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ABSTRACT

In this paper we study identification and estimation of the causal effect of a small change in an endogenous
regressor on a continuously-valued outcome of interest using panel data. We focus on the average
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conditions he imposes. Irregularity, while precluding estimation at parametric rates, does not result
in a loss of identification under mild smoothness conditions. We show how two measures of the outcome
and regressor for each unit are sufficient for identification of the APE as well as aggregate time trends.
We identify aggregate trends using units with a zero first difference in the regressor or, in the language
of Chamberlain (1980b, 1982), 'stayers' and the average partial effect using units with non-zero first
differences or 'movers'. We discuss extensions of our approach to models with multiple regressors
and more than two time periods. We use our methods to estimate the average elasticity of calorie consumption
with respect to total outlay for a sample of poor Nicaraguan households (cf., Strauss and Thomas,
1995; Subramanian and Deaton, 1996). Our CRC average elasticity estimate declines with total outlay
more sharply than its parametric counterpart.
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1 Introduction

That the availability of multiple observations of the same sampling unit (e.g., individual, firm,

etc.) over time can help to control for the presence of unobserved heterogeneity is both intuitive

and plausible. The inclusion of unit-specific intercepts in linear regression models is among the

most widespread methods of ‘controlling for’ omitted variables in empirical work (e.g., Griliches,

1979; Currie and Thomas, 1995; Card, 1996; Altonji and Dunn, 1996). The appropriateness of

this modelling strategy, however, hinges on any time-invariant correlated heterogeneity entering the

outcome equation additively. Unfortunately, additivity, while statistically convenient, is difficult

to motivate economically (cf., Imbens, 2007).2 Browning and Carro (2007) present a number of

empirical panel data examples where non-additive forms of unobserved heterogeneity appear to be

empirically relevant.

In this paper we study the use of panel data for identifying and estimating what is arguably the

simplest statistical model admitting nonseparable heterogeneity: the correlated random coefficients

(CRC) model. Let Zt = (Yt, X 0
t)
0 be a random variable measured in each of t = 1, . . . , T periods for

N randomly sampled units. In the most basic model we analyze the structural outcome equation

is given by

Yt = at (A,Ut) + bt (A,Ut)Xt (1)

where Yt is a scalar continuously-valued outcome of interest, Xt a scalar choice variable, A time-

invariant unobserved unit-level heterogeneity and Ut a time-varying disturbance. Both A and Ut

may be vector-valued. The functions at (A,Ut) and bt (A,Ut), which we allow to vary over time

(albeit in a restricted way), map the the time-invariant and time-varying heterogeneity into unit-

by-period-specific intercept and slope coefficients.

Equation (1) is structural in the sense that the unit-specific function

Yt (xt) = at (A, Ut) + bt (A,Ut) xt (2)

traces out a unit’s period t potential outcome under different hypothetical values of xt.3 Equation

(2) differs from the the textbook linear panel data model (with unit-specific intercepts, but otherwise

constant regressor coefficients) in that the effect of a small change in xt generally varies across units

and/or time.

Our goal is to characterize the effect on an exogenous change inXt on the probability distribution

of Yt. For concreteness we focus on identification and estimation of the average partial effect (APE)

(cf., Chamberlain, 1984; Blundell and Powell, 2003; Wooldridge, 2005a), although our methods

could be extended to other summary estimands.4

2Chamberlain (1984) presents several well-formulated economic models that do imply linear specifications with
unit-specific intercepts.

3Throughout we use capital letters to denote random variables and lower case letters specific realizations of them.
4For example, developing parallel results for the local average response (LAR), as in Altonji and Matzkin (2005)

and Bester and Hansen (2007) appears to be straightforward. In the binary regressor case these two objects correspond
to the average treatment effect (ATE) and the average treatment effect on the treated (ATT) (cf., Florens, Heckman,
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The average partial effect is given by

βt ≡ E
∙
∂Yt (xt)

∂xt

¸
= E [bt (A,Ut)] . (3)

Because of linearity of (2), βt does not depend on xt.5

Identification and estimation of (3) is nontrivial because Xt may vary systematically with A

and/or Ut. To see the consequences of such dependence observe that the derivative of the mean

regression function of Yt given X = (X1, . . . ,XT )
0 does not identify a structural parameter. Differ-

entiating through the integral we have

∂E [Yt|X = x]

∂xt
= βt (x) + E [Yt (Xt)SX (A,Ut|X)|X = x]

with βt (x) = E [bt (A,Ut)|X = x] and SX (A,Ut|X) = ∇X log f (A,Ut|X). The second term is

what Chamberlain (1982) calls heterogeneity bias. If the (log) density of the unobserved hetero-

geneity varies sharply with xt — corresponding to ‘selection bias’ or ‘endogeneity’ in a unit’s choice

of xt — then this type of bias can be quite large.

To contextualize our contributions within the wider panel data literature it is useful to consider

the more general outcome response function:

Yt (xt) = m (xt, A,Ut) .

Identification of the APE in the above model may be achieved by one of two main classes of restric-

tions. The correlated random effects approach invokes smoothness priors on the joint distribution

of (U,A)|X; with U = (U1, . . . , UT )0 and X = (X1, . . . , XT )0. Mundlak (1978a,b) and Chamberlain
(1980a, 1984) develop this approach for the case where m (Xt, A,Ut) and F (U,A|X) are para-
metrically specified. Newey (1994a) considers a semiparametric specification for F (U,A|X) (cf.,
Arellano and Carrasco 2003). Recently, Altonji and Matzkin (2005) have extended this idea to the

case where m (Xt, A, Ut) is either semi- or non-parametric along with F (U,A|X) (cf., Bester and
Hansen 2007).

The fixed effects approach imposes restrictions on m (Xt, A,Ut) and F (U |X,A), while leaving

F (A|X), the distribution of the time-invariant heterogeneity, the so-called ‘fixed effects’, unre-
stricted. Chamberlain (1980a, 1984, 1992), Manski (1987), Honoré (1992) and Abrevaya (2000) are

examples of this approach. Depending on the form of m (Xt, A,Ut), the fixed effect approach may

not allow for a complete characterization of the effect of exogenous changes in Xt on the probability

distribution of Yt. Instead only certain features of this relationship may be identified (e.g., ratios of

the average partial effect of two regressors) (cf., Chamberlain, 1984; 1992b; Arellano and Honoré,

2001; Arellano 2003).

