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Greater is the merit of the person who facilitates
the accomplishments of others than of the person
who accomplishes himself.

Rabbi Eliezer

Babylonian Talmud, Tractate Baba Bathra 9a

1 Introduction

Although the production of ideas occupies a central role in modern theories of economic

growth (Romer 1990), the creative process remains a black box for economists (Weitzman

1998 and Jones 2005 are notable exceptions). How do innovators actually generate new

ideas? Increasingly, discoveries result from the voluntary sharing of knowledge through

collaboration, rather than individual efforts (Wuchty et al. 2007). The growth of scientific

collaboration has important implications for the optimal allocation of public R&D funds,

the apportionment of credit amongst scientists, the formation of scientific reputations, and

ultimately the design of research incentives that foster innovation and continued economic

growth. Yet, we know surprisingly little about the role of collaboration among peers as a

mechanism to spur the creation of new technological or scientific knowledge.

This paucity of evidence is largely due to the empirical challenges inherent to this line

of inquiry. Individual-level data on the contributors to a particular innovation are generally

unavailable. Furthermore, the formation of collaborative teams is the outcome of a purposeful

matching process (Mairesse and Turner 2005; Fafchamps et al. 2008), making it difficult

to uncover causal effects. The design of our study tackles both of these challenges. To

relax the data constraint, we focus on the academic life sciences, where a rich tradition

of coauthorship provides an extensive paper trail of collaboration histories and research

output. To overcome the endogeneity of the collaboration decision, we make use of the quasi-

experimental variation in the structure of coauthorship networks induced by the premature

death of active “superstar” scientists.1

1Other economists have used the death of prominent individuals as a source of exogenous variation in
leadership, whether in the context of business firms (Bennedsen et al. 2008), or even entire countries (Jones
and Olken 2005). To our knowledge, however, we are the first to use this strategy to estimate the impact
of scientific collaboration. Oettl (2008) builds on our approach by incorporating helpfulness as implied
by acknowledgements to generate a list of eminent immunologists. Aizenman and Kletzer (2008) study
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Specifically, we analyze changes in the research output of collaborators for 161 eminent

scientists who die prematurely. We assess eminence based on the combination of seven

criteria, and our procedure is flexible enough to capture established scientists with extraor-

dinary career achievement, as well as younger scientists exhibiting sudden bursts of pro-

ductivity. Using the AAMC Faculty Roster as an input — a comprehensive, longitudinal,

matched employee-employer database pertaining to 222,555 faculty members in all U.S. med-

ical schools between 1975 and 2006, we construct a panel dataset of 8,220 collaborator-star

dyads, and we examine how coauthors’ scientific output — as measured by publications,

citations, and NIH grants — changes when the superstar passes away.2

The study’s focus on the scientific elite can be justified both on substantive and pragmatic

grounds. The distribution of publications, funding, and citations at the individual level is

extremely skewed (Lotka 1926; de Solla Price 1963) and only a tiny minority of scientists

contribute through their published research to the advancement of science (Cole and Cole

1972). Stars also leave behind a corpus of work and colleagues with a stake in the preservation

of their legacy, making it possible to trace back their careers, from humble beginnings to

wide recognition and acclaim.

Our results reveal a 5 to 10% decrease in the quality-adjusted publication output of

coauthors in response to the sudden and unexpected loss of a superstar. When the superstar

death is anticipated and thus less plausibly exogenous, our results are weaker but generally

consistent with the effects due to unanticipated losses. Furthermore, the impact of star death

extends across coauthors of varying talent — only those who had achieved wide recognition

at the time of death appear immune to the effect of superstar extinction. We also show that

the magnitude of the effect is increasing in the star’s scientific eminence at the time of death.

The importance of learning through on-the-job social interactions can be traced back to

the talmudic era (as evidenced by the epigraph to this paper), as well as canonical writings

the citation “afterlife” of 16 economists who die prematurely, shedding light on the survival of scientific
reputation.

2To be clear, our focus is on faculty peers rather than trainees, and thus our results should be viewed as
capturing inter-laboratory spillovers rather than mentorship effects. For evidence on the latter, see Azoulay
et al. (2008).
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by Alfred Marshall (1890) and Robert Lucas (1988).3 Should the effects of exposure to

superstar talent be interpreted as laying bare the presence (or in our case, absence) of

knowledge spillovers? Evidence of adverse coauthor outcomes is not sufficient to seal the

case. Since we identify 51 coauthors per superstar on average, we exploit rich variation in

the characteristics of collaborative relationships to assess the relative importance of several

mechanisms which could plausibly account for our main finding.

One intuitive story centers around skill substitution within ongoing collaborative teams.

However, we find that recent collaborations — for which this concern is presumably most

relevant — are not driving the effect, a fact at odds with this class of explanations. A

jaundiced view of the academic reward system provides the backdrop for a second broad

class of stories. Their common thread is that collaborating with superstars deepens social

connections that might make researchers more productive in ways that have little to do with

scientific knowledge, for example by connecting coauthors to funding resources, editorial

goodwill, or potential coauthors. Yet, we find no differential impact on co-located coauthors,

or on coauthors of stars well-connected to the NIH funding apparatus. These findings do

not jibe with explanations stressing the gatekeeping role of eminent scientists.

Rather, the effects of superstar extinction appear to be driven by the loss of an irre-

placeable source of ideas. We find that coauthors proximate to the star in intellectual space

experience a sharper decline in output, relative to coauthors who work on less related topics.

We also find that former trainees — who may be more vested in the star’s domain of exper-

tise — suffer a loss twice as large in magnitude, relative to that experienced by non-trainees.

Together, these results paint a picture of an invisible college of coauthors bound together

by interests in a fairly specific scientific area, which suffers a permanent and reverberating

intellectual loss when it loses its star.

The rest of the paper proceeds as follows. In the next section, we describe the construc-

tion of the sample of matched superstars and collaborators. Section 3 provides descriptive

3A burgeoning empirical literature examines the influence of peer effects on shirking behavior in the
workplace (Costa and Khan 2003; Bandiera et al. 2005; Mas and Moretti 2009). Since “exposure” does not
involve the transmission of knowledge, these spillovers are conceptually distinct from those that concern us
here.
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statistics at the coauthor and dyad level. We lay out the econometric methodology and

report the results in section 4. Section 5 concludes.

2 Setting, Data, and Matched Sample Construction

The setting for our empirical work is the academic life sciences. This sector is an important

one to study for several reasons. First, there are large public subsidies for biomedical research

in the United States. With an annual budget of $29.5 billion in 2008, support for the NIH

dwarfs that of other national funding agencies in developed countries (Cech 2005). Deepening

our understanding of knowledge production in this sector will allow us to better assess the

return to these public investments.

Second, technological change has been enormously important in the growth of the health

care economy, which accounts for roughly 15% of US GDP. Much biomedical innovation is

science-based (Henderson et al. 1999), and interactions between academic researchers and

their counterparts in industry appear to be an important determinant of research produc-

tivity in the pharmaceutical industry (Cockburn and Henderson 1998; Zucker et al. 1998).

Third, academic scientists are generally paid through soft money contracts. Salaries

depend on the amount of grant revenue raised by faculty, thus providing researchers with

high-powered incentives to remain productive even after they secure a tenured position.

Lastly, introspective accounts by practicing scientists indicate that collaboration plays a

large role in both the creation and diffusion of new ideas (Reese 2004). Knowledge and tech-

niques often remain partially tacit until long after their initial discovery, and are transmitted

within the confines of tightly-knit research teams (Zucker and Darby 2008).

We now provide a detailed description of the process through which the matched coau-

thor/superstar data used in the econometric analysis was assembled. In order, we describe

(1) the criteria used to select our sample of “extinct” superstar life scientists, along with basic

demographic information; (2) the universe of potential colleagues for these superstars; and

(3) the matching procedure implemented to identify colleagues from coauthorship records.
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2.1 Superstar Sample

Our basic approach is to rely on the death of “superstar” scientists to estimate the magnitude

of knowledge spillovers onto colleagues. From a practical standpoint, it is more feasible —

though still surprisingly difficult — to trace back the careers of eminent scientists than to

perform a similar exercise for less eminent ones. We began by delineating a set of 8,963

“elite” life scientists (roughly 5% of the entire relevant labor market) who are so classified if

they satisfy at least one of the following seven criteria for scientific achievement:

• Highly Funded Scientists. Our first data source is the Consolidated Grant/Applicant

File (CGAF) from the U.S. National Institutes of Health (NIH). This dataset records

information about grants awarded to extramural researchers funded by the NIH since

1938. Using the CGAF and focusing only on direct costs associated with research

grants, we compute individual cumulative totals for the years 1977 to 2006, deflating

the earlier years by the biomedical research producer price index. We also recompute

these totals excluding large center grants that usually fund groups of investigators

(M01 and P01 grants). Scientists whose totals lie in the top ventile (i.e., above the

95th percentile) of either distribution constitute our first group of superstars. In this

group, the least well-funded investigator garnered $10.5 million in career NIH funding,

and the most well-funded $462.6 million.4

• Highly Cited Scientists. Despite the preeminent role of the NIH in the funding of

public biomedical research, the above indicator of “superstardom” biases the sample

towards scientists conducting relatively expensive research. We complement this first

group with a second composed of highly cited scientists identified by the Institute for

Scientific Information. A Highly Cited listing means that an individual was among the

4We perform a similar exercise for scientists employed by the intramural campus of the NIH. These
scientists are not eligible to receive extramural funds, but the NIH keeps records of the number of “internal
projects” each intramural scientist leads. We include in the elite sample the top ventile of intramural scientists
according to this metric.
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250 most cited researchers for their published articles between 1981 and 1999, within

a broad scientific field.5

• Top Patenters. We add to these groups academic life scientists who belong in the

top percentile of the patent distribution among academics — those who were granted

17 patents or more between 1976 and 2004.

• Members of the National Academy of Sciences. Finally, we add to these groups

academic life scientists who were elected to the National Academy of Science between

1975 and 2007.

These four criteria will tend to select seasoned scientists, since they correspond to extraor-

dinary achievement over an entire scientific career. We combine these measures with three

others that capture individuals who show great promise at the early and middle stages of

their scientific careers, whether or not these bursts of productivity endure for long periods

of time.

• MERIT Awardees of the NIH. Initiated in the mid-1980s, the MERIT Award

program extends funding for up to 5 years (but typically 3 years) to a select number

of NIH-funded investigators “who have demonstrated superior competence, outstand-

ing productivity during their previous research endeavors and are leaders in their field

with paradigm-shifting ideas.” The specific details governing selection vary across the

component institutes of the NIH, but the essential feature of the program is that only

researchers holding an R01 grant in its second or later cycle are eligible. Further, the

application must be scored in the top percentile in a given funding cycle.

• Former and current Howard Hughes Medical Investigators. Every three years,

the Howard Hughes Medical Institute selects a small cohort of mid-career biomedical

scientists with the potential to revolutionize their respective subfields. Once selected,

HHMIs continue to be based at their institutions, typically leading a research group

5The relevant scientific fields in the life sciences are microbiology, biochemistry, psychiatry/psychology,
neuroscience, molecular biology & genetics, immunology, pharmacology, and clinical medicine.
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of 10 to 25 students, postdoctoral associates and technicians. Their appointment is

reviewed every five years, based solely on their most important contributions during

the cycle.6

• Early career prize winners. We also included winners of the Pew, Searle, Beckman,

Rita Allen, and Packard scholarships for the years 1981 through 2000. Every year, these

charitable foundations provide seed funding to between 20 and 40 young academic life

scientists. These scholarships are the most prestigious accolades that young researchers

can receive in the first two years of their careers as independent investigators.

Many among these 8,963 scientists achieve elite status according to more than one metric.

We trace back their careers from the time they obtain their first position as independent

investigators (typically after a postdoctoral fellowship) until 2006. We do so through a com-

bination of curriculum vitæs, NIH biosketches, Who’s Who profiles, accolades/obituaries in

medical journals, National Academy of Sciences biographical memoirs, and Google searches.

For each one of these individuals, we record employment history, degree held, date of de-

gree, gender, and up to three departmental affiliations. We also cross-reference the list with

alternative measures of scientific eminence. For example, the elite subsample contains every

U.S.-based Nobel Prize winner in Medicine and Physiology since 1975, and a plurality of the

Nobel Prize winners in Chemistry over the same time period.

Though we apply the convenient moniker of “superstar” to the entire group, it should be

clear that there is substantial heterogeneity in intellectual stature within the elite sample.

This variation provides a unique opportunity to examine whether the effects we estimate

correspond to vertical effects (spillovers from the most talented agents onto those who are

less distinguished) rather than peer effects (spillovers between agents of roughly comparable

stature).

The 161 scientists who are the focus of this paper constitute a subset of this larger pool

of 8,963. We impose several additional criteria to derive the final list. First, the scientist’s

death must intervene between 1982 and 2003. This will enable us to observe at least 3 years’

6See Azoulay et al. (2008) for more details and an evaluation of this program.
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worth of scientific output for every colleague after the death of their superstar collaborator.

Second, they must be 67 years of age or less at the time of their passing (we will explore the

sensitivity of our results to this age cutoff later). Finally, we require evidence, in the form of

published articles and/or NIH grants, that these scientists have not entered a pre-retirement

phase of their career prior to the time of death. This screen is somewhat subjective, but

we will validate below our contention that the final set is limited to scientists that are

“research-active” at the time of their death.

Appendix Tables 1A and 1B present individual-level details on the extinct superstar

sample, broken down by sudden and anticipated deaths, respectively. Heart attack is the

most frequent cause of sudden death, while the vast majority of anticipated deaths are due to

cancer. Of course, the case for exogeneity is weakest in the anticipated case, since coauthors

might alter their collaboration strategies even before the superstar’s passing.7

Table 1A provides descriptive statistics for the superstar sample. The average star re-

ceived his degree in 1963 (min.=1940; max.=1986), died at 58 years old (min.=38; max.=67)

and worked with 51 coauthors during his lifetime (min.=5; max.=177; the histogram for the

distribution of this variable can be found in Figure 2). On the output side, the stars each

received an average of roughly 9.5 million dollars in NIH grants (excluding center grants;

min.=$0; max.=$65 million), and published 156 papers (min.=20; max.=528) that garnered

9,041 citations (min.=282; max.=34,625) as of early 2008.8 Though we do not display sep-

arately these descriptive statistics for the scientists whose deaths were anticipated and for

those whose deaths were sudden, the two subsamples are virtually identical.

Table 1B provides additional information about the extinct superstar sample. The sam-

ple is approximately 10% female and 84% US-born. 45% of our stars hold an MD degree,

42% a PhD, and the remainder hold dual MD/PhD degrees. Keeping in mind that our met-

7Most of the anticipated deaths are due to conditions with relatively short life expectancies; those with
longer ones are not necessarily viewed as terminal until the final stages. Six scientists who died from a
neurodegenerative disease constitute an exception. They were included in the sample because their obituaries
implied they had remained actively engaged in research until a short period before their death. We verified
that our results are robust to the omission of these six superstars.

8We also compute the h index due to Hirsch (2005), which is commonly used by bibliometricians: h is
the highest integer such that an individual has h publications cited at least h times. In our sample, h is
approximately 50 (min.=9; max.=111).
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rics of superstardom are not mutually exclusive, roughly 6.8% are Howard Hughes Medical

Investigators, 31.7% are MERIT awardees, and 20.5% are members of the National Academy

of Sciences.

2.2 The Universe of Potential Colleagues

Information about the superstars’ colleagues stems from the Faculty Roster of the Association

of American Medical Colleges, to which we secured licensed access for the years 1975 through

2006. The roster is an annual census of all U.S. medical school faculty in which each faculty

is linked across yearly cross-sections by a unique identifier.9 When all cross-sections are

pooled, we obtain a matched employee/employer panel dataset. For each of the 222,478

faculty members that appear in the roster, we know the full name, the type of degrees

received and the years they were awarded, gender, up to two departments, and medical

school affiliation. An important implication of our reliance on the AAMC Faculty Roster is

that the interactions we can observe in the data take place between faculty members, rather

than between faculty members and trainees (graduate students or post-doctoral fellows).10

Because the roster only lists medical school faculty, however, it is not a complete census of

the academic life sciences. For instance, it does not list information for faculty at institutions

such as MIT, University of California at Berkeley, Rockefeller University, the Salk Institute,

or the Bethesda campus of the NIH; and it also ignores faculty members in Arts and Sciences

departments — such as biology and chemistry — if they do not hold joint appointments at

a local medical school.11

9Although AAMC does not collect data from each medical school with a fixed due date. Instead, it
collects data on a rolling basis, with each medical school submitting on a time frame that best meets its
reporting needs. Nearly all medical schools report once a year, while many medical schools update once a
semester.

10We do not mean to suggest that mentor effects — within-lab interactions — are unimportant or less
worthy of study. But the study of mentor imprinting effects will require alternative empirical approaches
and data sources (see Azoulay et al. [2008] for a relevant example). To the extent that former trainees go on
to secure faculty positions, they will be captured by our procedure even if the date of coauthorship predates
the start of their independent career.

