
NBER WORKING PAPER SERIES

IMPOSSIBLE FRONTIERS

Thomas J. Brennan
Andrew W. Lo

Working Paper 14525
http://www.nber.org/papers/w14525

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
December 2008

The views and opinions expressed in this article are those of the authors only, and do not necessarily
represent the views and opinions of AlphaSimplex Group, MIT, Northwestern University, any of their
affiliates and employees, or the National Bureau of Economic Research. The authors make no representations
or warranty, either expressed or implied, as to the accuracy or completeness of the information contained
in this article, nor are they recommending that this article serve as the basis for any investment decision---this
article is for information purposes only. Research support from AlphaSimplex Group and the MIT
Laboratory for Financial Engineering is gratefully acknowledged.  We thank Henry Cohn, Sanjiv Das,
Arnout Eikeboom, Leonid Kogan, Tri-Dung Nguyen, and participants of the JOIM Fall 2008 Conference
and the MIT Finance Lunch for helpful comments and discussions.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2008 by Thomas J. Brennan and Andrew W. Lo. All rights reserved. Short sections of text, not to
exceed two paragraphs, may be quoted without explicit permission provided that full credit, including
© notice, is given to the source.



Impossible Frontiers
Thomas J. Brennan and Andrew W. Lo
NBER Working Paper No. 14525
December 2008
JEL No. G1,G11,G12,G14,G23,G32

ABSTRACT
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1 Introduction

A cornerstone of modern portfolio management is the “efficient frontier” of mean-variance

analysis: the set of portfolios for which the lowest variance possible is attained for given

levels of expected return, or the highest possible expected return is attained for a given

level of variance. The main thrust of the Capital Asset Pricing Model (CAPM) is that

the market portfolio—the portfolio of all assets where each asset’s weight is proportional

to its total market capitalization—must lie somewhere on the efficient frontier. Since, by

definition, every component of the market portfolio has a positive weight (because its market

capitalization must be positive), we would expect at least one portfolio on the efficient frontier

to have this property. If, for a given a set of asset-return parameters (means, variances, and

covariances), the corresponding efficient frontier does not have any such portfolio, we call

this an “impossible frontier” for obvious reasons.

In this paper, we show that, as the number of assets grows large, nearly all efficient

frontiers are impossible.

Specifically, for any arbitrary set of expected returns, and for a randomly chosen covari-

ance matrix, we show that the probability that the resulting frontier is impossible approaches

one as the number of assets increases without bound. This result depends, of course, on the

specific distribution from which we draw the covariance matrix, and we consider two classes:

the uniform distribution (Haar measure), and distributions centered around linear-factor

models such as the CAPM and Ross’s (1976) Arbitrage Pricing Theory (APT). For both

classes of distributions, mean-variance efficient frontiers are almost surely impossible.

This remarkable result is not an artifact of pathological parameters, except in the two-

asset case, but is apparently a generic property of mean-variance efficient portfolios. For

typical parameter values, every portfolio on the efficient frontier will contain at least one

short position, i.e., a negative weight. This implies that such an efficient frontier cannot be

consistent with a CAPM equilibrium in which every investor holds the tangency portfolio, for

such an equilibrium requires all weights to be positive for that portfolio. Alternatively, our

impossibility result implies that the set of expected return vectors and covariance matrices

(µ,Σ) that is consistent with a CAPM equilibrium is extremely small—in fact, measure-zero

in the limit—hence we should not expect typical empirical estimates of (µ,Σ) to yield plau-

sible portfolios from the CAPM perspective unless the CAPM is literally true and estimation

error is negligible.

Our results provide one explanation for the skepticism that most long-only portfolio man-

agers have for standard mean-variance optimization—from their perspective, an impossible

frontier is truly impossible for them to implement. Moreover, it is well known that the output
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of standard portfolio optimizers yield weights that must be constrained, but until now, the

non-negativity restriction that has become second nature to practitioners was thought to be

a consequence of estimation error. The results in our paper show that even in the ideal case

where the means and covariance matrix of asset returns are known with perfect certainty,

the efficient frontier will almost always contain negative weights. To the extent that esti-

mation error generates means and covariances that deviate from the CAPM, such sampling

variation will only exacerbate the problem, making it more likely that the sample efficient

frontier is impossible. Our impossibility results may also provide a partial explanation for

the recent popularity of so-called “active extension” strategies such as 130/30 portfolios in

which a limited amount of shortselling is permitted.

We begin in Section 2 with a brief review of the literature, and in Section 3 we derive

analytical results for the two- and three-asset cases to build intuition and motivate our

more general results. The main results of the paper are contained in Section 4, where

we propose two classes of probability measures for covariance matrices and show that under

both these classes of measures, impossible frontiers become the rule, not the exception, as the

number of assets increases without bound. We also show that the expected minimum amount

of shortselling across frontier portfolios grows linearly with n, and even when shortsales

are constrained to some finite level, an impossible frontier remains impossible. Given the

importance of the CAPM, in Section 5 we examine the linear one-factor return-generating

model in more detail, and show how to construct a covariance matrix that does not yield

an impossible tangency portfolio. In Section 6, we provide an empirical illustration of our

theoretical findings using daily and monthly returns for a subset of S&P 500 stocks, and

show that the usual sample estimators of (µ,Σ) do yield impossible frontiers. We conclude

in Section 7 with a discussion of the theoretical and practical significance of our results.

2 Literature Review

Any review of the mean-variance portfolio selection literature must begin with Markowitz

(1952) who first introduced this powerful framework to the economics literature. Building on

the Markowitz mean-variance framework, Tobin (1958), Sharpe (1964), and Lintner (1965)

derived the equilibrium implications under the assumption that all investors held mean-

variance-optimal or “efficient” portfolios, culminating in the “Capital Market Line”, the line

in mean-standard deviation space connecting the riskfree rate on the expected-return axis

with the tangency portfolio on the efficient frontier in mean-standard deviation space.

The role of shortsales in mean-variance analysis has also been considered by several
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authors. In fact, Markowitz (1959, p. 132) recognized the importance of implementing

constraints on portfolio weights, one of which was a non-negativity or shortsales constraint.

However, Lintner (1965) was perhaps the first to study the impact of shortsales on capital

market equilibrium, deriving alternative equilibria under shortsales prohibitions as well as

shortsales constraints. Lintner concluded that investors would not engage in shortsales in

equilibrium because of the Tobin separation theorem, i.e., all investors are indifferent between

holding portfolios of all assets versus portfolios of just two funds—the riskless asset and the

tangency portfolio. None of these authors studied the prevalence of short positions in the

tangency portfolio, essentially ruling out such “impossible frontiers” in equilibrium.

A number of papers have been written about the impact of shortsales constraints on asset

prices in various settings, including Pogue (1970), Brito (1978), Jarrow (1980), Diamond

and Verrecchia (1987), Heaton and Lucas (1996), Detemple and Shashidhar (1997), Duffie,

Garleanu, and Pedersen (2002), and Sun and Wang (2006). However, these studies are

focused on the equilibrium effects of credit constraints, not on quantifying the frequency or

amount of shorting in the generic mean-variance-efficient portfolio, which we propose to do

in this paper.

More recently, Markowitz (2005) has argued that empirical deviations from the CAPM

are not surprising in light of the counterfactual assumptions on which the CAPM is based.

In particular, he observes that “When one clearly unrealistic assumption of the capital asset

pricing model is replaced by a real-world version, some of the dramatic CAPM conclusions

no longer follow”. An example is the fact that unlimited borrowing and lending at identical

yields is not possible in practice, and this limitation implies that the market portfolio need

not be mean-variance-efficient in equilibrium.

Markowitz’s (2005) caveats are well taken, but the results of our paper are considerably

stronger. We argue that even if all the assumptions of the CAPM are true, the market port-

folio need not be mean-variance efficient. Specifically, Markowitz (2005) states the following

assumptions:

(A1) Transaction costs and other illiquidities can be ignored.

(A2) All investors hold mean-variance efficient portfolios.

(A3) All investors hold the same (correct) beliefs about means, variances, and covariances

of securities.

(A4) Every investor can lend all she or he has or can borrow all she or he wants at the

risk-free rate.
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and argues that Conclusion 1 follows:

(C1) The market portfolio is a mean-variance efficient portfolio.