Meghir and Vytlacil, 2008).
5 If Xt is itself a function of a lower-dimensional choice variable Rt, the APE, defined in terms of rt, may vary with

rt. Extending our results to this case is straightforward and we use such a formulation in the empirical application.
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Our methods are of the ‘fixed effect’ variety. In addition to assuming the CRC structure for

Yt (xt) we impose a marginal stationarity restriction on F (Ut|X,A) , a restriction also used by

Manski (1987), Honoré (1992) and Abrevaya (2000), however, other than some weak smoothness

conditions, we leave F (A|X) unrestricted.
Motivated by heterogeneity in the labor market returns to schooling, Card (1995, 2001) and

Heckman and Vytlacil (1998) have studied identification and estimation of the CRC model us-

ing cross section data and ‘instrumental variables’ (cf., Garen, 1984; Heckman and Robb, 1985;

Wooldridge, 1997, 2001, 2005a). This work belongs to larger body of research on nonparametric

triangular systems (e.g., Imbens and Angrist, 1994; Angrist, Imbens and Rubin, 1996; Heckman

and Vytlacil, 2001; Blundell and Powell, 2003; Imbens and Newey, 2007; Florens, Heckman, Meghir

and Vytlacil, 2008).6

The value of panel data for identification and estimation in the CRC model is comparatively less

well understood. Mundlak (1961), while primarily focusing on a constant coefficients linear panel

data model with unit-specific intercepts, briefly, and verbally, refers to the CRC model (p. 45).7 In

later work he studies estimators based on parametric specifications of the mean and variance of the

random coefficients given all leads and lags of the regressors (Mundlak, 1978b).

The first analysis of CRC model that rigorously addresses identification issues in the context of

panel data appears in Chamberlain (1980b, 1982). In later work Chamberlain (1992a, pp. 579 - 585)

proposed an efficient method-of-moments estimator for the APE (cf., Wooldridge, 1999). Despite

its innovative nature, and contemporary relevance given the resurgence of interest in models with

heterogenous marginal effects, Chamberlain’s work on the CRC model appears to have been largely

underappreciated. For example, the CRC specification is not discussed in Chamberlain’s own Hand-

book of Econometrics chapter (Chamberlain, 1984), while the panel data portion of Chamberlain

(1992a) is only briefly reviewed in the more recent survey by Arellano and Honoré (2001).

The estimator proposed by Chamberlain (1992a) requires strong regularity conditions which,

as we discuss further below, rule out substantively important economic models. Our contribu-

tion is to provide identification results, a consistent estimator and distribution theory for the case

where Chamberlain’s (1992a) information bound for the APE is zero. Singularity of the relevant

information bound rules out estimation at parametric rates, nevertheless we show that consistent

estimation at one-dimensional non-parametric rates is possible and, via empirical application, feasi-

ble. Interestingly irregularity also creates new identification opportunities, allowing us, for example,

to identify aggregate time effects.

Wooldridge (2005b) also analyzes a CRC panel data model. His focus is on providing condi-

tions under which the usual linear fixed effects (FE) estimator is consistent despite the presence

of correlated random coefficients (cf., Chamberlain, 1982, p. 11). Fernández-Val (2005) develops

bias correction methods for the CRC model in a large-N, large-T setting. Altonji and Matzkin

6Much of this research is surveyed by Imbens (2007).
7The exact reference is “The key to the estimation of the [average] slope of the infrafirm function is have at least

two points of data on each fi. In this case it is possible to get the slope of each of the lines fi, average them and get
the final estimate. That requires a combination of time series and cross section data.”
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(2005) and Bester and Hansen (2007) have developed new methods for using panel data to control

for nonseparable unobserved heterogeneity. As their approaches are of the random effects variety,

while our’s are of the fixed effect variety, we view our methods as complementary to theirs.

Chamberlain (1982) showed that when Xt is discretely valued the APE is generally not identified

(p. 13). However, Chernozhukov, Fernández-Val, Hahn and Newey (2008), working with more

general forms for E [Yt|X,A] , show that when Yt has bounded support the APE is partially identified

and propose a method of estimating the identified set.8 In contrast, in our setup the APE is point

identified when Xt is continuously-valued. In fact, we are able to provide a characterization of when

this estimand is semiparametrically just-identified. In that sense, our maintained assumptions are

minimally sufficient (although not necessary).9

Porter (1996) and Das (2003) study nonparametric estimation of panel data model with additive

unobserved heterogeneity. Honoré (1992) and Abrevaya (2000) consider models with nonseparable

heterogeneity but, like Manski (1987), only identify index coefficients, not the APE. Arellano and

Bonhomme (2008) also study identification in Chamberlain’s (1992a) CRC model. Their focus is on

identification and estimation of higher-order moments of the distribution of the random coefficients.

Unlike us, they maintain Chamberlain’s (1992a) regularity conditions as well as impose additional

assumptions.

The next section reports identification results for the APE in a two period version of our core

model. When Xt is discretely-valued our assumptions generally only bound the APE (appropriately

defined to account for the discreteness of Xt). Our analysis of the discrete regressor case suggests

useful interpretations of the probability limits of the linear fixed effects (FE) estimator and the

‘difference-in-differences’ (DID) estimator of the program evaluation literature (Card, 1990; Meyer,

1995; Angrist and Krueger, 1999; Athey and Imbens, 2006).10 When Xt is continuously valued, the

case we focus upon, the APE is point identified. We also contrast our ‘fixed effects’ approach to

identification with the semiparametric random effects methods developed by Altonji and Matzkin

(2005).

Section 3 details our estimation approach. We begin with a discussion of the two period case.

Under Chamberlain’s (1992a) conditions, which are not satisfied in our leading example, the APE

is estimable at parametric rates. In contrast, our estimator has asymptotic properties similar to a

standard one-dimensional kernel regression problem. This is a manifestation of the ‘irregularity’ of

our model. In Section 4 we discuss extensions of our approach to models with multiple regressors

and more than two time periods. In that section we also compare our estimator with Chamberlain’s

(1992a).

In Section 5, we use our methods to estimate the average elasticity of calorie demand with

8They consider the probit and logit models with unit-specific intercepts (in the index) in detail. They show how
to construct bounds on the APE despite the incidental parameters problem (cf., Hahn, 2001) and provide conditions
on the distribution of Xt such that these bounds shrink as T grows.

