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ABSTRACT

I present a generalization of the standard (full-information) model of state-dependent pricing in which
decisions about when to review a firm's existing price must be made on the basis of imprecise awareness
of current market conditions. The imperfect information is endogenized using a variant of the theory
of  “rational inattention” proposed by Sims (1998, 2003, 2006). This results in a one-parameter family
of models, indexed by the cost of information, which nests both the standard state-dependent pricing
model and the Calvo model of price adjustment as limiting cases (corresponding to a zero information
cost and an unboundedly large information cost respectively). For intermediate levels of the information
cost, the model is equivalent to a “generalized Ss model” with a continuous “adjustment hazard” of
the kind proposed by Caballero and Engel (1993a, 1993b), but provides an economic motivation for
the hazard function and very specific predictions about its form. For high enough levels of the information
cost, the Calvo model of price-setting is found to be a reasonable approximation to the exact equilibrium
dynamics, except in the case of (infrequent) large shocks. When the model is calibrated to match the
frequency and size distribution of price changes observed in microeconomic data sets, prices are found
to be much less flexible than in a full-information state-dependent pricing model, and only about 20
percent more flexible than under a Calvo model with the same average frequency of price adjustment.
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Models of state-dependent pricing [SDP], in which not only the size of price

changes but also their timing is modeled as a profit-maximizing decision on the part

of firms, have been the subject of an extensive literature.1 For the most part, the

literature dealing with empirical models of inflation dynamics and the evaluation of

alternative monetary policies have been based on models of a simpler sort, in which

the size of price changes is modeled as an outcome of optimization, but the timing

of price changes is taken as given, and hence neither explained nor assumed to be

affected by policy. The popularity of models with exogenous timing [ET] for such pur-

poses stems from their greater tractability, allowing greater realism and complexity

on other dimensions. But there has always been general agreement that an analysis in

which the timing of price changes is also endogenized would be superior in principle.

This raises an obvious question: how much is endogeneity of the timing of price

changes likely to change the conclusions that one obtains about aggregate dynamics?

Results available in special cases have suggested that it may matter a great deal. In a

dramatic early result, Caplin and Spulber (1987) constructed a tractable example of

aggregate dynamics under SDP in which nominal disturbances have no effect what-

soever on aggregate output, despite the fact that individual prices remain constant

for substantial intervals of time. Danziger (1999) obtains a similarly stark neutrality

result, again for a special case allowing a closed-form solution, but this time with

idiosyncratic as well as aggregate shocks. The Caplin-Spulber and Danziger exam-

ples are obviously extremely special; but Golosov and Lucas (2007) find, in numerical

analysis of an SDP model calibrated to account for various facts about the probabil-

ity distribution of individual price changes in U.S. data, that the predicted aggregate

real effects of nominal disturbances are quite small, relative to what one might ex-

pect based on the average interval of time between price changes. And more recently,

Caballero and Engel (2007) consider the real effects of variation in aggregate nominal

expenditure in a fairly general class of “generalized Ss models,” and show that quite

generally, variation in the “extensive margin” of price adjustment (i.e., variation in

the number of prices that adjust, as opposed to variation in the amount by which

each of these prices changes) implies a smaller real effect of nominal disturbances

than would be predicted in an ET model (and hence variation only on the “intensive

margin”); they argue that the degree of immediate adjustment of the overall level of

1See, for example, Burstein and Hellwig (2007), Dotsey and King (2005), Gertler and Leahy
(2007), Golosov and Lucas (2007), Midrigan (2008), and Nakamura and Steinsson (2008a, 2008b)
for some recent additions.
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prices can easily be several times as large as would be predicted by an ET model.2

These results suggest that it is of some urgency to incorporate variation in the

extensive margin of price adjustment into models of the real effects of monetary policy,

if one hopes to obtain results of any quantitative realism. Yet there is one respect

in which one may doubt that the results of standard SDP models are themselves

realistic. Such models commonly assume that at each point in time, each supplier

has completely precise information about current demand and cost conditions relating

to its product, and constantly re-calculates the currently optimal price and the precise

gains that would be obtained by changing its price, in order to compare these to the

“menu cost” that must be paid to actually change the price. Most of the time no price

change is justified; but on the first occasion on which the benefit of changing price

becomes as large as the menu cost, a price change will occur. Such an account assumes

that it is only costs associated with actually changing one’s price that are economized

on by firms that change prices only infrequently. Instead, studies such as Zbaracki

et al. (2004) indicate that there are substantial costs associated with information

gathering and decisionmaking that are also reduced by a policy of reviewing prices

only infrequently.3 If this is true, the canonical SDP model (or “Ss model”), according

to which a price adjustment occurs in any period if and only if a certain adjustment

threshold has been reached, should not yield realistic conclusions. In fact, a model

that takes account of the costs of gathering and processing information is likely to

behave in at least some respects like ET models.4 The question is to what extent

a more realistic model of this kind would yield conclusions about aggregate price

adjustment and the real effects of nominal disturbances that are similar to those of

ET models, similar to those of canonical SDP models, or different from both.

The present paper addresses this question by considering a model in which the

2An earlier draft of their paper (Caballero and Engel, 2006) proposed as a reasonable “bench-
mark” that the degree of flexibility of the aggregate price level should be expected to be about three
times as great as would be predicted by an ET model calibrated to match the observed average
frequency of price changes.

3Zbaracki et al. report that at the firm that they studied, the total managerial costs of reviewing
the firm’s pricing policy are 7 times as large as the physical cost of changing the posted prices.

4Phelps (1990, pp. 61-63) suggests that ET models may be more realistic than SDP models on this
ground. Caballero (1989) presents an early analysis of a way in which costs of information acquisition
can justify “time-dependent” behavior, which is further developed by Bonomo and Carvalho (2004)
and Reis (2006).
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timing of price reviews is determined by optimization subject to an information con-

straint, in a dynamic extension of the model proposed in Woodford (2008). The

model generalizes the canonical SDP model (which appears as a limiting case of the

more general model, the case of zero information cost) to allow for costs of obtaining

and/or processing more precise information about the current state of the economy,

between the intermittent occasions on which full reviews of pricing policy are un-

dertaken. For the sake of simplicity, and to increase the continuity of the present

contribution with prior literature, it is assumed that when a firm decides to pay the

discrete cost required for a full review of its pricing policy, it obtains full information

about the economy’s state at that moment; hence when price changes occur, they

are based on full information, as in canonical SDP models (as well as canonical ET

models).5 However, between the occasions on which such reviews occur, the firm’s

information about current economic conditions is assumed to be much fuzzier; and in

particular, the decision whether to conduct a full review must be made on the basis

of much less precise information than will be available after the review is conducted.

As a consequence, prices do not necessarily adjust at precisely the moment at which

they first become far enough out of line for the profit increase from a review of pricing

policy to justify the cost of such a review.

There are obviously many ways in which one might assume that information

is incomplete, each of which would yield somewhat different conclusions. Here (as

in Woodford, 2008) I adopt a parsimonious specification based on the concept of

“rational inattention” proposed by Sims (1998, 2003, 2006). It is assumed that all

information about the state of the world is equally available to the decisionmaker —

one does not assume that some facts are more easily or more precisely observable than

others — but that there is a limit on the decisionmaker’s ability to process information

of any kind, so that the decision is made on the basis of rather little information.

The information that the decisionmaker obtains and uses in the decision is, however,

assumed to be the information that is most valuable to her, given the decision problem

that she faces, and subject to a constraint on the overall rate of information flow to

5The assumption that full information about current conditions can be obtained by paying a
fixed cost also follows the previous contributions of Caballero (1989), Bonomo and Carvalho (2004),
and Reis (2006); I depart from these authors in assuming that partial information about current
conditions is also available between the occasions when the fixed cost is paid. The analysis here also
differs from theirs in assuming that access to memory is costly, as discussed further in section 1.2.
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the decisionmaker. This requires a quantitative measure of the information content of

any given indicator that the decisionmaker may observe; the one that I use (following

Sims) is based on the information-theoretic measure (entropy measure) proposed by

Claude Shannon (1948).6 The degree of information constraint in the model is then

indexed by a single parameter, the cost per unit of information (or alternatively, the

shadow price associated with the constraint on the rate of information flow). I can

consider the optimal scheduling of price reviews under tighter and looser information

constraints, obtaining both a canonical SDP model and a canonical ET model as

limiting cases; but the more general model treated here introduces only a single

additional free parameter (the information cost) relative to a canonical SDP model,

allowing relatively sharp predictions.

The generalization of the canonical SDP model obtained here has many similar-

ities with the “generalized Ss model” of pricing proposed by Caballero and Engel

(1993a, 2007) and the SDP model with random menu costs of Dotsey, King and

Wolman (1999). Caballero and Engel generalize a canonical Ss model of pricing by

assuming that the probability of price change is a continuous function of the signed

gap between the current log price and the current optimal log price (i.e., the one

that would maximize profits in the absence of any costs of price adjustment), and

estimate the “adjustment hazard function” that best fits US inflation dynamics with

few a priori assumptions about what the function may be like. The model of price-

adjustment dynamics presented in sections 1 and 2 below is of exactly the form that

they assume. However, the “hazard function” is given an economic interpretation

here: the randomness of the decision whether to review one’s price in a given period

is a property of the optimal information-constrained policy. Moreover, the model

here makes quite specific predictions about the form of the optimal hazard function:

given the specification of preferences, technology and the cost of a review of pricing

policy, there is only a one-parameter family of possible optimal hazard functions,

corresponding to alternative values of the information cost. For example, Caballero

and Engel assume that the hazard function may or may not be symmetric and might

equally well be asymmetric in either direction; this is treated as a matter to be de-

6See, e.g., Cover and Thomas (2006) for further discussion. The appendix of Sims (1998) argues
for the appropriateness of the Shannon entropy measure as a way of modeling limited attention. As
is discussed further in section 1.2, the informational constraint assumed here differs from the one
proposed by Sims in the way that memory is treated.
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termined empirically. In the model developed here, the hazard function is predicted

to be asymmetric in a particular way, for any assumed value of the information cost.

Caballero and Engel (1999) propose a structural interpretation of generalized Ss

adjustment dynamics (in the context of a model of discrete adjustment of firms’ capi-

tal stocks), in which the cost of adjustment by any given firm is drawn independently

(both across firms and over time) from a continuous distribution of possible costs;

Dotsey, King and Wolman (1999) [DKW] consider the implications for aggregate

price adjustment and the real effects of nominal disturbances of embedding random

menu costs of this kind in a DSGE model with monopolistically competitive pricing.

The predicted dynamics of price adjustment in the model developed here are essen-

tially the same as in a particular case of the DKW model; there exists a particular

distribution for the menu cost under which the DKW model would imply the same

hazard function for price changes as is derived here from optimization subject to an

information constraint.7

However, the present model supplies an alternative interpretation of the random-

ness of adjustment at the microeconomic level that some may find more appealing

than the idea of random menu costs. Moreover, the present model makes much

sharper predictions than the DKW model; there is only a very specific one-parameter

family of menu-cost distributions under which the DKW model makes predictions

consistent with the information-constrained model. Assumptions that appear com-

pletely arbitrary under the random-menu-cost interpretation (why is it natural to

assume that the menu cost should be i.i.d.?) are here derived as a consequence of

optimization. At the same time, assumptions that might appear natural under the

random-menu-cost interpretation (a positive lower bound on menu costs, or a dis-

tribution with no atoms) can here be theoretically excluded: the optimal hazard

function in this model necessarily corresponds to a distribution of menu costs with

an atom at zero. This has important implications: contrary to the typical predic-

tion of parametric versions of the Caballero-Engel or DKW model, the present model

implies that there is always (except in the limit of zero information cost) a positive

7Like the DKW model, the present model implies in general that the adjustment hazard should
be a monotonic function of the amount by which the firm can increase the value of its continuation
problem by changing its price. Only in special cases will this allow one to express the hazard as
a function of the signed gap between the current log price and the optimal log price, as in the
“generalized Ss” framework of Caballero and Engel (1993a, 1993b). Section 2, however, offers an
example of explicit microfoundations for such a case.
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adjustment hazard even when a firm’s current price is exactly optimal. This makes

the predicted dynamics of price adjustment under the present model more similar

to those of the Calvo (1983) model than is true of these other well-known gener-

alizations of the canonical SDP model. It also helps to explain the observation in

microeconomic data sets of a large number of very small price changes, as stressed

by Midrigan (2008),8 and increases the predicted real effects of nominal disturbances

(for a given overall frequency of price change), for reasons explained by Caballero and

Engel (2007).