The results of Sections 3–5 below show that there exist certain combinations of means,

variances, and covariances for which every mean-variance efficient portfolio contains short

positions, implying that none can be the market portfolio. And as the number of assets

grows without bound, the likelihood of coming across a set of parameter values with this

characteristic is almost certain.

3 Some Examples of Impossible Frontiers

We begin with some notation. Let µ be the vector of expected returns for n assets, and let

Σ be the covariance matrix of those returns.1 For a given level of expected return µo, the

corresponding portfolio on the efficient frontier is the vector ω which minimizes the value of

ωtΣω subject to ωtι = 1 , ωtµ = µo . (1)

where ι is a column vector of ones of the appropriate length. The set of optimal ω can be

found using the method of Lagrange multipliers (see, for example, Merton, 1972):

F =

{
ω : ω =

BC

D

(
µo −

B

C

)
(ωµ − ωg) + ωg , for µo ≥

B

C

}
(2)

where

A ≡ µtΣ−1µ , B ≡ µtΣ−1ι , C ≡ ιtΣ−1ι , D ≡ AC − B2 (3)

and

ωg ≡ Σ−1ι/C , ωµ ≡ Σ−1µ/B . (4)

1Throughout this paper, we maintain the following notational conventions: (1) all vectors are column
vectors unless otherwise indicated; (2) matrix transposes are indicated by t superscripts, hence ωt is the
transpose of ω; and (3) vectors and matrices are always typeset in boldface, i.e., X and µ are scalars and X

and µ are vectors or matrices.
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Note that ωg is the global minimum-variance portfolio, and ωµ is the vector that maxi-

mizes the Sharpe ratio relative to the risk-free rate of zero, i.e., ωµ maximizes the function

µtω/
√

ωtΣω.

The frontier starts at the expected return level µo = B/C. In fact, we can compute

minimum-variance portfolios for values of µo less than B/C, but these portfolios would lie

on the “inefficient” branch of the portfolio frontier, i.e., the portion of the frontier for which

return is not maximized for a given level of risk.

We call a frontier “impossible” with respect to the i-th component if the weight of the

i-th component at each point on the frontier is negative. Clearly, a sufficient condition for a

frontier to be impossible is that it be impossible for the i-th asset, 1 ≤ i ≤ n. From (2), we

see that every point on an efficient frontier can be written in the form

ω =
C

D

(
µo −

B

C

)
ωP + ωg (5)

where ωP ≡ Bωµ −Bωg. The values of C and D are non-negative by the Cauchy-Schwartz

inequality, so a frontier will be impossible with respect to the i-th asset exactly when ωg

and ωP both have negative i-th components.

Our technique for proving that an efficient frontier is impossible is to show that the i-th

elements of both ωg and ωP are negative for some i. Using this method, we can calculate

a lower bound for the probability that a generically chosen efficient frontier is impossible,

as well as lower bounds for the expected number of coordinates on a frontier with respect

to which the frontier is impossible, and also lower bounds on the expected amount of total

shortsales at each point on the frontier.

In Section 3.1, we investigate the special case of n = 2 and find that certain frontiers

are impossible, but only under some rather unnatural conditions. However, in Section 3.2,

we show that when n = 3, a variety of frontiers become impossible without any unnatural

conditions.

3.1 The Two-Asset Case

For the case of n = 2 assets, we can characterize all situations in which a frontier will be

impossible (proofs are included in the Appendix):

Proposition 1 For n=2, let the assets be ordered so that µ1 < µ2, let σi denote the risk of

the i-th asset, and let ρ denote the correlation between the assets. The efficient frontier is
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impossible if and only if

σ2

σ1

< ρ .

Because ρ ≤ 1, the proposition implies that a necessary condition for a frontier with two

assets to be impossible is that σ2 < σ1. Also, since the volatilities are both non-negative,

it is also necessary that ρ > 0. Thus, for a frontier to be impossible, the asset with higher

expected return must also have lower risk, and the two assets must be positively correlated.

In such a circumstance, it will be optimal to have a short position in the low-return/high-risk

asset at every point on the efficient frontier.

This condition is unnatural because the lower expected-return asset is strictly domi-

nated by the higher expected-return asset given that the latter is less risky than the former.

Therefore, on purely economic grounds, it is possible to rule out impossible frontiers in the

two-asset case. However, we show in the next section that with just one more asset, there is

no natural way to avoid impossible frontiers.

3.2 The Three-Asset Case

For n = 3 assets, we provide a characterization of 3 × 3 covariance matrices that gives rise

to a minimum-variance portfolio with negative weights when the volatilities of all assets are

equal. This result will allow us to specify a class of covariance matrices that imply arbitrarily

large amounts of shortselling in the minimum-variance portfolio in the equal-volatilities case.

Finally, we use our results to illustrate an example of a situation in which three assets can

give rise to an impossible frontier without any unnatural restrictions on the risks and returns

of the assets.

For the moment, we assume that the volatilities of all three assets are the same, which

we normalize to 1 without loss of generality, hence the covariance matrix has the form:

Σ =




1 a c

a 1 b

c b 1


 . (6)

The range of possible values for a, b, and c for which Σ is positive definite is given by the
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following subset of R3:

{
(a, b, c) : c = ab + c̃

√
1 − a2

√
1 − b2 , with a, b, c̃ ∈ (−1, 1)

}
. (7)

We can then completely characterize the values of a, b, and c that yield negative weights in

the minimum-variance portfolio:

Proposition 2 If Σ is of the form (6), the first component of ωg has a negative value when

c > 1 − a + b .

The second component has a negative value when

c < a + b − 1 .

The third component has a negative value when

c > a − b + 1 .

These three conditions are all mutually exclusive since a, b, c < 1, so at most one component

of ωg may be negative.

Corollary 1 Let Σ be of the form (6). If we let d = 1 − ε, for ε → 0+, and we set a = d,

b = d, and c = ab − d
√

1 − a2
√

1 − b2, then Σ is a non-degenerate covariance matrix and

the short position required in the minimum-variance portfolio ωg is

ωm2 = − 1

2ε
+ O(1) .

Corollary 1 implies that, by allowing ε to tend toward zero, arbitrarily large short posi-

tions in the minimum-variance portfolio can be generated. The proof of Proposition 2 follows

directly from the calculation of a formula for the value of ωg in the three-asset case, and the

proof of the corollary follows from that same explicit formula and an additional calculation

(see the Appendix for further details).

Armed with these results, we can now construct a non-trivial three-asset example with
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impossible frontiers. We begin with a correlation matrix C of the same form as the covariance

matrix in Corollary 1, with ε = 0.35:

C =




1.0000 0.6500 0.0471

0.6500 1.0000 0.6500

0.0471 0.6500 1.0000


 (8)

Let the expected returns for the three assets be 10%, 14%, and 18%, respectively, and let

their volatilities be 15%, 20%, and 25%, respectively, hence (µ,Σ) are:

µ =




0.10

0.14

0.18


 , Σ =




0.0225 0.0195 0.0018

0.0195 0.0400 0.0325

0.0018 0.0325 0.0625


 . (9)

Note that unlike the condition in Proposition 1, these parameters do not imply any type

of dominance relation among the three assets—higher expected-return assets have higher

volatilities. These parameters yield the following values for ωP and ωg:

ωP = B(ωµ − ωg) =



−1.4046

0.7212

0.6834


 , ωg =




1.0888

−0.5859

0.4971


 . (10)

Given the expression (5) for the efficient frontier, it is apparent that every frontier portfolio

close to ωg has a short position in asset 2, and every frontier portfolio close to a multiple of

ωP has a short position in asset 1. A calculation shows that in fact there is a short position

in asset 2 for each frontier portfolio with an expected return less than 18.42%. At this point,

there is also a short position of −5.23% in asset 1, and the short position in asset 1 increases

for in portfolios with higher expected returns. Thus, all portfolios on the efficient frontier

have an aggregate short position of at least −5.23%.