9Chesher (2007) provides an extended discussion of the value of ‘just identifying’ semiparametric restrictions.
10Our discrete regressor results partially overlap with independent work by Chernozhukov, Fernández-Val, Hahn

and Newey (2008) and earlier work by Chamberlain (1980b, 1982). While our primary focus is on the continuous
regressor case, we present selected discrete case results both for completeness, and to foreshadow some features of the
continuous case.
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respect to total household resources in a sample of poor rural communities in Nicaragua. Our

sample is drawn from a population that participated in a pilot of the conditional cash transfer

program Red de Protección Social (RPS). Hunger, conventionally measured, is widespread in the

communities from which our sample is drawn; we estimate that immediately prior to the start of

the RPS program over half of households had less then the required number of calories needed for

all their members to engage in ‘light activity’ on a daily basis.11

Worldwide, the Food and Agricultural Organization (FAO) estimates that 854 million people

suffered from protein-energy malnutrition in 2001-03 (FAO, 2006). Halving this number by 2015,

in proportion to the world’s total population, is the first United Nations Millennium Development

Goal. Chronic malnutrition, particularly in early childhood, may adversely affect cognitive abil-

ity and economic productivity in the long-run (e.g., Dasgupta, 1993; Grantham-McGregor and

Baker-Henningham, 2005; Case and Paxson, 2006; Hoddinott et al., 2008). A stated goal of the

RPS program is to reduce childhood malnutrition, and consequently increase human capital, by

directly augmenting household income in exchange for regular school attendance and participation

in preventive health care check-ups.

The efficacy of this approach to reducing childhood malnutrition largely depends on the size of

the average elasticity of calories demanded with respect to income across poor households.12 While

most estimates of the elasticity of calorie demand are significantly positive, several recent estimates

are small in value and/or imprecisely estimated, casting doubt on the value of income-oriented anti-

hunger programs (Behrman and Deolalikar, 1987; Strauss and Thomas, 1995; Subramanian and

Deaton, 1996; Hoddinott, Skoufias and Washburn, 2000). Wolfe and Behrman (1983), using data

from Somoza-era Nicaragua, estimate a calorie elasticity of just 0.01. Their estimate, if accurate,

suggests that the income supplements provided by the RPS program should have little effect on

caloric intake.

Disagreement about the size of the elasticity of calorie demand has prompted a vigorous method-

ological debate in development economics. Much of this debate has centered, appropriately so, on

issues of measurement and measurement error (e.g., Behrman and Deolalikar, 1987; Bouis and

Haddad, 1992; Bouis, 1994; Subramanian and Deaton 1996). The implications of household-level

correlated heterogeneity in the underlying elasticity for estimating its average, in contrast, have

not been examined. If, for example, a households’ food preferences, or preferences towards child

welfare, co-vary with those governing labor supply, then its elasticity will be correlated with total

household resources. An estimation approach which presumes the absence of such heterogeneity

will generally be inconsistent for the parameter of interest. Our statistical model and corresponding

estimator provides an opportunity, albeit in a specific setting, for assessing the relevance these types

11We use Food and Agricultural Organization (FAO, 2001) gender- and age-specific energy requirements for ‘light
activity’, as reported in Appendix 8 of Smith and Subandoro (2007), and our estimates of total calories available at the
household-level to calculate the fraction of households suffering from ‘food insecurity’. This approach to measuring
food insecurity is not without its critics (e.g., Edmundson and Sukhatme 1990). Ferro-Luzzi (2005) provides a historical
and conceptual overview of FAO/WHO food energy recommendations.
12Another motivation for studying this elasticity has to do with its role in theoretical models of nutrition-based

poverty traps (e.g., Mirlees, 1975; Stiglitz, 1976; Bliss and Stern, 1978; Dasgupta and Ray, 1986, 1987).
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of heterogeneities.

We compare our CRC estimates of the elasticity of calorie demand with those estimated using

standard panel data estimators (e.g., Behrman and Deolalikar, 1987; Bouis and Haddad, 1992),

as well as those derived from the cross-sectional nonparametric regression techniques as in Subra-

manian and Deaton (1996), Strauss and Thomas (1995) and others. While the evidence is far from

conclusive, we find that our CRC estimates of the average elasticity are higher at low-incomes, and

lower at high-incomes, than those estimated by both of these alternative methods.

Section 5.5 summarizes and suggests areas for further research.

2 Identification: the two period case with a scalar regressor

We illustrate each of our main identification results for the case where Xt is scalar and T = 2.

We generalize to panels are arbitrary length and multiple regressors in Section 4 below. Our first

assumption is that the data generating process takes a correlated random coefficients form.

Assumption 2.1 (Correlated Random Coefficients)

Yt = at (A,Ut) + bt (A,Ut)Xt.

Our second key identifying assumption is marginal stationarity of the time-varying unobserved

heterogeneity, Ut.

Assumption 2.2 (Marginal Stationarity) (i)

Ut|X,A
D
= Us|X,A, t 6= s,

(ii) the distribution of Ut given X and A is non-degenerate for all (X,A) ∈ X ×A.

Assumption 2.2 does not restrict the conditional distribution of A given X . In this sense A is a

‘fixed effect’. Nevertheless Assumption 2.2, while allowing for serial dependence in Ut and certain

forms of heteroscedasticity, is restrictive. For example it rules out heteroscedasticity over time (cf.,

Arellano, 2003).

To formally close the model we make the following sampling assumption:

Assumption 2.3 (Random Sampling) {(X1i,X2i, Y1i, Y2i, Ai)}∞i=1 is an independently and iden-
tically distributed random sequence drawn from the distribution F0.

Let X = (X1,X2)
0 and

βt (x) ≡ E [bt (A,Ut)|X = x]

denote the average period tmarginal effect of a change in xt within the subpopulation of units where

X = x = (x1, x2)0. Observe that βt (x) gives the average effect within a subpopulation defined by
a common complete history of choices for Xt.
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Below we discuss how to incorporate aggregate time effects into our analysis. However, for

clarity of exposition, we begin by also invoking the additional restriction (which we relax below).

Assumption 2.4 (No Time Effects) a1 (a, u1) = a2 (a, u1) and b1 (a, u1) = b2 (a, u1) for all

a× u1 ∈ A×U .

Our first result shows that βt (x) is just-identified when x1 6= x2.

Proposition 2.1 Under Assumptions 2.1 to 2.4 β1 (x) = β2 (x) = β (x) is just-identified by the

ratio

β (x) =
E [Y2|X = x]− E [Y1|X = x]

x2 − x1
(4)

for all x ∈ {x : x ∈ X , x1 6= x2}.