In fact, the results obtained here suggest that the predictions of ET models may

be more reliable, for many purposes, than results from the study of SDP models

have often suggested. The Calvo (1983) model of staggered price-setting is derived

as a limiting case of the present model (the limit of an unboundedly large informa-

tion cost); hence this model, often regarded as analytically convenient but lacking in

any appealing behavioral foundations, can be given a fully explicit decision-theoretic

justification — the quantitative realism of which, relative to other possible specifica-

tions, then becomes an empirical matter. Moreover, even in the more realistic case

of a positive but finite information cost, the model’s prediction about the effects of

typical disturbances can be quite similar to those of the Calvo model, as is illustrated

numerically below. The present model predicts that the Calvo model will be quite

inaccurate in the case of large enough shocks — large shocks should trigger immedi-

ate adjustment by almost all firms, because even firms that allocate little attention

to monitoring current market conditions between full-scale reviews of pricing policy

should notice when something dramatic occurs — and in this respect it is surely more

realistic than the simple Calvo model. Yet the shocks for which this correction is im-

portant may be so large as to occur only infrequently, in which case the predictions

of the Calvo model can be quite accurate much of the time.

Section 1 characterizes the optimal timing of reviews of pricing policy in a styl-

ized model with a structure similar to that assumed by Caballero and Engel (1993a,

1993b); this analysis extends the model of information-constrained discrete choice

proposed in Woodford (2008) to an infinite-horizon dynamic setting. Section 2 then

8Midrigan (2008) proposes an alternative explanation to the one given here for a positive haz-
ard function when the current price is nearly optimal (see Figure 4 of his paper). The present
model achieves a similar effect, without the complication of assuming interdependence between
price changes for different goods.
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illustrates the application of this general framework to a specific model of monopo-

listically competitive price-setting with idiosyncratic shocks. Section 3 compares the

numerical predictions of a calibrated version of this model to microeconomic evidence

regarding individual price changes. Section 4 then discusses the implications of the

model for the neutrality of money, and section 5 concludes.

1 Rational Inattention in a Dynamic Model of the

Timing of Discrete Adjustments

Here I present a dynamic extension of the model of information-constrained discrete

adjustment presented (in a one-period context) in Woodford (2008). As in the work

of Caballero and Engel (1993a, 2007), I shall simplify the state space by considering a

“tracking” problem, in which a firm’s profits each period depend only on its “normal-

ized price,”9 i.e., the difference between its log price pt and the current value of a state

variable mt outside the firm’s control, about which it is only imperfectly informed.

(For example, profits may depend on the firm’s price relative to its current unit cost

of production. An explicit model of monopolistically competitive price adjustment

with the structure assumed in this section is presented in section 2.)

In this section, I consider the scheduling of price reviews by a single firm. (An

equilibrium with many firms simultaneously making similar decisions is treated in

section 2.) The model is one with a countably infinite sequence of discrete dates

(indexed by integers t) at which the firm’s price may be adjusted (and at which sales

occur).10 I shall suppose that the firm seeks to maximize the expected value of a

9The definition given here of a stationary optimal policy can be extended in a relatively straight-
forward way to the case in which profits also depend on other variables, including aggregate state
variables. But the notation is simplified in this presentation by abstracting from such additional
state variables, and it allows us to obtain a model in which the adjustment hazard is a function
solely of a “price gap,” as in the work of Caballero and Engel. It also considerably simplifies the
numerical analysis in section 3, as is discussed further in section 4.

10The model could be extended in a reasonably straightforward way to the scheduling of reviews
of pricing policy in continuous time, as in Reis (2006). But discrete time is mathematically simpler
and allows more direct comparison with much of the prior literature on state-dependent pricing.
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discounted objective function of the form

∞∑
t=0

βtπ(qt), (1.1)

where qt ≡ pt −mt is the firm’s (log) normalized price in period t, and single-period

profits are assumed to be given by a function π(q) that reaches its unique maximum

at an interior value that can be normalized as q = 0.

Uncertainty about the firm’s normalized price results from the random evolution

of the state mt representing market conditions. Again in order to reduce the size of

the state space required to characterize equilibrium dynamics (and again following

Caballero and Engel), I shall assume for the sake of simplicity that this evolves

according to an exogenously given random walk,

mt = mt−1 − zt, (1.2)

where the innovation zt is drawn independently each period from a probability dis-

tribution with density function g(z). (The sign of the innovation is chosen so that a

positive innovation zt corresponds to an increase in qt.)

1.1 Information Constraints

I shall suppose that the (log) price pt charged by the firm reflects current and past

information about the evolution of mt in three distinct ways. First, I suppose that the

firm reviews its pricing policy only at certain times, rather than constantly. Holding

such a review involves a substantial fixed cost, which is the reason that reviews occur

only as discrete events; but when a review is held, payment of the fixed cost allows

the firm to collect a great deal of information about market conditions at that time,

on the basis of which the new pricing policy is chosen. Second, between the occasions

on which a review is conducted, the firm charges a price for its product in accordance

with its current pricing policy. The information about current conditions that can

used in the implementation of such a policy — that is, the extent to which pt can

depend on the current state of the world, as opposed to instructions written down at

the time of the last review — is assumed to be quite limited. (This is why it matters

that policy is not more frequently updated.) And third, the decision about whether

to conduct a review of pricing policy is made on the basis of incomplete information

8



about current conditions. How well the firm’s price pt will track variations in mt

depends in general on what one assumes about the amount of information used in

the decision about the scheduling of price reviews, the amount of information obtained

when conducting such reviews, and the amount of additional information that can be

used in implementing the pricing policy chosen as a result of the review.

The focus of the present paper is the price review decision; hence the information

used in that decision will be considered in detail, while I make extremely simple

assumptions about the available information for the other two purposes. First, I

shall assume that at the time of a price review, payment of the fixed cost gives the

firm access to full information about the current state of the economy. Hence the new

plan that is chosen is the optimal one under that state of the world, as is commonly

assumed in models with exogenous timing of price reviews, whether these involve

a fixed price between reviews (as in the models of Taylor or Calvo) or some more

complex plan (as in the models of Mankiw and Reis, 2002, or Devereux and Yetman,

2003); as well as in models with state-dependent timing of reviews, again whether

these involve a fixed price (as in standard menu-cost models) or a more complex plan

(as in the model of Burstein, 2006); and in generalizations of state-dependent pricing

of the kind proposed by Caballero and Engel (1993a, 2007) or Dotsey, King and

Wolman (1999). This assumption not only simplifies the analysis of the consequences

of a particular timing for the price reviews, but also allows me to obtain standard

models of price adjustment (both a standard “Ss” model and the Calvo model) as

limiting cases of the model considered here.

Second, I assume that the pricing policies that are implemented between reviews

use no information about the current state of the economy; hence the pricing policy

reduces to a single price that is charged until the policy is reviewed. (Technically,

the zero-information assumption would allow the firm to choose to randomize each

period over a set of prices, as long as the randomization is independent of the current

state; but I assume a single-period profit function π(q) such that it is never optimal

to randomize.11) Hence the dynamics of price adjustment in this model are the same

as in a model in which one must pay a “menu cost” to change one’s price, and the

menu cost is also the fixed cost of obtaining new (complete) information about the

state of the economy on the basis of which to set the new price. However, I prefer to

interpret the model as one in which there are no true menu costs, but only several

11Specifically, π(q) is a strictly concave function of a monotonically increasing function of q.
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types of information costs. For one thing, if one supposes that the price is fixed

between reviews of pricing policy owing to a menu cost, there is no very plausible

reason to suppose that the same fixed cost should both allow one to change one’s

price and to obtain information that one would otherwise not have. Moreover, it is

fairly common in some retail sectors to observe pricing policies which do not involve

a single price, but (for example) frequent alternations between two or more prices,

even though the set of prices among which the seller alternates remains unchanged

for many months; such behavior suggests a model in which (i) the pricing policy is

reconsidered only at fairly long intervals, and in which (ii) the pricing policy involves

only a very coarse discrimination among different weeks, so that only a few different

prices are ever charged,12 but the relative insensitivity of the price to changing market

conditions reflects information costs (inattentiveness) rather than menu costs. While

more complex pricing policies of that sort are not considered in this paper, a model

that allowed for them would represent an interesting extension of the simpler theory

developed here.

It is also important to note that I shall treat awareness of the passage of time

as among the types of information about the current state of the world that may be

costly for the firm. (Given that the information constraints are interpreted as limits

on the attention of the decisionmaker, and not as claims about what it is difficult

to observe in the world, the fact that it is easy to construct accurate time-keeping

devices is irrelevant to this issue.) This means that when I consider the incomplete

information on the basis of which the review scheduling decision is made, I assume

that a firm may choose to know how long a time has elapsed since its last review, but

that this is information is costly in the same way as other sorts of information about

its current circumstances. My assumption thus differs from that of Bonomo and

Carvalho (2004) or Reis (2006), who assume that information about random events

since the last review13 cannot be used in deciding whether to schedule a review,

12Matejka (2008) shows how an information-flow constraint can result in a policy that alternates
among a small number of prices.

13What I am calling the dates of “reviews” correspond to the dates at which information is updated
in the model of Reis (2006). Reis’s model, however, is equivalent to one in which pricing plans are
chosen at discrete dates (the dates at which information is updated) and followed until the next
information update; under one of these plans, the price charged each period may depend on the
time that has elapsed since the last information update, but not on any random events that have
occurred since information was last updated. The decision about when to update information again
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but that this decision may depend on the length of time that has elapsed since the

last review. Similarly, when I assume that a pricing policy must use no information

about the current state, this means not only that the price charged cannot depend on

unforecastable changes in conditions since the adoption of the policy, but also that

the price cannot depend on the time that has elapsed. In this my assumption differs

from both Reis (2006) and Burstein (2006), who allow firms to follow pricing policies

under which the price is a deterministic function of time between reviews, though it

may not depend on any other information about the current state.14

1.2 Rational Inattention

I turn now to the precise specification of the information used in the scheduling of

reviews of pricing policy. I adopt Sims’ (1998, 2003, 2006) hypothesis of “rational

inattention”: firms have precisely that information that is most valuable to them,

given the decision problem that they face, subject to a constraint on the overall

quantity of information that they access. Rather than specifying a quantity con-

straint, I assume that there is a cost θ > 0 per unit of information obtained each

period by the decisionmaker, and that the total quantity of information obtained is

the amount that is optimal given this cost.

I assume that the firm can arrange to receive a (possibly multi-dimensional) signal

each period, which may be related in a fairly arbitrary way to the state of the economy

at that time. Let ωt ∈ Ωt denote a complete description of the economy’s state

in period t (including the complete history of all disturbances to that date). The

firm arranges to receive a signal st drawn from some set S, where the conditional

probability π(st|ωt) of receiving any given signal is chosen in advance by the firm;

the firm’s decision about whether to review its pricing policy in period t is then a

(possibly random) function of the signal st that is received. The cost to the firm per

period of receiving this signal is θI, where I ≥ 0 is the Shannon (1948) measure of

is also allowed to depend on the time that has elapsed since the last update, but not on random
events that have occurred since then.

14Note that Burstein’s model, like the one proposed here (but unlike the model of Reis), is one in
which it is assumed that pricing plans must use less information than is used in deciding whether
it is time to revise one’s plan. (In Burstein’s model, the revision decision is state-dependent, while
the plan that is adopted is not.) But I assume that information is more costly than in Burstein’s
model, in the case of each of these decisions.
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the average information content of the signal, namely the average amount by which

the entropy of the posterior distribution over Ωt (after observing the signal st) is less

than the entropy of the firm’s prior. Here the entropy measure of the uncertainty

indicated by a given probability density f over the state space Ωt is defined as

−E[log f(ωt)],

where the expectation is under the distribution f . The parameter θ indicates the

degree to which the decisionmaker’s attention is scarce, with a higher value of θ

requiring the decisionmaker to economize on attention to a greater extent (and hence

to use less information).