In fact, the efficient frontier (10) will continue to be impossible if the values of µ and Σ

are allowed to vary within a small neighborhood of (9). Many other three-asset examples

of impossible frontiers can be constructed, and with empirically plausible parameters. By

increasing the number of assets from two to three, the set of impossible frontiers seems to

have grown significantly. In Section 4, we show that this is no coincidence, and that as n

increases without bound, an arbitrarily chosen frontier is almost surely impossible.
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4 The General Case

In this section, we consider the general case of an arbitrary number of n assets. Unfortu-

nately, simple analytical results like those for the two- and three-asset cases of Section 3

are not available for an arbitrary number of assets. However, we propose to conduct the

following thought experiment: for a given vector µ of expected returns, and a randomly

selected covariance matrix Σ, what is the likelihood that the resulting frontier is impossible?

To compute such a probability, we must, of course, propose a probability distribution for a

covariance matrix, which is not a straightforward exercise. Although distributions of covari-

ance matrices have been developed in the statistics literature, e.g., the Wishart distribution,

they are sampling distributions of covariance-matrix estimators applied to independently

and identically distributed multivariate normal data (see Anderson, 1984, chapter 7). Such

distributions are highly parametric—if multivariate normality does not hold, then neither

does the Wishart—and also do not necessarily capture the randomness that we seek, i.e., the

random drawing of an arbitrary population covariance matrix from the space of all possible

covariance matrices. In particular, Wishart distributions are typically “centered” at the esti-

mated sample covariance matrix with multivariate tails that decline exponentially fast. This

may be a reasonable model of the randomness associated with sampling error, but seems less

compelling as a mechanism for drawing an arbitrary covariance matrix at random.

Instead, we seek a more general distribution, such as a uniform distribution over the

space of all possible covariance matrices, i.e., the space of all (n×n) symmetric positive-

definite matrices with real elements. However, because this space is not compact, a uniform

distribution over this space will have infinite mass. Nevertheless, in the same way that an

“improper prior” can be specified in Bayesian inference,2 we can construct an “uninforma-

tive” distribution as a proxy for the uniform. We provide such a distribution for covariance

matrices in Section 4.1 using the concept of Haar measure, which will allow us to gauge the

probability that a randomly selected covariance matrix gives rise to an impossible frontier,

yielding the conclusion that impossible frontiers are almost certain to arise as the number of

assets increases without bound.

However, it may be argued that an uninformative distribution of covariance matrices

will not yield economically relevant draws because the resulting covariance matrices lack

the factor structure hypothesized in the most popular asset-pricing models. To address

this concern, in Section 4.2 we introduce another class of probability distributions centered

around the covariance matrices generated by linear factor-pricing models such as the CAPM

and APT, and derive lower bounds on the probability that a frontier is impossible if it is

2See, for example, Jeffreys (1961, pp. 180–181) and Box and Tiao (1973, p. 426).
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chosen randomly with respect to one of the distributions in this class. We show that this

lower bound also approaches unity as n grows without bound.

In Section 4.3, we calculate lower bounds on the expected number of assets with respect

to which a frontier will be impossible, as well as estimates for the expected minimum size of

short positions across frontier portfolios. We also find that an impossible frontier will remain

impossible even if constraints are placed on the total amount of shortselling allowed in any

portfolio.

4.1 Haar Measure and Covariance Matrices

Haar measure is the unique measure (up to a constant) that is invariant under the natural

action of the group GLn of invertible linear transformations on Rn on the space of covariance

matrices. For G ∈ GLn, this action is defined by Σ 7→ GΣGt for Σ ∈ Pn where Pn is the

symmetric space of all positive-definite matrices on Rn, and any covariance matrix Σ can

be mapped to any other covariance matrix under some such action. Thus, any such action

takes a neighborhood around a specified covariance matrix to a corresponding neighborhood

around any other covariance matrix, and Haar measure assigns the same volume to every such

image of the original neighborhood. In this sense, Haar measure behaves uniformly on all of

Pn and represents an “uninformative” prior distribution over all possible (n×n) covariance

matrices. The following definition summarizes Haar measure on GLn (see Jorgenson and

Lang, 2005 for further discussion).

Definition 1 Haar measure on Pn is the measure, νn, that is invariant under transforma-

tions of the form Σ 7→ GΣGt, for G ∈ GLn. Thus, for any region S ⊆ Pn, Haar measure

has the property that

νn(S) = νn

(
GSGt

)
(11)

for all G ∈ GLn. This measure is unique up to multiplication by a positive constant, and in

terms of the elements of the matrix Σ = [Σi,j ], we have

dνn(Σ) =
1

(det(Σ))(n+1)/2

∏

i≤j

dΣi,j (12)

where dΣi,j is the element of Euclidean measure.
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Under Haar measure, the entire space Pn has infinite volume so we cannot scale by a

constant to transform Haar measure into a proper probability density. Instead, we calculate

the probability that a selected frontier is impossible on cross sections of Pn using the prob-

ability density induced by Haar measure on those cross sections. We need first to introduce

a useful system of coordinates on Pn with respect to which we can easily define our cross

sections.

Definition 2 Each matrix M ∈ Pn can be uniquely expressed in terms of (partial) Iwasawa

coordinates as (X,W,V), where W ∈ P2, V ∈ Pn−2, and X ≡ [x1,x2], with x1,x2 ∈ Rn−2.

The relationship between M and (X,W,V) is defined by the formula

M =

(
I2 Xt

0 In−2

)(
W 0

0 V

)(
I2 0

X In−2

)
=

(
W + XtVX XtV

VX V

)
. (13)

Moreover, each matrix W can be uniquely expressed in terms of Iwasawa coordinates as

(y, u, v), where u, v ∈ R+ and y ∈ R, according to the relationship

W =

(
1 y

0 1

)(
u 0

0 v

)(
1 0

y 1

)
=

(
u + y2v yv

yv v

)
. (14)

Finally, we can also express each matrix X in terms of polar coordinates (r1, . . . , rn−2, θ1, . . . ,

θn−2), where ri ∈ R+ and θi ∈ S1, using the relationships x1,i = ri cos θi and x2,i = ri sin θi.

Therefore, each M ∈ Pn can be written in terms of coordinates

M = (r1, . . . , rn−2, θ1, . . . , θn−2, y, u, v,V) (15)

so that the space Pn can be viewed as the product

Pn = (R+)n−2 ×
(
S1
)n−2 × R× R+ ×R+ × Pn−2 . (16)

Using the coordinate system of Definition 2, we consider cross sections of Pn that have

fixed values of all coordinates except the θi. We write Z = Z (r1, . . . , rn−2, y, u, v,V) for

such a cross section with specified fixed values of the coordinates r1, . . . , rn−2, y, u, v and

V. This cross section is thus a product of (n−2) copies of S1, and the measure on this cross
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section induced by Haar measure on Pn is

dνZ =
1

(2π)n−2
dθ1 · · · dθn−2 . (17)

The measure νZ is therefore a proper probability distribution on the cross-sectional space Z;

although probabilities cannot be computed with respect to Haar measure on all of Pn, they

can be computed with respect to νZ on each cross section Z of Pn.

To calculate the probability that a covariance matrix, Σ, gives rise to an impossible

frontier, it is convenient first to change variables from Σ to M using the correspondence

Σ = AMAt (18)

where A = A (c1, . . . , cn) is the unique matrix in GLn with columns defined by

Ae1 = c1ι , Ae2 = c2µ , and Aej = cjej for 3 ≤ j ≤ n (19)

for specified values of ci > 0. Haar measure is invariant under this change of variables, and

so we can replace Σ with M and use Haar measure on M as the basis for our probability

calculations. We calculate the probability that a matrix Σ = AMAt gives rise to an impos-

sible frontier for a matrix M in a cross section Z, where the probability is calculated with

respect to the distribution νZ . In Theorem 1, we obtain a lower bound for the probability

of impossibility, but first we need a lemma specifying a useful test for impossibility.

