model is simulated at a quarterly frequency.



Table 3: Conditional Standard Deviations of Shocks

Variable ∆dt ∆πt zt qt rft σdxt

Conditional standard deviation 10.00 1.11 0.32 0.41 0.15 40.00

Notes: Conditional standard deviations of shocks in annual percentage terms (i.e. multiplied by

200.) The model is simulated at a quarterly frequency.

Table 4: Simulated Moments for the Aggregate Market

Data Model

E(P/D) 25.55 18.60

σ(p− d) 0.38 0.32

AC of p− d 0.87 0.84

E[Rm −Rf ] 6.33% 8.45%

σ(Rm −Rf ) 19.41% 19.09%

AC of Rm −Rf 0.03 -0.07

Sharpe ratio of market 0.33 0.44

Notes: Data are annual from 1890 to 2002. The model is simulated at a quarterly frequency and

returns, dividends, and price ratios are aggregated up to an annual frequency. AC refers to the

annual autocorrelation, P refers to the value of the aggregate market, D the aggregate dividend,

Rm the annual return on the aggregate market and Rf the annual return on the riskfree rate.



Table 5: Long-Horizon Regressions: Excess Stock Returns

Horizon in Years

1 2 4 6 8 10∑h
i=1 r

m
t+i − r

f
t+i = β0 + β1(pt − dt) + εt

β1 -0.18 -0.32 -0.54 -0.71 -0.84 -0.92

R2 0.11 0.19 0.29 0.36 0.38 0.39∑h
i=1 r

m
t+i − r

f
t+i = β0 + β1(y

$
5,t − y$

0.25,t) + εt

β1 3.40 6.12 10.40 13.60 15.85 18.00

R2 0.07 0.13 0.21 0.26 0.27 0.27

Notes: Continuously compounded excess returns on the market portfolio are regressed on the

lagged price-dividend ratio on the market (top panel) and on the lagged spread between the yield

on the 5-year nominal bond and the 1-quarter nominal bond (bottom panel) in simulated data.

Returns are calculated over horizons ranging from 1 to 10 years. The price-dividend ratio and

yields are expressed in annual terms.



Table 6: Long-Horizon Regressions: Aggregate Dividend Growth

Horizon in Years

1 2 4 6 8 10∑h
i=1 ∆dt+i = β0 + β1(pt − dt) + εt

β1 0.02 0.04 0.07 0.09 0.09 0.10

R2 0.00 0.01 0.01 0.02 0.01 0.01∑h
i=1 ∆dt+i = β0 + β1(y

$
5,t − y$

0.25,t) + εt

β1 0.47 0.89 1.64 1.64 2.75 2.50

R2 0.00 0.01 0.01 0.01 0.02 0.02∑h
i=1 ∆dt+i = β0 + β1zt + εt

β1 3.74 7.20 12.82 16.77 20.58 24.26

R2 0.07 0.12 0.21 0.26 0.31 0.35

Notes: Aggregate dividend growth on the market portfolio is regressed on the lagged price-dividend

ratio (top panel), on the lagged spread between the yield on the 5-year nominal bond and the

1-quarter nominal bond (middle panel), and on expected dividend growth (bottom panel) in

simulated data. Dividend growth is calculated over horizons ranging from 1 to 10 years and is in

real terms.



Table 7: Simulated Moments for Zero-Coupon Bond Yields

Maturity (yrs) 0.25 1 2 3 4 5

Real bonds

E(ynt) 1.74 1.89 2.07 2.23 2.38 2.52

σ(ynt) 1.22 1.18 1.13 1.10 1.09 1.07

Corr(ynt, yn,t+1) 0.88 0.88 0.88 0.88 0.88 0.87

Nominal bonds

Ey$
nt 5.32 5.66 6.06 6.41 6.73 7.00

σ(y$
nt) 2.85 2.73 2.61 2.53 2.47 2.41

Corr(y$
nt, y

$
n,t+1) 0.82 0.82 0.83 0.83 0.83 0.83

Data

Ey$
nt 5.30 5.48 5.70 5.87 5.99 6.07

σ(y$
nt) 2.89 2.82 2.76 2.69 2.67 2.64

Corr(y$
nt, y

$
n,t+1) 0.83 0.84 0.86 0.87 0.88 0.89

Notes: Each panel displays means, standard deviations, and annual autocorrelations of bond

yields. The top two panels describe yields on zero-coupon bonds in simulated data. Yields on real

bonds (expressed in real annual percentage terms) are denoted ynt, where n denotes the maturity

and t denotes time. Yields on nominal bonds (expressed in nominal annual percentage terms) are

denoted y$
nt. Data on nominal zero-coupon bond yields, expressed in annual percentage terms, are

annual and from 1952–2004.