11This limitation is less important than might appear at first glance. First, we have no reason to think
that colleagues located in these institutions differ in substantive ways from those based in medical schools.
Second, all our analyses focus on changes in research productivity over time for a given scientist. Therefore,
the limited coverage is an issue solely for the small number of faculty who transition in and out of medical
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Our interest lies in assessing the benefits of exposure to superstar talent that accrue

through collaboration. Therefore, we focus on the one-degree, egocentric coauthorship net-

work for the sample of 161 extinct superstars. An alternative approach to identify potential

recipients of spillovers is to rely on shared departmental affiliation (e.g., Kim et al. 2006).

The use of departmental boundaries to identify “relevant” peers is fraught with interpretive

difficulties in our setting. First, department affiliations are not fixed over time for most fac-

ulty — this is apparent in our sample of superstars, who frequently switch departments when

they hop from one employer to another. It is also reflected in the fact that many collabora-

tions span departmental boundaries. Second, new departments were created during the time

period we study (e.g., neuroscience, genetics, or biomedical engineering), while others were

phased out or dramatically shrunk (e.g., anatomy). Third, the merging or survival of many

departments is often a reflection of internal political struggles, rather than characteristics

of the research conducted within them. For example, in some medical schools, orthope-

dic surgeons are housed in a separate department while in others, they are part of a large

surgery department; in the basic sciences, many faculty would feel equally at home in cell

biology, microbiology, or immunology. Finally, three large departments (internal medicine,

pediatrics, and surgery) tend to account for a large proportion of medical school employ-

ment, but their size masks enormous heterogeneity (e.g., neurosurgeons vs. cardiothoracic

surgeons; endocrinologists vs. infectious diseases specialists, etc.).

From a substantive standpoint, the ways in which scientists conceive of their epistemic

community reflects the advanced degree of specialization that is prevalent in most fields of the

life sciences. A physiologist working on protein trafficking between intracellular organelles

will not necessarily be influenced by developments in physiology writ large, but will certainly

follow closely the research of those working in his/her specific area of inquiry. In our setting,

the set of past and present coauthors of a prominent scientist represents a reasonable first-

order approximation of the relevant intellectual community. Since not all coauthors share

schools from (or to) other types of research employment. For these faculty, we were successful in filling career
gaps by combining the AAMC Roster with the NIH data.
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identical attachment to the same topic area, we will also measure distance in intellectual

space to refine our definition of coauthors.

2.3 Coauthor Matching

To identify coauthors, we have developed a software program, the Stars/Colleague Generator,

or S/CGen.12 The source of the publication data is PubMED, an online resource from the

National Library of Medicine that provides fast, free, and reliable access to the biomedical

research literature. In a first step, S/CGen downloads from the internet the entire set

of English-language articles for a superstar, provided they are not letters to the editor,

comments, or other “atypical” articles. From this set of publications, S/CGen strips out

the list of coauthors, eliminates duplicate names, matches each coauthor with the Faculty

Roster, and stores the identifier of every coauthor for whom a match is found. In a final

step, the software queries PubMED for each validated coauthor, and generates publication

counts as well as coauthorship variables for each superstar/colleague dyad, in each year. In

Appendix I, we provide a great deal of detail on the matching procedure, how we guard

against the inclusion of spurious coauthors, and how we deal with measurement error when

tallying the publication output of coauthors with common names.

2.4 From One to Two Levels of Difference:
Control Superstars and Control Coauthors

Our original research design called for identifying the effect of superstar exposure by examin-

ing changes in coauthor research output after the superstar passes away. With a single level

of difference, we rely on the coauthors of stars who have not yet died as an implicit control

group to pin down life cycle and calendar year effects. This will provide estimates that can be

given a causal interpretation under fairly general assumptions regarding the exogeneity of the

12The software can be used by other researchers under a open-source (GNU) license. It can be downloaded,
and detailed specifications accessed, from the SC/Gen web site http://stellman-greene.com/SCGen/.
Note that the S/CGen takes the faculty roster as an input; we are not authorized to share this data with
third-parties. However, it can be licensed (for a fee) from AAMC, provided a local IRB gives its approval
and a confidentiality agreement protects the anonymity of individual faculty members.
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death event. However, the simple before/after contrast might be misleading if collaborations

with superstars are subject to idiosyncratic dynamic patterns. Happenstance might yield a

sample of stars clustered in decaying scientific fields. More plausibly, collaborations might

be subject to specific life-cycle patterns, with their productive potential first increasing over

time, eventually peaking, and thereafter slowly declining. With a single level of difference,

this dyad-specific, time-varying omitted variable will not be fully captured by collaborator

age controls. The standard approach to this type of estimation challenge is to rely on both

a treatment and a control group, and to estimate the effect using a difference-in-differences

(hereafter DD) framework. This is the approach we implement here, though the construc-

tion of the control group of superstar/coauthor dyads faces two serious obstacles, the first

practical, the second substantive.

From a practical standpoint, the most natural procedure would be to match — using

a set of observable dyad-level variables — the treatment dyads with control dyads formed

by superstar scientists who do not die and their coauthors. In practice, millions of such

dyads exist, and the task of culling from this vast universe a relatively small number to

serve as controls is computationally non-trivial. We resolve the issue by proceeding in two

steps. First, we select a set of 161 control superstars from among our elite sample of 8,963,

by matching on star demographic and time-varying observables. Second, we add to the

estimation samples all the dyads formed by these control stars and their coauthors. We

provide details on the procedure in Appendix II.

From a substantive standpoint, the members of a valid control group should be unaffected

by the treatment of interest. This is an ideal that we can only hope to approximate in

this setting. No scientist is an island. The set of coauthors for our 8,963 elite scientists

comprises 65% of the labor market, and the remaining 35% corresponds in large part to

clinicians who hold faculty appointments but do not publish regularly. Furthermore, the

death of a prominent scientist could affect the productivity of non-coauthors if meaningful

interactions take place in “ideas space.” As a result, we take three pragmatic steps to

avoid obvious sources of contamination. First, when matching on observables to recruit

control superstars, we do so in the subsample of 3,979 elite scientists who do not have any

12



coauthorship tie with any of the 161 extinct superstars. Second, the list of observables we

rely on for matching does not include variables that could be correlated with scientific field,

such as department. Third, when estimating the treatment effects in the DD framework,

we eliminate from the estimation sample (a) treatment coauthors who also collaborate with

control superstars; and (b) control coauthors who also collaborate with treatment superstars.

As a result, the minimum path length in the coauthorship network between a control coauthor

and a treated coauthor is 3 if we constrain the paths to pass through at least one of our 8,963

superstars (see Figure 1). More details are provided in Appendix II.

3 Descriptive Statistics

It is appropriate to describe the data at two different levels — that of the individual coauthor,

and that of the superstar/coauthor dyad.

3.1 Colleague characteristics

When applied to our sample of 161 extinct superstars, S/CGen identifies 7,111 distinct

coauthors with unique PubMED names. When applied to the set of 161 + 161 = 322 extinct

and control superstars, S/CGen identifies 12,162 distinct coauthors, 2,166 (17.11%) of whom

are problematic in the sense that they collaborate with at least one extinct superstar and

one control superstar. The descriptive statistics we provide in Tables 2A, 2B, and 2C pertain

to the set of 12, 162− 2, 166 = 10, 496 coauthors we can unambiguously assign to either the

treatment or the control group.

Demographic characteristics for the coauthors are presented in Table 2A. The sample is

20% female (only 10% of the superstars are women); approximately half of all coauthors are

MDs, 40% are PhDs, and the remainder are MD/PhDs; slightly less than two-thirds serve

as a principal investigator on at least one NIH grant over the course of their careers, and a

third are affiliated with basic science departments (as opposed to clinical or public health

departments). The coauthors are about 10 years younger than the superstars on average

(1974 vs. 1964 for the year of highest degree).
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Table 2B shows that coauthors lag behind superstars in terms of publication output, but

the difference is not dramatic (92 vs. 155 articles, on average). Relative to the superstars,

their collaborators have had more time to accumulate publications, since their academic

careers were not cut short by an untimely death. Furthermore, assortative matching is

present in the market for collaborators, as reflected by the fact that 2,101 (20%) of our

10,496 coauthors belong to the elite sample of 8,963 scientists.

3.2 Dyad characteristics

The 7,111 treatment coauthors mentioned above participate in 8,220 extinct superstar-

coauthor dyads. Conversely, the 10,496 treatment and control coauthors generate 11,570

dyads (5,564 control dyads and 6,006 treatment dyads). Table 3 provides descriptive statis-

tics on these 11,570 dyads in the year of superstar extinction.13 Further, we distinguish

between variables that are inherently dyadic (e.g., co-location at time of death) from vari-

ables that characterize the coauthor at a particular point of time (e.g., NIH R01 funding at

the time of death).

Dyad-level variables. Of immediate interest is the distribution of coauthorship intensity

at the dyad level. While the average number of coauthorships is slightly less than three,

the distribution is extremely skewed (Figure 3). We define “casual” dyads as those that

have two or fewer coauthorships with the star, “regular” dyads as those with three to ten

coauthorships, and “close” dyads as those with ten or more coauthorships. Using these

cutoffs, “regular” dyads correspond to those between the 75th and the 95th percentile of

coauthorship intensity, while “close” dyads correspond to those above the 95th percentile.

We focus next on collaboration age and recency. On average, collaborations begin 10 years

before the star’s death, and time since last coauthorship is slightly more than 8 years. In

other words, most of the collaborations in the sample do not involve active research projects

at the time of death. Recent collaborations (those that involve at least one coauthorship

13For control dyads, the year selected is the year of death for the extinct superstar who is the control
superstar’s “nearest neighbor.” See Appendix II for further details.
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in the three years preceding the passing of the superstar) map into the top quartile of

collaboration recency at the dyad level (Figure 4).

The research collaborations studied here occur between faculty members, who often run

their own labs (a conjecture reinforced by the large proportion of coauthors with independent

NIH funding). Yet, it is interesting to distinguish collaborators who trained under a superstar

(either in graduate school or during a postdoctoral fellowship) from those collaborations

initiated at a time in which both nodes in the dyad already had a faculty appointment. While

there is no roster of mentor/mentee pairs, coauthorship norms in the life sciences provide an

opportunity to identify former trainees. Specifically, we flag first-authored articles published

within a few years of receipt of the coauthor’s degree in which the superstar appears in last

position on the authorship roster.14 Using this method, we find that slightly more than 9%

of dyads involve a former trainee.

We now examine the spatial distribution of collaborations. Slightly less than a quarter

of collaborations correspond to scientists who shared an institutional affiliation at the time

of superstar extinction. Though this is not the focus of the paper, the proportion of local

collaborations has declined over time, as many previous authors have documented (e.g.,

Rosenblat and Möbius 2004). We also provide a measure of collaborators’ proximity in “ideas

space.” Every publication indexed by PubMED is tagged by a large number of descriptors,

selected from a dictionary of approximately 25,000 MeSH (Medical Subject Headings) terms.

Our measure of intellectual proximity between members of a dyad is simply the number of

unique MeSH terms which overlap in their non-coauthored publications, normalized by the

total number of MeSH terms used by the superstar’s coauthor. The time window for the

calculation is the five years that precede the passing of the superstar. The distribution of

this variable is displayed in Figure 5. Further details on its construction are provided in

Appendix III.

Finally, we create a measure of social proximity that relies not on the quantity of coau-

thored output, but on the degree of social interaction it implies. We focus on the dyads

14The purported training period runs from 3 years before graduation to 4 years after graduation for PhDs
and MD/PhDs; and from the year of graduation to 6 years after graduation for MDs.
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involving coauthors who, whenever they collaborate, find themselves in the middle of the

authorship list. Given the norms that govern the allocation of credit in the life sciences,

these coauthors are likely to share the least amount of social contact. Slightly fewer than 8%

of the dyads correspond to this situation of “accidental coauthorship” — the most tenuous

form of collaboration.

Coauthor-level variables. We mentioned above that a large number of coauthors were

themselves quite eminent, but this assessment was based on their career accomplishments.

Here, we focus specifically on their achievements as of the year of superstar extinction. 55%

of dyads include a collaborator who has served as PI on at least one NIH R01 grant when

the superstar passes away, while about 6% include a collaborator who belongs to a much

more exclusive elite: Howard Hughes Medical Investigators, members of the NAS, or MERIT

awardees. As explained in Appendix II, the coauthors of extinct superstars are slightly more

accomplished than the coauthors of control superstars (72 vs. 65 publications at the time

of death), but half of the gap reflects the deletion from the sample of coauthors associated

with both extinct and control superstars.

The estimation sample pools observations between 1975 and 2006 for the dyads described

above. The result is an unbalanced panel dataset with 216,746 dyad/year observations

(treatment dyads only) or 294,463 dyad/year observations (treatment and control dyads).

4 Results

The exposition of the econometric results proceeds in five stages. After a brief review of

methodological issues, we validate our earlier contention that the sample of extinct superstars

is composed of individuals who remained actively engaged in science at the time of their

death. Second, we provide results that pertain to the main effect of superstar exposure on

publication rates, citations, and NIH grants. Third, we use the heterogeneity within the

set of extinct superstars to ascertain whether the treatment effect is in fact a “superstar

effect,” in the sense that it would disappear if we focused instead on coauthors for a sample
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of unexceptional scientists who die. Fourth, we investigate whether some coauthors — those

of especially high or low status — are more affected by, or completely immune to, the effect

of superstar extinction. Fifth, focusing solely on publication rates, we attempt to explicate

the mechanism, or set of mechanisms, responsible for the main effect of superstar extinction.

We do so by exploring heterogeneity in the treatment effect; in practice, we interact the

post-death indicator variable below with various attributes of the superstar, colleague, and

dyad.

4.1 Econometric Considerations

Our estimating equation relates colleague j’s output in year t to characteristics of j, superstar

i, and dyad ij:

E [yjt|Xijt] = exp [β0 + β1AFTER DEATHit + f(AGEjt) + δt + γij] (1)

where y is a measure of research output, AFTER DEATH denotes an indicator variable

that switches to one the year after the superstar dies, f(AGEjt) corresponds to a flexible

function of the colleague’s career age, the δt’s stand for a full set of calendar year indicator

variables, and the γij’s correspond to dyad fixed effects, consistent with our approach to

analyze changes in j’s output following the passing of superstar i.

The dyad fixed effects control for many individual characteristics that could influence

research output, such as gender or degree. Academic incentives depend on the career stage;

given the shallow slope of post-tenure salary increases, Levin and Stephan (1991) suggest

that levels of investment in research should vary over the career life cycle. To flexibly account

for life cycle effects, we include seven indicator variables corresponding to different career

age brackets, where career age measures the number of years since a scientist earned his/her

highest doctoral degree (MD or PhD).15

15The omitted category corresponds to faculty members in the very early years of their careers (age 0 to
4). It is not possible to separately identify calendar year effects from age effects in the “within” dimension
of a panel in a completely flexible fashion, because one cannot observe two individuals at the same point in
time that have the same (career) age but earned their degrees in different years (Hall et al. 2005).
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Estimation. The dependent variables of interest, including weighted or unweighted publi-

cation counts and NIH grants awarded, are skewed and non-negative. For example, 20.82%

of the dyad/year observations in the data correspond to years of no publication output; the

figure climbs to 87.39% if one focuses on the count of successful grant applications. Fol-

lowing a long-standing tradition in the study of scientific and technical change, we present

conditional quasi-maximum likelihood estimates based on the fixed-effect Poisson model de-

veloped by Hausman et al. (1984). Because the Poisson model is in the linear exponential

family, the coefficient estimates remain consistent as long as the mean of the dependent

variable is correctly specified (Gouriéroux et al. 1984).16

Inference. QML (i.e., “robust”) standard errors are consistent even if the underlying data

generating process is not Poisson. In fact the Hausman et al. estimator can be used for any

non-negative dependent variables, whether integer or continuous (Santos Silva and Tenreyro

2006), as long as the variance/covariance matrix is computed using the outer product of

the gradient vector (and therefore does not rely on the Poisson variance assumption). Fur-

ther, QML standard errors are robust to arbitrary patterns of serial correlation (Wooldridge

1997), and hence immune to the issues highlighted by Bertrand et al. (2004) concerning

inference in DD estimation. Yet, the residuals for the observations corresponding to dyads

involving different coauthors but the same superstar at a point in time cannot be considered

independent. As a result, we cluster the standard errors around superstar scientists in the

results presented below.17

Dependent Variables. Our primary outcome variable is a coauthor’s number of publica-

tions. Since SC/Gen matches the entire authorship roster for each article, we can sepa-

rate those publications coauthored with the superstar from those produced independently of

him/her. Contrasting the effects of superstar extinction on both measures of output provides

16In Appendix Table 5, we show that OLS yields very similar results to QML Poisson estimation for our
main findings.

17In contrast, we ignore clustering around coauthors, since of 91% of coauthors collaborate with a single
superstar in the sample, though they might well collaborate with other elite scientists (see Table 2C).