Lemma 1 For a frontier to be impossible with respect to the i-th coordinate, it is necessary

and sufficient that

et
iΣ

−1ι < 0 and et
iΣ

−1µ −
(

µtΣ−1ι

ιtΣ−1ι

)
et

iΣ
−1ι < 0 . (20)

If Σ = AMAt and i > 2, the conditions in (20) are equivalent to

cos θi−2 > y sin θi−2 and sin θi−2 > 0 (21)

where M has coordinates as in Definition 2.
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Theorem 1 Let M ∈ Z = Z (r1, . . . , rn−2, y, u, v,V) be chosen randomly with respect to the

distribution νZ. The probability, pZ , that the covariance matrix Σ = AMAt gives rise to an

impossible frontier is bounded below as

pZ ≥ 1 −
(

1 − 1

2π
cot−1 y

)n−2

≥ 1 −
(

1 − 1

2π (1 + max(0, y))

)n−2

. (22)

This theorem shows that, for any fixed value of y, the probability, pZ , that a covariance

matrix in a cross section Z gives rise to an impossible frontier tends to 1 geometrically as n

grows. Moreover, if y is bounded above by y+, the probability for any cross section Z with

a such a y coordinate tends to 1 at least as quickly as

pZ ≥ 1 −
(

1 − 1

2π (1 + max(0, y+))

)n−2

.

The following corollary extends the previous results to yield a lower bound on the prob-

ability of impossibility for probability densities on the entire space Pn.

Corollary 2 Let ϕ be any probability density on Pn which factors into a product of densities

ϕ =

(
n−2∏

i=1

ϕri

)
×
(

n−2∏

i=1

ϕθi

)
× ϕy × ϕu × ϕv × ϕV (23)

where the ϕθi
are uniform probability densities on S1 and the other distributions are aribtrary

distributions on the respective spaces ri ∈ R, y ∈ R, u ∈ R+, v ∈ R+, and V ∈ Pn−2. Let

Σ = AMAt be an arbitrary covariance matrix, with A as defined in (19), and with M

chosen randomly in accordance with the distribution ϕ. The probability, p, that Σ gives rise

to a frontier which is impossible is bounded below by

p ≥ 1 −
∫

R

(
1 − 1

2π (1 + max(0, y))

)n−2

ϕy(y) . (24)

4.2 Linear-Factor Models and Impossibility

Although the generality of Haar measure in representing the selection of an arbitrary covari-

ance matrix is compelling, some may consider it too general because it does not differentiate

among outcomes according to their economic plausibility. In particular, Haar measure places
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the same probabilistic weight on covariance matrices arising from quantum mechanics as it

does on covariance matrices from economic models—there is nothing intrinsic to Haar mea-

sure in which economic structure is incorporated. Accordingly, one could argue that Haar

measure places too much weight on financially irrelevant covariance matrices. This argument

is debatable, not in the least because we do not usually develop economic theories to yield

specific implications for covariance matrices, hence it is not clear what “financially relevant”

covariance matrices look like.

However, there does exist an important class of financial models that places restrictions

on asset-return covariance matrices, and that is the set of linear factor models such as the

CAPM and APT. If a linear factor-pricing model holds, then a typical covariance matrix

drawn randomly from this economy will have a different distribution than Haar measure.

In this section, we introduce a class of probability distributions based upon the covariance

matrix implied by linear factor models such as the CAPM and APT, and we calculate

probabilities of impossibility with respect to distributions in the class. The construction

of this class uses many of the techniques and notations developed in connection with our

analysis of Haar measure in Section 4.1, so our exposition will be less detailed.

We start with T0 = T0(µ, µm, σm, rf), the covariance matrix implied by a linear one-

factor model for a chosen value of the expected return vector µ and for arbitrarily specified

values of the expected return on the market, µm, the market volatility, σm, and the riskfree

rate, rf , assuming for the moment that there are no idiosyncratic components to asset

returns. The matrix T0 can be written

T0 = σ2
mββt

where β is the vector of “beta” values, β = (µ−ιrf )/(µm−rf ) (recall that we have assumed

no idiosyncratic shocks for the moment).

To incorporate independent idiosyncratic risks, non-negative amounts can be added to

diagonal elements of T0, and the elements of the matrix may be additionally adjusted to

reflect deviations from the CAPM. We define a family of such matrices,

T = T (µ, µm, σm, rf) =
{
T = σ2

mββt + δIn + ειιt : ε ≥ 0, δi ≥ 0
}

and we define the subfamily T2 to be those matrices in T with δ1 = 0, δ2 = 0, and δi > 0 for

3 ≤ i ≤ n.

For any T ∈ T2, we can write T = AAt, where A = A(c1, . . . , cn) is defined in (19), with
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c1 = ε1/2, c2 = σm/µm, and ci = δ
1/2
i , for 3 ≤ i ≤ n. We write covariance matrices Σ in the

form Σ = AMAt for some M ∈ Pn, and we consider probability distributions on Σ defined

in terms of probability distributions on M. Since every Σ corresponds to a unique M under

this relationship, every probability distribution for Σ can be realized in this way. Also, when

M = In, we have Σ = T, and so distributions for Σ are “centered” on the CAPM-based

matrix T to the same extent the distributions for M are centered on In. We can now define

a broad class of probability distributions for Σ and “centered” on CAPM-based matrices

T ∈ T2.

Definition 3 For c > 0, a distribution ϕ on Σ ∈ Pn is in the class D(T2; c) if the corre-

sponding distribution ϕM on M ∈ Pn can be factored into a product of distributions

ϕ =

(
n−2∏

i=1

ϕri

)
×
(

n−2∏

i=1

ϕθi

)
× ϕy × ϕu × ϕv × ϕV (25)

where the ϕθi
are uniform probability densities on S1, where ϕy is bounded above by c e−y2

for

y ≥ 0, and where the other distributions are arbitrary distributions on the respective spaces

ri ∈ R+, u ∈ R+, v ∈ R+, and V ∈ Pn−2. Here we use the notation of Definition 2 for the

coordinates for M, and we use the correspondence Σ = AMAt for the relationship between

Σ and M.

We now turn to the central result of this section: a lower bound for the probability of

impossibility which is uniform across all distributions in the class D(T2; c).

Theorem 2 For any given expected-return vector µ, expected return on the market µm,

market volatility σm, and riskfree rate rf , let ϕ be a probability distribution in D(T2; c) =

D (T2(µ, µm, σm, rf); c), for a specified c > 0. With respect to this distribution, the probability

that a random choice of Σ gives rise to an efficient frontier that is impossible is bounded

below by:

PI ≥ 1 −
(

6

7

)n−2

− 4c exp

(
−
(

n − 2

3π

)2/3
)

. (26)

This lower bound holds uniformly across all ϕ ∈ D(T2; c), as well as across all choices of

µ, µm, σm, and rf . As n increases without bound, the probability that a generically chosen

frontier is impossible tends to unity.
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The remarkable generality of Theorem 2 raises the question of how tight the lower bound

can be, especially given the fact that we have placed no restrictions on the expected-return

vector µ. Table 1 shows that even for the 50-asset case—a relatively small number of assets

for most financial applications—the likelihood of an impossible frontier is nearly certain.

n Lower Bound

25 0.9059

50 0.9787

75 0.9920

100 0.9966

Table 1: Lower bound for the probability that a randomly chosen n-asset covariance matrix
yields an impossible frontier under any measure ϕ ∈ D(T2; 0.1) over the space of all n×n
symmetric positive-definite covariance matrices with real elements.

It should come as no surprise that Theorem 2 can easily be extended to the case where

returns satisfy any linear k-factor model, k ≪ n. In this case, the factor (n−2) in (26) is

replaced by (n−k−2) and some of the constants are slightly different, but the asymptotic

implications of the bound are identical. As n increases without bound, the probability of an

impossible frontier approaches unity.

4.3 Additional Impossibility Results

In this section we derive several additional results about impossible frontiers. We determine

the expected number of assets with respect to which a generic frontier will be impossible,

and derive a lower bound for the expected sizes of short positions across a generic frontier.

We also generalize Theorem 2 to the case in which a constraint is placed on the total size of

short positions at each point on the frontier.

Theorem 3 For any given expected-return vector µ, expected return on the market µm,

market volatility σm, and riskfree rate rf , let ϕ be an arbitrary probability distribution in

D(T2; c) = D (T2(µ, µm, σm, rf); c). With respect to this probability distribution, the expected

number of assets with respect to which the frontier corresponding to a random choice of Σ

gives rise to an efficient frontier that is impossible is bounded below by:

En ≥ c′(n − 2) , (27)
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for a positive constant c′ defined as

c′ ≡
∫

R

(
1

2π (1 + max(0, y))

)
ϕy(y) (28)

which depends only on the factor ϕy of the probability distribution ϕ. If ϕy is a normal

distribution with unit variance, a numerical lower bound for En is (n−2)/8.

