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1 Introduction

Whereas the standard time-separable utility model parsimoniously links the returns
of all assets to per capita consumption growth through the Euler equations of con-
sumption, per capita consumption growth covaries too little with the returns of most
classes of financial assets and this creates a host of asset pricing puzzles: the aggregate
equity return and the returns of various subclasses of financial assets are too large, too
variable, and too predictable. Several generalizations of essential features of the model
have been proposed to mitigate its poor performance.!

In particular, Bansal and Yaron (2004) introduce a “long-run risks” (LRR) state
variable that simultaneously drives aggregate consumption growth and aggregate div-
idend growth. In conjunction with Kreps and Porteus (1978) preferences, the LRR
state variable has a rich set of pricing implications and shows promise in explaining
the cross-section of expected returns of various classes of financial assets?.

The first contribution of our paper is to propose a novel estimation approach for the
LRR model. Unlike Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2007) who
treat the LRR variable and the conditional variance of its innovation as latent state
variables, we argue that these state variables are observable because both the aggregate
price-dividend ratio and interest rate are functions only of these two state variables
under the model assumptions. In the particularly simple log-linearized version of the
model, the aggregate log price-dividend ratio and log interest rate are affine functions
of the two state variables, with coefficients that are known functions of the preference
parameters and of the parameters of the time-series processes. This observation allows
us to invert the affine system and express the two state variables as known affine
functions of the observable aggregate log price-dividend ratio and log interest rate.
Therefore, we are able to express the log pricing kernel as an affine function of the
aggregate log price-dividend ratio, log interest rate, and their lags, in addition to
consumption growth.

In GMM tests at the annual frequency over 1930-2006, we strongly reject the hy-
pothesis that the above pricing kernel explains the equity premium when we impose
the constraint that the parameters of the pricing kernel should be consistent with the
preference parameters and the parameters that drive the time-series processes of con-
sumption growth, aggregate dividend growth, the LRR variable, and the conditional

! This extensive literature is reviewed in a collection of essays in Mehra (2008); the textbooks by
Campbell, Lo, and MacKinlay (1997) and Cochrane (2005); and the articles by Campbell (2000, 2003),
Cochrane and Hansen (1992), Constantinides (2002), Kocherlakota (1996), and Mehra and Prescott
(2003).

2See also, Alvarez and Jerman (2005), Bansal, Dittmar, and Lundblad (2005), Bansal, Gallant,
and Tauchen (2007), Bansal, Kiku, and Yaron (2007), Bekaert, Engstrom, and Xing (2005), Hansen,
Heaton, and Li (2008), Hansen and Scheinkman (2007), Kiku (2006), Lettau and Ludvigson (2008),
and Malloy, Moskowitz, and Vissing-Jorgensen (2006).



variance of its innovation. We reject the hypothesis that it explains the value and
size premia even when we do not impose the constraint; not surprisingly, we strongly
reject the hypothesis that it explains the value and size premia when we impose the
constraint.

The reversal of earlier conclusions by Bansal and Yaron (2004) and Bansal, Kiku,
and Yaron (2007) is due, in part, to the increased power of the tests brought about
by the recognition that the state variables - LRR and the conditional variance of its
innovation - are not latent after all but are known affine functions of the observable
aggregate log price-dividend ratio and log interest rate and, therefore, the pricing kernel
is an affine function of the aggregate price-dividend ratio and interest rate, in addition
to consumption growth. Furthermore, the unconditional moments of consumption
growth and aggregate dividend growth impose constraints in addition to the pricing
constraints.

The second contribution of our paper is to re-examine the empirical evidence of
an extended version of the model that introduces as a third state variable the co-
integrating residual of the logarithms of consumption and aggregate dividend levels.
Such a co-integrating relationship has been introduced in the LRR model by Bansal,
Dittmar, and Kiku (2007) and Bansal, Gallant, and Tauchen (2007). A simple ex-
tension of our earlier observation is that the aggregate price-dividend ratio and the
interest rate are affine functions of the three state variables, with coefficients that are
known functions of the preference parameters and of the parameters of the time-series
processes. As before, this allows us to express the pricing kernel as an affine function of
the aggregate price-dividend ratio, the interest rate, the demeaned aggregate dividend-
consumption ratio, and their lags, in addition to consumption growth. In GMM tests
at the annual frequency over 1930-2006, we reject the hypothesis that the above pricing
kernel explains the equity premium. Moreover, the value of the persistence parameter
of the LRR variable that best fits the data is 0.8, implying that the half-life of the LRR
variable is just 3 years. We also reject the hypothesis that the above pricing kernel
explains the cross-section of returns over the period 1930-2006.

The third contribution of our paper is to explore the possibility that rejection of
the LRR model and its cointegrated variant is due, in part, to failure to account for
recent evidence on regime shifts. In particular, we repeat the tests over the post-war
period 1947-2006, thereby allowing for a possible break at the end of the war; and
over the post-war period 1947-1991, thereby recognizing possible additional breaks in
the early nineties. Whereas the models are still formally rejected, we find that they
perform considerably better in explaining the equity premium but not the cross-section
of returns. The results suggest that regime shifts warrant further investigation.

We address the problem of temporal aggregation of consumption by repeating our
estimation and tests using quarterly data over the post-war period. The results are very
similar to those obtained using annual data over the post war subperiod. In particular,
the models are statistically rejected but perform considerably better in explaining the



equity premium than the cross-section of returns. This suggests that our findings are
unlikely to be driven by the problems associated with temporal aggregation.

Finally, note that the methodology of expressing latent state variables as known
functions of observables has been previously employed in testing affine models of the
term structure of interest rates (see, Dai and Singleton (2000) and Duffee (2002)). In
these models, bond yields are affine functions of the latent state variables. Hence, the
system may be inverted to express the state variables as affine functions of the observ-
able yields. To our knowledge, our paper is the first application of this methodology
in testing models of the cross section of equity returns. The same approach may be
applied to evaluate the empirical plausibility of other asset pricing models that rely on
latent state variables.

The paper is organized as follows. In Section 2, we describe our estimation method-
ology of the LRR model. In Section 3, we discuss the data. Section 4 presents the
estimation results and, hence, the empirical evidence on the LRR model for the market
portfolio and the risk free rate. Section 5 examines the ability of the model to explain
the cross-section of asset returns. In Section 6, we consider an extension of the LRR
model that introduces, as a third state variable, the co-integrating residual of the log-
arithms of consumption and aggregate dividend levels. In Section 7, we address the
possibility of structural breaks within the period 1930-2006 by repeating our tests in
post-war subperiods. In Section 8 we address the issues related to temporal aggregation
of consumption by repeating our estimation and tests with quarterly data. Section 9
concludes. The appendix contains details of the estimation methodology.

2 Model and Estimation Methodology

The Bansal and Yaron (2004) LRR model relies on Kreps and Porteus (1978) prefer-
ences that allow for separation between the intertemporal elasticity of substitution and
risk aversion. They assume that the representative consumer has the version of Kreps
and Porteus (1978) preferences adopted by Epstein and Zin (1989) and Weil (1989).
The utility function is defined recursively as

[

Vi=[a-0c7 e (EVEIEOD] 1)

where § denotes the subjective discount factor, v > 0 is the coefficient of risk aversion,

1 > 0 is the elasticity of intertemporal substitution, and 6 = 11__1 Note that the

»
sign of f depends on the relative magnitudes of v and 1. The standard time-separable
power utility model is obtained as a special case when § =1, i.e. v = 1.

The aggregate consumption and dividend growth rates, Ac;,; and Ad;.q, respec-

tively, are modeled as containing a small persistent expected growth rate component




(the LRR), x;, and fluctuating volatility, o;, that captures time-varying economic un-
certainty:

Tip1 = Puly + 020 141,
ot = (1—0)0% + 00} + 0wZeis1,
Acip1 = o+ T+ 0rZeti1,
Adiyr = pig+ 0Tt + 0i2a,11- (2)

The shocks 2, t+1, Zot+1, Zet+1, and zq441 are assumed to be i.i.d. N(0, 1) and mutually
independent.

The time-series specification, equation (2), imposes restrictions on the underlying
time-series parameters: (., [, @, ©, Py, ¥y, 0, U, and o,. In particular, moments of
the aggregate consumption and dividend growth processes are well-defined functions of
these 9 parameters (see Appendix A.1 for expressions of the moments of consumption
and dividend growth rates as functions of the time-series parameters).

For the specification of preferences in equation (1), Epstein and Zin (1989) and Weil
(1989) show that, for any asset j, the first-order conditions of the consumer’s utility
maximization yield the following Euler equations,

Ey lexp(mysr +rj41)] = 1, (3)

0
M1 = 0logd — EACH-I + (0 — V)resrn, (4)

where E;(.) denotes expectation conditional on time ¢ information, m;, is the natural
logarithm of the intertemporal marginal rate of substitution, r;;;; is the log of the
gross return on asset j, and 7.y is the unobservable log gross return on an asset that
delivers aggregate consumption as its dividend each period.

Closed-form solutions for the model rely on log-linear approximations for the log
return on the consumption claim, 7.1, and that on the market portfolio (the return
on the aggregate dividend claim), 7,41, as in Campbell and Shiller (1988),

Tertl = Ko+ K121 — 2t + Acei, (5)

'mit+1 = Kom + R1mAmt+1 — Zm.t + Adm,t+17 (6)

where z; is the log price-consumption ratio and z,,; the log price-dividend ratio. In
equation (5), k1 = Li—zeg and kg = log(1l 4+ €*) — K1z are log-linearization constants,
where Z denotes the long-run mean of the log price-consumption ratio. Similarly, in
equation (6), K1, = % and ko, = log(l + €*) — K1Z,, where Z, denotes the
long-run mean of the log price-dividend ratio. Bansal and Yaron (2004) show that z;
and z,,,, are affine functions of the state variables, z; and o7,
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2 = Ao+ Awr + Aso}, (7)
Zmt = AO,m + Al,mxt + A?,mgtz‘ (8)

The coefficients Ay, Ay, Az, Aom, A1m, and Ay, depend on the parameters of the
utility function, equation (1), and those of the stochastic processes for consumption
and dividend growth rates, equation (2) (see Appendix A.2.1 for expressions for Ay,
Al, Ag, A07m, Al,m; and A27m).

For this model specification, the log risk free rate from period ¢ to t 4+ 1 may also be

expressed as an affine function of the state variables (see Appendix A.2.2 for expressions
for Ag ¢, Ay s, and A, ),

rre = —log By [exp(mys1)],
= Aoy + Avsz + Ag oy (9)

Equations (8) and (9) express the observable variables, z,,; and r,, as affine func-
tions of the latent state variables, z; and 0. These may be inverted to express the
unobservable state variables, ; and o7, in terms of the observables, z,,, and 7, (see
Appendix A.2.3 for details and expressions for ag, a1, as, (4, 5, and [3,),

Ty = 0o+ oqTfe+ QaZmy, (10)
o7 = Bo+Birss+ Bezme (11)
Now, substituting the log-affine approximation for r.;;; in equation (5) into the

expression for the pricing kernel (equation (4)), and noting that z; is given by equation
(7), we have,

M = (Blogd+ (8 — 1) g + (k1 — 1) Ag]) + (—% . 1)) Acv
+(0 — V)1 A1z + (0 — D)k1 Aoy — (0 — 1) Ay, — (0 — 1) Agor. (12)

Equation (12) for the pricing kernel involves the unobservable (from the point of
view of the econometrician) state variables, z; and ¢?, and, hence, is not directly
testable on a cross-section of asset returns. Substituting the expressions for x; and o?
from equations (10) and (11) into the pricing kernel in equation (12), we have,

1 1
Myy1 = €1 + C2Aciyq + C3 (Tf,tﬂ - K_Tf,t) + ¢4 (Zm,t+1 - H—th) ) (13)
1 1



The parameters ¢ = (cq, 2, c3,¢4)" are functions of the parameters of the time-series
processes and the preference parameters (see Appendix A.2.4 for details).

The above expression for the pricing kernel is entirely in terms of observables. We
substitute this expression into the set of Euler equations (3) to obtain a set of moment
restrictions that are expressed entirely in terms of observables.

We first examine the empirical plausibility of the model when the asset menu con-
sists of the market portfolio and the risk free rate. The lagged log price-dividend ratio
of the market and the lagged log risk free rate are used as instruments. The Euler
equations for the two assets along with the two chosen instruments give 6 moment re-
strictions. To this set of pricing restrictions, we add moment restrictions implied by the
time-series specification of the model in equation (2). In particular, we include the fol-
lowing 9 moments of consumption and dividend growth rates: E(Aciy1), Var(Acii1),
Cov(Acii1, Aciya), E(Adiyq), Var(Adiy), Cov(Adsy 1, Adsys), Cov(Aciyr, Adiy), Var [(Acii1)?],
and Var [(Adyy1)?]. Thus, we have a total of 15 moment conditions. The total number
of parameters to be estimated is 12, including 9 time-series parameters and 3 preference
parameters. We estimate the parameters with the GMM approach of Hansen (1982)
and test the specification of the model using the overidentifying restrictions.

We next examine the ability of the model to explain the cross-section of returns.
In this case, the asset menu consists of the market portfolio, the risk free rate, and
portfolios of "Small" capitalization, "Large" capitalization, "Growth" and "Value"
stocks. The Euler equations for the 6 assets give 6 moment restrictions. To this set
of pricing restrictions, we add the 9 moment restrictions implied by the time-series
specification of the model. This gives, once again, a total of 15 moment conditions in
12 parameters. We estimate the parameters and test the model specification with the
GMM approach.