A first elementary result (Woodford, 2008) is that under an optimal information

structure, the signal st will take only two possible values, and can be interpreted as a

“yes/no” signal as to whether the current period is a good time to review one’s pricing

policy. Since the only use of the signal is to decide whether to conduct the review, a

signal that differentiates more finely among states will convey redundant information;

and since the more informative signal would have a greater cost (will place a greater

burden on the decisionmaker’s attention) without improving the quality of the deci-

sion, it would be inefficient. Similarly, an optimal price-review policy will necessarily

be a deterministic function of the signal (i.e., a price review is always conducted if

and only if the signal is “yes”); for in the case that arbitrary randomization of the

decision is desired, it is more efficient to arrange for this by increasing the random-

ness of the signal (lowering its information content and hence its cost), rather than

by randomizing after receiving an unnecessarily informative assessment of market

conditions. This means that an informationally efficient price-review strategy (where

the design of the signalling mechanism is treated as part of this strategy) can be fully

described by specifying a hazard function Λt(ωt) that indicates the probability of a

price review in any state.

Another elementary result (again see Woodford, 2008) is that an informationally

efficient strategy will involve signals that convey information only about aspects of

the state that are relevant to the firm’s decision problem. In the present problem,

this means that the probability of receiving a given signal s ∈ S will depend only on

the current value of qt, and not on prior history or any other aspects of the current

state. Hence the strategy that is followed in any period can be described by a hazard

function Λt(qt), a measurable function of a single real variable taking values in [0, 1],

12



as in the papers of Caballero and Engel (1993a, 2007).

The information cost of a strategy represented by a hazard function Λt(qt) depends

on the firm’s prior over possible values of qt before the signal st is received. In a

dynamic model, this depends on the price-review strategy followed by the firm in

earlier periods. (If price reviews are very frequent, the firm should know that it is

unlikely that its normalized price has drifted very far from the value to which it

would have been reset if a price review has occurred in the recent past, while if they

are infrequent, the firm should be much more uncertain about its current normalized

price.) Hence it is necessary to model the consequences of a price-review strategy for

the evolution of the prior.

Under the assumptions summarized above, the normalized price of firm i evolves

according to

qt+1(i) = qt(i) + zt+1 (1.3)

if there is no review of the firm’s policy in period t, whereas

qt+1(i) = q∗t + zt+1

if firm i reviews its policy in period t. Here qt(i) is the normalized price of firm i in

period t, after realization of the period t change in mt, but before the decision about

whether to review the firm’s policy in period t, and q∗t is the normalized price (after

the review) that is chosen by a firm that reviews its policy in period t. The value

of q∗t is the same for all firms i because (as is shown below) the optimal choice for a

firm that reviews its policy is independent of the normalized price that it has at the

time of the review; hence if firms differ only in the periods in which they happen to

have reviewed their prices in the past (despite having followed identical policies), q∗t
will be the same for all i.

The dynamics of a firm’s prior also depend on what we assume about the firm’s

memory. In the applications of rational inattention to dynamic decision problems

by Sims (1998, 2003, 2006), memory of the entire history of past signals is assumed

to be perfectly precise (and costless); the information-flow constraint applies only to

the degree of informativeness of new observations of external reality. Instead, I shall

assume that access to one’s own memory is as costly as access to any other source of

information, during the intervals between price reviews, and this includes memory of

the time at which one last reviewed one’s pricing policy. For example, one may allow

firms to condition their price-review decision on the number of periods n that have

13



elapsed since the last price review. In this case, the firm has a prior f(q, n) over the

joint distribution of its current normalized price q and the current value of n for that

firm. The firm can learn the value of n and condition its decision on that value, but

this would have an information cost of

−θ
∑

n

fn log fn,

where fn ≡
∫

f(q, n)dq is the marginal prior distribution over values of n. Assuming

that the unit cost θ of this kind of information is identical to the cost of information

about the value of q, the firm will optimally choose not to learn the current value

of n; since learning the value of n would be of use to the firm only because this

information would allow it to estimate the current value of q with greater precision,

it would always be more efficient to use any information capacity that it devotes to

this problem to observe the current value of q with greater precision, rather than

bothering to observe the value of n.

In assuming that the cost of information about the firm’s memory of its own past

signals is exactly the same as the cost of information about conditions external to

the firm, I am making an assumption that is fully in the spirit of Sims’ theory of

rational inattention: rather than assuming that some kinds of information are easily

observable while others are hidden, the cost of any kind of information is assumed

to be the same as any other, because the relevant bottleneck is limited attention on

the part of the decisionmaker, rather than anything about the structure of the world

that obscures the values of certain state variables. This is admittedly a special case,

but it is the assumption that makes Sims’ theory such a parsimonious one. It is also

a convenient case to analyze first, owing to its simplicity.15

In this case, any firm i begins any period t with a prior ft(q) over the possible

values of qt(i). This prior indicates the ex ante distribution of possible values of the

15Interestingly, the literature on informational complexity constraints in game theory has more
often made the opposite choice to that of Sims: it is considered more natural to limit the information
content of a decisionmaker’s memory than the information content of her perception of her current
environment. For example, in Rubinstein (1986) and many subsequent papers, it is assumed that a
strategy (in a repeated game) is preferred if it can be implemented by a finite-state automaton with a
smaller number of states; this means, if it requires the decisionmaker to discriminate among a smaller
number of different possible histories of previous play. But while memory is in this sense assumed
to be costly, there is assumed to be no similar advantage of a strategy that reduces the number of
different possible observations of current play among which the decisionmaker must discriminate.
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firm’s normalized price in period t, given the policy followed in previous periods, but

not conditioning on any of the signals received in previous periods, or on the timing

of previous price reviews. By “the policy” followed in previous periods, I mean the

design of the signalling mechanism, determining the probabilistic relation between

the state and the signal received each period, and the firm’s intended action in the

event that any given signal is received, but not the history of the signals that were

actually received or the actions that were taken. Given the discussion above, the

policy followed in period t can be summarized by a hazard function Λt(q), indicating

the probability of a price review in period t as a function of the normalized price

in that period, and a reset value q∗t , indicating the normalized price that the firm

chooses if it reviews its pricing policy in period t. As a result of this policy, qt+1(i),

the normalized price in period t + 1 (after realization of the period t + 1 innovation

in market conditions) will be equal to q∗t + zt+1 with probability Λ(qt(i)) and equal to

qt(i)+ zt+1 with probability 1−Λ(qt(i)), conditional on the value of qt(i). Integrating

over the distribution of possible values of qt(i), one obtains a prior distribution for

period t + 1 equal to

ft+1(q) = g(q∗t − q)

∫
Λt(q̃)ft(q̃)dq̃ +

∫
g(q̃ − q)(1− Λt(q̃))ft(q̃)dq̃. (1.4)

This is the prior at the beginning of period t + 1, regardless of the signal received in

period t (i.e., regardless of whether a price review occurs in period t), because the

firm has no costless memory.

The right-hand side of (1.4) defines a linear functional TΠt [ft] that maps any

probability density ft into another probability density ft+1; the subscript indicates

that the mapping depends on the policy Πt ≡ (Λt, q
∗
t ). Given an initial prior f0 and

policies {Πt} for each of the periods t ≥ 0, the law of motion (1.4) implies a sequence

of priors {ft} for all periods t ≥ 1. Note that if for any policy Π, the prior f is such

that

TΠ[f ] = f, (1.5)

it follows that if a firm starts with the prior f0 = f and implements policy Π each

period, the dynamics (1.4) imply that the firm will have prior ft = f in every period.

Thus f is an invariant distribution for the Markov process describing the dynamics of

q under this policy. In such a situation, we can say that the firm’s prior each period

corresponds to the long-run frequency with which different values of its normalized
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price occur, under its constant policy Π. When the firm’s prior is unchanging over

time in this way, the constant prior makes it optimal for the firm to choose the same

policy each period, which in turn makes it possible for the prior to remain constant.

In the numerical analysis below, I shall be interested in computing statistics (for

example, the frequency of price changes) for a stationary optimal plan of this kind.

The assumption that memory is (at least) as costly as information about current

conditions external to the firm implies that under an optimal policy, the timing of

price reviews is (stochastically) state-dependent, but not time-dependent, just as

in full-information menu-cost models. When the cost θ of interim information is

sufficiently large, the dependence of the optimal hazard on the current state is also

attenuated, so that in the limit as θ becomes unboundedly large, the model approaches

one with a constant hazard rate as assumed by Calvo (1983). If, instead, memory

were costless, the optimal hazard under a stationary optimal plan would also depend

on the number of periods since the last price review: there would be a different hazard

function Λn(q) for each value of n. In this case, in the limit of unboundedly large

θ, each of the functions Λn(q) would become a constant (there would cease to be

dependence on q); but the constants would depend on n, and in the generic case,

one would have Λn equal to zero for all n below some critical time, and Λn equal to

1 for all n above it. Thus the model would approach one in which prices would be

reviewed at deterministic intervals, as in the analyses of Caballero (1989), Bonomo

and Carvalho (2004), and Reis (2006). The analysis of this alternative case under the

assumption of a finite positive cost of interim information is left for future work.

1.3 Stationary Optimal Price-Review Policies

We can now state the firm’s dynamic optimization problem. Its dynamic price-review

scheduling strategy is a sequence of policies {Πt} for each of the periods t ≥ 0; given

the initial prior f0, each such strategy implies a particular sequence of priors {ft}
consistent with (1.4). The strategy is a deterministic sequence, insofar as in each

period, the intended values of Λt(q) and q∗t depend only on t, and not on the signals

received by the firm in any periods prior to t, on the timing of its price reviews prior

to t, or on any information collected in the course of those reviews. This is because

of the assumption that memory is costly; even if we imagine that the firm designs

the signalling mechanism for period t and chooses its intended responses to signals in
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period t only when that period is reached, it must solve this design problem — which

allows it to choose how much memory to access in period t in making its price-review

decision — without making use of any memory.16

The firm’s objective when choosing this strategy has three terms: the expected

value of discounted profits (1.1), the expected discounted value of the costs of price

reviews, and the discounted value of the costs of interim information used each period

in that period’s price-review decision. The fixed cost of a price review is assumed

to be κ > 0 in each period t in which such a review occurs; the cost of interim

information is assumed to be θIt in each period t (regardless of the signal received

in that period), where It is the expected information used by a strategy that results

in a hazard function Λt(q), given the prior ft for that period. In each case, the

information costs are assumed to be in the same units as π(qt), and all costs in period

t are discounted by the discount factor βt.

A firm’s ex ante expected profits in any period t can be written as π̄(Πt; ft), where

Πt = (Λt(q), q
∗
t ) is the policy followed in period t, ft is the firm’s prior in period t

(given its policies in periods prior to t), and

π̄(Π; f) ≡
∫

[Λ(q)π(q∗) + (1− Λ(q))π(q)]f(q)dq.

The ex ante expected cost of price reviews in period t can be written as κλ̄(Πt; ft),

where

λ̄(Π; f) ≡
∫

Λ(q)f(q)dq

indicates the probability of a price review under a policy Π. Finally, the cost of

interim information can be written (as in Woodford, 2008) as θIt = θĪ(Πt; ft), where

Ī(Π; f) ≡
∫

ϕ(Λ(q))f(q)dq − ϕ(λ̄(Π; f)), (1.6)

16I assume here that a firm can implement a sequence of policies {Πt} which need not specify the
same policy Π for each period t, without using “memory” of the kind that is costly. I assume that
a firm has no difficulty remembering the strategy that it chose ex ante; what is costly is memory
of things that happen during the execution of the strategy, that were not certain to happen ex

ante. Note also that the firm’s price-review policy fails to be time-dependent, not because it lacks
a “clock” to tell it the current value of t, but because it cannot costlessly remember whether it
reviewed its pricing policy in any given previous period; it knows the value of t but not the value of
n.
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and ϕ(Λ) is the Shannon binary entropy function, defined as

ϕ(Λ) ≡ Λ log Λ + (1− Λ) log(1− Λ) (1.7)

in the case of any 0 < Λ < 1, and at the boundaries

ϕ(0) = ϕ(1) = 0.