This result follows from an estimate of the integral defining the expected value (see the

Appendix), and shows that the number of assets requiring short positions on a typical frontier

grows linearly with the number of assets.

We can also determine lower bounds for the aggregate size of the short positions among

efficient-frontier portfolios. The following definition makes this notion precise:

Definition 4 For 1 ≤ i ≤ n, let Si denote the infimum of the short position in the i-th asset,

measured as a fraction of the portfolio’s net asset value, where the infimum is taken over all

points on a given efficient frontier. Let S denote the infimum of the aggregate amount of

shortselling, where the infimum is also taken over all portfolios on a given efficient frontier.

With this definition, we are able to derive a lower bound on the magnitude of shorting among

efficient-frontier portfolios:

Theorem 4 For any given expected-return vector µ, expected return on the market µm,

market volatility σm, and riskfree rate rf , let ϕ be an arbitrary probability distribution in

D(T2; c) = D (T2 (µ, µm, σm, rf) ; c). With respect to ϕ, for 3 ≤ i ≤ n, the expected value of

Si satisfies

E[Si] ≥ ci (29)

where

ci ≡ 1

2π

(∫ ∞

0

ri−2ϕri−2

)(∫ 0

−∞

(1 − y)ϕy

)
(30)

and ϕri−2
and ϕy are as in Definition 3. Note that if all the functions ϕri−2

are identical, so

that all the ci have a common value c∗, then the expected value of S has the following lower
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bound:

E[S] ≥ c∗(n − 2) . (31)

Finally, we consider the effect of imposing shortsales constraints by first defining the

concept of a constrained efficient frontier:

Definition 5 For b ≥ 0, a constrained efficient frontier Fb is the set of portfolio weight

vectors that provide maximum returns for given levels of volatility, subject to the condition

that the total size of the short positions in such weight vectors be no more than a fraction b

of the portfolio’s net asset value. Such a constrained frontier Fb is an impossible frontier if

every point on Fb has a negative weight for at least one asset.

Remarkably, imposing shortsales constraints does not decrease the probability that a frontier

is impossible, as the next result shows:

Theorem 5 Let F be an unconstrained efficient frontier and let Fb be the corresponding

constrained efficient frontier for some b > 0. If F is an impossible frontier, then Fb is an

impossible frontier as well. Thus, the probability that a constrained efficient frontier, with

b > 0, is impossible is at least as large as the probability that an unconstrained efficient

frontier is impossible.

5 The One-Factor Model

Given the overwhelming importance of the CAPM to financial theory and practice, we con-

sider the special case of the linear one-factor model that underlies the CAPM. In particular,

let the (n×1)-vector of returns of n assets be given by the following linear one-factor model:

r = ι rf + β(rm − rf) + ǫ (32)

where rm is the stochastic market return, β is an (n×1) constant vector, and ǫ is an (n×1)

stochastic vector of idiosyncratic shocks. We assume that the expected value of ǫ is zero,

and we write Ω for its covariance matrix.

Let µm and σm denote the expected return and standard deviation of rm, respectively.

According to the CAPM relation (32), the mean vector and covariance matrix for asset
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returns, µ and Σ, can be written in terms of µm, σm, β, rf , and Ω as

µ = ι rf + β(µm − rf ) and Σ = ββtσ2
m + Ω . (33)

The tangency portfolio implied by the CAPM is ωµ, defined in (4) as ωµ ≡ Σ−1µ/B. And

under the assumption that Ω is diagonal and µ contains all positive elements, it can be shown

that the tangency portfolio is, in fact, not impossible, i.e., it contains no negative weights

and may, therefore, be consistent with capital market equilibrium in which the weights are

proportional to the market capitalizations of the securities. In this section, we explore the

impossibility of the tangency portfolio for more general residual covariance matrices Ω and

with no constraints on µ, and find that as before, impossibility is the rule, not the exception

as n increases without bound.

In Section 5.1, we introduce the techniques needed to characterize impossible tangency

portfolios, and in Section 5.2 we derive a lower bound on the probability that a randomly

selected tangency portfolio is impossible. In Section 5.3, we show how to construct the unique

covariance matrix that is consistent with a given vector of means µ, the riskfree rate rf , a

set of market-capitalization weights ωm, and CAPM equilibrium (i.e., where those market

weights correspond to those of the tangency portfolio), and which is as “close” as possible

to a given covariance matrix Σ. In other words, we derive the covariance matrix that is as

close as possible to Σ but which is consistent with the CAPM.

5.1 Characterizing Impossible Tangency Portfolios

As in Section 4, the key to characterizing impossible tangency portfolios is the choice of

coordinates in which to express the covariance matrix, which will allow us to focus on the

portion of the matrix that is relevant for impossibility. Any covariance matrix Σ can be

written in the form Σ = AMAt, where M is a positive-definite symmetric matrix, and

where A is the unique matrix that takes e1 to µ and ei to ei for 2 ≤ i ≤ n.3 Also, as we

showed in Section 4.1, M can be expressed in terms of partial Iwasawa coordinates as

M =

(
w 0

0 V

)[(
1 0

x In−1

)]
=

(
w + xtVx xtV

Vx V

)
(34)

3Note that the definitions of A and M are slightly different here than in Section 4.1, but we keep the
same notation because these matrices play the same role as before.

19



where w ∈ R+, x ∈ Rn−1, and V is a covariance matrix of dimension (n−1)×(n−1). Here

we have used the notation G[H] for HtGH.

In these coordinates, the portfolio ωµ can be expressed simply as

ωµ,i =





(1 + µ2x1 + · · · + µnxn−1)/d for i = 1,

−µ1xi−1/d for 2 ≤ i ≤ n.
(35)

d ≡ 1 + (µ2 − µ1)x1 + · · · + (µn − µ1)xn−1 .

Therefore, ωµ is completely determined by x and µ. This allows us to characterize the

impossibility of the tangency portfolio via the following proposition:

Proposition 3 The tangency portfolio, ωµ, implied by the CAPM is impossible if and only

if any one of the following three conditions holds: (i) two elements of x have different signs;

(ii) all elements of x have the same sign as µ1/d; or (iii) the quantity (1 + µ2x1 + · · · +
µnxn−1)/d is negative, where d ≡ 1 + (µ2 − µ1)x1 + · · ·+ (µn − µ1)xn−1.

We will make the most use out of the first condition for impossibility in Proposition 3, since

it describes the bulk of the cases in which the tangency portfolio is impossible.

5.2 The Probability of Impossible Tangency Portfolios

To determine the probability that the CAPM tangency portfolio is impossible, we need to

choose a probability distribution on the underlying variables β, µm, σm, rf , and Ω. Once

these variables are determined, µ and Σ are determined as well, and Proposition 3 will allow

us to assess the impossibility of the corresponding tangency portfolio.

For our probability distribution, we allow β, µm, σm, and rf to be specified arbitrarily—

our results will hold uniformly across any choice of these variables. With respect to Ω, we

decompose the matrix into components and allow all but one of those components to be

specified arbitrarily. Specifically, we write Ω as

Ω =

(
Ω11 0

0 Ω̃

)[(
1 γt

0 In−1

)](
Ω11 Ω11γ

t

Ω11γ Ω̃ + Ω11γγt

)
(36)

where γ ∈ Rn−1, Ω̃ is an (n−1)×(n−1) positive-definite matrix, and Ω11 > 0. The values of Ω̃

and Ω11 can be specified arbitrarily. With respect to γ, we impose a probability distribution
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ϕγ(γ) on Rn−1, and in our probability calculations we consider several possible choices of

ϕγ. Thus, for our probability distribution on the underlying variables, we allow completely

arbitrary specification of all terms except γ, and with respect to γ we focus on a number of

different choices of probability distributions on Rn−1.

The characterization of impossibility in Proposition 3 relies on an expression of Σ =

AMAt in terms of coordinates x, w and V for M. Our probability distribution, however,

is expressed in terms of another set of coordinates for Σ, namely γ, Ω11, Ω̃, σm, and β.

Thus, we need to calculate the relationship between these choices of coordinates to apply

the characterization of impossibility to draws from our distribution. The relationship of

primary importance will be the expression of x in terms of the coordinates for the probability

distribution, so we now turn to this calculation.