Proof. Under Assumptions 2.1 and 2.3 we have

E [Y1|X] = α1 (X) + β1 (X)X1

E [Y2|X] = α2 (X) + β2 (X)X2,

for αt (X) = E [at (A,Ut)|X] and βt (X) = E [bt (A,Ut)|X] . Iterated expectations (which is al-
lowable by part (ii) of Assumption 2.2), marginal stationarity (part (i) of Assumption 2.2), time-

invariance of A and Assumption 2.4 give

βt (X) = E [bt (A,Ut)|X] = E [E [bt (A,Ut)|X,A]|X ] = E[ebt (X,A) |X] = β (X) ,

for ebt (X,A) = E [bt (A,Ut)|X,A] . This gives β1 (X) = β2 (X) = β (X); a similar calculation gives

αt (X) = E [at (A,Ut)|X] = α (X). Taking differences across time periods and solving for β (X)

then gives (4). That β (x) is just-identified follows directly from its definition as a conditional

expectation function, linearity of Yt in at (A,Ut) and bt (A,Ut) , and just-identification of E [Y1|X]
and E [Y2|X ] .

To recover the APE, which under Assumption 2.4 is constant over time, we average β (X) over

the marginal distribution of X:

β = E [β (X)] .

Since β (x) is only identified on those points of the support of X for which X1 6= X2 (i.e., for

‘movers’ or units which alter their choice of Xt across periods) we cannot, in general, calculate

E [β (X)] without further assumptions (Chamberlain 1982, p. 13). Consequently, unless all units
change their value of Xt across periods, the APE is not identified. When Xt is discrete it is natural

to construct bounds for β or to compute the average of β (X) among ‘movers’. The former idea is

developed by Chernozhukov, Fernández-Val, Hahn and Newey (2008) is some generality. The latter

approach, originally suggested by Chamberlain (1980b, 1982), is particularly simple and we review

it since it foreshadows our approach to estimation in the continuous case. When Xt is continuous
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we impose smoothness restrictions on β (x) which are sufficient to point identify β. We consider

each case in turn.

Discrete regressor If Xt ∈ {0, . . . ,M}, then β (x) is only identified for the M (M + 1) possible

sequences of x = (x1, x2) where x1 6= x2. Although the APE is not identified, we can compute the

average partial effect in the subpopulation of units who change their values of Xt across the two

periods (Chamberlain 1980b, 1982). Define, invoking marginal stationarity and the absence of time

effects, the ‘movers’ average partial effect (MAPE) is

βM ≡ E [bt (A,Ut)|∆X 6= 0] = E [1 (∆X 6= 0) β (X)]
E [1 (∆X 6= 0)] . (5)

Expression (5) is implicit in Chamberlain (1982, p. 13) who also noted that we have no information

on βS = E [bt (A,Ut)|∆X = 0], or the ‘stayers’ average partial effect (SAPE). The data are consis-

tent with βS taking on any feasible value. When Y is continuously-valued along the real line, then

any value for β = E [β (X)] is consistent with any given value for βM . However, if Y has bounded

support then βM can be used to construct sharp bounds on β using the general approach of Manski

(2003) as shown by Chernozhukov, Fernández-Val, Hahn and Newey (2008).

Many microeconometric applications are characterized by a preponderance of stayers. In Card’s

(1996) analysis of the union wage premium, for example, less than 10 percent of workers switch

between collective bargaining coverage and non-coverage across periods (Table V, p. 971). In

such cases βM is an average over a very particular population, while bounds on β will be quite

wide. When Xt is discrete, however, this is the very best we can do without invoking additional

assumptions.

Continuous regressor When X is continuous the set {x : x ∈ X , x1 = x2} will generally be of
measure zero. This suggests that, under mild smoothness conditions, β (x) should be identifiable

for all x ∈ X . In particular, at those points where x1 = x2, we can then identify β (x) by the limit

β (x1, x1) = lim
h↓0
E [Y2|X = (x1, x1 + h)]− E [Y1|X = (x1, x1)]

h
. (6)

A sufficient condition for the above limit to exist is:

Assumption 2.5 (Smoothness) β (x) is continuous and differentiable in X .

Under this smoothness restriction we have the following Theorem.

Theorem 2.1 (Identification) If Xt is continuously-valued and Assumptions 2.1 to 2.5 hold,

then β is identified by

β = E [β (X)]

with β (x) given by (4) or (6) as appropriate.
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Proof. Straightforward and therefore omitted.
Observe that β (x) is an average over the conditional distribution of (A,Ut) given X. Thus

smoothness of β (x) suggests that the distribution function of A given X = x is smooth in x. Such

smoothness conditions are often implied by correlated random effect specifications for A. A fixed

effects purist could thus call our model (when Xt is continuous) a correlated random effects one.

We maintain the fixed effects characterization because we view Assumption 2.5 as rather weak. In

any case estimation would be impossible without it.

2.1 Aggregate time effects

Although the APE is only partially identified when Xt is discrete and ‘just-identified’ when Xt is

continuous, our CRC model nevertheless has testable implications. In particular the CRC outcome

response, marginal stationarity and the absence of time effects imply that:

E [∆Y |X = x] = E
£
∆Y |X = x0

¤
= 0,

where x and x0 denote two different types of ‘stayers’:

©
x, x0 : x, x0 ∈ X , x1 = x2, x01 = x02, x1 6= x01

ª
.

Outcome changes for stayers are driven solely by changes in at (A,Ut) and bt (A,Ut) over time.

However, since marginal stationarity and the absence of time effects implies constancy of the con-

ditional means of at (A,Ut) and bt (A,Ut), our model implies that, on average, outcomes do not

change across periods for stayers. Since, when Xt is continuous, there may be many types of stay-

ers, corresponding to different values of x2 (with x1 = x2), our set-up therefore generates many

testable restrictions.

We can use these extra model restrictions to relax Assumption 2.4 and hence incorporate ag-

gregate time effects into our model in a fairly flexible way.

Assumption 2.6 (Conditional Common Average Trends)

E [a2 (A,Ut)− a1 (A,Ut)|X] = δa (X2)

E [b2 (A,Ut)− b1 (A,Ut)|X] = δb (X2) .

Assumption 2.6 allows for heterogeneity in the period two aggregate time shock across units. In

particular, the average shock may differ across subpopulations defined in terms of their period two

choice. For example, if Xt denotes union membership, then Assumption 2.6 allows for the period

two shock to affect mean earnings in the union and non-union sectors differently.

Let x and x0 respectively denote a mover and stayer such that x02 = x2 (i.e., the mover and

stayer have the same period 2 regressor values). Under Assumption 2.6 we have

E
£
Y2|X = x0

¤− E £Y1|X = x0
¤
= δa (x2) + δa (x2)x2,
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and also

E [Y2|X = x]− E [Y1|X = x] = δa (x2) + δb (x2)x2 + β (x) (x2 − x1) .