3 Data

We first estimate the model at the annual frequency, using annual data over the entire
available sample period 1930 to 2006. We also repeat our analysis over the post-war
periods 1947-2006 and 1947-1991, using both annual and quarterly data. The asset
menu consists of the market, the risk free rate, and portfolios of "Value", "Growth",
"Small" capitalization, and "Large" capitalization stocks. Our market proxy is the
Centre for Research in Security Prices (CRSP) value-weighted index of all stocks on
the NYSE, AMEX, and NASDAQ. The proxy for the risk free rate is the one-month
Treasury Bill rate (from Ibbotson Associates). The construction of the size and book-
to-market portfolios is as in Fama and French (1993). In particular, for the size sort,
all NYSE, AMEX, and NASDAQ stocks are allocated across 10 portfolios according
to their market capitalization at the end of June of each year. Value-weighted returns



on these portfolios are then computed over the following twelve months. NYSE break-
points are used in the sort. "Small" and "Large" denote the bottom and top market
capitalization deciles, respectively. Similarly, value-weighted returns are computed for
portfolios formed on the basis of BE/ME at the end of June of each year using NYSE
breakpoints. The BE used in June of year t is the book equity for the last fiscal year
end in £ — 1 and ME is the price times shares outstanding at the end of December of
t —1. "Growth" and "Value" denote the bottom and top BE/ME deciles, respectively.
Annual and quarterly returns for the above portfolios are computed by compounding
monthly returns within each year and quarter, respectively. Also used in the empirical
analysis are the price-dividend ratio and dividend growth rates of the above mentioned
portfolios. Data on these are obtained from the CRSP files. All nominal quantities are
converted to real, using the personal consumption deflator.

Table 1 provides descriptive statistics for the continuously compounded returns,
the price-dividend ratios, and the dividend growth rates for the six assets mentioned
above, for the annual sample over the period 1930-2006. The table illustrates the well
documented equity premium and the size and value premia. Over the sample period,
the annual equity premium over the 1-month Treasury bill rate has mean 5.8% and
volatility of market returns is 19.3%. The annual risk free rate has mean 0.8% and
standard deviation 5.0%. The annual mean premium of small over large stocks is 4.5%
and of value over growth stocks is 4.1%. Value stocks are much more volatile than
growth stocks and small stocks are much more volatile than large stocks.

The annual log price-dividend ratio on the market has a mean of 3.27 and stan-
dard error of 0.38 over the sample period. The price-dividend ratios of the "Small"
and "Value" portfolios are much more volatile with annual volatilities at 0.71 and
1.14, respectively, compared to their counterparts, namely the "Large" and "Growth"
portfolios that have volatilities 0.44 and 0.63, respectively.

The average annual log dividend growth rate on the market portfolio is 1.4% with
volatility 10.8%. The mean and volatility of the "Small" (8.3% and 34.7%) and "Value"
(7.0% and 56.8%) portfolios are much higher compared to their counterparts, namely
the "Large" (1.2% and 13.6%) and "Growth" (0.7% and 20.6%) portfolios.

Finally, for consumption, we use real per capita consumption of non-durables and
services from the National Income and Product Accounts (NIPA). We make the stan-
dard "end-of-period" timing assumption that consumption during period ¢ takes place
at the end of the period. Growth rates are constructed by taking the first difference of
the corresponding log series. The annual log consumption growth has a mean of 1.5%
and standard deviation of 2.6% over the sample period.



4 Empirical Evidence on the Equity Premium

We first examine the ability of the model to explain the returns of the market port-
folio and the risk free rate, using annual data over the period 1930-2006. The LRR
model was originally intended to explain the equity premium and the low risk free rate
and it seems appropriate to start the empirical analysis by examining the ability of
the model to explain the returns of these two assets. The lagged log price-dividend
ratio of the market and the lagged log risk free rate are used as instruments giving 6
moment restrictions. To this set of pricing restrictions, we add moment restrictions
implied by the time-series specification of the model in equation (2). In particular, as
explained in Section 2, we include moments corresponding to the unconditional mean,
variance, and first-order autocovariance of consumption and dividend growth rates,
the covariance between consumption and dividend growth rates, and the variance of
squared consumption and dividend growth rates (see Appendix A.1 for expressions of
these moments in terms of the time-series parameters of the model). This gives 9 mo-
ment restrictions corresponding to the assumed time-series processes. Thus, we have
a total of 15 moment conditions. The total number of parameters to be estimated is
12, including 9 time-series parameters and 3 preference parameters. We estimate the
parameters with the GMM approach using the efficient weighting matrix and use the
overidentifying restrictions to test the specification of the model.?

Note that the moment conditions, particularly the pricing restrictions, are highly
nonlinear in the parameters making optimization difficult. In order to get accurate
estimates, we first estimate the 9 time-series parameters using the 9 moment restrictions
corresponding to the time-series specification of the model. This gives initial consistent
estimates of these parameters along with their standard errors. Next, we update the
initial estimates to obtain the final estimates of the time-series parameters and also
estimate the preference parameters by performing a 12-dimensional grid search, over the
9 time series parameters and 3 preference parameters, using the full set of 15 moment
restrictions. For the persistence parameter of the LRR variable, p,, the grid covers the
interval 0.10, 0.15, ..., 0.95, because its entire permissible range (0, 1] is contained in
the 95% confidence interval of the initial estimate. For each of the other time series
parameters, the grid consists of evenly spaced points within two standard errors of the
initial consistent point estimate. The grid for the risk aversion parameter is 2, 4, ..., 10,

3 Another common choice of the weighting matrix in the literature is the identity matrix. This
puts equal weight on all the moment restrictions and arguments advanced in favour of it are its
superior finite-sample properties and that it forces the estimates to minimize the sum of squared
pricing errors. However, note that it ignores the covariance structure of the moment restrictions
often leading to an identification problem. This issue is particularly serious in our setting where
the moment restrictions include the pricing restrictions as well as time-series restrictions. Using
the efficient weighting matrix avoids the identification issues by taking into account the covariance
structure of the moment conditions and appropriately weighting them.



that for the IES is 0.3, 0.6, 0.9, 1.2, 1.5, and that for the rate of time-preference is 0.95,
0.97, 0.99. At each of the grid points, we compute the value of the GMM objective
function and report the parameter vector at the grid point that minimizes the criterion
function. We also report the standard errors of the parameter estimates that are
Newey-West corrected using two lags, the average pricing errors of the assets and their
associated standard errors®, and the J-stat to test the null hypothesis that the model
is correctly specified. Note that the J-stat has an asymptotic chisquared distribution
with 3 degrees of freedom under the null.

The estimation results are reported in Table 2. Note that the persistence parameter,
p,, of the LRR variable is 0.90. It is very difficult, in finite samples, to statistically
distinguish between a purely i.i.d. process and one with a very small, but persistent,
predictable component (see Shephard and Harvey (1990)). Expressing the latent LRR
variable as a known affine function of observables increases the power of our estimation
approach making it easier to detect the presence of small, predictable components in
consumption and dividend growth rates. The estimated values of the risk aversion
and the IES parameters are 8 and 0.6, respectively, and both are quite imprecisely
estimated.

However, note that the average pricing errors for the market portfolio and the risk
free rate are substantial at 11.6% and 14.8%, respectively. Moreover, the J-stat is 10.41
and has an asymptotic p-value of 1.5%.

Note that the non-linearity of the moment restrictions with respect to the para-
meters, the large number of parameters to be estimated (12), and the relatively small
sample size (76) calls into question the accuracy of the asymptotic inference in the pre-
ceding paragraph. We perform Monte Carlo simulations to examine the finite-sample
performance of the estimators and obtain the finite-sample critical values of the J-stat
for overidentifying restrictions. The details of the simulation design are in Appendix
A.5. Using the point estimates of the time-series and preference parameters in Table
2, we simulate the time-series of the LRR variable, the stochastic variance process, the
consumption and dividend growth rates, and returns on the market portfolio and the
risk free rate, of the same length as the historical sample. We then perform the GMM
estimation of the parameters using the pricing and time-series restrictions and obtain
the J-stat, J¢. This procedure is repeated 100 times. The 90%, 95%, and 99% finite-

4The average pricing error for asset j is computed as

1 _
T Z exp (mt+1 (@) + T,j,t+1> -1
t

where © denotes the point estimates of the model parameters. The standard error of the average

pricing error is computed as se (emp (th (@) + rj7t+1) — 1) /\/T, where se denotes standard error.

~

Note that, under the model assumptions, exp (mt+1 (@) +7"j’t+1) — 1 is a martingale difference

sequence and, hence, the above procedure gives valid standard errors for the average pricing error.
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sample critical values of the J-stat are obtained from the percentiles of {.J ’}:g(i These

critical values are 5.00, 5.01, and 5.07, respectively. Thus, the J-stat of 10.41 obtained
using the historical sample in Table 2 has a finite-sample p-value much smaller than
1%. Furthermore, the means of the average pricing errors for the market portfolio
and the risk free rate across the 100 simulations are 0.04% and —0.11%, respectively.
These are, respectively, three and two orders of magnitude bigger than those obtained
in the historical sample (13.0% and 16.7%). Thus, the simulation results reinforce the
rejection of the model in Table 2 based on asymptotic inference.

To shed further light on the above results, we estimate the Euler equations (3) on
annual data when the asset menu consists of the market portfolio and the risk free
rate, treating the parameters of the pricing kernel, ¢, as free parameters. The lagged
log price-dividend ratio of the market and the lagged log risk free rate are used as
instruments giving six moment restrictions in four parameters. Note that this procedure
does not impose the constraint that the estimated parameters ¢ should be consistent
with the preference parameters and the parameters that drive the time-series processes.
Hence, non-rejection of the pricing equations does not necessarily imply support for
the risk channels highlighted in the model - the low frequency movements and time-
varying uncertainty in aggregate consumption and dividend growth rates. The above
specification of the log of the stochastic discount factor as an affine function of the log
consumption growth, the log price-dividend ratio of the market and the log risk free
rate could arise from other asset pricing models which have two latent state variables
quite unrelated to long run risks in consumption growth and fluctuating volatility.

The estimation results are reported in Table 3 for the efficient weighting matrix.
The table reveals that the constant, the coefficient on the price-dividend ratio of the
market, and the coefficient on the risk free rate rate are significantly negative, while
the coeflicient on consumption growth is significantly positive, at conventional levels of
significance. The average pricing errors for the market and the risk free rate are very
small at 0.2% and 0.4%, respectively, and insignificantly different from zero. Note that
the average pricing errors in Table 3 are two orders of magnitude smaller than those
in Table 2. The last row reports the J-stat for testing overidentifying restrictions. The
J-stat has an asymptotic x? distribution with two degrees of freedom. The computed
statistic has p-value of 92.3%.

Thus, although the pricing kernel, equation (13), adequately explains the returns
on the market portfolio and the risk free rate over the period 1930-2006 when its
parameters are treated as free parameters, imposition of the restrictions imposed by
the unconditional moments of consumption growth and aggregate dividend growth
considerably worsens the ability of the model to explain the returns on the market
portfolio and the risk free rate and leads to its rejection.

11



5 Empirical Evidence on the Cross-Section of Re-
turns

We next explore the ability of the model to explain the cross-section of annual returns
over the period 1930-2006. The asset menu consists of the market portfolio, the risk
free rate, and portfolios of "Value", "Growth", "Small" capitalization, and "Large"
capitalization stocks as detailed in Section 2. The Euler equations for these 6 assets
along with the 9 time-series moment restrictions gives 15 moment restrictions in 12
parameters. The optimization algorithm used is similar to that in Section 4.

The estimation results are reported in Table 4. Note that the value of the per-
sistence parameters of the LRR variable, p,, that best fits the data is 0.95 and is
statistically significant at conventional levels of significance. As in Section 5, this is
indicative of the increased power of our estimation approach making it easier to detect
the presence of small, but highly persistent, predictable components in consumption
and dividend growth rates. The estimated values of the risk aversion and the elasticity
of intertemporal substitution parameters are 10 and 0.9, respectively, and the former is
statistically significant. However, note that the average pricing errors for the assets are
substantial varying from 4.3% for the "Growth" portfolio to 12.3% for the portfolio of
"Small" capitalization stocks. Also, the J-stat is 12.93 and has an asymptotic p-value
smaller than 1%.

To examine the accuracy of the asymptotic inference, we perform Monte Carlo
simulations to examine the finite-sample performance of the estimators and obtain the
finite-sample critical values of the J-stat for overidentifying restrictions. The details of
the simulation design are in Appendix A.5. Using the point estimates of the time-series
and preference parameters in Table 4, we simulate time-series of the LRR variable, the
stochastic variance process, the consumption and dividend growth rates, and returns
on the market portfolio, the risk free rate, and the returns on the "Small", "Large",
"Growth" and "Value" portfolios, of the same length as the historical sample. We
then perform the GMM estimation of the parameters using the pricing and time-series
restrictions and obtain the J-stat, J’. This procedure is repeated 100 times. The
90%, 95%, and 99% finite-sample critical values of the J-stat are 5.21, 5.43, and 6.40,
respectively. Thus, the J-stat of 12.93 obtained using the historical sample in Table
4 has a finite-sample p-value much smaller than 1%. Furthermore, the means of the
average pricing errors for the 6 assets across the 100 simulations vary from —3.9%
for the "Small" portfolio to 3.2% for the "Value" portfolio. These are considerably
smaller in magnitude than the variation obtained in the historical sample (4.3% for
the "Growth" portfolio to 12.3% for the portfolio of "Small" capitalization stocks).
Thus, the simulation results reinforce the rejection of the model in Table 4 based on
asymptotic inference.

As in Section 4, to further investigate the above results, we estimate the Euler
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equations (3) on annual data when the asset menu consists of the market portfolio, the
risk free rate, and the "Small", "Large", "Growth", and "Value" portfolios, treating
the parameters of the pricing kernel, ¢, as free parameters. This gives six moment
restrictions in four parameters. In Table 5, we report results for the efficient weighting
matrix. Note that the constant and the coefficient on the price-dividend ratio of the
market are significantly negative while the coefficients on consumption growth and
the risk free rate are statistically indistinguishable from zero at conventional levels of
significance. The pricing errors for the assets, although substantially smaller than those
in Table 4, are economically large varying from —2.7% for the risk free rate to 6.3%
for the portfolio of "Small" capitalization stocks. Moreover, the J-stat reveals that the
model is rejected at the 3% level.