Multiplying on the right by (At)−1 and on the left by A−1 in the expression for Σ in

(33), and using the definition of A, we see that

M = e1e
t
1 (σm/µm)2 +

(
Ω11/µ

2
1 (Ω11/µ1)z

t

(Ω11/µ1)z Ω̃ + Ω11zz
t

)

=

(
Ω11/µ

2
1 + (σm/µm)2 (Ω11/µ1)z

t

(Ω11/µ1)z Ω̃ + Ω11zz
t

)
(37)

where z = γ − µ̃/µ1, with µ̃ = (µ2, . . . , µn)
t. In light of the expression for M in (34), we see

that

x = V−1(Vx) = (Ω11/µ1)
(
Ω̃ + Ω11zz

t
)−1

z . (38)

Since µ = ιrf +β(µm−rf ), and since z is determined by µ and γ, we see that (38) expresses x

in terms of the coordinates for our probability distribution, as desired. After some algebraic

manipulation, we can also write this expression for x as

x =




Ω11/µ1

1 + Ω11

∥∥∥Ω̃
−1/2

z

∥∥∥
2


 Ω̃

−1
. (39)

This is a more useful formula for x since we are primarily interested in the signs of the

elements of x and this expression shows these are the same as the signs of the elements of
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Ω̃
−1

z/µ1, since the remaining multiplicative factor is always positive.

Theorem 6 Let p be the probability that the tangency portfolio implied by the CAPM is

impossible when the probability distribution on the term γ underlying the covariance matrix

Ω has a distribution given by ϕγ. A lower bound for p is

p ≥ det
(
Ω̃
) ∫

Rn−1

F (γ)ϕγ

(
Ω̃γ + µ̃/µ1

)
(40)

where F is equal to 1 whenever γ has two elements with different signs and equal to 0

otherwise.

We now make the result more concrete by applying the theorem to a specific choices for the

distribution ϕγ.

Corollary 3 If ϕγ has an (n−1)-dimensional multivariate normal distribution with mean

µ̃/µ1 and covariance matrix sΩ̃
2
, for some s > 0, then the probability that ωµ is impossible

satisfies

p ≥ 1 − 22−n (41)

and this result is independent of the choice of s.

Note that choices of ϕγ not centered at µ̃/µ1 will generally have a lower probability of

impossibility. However, for choices of ϕγ that are close to the uniform distribution, choices

with large variance, for example, the probability of impossibility will have a lower bound

similar to that in the corollary.

5.3 A Non-Impossible Covariance Matrix

Given the simple structure of the linear one-factor model (32), it should be possible to find

some covariance matrix Σ̃ “close” to Σ in some sense that yields a non-impossible tangency

portfolio, i.e., a tangency portfolio that has strictly positive market-capitalization weights

ωm, and is consistent with µ, β, and rf . Using the techniques developed in Section 5.1,

we construct such a “non-impossible” covariance matrix in this section and show how it is

related to Black and Litterman’s (1992) approach to asset allocation with prior information.

Suppose that a mean return vector, µ, and a market-capitalization weight vector, ωm

are given, and consider a covariance matrix, Σ, that is derived either empirically or from
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prior information, but which is not necessarily compatible with µ and Σ in the sense that

ωm 6= Σ−1µ, as required by the CAPM. The matrix most compatible with the observed Σ

but still conforming to the known values of µ and ωm can be determined in the following

manner. Write Σ = AMAt and write M in terms of w, x, and V, as in (34). Replace x by

x̃, where x̃ is defined by

x̃i =
−ωm,i+1

µ1 + (µ2 − µ1)ωm,2 + · · ·+ (µn − µ1)ωm,n
(42)

for 1 ≤ i ≤ n−1. The formula in (42) inverts the relationship between ωm and x from (35),

so the value of x̃ is the unique value compatible with the market weight vector ωm and the

expected return vector µ.

The change from x to x̃ described in the last paragraph corresponds to a change in the

overall covariance matrix. Replace Σ by Σ̃ where

Σ̃ ≡ AM̃At , M̃ ≡
(

w + x̃tVx̃ x̃tV

Vx̃ V

)
. (43)

This new covariance matrix, Σ̃, is then compatible with ωm and µ in that ωm is the tangency

portfolio resulting from this mean and covariance. In addition, Σ̃ is the covariance matrix

most compatible with the specified values of µ and ωm and the observed value of Σ in that it

requires precisely the amount of alteration to Σ needed to make the three sets of parameters

compatible.

Therefore, for those who have strong conviction that the CAPM must hold and that µ

and ωm are, in fact, the correct expected returns and market weights, and Σ is their best

estimate of the covariance matrix, the covariance matrix they should adopt is Σ̃ given in

(43).

6 Empirical Analysis

To gauge the empirical relevance of our impossibility results, we use daily and monthly

returns for stocks in the S&P 500 index to estimate portfolio parameters (µ,Σ) and show

that the realizations of impossible frontiers in the historical record are nontrivial.
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6.1 The Data

The monthly data consists of returns for stocks listed on the S&P 500 in December of 1995 for

which monthly return data was available for the period from January 1980 through December

2005. The daily data consists of returns for stocks listed on the S&P 500 in December of

1995 for which daily return data was available for the period from January 1, 1995 through

December 31, 2005. There are a total of 271 stocks in the monthly data set and 326 stocks

in the daily data set.

6.2 A 100-Stock Empirical Efficient Frontier

For concreteness, we construct the efficient frontier for the first 100 assets for both daily

and monthly returns using standard estimators for the means and covariance matrices. The

two frontiers are plotted in Figure 1, and we find that both are impossible. The blue lines

indicate the unconstrained frontiers, and the red lines indicate the frontiers constrained to

allow only 50% shortselling. Figure 2 shows the amount of shortselling for points on both of

these frontiers. Clearly the shortsales constraints do not eliminate the problem of impossible

frontiers, and have a significant impact on the characteristics of the constrained optimal

portfolio.
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Figure 1: Unconstrained efficient frontier for 100 stocks in the S&P 500 index, as well as
the frontier constrained to allow no more than 50% shortselling, based on (a) daily returns
from January 1, 1996 to December 31, 2005; and (b) monthly returns from January 1980 to
December 2005.
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Figure 2: Magnitude of short positions for points on the unconstrained efficient frontier for
100 stocks in the S&P 500 index, as well as the frontier constrained to allow no more than
50% shortselling, based on (a) daily returns from January 1, 1996 to December 31, 2005;
and (b) monthly returns from January 1980 to December 2005.

6.3 More Impossible Frontiers

Applying the usual sample mean and covariance-matrix estimators to daily and monthly

returns, we compute estimates (µ̂, Σ̂) and construct efficient frontiers for each of 2 through

326 assets for daily returns, and 2 through 271 assets for monthly returns. Figure 3 shows the

fraction of assets with respect to which each frontier is impossible. Figure 4 shows the size of

the short positions in the portfolios ωg and ωµ for each of these frontiers. These results show

that negative holdings are the rule rather than the exception for empirical efficient frontiers,

and non-negativity constraints are likely to have a major impact on the characteristics of

mean-variance-optimized portfolios.

6.4 Estimation Error

One possible critique of our empirical analysis is that estimation error is likely to yield

sample means and covariances that are inconsistent with the CAPM, so it is not surprising

that we find impossible frontiers in the data. But this observation only underscores the

ubiquity of impossible frontiers in practice. Since the population means and covariance

matrix must always be estimated in financial applications, estimation error is an unavoidable

aspect of practical portfolio management. While a number of authors have explored the

impact of estimation error on portfolio optimization,4 and alternatives such as Bayesian

4See, for example, Brown (1976), Bawa, Brown, and Klein (1979), Frost and Savarino (1986), Jorion
(1986), Tu and Zhou (2004, 2007, 2008), Wang (2005), DeMiguel, Garlappi, and Uppal (2007), Garlappi,
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(b) Monthly Returns

Figure 3: The fraction of assets with respect to which the empirical frontiers are impossible,
as a function of the number of assets underlying the frontiers, based on a subset of S&P 500
stocks using (a) daily returns from January 1, 1996 to December 31, 2005, with the number
of stocks n ranging from 2 to 326; and (b) monthly returns from January 1980 to December
2005, with the number of stocks n ranging from 2 to 271.
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Figure 4: Magnitude of short positions in the portfolios ωg and ωµ for the empirical frontiers,
based on a subset of S&P 500 stocks using (a) daily returns from January 1, 1996 to December
31, 2005, with the number of stocks n ranging from 2 to 326; and (b) monthly returns from
January 1980 to December 2005, with the number of stocks n ranging from 2 to 271.
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inference (Brown, 1976), robust portfolio optimization (Fabozzi et al., 2007), and resampling

(Michaud, 1998) have been developed in response, none of these methods addresses the

impossibility of the population mean-variance efficient frontier.