Table 8: Long-Rate Regressions on Bond Yields

Maturity (yrs) 2 3 4 5

Real bonds

βn -0.76 -0.78 -0.80 -0.82

Nominal bonds

βn -0.44 -0.43 -0.41 -0.39

Data

βn -0.91 -1.49 -1.65 -1.74

Notes: Coefficients βn from the regression

yrn−1,t+1 − yrnt = αn + βn
1

n− 1
(yrnt − yr1t) + error,

for real bonds and

y$
n−1,t+1 − y$

nt = αn + βn
1

n− 1

(
y$
nt − y$

1t

)
+ error

for nominal bonds in simulated and historical data, where yrnt denotes the annual real yield on

the n-year real bond and y$
nt denotes in the annual nominal yield on the n-year nominal bond.

Historical data are annual and from 1952–2004. The model is simulated at a quarterly frequency

and aggregated to an annual frequency. The expectations hypothesis implies βn = 1 for all n.



Table 9: Simulated Moments for Equity Portfolios

G Growth to Value V V-G

Portfolio 1 2 3 4 5 6 7 8 9 10 10-1

Model

ERi −Rf 6.05 6.23 6.51 6.92 7.44 8.05 8.70 9.31 9.85 10.74 4.69

σ(Ri −Rf ) 19.17 19.44 19.67 19.79 19.69 19.27 18.50 17.60 17.00 17.23 7.42

Sharpe Ratio 0.32 0.32 0.33 0.35 0.38 0.42 0.47 0.53 0.58 0.62 0.63

αi -2.32 -2.27 -2.11 -1.79 -1.25 -0.48 0.51 1.57 2.45 3.33 5.65

βi 0.99 1.01 1.02 1.03 1.03 1.01 0.97 0.92 0.88 0.88 -0.11

B/M sorted portfolios

ERi −Rf 5.67 6.55 6.98 6.51 8.00 8.33 8.27 10.08 9.98 10.55 4.88

σ(Ri −Rf ) 17.77 15.89 15.82 15.42 14.65 14.73 14.74 15.11 15.71 18.46 15.15

Sharpe Ratio 0.32 0.41 0.44 0.42 0.55 0.57 0.56 0.67 0.64 0.57 0.32

αi -1.66 -0.17 0.33 0.22 2.12 2.37 2.59 4.30 4.05 3.97 5.63

βi 1.11 1.02 1.01 0.95 0.89 0.90 0.86 0.87 0.90 1.00 -0.11

Notes: For the top panel, firms in simulated data are sorted into deciles on their price-dividend

ratios in each simulation year. Returns are calculated over the subsequent year. Intercepts and

slope coefficients are from OLS time-series regressions of excess portfolio returns on the excess

market return. Data are on monthly returns on book-to-market portfolios from 1952–2002. Data

moments are annualized (multiplied by 12 in the case of means and intercepts and
√

12 in the case

of standard deviations). Means, intercepts, and standard deviations are reported in percentage

terms.



Figure 1: Model Solution
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Notes: Solutions to Brn, the sensitivity of prices to the real riskfree rate (top left); to Bqn, the

sensitivity of prices to expected inflation (top right); to Bzn, the sensitivity of prices to expected

dividend growth (bottom left); and to Bxn, the sensitivity of prices to the price of risk variable,

where n is the maturity in years. Dotted lines denote the solutions for zero-coupon equity prices

expressed in real terms, dashed-dotted lines denote the solutions for real bond prices expressed in

real terms, dashed lines denote the solutions for nominal bond prices expressed in nominal terms.