18



insight on the extent to which collaborators substitute towards other relationships following

the passing of their prominent coauthor.

We perform a crude quality adjustment by weighting each publication by its Journal

Impact Factor (JIF) — a measure of the frequency with which the “average article” in a

journal has been cited in a particular year. One obvious shortcoming of this adjustment is

that it does not account for differences in impact within a given journal. Although we do not

have access to article-level citation data for the universe of all coauthors, this fine-grained

level of detail is available for the sample of 8,963 elite scientists. These individuals represent

20% of coauthors, and a third of the superstar-coauthor dyads in the full sample.

Citation data suffer from a well known truncation problem: older articles have had more

time to be cited, and hence are more likely to reach the tail of the citation distribution, ceteris

paribus. To overcome this issue, we compute a different empirical cumulative distribution

for the article-level distribution of citations in each publication year.18 For example, in the

life sciences broadly defined, an article published in 1980 would require at least 98 citations

to fall into the top ventile of the distribution; an article published in 1990, 94 citations; and

an article published in 2000, only 57 citations (this is illustrated in Figure A2). With these

empirical distributions in hand, it becomes meaningful to count the number of articles that

fall, for example, in the top quartile of citations for a given scientist in a particular year.

We also rely on NIH grant information. We focus on the number of research grants,

rather than their amounts. Grants are typically awarded for a period of years (three to five

is typical), and disbursed in equal yearly amounts over this period. Only the first of these

payments is indicative of successful grantsmanship. In addition, funding levels are strongly

influenced by scientific specialization and the associated costs of research in that area, thus

making them an inferior measure of success in our context. We exclude from the calculation

non-research grants (fellowships, training grants, and infrastructure grants), as well as large

center research grants. The CGAF dataset only lists principal investigators (PIs) for each

18We thank Stefan Wuchty and Ben Jones from Northwestern University for performing the computations.
These vintage-specific distributions are not based on in-sample article data, but use the universe of articles
published since 1970 in biomedical and chemical journals indexed by the Web of Science.

19



grant; as a result, we are unable to separate the grants in which coauthor and superstars are

co-investigators from those that do not entail a formal research collaboration. This limitation

must be borne in mind when interpreting the results of specifications relying on grant data.

4.2 Trends in publication output in the years immediately pre-
ceding a superstar’s death

In Table 4, we present results for specifications in which the quality-adjusted publication

output of our superstars is regressed onto a series of indicator variables corresponding to the

timing of death: 4 years before the year of death, 3 years before the year of death, and so on,

up until two years after the year of death (a scientist can, and often does, publish after his

death because his/her coauthors will typically steward articles through the pipeline on his

behalf). We stack the deck in favor of finding preexisting trends in the data by using solely

the publications in which the star appears as last author (last author status is invariably

reserved to the head of a laboratory/research group in the life sciences). All models include

superstar scientist fixed effects, and we use as a control group the set of control superstars

described above. The inclusion of controls is important insofar as it enables us to pin down

the effect of age and calendar time, which might be correlated with the death effect.

All estimates are presented in the form of incidence rate ratios; the formula (eβ−1)×100%

(where β denotes an estimated coefficient) provides a number directly interpretable in terms

of elasticity. Model (1), for instance, implies that output falls 1 − 0.76 = 24% in the year

following the year during which the superstar passed away. Column (1) uses all the data, and

uncovers no evidence of decline in output prior to the superstar’s death. In column (2), we

drop the 92 colleagues whose death was anticipated, and obtain similar results. Conversely,

column (3) excludes 69 superstars whose death was sudden and unexpected. The indicator

variables are therefore identified solely off of the superstars whose deaths were anticipated.

In this case, we find statistically significant evidence that scientists who died exhibited higher

output in the year immediately preceding their death. As a sensitivity check, column (4)

focuses on a group of 30 older superstars who died on or after they had reached 75 years of age,

but before retirement. For these scientists, we observe declines in the number of publications
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prior to the scientist’s demise; although the magnitudes are economically meaningful, these

effects are not estimated precisely. In light of these results, we feel confident that our 161

extinct scientists were still actively engaged in science at the time of their deaths. However,

the analysis also calls into question the assumption that the anticipated death of a superstar

is an exogenous event from their coauthors’ point of view.

4.3 Main effect of superstar extinction

Table 5 presents our core results. Column 1a in Panel A examines coauthors’ total JIF-

weighted publication output, regardless of cause of death for the superstar. We find a sizable

and significant 7.4% decrease in the total number of quality-adjusted publications coauthors

produce after the star dies. Columns 2a and 3a break down the effect by underlying cause of

death. In both cases, we find statistically significant effects, though the coefficient estimate

for the sudden death case is roughly twice the magnitude of that corresponding to the antic-

ipated death case (10.5% vs. 4.7%). Columns 1b, 2b, and 3b examine whether coauthorship

intensity moderates the size of the main effects described above. We find that close and

regular collaborators suffer larger declines in output, relative to casual collaborators, but

these differential impacts, while often sizable in magnitude, are not themselves statistically

significant.

Panel B provides the results for an identical set of specifications, except that we modify

the dependent variable to exclude publications coauthored with the superstar when comput-

ing the JIF-weighted publication counts. The contrast between the results in Panels A and B

elucidates scientists’ ability to substitute towards new collaborative relationships upon the

death of their superstar coauthor. The results imply that “close” and, to a lesser extent,

“regular” coauthors do manage to find replacement collaborators (or to intensify already

existing collaborations). Close collaborators experience between a (1−0.958)+0.152 = 11%

(column 6b) and (1− 0.927) + 0.211 = 13.8% (column 5b) increase in their quality-adjusted

publications written independently of the star, but this is only a partial offset for the overall

loss documented in Panel A. In every case, we find that casual coauthors see their indepen-
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dent output decline between 4.2% (column 6b) and 7.3% (column 5b). Though we defer the

interpretation of the results to the next section, we note that this last result strongly hints

at the presence of spillovers.

Panels C and D present specifications that mirror those in Panels A and B in all respects,

except that the estimation sample includes the set of control dyads. The inclusion of the

control group attenuates slightly the magnitudes of the treatment effect, especially in the

unanticipated death case, which is no longer statistically significant. However, the results

are qualitatively similar to those relying on a single level of difference.

We also explore the timing of the effects uncovered in Panel A of Table 5. We do so by

estimating a specification in which the treatment effect is interacted with a set of indicator

variables corresponding to a particular year before or after the superstar’s death, and then

graphing the effects and the 95% confidence interval around them (Figure 6, corresponding

to Table 5A, column 1a). We find evidence of a very slight preexisting output trend, but

it is imprecisely estimated.19 Following the superstar’s death, the treatment effect increases

monotonically in absolute value, becoming statistically significant three to four years after

death. Two aspects of this result are worthy of note. First, we find no evidence of recovery —

the effect of superstar extinction appears permanent. Though we will explore mechanisms in

more detail below, this seems inconsistent with a bereavement-induced loss in productivity.

Second, the delayed onset of the effect makes sense because it presumably takes some time to

exhaust the productive potential of the star’s last scientific insights. In addition, the typical

NIH grant cycle is three to five years, and the impact of a superstar’s absence may not really

be felt until it becomes time to apply for a new grant.

As mentioned in section 4.1, the quality adjustment used to produce JIF-weighted pub-

lication counts is crude. It does not allow us to learn whether the research that does not

get published as a consequence of superstar death is more likely to be of great vs. marginal

significance. Table 6 answers this question by modeling the effect of superstar extinction

for the production of articles falling above various quantiles of the citation distribution. An

19In contrast, for the case of sudden death (not displayed), there is absolutely no hint of a preexisting
trend — statistically significant or not.
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important caveat is that the results pertain only to the set of coauthors that are part of

our elite group of 8,963 scientists, since this is the set for which article-level citation data is

available. We find remarkable stability of the treatment effect as one goes further up the tail

of the citation distribution to compute the dependent variable. The magnitude of the effect

remains in the 3.5% to 6.1% range, whether we examine the effect of superstar extinction

on raw number of publications, publications that fall above the median number of citations,

publications in the top quartile, or publications in the top ventile. The magnitude of the

effect increases to 10% when focusing on “blockbuster” publications — those falling in the

top percentile of the citation distribution. Adding the control group produces estimates of

very similar magnitudes. At the very least, these results suggest that superstar exposure is

not limited to the production of relatively less significant scientific knowledge.

Our exploration of the main effect of superstar extinction concludes with an analysis of

NIH grant outcomes (Table 7). The number of observations decreases by about a third, since

the coauthors who receive no grants during the observation period fall out of the estimation

sample. The magnitudes of the effects are strikingly similar to those observed in Table 5, but

the statistical significance of the estimates is weaker. When broken down by underlying cause

of death for the superstar, the main effects are not significant (columns 2a and 3a); they are

statistically significant when pooling all superstars (column 1a), but only at the 10% level.

When adding the control dyads, we find no effect for casual and regular coauthors, though

we find a surprisingly large effect for close coauthors (column 4b). We must interpret these

results with caution: there is obviously large heterogeneity in the quality and importance of

research grants, and our dependent variable does not account for this. Furthermore, some of

these grants might list the superstar scientist as a co-investigator, but the data do not allow

us to distinguish independent from collaborative grantsmanship.

4.4 Does the treatment effect increase with the star’s scientific
achievements?

Table 8 investigates whether the magnitude of the treatment effect depends on the accom-

plishments of the star. We find that the (negative) impact of star death is increasing in
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quartiles of the superstars citation count at the time of their death (columns 1a and 1b),

a pattern that becomes clearer when citations are adjusted for career length (columns 2a

and 2b). In contrast, there is no monotonic pattern of this type when we rank the superstars

by quartile of cumulative NIH funding (columns 3a and 3b) or by quartile of cumulative NIH

funding normalized by years of career (columns 4a and 4b). Together, these results suggest

that it is the quality of ideas emanating from the stars, rather than simply the availability

of the research funding they control, that goes missing after their deaths. They also suggest

that using the same empirical strategy, but applying it to a sample of “humdrum” coauthors

who die, would not uncover effects similar in magnitude to those we observe here. As such,

the results in Table 8 validate ex post our pragmatic focus on the effect of superstars.

4.5 Impact of coauthor status

In Table 9, we interact the treatment effect with three indicators of coauthor status, to

ascertain which collaborators, if any, are insulated from the effects of superstar extinction

documented earlier. Columns 1a and 1b focus on faculty members whose sole elite collab-

orator was the superstar who died. For these coauthors with relatively poor substitution

opportunities (they account for roughly 20% of the dyads in the sample), the consequences

of the superstar’s loss are disastrous, with an overall 30 to 35% decline in publication output.

Columns 2a and 2b asks whether scientists who are PIs on a NIH R01 grant at the time of

their superstar coauthor’s death are shielded from the adverse effects documented earlier.

With independent funding of this type, these investigators (who account for more than half

of the sample) are likely to be less dependent on the goodwill of their collaborators, but we

find no evidence supporting this conjecture. In column 2a, for example, the differential effect

is an imprecisely estimated 0. Of course, this also means that independent NIH funding is

not enough to insulate scientists from the loss of an eminent collaborator. In columns 3a

and 3b, we present evidence that the “elite among the elite” — members of the National

Academy of Science, Howard Hughes Medical Investigators, and NIH MERIT awardees — is

relatively unaffected by the loss of a “peer superstar.” These eminent coauthors account for

9% of the treatment dyads (column 3a) and 6% of the treatment and control dyads combined
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(column 3b). The differential impact on elite coauthors is always positive and statistically

significant (though only at the 10% level when control dyads are excluded), and the overall

treatment effect ranges from −2.8% (column 3a) to +4.9% (column 3b).

We conclude that the effect of superstar extinction is heterogeneous with respect to

coauthor status, but also very broad. The loss of a prominent collaborator adversely impacts

the productivity of investigators even if they are independently funded, unless they have

already achieved great renown at the time of the star’s death.20

4.6 Disentangling Mechanisms

In Tables 10, 11, and 12, we exploit the richness and fine-grained level of detail in the data

to sort between alternative mechanisms which might underlie the superstar extinction effect.

We seek to adjudicate between four broad classes of explanations.

Imperfect Skill Substitution [ISS]. The basis for ISS is the idea that collaborative re-

search teams emerge to pool the expertise of scientists, who, in their individual capacity,

face the “burden of knowledge” problem identified by Jones (2005). Upon the death of a key

collaborator, other team members might struggle to suitably replace the pieces of knowledge

that were embodied in the star.21 The ISS story carries three testable implications. First,

one would expect the effect to be temporary: even if the projects that necessitate the ex-

tinct superstar’s intellectual input are slowed down or, in the worst case, aborted, coauthors

should eventually turn their attention to new projects and/or new collaborators. Second,

we would expect the effect to be more pronounced in the case of sudden death; if the star’s

passing is anticipated, s/he might be able to lay the ground work necessary for his/her coau-

thors to effectively plug the knowledge gaps opened by his impending exit. This assessment

is somewhat tempered by the fact that life scientists generally have apprentices (graduate

students and postdocs) who might be of considerable assistance to ensure the continuity of

20As seen in Table 6, taken as a whole, the set of elite coauthors suffers a decline in output very similar
to the one observed for the universe of all coauthors (i.e., in Table 5). At the risk of repeating ourselves, the
elite sample is very heterogeneous, and does include young, old, and fading stars.

21We acknowledge that, under this scenario, using the term “spillover” to characterize the effect of the
superstar would stretch the common meaning of the term.
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the team’s research efforts. Third, and most importantly, the ISS mechanism pertains only

to ongoing or recent collaborations.22

Table 10 addresses the last of these implications, by examining how the age and recency

of collaboration moderates the treatment effect. The results are unambiguous: not only are

young and recent collaborations not driving the effect, the reverse is in fact true. Columns 1a

and 1b look at the differential effect corresponding to dyads that have produced at least one

joint publication in the three years preceding the star’s death (the top quartile of collabora-

tion recency). The interaction effect has a positive sign, and implies that recent collaborators

see a slight uptick in their output following the star’s death. Columns 2a and 2b focuses

on the interaction with collaboration age, i.e., the length of time between the dyad’s first

coauthorship and the superstar’s death. The results are almost identical. It is important

to note that these findings are not mere artifacts of collaborator age. In fact, columns 3a

and 3b show that no strong pattern emerges when the main effect is interacted with the age

of the coauthor.23 Taken as a whole, the results in this table are strikingly inconsistent with

the ISS mechanism.

Superstars as Gatekeepers. An alternative story is that superstars matter for their

coauthors because they connect them to important resources, such as funding, editorial

goodwill, or other potential collaborators. We attempt to evaluate the validity of three

particular versions of this story in Table 11, but we acknowledge that many other versions

of it are equally plausible.

In a first step, we examine whether shared physical location plays any role in heightening

the effect of the superstar’s death. We might expect stars’ protective reach to be geograph-

ically circumscribed. For instance, in the case of anticipated death, the star might advocate

22An additional implication is that it is coauthors with the least amount of intellectual overlap with the
star who should experience the most adverse effects, since their own expertise is a poor substitute for the
star’s. As we will see below, the reverse is in fact true.

23If anything, the magnitude of the effects are slightly larger for younger coauthors, though we hesitate to
make too much of the apparent non-monotonicity with respect to coauthor age. One might also worry that
relationships that lay fallow correspond to adversely selected coauthors, who have been written off by the
star as having low added value. In unreported specifications, we verified that the dynamics of the treatment
effect (i.e., Figure 6) are not appreciably different if we exclude from the sample recent collaborations.
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on behalf of a local collaborator with senior administrators. If stars are generally involved in

the management of their “succession,” we might expect the effect of superstar extinction on

co-located coauthors to be more pronounced. We use two alternative definitions of physical

proximity: co-location (i.e., same institutional affiliation; columns 1a and 1b), or less than

10 miles separating the nodes of the dyad at the time of death (columns 2a and 2b). In both

cases, the differential impacts are very small and statistically insignificant. Physical proxim-

ity might be important to explain the initiation of collaboration; but once established, the

deletion of a local coauthorship tie appears just as debilitating as the deletion of a distant

one.

Whereas social scientists sometimes emphasize the role that benevolent journal editors

can have in shaping individual careers, life scientists are often more concerned that the alloca-

tion of grant dollars deviates from the meritocratic ideal. Therefore, we investigate whether

the treatment effect is of larger magnitude when the star either sat on NIH study sections,

or has coauthorship ties with other scientists who sit on study sections. In columns 3a

and 3b, we find that this is not the case. Once again, the differential impacts are small and

imprecisely estimated.

Finally, we address the hypothesis that superstars matter because they broker relation-

ships between scientists that would otherwise remain unaware of each other’s expertise. We

do so by computing the betweenness centrality for our extinct superstars in the coauthor-

ship network formed by the 8,963 elite scientists.24 We then rank the superstars according

to quartile of betweenness, and look for evidence that collaborators experience a more pro-

nounced decline in output if their superstar coauthor was more central (columns 4a and 4b).