The firm’s problem is then to choose a sequence of policies {Πt} for t ≥ 0 to

maximize ∞∑
t=0

βt[π̄(Πt; ft)− κλ̄(Πt; ft)− θĪ(Πt; ft)], (1.8)

where the prior evolves according to

ft+1 = TΠt [ft] (1.9)

for each t ≥ 0, starting from a given initial prior f0. A stationary optimal policy is a

pair (f, Π) such that if f0 = f, the solution to the above dynamic problem is Πt = Π

for all t ≥ 0, and the implied dynamics of the prior are ft = f for all t ≥ 0. Note

that this definition implies that f satisfies the fixed-point relation (1.5), so that f is

an invariant distribution under the stationary price-review policy Π.

1.4 A Recursive Formulation

The optimization problem stated above can be given a recursive formulation. This is

useful for computational purposes, and also allows us to see how the problem involves

a sequence of single-period price-review decisions of the kind analyzed in Woodford

(2008). As a result, the characterization given there is both useful in computing the

stationary optimal policy, and helpful in characterizing the random timing of price

reviews of under such a policy.

For any initial prior f0, let J(f0) denote the maximum attainable value of the

objective (1.8) in the problem stated above. Then standard arguments imply that

J(f) must satisfy a Bellman equation of the form

J(ft) = max
Πt

{
π̄(Πt; ft)− κλ̄(Πt; ft)− θĪ(Πt; ft) + βJ(ft+1)

}
, (1.10)

where ft+1 is given by (1.9). If we can find a functional J(f) (defined on the space

of probability measures f) that is a fixed point of the mapping defined in (1.10),
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then this is a value function for the optimization problem stated above. Moreover,

the dynamic price-review scheduling problem can then be reduced to a sequence of

single-period problems: in each period t, the policy Πt is chosen to maximize the

right-hand side of (1.10) subject to the constraint (1.9), given the prior ft in the

current period. The policy chosen each period then determines the prior in the next

period through the law of motion (1.9). A stationary optimal policy is then a pair

(f, Π) such that (i) if ft = f, the solution to the problem (1.10) is Πt = Π; and (ii)

the distribution f is a fixed point (1.5) of the mapping defined by the policy Π.

This still does not make it easy to compute a stationary optimal policy, as one

must first compute a functional J(f) that is a fixed point of (1.10), and this is far

from trivial, since (1.10) defines a mapping from a very high-dimensional function

space into itself. Nor is the single-period policy problem defined in (1.10) as simple

as the one considered in Woodford (2008). However, we can obtain an even simpler

characterization by observing that J(ft) is necessarily a concave functional, that is

furthermore differentiable at ft = f (the invariant distribution under the stationary

optimal policy), so that for distributions ft close enough to f , the value function can

be approximated by a linear functional

J(ft) ≈ J(f) +

∫
j(q)[ft(q)− f(q)]dq,

where j(q) is an integrable function. (Note that the derivative function j(q) is defined

only up to an arbitrary constant, since J(ft) is not defined for perturbations of the

set-valued function ft that do not integrate to 1.) The concavity of J(ft+1) then

implies that Πt = Π solves the problem (1.10) when ft = f if and only if it solves the

alternative problem

max
Πt

{
π̄(Πt; f)− κλ̄(Πt; f)− θĪ(Πt; f) + β

∫
j(q)[ft+1(q)− f(q)]dq

}
, (1.11)

where ft+1 is again given by (1.9).

Using (1.9) to substitute for ft+1, the objective in (1.11) can alternatively be

expressed as

(V (q∗t )− κ)

∫
Λt(q)f(q)dq +

∫
V (q)(1− Λt(q))f(q)dq − θĪ(Λt; f), (1.12)

where

V (q) ≡ π(q) + β

∫
j(q̃)g(q − q̃)dq̃, (1.13)
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and I have now written simply Ī(Λt; f), to indicate that the function Ī defined in (1.6)

does not depend on the choice of q∗. (Here the variable of integration q in (1.12) is

the normalized price in period t after the period t disturbance to market conditions,

but before the decision whether to conduct a price review. In (1.13), q is instead the

normalized price that is charged, after any price review has occurred, while q̃ is the

normalized price in the following period, after that period’s disturbance to market

conditions, but before the decision whether to conduct a price review in that period.)

Maximization of (1.12) is in turn equivalent to maximizing

∫
L(q; q∗t )Λt(q)dq − θĪ(Λt; f), (1.14)

if we define

L(q; q∗) ≡ V (q∗)− V (q)− κ. (1.15)

Hence Πt = Π solves the problem (1.10) when ft = f if and only if it maximizes

(1.14).

This, in turn, is easily seen to be true if and only if (i) q∗ is the value of q that

maximizes V (q), and (ii) given the value of q∗, the hazard function Λ maximizes

(1.14), which can alternatively be written as

∫
[L(x)Λ(x)− θϕ(Λ(x))]f(x)dx + θϕ(

∫
Λ(x)f(x)dx). (1.16)

As shown in Woodford (2008), the hazard function that maximizes (1.14) must satisfy

the first-order condition

≡ L(x)− θϕ′(Λ(x)) + θϕ′(Λ̄) = 0 (1.17)

almost surely, where

Λ̄ ≡
∫

Λ(q)f(q)dq

is the average frequency of reviews of pricing policy. Thus each period a price-review

policy Πt is chosen that solves a single-period problem identical to the one considered

in Woodford (2008), and in the case of a stationary optimal plan, this problem is the

same each period. However, the definition of this problem involves the function j(q);

thus it may still seem necessary to solve the Bellman equation for the function J(f).
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In fact, though, we only need to know the derivative function j(q). And an

envelope-theorem calculation, differentiating (1.10) at ft = f , yields

j(q) = Λt(q)π(q∗t ) + (1− Λt(q))π(q)− θ

[
ϕ(Λt(q))− ϕ′

(∫
Λt(q̃)f(q̃)dq̃

)]

−κΛt(q) + β

∫
j(q̃)[Λt(q)g(q∗t − q̃) + (1− Λt(q))g(q − q̃)]dq̃

= Λt(q)[V (q∗t )− κ] + (1− Λt(q))V (q)− θ

[
ϕ(Λt(q))− ϕ′

(∫
Λt(q̃)f(q̃)dq̃

)]

= V (q) + Λt(q)L(q; q∗t )− θ

[
ϕ(Λt(q))− ϕ′

(∫
Λt(q̃)f(q̃)dq̃

)]

= V (q)− θ[ϕ(Λt(q))− ϕ′(Λt(q))Λt(q)]

= V (q)− θ log(1− Λt(q)).

Here the second line uses the definition (1.13) of V (q); the third line uses the definition

(1.15) of L(q; q∗); the fourth line uses the fact noted above that a solution to the

problem (1.11) — and accordingly, a solution to the problem (1.10) — must satisfy

the first-order condition (1.17) to substitute for L(q; q∗); and the final line uses the

definition (1.7) of the binary entropy function ϕ(Λ). Note also that on each line, I have

suppressed an arbitrary constant term, since j(q) is defined only up to a constant.

Substituting the above expression for j(q) into the right-hand side of (1.13), we

obtain

V (q) ≡ π(q) + β

∫
[V (q̃)− θ log(1− Λ(q̃))] g(q − q̃)dq̃, (1.18)

a fixed-point equation for the function V (q) that makes no further reference to either

the value function J or its derivative. A stationary optimal policy then corresponds

to a triple (f, Π, V ) such that (i) given the policy Π, the function V is a fixed point

of the relation (1.18); given the pseudo-value function V and the prior f , the policy

Π is such that q∗ maximizes V and Λ maximizes (1.16); and (iii) given the policy Π,

the distribution f is an invariant distribution, i.e., a fixed point of relation (1.5).

This characterization of a stationary optimal policy reduces our problem to a

much more mathematically tractable one than solution of (1.10) for the value function

J(f). We need only solve for two real-valued functions of a single real variable, the

functions V (q) and Λ(q); a probability distribution f(q) over values of that same

single real variable; and a real number q∗. These can be solved for using standard

methods of function approximation and simulation of invariant distributions, of the

kind discussed for example in Miranda and Fackler (2002).
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2 A Model of Monopolistically Competitive Price

Adjustment

Let us now numerically explore the consequences of the model of price adjustment

developed in section 1, in the context of an explicit model of the losses from infrequent

price adjustment of a kind that is commonly assumed, both in the literature on

canonical (full-information) SDP models and in ET models of inflation dynamics.

The economy consists of a continuum of monopolistically competitive producers of

differentiated goods, indexed by i, and in the case considered in this section, I shall

assume that the only shocks to the economy are good-specific shocks, so that there

is no aggregate uncertainty.

Let us suppose that each household seeks to maximize a discounted objective

E0

∞∑
t=0

βt

[
C1−σ−1

t

1− σ−1
− λ

H1+ν
t

1 + ν

]

where

Ct ≡
[∫ 1

0

(ct(i)/At(i))
ε−1

ε di

] ε
ε−1

(2.1)

is an index of consumption of the various differentiated goods indexed by i, At(i) is a

good-specific shock to preferences, Ht is the hours of labor supplied by the household

(in the sector-specific labor market in which the particular household works), and

the preference parameters satisfy 0 < β < 1, σ, λ > 0, ν ≥ 0, and ε > 1. Each dif-

ferentiated good is supplied by a monopolistically competitive firm, with production

function

yt(i) = At(i)ht(i)
1/φ.

Here ht(i) indicates the hours of labor employed (of the specific type required for the

production of good i), At(i) is a good-specific productivity factor, and φ ≥ 1. Note

that the good-specific factor At(i) is assumed to shift both the relative preference for

and the relative cost of producing good i. The assumption that the idiosyncratic shock

shifts both preferences and technology in this way is plainly a very special (and rather

artificial) one, but it has the advantage of making the profits of a firm i a function only

of a single variable, the normalized price of good i (defined below);17 this is convenient

not only because it makes the firm’s problem a “tracking problem” of exactly the kind

17Another convenient feature of this assumption is that each firm’s profit function is shifted in
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assumed by Caballero and Engel (1993a, 1993b), but because computation is simpler

in the case of a model with a one-dimensional state space. (The analysis proposed

here can easily be extended to the case of separate good-specific shocks to preferences

and technology, with only a modest increase in numerical complexity.)

Except for the assumption of the good-specific shocks {At(i)}, the model is ex-

actly like the New Keynesian model of monopolistically competitive price adjustment

expounded in Woodford (2003, chap. 3). Each household is assumed to own an equal

share of each of the firms, and households’ idiosyncratic income risk (owing to hav-

ing specialized in supplying lebor to a particular sector) is perfectly shared through

insurance contracts, so that households’ budgets are all identical in equilibrium, and

their state-contingent consumption plans as well. As a consequence, each household

values random income streams in the same way, and the (nominal) stochastic discount

factor is given by

Qt,T = βT−t

(
Ct

CT

)σ−1

Pt

PT

,

where Ct is aggregate (and each household’s individual) consumption of the composite

good (defined in 2.1) in period t, and Pt is the price of a unit of the composite good.

Each firm i sets prices so as to maximize the discounted value of its profits using this

stochastic discount factor. This is equivalent to maximization of an objective of the

form

E0

∞∑
t=0

βtΠ̃t(i), (2.2)

where Π̃t(i) ≡ Πt(i)C
−σ−1

t /Pt, and Πt(i) is the nominal profit (revenue in excess of

labor costs) of firm i in period t.