We therefore have

β (x) =
E [Y2|X = x]− E [Y1|X = x]− {E [Y2|X = x0]− E [Y1|X = x0]}

x2 − x1
. (7)

We may adapt expression (6) to get β (x) for stayers. With β (x) identified, identification of the

APE follows directly. Note that δa (x2) and δb (x2) are not separately identified without further

restrictions. In the absence of such restrictions a convenient, and interpretable, normalization is to

assume that δb (x2) = 0 for all x2 ∈ X2.
Assumption 2.6 is a generalization of the deterministic ‘common trends’ assumption routinely

made in program evaluation studies (Heckman and Robb, 1985; Meyer, 1995; Angrist and Krueger,

1999). In that literature Assumption 2.6 is invoked with the additional requirements that δa (X2) ≡
δa is constant in X2 and δb (X2) = 0. This corresponds to an ‘unconditional’ common average trends

assumption (cf., Heckman, Ichimura, Smith and Todd (1998) for an extensive discussion of a related

point).

For estimation purposes it is convenient to assume a parametric forms for δa (X2) and δb (X2) .

A simple specification assumes that both δa (X2) and δb (X2) are constant in X2. Such a model

allows for a fairly flexible pattern of heterogeneous macroeconomic shocks over time, while at the

same time remaining easy to interpret and, importantly, easy to estimate. At the same time it

provides a set of testable restrictions which may be used to judge model adequacy. Namely that for

any two stayers with X = x0 and X = x00 we have

E [∆Y |X = x00]− E [∆Y |X = x0]
x002 − x02

= δb.

We work with this specification in next subsection and with the even simpler case where δa (X2) = δa

and δb (X2) = 0 in our initial discussion of estimation. We then return to more general models for

aggregate time effects in Section 4 below.

2.2 Relationship to linear ‘fixed effects’ (FE) and semiparametric ‘random effects’
analysis

Before discussing estimation we connect the identification results presented above to the textbook

within-group regression estimator and the recently proposed semiparametric correlated random

effects methodology of Altonji and Matzkin (2005).
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2.2.1 Relationship to first differences estimator

Our model can be used to provide a representation of the probability limit of the textbook FE-OLS

estimator under CRC misspecification.13 Assume that the researcher posits a model of

Yt = δt + βXt +A+ Ut, E [Ut|A,X] = 0, t = 1, 2 (8)

when in fact the true model is as described by Assumptions 2.1, 2.2, 2.3, 2.5 and 2.6 with δa (X2) =

δa and δb (X2) = δb.

In the T = 2 case the linear FE estimator has a probability limit equal to the coefficient, bFE , on

∆X in the (mean squared error minimizing) linear predictor of ∆Y given ∆X. It is straightforward

to show that

bFE = β+δb

½
1− C(X1,X2)

V(∆X)

¾
+E [ω (∆X) (β (X)− β)] , ω (∆X) =

∆X (∆X − E [∆X])
V(∆X)

. (9)

The first term in (9) reflects the failure of the textbook model to account for aggregate slope drift,

while the second is due to its failure to account for slope heterogeneity. This second term is similar

to the local average treatment effect (LATE) representation of the Wald-IV estimator’s probability

limit (Imbens and Angrist, 1994; Angrist, Imbens and Rubin, 1996; Imbens, 2007). If slope drift

is not a concern (i.e., δb = 0), we can view bFE as a movers weighted average partial effect since

E [ω (∆X)] = 1 and ω (0) = 0. An important difference between (9) and the LATE is that ‘movers’,
unlike ‘compliers’, can be directly identified from the data. Consequently the weights in (9) are

estimable.

To get a sense of whether bFE is likely to be interpretable it is helpful to consider some stylized

examples. For simplicity we assume, for the remainder of this subsection, the absence of slope

drift (i.e., that δb = 0). If X1 and X2 are independent and identically distributed normal random

variables, then ω (∆X) will be a χ21 random variable and b
FE will be ‘dominated’ by those few units

with very large values of ∆X. This suggests that bFE will be more representative of the partial

effect of those units who change their choice of Xt dramatically across periods.

The binary Xt case is also informative. Let πij denote the probability that X1 = i and X2 = j

(with i, j ∈ {0, 1}), we can show that

bFE = ω (−1)β (0, 1) + (1− ω (−1))β (1, 0) , ω (−1) = π01 (1− π01 + π10)

π01 (1− π01) + π10 (1− π10) + 2π01π10

which is a weighted average of the average partial effect of those units who ‘move’ from X1 = 0 to

X2 = 1 (‘joiners’) and those who move from X1 = 1 to X2 = 0 (‘leavers’). If π10 = π01 such that

E [∆X] = 0, then bFE = βM , however, in general the two estimands will differ (this equality also

holds when (8) does not include time-specific intercepts).

13Chernozhukov, Fernández-Val, Hahn and Newey (2008, Theorem 1) provide a representation result for the fixed
effects estimator when the true model is nonlinear and T > 2. Their result assumes the absence of any aggregate time
effects, but is otherwise similar.
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The linear FE estimator is especially interpretable in the ‘classical’ difference-in-differences

(DID) set-up. In that setting there are two sets of regions. In both sets of regions the program is

unavailable in period one. In treatment regions it becomes available in period two, while in control

regions it remains unavailable. In that case π10 = 0 and it is easy to see that

bFE = β (0, 1) ,

which also equals the average treatment effect on the treated (ATT). This result shows that, under

CRC misspecification, the standard difference-in-differences estimator, while inconsistent for the

average partial effect (APE) — the average treatment effect (ATE) is this context — nevertheless has

an interpretable probability limit.

Wooldridge (2005b), who maintains the CRC structure as we do, imposes the additional re-

striction (in our notation) that β (x) = E [b (A,Ut)] for x1 6= x2 (cf., Equation (14) on p. 387).14

In that case equivalency of the FE probability limit and the APE follows directly by the prop-

erty that E [ω (∆X)] = 1. Chamberlain (1982, p. 11) makes a similar point. He notes, again

in our notation, that if C(b (A,U1) ,X1) = C(b (A,U2) ,X2), then E∗ [β (X)|∆X] = E [β (X)]
so that E [β (X)|∆X ] = E [β (X)]. Iterated expectations applied to (9) then gives the equality
bFE = E [β (X)].

While, covariance stationarity of the random slopes may be plausible in some settings, it will

strain credibility in others. Consider a government which allocates a certain program across regions.