Although we find that collaborators with stars in the bottom quartile of centrality are insu-

lated from any adverse impact, the other interaction terms are not ordered monotonically.

24Betweenness is a measure of the centrality of a node in a network, and is calculated as the fraction of
shortest paths between dyads that pass through the node of interest. In social network analysis, it is often
interpreted as a measure of the influence a node has over the spread of information through the network.
Empirically, we find that betweenness is heavily correlated with publication output. Therefore, our measure
of betweenness is the residual of a regression of betweenness onto the cumulative number of publications for
the star and year effects.
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The differential effects for stars in the second quartile are larger in magnitude, relative to

those corresponding to the third and fourth quartile.

The evidence presented in Table 11 appears broadly inconsistent with the three particular

access stories whose implications we could test empirically. Our assessment of the gatekeep-

ing mechanism must remain guarded, since it is possible to think of variations on the same

theme. For instance, superstars might be able to curry favors with journal editors on behalf

of their protégés, or they might be editors themselves. We prefer to frame the findings con-

trapositively: it is hard to look at the evidence presented so far and conclude that access is

the most relevant way in which superstars influence their collaborators’ scientific output.

Ascription. Sociological studies of the scientific reward system have provided some evidence

supporting the existence of the “Matthew Effect,”25 whereby scientists receive differential

recognition for a particular scientific contribution depending on their location in the status

hierarchy (Merton 1968; Cole 1970). It is possible that editors and reviewers ascribe positive

qualities to research they are charged with evaluating because of the mere presence of the

superstar’s name on the authorship roster, regardless of the contribution’s intrinsic merits.

The relevance of this dynamic for our setting is doubtful for two reasons. First, in the case

of casual coauthors (who account for 75% of the dyads), we observe a decline in the output

written independently of the star (Tables 5B and 5D). Second, the treatment effect on total

publication output is driven by dyads that do not have recent collaborations, but its onset

is delayed until after the death of the star. These two facts argue against an interpretation

of the effect based on ascription.

The “Invisible College” hypothesis. Finally, we examine the possibility that stars

generate spillovers on the entire group of scientists who work on similar research problems,

which we refer to as the “invisible college” hypothesis, in reference to early studies of scientific

communication by sociologists (e.g., de Solla Price and Beaver 1966; Crane 1972). In this

literature, the invisible college refers to an elite of productive scientists highly visible in a

25“For unto every one that hath shall be given, and he shall have abundance; but from him that hath not
shall be taken away even that which he hath” [Matthew 25:29]
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research area, combined with a “scatter” of less eminent ones, whose attachment to the field

may be more fleeting. The empirical question we tackle in Table 12 is whether the death

of superstar scientists provide a unique opportunity to reveal the boundaries of the invisible

colleges to which they belong. To do so, we construct two dyad-level variables that help us

measure the proximity of the superstar and his/her coauthors in ideas space.

First, in columns 1a and 1b, we look for a differential effect of superstar death for coau-

thors that were also former trainees. In many fields of science, the mastery of experimental

techniques and other methodologies are difficult to learn without direct contact with those

already skilled in them. Scientists who trained under a superstar, either in graduate school

or during a postdoctoral fellowship, are likely to be more deeply vested in the scientific prob-

lems that have informed the star’s scientific trajectory. The data indeed provide evidence

of a strong former trainee effect, with a magnitude double that of non-trainees. This sug-

gests that mentorship continues into the early faculty career and is extremely important in

intellectual development. Of course, an interpretation of this effect based on social — rather

than intellectual — proximity could be advanced.

Our next step is to measure proximity in “ideas space” between members of a collabora-

tion dyad, and to ascertain whether coauthors who are intellectually proximate in the years

immediately preceding the star’s death suffer more severe consequences following the event,

relative to intellectually distant ones. Using quartiles of normalized keyword overlap, we find

that this is the case. In columns 2a and 2b, the effect corresponding to the top quartile of

overlap is highly statistically significant, the largest in absolute value, and roughly double

the size of the effects corresponding to the bottom three quartiles.

This evidence is very consistent the invisible college hypothesis, but leaves an important

question unresolved: is the act of formal coauthorship necessary for a scientist to be brought

into a superstar’s intellectual orbit? It may not be necessary to be socially acquainted with

a particular member of the college in order to be influenced by her. Since our sample is

composed exclusively of coauthors, we cannot answer this question in a definitive fashion.

Yet, we have used the norms of authorship in the life sciences to try to isolate collaborators
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whose coauthorship tie to the star is particularly tenuous. These “accidental” coauthors are

those who, whenever they collaborate, find themselves in the middle of the authorship list.

In its purest form, the invisible college hypothesis would imply no differential effect for these

colleagues, and this is what we find in columns 3a and 3b.26

We conclude that the overall collection of results presented above are most consistent

with the invisible college hypothesis. Superstar scientists make their field of inquiry visible

to others of lesser standing who might enter it, however briefly; they replenish their field with

fresh ideas, and their passing causes the processes of knowledge accumulation and diffusion to

slow down, or even decline. In this view, the most important interactions for the production

of new scientific knowledge are not constrained by geographic or social space. Rather, they

take place in an ethereal, amorphous, but essential space of ideas.

4.7 Sensitivity Checks

In Table 13, we present the results of a number of robustness and sensitivity checks. We

begin by manipulating the age cutoff we imposed when constructing the sample of extinct

superstars. In columns 1a and 1b, we limit the sample to the 86 stars who were 60 years

old or younger at the time of their death. We find very similar results to those displayed in

Table 5A. The same holds true when we use a 70 years of age cutoff (columns 2a and 2b).

Conversely, columns 3a and 3b show no effect of superstar extinction when examining the

impact of 30 eminent scientists who die beyond the highly creative stages of their career —

at 75 years of age or older.

Finally, we perform a small simulation study to dispel any remaining doubt regarding the

validity of the quasi-experiment exploited in the paper. We generate placebo dates of death

among our control superstars, where those dates are drawn at random from the empirical

distribution of death events across years for the 161 extinct superstars. We then replicate

the specifications in Tables 5A and 5C, column 1a, but we limit the estimation sample to the

26An important caveat is that “accidental” dyads necessarily imply collaboration between three or more
laboratories; the matching process generating these accidental matches might differ from the process giving
rise to collaborations which imply a higher degree of social closeness.
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set of 5,564 control dyads. Column 4 presents the average treatment effect, z -statistic, and

log quasi-likelihood over 100 replications. Reassuringly, the effect of superstar extinction in

this manufactured data is an imprecisely estimated 0.

5 Conclusion

We examine the role of collaboration in spurring the creation of new scientific knowledge.

Using the premature deaths of “superstar” academic life scientists as a quasi-experiment,

we find that their coauthors experience a sizable and permanent decline in quality-adjusted

publication output following the event. Only coauthors who themselves had achieved wide

recognition at the time of death appear insulated from the effect of superstar extinction.

In addition, the magnitude of the treatment effect increases monotonically with the stars’

eminence, suggesting that the intellectual vacuum arising from their deaths is commensurate

with their scientific contributions.

We attempt to adjudicate between plausible mechanisms that could give rise to the

extinction effect. Recent collaborations are not affected, which seems inconsistent with

explanations emphasizing skill substitution within ongoing collaborative teams. We also

find no differential impact on co-located coauthors, or on coauthors of stars well-connected

to the NIH funding apparatus. These findings do not jibe with interpretations stressing the

gatekeeping role of eminent scientists. Lastly, we show that coauthors proximate to the star

in “ideas space” suffer a more pronounced decline in output, relative to coauthors who are

more distant. Overall, our results are consistent with the idea that part of the scientific field

to which the star contributes dies along with him, because the fount of scientific knowledge

from which coauthors can draw is greatly diminished.

The lack of differential impact for co-located collaborators is especially surprising in

light of the prior literature on this topic. Zucker et al. (1998) establish a robust correlation

between the location of star biologists and the number of new biotechnology firms spawned in

a given locale. Ham and Weinberg (2008) finds that among physicists, geographic proximity

to earlier Nobelists correlates with the start of the research that eventually results in a
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Nobel Prize. However, this result is consistent with a recent body of evidence suggesting

a fading role for geographic distance, both as a factor influencing the formation of teams

(Rosenblat and Möbius 2004; Agrawal and Goldfarb 2008), and as a factor circumscribing the

influence of peers (Kim et al. 2006; Griffith et al. 2007). While it is tempting to ascribe this

development to recent decreases in the cost of scientific communication, Waldinger (2008)

finds no evidence of localized spillovers even in an earlier era. Using the dismissal of Jewish

faculty members from German universities in the 1930s as a source of exogenous variation

in peer group composition, he uncovers no effect of the dismissal on faculty members in the

same department and university. In contrast, he observes suggestive effects on collaborators

— a result strikingly consistent with the evidence we present. Together, our findings suggest

that instead of manipulating physical or social space, future work in this area could usefully

focus on identifying quasi-experiments in intellectual space. For instance, how do scientists

adjust to sudden changes in scientific opportunities in their field?

Our results shed light on an heretofore neglected causal process underlying the growth

of scientific knowledge, but they should be interpreted with caution. While we measure

the impact of losing a star collaborator, a full accounting of knowledge spillovers would

require information on the benefits that accrued to the field while the star was alive. We can

think of no experiment, natural or otherwise, that would encapsulate this counterfactual.

Moreover, the benefits of exposure to star talent constitute only part of a proper welfare

calculation. Scientific coauthorships also entail costs. These costs could be borne by low-

status collaborators in the form of lower wages, or by the stars, who might divert some

of their efforts towards mentorship activities. Though some of these costs might be offset

by non-pecuniary benefits, we suspect that the spillovers documented here are not fully

internalized by the scientific labor market.

Finally, for every invisible college that contracts following superstar extinction, another

might expand to slowly take its place. Viewed in this light, our work does little more than

provide empirical support for Max Planck’s famous quip: “science advances one funeral at

a time.”
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Table 1A: Summary Statistics for Superstars 
  Mean Std. Dev Min. Max. 
Controls (N=161) 
 Birth Age at Death 57.06 7.34 40 78 

 Career Age at Death 30.30 7.39 13 52 

 Degree Year 1964.81 8.39 1936 1986 

 Year of Birth 1938.04 8.01 1912 1956 

 # Positions 2.08 1.11 1 5 

 # Coauthors 46.49 35.04 2 177 

 NIH funding $9,791,164 $11,479,553 $0 $100,083,848 

 # Papers 153.10 96.39 20 553 

 # Citations 8,709 7,524 738 58,875 

 # Citations/Paper 58.69 40.51 13.73 331.42 

 h index 52.22 20.18 13 130 

      

Extinct (N=161) 
 Birth Age at Death 58.60 6.64 38 67 

 Career Age at Death 31.76 7.33 7 45 

 Degree Year 1963.34 9.05 1940 1986 

 Year of Birth 1936.50 8.12 1916 1959 

 # Positions 1.79 0.93 1 6 

 # Coauthors 51.06 34.80 5 177 

 NIH funding $9,590,272 $9,640,493 $0 $64,927,440 

 # Papers (total) 156.07 101.17 20 528 

 # Citations 9,041 6,978 282 34,625 

 # Citations/Paper 58.34 29.05 8.06 189.45 

 h index 49.70 20.08 9 111 

Note: For control superstars, the (counterfactual) year of death is thatof his “nearest neighbor” among extinct 
superstars. See Appendix II for further details. 

 
 
 
 

Table 1B: Summary Statistics for Superstars (Counts) 
 

MD PhD 
MD/ 
PhD 

NAS HHMI MERIT Female US born 

Control 64 82 15 24 4 50 20 126 

(n=161) 39.80% 50.90% 9.30% 14.90% 2.50% 31.10% 12.40% 78.30% 

Extinct 73 68 20 33 11 51 16 135 

(n=161) 45.3% 42.20% 12.40% 20.50% 6.80% 31.70% 9.90% 83.90% 

         

Total 137 150 35 57 15 101 36 261 

(n=322) 42.5% 46.60% 10.9% 17.70% 4.70% 31.40% 11.20% 81.10% 
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Table 2A: Demographic Characteristics of Coauthors 
 

Female MD PhD MD/PhD NAS 
NIH 

Grantee 
Basic 
Dept. 

Controls 
(n=5,131) 

994 2,493 2,204 402 87 3,198 1,632 
(19.50%) (48.90%) (43.20%) (7.90%) (1.70%) (62.70%) (32.00%) 

Treatment 
(n=5,365) 

1,014 2,633 2,155 549 143 3,465 1,714 
(19.00%) (49.30%) (40.40%) (10.30%) (2.70%) (64.90%) (32.10%) 

        
Total 

(n=10,496) 
2,008 5,126 4,359 951 230 6,663 3,346 

(19.20%) (49.10%) (41.80%) (9.10%) (2.20%) (63.80%) (35.10%) 
Note: These tabulations exclude control and treatment colleagues whereby s/he is found to coauthor both with a 

treatment and a control superstar. 
 
 
 

 

Table 2B: Coauthor Age and Achievement Over the Entire Career 
  Mean Std. Dev Min. Max. 
Control Coauthors  (N=5,131)     

 Year of Highest Degree  1975.531 9.708 1950 1996 

 Career Nb. of Papers  89.292 78.457 2 796 

 Career NIH Funding  $3,448,310 $6,708,865 $0 $141,176,240 

Treatment Coauthors  (N=5,365)     

 Year of Highest Degree  1974.549 9.966 1950 1996 

 Career Nb. of Papers  96.489 86.881 2 885 

 Career NIH Funding  $3,967,731 $10,230,741 $0 $451,590,368 

Total (N=10,496)     

 Year of Highest Degree  1975.029 9.966 1950 1996 

 Career Nb. of Papers  92.973 82.946 2 885 

 Career NIH Funding  $3,713,811 $8,692,747 $0 $451,590,368 

 
 
 
 
Table 2C: Number of Superstars per Coauthor 

 Freq. Proportion 

1 9,566 91.14% 

2 808 7.70% 

3 103 0.98% 

4 16 0.15% 

5 3 0.03% 

Total 10,496 100% 
Note: These tabulations exclude control and treatment colleagues whereby s/he is found to coauthor both 

with a treatment and a control superstar. 
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Table 3: Summary Statistics for Dyads 
Control Dyads (N=5,564) Mean Std. Dev Min. Max. 
Dyad-level characteristics at the time of superstar extinction 
 Cum. Nb. of Coauthorships 2.871 5.364 1 165 

 Years since first coauthorship 10.189 7.356 0 41 

 Years since last coauthorship 8.127 7.4 -3 41 

 Former trainee of the star 0.093 0.29 0 1 

 Co-Located 0.231 0.421 0 1 

 Within 10 miles 0.25 0.433 0 1 

 Normalized Keyword Overlap 0.311 0.167 0 1 

 “Accidental” Coauthorship 0.084 0.278 0 1 

Coauthor-level characteristics at the time of superstar extinction 
 Cum. Nb. of Papers 65.264 62.021 1 703 

 Cum. Nb. of Papers, JIF-weighted 235.765 293.868 0.526 3,226.33 

 Cum. NIH Funding $2,267,215  $4,658,176  $0  $94,993,448  

 Holds R01 0.54 0.498 0 1 

 Career Age 21.325 9.048 0 52 

 “Elite” [NAS, HHMI, MERIT] 0.053 0.224 0 1 

 
Treatment Dyads (N=6,006) Mean Std. Dev Min. Max. 
Dyad-level characteristics at the time of superstar extinction 
 Cum. Nb. of Coauthorships 3.049 5.458 1 112 

 Years since first coauthorship 10.973 7.823 0 39 

 Years since last coauthorship 8.809 7.817 -3 39 

 Former trainee of the star 0.094 0.292 0 1 

 Co-Located 0.226 0.418 0 1 

 Within 10 miles 0.255 0.436 0 1 

 Normalized Keyword Overlap 0.288 0.158 0 1 

 “Accidental” Coauthorship 0.073 0.259 0 1 

Coauthor-level characteristics at the time of superstar extinction 
 Cum. Nb. of Papers 72.205 70.266 1 726 

 Cum. Nb. of Papers, JIF-weighted 269.255 324.101 0.523 4,577.732 

 Cum. NIH Funding $2,608,550 $6,550,636 $0 $206,150,592 

 Holds R01 0.552 0.497 0 1 

 Career Age 22.004 9.535 0 52 

 “Elite” [NAS, HHMI, MERIT] 0.066 0.248 0 1 

Note: These tabulations exclude control and treatment dyads whereby the colleague is found to coauthor both with a 
treatment and a control superstar. For control dyads, the (counterfactual) year of death is that of their superstar 
collaborator’s “nearest neighbor” among extinct superstars. See Appendix II for further details. Years since last 
coauthorship can be negative because of posthumous publications. More details on the construction of the normalized 
keyword overlap variable are provided in Appendix III.
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Table 4: Trends in Stars’ Publication Output Around the Time of Death 
 (1) (2) (3) (4) 

 
161 Superstars, 
Age at death≤67 

69 Superstars 
whose deaths 
were sudden 

92 Superstars 
whose deaths 

were anticipated 

30 Superstars 
Age at death>75 

 161 Controls 69 Controls 92 Controls 30 Controls 

2 years after year of death 0.326
**

 0.306
**

 0.343
**

 0.208
**

 
[6.21] [3.82] [5.20] [2.80] 

1 year after year of death 
0.763

*
 0.861 0.665

**
 1.108 

[2.20] [0.73] [3.04] [0.27] 

year of death 
1.203 0.983 1.382

*
 0.709 

[1.64] [0.09] [2.39] [0.99] 

1 year before year of death 
1.302

**
 1.146 1.432

**
 0.747 

[2.87] [0.86] [3.39] [1.08] 

2 years before year of death 
1.100 0.949 1.218

†
 1.020 

[0.99] [0.34] [1.65] [0.07] 

3 years before year of death 
1.176

†
 1.210 1.117 1.074 

[1.68] [1.34] [0.92] [0.23] 

4 years before year of death 
1.211

*
 1.038 1.356

**
 1.021 

[2.01] [0.22] [2.83] [0.12] 

Log Quasi-Likelihood -58,498 -25,113 -32,796 -11,039 

Nb. of Observations 9,746 4,121 5,625 1,985 

Nb. of Scientists 322 138 184 60 

 
The estimates above are taken from a conditional fixed effects Poisson specification that also include 7 indicator variables corresponding to different age brackets 
and a full suite of calendar year effects (estimates not reported). The estimates are displayed as incidence rate ratios, e.g., the estimate in column (1) implies a 
statistically significant (1-0.326)=67.4% decrease in the rate of publication two years after a superstar scientist passes away (regardless of cause of death). Robust 
(QML) z-statistics are reported in brackets. The dependent variable is the weighted article count for the superstar, including only those publications in which the 
superstar appears in last position on the authorship roster. The weights used to create these counts are Journal Impact Factors (JIF) published by the Institute for 
Scientific Information. 
 