The Dixit-Stiglitz preference specification (2.1) implies that each firm i faces a

demand curve of the form

yt(i) = At(i)
1−εYt

(
Pt(i)

Pt

)−ε

(2.3)

for its good, where Pt(i) is the price of good i, Yt is production of (and aggregate

the same way by a shock to aggregate nominal expenditure (considered in section 4 below) as it is
by the idiosyncratic shock; again the profit function is unchanged once the price is appropriately
renormalized.
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demand for) the composite good defined in (2.1), and the price index

Pt ≡
[∫

(Pt(i)At(i))
1−εdi

] 1
1−ε

(2.4)

indicates the price of a unit of the composite good. Optimal labor supply in each

sectoral labor market implies that the real wage paid by firm i will equal Wt(i)/Pt =

λht(i)
νCσ−1

t . Using this expression for the wage and using the production function

to solve for the labor demand of firm i as a function of its sales, one finds that the

profits of firm i in period t are equal to

Πt(i) = Pt(i)yt(i)−Wt(i)ht(i)

= Pt(i)yt(i)− λPtC
σ−1

t

(
yt(i)

At(i)

)η

,

where η ≡ φ(1 + ν) ≥ 1.

If we define the normalized price of firm i as

Qt(i) ≡ Pt(i)At(i)Ȳ

PtYt

,

where Ȳ > 0 is a normalization factor (chosen below), and let Qt be the population

distribution of values of Qt(i) across all firms in period t, then it follows from (2.4)

that

Yt = Y (Qt) ≡ Ȳ

[∫
Qt(i)

1−εdi

]−1/(1−ε)

.

One can then write the period contribution to the objective (2.2) of firm i as a function

solely of the firm’s normalized price Qt(i) and the distribution of normalized prices

Qt,

Π̃t(i) = Ȳ ε−1Y (Qt)
2−σ−1−εQt(i)

1−ε − λȲ ηεY (Qt)
η(1−ε)Qt(i)

−ηε,

using the demand function (2.3) to solve for the firm’s sales, and the fact that Ct =

Yt = Y (Qt) in equilibrium.

In the equilibrium discussed in the next section, I assume that there are only

idiosyncratic shocks, and consider only a stationary equilibrium in which the popula-

tion distribution of normalized prices is constant over time. In such an equilibrium,

the decision problem of each individual firm involves an objective of the form (1.1),

where I now define qt(i) ≡ log Qt(i). (Note that this is consistent with the definition

in section 1, if we define mt(i) ≡ log(PtYt/At(i)Ȳ ). Note also that, as assumed in
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Figure 1: The normalized profit function π(q).

section 1, the evolution of {mt(i)} is outside the control of firm i.) It is convenient,

in reporting the numerical results below, to choose the normalization factor18 Ȳ so

that

Ȳ =

[
Y (Q̄)(η−1)(1−ε)+σ−1−1

λµη

] 1
1+(η−1)ε

,

where Q̄ is the stationary distribution of normalized prices and µ ≡ ε/(ε− 1) > 1 is

the desired markup factor (under full information) of a firm facing a demand curve

of the form (2.3). In this case, the firm’s objective can be written as (1.1), where the

period profit function is given by19

π(q) ≡ Q1−ε − 1

ηµ
Q−ηε. (2.5)

The profit function is thus a member of a two-parameter family of functions

18This is essentially a choice of the units in which output is measured. The point of the proposed
normalization is to make the profit-maximizing normalized price equal to 1.

19This expression for the profit function omits a positive multiplicative factor that is time-invariant
under the assumptions stated in the text. The normalization has no consequences for the optimal
price-review scheduling problem.

25



(depending only on the values of ε and η). Under our maintained assumptions that

ε > 1 and η ≥ 1, this is necessarily a single-peaked function, reaching its maximum

at the value q = 0. Moreover, the profit function is asymmetric, with profits falling

more sharply for negative values of q than for positive values of the same size, as

shown in Figure 1. This asymmetry results in an asymmetric hazard function for the

price-review decision, as illustrated in the next section.

For simplicity (i.e., to make the state space as small as possible), I also assume

that the firm-specific factor follows a random walk,

log At(i) = log At−1(i) + zt(i),

where the innovation zt(i) is drawn independently (both across firms i and across

time periods t) each period from a distribution g(z). In section 3 I also assume that

aggregate nominal expenditure PtYt is constant over time (though the consequences

of a disturbance to aggregate expenditure are discussed in section 4). Under this

assumption, the normalized price can be written as qt(i) = pt(i)−mt(i), where mt(i)

evolves as in (1.2).

Under these assumptions, each firm’s price-review scheduling problem is a problem

of the form discussed in section 1. We can then characterize the stationary optimal

price-review policy for each firm as in that section. Associated with the stationary

optimal policy is a long-run frequency distribution f(q) for each firm’s normalized

price qt(i), and given the independence across firms of the evolution of qt(i),
20 this

distribution f(q) is also the (time-invariant) population distribution Q̄ of normalized

prices across firms. Note that under the normalization of qt(i) proposed, it is not

necessary to solve for the population distribution in order to solve the individual

firm’s price-review scheduling problem; however, we do need to solve for Q̄ in or-

der to determine the (time-invariant) level of equilibrium output in the stationary

equilibrium, and the value of the normalization factor Ȳ , in order to interpret the

dynamics of normalized prices in terms of their implications for non-normalized prices

and quantities.21

20Both the innovations zt(i) in the firm-specific factor and the randomness of the signalling mech-
anism used to schedule price reviews (reflected in the hazard function Λ(q)) are assumed to be
independent across firms i.

21Solution for the optimal price-review policy does require that one specify the information-cost
parameters κ and θ in the same units as the normalized profit function π(q), and so if one knows
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3 Dynamics of Individual Prices under the

Stationary Optimal Policy

I now illustrate the implications of the model set out in section 2 for the dynamics of

individual price adjustment to firm-specific disturbances, by numerically computing

the stationary optimal policy under calibrated parameter values that allow the model

to match (at least roughly) certain statistics of microeconomic data sets. In addition

to the functional-form assumptions already stated in section 2, I assume that the dis-

tribution g(z) is N(0, σ2
z). I compute the stationary optimal policy using an algorithm

of the kind described in the Appendix, using numerical parameter values β = 0.9975

(corresponding to a 3 percent annual rate of time preference, on the understanding

that model “periods” represent months), ε = 6 (implying a desired markup of 20

percent), and η = 1.5 (consistent with the values φ = 1.5, corresponding to an elas-

ticity of output with respect to the labor input of 2/3, and ν = 0, as in a model with

“indivisible labor”).

The remaining three parameters that must be assigned numerical values — σz, κ,

and θ — are chosen so that the model’s numerical predictions are at least roughly

consistent with microeconomic evidence on individual price changes, as discussed be-

low in section 3.2. The predictions for three empirical statistics (shown in Table 3) —

the average frequency of price changes, the mean size of price change (mean absolute

value of the change in log price), and the coefficient of kurtosis of the distribution of

price changes — are used to select realistic values for the three parameters. The base-

line parameter values selected on this ground are σz = 0.06 (a one-standard-deviation

firm-specific shock changes the firm’s optimal price by 6 percent), κ = 0.5 (the cost

of a price review is half a month’s output), and θ = 5.

In addition to the results for this value of θ, I also present numerical results for a

variety of other values of θ, listed in Table 1, including values both larger and smaller

the value of these costs in real (non-normalized) terms, one cannot determine the values of κ and θ

required for the calculations described in section 1 without having determined Q̄. But if, as below,
one infers the values of κ and θ from their implications for the size and frequency of price changes,
rather than from any direct evidence on the size of these costs, then it is not necessary to have
already determined Q̄ in order to compute the implications of particular values of κ and θ for those
statistics. One does have to solve for the implied distribution Q̄ in order to determine what these
values of κ and θ corrrespond to in terms of non-normalized costs.
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Table 1: Resource expenditure on information, for values of θ. Each share is measured

in percentage points.

θ sκ sθ rθ

0 5.0 0 100

.05 4.5 1.16 56.7

.5 5.2 2.72 9.7

5 9.2 2.11 0.78

50 12.5 0.70 0.03

∞ 15.0 — 0

than the baseline value.22 Because the assumption of a finite positive cost θ of interim

information is the main novelty of the model presented here, it is of particular interest

to explore the consequences of alternative values of this parameter.

Table 1 provides an indication of the magnitude of information costs implied by

various values of θ, showing in each case the implied cost to the firm of inter-review

information collection (i.e., the cost of the information on the basis of which decisions

are made about the scheduling of price reviews), as well as the cost to the firm of price

reviews themselves, both as average shares of the firm’s revenue. (These two shares are

denoted sθ and sκ respectively.) The table also indicates how the assumed information

used by the firm in deciding when to review its prices compares to the amount of

information that would be required in order to schedule price reviews optimally; the

information used is fraction rθ of the information that would be required for a fully

optimal decision, given the firm’s value function for its continuation problem in each

period (which depends on the fact that, at least in the future, it does not expect

to schedule price reviews on the basis of full information). A value of θ = 5, for

example, might seem high, in that it means that the cost per nat of information23 is

5 months of the firm’s steady-state revenue. However, under the stationary optimal

22The bottom line of the table describes limiting properties of the stationary optimal plan, as the
value of θ is made unboundedly large, i.e., in the “Calvo limit”.

23A “nat” is equal to 1.44 bits (binary digits) of information. The quantity of information is
measured in nats in this paper, as I use natural logarithms (rather than base 2 logarithms) in
defining the entropy measure.
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policy, the firm only uses information each month in deciding whether to review its

pricing policy with a cost equivalent to about two percent of steady-state revenue.

And since this is 0.78 percent of the information that would be required to make a

fully optimal decision (as assumed in standard SDP models), this specification of the

information cost implies that it would cost less than three times total revenues for the

firm to make a fully optimal decision each month.24 This is a substantial cost, but

perhaps not an unrealistic one; firms surely would find it prohibitively expensive to

be constantly well-enough informed to make a precisely optimal decision each month

about the desirability of a price review.25

An information cost of θ = 5 seems high when expressed as a cost per nat (or cost

per bit) of information, because I allow the signal s to be designed so as to focus on

precisely the information needed for the manager’s decision; once I have done so, one

can only explain imprecision in the decisions that are taken under the hypothesis that

the information content of s must be quite small, or alternatively, that the marginal

cost of increasing the information content of the signal s is quite high.26

The value assumed for κ (half a month’s output) may also seem large. However,

under the baseline calibration (the case θ = 5 in Table 1), this only implies that

the costs of reviews of pricing policy are about 9 percent of the value of the firm’s

output. In the firm studied by Zbaracki et al. (2004), the total managerial costs of

reviews of pricing policy are reported to be only 1.4 percent of total operating costs.

However, the total costs of price changes (counting also physical “menu costs” and

the costs of communication of the new prices to customers) are reported to account

for more than 6 percent of operating costs, and in the present model all of these costs

24Here I refer to the cost of making a fully optimal decision in one month only, taking for granted
that one’s problem in subsequent months will be the information-constrained problem characterized
here, and not to the cost of making a fully optimal decision each month, forever. In Table 1, the
information cost of a fully optimal decision is computed using the value function V (q) associated
with the stationary optimal policy corresponding to the given value of θ.

25Under a more realistic calibration of the model, “periods” should perhaps correspond to weeks
rather than to months, and this would doubtless affect the calculations reported in Table 1. Here I
interpret the model “periods” as months because the micro data discussed in section 3.2 are monthly.

26It is important to understand that the parameter θ does not represent a cost-per-letter of having
a staff member read the Wall Street Journal; it is instead intended to represent a cost of getting
the attention of the manager who must make the decision, once the staff have digested whatever
large amount of information may have been involved in the preparation of the signal s that must be
passed on to the manager.
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Table 2: The optimal value of q∗ for alternative values of θ.

θ q∗

0 .015

.05 .015

.5 .039

5 .068

50 .067

∞ .076

are represented by the parameter κ. Thus under the baseline calibration used here,

the total costs involved in reviews of pricing policy are only one and one-half times

as large as those at the firm studied by Zbaracki et al.27

3.1 The Stationary Optimal Policy under Alternative Costs

of Information

The optimal price-review policy of an individual firm is completely specified by the

reset value for the normalized price, q∗, and the hazard function Λ(q). (An advantage

of the univariate case considered here is that the hazard is a function of a single real

variable, and can easily be plotted.) Table 2 shows the optimal value of q∗ for a range

of values for the information cost θ, and Figure 2 plots the corresponding optimal

hazard functions. One observes that q∗ is positive, and by several percentage points

in the case of the larger values of θ. The optimal reset value is positive, even though

it would be optimal to set qt(i) = 0 at all times in the absence of information costs,

due to the asymmetry of the profit function seen in Figure 1. Because the losses

associated with a price that is too low are greater than those associated with a price

that is too high by the same number of percentage points, it is prudent to set one’s

price slightly higher than one would if one expected to be able to adjust the price

again immediately in the event of any change in market conditions, in order to reduce

the probability of having a price that is too low. The size of the bias that is optimal

is greater when interim information is costly, but it is still positive even when θ = 0;

27The reason for choosing a value of κ of this size is explained below in section 3.2.
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Figure 2: The optimal hazard function Λ(q), for alternative values of θ.

for even in that case, prices are not re-optimized continually, owing to the cost κ of

price reviews.