Assume that initially, in period 1, the program is regressively targeted in the sense that it is placed

in those regions where returns, b (A,U1) , are low, while in period 2 targeting takes an opposite,

progressive form. In that case C(b (A,U1) ,X1) < 0 < C(b (A,U2) ,X2) and bFE 6= E [β (X)]. This
example may be of more than intellectual interest: policy ‘experiments’ are often associated with

changes of government or legislation that involves alterations of the implicit targeting rule (e.g.,

Duflo, 2001). However, in other cases, covariance stationarity may be reasonable. For example, the

pattern of selection into unions is plausibly stable across two adjacent years with similar macro-

economic conditions (as in Card, 1996). In any case, our approach does not require these types of

restrictions.

2.2.2 Relationship to semiparametric correlated random effects methods

Altonji and Matzkin (2005) also study semiparametric panel data models. They work with the

general model given by

Yt = mt (Xt, A, Ut) (10)

and the following exchangeability assumption:

Assumption 2.7 (Exchangeability) (i)

A,Ut|X1, . . .XT
D
= A,Ut|Xp(1), . . . Xp(T ),

14Wooldridge (2005a) also assumes that the correlated random coefficients are time invariant.
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for p (t) ∈ {1, . . . , T} , p (t) 6= p (t0) , (ii) the distribution of (A,Ut) given X is non-degenerate for

all X ∈ X .

Observe that Assumption 2.7, unlike Assumption 2.2 above, does restrict the conditional distri-

bution of A given X. Under Assumption 2.7 Altonji and Matzkin (2005, pp. 1062 - 3) show that

the Fundamental Theorem of Symmetric Functions and the Weierstrass Approximation Theorem

imply the distributional equality

A|X1, . . .XT
D
= A|ζ1 (X) , . . . , ζT (X) ,

where ζ t (X) is the t
th elementary symmetric polynomial on X .15 Because Assumption 2.7 is not

sufficient to identify βt (x) Altonji and Matzkin (2005, pp. 1063 - 4) suggest either further restricting

the conditional distribution of (A,Ut) given X or the form of the structural outcome equation.16

Following their second suggestion, the imposition of our CRC structure on (10) and Assumption

2.7 implies that

E [Yt|X] = αt (X) + βt (X)Xt

= αt (ζ1 (X) , ζ2 (X)) + βt (ζ1 (X) , ζ2 (X))Xt,

for t = 1, 2.

Now consider x and x0 such that x1 = x02 and x2 = x01 with x1 6= x2 (i.e., x0 is a permutation of
x). It is easy to show that βt (x) is identified by

βt (x) =
E [Yt|X = x]− E [Yt|X 0 = x0]

xt − x0t
.

Exchangeability and the CRC structure are sufficient to identify βt (x) even if the outcome variable

is only observed for a single period as long as Xt is observed in each period. Altonji and Matzkin

(2005, p. 1065 - 66) argue that this feature of their approach is particularly attractive in the context

of sibling studies where the outcome (e.g., wages) may only be observed for a single older sibling,

while the endogenous regressor (e.g., school quality) might be measured for younger as well as older

siblings. In contrast, our approach requires that we observe Yt in both periods.

Neither Assumption 2.2 or 2.7 nest the other. For example, while Assumption 2.2 does not

restrict the conditional distribution of A given X it does exclude time-varying heteroscedasticty

allowed by Assumption 2.7.

A natural combination of the two assumptions is:

15These polynomials take the form ζ1 (X) = 1≤i≤T Xi, ζ2 (X) = 1≤i<j≤T XiXj, ζ3 (X) =

1≤i<j<k≤T XiXjXk, ζ4 (X) = 1≤i<j<k<l≤T XiXjXkXl and so on up to ζT (X) =
T
i=1Xi.

16One suggestion made by Altonji and Matzkin (2005) is to impose a correlated random coefficients structure on
mt (Xt, A,Ut) , as we do here (Equation immediately prior to Equation (2.6) on p. 1064).
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Assumption 2.8 (Stationarity and Exchangeability) (i)

Ut|X,A
D
= Us|X,A, t 6= s,

(ii) the distribution of Ut given X and A is non-degenerate for all (X,A) ∈ X ×A, (iii)

A|X1, . . .XT
D
= A|Xp(1), . . .Xp(T ),

for p (t) ∈ {1, . . . , T} , p (t) 6= p (t0) .

Under Assumption 2.8 β (x) is overidentified since, where for simplicity we also maintain As-

sumption 2.4 (but this is not essential),

β (x) =
E [Y2|X = x]− E [Y1|X = x]

x2 − x1
=
E [Y2|X 0 = x0]− E [Y1|X 0 = x0]

x02 − x01
,

when x0 is a permutation of x.

3 Estimation

In this section we discuss estimation of the movers average partial effect, βM , when the regressors

are discretely-valued, and the average partial effect, β, with continuously-valued regressors. To keep

the exposition simple we work with the aggregate time effects specification where δa (X2) = δa and

δb (X2) = 0

3.1 Discrete regressor case

We begin with the discrete regressor case, as it straightforward, and foreshadows our estimation

approach for continuous regressors. Under our assumptions we can identify the common trend by

the average change in Yt across the two periods among the subpopulation of ‘stayers’. That is

δa ≡ E [∆Y |∆X = 0] =
E [1 (∆X = 0)∆Y ]

E [1 (∆X = 0)]
.

We, of course, require that E [1 (∆X = 0)] = Pr (∆X = 0) is greater than zero: it is the presence

of stayers which identifies δa. Now consider the subpopulation of movers, we have

E [∆Y |X = x] = δa + β (x)∆x,

and hence, with δa identified, we may write

βM ≡
E
h
1 (∆X 6= 0) E[∆Y |X ]−δa

∆X

i
E [1 (∆X 6= 0)] =

E
£
1 (∆X 6= 0) ∆Y−δa

∆X

¤
E [1 (∆X 6= 0)] .
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Let θ =
¡
δa, β

M
¢0
, the above expressions generate the following 2× 1 vector of moment restric-

tions E [ψ (Z, θ0)] = 0, with

ψ (Z, θ) =

Ã
1 (∆X = 0) (∆Y − δa)

1(∆X 6=0)
∆X

¡
∆Y − δa − βM∆X

¢ ! .

The GMM estimate bβM is very easy to compute, being the coefficient on ∆X in the linear instru-

mental variables fit of ∆Y on a constant and ∆X with 1 (∆X = 0) and 1(∆X 6=0)
∆X serving as excluded

instruments (this follows since 1 (∆X = 0)
¡
∆Y − δa − βM∆X

¢
= 1 (∆X = 0) (∆Y − δa)). Con-

ventional ‘robust’ standard errors reported by most software packages will be asymptotically valid.