†
significant at 10%; 

*
significant at 5%; 

**
significant at 1%
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Table 5: Impact of Superstar Death on Coauthors’ Publication Rates 
Panel A: Treatment Dyads Only, JIF-weighted Total Publications 

 All Sudden Anticipated 
 (1a) (1b) (2a) (2b) (3a) (3b) 

After Death 
0.926

**
 0.932

**
 0.895

**
 0.917

**
 0.953

*
 0.945

*
 

[4.57] [3.96] [4.73] [3.17] [2.07] [2.38] 

After Death ×   0.994  0.903
*
  1.064

†
 

Regular Collab.  [0.22]  [2.17]  [1.71] 

After Death ×   0.931  0.949  0.916 

Close Collab.  [1.51]  [0.94]  [1.21] 

Log Quasi-Likelihood -1,432,370 -1,432,257 -610,192 -609,928 -821,290 -821,028 

Nb. of Obs. 216,746 216,746 91,620 91,620 125,126 125,126 

Nb. of Dyads 8,220 8,220 3,509 3,509 4,711 4,711 

Nb. of Superstars 161 161 69 69 92 92 

 Panel B: Treatment Dyads Only, JIF-weighted Publications written with others 

 All Sudden Anticipated 
 (4a) (4b) (5a) (5b) (6a) (6b) 

After Death 
0.962

*
 0.944

**
 0.927

**
 0.927

**
 0.992 0.958

†
 

[2.37] [3.39] [3.26] [2.84] [0.35] [1.86] 

After Death ×   1.041  0.943  1.116
**

 

Regular Collab.  [1.30]  [1.25]  [2.92] 

After Death ×   1.178
**

  1.211
**

  1.152
†
 

Close Collab.  [3.32]  [3.33]  [1.86] 

Log Quasi-Likelihood -1,406,641 -1,406,059 -598,472 -598,005 -807,309 -806,757 

Nb. of Obs. 216,746 216,746 91,620 91,620 125,126 125,126 

Nb. of Dyads 8,220 8,220 3,509 3,509 4,711 4,711 

Nb. of Superstars 161 161 69 69 92 92 

Estimates are displayed as incidence rate ratios (exponentiated coefficients). For example. the estimates in column (4b) of Panel B imply that casual 
coauthors suffer a statistically significant (1-0.944)=5.6% decrease in the rate of publication written with others after their superstar coauthor passes away, 
but that close collaborators (10 or more joint publications) incur an additional increase of 1.211-1=21.1%, for a net increase of 21.1-5.6=15.6%. All models 
incorporate year effects and seven age category indicator variables (career age less than 5 years is the omitted category). Absolute value of robust (QML) 
z-statistics in brackets, clustered at the level of the superstar. 

†
significant at 10%; 

*
significant at 5%; 

**
significant at 1%. 
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Table 5: Impact of Superstar Death on Coauthors’ Publication Rates 
Panel C: Treatment and Control Dyads, JIF-weighted Total Publications 

 All Sudden Anticipated 
 (1a) (1b) (2a) (2b) (3a) (3b) 

After Death 
0.949

**
 0.954

*
 0.928

**
 0.950

†
 0.967 0.960 

[2.72] [2.33] [2.63] [1.78] [1.30] [1.50] 

After Death ×   1.028  0.939  1.089
*
 

Regular Collab.  [0.76]  [1.01]  [2.01] 

After Death ×   0.849
*
  0.860

†
  0.840 

Close Collab.  [2.31]  [1.84]  [1.60] 

Log Quasi-Likelihood -1,659,785 -1,659,405 -729,397 -729,249 -929,953 -929,550 

Nb. of Obs. 294,463 294,463 128,556 128,556 165,907 165,907 

Nb. of Dyads 11,570 11,570 5,103 5,103 6,467 6,467 

Nb. of Superstars 322 322 138 138 184 184 

 Panel D: Treatment and Control Dyads, JIF-weighted Publications written with others 

 All Sudden Anticipated 
 (4a) (4b) (5a) (5b) (6a) (6b) 

After Death 
0.982 0.955

*
 0.959 0.948

†
 1.003 0.962 

[0.96] [2.40] [1.55] [1.89] [0.10] [1.50] 

After Death ×   1.100
**

  1.003  1.168
**

 

Regular Collab.  [2.61]  [0.05]  [3.58] 

After Death ×   1.142
†
  1.185

†
  1.111 

Close Collab.  [1.78]  [1.92]  [0.93] 

Log Quasi-Likelihood -1,615,834 -1,615,423 -709,860 -709,729 -905,588 -905,121 

Nb. of Obs. 294,463 294,463 128,556 128,556 165,907 165,907 

Nb. of Dyads 11,570 11,570 5,103 5,103 6,467 6,467 

Nb. of Superstars 322 322 138 138 184 184 

 
All models incorporate year effects and seven age category indicator variables (career age less than 5 years is the omitted category). Absolute value of 
robust (QML) z-statistics in brackets, clustered at the level of the superstar. 

†
significant at 10%; 

*
significant at 5%; 

**
significant at 1%. 
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Table 6: Impact of Superstar Death on Coauthors’ Citation Impact [Elite Subsample] 

 All Pubs 
Pubs above the 

Median 
Pubs in the 
Top Quartile 

Pubs in the 
Top Ventile 

Pubs in the 
Top Percentile 

 (1a) 
No Ctrls 

(1b) 
With 
Ctrls 

(2a) 
No Ctrls 

(2b) 
With 
Ctrls 

(3a) 
No Ctrls 

(3b) 
With 
Ctrls 

(4a) 
No Ctrls 

(4b) 
With 
Ctrls 

(5a) 
No Ctrls 

(5b) 
With 
Ctrls 

After Death 
0.965

*
 0.935

**
 0.967

†
 0.943

**
 0.963

*
 0.943

**
 0.939

*
 0.941

*
 0.904

*
 0.898

**
 

[2.08] [3.45] [1.81] [2.82] [2.01] [2.79] [2.30] [2.22] [2.38] [2.66] 

Log Quasi-Lkl. -205,857 -289,513 -181,119 -255,159 -161,846 -228,001 -107,977 -150,078 -58,093 -79,136 

Nb. of Obs. 75,939 110,062 75,908 110,031 75,865 109,988 75,354 109,218 72,279 103,461 

Nb. of Dyads 2,648 3,870 2,647 3,869 2,644 3,866 2,625 3,837 2,516 3,636 

Nb. of Superstars 155 307 155 307 155 307 155 307 155 307 

Conditional dyad fixed effects quasi-MLE estimates for the determinants of publication rates among coauthors of “superstar” academic life scientists. We bin 
their publications according to the various quantiles of the vintage-specific, article-level distribution of citations they fall into. For instance, an article that 
garnered 100 citations by 2008 would fall above the top ventile of the 1980 citation distribution, but above the top percentile of the 2000 distribution. The 
underlying empirical distributions were computed using the universe of publications and citations in the biomedical and chemical journals indexed by 
ISI/Web of Science. Because article-level citation data is only available for scientists in the elite subsample (n=8,963), we restrict the estimation sample to 
elite coauthors, which account for a third of the dyads in the overall sample (i.e., the estimation sample in Table 7). Estimates are displayed as incidence rate 
ratios (exponentiated coefficients). All models incorporate year effects and seven age category indicator variables (career age less than 5 years is the omitted 
category). Absolute value of robust (QML) z-statistics in brackets, clustered at the level of the superstar.  
 
 
†
significant at 10%; 

*
significant at 5%; 

**
significant at 1%. 
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Table 7: Impact of Superstar Death on Coauthors’ NIH Grants 
Panel A: Treatment Dyads Only, Number of Research NIH Grants 

 All Sudden Anticipated 
 (1a) (1b) (2a) (2b) (3a) (3b) 

After Death 
0.934

†
 0.938

†
 0.924 0.949 0.942 0.929 

[1.90] [1.76] [1.55] [0.97] [1.21] [1.51] 

After Death ×   1.002  0.909  1.079 

Regular Collab.  [0.04]  [1.30]  [1.27] 

After Death ×   0.938  0.924  0.959 

Close Collab.  [0.59]  [0.43]  [0.44] 

Log Quasi-Likelihood -76,156 -76,155 -32,777 -32,774 -43,353 -43,351 

Nb. of Obs. 146,339 146,339 62,887 62,887 83,452 83,452 

Nb. of Dyads 5,426 5,426 2,358 2,358 3,068 3,068 

Nb. of Superstars 161 161 69 69 92 92 

  
Panel B: Treatment and Control Dyads, Number of Research NIH Grants 

 All Sudden Anticipated 
 (4a) (4b) (5a) (5b) (6a) (6b) 

After Death 
0.997 1.005 0.978 1.016 1.008 0.994 

[0.10] [0.13] [0.43] [0.27] [0.18] [0.13] 

After Death ×   1.026  0.936  1.091 

Regular Collab.  [0.49]  [0.86]  [1.30] 

After Death ×   0.824
†
  0.733

†
  0.920 

Close Collab.  [1.82]  [1.84]  [0.74] 

Log Quasi-Likelihood -89,153 -89,147 -39,316 -39,310 -49,820 -49,818 

Nb. of Obs. 186,494 186,494 82,208 82,208 104,286 104,286 

Nb. of Dyads 7,133 7,133 3,174 3,174 3,959 3,959 

Nb. of Superstars 322 322 138 138 184 184 

Conditional dyad fixed effects quasi-MLE estimates for the determinants of the number of NIH Research Grants among coauthors of “superstar” academic 
life scientists. Estimates are displayed as incidence rate ratios (exponentiated coefficients). All models incorporate year effects and seven age category 
indicator variables (career age less than 5 years is the omitted category). Absolute value of robust (QML) z-statistics in brackets, clustered at the level of 
the superstar. 

†
significant at 10%; 

*
significant at 5%; 

**
significant at 1%. 
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Table 8: Impact of Superstar Status on Coauthor Publication Rates 
 Superstar’s Total 

Cites 
at Time of Death 

Superstar’s Total 
Cites 

at Time of Death, 
normalized by 
career length 

Superstar’s 
Career NIH 

Funding at Time 
of Death 

Superstar’s Career 
NIH Funding at 
Time of Death, 
normalized by 
career length 

 
 (1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b) 

 
w/o 

Controls 
with 

Controls 
w/o 

Controls 
with 

Controls 
w/o 

Controls 
with 

Controls 
w/o 

Controls 
with 

Controls 
After Death ×  0.992 1.022 0.996 1.048 0.898

*
 0.910

†
 0.929 0.946 

Star in 1st Quartile [0.19] [0.52] [0.08] [0.99] [2.44] [1.89] [1.56] [1.06] 

After Death ×  0.941
*
 0.981 0.931

*
 0.955 0.940

†
 0.967 0.944

†
 0.973 

Star in 2nd Quartile [2.02] [0.58] [2.26] [1.25] [1.73] [0.86] [1.65] [0.70] 

After Death ×  0.901
**

 0.898
**

 0.926
*
 0.938

†
 0.929

*
 0.972 0.917

**
 0.967 

Star in 3rd Quartile [3.26] [2.82] [2.40] [1.81] [2.45] [0.76] [2.77] [0.90] 

After Death ×  0.924
**

 0.959 0.914
**

 0.939
**

 0.915
**

 0.956 0.910
**

 0.934
*
 

Star in 4th Quartile [3.15] [1.48] [3.76] [2.20] [3.11] [1.42] [3.25] [2.04] 

Log Quasi-Likld. -1,432,131 -1,659,458 -1,432,205 -1,659,618 -1,298,843 -1,534,733 -1,298,860 -1,534,786 

Nb. of Obs. 216,746 294,463 216,746 294,463 196,970 273,945 196,970 273,945 

Nb. of Dyads 8,220 11,570 8,220 11,570 7,493 10,779 7,493 10,779 

Nb. of Superstars 161 322 161 322 150 302 150 302 

Conditional dyad fixed effects quasi-MLE estimates for the determinants of JIF-weighted publication rates among coauthors of “superstar” academic life scientists. 
Estimates are displayed as incidence rate ratios (exponentiated coefficients). All models incorporate year effects and seven age category indicator variables (career age 
less than 5 years is the omitted category). Absolute value of robust (QML) z-statistics in brackets, clustered at the level of the superstar. We interact the treatment 
variable with 4 indicator variables corresponding to quartiles for four distinct metrics of achievement for the superstars at the time of their death: total citations, total 
citations normalized by years of career, career NIH funding, and career NIH funding normalized by years of career. In the latter two cases, we exclude 7 scientists who 
spend all their careers at NIH campus in Bethesda, MD, and are therefore not eligible to receive extramural NIH funding. 
 
 
†
significant at 10%; 

*
significant at 5%; 

**
significant at 1%. 
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Table 9: Impact of Coauthor Status at the Time of Superstar Death 

 
No Other Elite 

Coauthor 
Coauthor’s 

R01 Grantee Status 
MERIT, NAS, or 
HHMI Coauthor 

 (1a) (1b) (2a) (2b) (3a) (3b) 

 
w/o 

Controls 
with 

Controls 
w/o  

Controls 
with 

Controls 
w/o 

Controls 
with 

Controls 

After Death  
0.941

**
 0.970 0.933

**
 0.983 0.915

**
 0.933

**
 

[3.52] [1.56] [2.92] [0.55] [4.81] [3.39] 

After Death × no other elite coauth. 
0.692

**
 0.708

**
     

[8.94] [8.02]     

After Death × R01 Grantee 
  0.990 0.951   
  [0.41] [1.40]   

After Death × Coauthor “Elite” 
    1.057

†
 1.116

**
 

    [1.79] [2.74] 

% of Treatment Dyads Affected 18.41% 22.17% 58.10% 53.62% 9.06% 5.72% 

Log Quasi-Likelihood -1,430,523 -1,658,509 -1,432,363 -1,659,686 -1,432,225 -1,659,505 

Nb. of Obs. 216,746 294,463 216,746 294,463 216,746 294,463 

Nb. of Dyads 8,220 11,570 8,220 115,70 8,220 11,570 

Nb. of Superstars 161 322 161 322 161 322 

Conditional dyad fixed effects quasi-MLE estimates for the determinants of JIF-weighted publication rates among coauthors of “superstar” academic life 
scientists. Estimates are displayed as incidence rate ratios (exponentiated coefficients). All models incorporate year effects and seven age category indicator 
variables (career age less than 5 years is the omitted category). Absolute value of robust (QML) z-statistics in brackets, clustered at the level of the superstar. 
We interact the treatment variable with indicator variables capturing various aspects of coauthor status: poor substitution opportunities, i.e., coauthors with 
no other elite coauthor save the extinct superstar; R01 grantee status at the time of death; and a composite “Elite” indicator variable combining membership 
in the National Academy of Science, MERIT Award from the NIH, and HHMI investigatorship. 
 