In the case that θ = 0, the optimal hazard function has the “square well” shape

associated with standard SDP models: there is probability 0 of adjusting inside the

Ss thresholds, and probability 1 of adjusting outside them. For positive values of θ,

one instead has a continuous function taking values between 0 and 1, with the lowest

values in the case of “price gaps” near zero,28 and higher values in the case of large

price gaps of either sign. When θ is small (though positive), as in the case θ = 0.05

shown in the figure, the hazard function is still barely above 0 for small price gaps,

and rises rapidly to values near 1 for price gaps that are only a small distance outside

the “zone of inaction” under full information. But for larger values of θ, the optimal

hazard function is significantly positive even for price gaps near zero, and increases

only slightly even for price gaps far outside the full-information “zone of inaction”.

28Here I define the “price gap” as the value of qt(i) − q∗, i.e., the gap between the current log
price and the price that would currently be chosen in the event of a review.
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Note that the prediction of a substantial positive hazard rate even when the price

gap is zero is consistent with the empirical evidence of Eichenbaum et al. (2008),

who find a positive probability of adjustment of a good’s “reference price” (greater

than 15 percent) even in a quarter in which the normalized reference price (identified

in their case by the markup of the reference price over the cost of the good to the

retailer) is equal to the long-run average normalized reference price.29

It is also interesting to observe that for substantially positive (but still finite)

values of θ, the optimal hazard function is quite asymmetric: the probability of a

price review rises much more rapidly in the case of negative price gaps than in the

case of positive price gaps of the same magnitude. In fact, this asymmetry is of

the same sign as has been found to best fit U.S. data on both aggregate inflation

dynamics (Caballero and Engel, 1993a) and on the distribution of individual price

changes (Caballero and Engel, 2006). Eichenbaum et al. (2008) also provide evidence

for asymmetry of the same sign in the hazard function for adjustment of the “reference

price” of a good as a function of its normalized price (markup over cost). The present

model provides a theoretical explanation for the asymmetry for which these authors

argue on empirical grounds.

In the limit as θ is made unboundedly large, the optimal hazard approaches a

positive value between zero and one that is independent of the size of the price gap.

(This limiting hazard is shown by the horizontal solid line in the figure, at a hazard

of approximately 0.3.) The convergence can be seen particularly clearly in the case of

price gaps near zero, where the hazard approaches the limiting value monotonically

from below; convergence similarly occurs for price gaps outside the full-information

Ss thresholds, though in this case the convergence is non-monotonic. Thus in the

limit of very costly interim information, the model predicts behavior like that of the

Calvo model (in which the hazard is a constant positive rate regardless of the price

gap). In fact, already in the case θ = 50, one can see from the figure that the hazard

rate is essentially constant for a large range of normalized prices, corresponding to

price gaps anywhere between negative 20 percent30 and positive 80 percent or more.

29See their Figure 12, panel A. Eichenbaum et al. also find (Figure 12, panel C) that when a
good’s reference price is adjusted, the normalized price (or markup) is reset to the same value —
corresponding to the long-run average normalized price — regardless of the value of the normalized
price prior to the adjustment, as predicted by the model here.

30Note that since (according to Table 2) q∗ is equal to 7.6 percent in this case, a price gap of -20
percent corresponds to the value q = −.124 in the figure.
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Figure 3: The invariant distribution f(q), for alternative values of θ.

The invariant distribution f(q) implied by the optimal policy (Λ(q), q∗) is shown

in Figure 3 for each of these same values of θ. The tightness of the range of variation in

normalized prices is fairly similar across the different values of θ; the main difference

is that the distributions are shifted slightly to the right in the case of larger values of

θ, because of the larger positive values of q∗ in these cases. In the case of low values

of θ (for example, as one moves from θ = 0.05 to θ = 0.5), increasing θ increases

slightly the range of variation in the normalized price, as the hazard no longer rises

toward one quite so sharply in the case of price gaps outside the full-information Ss

thresholds; but as θ increases further, the range of variation shrinks again, owing to

the increase in the hazard rate in the case of price gaps within the full-information

Ss thresholds.

Perhaps the most important implication of Figure 3 is that regardless of the size

of θ, a firm’s normalized price will much of the time be within an interval between

(roughly) -0.15 and +0.30. This means that it is only the hazard function over that

interval that matters very much for the equilibrium dynamics of prices; in particular,
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the degree to which an appropriately calibrated Calvo model will approximate the

equilibrium dynamics depends only on the constancy of the hazard function over

that interval. From this we can see that the Calvo model will be quite a good

approximation in the case of a value of θ equal to 50 or higher. But even for a value

on the order of θ = 5 (our baseline value), the hazard function is fairly constant over

most of this interval, and so the Calvo model should not be too bad an approximation

in this case either.

3.2 Comparison with Data on Individual Price Changes

We have seen that, depending on the value of θ, the present model predicts dynam-

ics of price adjustment like those of an Ss model, like those of the Calvo model, or

like those of a “generalized Ss” model of the kind discussed by Caballero and Engel

(1993a, 1993b). This raises an obvious question: which of these alternative param-

eterizations of the model is more empirically realistic? One way of answering the

question is to compare the extent to which the model’s predictions under alternative

parameterizations match the properties of individual price changes in microeconomic

data sets, as summarized in studies like those of Bils and Klenow (2004), Klenow and

Kryvtsov (2008), Midrigan (2008), or Nakamura and Steinsson (2008a).

Table 3 displays the values for several key statistics that are predicted by the

calibrated model discussed above, in the case of several alternative values of θ. The

first column indicates the value of Λ̄, the average frequency of price reviews (and hence

of price changes). The second column indicates the mean value of the absolute price

change |∆pt(i)| in those months in which a price review (and hence a price change)

occurs. The third column indicates the fraction of price changes that are smaller

than 0.05 in absolute value (again, conditional on a price change occurring), and the

fourth column reports the coefficient of kurtosis for the distribution of price changes

(conditional on a price change occurring). One observes that, for given values of the

other model parameters, increasing the value of θ increases the average frequency

of price changes (for values of θ greater than 0.5), reduces the average size of price

changes, increases the frequency of small price changes, and increases the kurtosis of

the distribution of price changes.

The final two rows of the table indicate two different sets of “target” values for

our calibration, deriving from two different types of microeconomic data sets. The
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Table 3: Predictions regarding the size and frequency of price changes, for alternative

values of θ. (*Probability that |∆p| < .06.)

θ Λ̄ E[|∆p|] Pr(|∆p| < .05) K(|∆p|)
Predictions of calibrated model

0 .100 .186 0 1.2

.05 .090 .195 .000 1.3

.5 .104 .160 .145 2.2

5 .184 .105 .341 4.1

50 .250 .089 .397 4.8

∞ .301 .081 .421 4.9

BLS data: Klenow-Kryvtsov (2008) ‘like prices’

.168 .118 .427

Midrigan (2008) calibration ‘targets’

.24 .12 .28* 4.0

first set of targets are based on the BLS data on individual prices underlying the CPI.

The statistics reported are those given by Klenow and Kryvtsov (2008) for what they

call “like price” changes, in which a “regular price” for a good is compared to the

previous “regular price” for the good and a “sale price” is compared to the previous

“sale price” for that good, but sale prices and regular prices for the same good are

treated as if they are from price series for separate goods.31 (Klenow and Kryvtsov

do not report a value for the kurtosis.) The second set of targets are the calibration

targets proposed by Midrigan (2008), on the basis of a summary of evidence from

two different sets of scanner data.

It is evident from the table that, given the assumed values of the other parameters,

31I use these statistics as the target for calibration of the model, under the interpretation that
those goods for which frequent “sale prices” are observed have a pricing policy that involves both a
regular price and a sale price; a review of the pricing policy is indicated when the regular price or the
sale price is changed, but not when the price of the good switches from the regular price to the sale
price. If one were instead to count as price changes only changes in “regular prices,” the statistics
reported by Klenow and Kryvtsov would be Λ̄ = 0.139, E[|∆p|] = 0.113, and Pr(|∆p| < .05) = 0.443.

Thus the only material difference would be the lower frequency of price changes if only changes in
regular prices are counted.
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a value of θ on the order of 5 is most consistent with the microeconomic evidence. A

value of θ substantially smaller than this would imply less frequent price changes, a

larger average size of price changes, and too little kurtosis relative to the micro data

sets; but a value of θ larger than this would imply more frequent price changes, of

smaller average size, than in the micro data sets, as well as more small price changes

(and a somewhat higher coefficient of kurtosis) than Midrigan (2008) reports.

The statistics that are most directly revealing regarding the empirically realistic

value of θ are the coefficient of kurtosis and the frequency of small price changes.

When θ = 0, there are no small price changes at all, because every price change

is a movement from a normalized price outside the Ss thresholds to the optimal

normalized price q∗.32 For small positive values of θ, small price changes continue to

be extremely infrequent. But the fraction of small price changes increases steadily

as θ is increased. At the baseline value of the information cost parameter (θ = 5),

the model predicts that price changes smaller than 5 percent should occur with a

frequency that is still not as large as the frequency reported by Klenow and Kryvtsov

for the BLS data, but that is larger than the frequency reported by Midrigan (2008)

for his scanner data sets.33 Midrigan’s statistic is arguably more relevant for our

purposes, since he corrects for heterogeneity in the size of price changes in the case of

different types of goods; it is also more consistent with the findings of Eichenbaum et

al. (2008), who report that 26 percent of “reference price” changes are of 5 percent

or smaller (see their Figure 15). But even a target of 0.26 or 0.28 would suggest that

a value of θ substantially larger than 0.5 is needed.

Nor is the increased fraction of price changes that are smaller than 5 percent for

larger values of θ a consequence solely of the smaller average size of price changes;

there is also an increased frequency of prices that are small relative to the mean

absolute price change. Figure 4 displays the complete (stationary) distribution of

32This does not mean that is not possible to have price changes of less than 5 percent; by choosing
a value of κ that is substantially smaller, it is possible to calibrate the model so that the Ss thresholds
are much closer to q∗ than for the parameters used here. But this would allow us to explain the
existence of a substantial fraction of price changes smaller than 5 percent only by making the mean
absolute price change much smaller than what is observed in the micro data sets.

33The frequency reported on the bottom line of Table 3, 28 percent, is actually the value that
Midrigan reports for the probability of a price change of less than half the mean size, meaning less
than .06. The frequency of price changes less than .05 in size would be somewhat smaller than this
(but is not reported by Midrigan).
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Figure 4: The (unconditional) distribution of individual price changes, for alternative

values of θ.

price changes for each value of θ; the increased probability mass for small values of

q as θ increases is clearly apparent. The distribution of price changes predicted by

the model when θ is small is quite different from the empirical distributions shown in

Midrigan (2008, Figure 1). The distributions found in the microeconomic data sets

analyzed by Midrigan are unimodal and leptokurtic, with a higher peak and fatter

tails than a normal distribution with the same variance. In the present model, for

all low enough values of θ the distribution is bi-modal (as in a standard Ss model);

for somewhat higher values of θ, it is unimodal but platykurtic (with a flat peak and

thin tails); and it becomes leptokurtic only for high enough values of θ. In the case

of the baseline values of the other model parameters, the distribution is leptokurtic

only if θ is on the order of 5 (as assumed in the baseline calibration) or higher.