The solutions are scaled by the persistence φ of the variables. The solution for Br is identical for

all three asset classes. The solution for Bq is identical for equities and real bonds and equal to

zero. The solution for Bz is identical for real and nominal bonds and equal to zero.



Figure 2: Ratios of Prices to Aggregate Dividends for Zero-Coupon Equity
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Notes: Panel A shows the log of ratios of zero-coupon equity prices to the aggregate dividend

as a function of maturity when the state variables are equal to their long-run mean (solid line),

and when expected dividend growth zt is equal to the long-run mean plus (dashed-dotted line)

or minus (dotted line) two unconditional quarterly standard deviations. All other state variables

are kept at their long-run mean. Panel B shows analogous results when the real riskfree rate

rft is varied by plus or minus two unconditional quarterly standard deviations. Panel C shows

analogous results when the price-of-risk variable xt is varied by plus or minus two unconditional

quarterly standard deviations.



Figure 3: Yields on Zero-Coupon Real Bonds

0 5 10 15 20 25 30 35 40

0

5

10

x 10−3

y nr

Panel A:Varying q

 

 

q=−2sd
q=+2sd

0 5 10 15 20 25 30 35 40

0

5

10

x 10−3

y nr

Panel B:Varying rf

 

 

rf =−2sd
rf =+2sd

0 5 10 15 20 25 30 35 40

0

5

10

x 10−3

y nr

maturity (years)

Panel C:Varying x

 

 

x =−2sd
x =+2sd

Notes: Panel A shows quarterly yields on real bonds as a function of maturity when the state

variables are equal to their long-run mean (solid line), and when expected inflation qt is equal to

the long-run mean plus (dashed-dotted line) or minus (dotted line) two unconditional quarterly

standard deviations. All other state variables are kept at their long-run mean. Panel B shows

analogous results when the real riskfree rate rft is varied by plus or minus two unconditional

quarterly standard deviations. Panel C shows analogous results when the price-of-risk variable xt

is varied by plus or minus two unconditional quarterly standard deviations.



Figure 4: Yields on Zero-Coupon Nominal Bonds

0 5 10 15 20 25 30 35 40
0

0.01

0.02

y n$

Panel A:Varying q

 

 

q=−2sd
q=+2sd

0 5 10 15 20 25 30 35 40
0

0.01

0.02

y n$

Panel B:Varying rf

 

 

rf =−2sd
rf =+2sd

0 5 10 15 20 25 30 35 40
0

0.01

0.02

y n$

maturity (years)

Panel C:Varying x

 

 

x =−2sd
x =+2sd

Notes: Panel A shows quarterly nominal yields on nominal bonds as a function of maturity when

the state variables are equal to their long-run mean (solid line), and when expected inflation qt

is equal to the long-run mean plus (dashed-dotted line) or minus (dotted line) two unconditional

quarterly standard deviations. All other state variables are kept at their long-run mean. Panel B

shows analogous results when the real riskfree rate rft is varied by plus or minus two unconditional

quarterly standard deviations. Panel C shows analogous results when the price-of-risk variable xt

is varied by plus or minus two unconditional quarterly standard deviations.



Figure 5: Decomposition of Coefficients from Long-Rate Regressions
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Notes: Panel A shows the covariance between returns on n-period real and nominal bonds and

fundamentals, Panel B shows the coefficient from a regression of the price-of-risk variable xt on

the yield spread, and Panel C shows the coefficients βn from the regression

yn−1,t+1 − ynt = α + β
1

n− 1
(ynt − y1t) + error,

These quantities are related by the equation

βn = 1− (σ(n) · σd)
Cov(xt, ynt − y1t)

Var(yn−1,t+1 − y1t)
.

Covariances, variances, and regressions are measured using data simulated at a quarterly frequency,

n is in quarters, and y1t refers to the 1-quarter yield.



Figure 6: Regressions of Excess Bond Returns on Forward Rates
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Notes: Annual returns on 2, 3, 4 and 5-year nominal bonds (in excess of the return on the 1-year

bond) are regressed on the 1, 3 and 5-year forward rates. The figure plots the resulting regression

coefficients.