Since it foreshadows portions of our results for the continuous Xt case we present a closed-

form expression for the asymptotic sampling variance of bβM . Let Γ0 = E
£
∂ψ (Z, θ0) /∂θ

0¤ and
Ω0 = E

£
ψ (Z, θ0)ψ (Z, θ0)

0¤ and further define
π0 = Pr (∆X = 0) , σ20 = V (Y |∆X = 0)

ξ = E
∙
1

∆X

¯̄̄̄
∆X 6= 0

¸
, κ = E

∙
V
∙
∆Y

∆X

¯̄̄̄
X

¸¯̄̄̄
∆X 6= 0

¸
+ V (β (X)|∆X 6= 0) .

We have

Γ0 = −
Ã

π0 0

(1− π0) ξ (1− φ0)

!
, Ω0 =

Ã
π0σ20 0

0 (1− π0)κ

!
,

and hence, by standard results for GMM (e.g., Newey and McFadden, 1994), an asymptotic sampling

distribution for bθ of
√
N

Ã bδa − δabβM − βM

!
d→ N

Ã
0,

Ã
σ20
π0

−σ20
π0
ξ

−σ20
π0
ξ κ+

σ20
π0
ξ2

!!
. (11)

Two features of (11) reappear in the continuous case. First, the precision of the estimated common

trend depends on the variance of the ∆Y amongst stayers, σ20, as well as their population frequency,

π0. As the frequency of stayers increases, so does our ability to precisely estimate aggregate time

effects. Second, the asymptotic sampling variance of bβM depends on the distribution of the regres-

sors through the term ξ2. If ξ 6= 0, as would be the case if there is positive drift in Xt over time,

then the variance of bβM will have a component which depends on the precision with which we can

estimate δa. If instead ξ = 0, the asymptotic properties of bβM do not depend on those of bδa. In
that case we can estimate bβM as precisely as we could if we somehow knew δa a priori.

3.2 Continuous regressor case

When Xt is continuously valued then, under smoothness conditions, the APE is identified. However

continuity of Xt raises technical issues, the resolution of which require the use of nonparametric

methods. As a result our estimates of β generally converge at the one-dimensional nonparametric

rate. To highlight the issues involved we first discuss estimation of β in the absence of time effects,
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followed by a discussion of time effects and finally how local-linear methods can be used when the

distribution Xt has mass points at a finite number of values.

3.2.1 No time effect

When Xt is continuously distributed — or, more precisely, when ∆X is continuously distributed in

a neighborhood of zero — and no aggregate time effects are present (δa (X2) = δb (X2) = 0), then

Theorem 2.1 implies that the average partial effect, β, is identified by

β = E
∙
E [∆Y |X ]
∆X

¸
= E

∙
E [∆Y |X]
∆X

|∆X 6= 0
¸
.

Given the second equality a natural estimator of the APE, β, would be that proposed for the discrete

case above, that is,

eβ = PN
i=1 1(∆Xi 6= 0)

³
∆Yi
∆Xi

´
PN

i=1 1(∆Xi 6= 0)
=
1

N

NX
i=1

∆Yi
∆Xi

.

This estimator was informally suggested by Mundlak (1961, p.45); as Chamberlain (1980b, 1982)

notes, it will be strongly consistent if E[|∆Y/∆X |] < ∞ by the strong law of large numbers.

However, if∆X has a positive, continuous density at zero — and if E[|∆Y | | ∆X = d] does not vanish

at d = 0 — then eβ will be inconsistent in general, since ∆Y/∆X will not have finite expectation

(unlike β(X) =E [∆Y |X] /∆X whose expectation exists by assumption). For example, if (Yt, Xt)

is independently and identically distributed according to the bivariate normal distribution then

∆Y/∆X will be distributed according to the Cauchy distribution.

To ensure quadratic-mean convergence, we consider instead a ‘trimmed’ estimator of the form

bβ(hN ) ≡
PN

i=1 1(|∆Xi| > hN )
³

∆Yi
∆Xi

´
PN

i=1 1(|∆Xi| > hN )
, (12)

where hN is a deterministic bandwidth sequence tending to zero as N tends to infinity.17

The estimator bβ(hN ) — which is consistent for βM when X has discrete support — has asymptotic

properties similar to a standard (uniform) kernel regression estimator for a one-dimensional problem.

In particular, it is straightforward to verify that

V(bβ) = O

µ
1

NhN

¶
À O

µ
1

N

¶
,

so the rate of convergence is necessarily slower than 1/N when hN → 0. Assuming in addition that

the bias of bβ(hN ) is geometric in the bandwidth parameter hN — that is

E
∙
1(|∆X| > hN)

µ
∆Y

∆X

¶
− β(X)

¸
= E [1(|∆X| ≤ hN)β(X)] = O(hpN)

17An alternative consistent estimator would replace the denominator by the sample size N.
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for some p > 0 (typically p = 2) — the fastest rate of convergence of bβ to β in quadratic mean will
be achieved when the bandwidth sequence takes the form

h∗N = h0 N
−1/(2p+1),

which yields

bβ(h∗N )− β = Op(N
−p/(2p+1))

À Op(N
−1/2).

While the bandwidth sequence h∗N achieves the fastest rate of convergence for this estimator, the
corresponding asymptotic normal distribution for bβ(h∗N ) will be centered at a bias term involving

the derivative of E[β(X)|∆X = d] at d = 0. The estimator bβ will have an asymptotic (normal)
distribution centered at zero if the bandwidth hN converges to zero faster than h∗N ; assuming

hN = o(N−1/(2p+1)),

routine application of Liapunov’s CLT for triangular arrays yields the asymptotic distribution forbβ, p
NhN(bβ − β)

d→ N (0, 2φ0σ20),

where

φ0 ≡ lim
h↓0

Pr{|∆X | ≤ h}
2h

is the density of ∆X at zero and

σ20 ≡ V (∆Y |∆X = 0) = lim
h↓0
V (∆Y |− h < ∆X < h) .

Assuming p = 2, the asymptotic distribution of bβ is similar to the asymptotic distribution of
a (uniform) kernel regression estimator of E[∆Y |∆X = 0], except that the variance of the latter

varies inversely, not directly, with the density φ0.