On the basis of the microeconomic evidence, Midrigan suggests a target value of

4 for the coefficient of kurtosis.34 The last column of Table 3 shows that the present

34Klenow and Kryvtsov do not report a value for this statistic in the BLS data. However, their
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model predicts a coefficient of kurtosis (K[|∆p|]) of roughly this magnitude when θ

is equal to 5,35 again suggesting that this is the most empirically realistic magnitude

to assume for the interim information costs. Changing the value of other parameters

(such as κ) can change the size distribution of price changes, but does not change

the prediction that the distribution is leptokurtotic only for large enough values of θ;

and while the θ that is “large enough” could be much smaller if we were to assume a

much smaller value of κ, it would remain the case that a value of θ large enough to

make the distribution leptokurtic is large enough to imply price adjustment dynamics

substantially different from those of a standard menu-cost (Ss) model (the θ = 0 case),

and instead fairly similar to those implied by a Calvo model (the θ →∞ limit).

3.3 Calibration of σz and κ

Of course, inference about the realistic value of θ from Table 3 depends on accepting

that the values assigned to the other model parameters in Table 3 are realistic. The

values of σz and κ in particular deserve further discussion, as these are chosen not

on the basis of any direct measures of these two quantities, but rather on the basis

of the resulting predictions for the statistics reported in Table 3.

In fact, we can determine appropriate values for each of the three parameters

σz, κ and θ on the basis of the target values for the statistics listed in Table 3, as

long as variation in each of the three parameters has sufficiently distinct effects on

the predicted statistics. It suffices to pick targets for three statistics that are affected

by the parameters in sufficiently different ways, namely, for the average frequency

of price changes Λ̄, the average size of price changes E[|∆p|], and the coefficient of

kurtosis K[|∆p|]. Table 4 shows how this is possible, by illustrating the effects of

variation in the parameters σz and κ that are held fixed in Table 3.

The rows of Table 4 correspond to alternative values of κ, while the columns

correspond to alternative values of σz. In each cell corresponding to a particular

pair (σz, κ), I compute the value of θ required in order for the model to predict an

average frequency of price changes of 0.184, as under the baseline calibration (the

θ = 5 row of Table 3), and then report the implied values of the statistics E[|∆p|]
and K[|∆p|] as well. Thus the cells of the table represent different points on the

Figure 3 shows that the distribution of price changes is leptokurtic in those data as well.
35For an alternative explanation of the observation of a leptokurtic distribution of individual price

changes, see Midrigan (2008).
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Table 4: Predictions regarding the size and frequency of price changes, for alternative

values of σz and κ.

σz = 0.05 σz = 0.06 σz = 0.07

κ = 0.4 θ 4.425 1.92 1.205

E(|∆p|) 8.75 10.84 12.86

K(|∆p|) 4.3 3.8 3.3

κ = 0.5 θ 12.475 5 2.8

E(|∆p|) 8.64 10.51 12.47

K(|∆p|) 4.8 4.1 3.8

κ = 0.6 θ 27.6 9.7 5.7

E(|∆p|) 8.60 10.41 12.29

K(|∆p|) 4.9 4.5 4.1

projection of a constant-Λ̄ surface (within the three-dimensional space of possible

model parameterizations) onto the σz − κ plane. Our interest is in finding the point

on this surface that also achieves certain target values for the other two statistics.

We observe from the table that in order for the model to predict an average size

of price changes like that of the baseline calibration (between 10 and 11 percent) one

needs a parameterization near the center column of the table, i.e., a value of σz near

0.06. In order it to predict a coefficient of kurtosis only slightly above 4, one needs a

parameterization close to the diagonal extending from upper left to lower right. Hence

all three target values are achieved simultaneously at only one point in the three-

dimensional space of parameterizations, corresponding to the center cell of the table

(in boldface); these are the baseline parameter values used in the discussion above.

In fact, the microeconomic data sets indicate an average size of price changes slightly

larger than is implied by this parameterization (closer to 12 percent); arguably, a

better fit with the micro evidence would be obtained by movement toward the lower

right cell of Table 4 (meaning somewhat larger values of σz, κ, and θ). However, I

have chosen the parameter values corresponding to the center cell as the baseline

calibration, in order not to exaggerate the size of the information costs.
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Figure 5: The probability of a price change as a function of time since the previous

price change, for alternative values of θ.

3.4 Duration Dependence of Price Changes

Another feature of data on individual price changes that Klenow and Kryvtsov (2008)

use to discriminate among alternative models of price adjustment is the hazard for

price adjustment as a function of the time elapsed since the last price change. Figure

5 shows the duration dependence of the adjustment hazard in simulations of the

stationary optimal price-review policy implied by the present model, for alternative

values of θ (but again fixing all other parameters at their baseline values). In the case

that θ = 0 (the standard menu-cost model), there is essentially zero probability of

another price change immediately following a price change (since qt(i) is equal to q∗

immediately after any price change), while the probability of a price change is sharply

rising with durations between zero and six months. For small enough positive values

of θ (such as the value θ = 0.5 shown in the figure), the hazard continues to be sharply

rising with duration for the first few months. But for values of θ on the order of 5
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or more, the probability of another price change in the first month following a price

change is nearly as high as the probability in any of the later months; the hazard as

a function of duration is nearly flat.

In fact, according to the statistics reported by Klenow and Kryvtsov for the

BLS data from the top three urban areas (see their Figure 6), once one corrects

for heterogeneity in the frequency of price changes in different types of goods, the

hazard rate as a function of duration is very nearly flat over durations ranging from

one to eleven months.36 Klenow and Kryvtsov do report a substantial spike in the

probability of a price change after exactly 12 months, but no increases in the hazard

over the range of durations for which the hazard is steeply increasing for the models

with low θ;37 nor is the increased hazard at 12 months an increase for all longer

durations — the hazard is higher for durations of exactly 12 months than for either

shorter or longer durations. This suggests possible time-dependence of the scheduling

of price reviews, but is not consistent with a state-dependent pricing model with small

information costs.38

Thus we once again conclude that information costs on the order of θ = 5 (if not

even higher) are most consistent with the microeconomic evidence regarding the size

and frequency of individual price changes. One observes (from Figure 2) that this size

of information costs implies quite different dynamics of price adjustment than those

of a standard (full-information) Ss model. Indeed, the hazard function is predicted

to be quite flat, except in the case of quite large negative values of the normalized

price (“price gaps” more negative than -.20). This suggests that the real effects of

nominal disturbances under a realistic calibration may be closer to the predictions of

the Calvo model than those of standard SDP models. I examine this question further

in the next section.

36Actually, they note a small decline in the hazard from the one-month duration to durations of
two months or more.

37Klenow and Kryvtsov count this as a problem for standard Ss models.
38The fact that the spike is at precisely 12 months suggests that the reason is not that the

likelihood of a price review depends on elapsed time since the last review in some sectors, but rather
that in at least some sectors, there is significant seasonality of demand and/or costs; or alternatively,
that it is less costly to condition the price review decision on the month of the year than on other
sorts of information.
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4 Monetary Non-Neutrality: A Simple Approach

What are the consequences of these results for the issue raised in the introduction,

namely, whether endogenous timing of price reviews substantially reduces the real

effects of monetary disturbances, relative to the prediction of an ET model with the

same average frequency of price reviews? Because there are no aggregate shocks

(and hence no monetary disturbances, among others) in the stationary equilibrium

characterized in the previous section, the present model cannot, strictly speaking,

give an answer to this question. Of course, the model could be extended, in a fairly

straightforward way, to include aggregate nominal disturbances. But in this case,

the distribution of normalized prices would no longer be constant over time, and

the state space for each firm’s decision problem would include a description of the

current distribution Qt. For this reason, an exact model with aggregate disturbances

would involve a state space of vastly higher dimension than in the case treated above,

even if the dynamics of aggregate nominal expenditure are assumed to be extremely

simple (for example, a random walk). This means that a proper treatment of the

extension would require the introduction of approximation techniques different from

any required in this paper, and such an analysis is deferred to another study.

Nonetheless, a simple exercise using the results computed above can give an in-

dication of the degree to which the introduction of information costs changes the

conclusions with regard to monetary non-neutrality relative to those obtained from a

correspondingly parameterized full-information SDP model. Let us suppose that an

exogenous shift in the log of aggregate nominal expenditure occurs, with the conse-

quence that the normalized price of each firm i is shifted by the same amount, but

that each firm’s price-review decision is affected by this in the same way as in the

stationary equilibrium with only idiosyncratic shocks. That is, I shall assume that

each firm’s price-review decision is based on a signalling mechanism that would be

optimal under the assumption that aggregate disturbances never occur, though I am

considering the consequences of an occurrence (at least once) of such a disturbance.

While this involves a hypothesis of inattention that cannot be called fully “rational”,

the particular form of bounded rationality that is assumed may not be extremely

implausible, given that under a realistic parameterization, typical aggregate nominal

disturbances will be quite small relative to the idiosyncratic disturbances assumed in
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the calibrated model above.39

In fact, the simple exercise suffices to answer some questions about what one

should expect to occur in the case of a genuinely constrained-optimal information

structure. I consider the consequences of having each firm follow a policy that would

be optimal in the case that the aggregate disturbances had no effect on the population

distribution of normalized prices Qt.
40 But in the case of monetary neutrality, as

in the examples of Caplin and Spulber (1987) or Danziger (1999), this is true: an

aggregate nominal disturbance has no effect on Qt, even though many individual

prices do not change in response to the shock. Hence if a similar neutrality result

were to obtain in the extension of the present model to include aggregate shocks, the

approximation proposed in this section would involve no inaccuracy. It follows that

if the simple calculation shows that monetary neutrality does not obtain despite the

endogeneity of the timing of price reviews, one can be certain that this would also be

true of a model with a genuinely constrained-optimal information structure, though

the degree of non-neutrality might well be different in the more sophisticated model.

Moreover, one can be fairly sure about the sign of the bias resulting from the

simplifying assumption. In the case of a parameterization of the model of monopo-

listic competition that (as here) implies strategic complementarity among the pricing

decisions of firms, the fact that firms are assumed to behave in a way that would

be optimal if the nominal disturbance did not change the distribution of other firms’

normalized prices — when in fact other firms’ normalized prices are lowered (on aver-

age) by an increase in aggregate nominal expenditure — means that we are neglecting

a reason why it should be optimal for firms to be less inclined to raise their prices

in response to an increase in aggregate expenditure than is indicated by the simple

calculation here. Hence the simple calculation (which, in essence, abstracts from the

effects of strategic complementarity) is surely biased in the direction of indicating

39Alternatively, the results presented in this section can be interpreted as optimal behavior under
the assumption that each firm’s objective is given by (1.1) with a period profit function given by (2.5),
even if this form of objective can no longer be exactly justified by the microeconomic foundations
proposed in section 2.

40To be precise, the policy would be optimal if the parameter σz is set to reflect the standard
deviation of innovations in the factor mt due to both idiosyncratic and aggregate disturbances, and
not just the innovations in the firm-specific factor log At(i). But since most of the variance of the
innovations in mt would be due to the idiosyncratic factor in any event, this correction to the above
characterization of the optimal stationary policy would be a very small one.
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more complete adjustment of prices (and hence smaller real effects) than would occur

in the more sophisticated model, under a given parameterization.

Finally, while ignoring the way in which the dynamics of the aggregate distribution

of normalized prices should affect the individual firm’s decision problem introduces

a bias into our estimate of the degree of monetary non-neutrality, it is not obvious

that it should bias our conclusions about the degree to which the Calvo model (with

its exogenous timing of price reviews) under-predicts the effective flexibility of prices.

For abstracting from the consequences of strategic complementarity also biases the

conclusions obtained with regard to monetary neutrality in the case of the Calvo

model.41

Thus in the exercise considered here, I suppose that each firm’s price-review policy

continues to be described by the pair Π ≡ (Λ, q∗) that represent a stationary optimal

policy in the case that only idiosyncratic disturbances exist, but I replace the law of

motion (1.3) with

qt+1(i) = qt(i) + zt+1(i)− νt+1,

where zt+1(i) is drawn independently for each firm from the distribution g(z) as

before, but the additional term νt+1 represents an unexpected permanent change in

log Pt+1Yt+1 relative to the value of log PtYt. The question that we wish to address is

the extent to which such an aggregate shock changes the average level of prices as

opposed to aggregate real activity.