In particular, Theorems 1 and 2 show that impossible frontiers are almost certain to occur

even in the absence of estimation error. To the extent that estimation error can be viewed

as random perturbations of population parameters (as opposed to perturbations that yield

parameters closer to those satisfying a CAPM/APT relation), it is even more likely that

estimated means and covariances will yield impossible frontiers. In other words, if a frontier

is impossible for a set of population parameters, adding random noise to those parameters

is unlikely to yield frontiers that are consistent with the CAPM.

7 Conclusion

In this paper, we have shown that mean-variance efficient frontiers almost always contain

short positions, implying a fundamental inconsistency between efficiency and economic equi-

librium as described by the CAPM. This result is distinct from earlier concerns in the

literature regarding the mean-variance efficiency of the market portfolio. Those concerns

involved the observability of the total market portfolio, the existence of non-traded assets

such as human capital, estimation errors in the sample means and covariance matrix, non-

stationarities, asymmetric information, and other capital-market imperfections. Even in a

frictionless world where all parameters are fixed and known, and where all of the other

perfect-markets assumptions of the CAPM hold, mean-variance efficient frontiers are almost

always impossible.

This surprisingly general result provides a potential explanation for the near universal

disdain with which long-only portfolio managers regard standard mean-variance optimiza-

tion techniques. These investment professionals—who comprise the majority of end-users of

commercial portfolio construction software such as the BARRA Optimizer and the North-

field Portfolio Optimizer—have railed against mindless optimization for years, arguing that

portfolio weights obtained in this manner are ill-behaved and must be constrained or other-

wise post-processed. However, the typical rationale for these complaints is that the weights

of frontier portfolios are too unstable and too sensitive to estimation error to be of practical

value. We have identified a distinctly different rationale, which is the ubiquity of short po-

sitions in frontier portfolios even in the absence of estimation error. An impossible frontier

is, in fact, literally impossible for the long-only portfolio manager. The surging popular-

Uppal, and Wang (2007), and Kan and Zhou (2007).
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ity of 130/30 strategies among such managers and their investors may well be a practical

manifestation and an unintended consequence of the impossibility of mean-variance-optimal

portfolios.

The virtual certainty of impossible frontiers also has implications for the interpretation of

economic equilibrium. The converse of our impossibility theorem is that the set of parameters

(µ,Σ) that are “possible”, i.e., that are consistent with the mean-variance efficiency of the

market portfolio—is a vanishingly small set as the number of assets grows without bound.

In particular, in a CAPM equilibrium, covariances are also endogenously determined via

supply and demand, despite the fact that most asset-pricing models focus exclusively on the

properties of expected returns in equilibrium. Is it any wonder that the set of n means and

n(n+1)/2 covariances that is consistent with capital-market equilibrium is apparently quite

sparse?

To the disciples of general equilibrium theory, this may be heretical, but from a broader

and more practical perspective, it should not be too surprising that the likelihood of si-

multaneous equality of supply and demand across a large number of markets is small, and

increasingly less likely as the number of assets grows. With the techniques developed in this

paper, we hope to be able to deduce other generic properties of financial market equilibria

and their practical implications.
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A Appendix

In this Appendix, we provide proofs for the main results of the paper.

A.1 Proof of Proposition 1

When there are only n=2 assets, we may write the set of points on the frontier simply as

F =

{
ω : ω =

[
µo−µ1

µ2−µ1

µ2−µo

µ2−µ1

]t
, for µo ≥

B

C

}
.

Thus, for all expected returns µo with µ1 < µo < µ2, points on the frontier have positive
weight in both components, but for all values of µo outside this range, every point on the
frontier has exactly one negative component. If the minimum value of µo, namely µo = B/C,
is less than µ2, then at least some point on the frontier has all positive weights, but if this
value of µo is greater than µ2, then all points on the frontier have at least one negative
weight.

The condition that B/C < µ2 is the same as the condition that

µ1(e
t
1Σ

−1ι) + µ2(e
t
2Σ

−1ι)

(et
1Σ

−1ι) + (et
2Σ

−1ι)
< µ2 .

The denominator on the left-hand side is non-negative, according to the Cauchy-Schwarz
inequality, and so we may cross-multiply and collect terms to see that the inequality holds
exactly when et

1Σ
−1ι > 0. This, in turn, is the same as the inequality ρ < σ2/σ1, and so we

see that a frontier will be impossible just when σ2/σ1 < ρ ≤ 1 and µ1 < µ2, which is the
assertion of Proposition 1.

A.2 Proof of Proposition 2

We calculate Σ−1 and reorganize terms to yield:

ωg =
Σ−1ι

ιtΣ−1ι
=




(1 − a + b − c)(1 − b)

(1 − a − b + c)(1 − c)

(1 + a − b − c)(1 − a)


 /(ιtΣ−1ι) . (A.1)

Since the denominator is non-negative, by the Cauchy-Schwarz inequality, the proposition
follows.
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A.3 Proof of Corollary 1

The proof of the corollary is obtained by using the formula for ωg in (A.1) and simply
plugging in the stated values of a, b, and c. This calculation shows that the shortsale
amount in the second asset is

et
2Σ

−1ι

ιtΣ−1ι
=

−2ε + 4ε2 − ε3

4ε2 − ε3
= − 1

2ε
+ O(1) .

A.4 Proof of Lemma 1

The first inequality in (20) states that the i-th component of ωg is negative, and the second
inequality states that the i-th component of ωP = Bωµ − Bωg is also negative. Together,
these inequalities imply that the i-th component of each portfolio on the entire efficient
frontier has a negative weight, since C and D are always positive, by the Cauchy-Schwartz
inequality, and since frontier portfolios have the form described in (5). This demonstrates
the sufficiency of the condition for impossibility in the i-th asset. The necessity also follows
readily, since a negative i-th component of each portfolio is only possible if there is a negative
i-th component in the minimum risk portfolio, ωg, as well as in the high risk portfolios which
tend toward a positive multiple of ωµ − ωg.

To deduce the equivalence between the conditions in (20) and (21), we note that

Σ−1 =
(
A−1

)t
M−1A−1 .

As in Definition 2, we can express M in terms of coordinates as (X,W,V), and we have

M−1 =

(
I2 0

−X In−2

)(
W−1 0

0 V−1

)(
I2 −Xt

0 In−2

)
=

(
W−1 −W−1Xt

−XW−1 V−1 + XW−1Xt

)
.

From the definition of A = A(c1, . . . , cn) in (19), we see that

A−1ι = e1/c1, A−1µ = e2/c2, and A−1ej = ej/cj, for 3 ≤ j ≤ n .

We write W = [wij] so that

W−1 =
1

det(W)

(
w22 −w12

−w12 w11

)
.
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After some algebraic rearrangements, we see that the conditions in (20) are equivalent to

x1,(i−2)w22 − x2,(i−2)w12 > 0 and x(i−2),2 > 0 (A.2)

where we have used the facts that det(W) > 0 and w22 > 0, since W is positive definite.
With the notation from Definition 2, we write w22 = v, w12 = yv, x1,i−2 = ri−2 cos θi−2

and x2,i−2 = ri−2 sin θi−2. Equation (A.2) can be rewritten in terms of these new coordinates
as

cos θi−2 − y sin θi−2 > 0 and sin θi−2 > 0

since both ri−2 > 0 and v > 0, and this is the condition in (21).

A.5 Proof of Corollary 3

Substitution of the specified choice of ϕγ for into the result of Theorem 6 shows us that

p ≥ 1

(2πs)(n−1)/2

∫

Rn−1

F (γ) exp

(
− 1

2s
γtγ

)
dγ .

This integral is simply an expression for the fraction of the unit sphere in Rn−1 that does not
have either all negative or all positive coordinates, and this fraction is 1 − 22−n, as desired.