As an additional robustness check, in Table 6, we report estimates using the same
set of assets as in Table 5 but using the difference in the log price-dividend ratios of
the "Value" and "Growth" portfolios, z,_,+, (instead of the risk free rate), and the log
price-dividend ratio of the market, z,,, to express the unobservable state variables,
z; and o2, as affine functions of the observables, Zy—gt and z,;. This approach is
valid under the assumption that the dividend growth processes of the "Growth" and
"Value" portfolios are similar to that for the market. Under this assumption, similar
calculations, as in Section 2, yield that the log price-dividend ratios of these portfolios
are affine functions of the state variables and, hence, so is their difference. Table 6
reveals that this specification of the pricing kernel performs slightly better at explaining
the cross-section than that in Table 5. Although the pricing errors for the assets are
smaller varying from —1.1% for the risk free rate to 5.8% for the portfolio of "Small"
capitalization stocks, they are economically large. Moreover, the J-stat reveals that
the model is still rejected at the 5% significance level, confirming the findings in Table
5.

Thus, the specification of the pricing kernel in equation (13) fails to explain the
cross-section of returns. As pointed out in Section 4, the above specification of the log
of the stochastic discount factor as an affine function of the log consumption growth,
the log price-dividend ratio of the market and the log risk free rate (or the difference in
the log price-dividend ratios of the "Value" and "Growth" portfolios) could arise from
other asset pricing models which have two latent state variables quite unrelated to long
run risks in consumption growth and fluctuating volatility. Hence, failure of the above
specification to explain the cross-section of returns suggests that a linear two-factor
model is unlikely to succeed in explaining the cross-section of returns over the period
1930-2006.
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6 A Cointegrated Long Run Risks Model

We consider a variant of the LRR model that imposes a cointegrating restriction be-
tween log aggregate stock market dividends, d;, and log consumption, ¢;. Bansal,
Gallant, and Tauchen (2007) argue that this restriction is economically well motivated
because aggregate consumption and aggregate stock market dividends cannot perma-
nently deviate from each other and financial wealth cannot permanently deviate from
aggregate wealth. Bansal, Dittmar, and Kiku (2007) highlight that this cointegrating
relation measures long run covariance risks in dividends and is important in under-
standing sources of risk and explaining the equity risk premia across all investment
horizons.?

Note that the Bansal and Yaron (2004) model implies that aggregate consumption
and dividends are not cointegrated. Hence, the poor empirical performance of the
model in explaining the equity premium and the cross-section of stock returns in Sec-
tions 5 and 6, respectively, may be due to its failure to account for the cointegrating
relationship. Hence, we consider an extension of the model that imposes a cointegrat-
ing restriction between log aggregate stock market dividends and log consumption. In
particular, we consider a variant of the model in Bansal, Gallant, and Tauchen (2007)
that allows us to obtain closed-form expressions for asset prices. We estimate and test
the model using an extension of our estimation methodology outlined in Section 2.

6.1 Model and Estimation Methodology

The aggregate consumption growth, Ac;,1, the LRR variable, z;, and the stochastic
volatility, o;, processes are modeled as in Bansal and Yaron (2004),

Acirr = o+ Tp + Orzetr1s
Tiv1 = PpTe+ Y0020 141,
2 2
01 = Mo + P01 + OwZot+1- (14)

The point of departure is the imposition of a cointegrating restriction between log
aggregate stock market dividends and log consumption

dt — Ct = Hqe + St (15)

°In a different context, Lettau and Ludvigson (2001) and Menzly, Santos, and Veronesi (2004)
apply the cointegrating residual between consumption, labour income, and aggregate stock market
dividends to explain the cross-section of asset returns.
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where the cointegrating residual, s;, is an I(0) process,

St41 = Nea Ty + PoSt + V0125 141 (16)

The shocks zeti1, 2ett+1, Zot+1, and zsey1 are assumed to be i.i.d. N(0,1) and
mutually independent. Note that the cointegrating coefficient is set at one in equation
(15).5

From equation (15), we have,

Adyy = Acppr + Aspy, (17)
= M + (1 + )\Sﬂﬂ)xt + (ps - 1>St + OtZet+1 + wsatzs,tJrl)

where the second line follows from equations (14) and (16).

Thus, this extension of the LRR model involves three state variables - the LRR
variable, z;, the stochastic variance, 7, and the cointegrating residual between log
aggregate dividends and log aggregate consumption, s;. Note that the LRR model
with two latent state variables obtains as a limiting special case when p, = 1.

We solve the model using solution techniques similar to those in Bansal and Yaron
(2004). We conjecture that the log price-consumption ratio and the log price-dividend
ratio are affine functions of the three state variables

Zt = AO + Al.fL't + AQO’? -+ AgSt,
Zmt = AO,m + Al,mxt + AQ,me + A3,m5t~

Appendix A.3 establishes that, for this extended specification, the log price-consumption

ratio is a function only of x; and o?. The log price-dividend ratio of the market, on

the other hand, is an affine function of the three state variables, z;, 02, and s; (see
Appendix A.3.1 for expressions for Ay, A;, and A, and Appendix A.3.2 for expressions
for AO,m; Al,ma AQ,mv and AS,m)

Zt = AO + All't -+ AQO’?, (18)
Zmt = AO,m + Al,m‘rt + A2,m0-? + AS,mSt- (19)

Also, the log risk free rate is an affine function only of z; and o? (see Appendix
A.3.3 for expressions for Ag s, A; r, and As )

Tf,t = A()J + Al,fxt -+ AQJO'?. (20)

Bansal, Gallant, and Tauchen (2005) perform a heteroskedasticity-robust augmented Dickey-Fuller
test for a unit root in d; — ¢; and the results provide strong evidence for a cointegrating relationship
between the variables with a coeflicient equal to unity.
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The estimation methodology outlined in Section 2 is readily adapted to the extended
version of the model. Note that two of the three state variables, namely, the long run
risk variable, z;, and the stochastic variance, o2, are latent, while the cointegrating
residual, s;, is observable as the demeaned difference between log aggregate dividend
and consumption levels (see equation (15)).

Equations (19) and (20) may be inverted to express the unobservable state variables,
2 and o7, in terms of the observables, z,,, 74, and s;, (see Appendix A.3.4 for details
and expressions for g, ay, g, as, By, 51, By and 33),

Ty = Qg+ aaTiy A+ QaZpy + Q38 (21)
Uf = Bo+ Birss + Bozmye + Bssi. (22)

Using equations (4), (5), and (18), we write the pricing kernel as,

mepr = (0logd + (0 —1) [ko + (k1 — 1) Ag]) + (—% +(0 - 1)) Actiq

+(9 - 1)/11A1{Et+1 + (9 - 1)/%11420’?_,_1
—<9 — 1)A1£Ct — (9 — 1)1420'?, (23)

Substituting the expressions for z; and ¢? from equations (21) and (22) into the
pricing kernel, equation (23), we have (see Appendix A.3.4 for details)

1 1 1
miy1 = C1 +02Act+1 “+c3 (’I"f7t+1 — ,‘i_rﬁt +cy Zmt+1 — K—Zmﬂg +c5 St41 — R_St .
1 1 1

(24)
Thus, the pricing kernel is expressed entirely in terms of observables.

As in Section 2, we first examine the empirical plausibility of the model when
the asset menu consists of the market portfolio and the risk free rate. The lagged
log price-dividend ratio of the market and the lagged log risk free rate are used as
instruments. The Euler equations for the two assets along with the two chosen instru-
ments give 6 moment restrictions. To this set of pricing restrictions, we add moment
restrictions implied by the time-series specification of the model in equations (14),
(15), and (16). In particular, we include the following 7 moments of consumption and
dividend growth rates: E(Aciy1), Var(Aceiy), Cov(Acii1, Actia), Cov(Aciir, Aciia),
Var(Adiy1), Cov(Adyi1, Adiys), and Cov(Acii1, Adiy1) (see Appendix A.4 for ex-
pressions for these moments in terms of the time-series parameters). Thus, we have
a total of 13 moment conditions. The total number of parameters to be estimated is
12, including 9 time-series parameters and 3 preference parameters. We estimate the
parameters with the GMM approach and test the specification of the model using the
overidentifying restriction.
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We next examine the ability of the model to explain the cross-section of returns.
In this case, the asset menu consists of the market portfolio, the risk free rate, and
portfolios of "Small" capitalization, "Large" capitalization, "Growth" and "Value"
stocks. The Euler equations for the 6 assets give 6 moment restrictions. To this set
of pricing restrictions, we add the 7 moment restrictions implied by the time-series
specification of the model. This gives, once again, a total of 13 moment conditions in
12 parameters. We estimate the parameters and test the model specification with the
GMM approach.

6.2 Empirical Evidence on the Cointegrated Model

We first explore the ability of the cointegrated model to explain the returns of the
market portfolio and the risk free rate. The Euler equations for the two assets along
with the two chosen instruments (namely, the lagged log price-dividend ratio of the
market and the lagged log risk free rate) gives 6 moment restrictions. As mentioned in
Section 6.1, to this set of pricing restrictions, we add moment restrictions implied by
the time-series specification of the model in equations (14), (15), and (16). In particu-
lar, we include moments corresponding to the unconditional mean, variance, and first
and second-order autocovariances of consumption growth, the variance and first-order
autocovariance of the dividend growth rate, and the covariance between consumption
and dividend growth rates. This gives 7 moment restrictions corresponding to the
assumed time-series processes. Thus, we have a total of 13 moment conditions. The
total number of parameters to be estimated is 12, including 9 time-series parameters
and 3 preference parameters. We estimate the parameters with the GMM approach
using the efficient weighting matrix and use the overidentifying restriction to test the
specification of the model. The optimization algorithm is similar to that employed in
Sections 4 and 5.

The estimation results are reported in Table 7. Note that, the value of the persis-
tence parameter of the LRR variable, p,, that best fits the data is 0.8, and is statis-
tically significant at conventional levels of significance. As in Sections 5 and 6, this
suggests the presence of a predictable component in consumption growth. However,
the estimated value of the persistence parameter implies that the half-life of the LRR
variable is three years and its implied frequency is about the same as or even slightly
higher than that of the average business cycle, contrary to the notion of it being a very
low-frequency component. The estimated values of the risk aversion and the elastic-
ity of intertemporal substitution parameters are 8 and 1.5, respectively, and both are
statistically significant. However, note that the average pricing errors for the market
and the risk free rate are substantial at 16.5% and 20.6%, respectively. In fact, the
average pricing errors are slightly larger than those obtained in Table 2 (13.0% and
16.7%) for the Bansal and Yaron (2004) two-factor model. Moreover, the J-statistic

17



takes the value 12.76 and has a p-value smaller than 1% (note that the J-stat has an
asymptotic chisquared distribution with one degree of freedom).

Next, we examine the empirical performance of the model in explaining the cross-
section of returns. Table 8 reports the estimation results for the full sample 1930-2006
when the set of assets includes the market, the risk free rate, the "Small", "Large",
"Growth", and "Value" portfolios. The Euler equations for the 6 assets along with
the 7 moment restrictions implied by the time-series specification of the model gives
a total of 13 moment conditions in 12 parameters. Table 8 reveals that the three-
factor cointegrated model performs quite poorly at explaining the cross-section of asset
returns. In fact, the average pricing errors for the cross-section of returns are higher
for the cointegrated three-factor model than those obtained for the Bansal and Yaron
(2004) two-factor model. For the cointegrated model, the average pricing errors for the
assets vary from 25.7% for the "Growth" portfolio to 39.8% for the portfolio of "Small"
capitalization stocks compared to the variation over 4.3% for the "Growth" portfolio
to 12.3% for the portfolio of "Small" capitalization stocks obtained for the two-factor
model. The J-statistic in Table 8 is 13.73 and has a p-value smaller than 1% showing
that the model is statistically rejected over the period 1930-2006.

7 Further Results in Post-War Subperiods

We explore the possibility that rejection of the LRR model and its cointegrated exten-
sion is due, in part, to failure to account for regime shifts over the period 1930-2006.
Pastor and Stambaugh (2001) document evidence of breaks in the equity premium in
the early thirties and forties, and in the early and mid-nineties. Lettau, Ludvigson,
and Wachter (2008) find evidence of a break in the consumption volatility around 1992
followed by a break in the log price-dividend ratio of the market around 1995. Let-
tau and Van Nieuwerburgh (2008) report evidence of two breaks in the mean of the
aggregate price-dividend ratio around 1954 and 1994.

Since the period prior to 1947 was one of great economic uncertainty, including
the Great Depression, World War II, and structural breaks in the equity premium,
rejection of the LRR models in the full sample may be due to their poor performance
in the pre-war period. To examine this, we first present empirical results for the Bansal
and Yaron (2004) LRR model on the 2-asset system over the post-war subperiod 1947-
2006. Recall that the 2-asset system consists of the market portfolio and the risk free
rate, with the lagged log price-dividend ratio of the market and the lagged log risk
free rate used as instruments. To this set of 6 pricing restrictions, we add 9 moment
restrictions implied by the time-series specification of the model. Table 9 reports results
for the efficient weighting matrix. The table reveals that the performance of the model
improves dramatically over the postwar subsample. Note that the pricing errors for the
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market portfolio and the risk free rate in Table 9 are much smaller than those obtained
for the full sample in Table 2. The average pricing error for the market is —0.6%, two
orders of magnitude smaller than that in the full sample (13.0%), and that for the risk
free rate is —1.3% which is also an order of magnitude smaller than that for the full
period (16.7%). Although the J-stat is 15.06 leading to the model still being rejected
at the 1% level of significance, this may well be due to the well known tendency of the
efficient GMM estimation procedure to over-reject in finite samples.