 
†
significant at 10%; 

*
significant at 5%; 

**
significant at 1%.
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Table 10: Coauthor Publication Rates and Imperfect Skill Substitution 

 Recent Coauthorship Collaboration Age 
Coauthor Age at 
Time of Death 

 (1a) (1b) (2a) (2b) (3a) (3b) 

 
w/o 

Controls 
with 

Controls 
w/o 

Controls 
with 

Controls 
w/o 

Controls 
with 

Controls 

After death 
0.888

**
 0.902

**
 0.892

**
 0.905

**
   

[6.50] [4.53] [6.44] [4.47]   

After Death × At least 1 coauthorship in the 
three years preceding star’s death 

1.154
**

 1.187
**

     

[5.34] [4.85]     

After Death × First coauth. in the 5 years 
before star’s death 

  1.145
**

 1.197
**

   

  [4.25] [4.72]   

After Death × Coauthor less than 10 years of 
career age 

    0.863
*
 0.858

*
 

    [2.11] [2.37] 

After Death × Coauthor b/w 10 and 20 years of 
career age 

    0.888
**

 0.924
**

 

    [4.85] [3.12] 

After Death × Coauthor b/w 20 and 30 years of 
career age 

    0.970 0.983 

    [1.28] [0.65] 

After Death × Coauthor more than 30 years of 
career age 

    0.913
**

 0.960 

    [3.21] [1.02] 

% of Treatment Dyads Affected 24.12% 25.57% 23.43% 25.08% — — 

Log Quasi-Likelihood -1,430,937 -1,658,647 -1,431,149 -1,658,612 -1,431,854 -1,659,543 
Nb. of Obs. 216,746 294,463 216,746 294,463 216,746 294,463 
Nb. of Dyads 8,220 11,570 8,220 11,570 8,220 11,570 
Nb. of Superstars 161 322 161 322 161 322 

Conditional dyad fixed effects quasi-MLE estimates for the determinants of JIF-weighted publications among coauthors of academic life sciences superstar 
academics. Estimates are displayed as incidence rate ratios (exponentiated coefficients). All models incorporate year effects and seven age category indicator 
variables (career age less than 5 years is the omitted category). Absolute value of robust (QML) z-statistics in brackets, clustered at the level of the superstar. 
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Table 11: Coauthor Publication Rates and Access to Resources 

 

Star and 
Coauthor Co-
located at Time 

of Death 

Star and 
Coauthor 

Separated by 
Less than 10 

Miles at Time of 
Death 

Star’s Ties to 
NIH Funding 

Process 

Quartile of 
Betweenness 
Centrality 

 (1a) (1b) (2a) (2b) (3a) (3b) (4a) (4b) 

 
w/o 

Controls 
w/o 

Controls 
with 

Controls 
with 

Controls 
w/o 

Controls 
with 

Controls 
w/o 

Controls 
with 

Controls 

After death 
0.920

**
 0.951

*
 0.921

**
 0.953

*
 0.911

**
 0.933

*
   

[4.21] [2.27] [4.05] [2.08] [4.09] [2.56]   

After Death × 
Co-located 

1.025 0.994       

[0.80] [0.16]       

After Death × 
Within 10 Miles 

  1.017 0.988     

  [0.56] [0.34]     

After Death × 
Star on NIH Study Section 

    1.079 0.981   

    [1.39] [0.37]   

After Death × 
Star Tied to NIH Study Section Members 

    1.007 1.011   

    [0.86] [1.18]   

After Death ×  
Star in 1

st
 Quartile 

      1.010 1.041 

      [0.28] [1.17] 

After Death ×  
Star in 2

nd
 Quartile 

      0.884
*
 0.892

*
 

      [2.49] [2.19] 

After Death ×  
Star in 3

rd
 Quartile 

      0.930 0.955 

      [1.47] [0.82] 

After Death × 
Star in 4

th
 Quartile 

      0.921
**

 0.941
*
 

      [3.88] [2.54] 

% of Treatment Dyads Affected 23.50% 22.96% 26.30% 25.38% — — — — 

Log Quasi-Likelihood -1,432,329 -1,659,784 -1,432,350 -1,659,779 -1,432,224 -1,659,718 -1,431,959 -1,659,451 

Nb. of Obs. 216,746 294,463 216,746 294,463 216,746 294,463 216,746 294,463 
Nb. of Dyads 8,220 11,570 8,220 11,570 8,220 11,570 8,220 11,570 
Nb. of Superstars 161 322 161 322 161 322 161 322 

Conditional dyad fixed effects quasi-MLE estimates for the determinants of JIF-weighted publications among coauthors of academic life sciences superstar academics. 
Estimates are displayed as incidence rate ratios (exponentiated coefficients). All models incorporate year effects and seven age category indicator variables (career age 
less than 5 years is the omitted category). Absolute value of robust (QML) z-statistics in brackets, clustered at the level of the superstar. 
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Table 12: Coauthor Publication Rates and Proximity in Intellectual Space 

 
Former Trainee 

Status 
Quartile of Unique 
Keyword Overlap 

“Accidental” 
Coauthor 

 (1a) (1b) (2a) (2b) (3a) (3b) 

 
w/o 

Controls 
with 

Controls 
w/o 

Controls 
with 

Controls 
w/o 

Controls 
with 

Controls 

After Death 
0.931

**
 0.959

*
   0.925

**
 0.949

**
 

[4.25] [2.15]   [4.71] [2.75] 

After Death × Coauthor is Former 
Trainee 

0.927
†
 0.876

**
     

[1.81] [3.24]     

After Death × “Accidental” Coauthor 
    1.015 1.000 

    [0.35] [0.00] 

After Death × Kwd. Overlap in 1
st
 

Quartile 
  0.936

*
 0.964   

  [2.21] [1.14]   

After Death × Kwd. Overlap in 2
nd

 
Quartile 

  0.957
†
 1.017   

  [1.78] [0.57]   

After Death × Kwd. Overlap in 3
rd

 
Quartile 

  0.932
**

 0.950   

  [2.88] [1.61]   

After Death × Kwd. Overlap in 4
th

 
Quartile 

  0.862
**

 0.859
**

   

  [3.88] [3.83]   

% of Treatment Dyads Affected 8.47% 9.46% — — 7.37% 7.78% 

Log Quasi-Likelihood -1,432,257 -1,659,558 -1,431,919 -1,659,104 -1,432,365 -1,659,785 
Nb. of Obs. 216,746 294,463 216,746 294,463 216,746 294,463 
Nb. of Dyads 8,220 11,570 8,220 11,570 8,220 11,570 
Nb. of Superstars 161 322 161 322 161 322 

Conditional dyad fixed effects quasi-MLE estimates for the determinants of JIF-weighted publications among coauthors of academic life sciences superstar 
academics. Estimates are displayed as incidence rate ratios (exponentiated coefficients). All models incorporate year effects and seven age category indicator 
variables (career age less than 5 years is the omitted category). Absolute value of robust (QML) z-statistics in brackets, clustered at the level of the superstar. 

†
significant at 10%; 

*
significant at 5%; 

**
significant at 1%. 
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Table 13: Sensitivity Checks 

 
 

Stars 60 years old or 
less at time of death 

Stars 70 years old or 
less at time of death 

Stars 75 years old 
or more at time of 

death 

Placebo Death 
Dates for 
Control 

Superstars 

 (1a) (1b) (2a) (2b) (3a) (3b) (4) 

 
w/o 

Controls 
with 

Controls 
w/o 

Controls 
with 

Controls 
w/o 

Controls 
with 

Controls 
Controls Only 

After death 0.923
**

 0.953
†
 0.925

**
 0.944

**
 1.012 0.970 1.001 

[3.64] [1.68] [4.79] [3.26] [0.17] [0.56] [0.21] 

Log Quasi-Likelihood -757,997 -830,110 -1,731,842 -1,995,984 -213,869 -309,533 -761,217 

Nb. of Obs. 105,649 139,374 260,137 350,927 32,843 56,672 140,474 

Nb. of Dyads 4,036 5,500 9,855 13,742 1,230 2,190 2,564 

Nb. of Superstars 86 172 190 380 30 60 161 

Conditional dyad fixed effects quasi-MLE estimates for the determinants of JIF-weighted publications among coauthors of academic life sciences superstar 
academics. Estimates are displayed as incidence rate ratios (exponentiated coefficients). All models incorporate year effects and seven age category indicator 
variables (career age less than 5 years is the omitted category). Absolute value of robust (QML) z-statistics in brackets, clustered at the level of the superstar. 
 

 
†
significant at 10%; 

*
significant at 5%; 

**
significant at 1%. 
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Figure 1: Avoiding Contamination of the Control Sample 
8,963 superstars

Treatment

Superstars

(N=161)

Control

Superstars

(N=161)

Ganymede

Sirius

Betelgeuse

Leo
CallistoOrion

Europa

Denotes a colleague Denotes a star

Denotes an hypothetical relationship compatible with inclusion in the control coauthor group

Denotes an hypothetical relationship incompatible with inclusion in the control coauthor group

Denotes an hypothetical relationship incompatible with selection as a control superstar

 
 
 
 

Figure 2: Number of Coauthors per Superstar 
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Figure 3: Intensity of Coauthorship [Dyad-level] 
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 Figure 4: Collaboration Recency [Dyad-level] 
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Figure 5: Proximity in Ideas Space [Dyad-level] 
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calculation excludes coauthored publications

 

 
 
 

Figure 6: Time plot of coefficient estimates for the treatment effect 
  

      
 

The solid blue lines in the above plot correspond to the coefficient estimates for the incidence rate ratios of a Poisson 
regression in which the weighted publication output of a colleague with other faculty than the dead superstar is 
regressed onto year effects, 7 indicator variables corresponding to different age brackets, and interactions of the 
treatment effect with 11 dummy variables corresponding to 4 years before the year of death, 3 years before the year 
of death,…, 5 years after the year of death, and 6 years after the year of death and above (not plotted). The 95% 
confidence interval (corresponding to robust standard errors, clustered around superstars) around these estimates is 
plotted with dashed red lines. 



Appendix I: Matching Superstars and their Coauthors

We designed the Stars/Colleague Generator (S/CGen) to harvest coauthors’ names from a superstar’s
bibliome. S/CGen identifies colleagues to the extent that (a) they coauthor at least once; and (b) they can
be matched (based on a combination of a last name and up to two initials) with the AAMC Faculty Roster.
We will describe the matching process using as an example one of our extinct superstar, Jeffrey M. Isner,
MD. Isner, a pioneer of gene therapy for Peripheral Artery Diseases, and a faculty member at the Tufts
University School of Medicine, died in 2001 from a heart attack, at the age of 54.

The matching process begins with the creation of a customized PubMED search query for each superstar. In
the case of Isner, the query is ("isner jm"[au] OR "isner j"[au]) AND 1977:2006[dp], and it returns
373 original publications (the query also returns 24 letters, editorials, interviews, etc., which we ignore).
The process of harvesting bibliomes from PubMED using name variations and queries as inputs is facilitated
by the use of PubHarvester, a software program we specifically designed for this purpose (Azoulay et al.
2006).

Spurious Coauthors. Jeff Isner’s PubMED query accounts for his inconsistent use of the middle initial, but
is otherwise quite simple. For other scientists, queries might factor in their inconsistent use of the suffix “Jr.,”
or name variations coincident with changes in marital status. For yet many others with frequent names,
the queries are more involved, and make use of CV information such as scientific keywords, institutional
affiliation, frequent coauthors’ names, etc. This is essential, since errors of commission will tend to generate
spurious coauthor matches. We guarded against this source of error by devoting hundreds of person-hours
to the design of accurate search queries for each of our 8,963 superstars. This degree of labor-intensive
customization ensures that a superstar’s bibliome excludes publications belonging to homonymous scientists.

Matching process. The second step is to extract the name of coauthors from the star’s bibliome and to
match them with the AAMC Faculty Roster. Unfortunately, PubMED does not record authors’ full names,
nor does it record their institutional affiliations; it only keeps track of authors by using a combination of last
name, two initials, and a suffix (where the suffix and the second initial fields can be empty). The matching
process is automated by SC/Gen, and its outcome in the case of a sample publication authored by Jeff
Isner is illustrated in Figure A1. S/CGen cannot generate a match for each coauthor. Some coauthors are
technicians or undergraduate students; others are graduate students or postdocs who do not go on to faculty
positions; yet others are located in foreign institutions; others still publish under names that differ from the
faculty roster listing (for instance by being inconsistent with the use of middle initials, suffixes, or hyphens).
In total, SC/Gen generates 355 matches with the Roster for Isner.

Ambiguous Coauthors. Often, SC/Gen can match a given PubMED name with more than one faculty in
the Roster. Notice the case of ramaswamy k on Figure A1. Does it correspond to K. Ramaswamy (University
of Illinois–Chicago), to Karthik Ramaswamy (UMASS School of Medicine), or to Krishna Ramaswamy (Tufts
University School of Medicine)? Several options are available to deal with these ambiguous matches. We
could discard the first two matches, since the third one corresponds to an individual who shared Isner’s
institutional affiliation. Alternatively, we could retain all three matches, but assign each a weight of 1

3 ,
incorporating a guess on the probability that each match is genuine. Finally, we could simply discard all
three matches, and focus instead on those matches that are unambiguous. This is the approach we have
followed to generate the results we present in the paper.27 Out of the 355 matches mentioned above, only
177 correspond to coauthors with unambiguous PubMED names. For the set of 161 superstars, S/CGen
identifies 7,111 distinct coauthors with unambiguous PubMED names — an average of 51 coauthors per
superstar (the median is 48).

27Trajtenberg et al. (2006) propose algorithms to automate the process of name disambiguation in patent data. Adapting
their approach to publication data lies far beyond the scope of this paper. To fix ideas, Lechleiter JD is an example of unique
PubMED name. In contrast, Weinstein SL corresponds to two distinct faculty in the roster, Miller MJ to ten, and Wang Y to
thirty six.
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Coauthors’ Publication Output. The publication output of coauthors with frequent names will be mea-
sured with error. This source of error is less worrisome, since it involves a dependent variable. Nonetheless,
we have taken several steps to ascertain the extent to which it biases our results. First, our decision to elim-
inate from the sample coauthors with ambiguous PubMED names means that it is almost entirely composed
of individuals with relatively rare names. Second, we have experimented with deleting from the estimation
sample observations corresponding to coauthors with unique PubMED names, but popular last names.28

Specifically, we dropped from the main analysis all coauthors whose last name appear 29 or more times in
the roster (the 99th percentile of the distribution of last name frequency, which correspond to names such as
Greenwald, McKee, O’Malley, or Fu). This hardly affected the main results. Third, in Table 6, we limit the
estimation sample to elite coauthors (i.e., coauthors who belong to the set of 8,963 “superstars”). Because
we designed custom PubMED queries for these individuals, their output is measured with little (if any) error.
The magnitude of the treatment effect is very similar to the one obtained on the full sample of coauthors
(e.g., Table 5A).

Appendix II: Construction of the Control Group

The construction of the control group of dyads relies heavily on the preliminary selection of a control group
of superstars. We aim to create a control population of superstars which matches closely the population of
extinct superstars in terms of demographic characteristics (gender, degree, etc.), achievement (publications,
citations, funding, etc.) and coauthorship patterns (number of casual, regular, and close coauthors). Since
we have no way of capturing our stars’ underlying health status, we have no qualms in engaging in some ad
hoc specification search to create a control population which achieves a high degree of balance.

Control Superstars. From the set of from the set 8,963 superstars, we begin by eliminating individuals who
coauthor with any of our 161 extinct superstars. We are left with 3, 818 + 161 = 3, 979 superstars. Pooling
all years between 1982 and 2003, we specify a logit model with death in a particular year as the outcome
variable. As can be seen in Appendix Table 2, our preferred specification includes a long list of covariates; the
pseudo-R2 is .173. We then select, for each extinct superstar, the “nearest neighbor” based on the propensity
score in the year the superstar dies. This caveat is important. The procedure will, by construction, balance
observable variables that are fixed over time, such as vintage, degree, or gender. But there is no guarantee
that it will balance observables such as number of coauthors or publications, since these change over time.29

The characteristics of control and extinct superstars can be compared in Tables 1A and 1B.

Control Dyads. We simply add to the sample of dyads formed by the extinct superstars and their coauthors
the set of dyads formed by control superstars and their coauthors. This yields a set of 15,705 dyads (7,485
control dyads and 8,220 treatment dyads). Alas, approximately 25% of these dyads involve scientists who
collaborate both with a control and an extinct superstars (1,921 control dyads and 2,214 treatment dyads).
It seems unreasonable to drop these problematic dyads only for the control group, since these “gregarious”
scientists are significantly more accomplished than those who coauthor solely with extinct superstars, or
solely with control superstars (see Appendix Table 3) .

As a consequence, whenever we make use of control dyads to identify the extinction effect, we eliminate
from the estimation sample (a) treatment coauthors who also collaborate with control superstars; and (b)

28For instance, Miller CR is a unique PubMED name, though Miller is the last name for 800 distinct individuals in the
AAMC Faculty Roster.