A quantity of interest is therefore

h(ν) ≡ Ei[∆pt+1(i)|νt+1 = ν],

the average price increase resulting from an innovation of size ν in aggregate nominal

expenditure. I assume that the population distribution of values of qt+1(i) prior to

the aggregate shock is given by the stationary distribution Q̄ computed above for the

case in which only idiosyncratic shocks exist.

There are two simple benchmarks with which it is useful to compare the function

h(ν) obtained for the model with information-constrained price review decisions. One

is the benchmark of perfect neutrality. In this case (represented, for example, by the

41The results presented below for the “Calvo model” refer to a model in which the timing of price
reviews is exogenous, but in which firms that review their prices seek to maximize the approximate
objective described by (1.1) and (2.5), rather than the correct objective for the model of monopolistic
competition with aggregate disturbances.
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Figure 6: The function h(ν), for alternative values of θ. The dashed line on the

diagonal shows the benchmark of perfect neutrality.

SDP models of Caplin and Spulber or Danziger), h(ν) = ν, a straight line with a

slope of 1. Another useful benchmark is the prediction of the Calvo model of price

adjustment, when calibrated so as to imply an average frequency of price change

equal to the one that is actually observed, Λ̄. In this case, h(ν) = Λ̄ν, a straight line

with a slope Λ̄ < 1.42

Figure 6 plots the function h(ν), for each of the several possible values of θ con-

sidered in Table 1. The figure also plots the benchmark of full neutrality (shown as

a dashed line on the diagonal).43 One observes that in all cases, there is less than

full immediate adjustment of prices to a purely monetary shock, in the case of small

shocks (0 < h(ν) < ν for small ν > 0, and similarly ν < h(ν) < 0 for small ν < 0).

42For each firm i that reviews its price in period t + 1, the log price change is equal to dt+1(i) ≡
q∗ − qt(i) − zt+1(i) + νt+1, where here qt(i) means the firm’s normalized price after any period t

preview. In the Calvo model, a fraction Λ̄ of the firms review their prices, and these represent a
uniform sample from the population of firms, so that the mean log price change is Λ̄Eidt+1(i). The
Calvo model further implies that Eiqt(i) = q∗, so that Eidt+1(i) = νt+1.

43The Calvo benchmark cannot be plotted as any single line in this figure, as it depends on the
value of Λ̄, and the value of Λ̄ is different for the different values of θ, as shown in Table 5.
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Figure 7: A closer view of the function h(ν), for the case θ = 0. The dashed line

shows the prediction of the Calvo model for purposes of comparison.

However, there is greater proportional adjustment to larger shocks, and in fact in

each case the graph of h(ν) eventually approaches the diagonal (the benchmark of

full neutrality) for large enough positive shocks. The size of shocks required for this

to occur, though, is greater the larger is θ. There is also an evident asymmetry in the

responses to large shocks, in the case of finite positive values of θ; there need not be

a full immediate adjustment of the average price to the nominal disturbance even in

the case of very large negative shocks.44 This is because in the model of monopolistic

competition proposed above, losses are bounded no matter how much too high one’s

price may be, whereas unbounded losses are possible in the case of a price that is too

low.

Even in the case of shocks of a magnitude that does not result in full adjustment

44Of course, it is hard to be sure how much weight to attach to this result, given that the
approximation involved in neglecting the effects of the aggregate shock on the population distribution
of normalized prices (when deriving the price-review policies of the individual firms) is particularly
unappealing in the case of a very large negative shock.
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in either case, a positive shock results in more nearly complete price adjustment,

on average, than does a negative shock of the same size. This is a direct result of

the asymmetry of the optimal hazard function, already noted in Figure 3. (Because

firms with prices that are too low are more likely to immediately adjust their prices

than firms with prices that are too high, more adjustment occurs immediately in

response to a positive shock than to a negative shock.) The result implies, in turn,

that the effects of a contraction of nominal aggregate demand on real activity will be

greater than the effects of an expansion of nominal aggregate demand by the same

number of percentage points; for more of the positive demand disturbance will be

dissipated in an immediate increase in prices than occurs in the case of a negative

disturbance. This conclusion, of course, echoes a feature often found in old-fashioned

Keynesian models, which assumed that prices (or wages) were “downwardly rigid” but

not upwardly rigid to the same extent. The present model justifies similar behavior

as a consequence of optimization; but the reason here is not any resistance to price

declines — instead, firms are more worried about allowing their prices to remain too

low than they are about allowing them to remain too high.

Even in the case of small shocks, while there is not full adjustment to monetary

shocks in the month of the shock, the average price increase is many times larger

than would be predicted by the Calvo model, in the case of sufficiently small values

of θ. Figure 7 shows a magnified view of the graph of h(ν) for small values of ν, in

the case θ = 0, with the prediction of the Calvo model also shown by a dashed line.

The slope of the curve h(ν) near the origin is several times greater than Λ̄, the slope

predicted by the Calvo model. This confirms the finding of authors such as Golosov

and Lucas (2007) about the consequences of SDP under full information.

However, for larger values of θ, the Calvo model provides quite a good approxima-

tion, in the case of small enough shocks. Figure 8 shows a similarly magnified view

of the graph of h(ν) in the case θ = 5. One observes that the prediction of the Calvo

model is quite accurate,45 for shocks of the magnitude shown in the figure. In fact,

these shocks (up to half a percent innovation in the long-run forecast of the price

level, in a single month) are quite large relative to typical nominal disturbances in

an economy like that of the US. So while the Calvo model is much less accurate in

45Note that this is a differently parameterized Calvo model than in Figure 7: the frequency of
price review in the Calvo model is adjusted to match the higher average frequency of price reviews
Λ̄ in the model with θ = 5.
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Figure 8: A closer view of the function h(ν), for the case θ = 5. The dashed line

again shows the prediction of the Calvo model.

its predictions about large nominal disturbances (especially, large positive shocks),

as shown in Figure 6, in the case that θ = 5 one should expect its predictions to be

reasonably accurate in the case of most of the shocks that occur with any frequency.

For even larger values of θ, the approximation is even better, and the range over

which the approximation is accurate extends to even larger shock sizes.

One way of measuring the extent to which the inaccuracy of the Calvo approxima-

tion matters in general is by considering the slope of a linear regression of the log price

change on the size of the current aggregate shock. Suppose that aggregate nominal

disturbances νt+1 occurs in each of a large number of periods, drawn independently

each time from a distribution N(0, σ2
ν), and that each time price-review decisions are

made in the way assumed above. Suppose that we collect data on individual price

changes in each of these periods, and then approximate the function h(ν) by a linear

equation,

∆pt+1(i) = α + βνt+1 + εt+1(i),

where the residual is assumed to have mean zero and to be orthogonal to the aggregate

48



Table 5: The coefficient β from a regression of log price changes on the current

monetary shock, for alternative values of θ. The value of Λ̄ implied by the stationary

optimal policy in each case is shown for purposes of comparison. (Both quantities

reported in percentage points.)

θ Λ̄ β

0 10.0 45.3

.05 9.0 40.3

.5 10.4 25.2

5 18.4 22.0

50 25.0 25.5

∞ 30.1 30.1

shock.46

The values of β obtained from simulations of the stationary optimal policies cor-

responding to the different values of θ are given in Table 5, which also reports the

values of Λ̄ implied by each of these policies. (In these simulations I use the value

σν = .001. This corresponds to a standard deviation for quarterly innovations in the

long-run price level of approximately 17 basis points.) One observes that the Calvo

model under-predicts the flexibility of prices very substantially in the full-information

case (θ = 0), which is to say, in a standard SDP model of the kind studied by Golosov

and Lucas (2007). For the parameter values assumed here, I find that the correct

linear response coefficient is more than 4.5 times as large as the one predicted by

the Calvo model. But in the baseline case (θ = 5), the correct coefficient is only

20 percent larger than the prediction of the Calvo model. The Calvo model is even

more accurate if information costs are larger; for example, if θ = 50, it under-predicts

the immediate price response by only 2 percent. In the limiting case of unboundedly

large θ, the Calvo model is perfectly accurate.

Further work will be required to determine the degree to which similar conclusions

obtain if one allows firms to be informed to an optimal extent about both idiosyncratic

and aggregate disturbances, taking into account the ex ante joint distribution of both

46Here I imagine that and estimate the coefficients α and β by ordinary least squares. Under the
full neutrality benchmark, β would equal 1; the Calvo model predicts that β should equal Λ̄.
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kinds of disturbances. However, the convergence of the optimal hazard function to a

constant function (i.e., the prediction of an appropriately calibrated Calvo model) as

θ is made unboundedly large should still occur, even in the case of a much larger state

space, for the same reason that it occurs here in the model with only idiosyncratic

shocks. Hence one expects to find, even in a more sophisticated model, that the

Calvo model becomes a good approximation in the case of high enough values of θ

(especially for small aggregate disturbances); the only question is the exact rate at

which this convergence occurs.

5 Conclusion

I have presented a model in the timing of price changes results from optimizing be-

havior on the part of firms subject to a fixed cost of conducting a review of existing

pricing policy. Standard models of state-dependent pricing, however, are generalized

by assuming that a firm’s policy with regard to the timing of price reviews is designed

to economize on the cost of being continuously informed about market conditions dur-

ing the intervals between full-scale reviews. The introduction of interim information

costs softens the distinction, emphasized in prior contributions, between the dynamics

of price adjustment in models with exogenous timing of price adjustments and models

with state-dependent pricing, by attenuating both the “selection effect” emphasized

by Golosov and Lucas (2007) and the relative importance of the “extensive margin

of price adjustment” emphasized by Caballero and Engel (2007). In the limiting

case of sufficiently large interim information costs, the predicted dynamics of price

adjustment are identical to those of the Calvo (1983) model of staggered price-setting.

At a minimum, this result means that there is no reason to regard the predictions

of (full-information) “menu cost” models as more likely to be accurate than the

predictions of the Calvo model, simply on the ground that the former models have

firmer foundations in optimizing behavior. Both models appear as nested (extreme)

cases of the more general model presented here, so that the question of which special

case is more reliable as an approximation is a quantitative matter, rather than one

that can be settled simply on the basis of the appeal of optimizing models.

The illustrative calculations presented in section 4 furthermore suggest that a

model with interim information costs of moderate size may imply aggregate behavior

fairly similar to that predicted by the Calvo model, and quite different from that pre-
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dicted by a full-information menu-cost model. Further work is needed to investigate

to what extent this conclusion obtains when the endogenous information structure

takes account of the ex ante possibility of aggregate as well as idiosyncratic shocks.

But these calculations show that it is possible for predictions of the Calvo model to

be fairly accurate for many purposes — predicting the aggregate responses to dis-

turbances of the magnitude that occur at most times — in a model that does not

possess certain features of the Calvo model that are often argued to be implausible.

In particular, the model with a finite positive interim cost of information does not

imply that prices are equally unlikely to be adjusted even when a given firm’s price

happens over time to have become far out of line with profit maximization, or even

when very large disturbances affect the economy. However, because firms are in these

situations only very infrequently, the predictions of the Calvo model may nonetheless

be relatively accurate much of the time.

It is important to note, however, that the implications of the present model are

likely to differ from those of the Calvo model in important respects, even if a rela-

tively large value of θ is judged to be empirically realistic. First, even if the price

adjustments predicted by this model are similar to those of the Calvo model under

all but extreme circumstances, the model’s predictions under extreme circumstances

may be of disproportionate importance for calculations of the welfare consequences

of alternative stabilization policies, as argued by Kiley (2002) and Paustian (2005).

And second, even in the limit of an unboundedly large value of θ (so that no interim

information is available at all), the present model’s predictions differ from those of

the Calvo model in at least one important respect: the equilibrium frequency of price

review Λ̄ is endogenously determined, rather than being given exogenously. In partic-

ular, the value of Λ̄ is unlikely to be policy-invariant; for example, one would expect it

to be higher in the case of a higher average inflation rate, as in the generalized Calvo

model of Levin and Yun (2007). For this reason as well, the present model may well

have different implications than the Calvo model for the welfare ranking of alternative

policy rules, as in the analysis of Levin and Yun. This is another important topic for

further study.
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