As in Sections 5 and 6, the simulation results are largely in line with the asymptotic
results. The 90%, 95%, and 99% finite-sample critical values of the J-stat are 5.05,
5.13, and 7.98, respectively. Thus, the J-stat of 15.16 obtained using the historical
sample in Table 9 has a finite-sample p-value much smaller than 1%. However, the
means of the average pricing errors for the market portfolio and the risk free rate across
the 100 simulations are —0.05% and —0.08%, respectively, and are more in line with
the small values obtained in the historical sample (—0.6% and —1.3%).

Similar results obtain when estimation is further restricted to the subperiod 1947-
1991 which ends before the structural breaks in the nineties. The estimation results for
the 2-asset system are reported in Table 10. The average pricing errors for the market
portfolio and the risk free rate are very small at —0.9% and —1.1%, respectively, and
are two and one orders of magnitude smaller than the errors in the full sample in Table
2. However, as in Table 9, the J-stat is 15.48 and has a p-value smaller than 1%. The
simulation results yield very similar conclusions and are omitted for brevity.

Overall, the performance of the model in explaining the returns on the market
portfolio and the risk free rate improves significantly in the postwar subperiods. A
point worth noting is that the estimate of the mean of the stochastic volatility process,
o, 18 1% in Table 9 over the period 1947-2006, half of the corresponding estimate in
Table 10 over the period 1947-1991 (2%). Both estimates are statistically significant at
conventional levels of significance. This is consistent with the findings in Lettau, Lud-
vigson, and Wachter (2008) who find evidence of a substantial decline in consumption
volatility from 2.2% to 0.7% around 1992.

However, we find that the LRR model performs as poorly at explaining the cross-
section of returns over the post-war subperiod 1947-2006 as over the full period. Table
11 reports results for the cross-section over the subperiod 1947-2006. The average pric-
ing errors for the assets are economically large, varying from 11.8% for the "Growth"
portfolio to 18.2% for the "Value" portfolio. The J-stat is 18.04 and the model is
rejected at the 1% level of significance. Also note that the value of the persistence
parameter of the LRR variable, p,, that best fits the data is 0.7, implying that its
half-life is two years and its implied frequency is much higher than that of the business
cycle. Similar results are obtained for the subperiod 1947-1991 that are omitted for
brevity.

Next, we examine the empirical performance of the cointegrated LRR model on the
2-asset and 6-asset systems over the postwar subperiods. Table 12 reports estimation

19



results for the 2-asset system over the subperiod 1947-2006. The table reveals that the
cointegrated model, like the two-factor model, performs significantly better at pricing
the market portfolio and the risk free asset over the postwar subperiod. The average
pricing errors for the market and the risk free rate are 1.7% and 2.0%, respectively,
and both are an order of magnitude smaller than those for the full period in Table 7
(16.5% and 20.6%). However, note that the value of the persistence parameter of the
LRR variable, p,, that best fits the data is 0.7, implying that its half-life is two years
and its implied frequency is much higher than that of the business cycle. This is similar
to the findings in Table 7 which examines the performance of the cointegrated model
in explaining the returns on the market portfolio and the risk free rate over the full
period 1930-2006, where the value of the persistence parameter of the LRR variable,
p., that best fits the data was found to be only 0.8.

The performance of the model improves further when we focus on the subperiod
1947-1991 which ends before the structural breaks in the nineties. Table 13 reports the
estimation results for the 2-asset system. The average pricing errors for the market and
the risk free rate are very small at 0.4% and —1.0%, respectively, and are considerably
smaller than those for the subperiod 1947-2006 in Table 12. Note that the value of the
persistence parameter of the LRR variable, p,, that best fits the data is 0.6, implying
that its half-life is about one-and-a-half years and its implied frequency is much higher
than that of the business cycle, a conclusion similar to that arrived at in Table 12 for
the period 1947-2006.

We find that the cointegrated model, too, performs quite poorly at explaining the
cross-section of returns over the post-war subperiods. Table 14 reports results for the
cross-section over the subperiod 1947-2006. The average pricing errors for the assets
are economically large, varying from 13.6% for the "Growth" portfolio to 20.8% for
the "Value" portfolio. The J-stat is 11.08 and the model is rejected at the 1% level of
significance. Similar results are obtained for the subperiod 1947-1991 that are omitted
for brevity.

8 Temporal Aggregation

Temopral aggregation of consumption is a relevant and important issue in the econo-
metric analysis of long-run risks models. If the decision interval of the agent is of higher
frequency than the frequency at which reliable data on aggregate consumption, divi-
dend, and price-dividend ratio are available, specification of the low frequency stochas-
tic discount factor is troublesome. Temporal aggregation of consumption growth makes
consumption a more involved function of the low frequency predictive component (the
LRR), z¢, and the high frequency risks, z.;11, in equation (2). It also introduces auto-
correlation in the dynamics of the innovations to (lower frequency) consumption and
cross-correlations between the innovations to (lower frequency) consumption and its
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predictive component. Thus, although the Euler equations hold at a higher frequency
corresponding to the decision interval of the agent, the need to use lower frequency
consumption data breaks the linear relationship with the state variables, via temporal
aggregation.

To examine whether our results are driven by problems of temporal aggregation,
we repeat our estimation and tests using quarterly data. Since reliable quarterly data
is only available over the post-war subperiod, we perform our analysis over 1947:2-
2006:3. Table 15 reports the estimation results when the asset menu consists of the
market portfolio and the risk free rate. As in Section 4, the lagged log price-dividend
ratio of the market and the lagged log risk free rate are used as instruments giving 6
moment restrictions. To this set of pricing restrictions, we add moments corresponding
to the unconditional mean, variance, and first-order autocovariance of consumption
and dividend growth rates, the covariance between consumption and dividend growth
rates, and the variance of squared consumption and dividend growth rates. Thus, we
have a total of 15 moment conditions. The total number of parameters to be estimated
is 12, including 9 time-series parameters and 3 preference parameters.

Note that the persistence parameter, p,, of the LRR variable is 0.75. This implies
that the variable has a half-life of just over 2 quarters and its implied frequency is
much higher than that of the business cycle. This is similar to the findings in Table
12 which examines the performance of the cointegrated LRR model in explaining the
returns on the market portfolio and the risk free rate using annual data over the post-
war subperiod 1947-2006, where the value of the persistence parameter of the LRR
variable, p,, that best fits the data was found to be only 0.7, implying a half-life of
only 2 years.

The average annualized pricing errors for the market portfolio and the risk free rate
are 2.4% and —2.4%, respectively. Note that the average pricing errors obtained using
annual data over the postwar subperiod 1947:2006 are much smaller at —0.6% and
—1.3%, respectively (see Table 9). Thus, although the model prices the assets better
at the annual frequency compared to the quarterly time horizon, the pricing errors
obtained in the latter case are also economically small.

Table 16 reports results for the cross-section over the subperiod 1947:2-2006:3. In
this case, the set of assets includes the market, the risk free rate, the "Small", "Large",
"Growth", and "Value" portfolios. The average annualized pricing errors for the assets
are economically large, including 15.2% for the "Value" portfolio, 14.4% for the "Small"
portfolio, 9.6% for the "Large" portfolio, and 8.8% for the "Growth" portfolio. The
J-stat is 53.13 and the model is rejected at the 1% level of significance. Also note
that the value of the persistence parameter of the LRR variable, p,, that best fits the
data is 0.9, implying that its half-life is only about 7 quarters. The results are very
similar to those in Table 11 that reports results for the cross-section using annual data
over the subperiod 1947-2006. The average pricing errors for the assets in Table 11
are economically large, varying from 11.8% for the "Growth" portfolio to 18.2% for
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the "Value" portfolio. The J-stat is 18.04 and the model is rejected at the 1% level of
significance. Also note that the value of the persistence parameter of the LRR variable,
p., that best fits the data is 0.7, implying that its half-life is two years.

The results in this section suggest that our findings are unlikely to be driven by the
problems associated with temporal aggregation.

9 Conclusion

In this paper we test and reject the Bansal and Yaron (2004) model of long-run risks in
aggregate consumption and dividend growth and its extension that captures potential
cointegration of the consumption and dividend levels over the sample period 1930-
2006. The reversal of earlier empirical conclusions is partly due to the increase in the
power of the tests resulting from two observations under the null hypothesis. First, the
latent state variables, and, therefore, the pricing kernel are known affine functions of
observables such as the interest rate and the market-wide price-dividend ratio. Second,
the unconditional moments of consumption growth and aggregate dividend growth
impose constraints in addition to the pricing constraints.

Recognizing that structural breaks have occurred in the prewar period and in the
nineties, we repeat our tests for the subperiods 1947-2006 and 1947-1991. Whereas
the models are still formally rejected, we find that they perform considerably better in
explaining the equity premium but not the cross-section of returns. The results suggest
that regime shifts warrant further investigation.
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A Appendix

A.1 Estimation of Time-Series Parameters

The decision interval of the agent is assumed to be annual. We estimate the model at
the annual frequency, such that its annual growth rates of consumption and dividends
match salient features of observed annual consumption and dividend data. There are
9 parameters to be estimated - p,, g, @, ©, Py Uy 0, U, and oy,.

From the specification of the consumption growth process, we have

E(Acir) = pe (25)

We also, have

Var (Acy1) = Var (z) + Var (om,,4) + 2Cov(zy, 041, 1)
= Var(x)+o0*+0

wia ? 2
= —1 = pi + o (26)
and,
2 2
o
Cov(Aciy1, Acyio) = Pmd%— (27)
1—p2
From the specification of the dividend process, we have
FE (Adt+1) = Uq (28)
Yo’
Var (Adyy,) = ¢ 2 + o2p? (29)
) w20.2
Cov(Adyy1, Adyyo) = ¢7p, . = e (30)
Also, from the consumption and dividend growth processes,
2 2
o
Con(erar, Mdeys) = 617 31

Finally, we have
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Var (Aci1)?) = E [Var, (Acii1)?)] + Var [Ey (Ace1)?)] (32)

Now,

(Acei1)’ = 2+ a7 + 0722 141 + 20,2 + 23401 2c 041 + 2001241 (33)

Hence,

Et ((Act+1)2) = /ULE, + .T? + 0'? + 2Mc$t

Var [E, ((ACt_H)Q)] = Var(z?) + Var(o}) + 4u2Var(x,) + 4p.Cov(xs, 27)

+2Cov(z}, 0}) + 4p.Cov(wy, 07F) (34)
Now, Var(o?) = 12, Cov(ai,0?) = 0, Cov(a?,0?) = iy, Covlana?) =
0, and ’
3 4 _2 1 2 4 2,4 4
V(IT(ZEQ) — ¢m0w( + pr) 20_4 4 Pa¥0
(1 =pp)(A =01 —wpl) 1-p; (1—=p3)

Substituting the above expressions into equation (34), we have

2 31?;@%;“ + UPZ) 1 4 4Pi¢i04
R (e (e R I R )
o2 P2o? 2202 v
w 4 2 T x” w
R R ) ) (35)

Also, from equation (33),

Var, ((Acpr)?) = 20} + 470} + 4ilor + 8peaio;
Hence,
o? dap2o? v a2 ot

2 w
E [Vm"t ((Act+1) )] = 21 2 + 20" + (1—02)(1— vp2) + 1—p2

+4u20*  (36)

Substituting equations (35) and (36) into equation (32), we have

312o? (1 4+ vp?) 4p2aptot 302
Var (Acis1)?) = T w . 20" + -
ar ((Acps1)?) (1—pp)A=v?)(1—vp2) 1-p; 7T (1—=p2) i 1—w?
2 o 2 9 2 4
6 4
a2 ey LT w“‘UQ + 20" +4puZo®  (37)

T—pz (I=v)(A—vpi) 1-

xT
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Similar calculations yield,

2 4 3¢i0-12u(1 + UP%) 1 4p1,
Var (0] = o [ ot s (0t )
Ufu 7,02 2 21#503]1; 9
R L s L [ R L

2
: —1—20}@4—1—[

+4u§<,0202

4o v 41#204} 5 o

E [VCLT,: ((Adt+1) )} = |:2 (1 — U2)(1 — Upg%) 1— p%

Hence, we have

4
Var (Adyyy)?) = ¢4{ 3,07 (1 + vp3) . 1 (20 +4pxw )}—l— 305 4

(=1 -1 —vp2)  1-pt (1—p@))] T 1=2”
@/12 2 6¢202U 2 2 4¢204 2 9
4 2 ¥ w x
i rere Ty LA w L
+20%p" +4u390202 (38)

Equations (25)-(31), (37), and (38) give 9 moments restrictions in the 9 time-series
parameters.