29In practice, we found that selecting control superstars based on a weighted average of the difference in squared propensity
scores and the absolute value of the difference in the stock of citations at the time of death yields a control population that
balances all covariates. Formally, define d(α) = α(pi − pj)2 + (1− α)|stkcitesi − stkcitesj | where p is the propensity score and
stkcites the cumulative number of cites up until the year of death. We select as control the nearest neighbor for each extinct
star with respect to the norm d(α). Empirically, α = .91 yielded the most well-balanced population of control superstars.
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control coauthors who also collaborate with treatment superstars. The final sample comprises observations
for 11,570 dyads (5,564 control dyads and 6,006 treatment dyads). Figure 1 presents a stylized schema of the
coauthorship ties between control and treatment coauthors that are allowed by our data assembly process,
and contrasts them with the ties that we rule out.

Covariate Balance. Whether matching superstars on observables to predict death results in a sample of
dyads that are also balanced between treatment and control observations is an empirical question. We assess
the effectiveness of the procedure in Table 3 and Appendix Table 3. In Table 3, it can be observed that the
average of dyad characteristics (number of coauthorships, time since first/last coauthorship, co-location, etc.)
are very similar for the treatment and control groups. There are meaningful differences between these two
groups when we focus on achievement. Treatment coauthors have written about 7 papers more than their
control counterparts when their superstar coauthor passes away (of course, the year of death is counterfactual
in the case of the control group) — a 9% difference. They have also received $341,000 more in NIH funding
— a 13% difference. Appendix Table 3 shows that these differences are not reflecting the ineffectiveness of
our two-step matching procedure. Rather, they reflect the fact that the “problematic coauthors” mentioned
above are not a random sample of the complete set of coauthors. If we focus on the complete universe of
dyads (the first panel of Appendix Table 3), the differences between control and treatment groups are less
marked. For instance, treatment coauthors have garnered 5 more publications on average relative to the
controls, but this is merely a 4% difference, since the average number of publications is much higher in the
complete set. The funding advantage for treatment coauthors is also much less pronounced.

In conclusion, the merely approximate degree of covariate balance highlights the challenges involved in
building a valid control group in this setting. Complete lack of contamination between treatment and control
subjects is a salient ideal, but one that is bound to remain out of reach because of indirect coauthorship ties
between scientists. Our estimates relying on two levels of difference should not be thought of as superior,
in some absolute sense, to those relying on a single level of difference. Rather, they are informative in a
different way: they address the concern that effects based solely on changes in output trends for treatment
coauthors confound the effect of exposure to the star with collaboration-specific life-cycle effects.

Appendix III: Measuring Proximity in Ideas Space

We describe the construction of our variable to measure distance (or rather, proximity) in intellectual or
“ideas space” between nodes in a dyad of scientists. The boundaries around scientific fields are difficult to
delineate since most scientific research can be classified in numerous ways, and agreement among scientists
regarding the categorization of specific bits of knowledge is often elusive. Our approach is predicated on the
inadequacy of measures based on shared department affiliation, or on coarse distinctions between scientific
fields (e.g., cell vs. molecular biology). Instead of attempting to position individual scientists relative to
some fixed address in ideas space, we provide a method to cheaply and conveniently measure relative position
in this space.

An essential input is provided by the Medical Subject Headings (MeSH) thesaurus, a controlled vocabu-
lary produced by the National Library of Medicine whose explicit statement of purpose is to “provide a
reproducible partition of concepts relevant to biomedicine for the purpose of organizing knowledge and in-
formation.” The MeSH vocabulary consists of 24,767 terms arranged in a hierarchical structure, and these
terms are used by NLM staff to tag all the articles indexed by the PubMED database.30 From our stand-
point, one of the MeSH system’s most attractive feature is its fine-grained level of detail. For instance, the
initial draft of the public human genome project (Lander et al. 2001) is tagged by 26 distinct descriptors,

30At the highest level of the hierarchical structure are very broad headings such as “Anatomy” or “Mental Disorders.”
More specific headings are found at lower levels of the eleven-level hierarchy, such as “Ankle” and “Conduct Disorder.” See
http://www.nlm.nih.gov/mesh/ for more details.
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which run the gamut from the very general (“Humans”, “RNA/Genetics”) to the very specific (“Repetitive
Sequences, Nucleic Acid”, “CpG Islands”, “DNA Transposable Elements”).31

The procedure followed to generate our dyadic measure of intellectual proximity is best explained through
a concrete example. We will focus on a two scientists, Andrew Schally (from Tulane University in New
Orleans, LA) and Roger Guillemin (from the Salk Institute in San Diego, CA). Throughout the 1960s and
1970s, this pair of eminent neuro-endocrinologists was locked in a very public (and often acrimonious) rivalry
whose ultimate goal was the synthesis of peptide hormones produced by the brain. Together with Rosalyn
Yalow, the Nobel committee awarded them both the Prize in Medicine and Physiology in 1977 (details of
this celebrated case of a scientific race can be found in Nicholas Wade’s The Nobel Duel). We will focus on
the five-year window that preceded the award of the Prize, i.e., 1973-1977. During this period, Guillemin
and Schally did not collaborate at all, and according to Wade (1981), even actively sought to undermine
each other’s progress.

The calculation is illustrated in Appendix Table 4; it is automated by SciDist, an open-source software
program we specifically designed for this purpose.32 Between 1973 and 1977, Schally published 240 articles,
and Guillemin “only” 60. We extract from these publications all MeSH terms, regardless of their position in
the descriptor hierarchy. There are a total of 607 unique MeSH terms tagging the two scientists’ publications,
147 of which overlap. Appendix Table 4 lists the Top 10 overlapping terms with highest and lowest combined
use, respectively.33

To compute the proximity of Guillemin to Schally, we simply divide the number of overlapping MeSH terms
(147), by the total number of unique MeSH terms tagging Guillemin’s 60 publications (220). In contrast, the
proximity of Schally to Guillemin is given by 147 divided by 534 (the total number of unique MeSH terms
tagging Schally’s 240 publications). We view this lack of symmetry as an attractive feature of our approach,
since Schally’s research agenda during this period was significantly broader, and in fact encompassed most
of Guillemin’s. In contrast, many of the distance concepts used to date in the literature — for example
to position firms’ research portfolio in technology space — use an Euclidean (hence symmetric) concept of
distance (e.g., Jaffe 1986).

31This stands in sharp contrast to the coarse partition of technological space provided by patent classes, which are often
used in the study of involuntary knowledge spillovers (Benner and Waldfogel 2007).

32SciDist is available for download at http://www.stellman-greene.com/ScientificDistance/.
33An open question is whether one should weight each term by its frequency of use, or whether it is the number of unique terms

that matters. In practice, these alternatives yield two measures of proximity that are heavily correlated, and the distinction
does not affect the substance of our results.
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Appendix Table 1a: Superstar Sample, Sudden Deaths
Cause of Death Institutional Affiliation Field

Raymond R. Margherio (1940-2000) MD aneurysm Wayne State University School of Medicine clinical studies in age-related eye diseases

A. Arthur Gottlieb (1937-1998) MD pulmonary embolus following surgery Tulane University School of Medicine role of macrophage nucleic acid in antibody production

George B. Craig, Jr. (1930-1995) PhD heart attack University of Notre Dame genetics and reproductive biology of aedes mosquitoes

Walter F. Heiligenberg (1938-1994) PhD plane crash UCSD neuroethological studies of electrolocation

Donald T. Witiak (1935-1998) PhD stroke University of Wisconsin stereochemical studies of hypocholesterolemic agents

D. Martin Carter (1936-1993) MD/PhD dissecting aortic aneurysm Rockefeller University susceptibility of pigment and cutaneous cells to DNA injury by UV

Harold A. Menkes (1938-1987) MD car accident Johns Hopkins University occupational and environmental lung disease

Jonathan M. Mann (1943-1998) MD plane crash Harvard University School of Public Health AIDS prevention

Gary J. Miller (1950-2001) MD/PhD heart attack University of Colorado HSC vitamin D receptors in the growth regulation of prostate cancer cells

Roland L. Phillips (1937-1987) MD/PhD glider plane accident Loma Linda University School of Medicine role of lifestyle in cancer and cardiovascular disease among Adventists

Roy D. Schmickel (1936-1990) MD died tragically University of Pennsylvania isolation and characterization of human ribosomal DNA

Neil S. Jacobson (1949-1999) PhD heart attack University of Washington marital therapy, domestic violence, and the treatment of depression

George Streisinger (1927-1984) PhD scuba-diving accident University of Oregon genetic mutations and the nervous system development in lower vertebrates

Roland D. Ciaranello (1943-1994) MD heart attack Stanford University molecular neurobiology and developmental disorders

Christopher A. Dawson (1942-2003) PhD suddenly Medical College of Wisconsin pulmonary hemodynamics

G. Scott Giebink (1944-2003) MD heart attack University of Minnesota pathogenesis of otitis media and immunizations

Joaquim Puig-Antich (1944-1989) MD asthma attack University of Pittsburgh psychobiology and treatment of child depression

Hymie L. Nossel (1930-1983) MD/PhD heart attack Columbia University causes of thrombosis and the nature of hemostasis

James N. Davis (1939-2003) MD airplane crash SUNY HSC at Stony Brook mechanisms underlying neuronal injury after brain ischemia

Sandy C. Marks, Jr. (1937-2002) DDS/PhD heart attack UMASS bone cell biology

George J. Schroepfer, Jr. (1932-1998) MD/PhD heart attack Rice University regulation of the formation and metabolism of cholesterol

Edward V. Evarts (1926-1985) MD heart attack NIH electrophysiological activity of in vivo neurons in waking and sleeping states

Stanley R. Kay (1946-1990) PhD heart attack Albert Einstein College of Medicine symptoms and diagnostic tests of schizophrenia

Howard S. Tager (1945-1994) PhD heart attack University of Chicago structure, action, regulation and degradation of insulin and glucagon

Lewis W. Wannamaker (1923-1983) MD heart attack University of Minnesota Medical School clinical and epidemiologic aspects of streptococcal infections

Emil T. Kaiser (1938-1988) PhD complications from kidney transplant Rockefeller University mechanism of carboxypeptidase action

Mu-En Lee (1954-2000) MD/PhD complications from routine surgery Harvard Medical School/MGH characterization of vascular smooth muscle LIM protein

Thomas P. Dousa (1937-2000) MD/PhD heart attack Mayo Clinic cellular action of vasopressin in the kidney

Robert M. Macnab (1940-2003) PhD accidental fall Yale University sequence analysis and function of bacterial flagellar motor

Mary Lou Clements (1946-1998) MD airplane crash Johns Hopkins University development of AIDS vaccines

Abraham M. Lilienfeld (1920-1984) MD heart attack Johns Hopkins University School of Public Health epidemiological methods for the study of chronic diseases

Julio V. Santiago (1942-1997) MD heart attack Washington University in St. Louis social factors, lifestyle practices, and medication in the onset of type II diabetes

John J. Jeffrey, Jr. (1937-2001) PhD stroke Albany Medical College mechanism of action and the physiologic regulation of mammalian collagenases

Verne M. Chapman (1938-1995) PhD died suddenly while attending meeting Roswell Park Cancer Institute/SUNY Buffalo development of cumulative multilocus map of mouse chromosomes

John J. Wasmuth (1946-1995) PhD heart attack University of California — Irvine human-hamster somatic cell hybrids/localization of Hnyington's disease gene

Dolph O. Adams (1939-1996) MD/PhD unexpected Duke University Development and regulation of macrophage activation

Fredric S. Fay (1943-1997) PhD heart attack UMASS generation and regulation of force in smooth muscle

D. Michael Gill (1940-1990) PhD heart attack Tufts University biochemistry of cholera toxin and other pathogenic toxins

Gerald P. Rodnan (1927-1983) MD heart attack University of Pittsburgh renal transport if uric acid and protein

Donald C. Shreffler (1933-1994) PhD heart attack Washington University in St. Louis organization and functions of H-2 gene complex

Thomas F. Burks, II (1938-2001) PhD heart attack University of Texas HSC at Houston central and peripheral neuropeptide pharmacology

Roger R. Williams (1944-1998) MD airplane crash University of Utah genetics and epidemiology of coronary artery diseases

James R. Neely (1936-1988) PhD heart attack Penn State University effects of diabetes and oxygen deficiency in regulation of metabolism in the heart

Matthew L. Thomas (1953-1999) PhD died while travelling Washington University in St. Louis function and regulation of leukocyte surface glycoproteins

Simon J. Pilkis (1942-1995) MD/PhD heart attack University of Minnesota carbohydrate metabolism and diabetes

William H. Oldendorf (1925-1992) MD complications from heart disease UCLA x-ray shadow radiography and cerebral angiography

Norbert Freinkel (1926-1989) MD heart attack Northwestern University metabolic regulation in normal and diabetic pregnancies

Takis S. Papas (1935-1999) PhD unexpected and sudden Medical University of South Carolina characterization of ETS genes and retroviral onc genes

Susumu Hagiwara (1922-1989) PhD bacterial infection UCLA evolutionary and developmental properties of calcium channels in cell membranes

Philip J. Fialkow (1933-1996) MD trekking accident in Nepal University of Washington origins of myeloid leukemia tumors

Richard E. Heikkila (1942-1991) PhD murder UMDNJ Robert Wood Johnson Medical School oxidation-reduction reactions and the dopamine receptor system

John B. Penney, Jr. (1947-1999) MD heart attack Harvard Medical School/MGH receptor mechanisms in movement disorder pathophysiology

Gerald P. Murphy (1934-2000) MD heart attack Roswell Park Cancer Institute/SUNY Buffalo detection, immunotherapy, and prognostic indicators of prostate cancer

Ronald G. Thurman (1941-2001) PhD massive heart attack University of North Carolina hepatic metabolism, alcoholic liver injury and toxicology

John P. Merrill (1917-1984) MD drowned Harvard Medical School/Brigham & Women’s Hospitalrole of the immune system in kidney transplantation

DeWitt S. Goodman (1930-1991) MD pulmonary embolism Columbia University lipid metabolism and its role in the development of heart and artery disease



Gerald D. Aurbach (1927-1991) MD hit in a head by a stone NIH bone metabolism and calcium homeostasis

Peter M. Steinert (1945-2003) PhD heart attack NIH structures and interactions of the proteins characteristic of epithelial cells

John H. Walsh (1938-2000) MD heart attack UCLA gastrointestinal hormones, gastric acid production and peptic ulcer disease

Paul B. Sigler (1934-2000) MD/PhD heart attack Yale University structural analysis of biological macromolecules

Alan P. Wolffe (1959-2001) PhD car accident NIH role of DNA methylation in regulating gene expression

Victor J. Ferrans (1937-2001) MD/PhD complications from diabetes NIH myocardial and vascular pathobiology

Demetrios Papahadjopoulos (1934-1998) PhD adverse drug reaction/multi-organ failure UCSF phospholipid-protein interactions, lipid vesicles, and membrane function

William L. McGuire (1937-1992) MD scuba-diving accident University of Texas HSC at San Antonio mechanisms of hormonal control and growth/regression of mammary carcinoma

Jeffrey M. Isner (1947-2001) MD heart attack Tufts University therapeutic angiogenesis in vascular medicine, cardiovascular laser phototherapy

Patricia S. Goldman-Rakic (1937-2003) PhD struck by a car Yale University development and plasticity of the primate frontal lobe

Don C. Wiley (1944-2001) PhD accidental fall Harvard University viral membrane and glycoprotein structure

Henry G. Kunkel (1916-1983) MD complications after vascular surgery Rockefeller University identification of MHC Class II molecules

Zanvil A. Cohn (1926-1993) MD aortic dissection Rockefeller University macrophage in cell biology and resistance to infectious disease

Appendix Table 1b: Superstar Sample, Anticipated Deaths
Cause of Death Institutional Affiliation Field

Jack E. White (1921-1988) MD cancer Howard University School of Medicine epidemiology and treatment of cancer among african-americans

Gregory Mooser (1942-2003) DDS/PhD complications from alzheimer’s disease University of Southern California characterization of glucosyltranserase enzymes secreted by oral bacteria

Teruzo Konishi (1920-1984) MD/PhD cancer NIEHS physiological and biophysical functions of the inner ear

Samuel W. Perry, 3rd (1941-1994) MD pancreatic cancer Weill Medical College — Cornell University psychological course of prolonged infection among AIDS patients

Leo J. Neuringer (1928-1993) PhD cancer MIT NMR studies of normal and transformed cell membranes

Elizabeth M. Smith (1939-1997) PhD cancer Washington University School of Medicine psychiatric problems among disaster survivors

Elizabeth A. Bates (1974-2003) PhD pancreatic cancer UCSD cross-linguistic studies of language development, processing and breakdown in aphasia

John Gibbon (1934-2001) PhD cancer Columbia University CNS functions underlying the interval time sense in animals and humans

Robert F. Spencer (1949-2001) PhD gastric carcinoma Medical College of Virginia neuroanatomy of the oculomotor system

Laird S. Cermak (1942-1999) PhD leukemia Boston University psychological studies of memory and cognitive deficits related to chronic alcoholism

Larry C. Clark (1948-2000) PhD prostate cancer University of Arizona nutritional prevention of cancer