A.6 Proof of Theorem 1

From equation (21) of Lemma 1 we see that the probability, pi, that a frontier is impossible
with respect to the i-th coordinate, for i > 2, is just the probability that the conditions of
(21) are fulfilled when θi−2 is chosen from the uniform distribution on S1 = [0, 2π]. The
conditions are satisfied exactly when θ ∈ (0, π) and y < cot θi−2, and this corresponds to a
probability of impossibility

pi =
1

2π
cot−1 y

where cot−1 denotes the branch of the inverse cotangent with values between 0 and π.
Equation (21) of Lemma 1 also shows that, for a fixed value of y, impossibility in the

i-th coordinate is independent of impossibility in the j-th coordinate, for i, j > 2. Thus, the
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probability of impossibility in at least one of the coordinates i > 2 is bounded below as

p ≥ 1 −
(

1 − 1

2π
cot−1 y

)n−2

and this implies the first inequality of the theorem. The second inequality follows directly,
since the inequality cot−1 y ≥ 1

1+max(0,y)
holds for all y.

A.7 Proof of Theorem 2

From Corollary 2, we see that the probability in the theorem is bounded below as

PI ≥ 1 −
∫

R

(
1 − 1

2π (1 + max(0, y))

)n−2

ϕy(y)

≥ 1 −
∫ 0

−∞

(
1 − 1

2π

)n−2

ϕy(y) − c

∫ ∞

0

(
1 − 1

2π(1 + y)

)n−2

e−y2

dy .

The first integral in the last line is bounded above by (1 − 1/(2π))n−2. The second integral
is bounded above by the sum

c

∫ 2

0

(
1 − 1

6π

)n−2

e−y2

dy + c

∫ ∞

2

(
1 − 1

3πy

)n−2

e−y2

dy .

The first integral in this sum is bounded above by c(1− 1/(6π))n−2, and the second integral

is bounded above by 2ce−(n−2

3π )
2/3

. This last bound follows from the fact that
(
1 − 1

3πy

)n−2

is bounded above by e−(n−2

3π )
2/3

for 0 ≤ y ≤
(

n−2
3π

)1/3
, as well as the fact that

∫ ∞

(n−2

3π )
1/3

e−y2

dy < e−(n−2

3π )
2/3

.

Combining these results, we see that the probability is bounded below by

PI ≥ 1 −
(

6

7

)n−2

− c

(
19

20

)n−2

− 2c exp

(
−
(

n − 2

3π

)2/3
)
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where we have made use of the fact that 6/7 > 1−1/(2π) and the fact that 19/20 > 1−1/(6π).
Finally, numerical calculations show that

(19/20)n−2 ≤ 2 exp(−((n − 2)/(3π))2/3)

for small n, and this relationship continues to hold asymptotically. Thus, we can bound PI

below as

PI ≥ 1 −
(

6

7

)n−2

− 4c exp

(
−
(

n − 2

3π

)2/3
)

A.8 Proof of Theorem 3

The expected number of assets with respect to which an efficient frontier is impossible satisfies

En ≥
∫

R

(
n∑

i=3

1

2π (1 + max(0, y))

)
ϕy(y) .

This follows from the proof of Theorem 1, which shows that the i-th summand in the inte-
grand is a lower bound for the probability that a covariance matrix gives rise to an impossible
frontier for a fixed value of y. We thus see that

En ≥ (n − 2)

∫

R

(
1

2π (1 + max(0, y))

)
ϕy(y)

and this last integral is the constant c′ from the statement of the theorem. Also, in the
case in which ϕy(y) is a normal distribution with unit variance, we see from a numerical
computation that

En ≥ n − 2

8

and this is the final claim of the theorem.

A.9 Proof of Theorem 4

If a frontier meets the necessary and sufficient conditions of Lemma 1 for the i-th coordinate,
for 3 ≤ i ≤ n, then it is an impossible frontier with respect to the i-th asset. In this case,
the i-th components of both ωg and ωP are negative, and so the total amount of shortselling
in the i-th asset throughout the frontier is bounded below by the amount of shortselling in
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the i-th asset for the minimum-variance portfolio. Thus we see that

Si(Σ) ≥ −et
iωg = −et

iΣ
−1ι

ιtΣ−1ι
= − (−ri−2 cos θi−2 + yri−2 sin θi−2)

where we have used the change of coordinates Σ = AMAt and the coordinates for M
from Definition 2 to establish the final equality. We thus see that, the expected amount of
shortselling with respect to the i-th asset satisfies

E[Si] ≥
∫ ∞

0

(∫ π

0

∫ cot θi−2

−∞

(ri−2 cos θi−2 − yri−2 sin θi−2) ϕy
dθi−2

2π

)
ϕri−2

(A.3)

where we have used the result from Lemma 1 that a frontier is impossible with respect to
the i-th asset exactly when θi−2 ∈ (0, π) and y < cot θi−2. We have also used the notation
ϕy and ϕri−2

from Definition 3.
Since the integrand in (A.3) is positive throughout the region of integration, we can find

a smaller lower bound by restricting the size of the region of integration. We calculate

E[Si] ≥
(∫ ∞

0

ri−2ϕri−2

)(∫ π/2

0

∫ 0

−∞

(cos θi−2 − y sin θi−2) ϕy
dθi−2

2π

)

=
1

2π

(∫ ∞

0

ri−2ϕri−2

)(∫ 0

−∞

(1 − y)ϕy

)
.

This is the lower bound in the theorem for E[Si]. The lower bound for E[S] follows immei-
dately if the ϕri−2

are identical for 3 ≤ i ≤ n.

A.10 Proof of Theorem 5

Let F0 be the frontier constrained to allow no shortselling that corresponds to F and Fb. Let
σ0 be the risk of the minimum risk portfolio on F0, and let µ0 be the expected return of the
maximum expected return portfolio on F0. Each portfolio on Fb with a lower risk than σ0

must involve shortselling, since σ0 is the minimum possible risk without shortselling. Simi-
larly, each portfolio on Fb with a higher expected return than µ0 must involve shortselling,
since µ0 is the maximum possible expected return without shortselling. Thus, we need only
show that each portfolio on Fb with a risk greater than or equal to σ0 and an expected return
less than or equal to µ0 must involve shortselling.

Let ωb be a portfolio on Fb with risk and expected return, σb and µb, respectively, such
that σb ≥ σ0 and µb ≤ µ0. There are weight vectors ω0 and ωU on F0 and F , respectively,
with the same expected return as ω. For 0 ≤ λ ≤ 1, write

ωλ = (1 − λ)ω0 + λωU
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so that each ωλ also has the same expected return µb. Let σλ denote the risk of ωλ. Note
that σλ is a decreasing function of λ, for 0 ≤ λ ≤ 1, since σ2

λ is a quadratic function of λ,
and since λ = 1 corresponds to the minimum risk portfolio for the level of expected return
µo. We assume here that F is impossible so that ωU involves shortselling and is therefore
distinct from ω0. We thus see that each ωλ with λ > 0 has lower risk than ω0 but the same
level of return µb. Also, the amount of shortselling in ωλ is positive for all λ > 0 but goes
to zero as λ → 0. As a result, there is some λ∗ > 0 such that the amount of shortselling on
ωλ∗ is no more than b. The existence of this ωλ∗ implies that σb must be no greater than
ωλ∗ , and hence strictly less than the risk of ω0. Since the risk of ωb must be strictly less
than the risk of ω0, it follows that ωb must involve shortselling, as desired.

A.11 Proof of Theorem 6

From the condition for impossibility in Proposition 3 and from the expression for x in (39),
we see that the probability is bounded below by

p ≥
∫

Rn−1

F (x)ϕγ(γ) =

∫

Rn−1

F







Ω11/µ1

1 + Ω11

∥∥∥Ω̃
−1/2

z

∥∥∥
2


 Ω̃

−1
z


ϕγ(γ)

where z = γ − µ̃/µ1. Because F depends only on the signs of the elements of its argument,
we have

p ≥
∫

Rn−1

F
(
Ω̃

−1
z
)

ϕγ(γ)

and after a change of varialbes, we see that

p ≥ det
(
Ω̃
)∫

Rn−1

F (γ)ϕγ

(
Ω̃γ + µ̃/µ1

)

as desired.
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