A.2 Details of Estimation Methodology

The model is given by the equations

Tpy1 = Pult + Vy0i2a 41,
2 2 2
0 = (1 =)0 +vo} + owzops,
Acipr = o+ Ty + 01 Ze 41,

Adyyy = pg+ ox + 0o2q441-

The shocks z;111, Zot41, Zett1, Zdt+1 are assumed to be i.i.d. N(0,1) and mutually
independent.
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A.2.1 Expressions for Aj, A, Ay, Ay, Ay, and Ay,

Bansal and Yaron (2004) show that z; and z,,,, are affine functions of the state vari-
ables, z; and o2,

2
2z = Ao+ Az + Asoy,

2

Zmt = AO,m + Al,mxt + AZ,mUty

where
1-1
= /ﬁwpm
0.5 {(—g + 0)2 + (9/@1141%)2}
A = 0 (1 — Kyv)
log(d) + (1 — i) fe + Ko + K1 A202(1 — v) + 0.50k1 Ayo?
Ao = 1— Ky
1
Atm = 1 ibfﬁl,:px
A = (1= 60)As (1 — k10) + 0.5 [¥2 4+ @2+ ((0 — 1) k1A + KimArn) 92
’ 1 —Kimu
010g(6) + (—%+0—1) ji.+ (0 = 1) o + (6 — 1) (51 — 1) Ag + (6 — 1) s Apo*(1 — )
AO,m - 1—rim
| o + g + Frm Ao mo?(1 —v) 4+ 0.5[(0 — 1) k1 Ag + Ky Ay ]’ 02
1—rKim

A.2.2 Risk Free Rate

To derive the expression for the risk free rate, note that

0
Et {exp <9 10g5 — EACH_I + (‘9 - 1)7’0’15_‘_1 + Tf’t)‘| =1

Hence,
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0
exp(—rs) = Ei [exp <0 logd — EACHI + (60— 1)7’C7t+1>}

= exp(flogd — %uc - %xt + (0 — 1)Ko + (0 — 1)K1 Ag
+(0 — Dk Arp,s + (0 — Dy As(1 — v)o? + (0 — 1)k Ayvo?
—(0—1)Ag — (0 — DAz, — (0 — 1)Ag0? + (0 — D, + (0 — 1)z

+0.5

0 2
(—E + 60— 1) af + (60— 1)2/{%/1%@&30? + (0 — 1)2/%143012” )

Therefore, the risk free rate is

—0.5(0 — 1)*k3A302 — {(—% +0—1)+ (0 — 1) (k1p, — 1)A1} Ty

9 2
- [(9 — (kv —1) A +05 ((_E +6— 1) +(0— 1)2/%A§¢§> a
= AO,f + Al,fxt + AQJ‘O'?
where
Aoy = —flogd — (—% +0— 1) o — (0 — kg — (0 — 1)(r5y — 1)Ag — (0 — 1)k Ay(1 — v)o?
—0.5(0 — 1)*k1 A307,
0
Ay = =[5 +0- 1+ 0= D0ap, ~ Dy
9 2
Agy = — [(9 —1)(k1v —1)A2 + 0.5 ((—@ +6— 1) +(0 - 1>2K%Aiwi>

A.2.3 Latent state variables in terms of observable variables

The model implies

Zmgt = AO,m + Al,mxt + AQ,mUt27
rie = Aog+ Avpre+ Aggo;.
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These equations may be inverted to express the state variables in terms of the
observables,

Ty = Qg+ Q1Tf01 + Qo2 gty

where
o AQ,mAO,f — AO,mA2,f
0 =
Al,mA2,f - AZ,mAl,f7
o - _A2,m
1
Al,mA2,f - A2,mA1,f,
S Ag s
2 — )
Al,mA2,f - A2,mA1,f
and
UtZ = By + B1rpi+1 + Bozmyt,
where

AO,mAl,f - Al,mAO,f

BO - Al,mAZ,f - A2,mAl,f,
Al,m
ﬁl = _ )
Al mAQ,f A2,mA1,f
_Al ¥

52 = :
A.2.4 The pricing kernel in terms of observables
The pricing kernel is given by (12),

merr = (0logd + (0 — 1) [ko + (k1 — 1) Ao]) + <_% + (0 — 1)) Aciiy

—f-(@ — 1)li1A1{Et+1 + (0 — 1)%1A20?+1 — (Q — 1)A1$t — (Q — 1)A20‘?

Substituting the expressions for z; and o2 from Section A.1.2 into the pricing kernel,
we have

1 1
Mys1 = €1 + C2Aciyq + 3 <7’f,t+1 - ,i_rf,t +cy | Zmpr1 — H_Zm,t
1 1
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where

cT = 010g5 + (9 — 1)[/‘@0 + (Iil — 1) (A() + A1a0 + Agﬁo)]
co = 9 +(0—1)
L

cs = (0—1)ri[Arar + AxB]
ca = (0—1)ri[Aras + A,

A.3 Estimation Methodology for Cointegrated Model

The model is given by the equations

Aciiy = o+ T+ 0r2e 41
Tep1 = P+ V01 2e i1
Ut2+1 = Uy + Py0} + OwZo,t+1
di — ¢ = Hge T St
Si41 = Asay + P8+ V0126141
Adiyr = po+ (14 As)xe + (ps — 1)st + 012c01 + V30125 041 (39)

With Epstein and Zin (1989) preferences, the asset pricing Euler condition for asset
Jis

Ey lexp(mys1 +rj41)] = 1,
where
0
My = 0logd — JACt—i-l + (0 — Dreen

Using the log-affine approximations for the continuous return on the consumption
claim, r. 441, and that on the market portfolio, 7y, 141,

Tepr1 = Ko+ K1z — 2+ Acep

Tmt+1 = Kom + R1mZmt+1 — Zmyt + Adt+1

where z; and z,,, are the log price-dividend ratios of the consumption and the dividend
claims, respectively, and conjecturing that these ratios are affine functions of the state
variables, z;, 02, and s,
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Zt = AO + Ala:t + AQO-? + AgSt
Zmt = AO,m + Al,mmt + AZ,mO—? + AS,mSt

the coefficients Ag, A1, As, Az, Aom, A1m, A2m, and As,,, may be computed using the
method of undetermined coefficients.

A.3.1 The Consumption Claim

From equations (3) and (4), for the unobservable return on the consumption claim,
Tet+1, the Euler equation is,

E, {exp (0 log — %ActH + 9T07t+1>} =1

Substituting the expression for 7.1 from equation (5) into the above Euler condi-
tion and noting that z; is given by equation (18), we have

0 0
Eylexp(0log § — Eﬂc - Emt - Eo—tzqt-f—l + 0ko + 0k1Ag

+0/€1A1,0x$t + 9/%1A11/}$O't2$’t+1 + (9/<L1A2,LLU + 9%1142,000'? + HlilAgO'metJrl
+0r1 Aghspy + Ok1 Aspys, + Ok1 Azt 0025 401 — 0 Ay — 0A 2, — 91420—? — 0Azs,
+0p. + 02y + 00420 111)]

=1

Using the assumed conditional log-normality of the stochastic processes, the above
expression may be simplified to

7
exp( 0logd + <_E + 9) fe + Oro + 0 (k1 — 1) Ag + k1 Asp,

0
+ {_E + 040 (kip, — 1) As + 9H1A3Asx} Tt

+0 (k1p, — 1) Agsy + 0 (kip, — 1) Aga?

2
+0.5 { (—% + (9) O'? + (8K1A1¢$)2 O'? + (0:‘4}11420'1”)2})
— 1 (40)

Since the Euler equation (40) must hold for all values of the state variables, we have
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e(lilps - 1)A3 =0

Hence,
A3=0 (41)
Similarly,
0
_E + 0 + 0 (:‘ilpx — 1) Al + 9/?1143)\51 =0
implying
1-41
Ay =— ¥ 42
e —— (42)
Also
9 2
0 (lilpa — 1) A2 + 0.5 { (_E + 8) + (‘9/‘111411/196)2} =0
yielding
2
0.5 [(—% + 0) + (6’/@1A1¢x)2}
Ay = 4
: 91— rp,) )
and

0
910g5 + (_E + 0) He + 9/?0 + 0 <fi1 - ].) AO + HlilAQ,U/U 4+ 0.5 (QlilAgO'w)Q =0

implying

log d + (—% + 1) W, + Ko + K1 Azp, + 0.50 (/ﬁA20w)2
AO -

(44)

].—Iil

A.3.2 The Dividend Claim

The Euler equation for the observable return on the aggregate dividend claim, 7y, 141,
is,

0
E, [GXP (9 logd — EACtJrl + (9 - 1)7’c,t+1 + rm,t+1)‘| =1 (45)
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Substituting the expression for r,, ;1 from equation (6) into the above Euler con-
dition and noting that z,,; is given by equation (19), we have

%/J’c — % — %Utzc7t+1 + (0 — 1)Ko + (0 — 1)K1 Ag
+(0 — V)r1Arp,ar + (0 — 1)1 A1), 0020 141
+(0 — DryAgp, + (0 — Dk Asp,o? 4 (0 — 1)1 As0w2e111
+(0 — D r1 Az + (0 — 1)k1Agpyse + (0 — 1) k1 As3) 0025 141
—(0 —1)Ag— (0 — V) Aymy — (0 — 1)As07 — (6 — 1) Aszs,
+(0 —Dp,+ (0 — Dy + (0 — 1)orze 1

+’£0,m + Kl,mAO,m + ’fl,mAl,mpxxt + /il,mAl,mwxo'tZw,t—i-l + ’fl,mAQ,m,ug

Eilexp(flogd —

Ty

+/€l,mA2,mng§ + /fl,mAZ,mo—wZo,bH + R1 mAS m)\sa:xt + R1 mAB,mpsst
+’€1,mA3,m¢so-tZs,t+1 - AO,m - Al,mxt AZ mo-t A3 mSt
e+ (1 + Xaz) @ + (g — 1)8¢ + Orze 41 + V0125 141))]

=1

Using the assumed conditional log-normality of the stochastic processes, the left-
hand-side of the above expression simplifies to

(8
+KO,m + (/{l,m - ]-)AO,m + Kfl,mAZ,m,ug-

0
exp( 0logd + (—— + 9) po+ (0 —1)ko+ (0 —1) (k1 — 1) Ag + (0 — 1)k Aopu,

0
. K‘E Lo 1) (0= 1) (5apy — 1) Ar (0 — D Ashas + (51mp — 1) Arm (14 Aur) |

+ [/{l,mAIS,m)\sx] Ty + [(0 - 1) (I{lps - 1) A3 + (Hl,mps - 1) A3,m + Ps — 1] St
+[(0 = 1) (k1p, = 1) Az + (K1mpy — 1) Az 0}
0 2
+05{ (_E + Q) O'? + [(9 — 1)%1143 + I€17mA37m + 1]2 wgdf
-+ [(9 — 1)/4,1141 + K}l,mAl,m]2 ?ﬂiO’? + [(9 — 1)51142 + 'Lil,mAZ,m]2 0'120})
=1

Since the Euler equation (46) must hold for all values of the state variables, we have

[(‘9 - 1) (l{lps - 1) A3 + (I{l,mps - ]‘) A3,m + Ps — 1] =0

Agp = ps——l (47)

1 - K1,mPs
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0
<_E —f- (9 — ]_> —f-(@—l) (Hlpx — ].) Al—f-(@—l)lilAg)\sx—f-(fimez — 1) Al,m—f—'%l,mA&m)\sw_’_]-—'—)\sw = 0

1— i + )\sm(l + ’fl,mA?),m)

Al’m B 1-— R1mPyg (48)
0 2
(0 —1) (k1p, — 1) Az + (K1mp, — 1) Agm + 0.5{ <_E + 9)
10— Dmr s + A+ 1702 4+ (0 = Dmady + w1 Ar ] 07
= 0
4y, = O=DUap =1 A+ C )

1 - K/meo—
0 2 2 2
c = 05{ _E + 60 + [’fl,mAE},m + 1] 77Z)s

+ [(9 — 1)51141 + :‘ﬁ,mAl,m]2 wi}

0
Ologd + (‘E +e) o 4 (6~ o+ (6 — 1) (s — 1) Ao + (0 — 1)ss Ao,

+l€07m + (/fl,m — 1)A07m + I€17mA2’m,uU + 05 [(9 — 1)H1A2 + IiLmAQ,m]z O'%U
= 0

0logd+ (=2 +0) e+ (0 = Do+ (6 — 1) (51 — 1) Ao
AO,m - (50)

1-— R1,m

N (0 — 1)k1Aspt, + Kom + FrmAsmity + 0.5[(0 — 1)k1Ag + K1mAgm)’ 02,
1-— R1,m

A.3.3 The Risk Free Rate

To derive the expression for the risk free rate, note that

0
Et |:€Xp <6 log5 — @ACtJrl + (9 — 1)Tc,t+1 + Tf,t)} =1
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Hence,

€xp (_Tf,t) = E; {GXP <9 logd — %ACtJrl + (‘9 - 1>Tc,t+1>:|
0
g~ g
+(0 — 1)ko+ (0 — 1)r1 Ao+ (0 — 1)k1 Arp,xe + (0 — 1)k Aopa,
+(0 — k1 Agp, 0?2 + (0 — 1)Ky Ashgemy + (0 — 1)k Asp, s,
—(0 —1)Ag — (0 — DAz, — (0 — 1)Az0? — (0 — 1) Ass,
(O = Vi + (0 — V)

= exp(flogd —

0 2
+0.5 (_E +0— 1) oF ++(0 — 1)’ k3AN2 02 + (0 — 1)2k2 4302 |)

Therefore, the risk free rate is

rye = —0logo — <_g - 1) fre — (0 = 1)ko — (0 — 1) (k1 — 1) Ao — (6 — 1)r1Aop,

—0.5(0 — 1)*k3A202 — {(—% +0—1)+ (0 — 1)(k1p, — 1)A1} T4
—[(0 = 1)(k1p, — 1)As] sy +

) 2
— [(6’ — 1) (k1p, —1)As + 0.5 { <_$ +6— 1) + (60— 1)211%14%1[15} o?
= AO,f + Al,fxt + A27f0-t2
where
0
Ao,f = —910g5 — (_E + 9 — 1) ,uc — (9 — 1)/‘@0 — (9 — 1)(%1 — 1)140 — (9 — 1)/11142/,60
—0.5(0 — 1)*k7A502
0
9 2
Ayy = — [(9 — 1)(k1p, —1)Ay +0.5 { (_E +0— 1) + (0 — 1)%@4@2}

A.3.4 Latent State Variables in terms of Observable Variables

We have
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Zmt = AO,m + Al,mmt + A2,mo-? + AB,mSt
rre = Aoy + A gr+ Ap g0}

The above equations may be inverted to express the unobservable state variables,
x; and af, in terms of the observables, z,,;, 74, and s;.
Define,

D= Al,mA2,f — Al,fAQ,m
We have,

Ty = Qo+ oaqrfs+ QoZpy + Q38
o o AO,fA2,m - AO,mA2,f
0 =
D
o _ _A2,m
! D
Ay
Qo = —bf
_A3,mA2,f
@B = T