Keith Green (1940-2001) PhD died after lengthy illness Medical College of Georgia ion and water movement in ocular tissues, ocular response to drugs

Lawrence H. Piette (1932-1992) PhD cancer Utah State University electron spin resonance spectroscopy

Eleanor M. Saffran (1938-2002) PhD amyotrophic lateral sclerosis Temple University School of Medicine cognitive deficits in brain-damaged patients

Joseph Stokes, 3rd (1924-1989) MD cancer Boston University School of Medicine epidemiological studies of coronary heart disease

Jane Pitt (1938-2003) MD chronic lymphocytic leukemia Columbia University College of Physicians and Surgeonsperinatal transmission of HIV and retroviral infections

Tai-Shun Lin (1939-1994) PhD non hodgkin’s lymphoma Yale University School of Medicine synthesis/development of nucleoside analogs as antiviral and anticancer compounds

Gareth M. Green (1931-1998) MD/PhD cancer Harvard University School of Public Health role of alveolar macrophages in pulmonary defense mechanisms

Barbara H. Bowman (1930-1996) PhD cancer University of Texas HSC at San Antonio genetic control of the structure of human proteins

Joseph B. Warshaw (1936-2003) MD multiple myeloma University of Vermont College of Medicine developmental neurobiology of respiratory control

Robert J. Fass (1939-2002) MD lung cancer Ohio State University In vitro methods to test antimicrobial susceptibility of infectious agents

Priscilla A. Campbell (1940-1998) PhD cervical cancer University of Colorado HSC/Nat. Jewish center cell biology of the immune response to bacteria

Michael J. Goldstein (1930-1997) PhD cancer UCLA contributing factors to the onset of schizophrenia

Frank Lilly (1930-1995) PhD prostate cancer Albert Einstein College of Medicine role of hereditary factors in governing susceptibility to cancer-causing agents

William L. Chick (1938-1998) MD diabetes complications UMASS studies of islet and beta cells in pancreatic transplantation

Ernest G. Peralta (1959-1999) PhD brain cancer Harvard University signal transduction mechanisms of muscarinic receptors

Charlotte Friend (1921-1987) PhD lymphoma Mount Sinai School of Medicine tissue studies of murine virus-induced leukemia

Jiri Palek (1934-1998) MD 2 year illness Tufts University membrane properties of abnormal red cells

Helene S. Smith (1941-1997) PhD breast cancer UCSF malignant progression of the human breast/predictors of breast cancer prognosis

Bruce S. Schoenberg (1942-1987) MD cancer NIH prevention and control of neurological disorders

Marian W. Fischman (1939-2001) PhD colon cancer Columbia University behavioral pharmacology of cocaine

William H. Tooley (1925-1992) MD long illness UCSF School of Medicine prevention and treatment of respiratory distress in neonates

Mette Strand (1937-1997) PhD cancer Johns Hopkins University parasite immunochemistry and vaccine development

Joachim G. Liehr (1942-2003) PhD pancreatic cancer University of Texas Medical Branch at Galveston mechanism of estrogen-induced carcinogenesis

C. Richard Taylor (1939-1995) PhD heart failure Harvard University Energetics of animal locomotion

David G. Marsh (1940-1998) PhD glioblastoma Johns Hopkins University genetics of allergy and asthma

Michael Solursh (1942-1994) PhD AIDS University of Iowa School of Medicine extracellular matrix and cell migration

Roy H. Steinberg (1935-1997) MD/PhD multiple myeloma UCSF pigment epithelium interactions with neural retina

Harvey D. Preisler (1941-2002) MD lymphoma Rush Medical College clinical and biological studies of myeloid leukemias

George Némethy (1934-1994) PhD brain cancer Mount Sinai School of Medicine methods to analyze and predict the structures of protein molecules



Irving Kupfermann (1938-2002) PhD Creutzfeldt-Jacob’s disease Columbia University Behavioral and neural analysis of learning in aplaysia

B. Frank Polk (1942-1988) MD brain cancer Johns Hopkins University epidemiology of HIV infection

Murray Rabinowitz (1927-1983) MD muscular dystrophy University of Chicago mitochondrial assembly and replication

Lois K. Miller (1945-1999) PhD melanoma University of Georgia genetics and molecular biology of baculoviruses

Gerald T. Babcock (1946-2000) PhD cancer Michigan State University bioenergetic mechanisms in multicenter enzymes

Aaron Janoff (1930-1988) PhD long illness SUNY HSC at Stony Brook pathology of smoking and emphysema

Peter A. Kollman (1944-2001) PhD cancer UCSF free energy perturbation calculations and their application to macromolecules

G. Harrison Echols, Jr. (1933-1993) PhD lung cancer University of California — Berkeley Genetic and chemical studies of phage lambda development

Kiichi Sagawa (1926-1989) MD/PhD cancer Johns Hopkins University modelling the mechanics of cardiac chamber contraction

Albert Dorfman (1916-1982) MD/PhD kidney failure University of Chicago biochemistry of connective tissues

Edwin H. Beachey (1934-1989) MD cancer University of Tennessee at Memphis chemistry and immunology of streptococcal m proteins

John C. Liebeskind (1935-1997) PhD cancer UCLA behavioral and electrophysiological studies of pain

Janis V. Giorgi (1947-2000) PhD uterine cancer UCLA cellular immunology of resistance to HIV

Bernard N. Fields (1938-1995) MD pancreatic cancer Harvard Medical School/Brigham & Women’s Hospitalgenetic and molecular basis of viral injury to the nervous system

Eva J. Neer (1937-2000) MD breast cancer Harvard Medical School/Brigham & Women’s Hospitalregulation and cellular levels of G protein subunits

Richard P. Bunge (1932-1996) MD esophageal cancer University of Miami schwann cell biology and human spinal cord injury

Thoralf M. Sundt, Jr. (1930-1992) MD bone marrow cancer Mayo Clinic surgical techniques for intracranial aneurysms

George Khoury (1943-1987) MD lymphoma NIH genetics of simian virus 40, human papovavirus and HIV

John S. O'Brien (1934-2001) MD postpolio complications UCSD discovery of the gene responsible for Tay-Sachs disease

Merton Bernfield (1938-2002) MD Parkinson’s Disease Harvard Medical School/Children’s Hospital nature and interactions of cell surface proteoglycans during morphogenesis

Richard K. Gershon (1932-1983) MD lung cancer Yale University immunologic responses to tumor grafts

Donald J. Cohen (1940-2001) MD ocular melanoma Yale University Tourette’s syndrome and autism in children

Theodore S. Zimmerman (1937-1988) MD lung cancer Scripps Research Institute platelet/plasma protein interaction in blood coagulation

Nelson Butters (1937-1995) PhD Lou Gehrig’s disease UCSD cognitive deficits related to chronic alcoholism

Edward C. Franklin (1928-1982) MD brain cancer New York University structure and properties of rheumatoid antibodies

Thomas W. Smith (1936-1997) MD mesothelioma Harvard Medical School/Brigham & Women’s HospitalMechanism and reversal studies of digitalis

Norton B. Gilula (1944-2000) PhD lymphoma Scripps Research Institute cell junction biosynthesis and biogenesis/cell-cell communication

Paul C. MacDonald (1930-1997) MD cancer University of Texas Southwestern Medical Center at Dallasorigin and interconversion of gonadal and adrenal streoid hormones

Edwin L. Bierman (1930-1995) MD bone cancer University of Washington Metabolism of particulate fat in diabetes and atherosclerosis

Ora M. Rosen (1935-1990) MD breast cancer Sloan Kettering Institute for Cancer Research Cloning and characterization of gene for human insulin receptor

Joel D. Meyers (1944-1991) MD colon cancer University of Washington/FHCRC infections caused by suppression of the immune system in organ transplant and AIDS

Sidney H. Ingbar (1925-1988) MD lung cancer Harvard Medical School/Beth Israel Medical Center physiology of the thyroid gland and its clinical diseases

Melvin L. Marcus (1940-1989) MD colon cancer UMASS cardiology, heart disease, coronary vascular adaptations to myocardial hypertrophy

George G. Glenner (1927-1995) MD systemic senile amyloidosis UCSD molecular structure of the amyloid protein

J. Christian Gillin (1938-2003) MD esophageal cancer UCSD serotenergic mechanisms in sleep and depression

John R. Williamson (1934-2000) PhD cancer University of Pennsylvania School of Medicine molecular mechanisms of hormonal signal transduction

Howard M. Temin (1934-1994) PhD lung cancer University of Wisconsin molecular biology and genetics of tumor viruses

Ira Herskowitz (1946-2003) PhD pancreatic cancer UCSF genetics of yeast mating type

Harold C. Neu (1934-1998) MD glioblastoma Columbia University surface enzymes in bacteria

Charles D. Heidelberger (1920-1983) PhD carcinoma of nasal sinus University of Southern California effects of fluorinated pyrimidines on tumors

Gerald L. Klerman (1928-1992) MD diabetes Weill Medical College — Cornell University studies of depression, schizophrenia and panic and other anxiety disorders

Sydney E. Salmon (1936-1999) MD pancreatic cancer University of Arizona quantitative method for evaluating changes in myeloma tumor mass

Markku Linnoila (1947-1998) MD/PhD cancer NIH studies on the biological bases of impulsivity and aggression

Wallace P. Rowe (1926-1983) MD colon cancer NIH genetic basis of disease in murine leukemia viruses

Richard J. Wyatt (1939-2002) MD lung cancer NIH biochemistry of schizophrenia

Sheldon M. Wolff (1930-1994) MD complications from a renal malignancy Tufts University School of Medicine treatment of fevers from infectious diseases like wegener’s granulomatosis

Charles G. Moertel (1927-1994) MD Hodgkin’s Disease Mayo Clinic clinical treatments of gastrointestinal cancer

Allan C. Wilson (1934-1991) PhD leukemia University of California — Berkeley use of molecular approaches to understand evolutionary change

Edgar Haber (1932-1997) MD multiple myeloma Harvard University School of Public Health biological regulation of the renin-angiotensin system

Henry S. Kaplan (1918-1984) MD lung cancer Stanford University School of Medicine radiation-induced leukemia in the C57BL mouse

Charles A. Janeway, Jr. (1943-2003) MD B-cell lymphoma Yale University innate immunity and T lymphocyte biology

Harold Weintraub (1945-1995) MD/PhD brain cancer University of Washington/FHCRC characterization and function of MyoD gene
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Appendix Table 2: Predicting Death in the Superstar Sample [Logit] 
 

 dep. var.=1 if star dies in year t, 
0 otherwise 

Cumulative nb. of publications 
1.003

*
 

[2.44] 

Nb. of “casual” coauthors 
1.017

**
 

[5.02] 

Nb. of “regular” coauthors 
0.984 
[1.22] 

Nb. of “close” coauthors 
0.917

**
 

[3.08] 

Female 
1.026 
[0.10] 

Member of the NAS 
1.065 
[0.33] 

HHMI 
2.197

†
 

[1.76] 

Ph.D 
0.843 
[1.11] 

MD/Ph.D 
1.677

*
 

[1.99] 

Other Health Doctorate/PhD 
2.081 
[1.33] 

Top 10 School 
1.546

**
 

[3.14] 

NIH Intramural Scientist 
1.008 
[0.03] 

U.S. Born 
0.972 
[0.18] 

Log Quasi-Likelihood -1,316 
Nb. of Observations 97,602 
Nb. of Superstars 3,979 

Robust z-statistics in brackets, clustered by superstar 
The specification also incluses career age indicator variables, degree 
vintage indicator variables, and year effects. 
†
significant at 10%; 

*
significant at 5%; 

**
significant at 1%  
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Appendix Table 3: Assessing Covariate Balance 
All Dyads Mean Std. Dev Min. Max. 

Control Dyads (N=7,485)     
 Cum. Nb. of Coauthorships 2.788 5.630 1 201 

 Cum. Nb. of Papers 87.972 96.005 1 1,559 

 Cum. Nb. of Papers, JIF-weighted 353.053 497.297 0.572 5,636.42 

 Cum. NIH Funding $3,240,821  $6,727,974  $0  $102,335,856  

Treatment Dyads (N=8,220)     
 Cum. Nb. of Coauthorships 3.082 5.756 1 112 

 Cum. Nb. of Papers 92.310 95.933 1 930 

 Cum. Nb. of Papers, JIF-weighted 379.330 502.994 0.577 5,841.22 

 Cum. NIH Funding $3,347,435 $7,340,808 $0 $206,150,592 

Excluding “Problematic” Dyads Mean Std. Dev Min. Max. 

Control Dyads (N=5,564)     
 Cum. Nb. of Coauthorships 2.871 5.364 1 165 

 Cum. Nb. of Papers 65.264 62.021 1 703 

 Cum. Nb. of Papers, JIF-weighted 235.765 293.868 0.526 3,226.33 

 Cum. NIH Funding $2,267,215  $4,658,176  $0  $94,993,448  

Treatment Dyads (N=6,006)     
 Cum. Nb. of Coauthorships 3.049 5.458 1 112 

 Cum. Nb. of Papers 72.205 70.266 1 726 

 Cum. Nb. of Papers, JIF-weighted 269.255 324.101 0.523 4,577.73 

 Cum. NIH Funding $2,608,550 $6,550,636 $0 $206,150,592 
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Appendix Table 4: Measuring Proximity in Ideas Space 

  
Andrew 
Schally 

Roger 
Guillemin 

Dyad 

Top 10 overlapping MeSH terms 
with highest combined use 

Animals 170 49 

Rats 127 33 

Male 131 23 

Gonadotropin-Releasing Hormone 121 9 

Luteinizing Hormone 121 8 

Humans 94 23 

Female 106 8 

Follicle Stimulating Hormone 81 6 

Pituitary Gland 65 19 

Time Factors 54 8 

Top 10 overlapping MeSH terms 
with lowest combined use 

Molecular Weight 1 1 

Somatomedins 1 1 

Peptide Chain Termination, Translational 1 1 

Steroids 1 1 

Arginine Vasopressin 1 1 

Propylthiouracil 1 1 

Neural Pathways 1 1 

Electric Stimulation 1 1 

Cerebellum 1 1 

Fatty Acids, Nonesterified 1 1 

Number of Publications 240 60 

Number of MeSH Terms (freq.-unweighted) 534 220 

Number of MeSH Terms (freq.-weighted) 3,035 750 

Number of Ovrlp. MeSH Terms (freq.-unweighted) 147 

Number of Ovrlp. MeSH Terms (freq.-weighted) 609 

Proximity of Guillemin to Schally (freq.-unweighted) 0.668 

Proximity of Schally to Guillemin (freq.-unweighted) 0.275 

Proximity of Guillemin to Schally (freq.-weighted) 0.812 

Proximity of Schally to Guillemin (freq.-weighted) 0.201 
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Appendix Table 5 
Impact of Superstar Death on Coauthors’ Publication Rates [OLS] 

Treatment Dyads Only, JIF-weighted Total Publications 

 All Sudden Anticipated 
 (1a) (1b) (2a) (2b) (3a) (3b) 

After Death 
-1.383

**
 -1.265

**
 -2.141

**
 -1.651

**
 -0.795 -0.940

†
 

[0.364] [0.377] [0.480] [0.560] [0.506] [0.506] 

After Death ×   -0.155  -1.998
*
  1.097 

Regular Collab.  [0.580]  [0.916]  [0.688] 

After Death ×   -1.406  -1.027  -1.721 

Close Collab.  [0.932]  [0.976]  [1.489] 

Dep. Var Mean 19.406 21.059 18.175 

R2 0.039 0.039 0.042 0.043 0.037 0.037 

Nb. of Obs. 216,746 216,746 91,620 91,620 125,126 125,126 

Nb. of Dyads 8,220 8,220 3,509 3,509 4,711 4,711 

Nb. of Superstars 161 161 69 69 92 92 

Replication of the results in Table 5A, using OLS to estimate the effects of superstar extinction. All models incorporate 
year effects and 50 age category indicator variables. The results in column 1a imply that coauthors suffer a 1.38 yearly 
decline in JIF-weighted publication output following the death of their superstar collaborator. This represents a 7.11% 
decrease relative to the mean of the dependent variable at the time of death. The figure matches up closely with the 
7.40% decline from Table 5A, column 1a. A similar exercise can be performed for columns 2a and 3a, and the departures 
betwen the magnitudes implied by OLS and QML Poisson are once again very slight. Absolute value of robust standard 
errors in brackets, clustered at the level of the superstar. 

†
significant at 10%; 

*
significant at 5%; 

**
significant at 1%. 
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Figure A1: Coauthor Matching for a Sample Publication 
 

 
 
 
 
 
 

Figure A2: Vintage-specific Empirical Distributions for the 
Distribution of Citations at the Article-level 

 

0

100

200

300

400

500

600

700

N
u
m

b
e
r 

o
f 
C

it
a
ti
o

n
s

 

1970 1975 1980 1985 1990 1995 2000 2005
 

Selected Quantiles
Article-level Distribution of Citations

Top 5%

Top 1%

Top 5‰

Top 1‰

 
 
 