U? = Bo+ Birss 4 Bozmyt + Bazu—gt
AO,mAl,f - Al,mAO,f

50 = D
Al,m
/81 - D
_ Ay
52 - D
Ay Az,
By = —17fD >

Now, from equations (4), (5), and (18), the pricing kernel is given by the expression

mi1 = (Qlogd+ (0 —1)[ko + (k1 — 1) Ao]) + (—% + (0 — 1)) Aciyiq

+(0 - 1)/‘11141.7)154_1 + (‘9 - 1)%1A20§+1
—<9 — 1)A1$t — (9 — 1)1420?
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Substituting the expressions for z; and o7 from equations (21) and (22) into the
above expression for the pricing kernel, we have

1 1 1
Myy1 = €1 + C2Acyq + ¢3 <7“f,t+1 - K_rf,t +cq | Zmpr1 — H_Zm,t +C5 | St+1 — H_St
1 1 1

where

¢ = 0Ologd+ (0 —1)[ro + (k1 — 1) (Ao + Arag + A2/3)]

cy = —% +(0—1)
cg = (0—1)r1[Araq + AxB]

ca = (0—1)ki[Aras + Asf3,)
cs = (0—1)r[Araz + AxfBs)

A.4 Estimation of Time-Series Parameters of the Extended
Model

In this specification, there are 10 parameters to be estimated - pi., f4., Pry Vus Hos Pos
O"LU’ )\51’7 pS? and ws‘

We have
E(Acii1) = pe (51)
Define 02 = lf—‘;. We then have
Var (Aciy1) = Var(zy) + Var (ath) + 2Cov(x¢, 04Myyq)
= Var(z)+o0?+0
@/132302 2
= —1 = P?: +o0o (52)
and,
2,2
Cov(Acii1, Acrya) = p, 1 £ (53)
2 2
o
Con(Barsr. Ae) = 222 (54)
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From the specification of the dividend growth process, we have

Var (Adyy) = (14X o) Var (z,) + (p, — 1)* Var (s;) +
(14+¢2) o? +2(1+ Asw) (p, — 1) Cov(zy, 5¢) (55)

where Var (z;) = ﬁgg, Cov(wy, s1) = 1A—S;:;s Var (z¢), and

AQ VCLT (xt) _|_ w20.2 + 2)‘gzpzpsvar(xt)

17p;cps
— 2
1 —=p3

Var(s;) =

Also,

Cov(Adyyy, Adys) = (14 M)’ Cov(zes, ) + (p, — 1)° Cov(sis1, 51)
+ (14 Asz) (pg — 1) [Cov(x41, 8¢) + Cov(xy, Sp41)]
+(py — 1) ¥,Cov(St41,0t2s141) (56)

where Cov(ziy1,x) = p,Var(x), Cov(sir,st) = AsxCov(xy, s¢) + p,Var(s),
Cov(xt, S41) = AsaVar (x¢)+psCov(xy, st), Cov(Tisr, st) = pp,Cov(xy, st), and Cov(sis1, 0125 141) =

(UNeas
Finally,
Cov(Aciyr, Adi1) = (1 + New) Var (z;) + (p, — 1) Cov(wy, s;) + o2 (57)
and

E(dy — ct) = pge (58)
Equations (51)-(58) give 8 moment restrictions in the 8 parameters fi.., iy, Pys ¥
ILLO" >\Sx7 pS7 ws

x?

A.5 Simulation Design

We obtain the finite-sample distribution of the J-stat for the overidentifying restrictions
with Monte Carlo simulation. We calibrate the parameters of the time series to their
GMM point estimates and set the initial conditions of the state variables to their
unconditional means, o = 0 and 62 = 2. We simulate the time-series of the LRR
variable, the stochastic volatility process, and the aggregate consumption and dividend
growth rates to obtain a simulated sample of the same size as the historical sample. For
the 2-asset system, we simulate the time-series of log returns on the market portfolio
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and the log risk free rate, using the log-linearization in equation (6) and the model
solution in equation (9), respectively. For the 6-asset system, we simulate the series
for the log returns on the Small, Large, Growth, and Value portfolios, using similar
log-linearizations as for the market portfolio. We then perform the GMM estimation of
the time-series and preference parameters using jointly the pricing and the time-series
restrictions for the two-asset and six-asset systems, as in the empirical Sections 5 and
6, respectively. We also compute the J-stat for the overidentifying restrictions. We
repeat the simulation 100 times and obtain the 90%, 95%, and 99% critical values
of the J-stat from its finite-sample distribution. We perform the simulation for the
2-asset and the 6-asset systems for the full-sample period 1930-2006, as well as the two
postwar subperiods, 1947-2006 and 1947-1991.
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Table 1: Descriptive Statistics
log(returns) log(P/D) log(Dyy1/Dy)

Mean Std.Dev. Mean Std.Dev Mean Std.Dev

SizePort folios

Small 0.105 0.333 4.147 0.711 0.083 0.347
Large 0.060 0.184 3.289 0.440 0.012 0.136
B/M Portfolios

Growth 0.052 0.206 3.725 0.630 0.007 0.206
Value 0.093 0.302 3.588 1.135 0.070 0.568
Market 0.066 0.193 3.267 0.384 0.014 0.108
Risk free rate 0.008 0.050

This table reports the descriptive statistics for the annual log returns, the log price-
dividend ratios, and the log dividend growth rates of the market, the risk free rate, the
"Small", "Large", "Growth", and "Value" portfolios. The sample period is 1930-2006.

42



"AToA1309dsaT 20°G pue ‘("G ‘00°G T UOIINGLIISIP
o[dures-o91uyy oY) JO SoN[RA [RIIILID %66 PUR ‘%GH ‘0406 O, "WOPIDI] JO S90IFOP 9917} [IIM qoﬂzﬂipw%-mx onojdudse ue sey
1R)S-r oY ], ‘sesoyjuared ur onjes-d pojeroosse o) M SUO[R SUOIIOLI)SOI SUIAJIJUOPLIDAO dY[) 10J JR)S-[ o) sprodal oul] wojjoq
O, "19sse 1ord I0] Pojuesald oIe SIOLID PIRPUR)S IBY) PUR SIOLD SUIOLId 98RIOAY ‘sosoyjualed Ul SIOLID PIRPUR)S PIJRIDOSSE
oY) Ym Suole sejewn)se rvjowrered o) syuasord 9[qr) YT, "SIUSWINLIJSUL S POSTL oI€ 9)el 99I] YSLI PaSFe[ oY} pur JoyIeW 91}
JO O1jel PUSPIAIP-00LId PaF3e] oY, "9jel 991 YSLI oY} pur OI[0j110d JoxIeW oY) JO SISISUOD NUOW 9SSk oY, 'Se[ S pur ojel
99I] YSII S0[ oY} pur ‘Se[ S3I puUe JOIBRW oY) JO OI}el PUSPIAIP-00LId SO[ oY} ‘[YImoIs uorduwmnsuod oY) Jo UOIOUNJ € ST [OUIOY
gurotrd oy T, "X1Ijew Suryseom JUSIOe oY} I0] PolIodol oIk S}MNSIY ‘UOIFRUIIISO ) Ul PIsi oIk SUOI}OLIISAI SOLIOS-OUWI) 91} pur
suor}otIysel sumtid oyl Y1og ‘900g-0€6T Polad o) I0A0 ejep [enuue SUuISn [9POW 9} JO SojRWIISO NNL) sitodal ofqey) oy T,

(s10°0)
1701 s — s
SPT0  L9T°0 204 2.4 f SR
9110 0€T°0 F2°4D AT
UL PIS UDI Sd0445 bur1g

(¥00°0) (ev¥1) (¥00'0) (1eeT) (ee20)  (p9e1)  (g691) (2r0°0)  (€00°0) (ggg'1) (e8¥°L)  (#90°0)
0T X¢'¢ 040 9100 L0¢0 060 O0¥V8cC W¥weLc VIOO GTI0°0 90 8 660 VWIS [
e °d 0 T “d 2 0] Prd 711 R L 0 A2PPUIDUD

1w burybrom Juoronffsy

900Z-0€6T I9A0 WISAS 19SS - oY) UO [9POIN HH'T oY} JO SISAL :Z 9[qRL

43



"TWOPADIJ JO $99IF0P 0M} THIM UONNALIISIP- X drjojdurdse we ser o1ysiyess o], "sosorjjuared ur onfes-d pajeroosse ot}
)1M SUOTR SUOIOLIISAI SUTAJIIUSPLISAO S1[) I0] JRIS-[* 91} S1I0dal aUl] UI01)0( Y, "9SSk [[Dea I0] Pajussseld aIe SIOLIS PIRPUR)S
IeY) pue s1olme sumiid a8eIeAy -sessrjjuared Ul SIOLIS PIRPURIS PIIRIDOSSR ) IIM SUO[R Sejew)se I9jourered oY) syuasard
9[qe) ST, "SIUSTINLIJSUI S® POSTL IR 9)el 951 YSLI PASSe] o) PUR )8y IRW ST} JO OI}el PUSPIAIP-90LId PoS3R] oY ], "9)Rl 991 SLI
oY) pue orojprod joxIew 9y} JO SISISUOD NULUW 19SS O], SB[ SJI PUR dJRI 99IJ SLI S0[ ) PuUr ‘Se[ S pUR JoNIRW o) JO
oryel puepIAIp-ootId Fo[ o) ‘UImoid uordwnsuod o) Jo uonounj e st pursy suntid oy [, ‘Xujew Juljysom JUsldlje oY) I0J
pojrodal are s3Nsey ‘900Z-0£6T Polad o) 1940 Rjep [enuue Suisn [OPOJA YYT 912 JO sojpeur)se WIND sirodal o[jqe) oy,

(€26°0)
091°0 mwis — r
691°0 70070 2104 92.4f S
€910 ¢000 193440
“LASTPIS uma A SdoLa] bur1g
(919°T) (00g'9) (6L°TT) (8€9°0)
QL V— I8GT— 9¢0Cc Lvv'i1— papuwils
¥o €9 %} 5]

xrgouL burybrom quaronffsr
w)sAg 19SSy -g Y3 U0 [9POIN HY'T Y2 JO SIS]], ‘¢ 9[qRL

44



‘A[oAry00dsal ‘0f'9 pue ‘€F'G ‘1g'G oIe uonnquIsip ojdures-o3muy o) JO SoNfeA [RIIILID %66 PUR ‘%466 ‘%406 OUJ, "WOPaaI] JO
$99130D 9911} [3IM UOHNqLIISIP-, X drjojduusse ue sey yejs- oy, “sosoyjuored ur onfes-d pajeroosse ol} [IIM SUO[E SUOIIOLIISOT
SUIAJIYUSPLISAO B1[) 10] Je)s- Y} s}10dol 9UI W0))0( ST, "}SS® [Oed 10] pajuasald oIe SI0LId pIepue)s IPY) pue siolre Suotid
oSeroAy "sesoyjuared Ul SIOIID PIBPUR)S POJRIDOSSE oY) M Suore sojewrise 1ojowrered oy} sjuwesard o[qe) oy T, sorjojprod

JON[BA , PUR ¢ IMOIN) ‘,08IeT,  [[RWS, oY) ‘©)Rl 901 YSLI o) ‘O1[0J1I0d Jo3Ieul oY} JO S)SISUOD NUSUI ]SS Y], "Fe[ ST pur

99l 99IJ YSLI S0[ 9} pur ‘Ge[ SJI PUR JoXIRW O[] JO OI}RI PUSPIAIP-99LId F0[ o) ‘[Imo0I3 uorpduwnsuod oY) JO UOIIOUNJ B ST [OULIOY

Sumtid oy ], XLIyeuw SulpySom JUSIIS 1) 10] PajIodal oIe S}NsaY UOIPeU)So S} Ul PISTL oIk SUOIJILIISOI SOLIOS-OUI) 91} PUR

suororgsal Sumorid o) Yrog 900g-0£6T polted o1} IoA0 ejep Tenuue SUISn [9POW 91} JO sojew)se NN s1todal a[qe) oY T,

ANV
160°0
4600
980°0
160°0
001T°0

8.0°0
€900
10T°0
€00
650°0
€cro

LA PAS UDI N

(z000°0) (zer0) (1000) (L090) (gLr'0) (eer1)  (1820) (T10°0)  (€00°0) (2L8°0)
0T X¢g'¢ 060 6000 L0260 G660 €6'IT 08¢¢ VIOO GI0°0 60
Yol °d Jo) T Td 1% 0] Py 21 R

(211'1)
01
L

(200°0)
€6°CI

rrpouL burybrom Juoronffsy

s —35td

9I0.L 99.4f YS1Y
124D Y

ongo A

YIMOo.Lx)

abun|

[rwes

SdoLLy bur1g

IS H]
L2JOULDUD J

900Z-0€6T I9A0 WISAS 19SSy -9 OY) UO [9POIN HH'T oY} JO SISAL ¥ 9[qRL

45



"TWOPIII JO $99IFOP 0M) 1M TOMNLISIP-, X drjojdurdse ue ser do1siye)s
oy [, 'sesojuared ur enjes-d pajrIdOSS® oY) YIIM SUO[R SUOIIOLI)SAI SUIAJIIUSPLISAO S} I0] Je)s-[ oY) s1I0dal aul] wo0)j0q 8y T,
")9sse [DrS 10] Pojuasald oIe SIOLID PIRPUR]S IBY[) PUR SIOL® SUMLId 98RIoAY ‘sosoyjualed Ul SIOLIS PIRPUR)S PIJRIDOSSE 9Y)
UM Suofe sojewryse Iojouwrered oy sjussord o(qe) oy ], ‘sorjojprod onfeA, pur ‘ imorxr), ‘,o8rer, ‘,[[RWS, 91 ORI 9dI]
ST 87} ‘o1[0j)10d joxIRU 97} JO SISISUOD NUSW 9SSk SYJ, ‘Se[ SII PUR 9)RI 991) }SLI S0[ oY) pur ‘Se[ sII puUR JS¥IeW JY) JO
orjel pusplAlp-90tid So[ o1} ‘Imo1s uondwmnsuos sy) Jo uorouUny e st (dulsy Sumiid oy ], "XLIjeuw SUrysem JUusmIfe a) I0J
pojrodal are s3Msey "900z-0€6T PoLad o) I9A0 Rjep [enuue Sursn [OPOJA YT 912 JO sejeunryss WIND sprodst a[qe) ay T,

(820°0)
IST°L ms —
L6070 120°0— 904 294 ) YSUY
160°0 L00°0— 134D P\
680°0 €200 anIw A
G60°0 910°0— Y3 MO1 )
060°0 e100— o8reT
GOT'0 £90°0 1]pwg
WA PIS uva J\ SaodLy bur1g
(9gg'1) (29°01) (zz'81) (86%°0)
vere— 00€T— ¥6°0T 0F80— PaIDUWILIS ]
6] €9 (%) %9}

xrgouL burybrom quaronffsr
we)sAg 19ssy-9 Y3 U0 [9POJA HY'T Y2 JO SIS]], g 9[qRL

46



"WOPOOIJ JO $99150P 0M} (M uoNqLIsIp-, X drjojdurdse ue sey osie)s oy ], “sosoyjuored ur onfea-d pojerdosse oy Yim
Suore suoI)o11)soI SUIAJIJUSPLISAO Y[} I0] Jels- 9} s310dod oul] W0j0q Y, 19SSk [Yoes 10J pajuesald aIe SIOIId PIRPUR)S I8}
pue s1o1ro Supiid oferoay ‘sesorjjudred UI SIOLID PIRPUR)S PAJRIdOsse oY) [m Suofe sojeur)so 1ojourered o) sjuasord a[qe)
oy, ‘sorojprod ,enfeA, PUB ‘,Ypmoir), ‘,08I1e , ¢, [[BUWS, OU} ‘9yel 901 NS oy} ‘orjoj3rod Joy[Ieul oY) JO S)SISU0D NUSUL Josse
9T, "Se[ s3I pue sorjojprod | [IMOIr), puR  ON[RA, JO SOIjel PUIPIAIP-001Id SO[ 91} Ul 9OUSISPIP oY) PUR ‘Se[ s3I PUR Jos[IeU o1}
Jo oryel puepiarp-eotid Sof o) ‘jmo1s uorpdunsuod oY) Jo uorjounj e st PuIey Sumtid oy ], "X1Ijew SUljySom JUSIOIJe o1} I0]
pajaoda are syMsaY "900g-0£6T Porred o) Ioao eyep [enuue Suisn [OPOIN T oY} Jo sejewriso NINL) s1todor a[qes) oy,

(0%0°0)
LEF9 mis —
0600 110°0— 904 294 f YSUY
9200 Z10°0 12340 A1
990°0 120°0 onw A
9200 700°0 3 MOI D)
L20°0 600°0 2317
€200 8600 [pus
WAL PIS uva J\ Sa0LL] bur1g
(6€0°2) (zov'2) (26°66) (7e8°1)
PLTT— 1160— SIgL— €75 0— PAIDUILYS ]
1) €9 (%) %9}

xrgouL burybrom quaronffsr
JAS SANRWIBNTY UMM [OPOJA HH'I 9Y1 JO SIS, :9 I[qeL,

47



"WOPOOIJ JO 99I0P OUO M uoHNqLysip-, X onojdurdse we sey jejs-f oY ], “sosorjuored ur onfes-d pojerosse oy (M Juofe
SUOT}O1I19S91 SUIAJIIUSOPLISAO 91} I0] Je)s- 9} s)10dal oul] W0))0q Y, "19SSe [ord I0] pajuasaold oIe SIOlle pIepur)s IR} pue
s10110 Surorid oferoAy -sesoyjusered Ul SIOLID PIRPUR)S PIJRIIOSSE oY) YIIM Suoe sojewr}se Iojourered o) sjussard aqe) oy J,
"SJUSWINLIISUI SB PASN 9Ie 9)el 901 SLI paSSe[ oY) pueR Jos[Iew oY} JO OIyel PUOPIATP-9o1Id paSSel oy, 9el 991 YSII oY) pue
oroy310d oI 9} JO S)SISUOD NUIW JosSe ], ‘Se[ s)1 pue oryel uor}duWINSUOI-PUSPIAIP SO] pouBLWIp oY} pue ‘Sey sjr pue
9)el 9o1J NSLI 307 oY) ‘Se[ S}I pue joyIew o1} JO Oljel puoplAIp-9otid 301 oY) ‘Imo18 uorduwnsuod o1} Jo UOIDUNJ © SI [OUIdY
Sumotid o ], X1Iyewr SuIySom JUSIIe 1) I0] PajIodal oIe S}Ns9Y UOIPeUI)So S} Ul PISTL oIk SUOIJILIISOI SOLIOS-OUII) 91} PUe
suorjorgsal Surorid o) Yjog 900g-0£6T porred o1} IoAo ejep Tenuue SUsn [9pou a1} Jo sojew)se N srtodal aiqe) oy T,

(¥000°0)
9.°CT s — s
86T°0 9020 204 92.4f SR
991°0 G910 19340 I\
ULSPIS uDI Py Sd04L5 bur 1g

(g9¢'0) (9¥0°0) (¥9€0) (vsz0) (18¢°0) (¢—0TX6°T) (sgz'0) (osz'0) (200°0) (65€°0) (g9¢°0) (€92°0)
T1€6'G 060 6L8¢C - 0IXTE 060 o-0IXTG 88G0 080 9100 Q1 8 660 IDUWLLIS ]
“h °d S e °d o T “d 11 M L % A2PPUIDUD

rragous burybrom quaronffsy

900Z-0£6T 19A0 WBISAG J0SSY-g OU} UO [PPOIN HY'] PeyeIsajuro)) oYy Jo sisa], :L 9qeL

48



"TWOPIIIY JO 9AITOP SUO M UOMNLISIP- X drjoyduihse we ser yels-f o],
‘sosoyjuared ur onyea-d pajeIdosse oY) YIIM SUOR SUOIIOLIISOT SUIAJIJUSPLIOAO S1[} I0] Je)s-[ oY) sI0dol oUI] W0110q O], "JoSSe
oes 10J pojuesald oIe SIOLI® PIRpPUR]S IBY] PUR SIOLD SUMLId 98RIoAY ‘seseyjualed Ul SIOLID PIRPUR)S PIJRIDOSSE Y} [IIM
Suoe sojewinyse Iojourered o) syuosard o[qe) oy sor[ojprod on[RA , PUR ‘, YIMOID) ‘ 83IeT,  [[RUS, 9U) ©)el 9o1J YSLI o)
‘o110J3.10d JoxIRW 9} JO SISISUOD NUSWL J9SS® 9], “Se[ S PuUR ORI UOI}dWNSUOI-PUIPIAIP SO[ PIURIWSD ) pue ‘Se[ S)I pue
9)eI 991J YSLI S0] ) ‘Se[ SII puR joyIRW o) JO Olpel PpuspIAIP-90LId 0] oY) ‘ImoI13 uorduwnsuod sy} Jo UOrOUNJ € SI [SUISY
Sumuid oy ], "XLIpeuw SurySom JUaIdIe o) I0] pojIodol oIe S}NSoY UOIPRUI)SO S} Ul POSTL oIR SUOIJILIISOI SOLIOS-OUII) 9} PUR
suoroLIysel Sumtid o) Yiog "900g-0£61 Polied oY) I9A0 )ep [RNUUR SUISN [9POUL 91} JO S9IRMIISS NN S1Iodal a[qe) oy T,

(£000°0)
CLET 038 — 18]
€0z’0  STL0 204 92.4f SR
T19T°0 18¢C 0 124D A
8810 89¢°0 INID A
€410 2620 YinoLr)
09T°0  8.Z0 obuv
961°0 86£°0 [owg
UASPIS UD2 AT sS40y buorig
(6e1'1)  (P€S0)  (1ST'T) (ov2'0) (81T°1) (¢—0TXLQ) (¢sg'0) (go1'0) (£00°0) (¥92°0) (860°1) (L88°0)
166G L0 6.L8¢ - 0IXTE 60 ¢ 0IXTG 880 ¢60 9100 60 07 660 APDUWLLIS ]
“h 5d S L) 2d oy T Td n M L % 42JOULD D

1w, buryybrom Juoronffsy

900Z-0£6T 19A0 WBISAG J0SSY-9 oY} UO [PPOIN HY'] PeyeIsajuro)) oYy Jo sisa], 8 9[qeL

49



"A[oATI00dST ‘86" L PUR ‘€T°C ‘GO’
oIe uoINQLIISIP o[dures-o9Iulj o1} JO SONRA [RIIILID 66 PUR ‘% GE ‘%406 U, WOPdAI] JO S9aISap 09I} [IIM QOESQEum%-NX
onjoyduwAse ue sey jejs-f oy, "sosoyjuared ur onjea-d pajerdosse oy} s SUOR SUOIIOLI}SOI SUIAJIJUOPLIDAO 93} IOJ RS- oY}
sy10de1 oUI[ W0930(q YT, "19SSe O I10] Pajussald aIe SIOLIS PIRPUR]S IR} PUR SIOLID SULId 98RISAY UOI)RIUIISO ) Ul Pasn
oI® SUOI)OLI}SAI SOLIOS-OWI) O} puR SUOIoLI}sal Sumdrid oy} yjog -sesoyjualed Ul SIOLIO pIepUR)S POJRIDOSSE O} M Juole
sorewryse Iojowrered oY) sjuesold o[qe} oY, XLIYeW JUIIYSIoM JUSIIIJo o} J0J PojIodol oIe SHMNSOY "SIUOWINIJSUL S8 PIsi oIe
9)RI 09IJ YSLI PASSe[ oY) PuR oI S} JO ORI PUSPIAIP-00LId Pag3de] oY, ‘9)el 90I] SLI oY) pur ofjojjrod j1oyIRW OY) JO
SYSISUOD NUOW 19SSk 9, ‘900¢-LF61 Poled oy} I0A0 ®jep [RNUUR SUISN [9POW 9} JO S9jeMWI)sO NAL) Sptodar o[qe) oyJ,

(zoo0)
90°9T s — s
LIT0  €10°0— o904 92Lf YWY
160°0 900°0— F2°4D AT
ULFPIS UDI Sd0445 bur1g

(800°0) (v202) (g000) (219°1) (L980) (z12e) (evee) (8000)  (200°0) (vev's) (12¢°2) (890°0)
90T X¥'¢ 040 O0TI00 20 060 690¢ 06T €c00 €100 Gl 9 660 IpULLIS W]
e °d 0 T “d % ) Prf 11 R L 0 A2PPUIDUD

xragows burybrom Juororffsy

900Z-LF6T 1940 WLISAS 19SSy - oY) UO [9POIN HH'T oY} JO SISAL :6 O[RL

50



"WOPIILY JO S99IFOP 99I(} YHM UOTNLISIP-, X
orjojduidse ue sey je)s- Y[, ‘sesorjuared ur onfea-d pajeroosse o) M SUO[R SUOIIILIISAI SUIAJIIUSPLIDAO S} I0J Je)s-[* o1}
sy10dol 9UI] W0)}0q S, 19SSk [oed I10] pajuesald aIe SIOLI6 PIRPUR)S I8} PUR SI0110 SudLid 98eIoAY UOIJRIISO 9} UT Pasn
9Ie SUOIIOIIISAI SOLI9S-oWI) oY) pue suorjorrysal Sumoiid o) Yjog ‘sesoyjuared Ul SIOIID PIEPUR)S POIRIIOSSEe 9} [Y}m Suofe
sojewr}se Iojourered oy} syuasald o[qe) oY, "XLIyewl SuljySIom JUSIDJe oY} 10 PolIodal oIe S)Nsoy SIUSWINIISUI S8 PIst dIe
99el 991J YSI1 po3Se[ o} pPUB JOILW OY} JO OIyel PUSPIATP-9o11d poSSe[ oy, "9Jel 99If NSII oY} pue orojprod joxIew 9y} JO
SISISUOD NUeW jasse 9T, "T166T1-LF6T Ported oy} 1oA0 ejep [enuue SUISN [9POW o1} JO Sojew)se NN s1todal a[qe) oy,

(100°0)
/%41 s — s
€10 T100— o904 92Lf YWY
2600 600°0— F2°4D AT
ULFPIS UDI Sd0445 bur1g

(600°0) (818'9)  (£000) (190°0) (620°0) (€9s'0) (6€5°0) (600°0)  (€00°0) (eL¥°L) (912°8) (zz00)
90T X¥'¢ 040 0600 L2200 G660 690¢€ 086'T €c00 €100 a1 9 660 IpULLIS W]
e °d 0 T “d % ) Prf 11 R L 0 A2PPUIDUD

xragows burybrom Juororffsy

T66T-LV6T 10A0 WOYSAS 19SSV - O3 UO [0POIN YT OY3 JO S3S9L :0T °[qRL

o1



“TOPea Jo
S99I30P 901U} HIM TUONLISIP-. X drjojdundse we ser] yes- o], ‘sosorfjuored ur onfea-d pajerdosse o1y [IIm SUOR SUOIIOLIISIT
SUIAJIIUSPLISAO 91} I0] JR)S-[ oY) S1I0deI oUl] W0)}0q ST, "9SS [Dea 10] pajussald aIr SIOLIS PIRPUR)S IO} PUR sI10118 Sumiid
o8rIoAy sesor[juered Ul SIOII® PIRPURIS PIIRIDOSSE o) [IHIM SUO[e sajemwinss Isjemrered o) sjuesaxd o[qe) oy [, sorojprod
JON[BA , PUR ¢ IMOIN) ‘,08IeT,  [[RWS, oY) ‘©)Rl 901 YSLI o) ‘O1[0J1I0d Jo3Ieul oY} JO S)SISUOD NUSUI ]SS Y], "Fe[ ST pur
9)RI 991 YSLI 0] oY) pur ‘Se[ SII PUR JOIRW [} JO OIRl PUSPIAIP-00LId SO[ oY) ‘[IMO0IS uordwmnsuod oy JO UOIIOUN] € ST [oUIoy
sumnd oy, ‘Xuryeul SUNSem JUaIdIJe 8} I0] paliodel ore $)NSeY UOIIRUIIISS 9} Ul PISTL 9I@ SUOIJOLI)SAI SOLISS-9UII) ST} PUR
suooLIysel Sumtid ay) Y1og "900g-LF61 Polted oY) I8A0 )R [RNUUR SUISN [9POUL Y[} JO S9)RMWIISS NN s)10dal a[qey) ay T,

(¥000°0)
70'8T 03 — 38
0610 €0T°0 2104 29[ SN
TTIT°0 6€1°0 FI%Y 4D AT
GIT'0 ¢81°0 INIv A
80T°0 STT0 Yinotyr)
¢IT0  GET0 obuvT
7110 SLT°0 g
ULSPLS uDI T s40.4.45 buorig
(800°0) (o6g'1)  (v000) (6¥60) (z8z'1) (69¢'1T) (L60F%) (800°0)  (z00°0) (98°1T1) (e0-ge) (682°8)
o—0T X ¥'¢ 0.0 SGTI00 Lce'0 0L0 690¢€ 086'T €c00 €100 a1 8 660 PDUWLLIS ]
e °d 0 T “d % ) Prf 11 M L % A2PPUIDUD

UL burybrom Juoronffsy

900Z-LF6T 10A0 WLISAS J9SSY-9 OU3 UO [9POIA HH'T oY} JO S3SOL, 1T 9qRL

52



"WOPOOIJ JO 09I OUO M UOIINLISIP-, X
orjojdurse ue sey je)s- oy, ‘sesorpjuared ur anfea-d pajeroosse o) Yirm Suoe SUOIIILIISAI SUIAJIFUSPLIDAO Y} I0J Jels-[ oY)
syrodal oul] w03)0(q dY ], "}oSSe [oes 10] pajuasald oIe SI01I0 pIepUR)S IO} PUR SI0110 Surlid o8eIoAY "UOIYBWIISO 9} UI Pos
9Ie SUOIIOLIISAI SOII9S-OUIl} oY} pue suorjorrysar Jumiid oY) ylog -sosoyjuared UI SIOIIO PIEPUB)S PIIBIIOSSE 9} M Juoe
soyewryso Iojowrered oy} syuasald o[qe) oY, "XIIYew SUISIoM JUSIOYJS o} 10 PolIodal oIe s)Nsoy] "SIUOWNIISUL S8 PIsT oI
9)el 99Ij SILI paS3e[ oY) pue JoxIeW O} JO OI}el PUSPIAIP-0011d pade[ o, ‘oyel 9a1] YSLI o1} pue orjojyrod joxjIew oY) jo
SISISU0D NUewW jasse 9], '900Z-LF6T porred oy} 1oAo ejep renuue SUISN [9POW oY) JO sajewr)se NN sitodal a[qe) oy,

(2000°0)
LG°¢CT s — s
6600 0200 204 92.4f SR
1800 L10°0 F2%4D AT
ULSPIS uDI Py Sd04L5 bur 1g

(8211)  (2¥1°0)  (PLT'T) (voz'1) (802°0) (¢—0TXg'€) (t19'0) (geL0) (200°0) (zgT'T) (zLT'1) (g9¥°0)
I166'G 60 6.L87 - 0IXTE 60 o 0IXTG 88¢0 LO 9100 Q1 9 660 IDUWLLIS ]
“h °d S e °d o T “d 11 M L % A2PPUIDUD

1w, buryybrom Juoronffsy

900%-LV61 1940 WLISAS 19SSV -g 93} UO [OPOJA HUT PeIeISouio) oy} jo s3so, :gT O[qEL

53



"WOPOOIJ JO 09I OUO M UOIINLISIP-, X
orjojdurse ue sey je)s- oy, ‘sesorpjuared ur anfea-d pajeroosse o) Yirm Suoe SUOIIILIISAI SUIAJIFUSPLIDAO Y} I0J Jels-[ oY)
syrodal oul] w03)0(q dY ], "}oSSe [oes 10] pajuasald oIe SI01I0 pIepUR)S IO} PUR SI0110 Surlid o8eIoAY "UOIYBWIISO 9} UI Pos
9Ie SUOIIOLIISAI SOII9S-OUIl} oY} pue suorjorrysar Jumiid oY) ylog -sosoyjuared UI SIOIIO PIEPUB)S PIIBIIOSSE 9} M Juoe
soyewryso Iojowrered oy} syuasald o[qe) oY, "XIIYew SUISIoM JUSIOYJS o} 10 PolIodal oIe s)Nsoy] "SIUOWNIISUL S8 PIsT oI
9)el 99Ij SILI paS3e[ oY) pue JoxIeW O} JO OI}el PUSPIAIP-0011d pade[ o, ‘oyel 9a1] YSLI o1} pue orjojyrod joxjIew oY) jo
SISISUOD NUeW jasse aYJ, "T66T-LF6T porred oy} 1oA0 ejep renuue SUISn [9POW oY) JO Sojewr)se NN Sitodal a[qe) oy,

(¥000°0)

GS'Cl s — s
€800 0T0°0— 104 924f YWY
990°0 700°0 F2%4D AT

ULSTPLS UDI P Sd04L5 bur1g
(61€'T) (g61°0) (PS¥'T) (88%'1) (828'0) (¢—0T%x0'%) (g89'0) (698°0) (200°0) (96¢°1) (g9v'1) (960°0)
1¢6'€ 60 6.8V - 0IXTE 60 o 0IXTG 880 090 9100 G'1 7 660 AIVWLIS
“ °d E% e °d “rl T “d 11 W L % A2PPUIDUD

xragous buybrom Juoronffsy

I66T-LF6T 1040 W0YSAS 19SSV -g oY} U0 [9POJA WHUT PPIeISIUI0) Y3 Jo s3S9], €T 2[qRL

o4



"TWOPIIIY JO 9AITOP SUO M UOMNLISIP- X drjoyduihse we ser yels-f o],
‘sosoyjuared ur onyea-d pajeIdosse oY) YIIM SUOR SUOIIOLIISOT SUIAJIJUSPLIOAO S1[} I0] Je)s-[ oY) sI0dol oUI] W0110q O], "JoSSe
oes 10J pojuesald oIe SIOLI® PIRpPUR]S IBY] PUR SIOLD SUMLId 98RIoAY ‘seseyjualed Ul SIOLID PIRPUR)S PIJRIDOSSE Y} [IIM
Suoe sojewinyse Iojourered o) syuosard o[qe) oy sor[ojprod on[RA , PUR ‘, YIMOID) ‘ 83IeT,  [[RUS, 9U) ©)el 9o1J YSLI o)
‘o110J3.10d JoxIRW 9} JO SISISUOD NUSWL J9SS® 9], “Se[ S PuUR ORI UOI}dWNSUOI-PUIPIAIP SO[ PIURIWSD ) pue ‘Se[ S)I pue
9)eI 991J YSLI S0] ) ‘Se[ SII puR joyIRW o) JO Olpel PpuspIAIP-90LId 0] oY) ‘ImoI13 uorduwnsuod sy} Jo UOrOUNJ € SI [SUISY
Sumuid oy ], "XLIpeuw SurySom JUaIdIe o) I0] pojIodol oIe S}NSoY UOIPRUI)SO S} Ul POSTL oIR SUOIJILIISOI SOLIOS-OUII) 9} PUR
suoroLIysel Sumtid oY) Yiog "900g-LF6T Polied oY) I9A0 )ep [RNUUR SUISN [9POUL 91} JO S9IRMIISS NN S1Iodal a[qe) oy T,

(100°0)
SO°'TT 038 — 18]
€Lz0 6320 29D 9.4 f SR
8810 9910 124D AT
L61°0 80¢°0 INID A
9,10 9¢T1°0 YinoL;r)
6810  ¥9T°0 obun
06T°0 961°0 g
LA TPIS UDI Py SA04L5 bur1g
(e1z'1) (zse0) (08T'1) (vz6°0) (egr'0)  (e—0TX¥TC)  (L250) (062°0) (200°0) (192°'1) (¥oz'1)  (£06°0)
166G L0 6.l8F7 - 0IXTE 060 o 0IXTS 880 060 G100 G'1 09 660 IDUWLLIS ]
“h 5d S Yol °d n T Td 21 R L 0 42JOULD D

xrgouL burybrom Juoronffsy

900%-LV61 1940 WLISAS 19SSV-9 93} UO [OPOJAl HUT PeIeISeuio) oY) Jo s3soL, HT O[qBL

%)



"WOPADIJ JO SP9IOP I LM UOTINGLIYSIP-, X dorjoydunsse we sey yels-f oy,
‘sosoyjuared ul anfea-d pojeIoosse 9y} jim SUO[R SUOIILIISOI SUIAJIPUSPLISAO 9} I0] JR)S-[ 9} S)I0dal aul] W03j0q 9Y ], "19SSe
[ord I0J pojuasald oIe SIOLID pIRPUR])S IV} PUR SIOLID SULId o8eloay ‘sosorjjuared UI SIOLID PIRPUR)S PIIRIIOSSE oY) [IM
guole sojeminse rojowrered o) sjuesold o[qe) oY, SIUSWITLIJSUL SB POSN oIt 9)el 991] YSLI paSde] oY) pur jJoIewl a1} JO OIjel
pueptalp-eotid poS3e[ oy ], ‘ojeld 991 YsILI oY) pue o1jojyiod joxIew o} JO SISISUOD NUIW Jasse oY, "Se[ S pur )Rl 994) NSLI
$0[ o) pur ‘Se[ SJI puR JOIRW 9} JO OIYRI PULPIAIP-09LId SO[ oY) ‘Y3M0I3 uordwnsuod o9y} Jo Uorounj & st [puioy surntid oy,
"XIIYew SUIYSIom JUSIOL o) I0] Po3I0odol oIe S}NS9Y] "UOIIBRWIISS 9} Ul PISI oI SUOIIDLI}SOI SOLIOS-OUWT) ) PUR SUOIJILI}SOI
sunud o) 1og "€:900%-7:LF61 poued o) Ioao viep AJIoyrenb Juisn [opour o) JO sojRWINSY JAINY) Sitodol o[qe) oy,

(000°0)
GE'GL s — s
9700  900°0— 2104 294 [ S
8700 9000 F2°4D AT
ULFPIS UDI Sd0445 bur1g

(900°0) (ov1°0)  (2000) (0%00) (981°0) (est0) (609°0) (g00°0) (100°0) (¥29°0) (399°0) (8v0°0)
0T X 68 040 LV00 €IT0 GL0 98¢¢ TLE'T 9000 %000 60 0T 260 VWS [
e °d 0 T “d % ) Prf 11 R L 0 A2PPUIDUD

xragows burybrom Juororffsy

eye A[103Iend) UM We)sAS 19ssy-g o3 Uo [OPOIA HH'T Y3 JO s3s9L, :GT °[qRlL

56



‘“TWOPSDIJ JO S9ITOP 09I} IIM
uonnqrysip-, X onoyduidse we sey yejs-f o], “sosorjuared ur anfes-d pajeIdOsse oY) M FUO[R SUOTIILISOI FUIAJIIUOPLISAO
oY) 10 9eis- oY) syroder suI[ WO))0q SYJ, -I9sse [Yors I10J pajussald aIr SIOLID PIRPUR)S IBY) PUe SIOL® SUDLId 9FelsAy
‘sesor[juared Ul SIOLI® PIRPUR]S PIJRIDOSSR aY) )M SUO[R sejewinss rojauwered o) sjueserd s[qe) oy, sorjojprod ,onfep , pue
CUamoIny ¢ e8rer, ¢ [[eWS, 9} ‘9JRI 99If YSLI o) ‘Or[0j1Iod Jo5IeU 9YY) JO SISISUOD NUOW 9SSR O], "SR] S}I PUR 9)el 991) YSLI
$O[ o) pur ‘Se[ S)I purR J9yIRW 9} JO OI)RI PULPIAIP-00LId SO o) ‘YIM0I3 uordwnsuod o) Jo uonouny & st [purey surntid oy,
“XLIJRUW SUT)YSIoM JUSIOIe o) 10] PalIodal are s)NsSaY] "UOIJRUWIISS S} Ul PISTL 9IR SUOIIILIISAI SOLI9S-9WI) S} PUR SUOIJILIISAT
sunud o) og  "€:9007-Z:L¥61 poled oY) I9A0 ®iRp [enuuR SUSH [9POUW 9} JO Sojew)ss WAL sprodsi aiqe) oy,

(000°0)
¢T°€q wis — s
L1000 01070 2104 29[ SN
L10°0 Gc00 FI%Y 4D AT
8T0°0 8€0°0 INIv A
LT10°0 6600 Yinotyr)
L1000 ¥20°0 obuvT
6100 9¢0°0 g
WASTPLS U0 SaoLLy bur1g
(¥000°0) (62L0) (t00'0) (g¢se0) (eL¥'0) (L6TT)  (999°9) (S000) (100°0) (g00°2) (99¢9) (12979
0T X6'8 080 TIO0O €100 060 WVAT'9 LI6'T 9000 %000 €0 8 260 IDUWLLIS ]
e °d 0 T “d 2 0] Prd 711 R L 0 A2PPUIDUD

rrpouL burybrom Juoronffsy

eye A[103Iend) Ym We)sAS 19ssy-9 o3 Uo [OPOIA HH'T U3 JO SS9, :9T °[qelL

57