3.2.2 Aggregate time effect

When aggregate time effects are present, and the ‘common trends’ condition (Assumption 2.6) holds

with δa (X2) = δa and δb (X2) = 0, then (7) implies that the average partial effect β is identified by

β = E
∙
E [∆Y |X]− δa

∆X

¸
= E

∙
E [∆Y |X ]− δa

∆X

¯̄̄̄
∆X 6= 0

¸
,
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recalling that δa ≡ E[∆Y |∆X = 0]. If δa were known, a straightforward modification of the estimator

proposed in the preceding section would be

bβI(hN ) =
PN

i=1 1(|∆Xi| > hN )
³
∆Yi−δa
∆Xi

´
PN

i=1 1(|∆Xi| > hN )
,

which would inherit the large sample properties of bβ(hN ) above.
When δa is unknown, a natural counterpart to the infeasible estimator bβI(hN ) replaces δa with

the uniform kernel estimator,

bδa(hN ) ≡ PN
i=1 1(|∆Xi| ≤ hN )∆YiPN

i=1 1(|∆Xi| ≤ hN )
, (13)

whose asymptotic properties are well-known when ∆X is continuously distributed. Under standard

regularity conditions a normalized version of bδa has the asymptotic distribution,p
NhN(bδa − δa)

d→ N (0, σ20/2φ0),

where φ0 and σ
2
0 are defined above. Furthermore, bβI and bδa are asymptotically independent, as the

product of their influence functions is zero by construction.

Given this estimator of the common trend δa, a feasible estimator of the APE β is

bβF (hN ) =
PN

i=1 1(|∆Xi| > hN )
³
∆Yi−δa(hN )

∆Xi

´
PN

i=1 1(|∆Xi| > hN)
. (14)

Though simple in appearance, derivation of the large-sample properties of bβF is difficult, as its

rate of convergence depends in a delicate way on the distribution of the regressors X . Some of

these issues were foreshadowed by our discussion of the discrete case above. Writing the normalized

version of bβF in terms of its infeasible counterpart bβI yields
p
NhN (bβF − β) =

p
NhN (bβI − β)−

p
NhN(bδa − δa)×

⎡⎣PN
i=1 1(|∆Xi| > hN)

³
1

∆Xi

´
PN

i=1 1(|∆Xi| > hN )

⎤⎦ .
While the asymptotic behavior of the first two terms in this decomposition are straightforward, the

rate of convergence of the third term,

bξ ≡ PN
i=1 1(|∆Xi| > hN)

³
1

∆Xi

´
PN

i=1 1(|∆Xi| > hN )
,

will crucially depend upon the behavior of

τ(d) ≡ E [sgn{∆X}| |∆X| = d]
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for d in a neighborhood of zero.

If, for example, X1 and X2 are exchangeable, so that∆X is symmetrically distributed about zero

(at least for |∆X| in a neighborhood of zero), then τ(d) ≡ 0 and ξ̂ will converge in probability to zero,
ensuring the asymptotic equivalence of the feasible estimator bβF and its infeasible counterpart bβI .
Alternatively, if there is constant positive drift in the distribution of regressors, so that τ(0) > 0, then

the third term bξ will diverge, with expectation of O(log(h−1N )), which is O(log(N)) if hN = O(N−r)
for some r > 0. In the latter case, the asymptotic distribution of the feasible estimator bβF will be
dominated by the asymptotic distribution of bδa, the estimator of the common trend. An intermediate
case could have τ(d) = O(d) in a neighborhood of zero, with the third term converging in probability

to some nonzero limit.

In any event, an asymptotic variance estimator for bβF can be constructed if consistent estimators
of the density φ0 and conditional variance σ

2
0 terms appearing in the asymptotic variances of bβI

and bδa can be constructed. Under standard regularity conditions, the kernel estimators
bφ ≡ 1

2NhN

NX
i=1

1(|∆Xi| ≤ hN ), bσ2 ≡ PN
i=1 1(|∆Xi| ≤ hN ) (∆Yi)

2PN
i=1 1(|∆Xi| ≤ hN )

− bδ2a
should converge in probability to φ0 and σ

2
0; given these estimators, an estimator of the asymptotic

variance of the feasible estimator bβF can be constructed as
\AV ar(bβF ) = bσ2

NhN

Ã
2bφ+ bξ2

2bφ
!
,

for bξ as defined above. This estimator will automatically adapt to divergence of bξ or its convergence
to a (possibly nonzero) constant in probability.

3.2.3 Mixed discrete-continuous regressors

In some applications the distribution of the regressors (X1,X2) may have mass points at a finite

set of values, while being continuously distributed elsewhere. If there is overlap in the mass points

of X1 and X2, then the distribution of first differences ∆X will generally have a mass point at

zero, and will otherwise be continuously distributed in a neighborhood of zero. In this setting, the

average partial effect β will generally differ from its ‘movers’ counterpart βM , due to the nonzero

probability that ∆X = 0; while this mass point simplifies estimation of a nonzero common trend

component δa (and the conditional variance of ∆Y given ∆X = 0), it complicates estimation of the

APE. This is because β typically differs from βM , which is the implicit estimand of (12) and (14)

above, when ‘stayers’ are a non-negligible portion of the population.

When π0 ≡ Pr (∆X = 0) > 0, the estimator

eδa ≡ PN
i=1 1(∆Xi = 0) ·∆YiPN

i=1 1(∆Xi = 0)
,
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used for the discrete Xt case discussed above, is clearly
√
N-consistent and asymptotically normal

estimator for δa, as would be the (asymptotically equivalent) estimator bδa defined in the previous
subsection. Using the decomposition for the feasible estimator bβF of βM ≡ E[β(X)|∆X 6= 0] in the
previous section, it follows thatp

NhN(bβF − βM ) =
p
NhN (bβF − βM ) +Op(

p
hN) ·Op(log(h

−1
n ))

=
p
NhN (bβF − βM ) + op(1),

so that preliminary estimation of the common trend component δa will not affect the asymptotic

distribution of the feasible estimator bβF . If a consistent estimator of the stayers effect
βS ≡ E[β(X)| ∆X = 0]

can be constructed, a corresponding consistent estimator of the APE β = π0β
S +(1−π0)βM would

be bβ ≡ bπbβS + (1− bπ)bβF ,
where bπ ≡PN

ι=1 1(|∆X | ≤ hN )/N is a
√
N-consistent estimator for π0.

Defining

ν(d) ≡ E [∆Y | |∆X | = d] ,

the results of Section 2 above imply that

βS = lim
h↓0

ν(h)− ν(0)

h
;

thus, estimation of βS amounts to estimation of a (left) derivative at zero of the conditional mean

of ∆Y given ∆X = 0. One such consistent estimator would be the slope coefficient of a local linear

regression of ∆Y on a constant term and ∆X, i.e.,Ã
δabβS

!
= argmin

da,bS

NX
i=1

1(|∆Xi| ≤ hN ) · (∆Yi − da − bS∆Xi)
2, (15)

with the intercept δa being an alternative (
√
N-)consistent estimator of the common trend δa. Since

the rate of convergence of a nonparametric estimator of the derivative of a regression function is

lower than for its level, the rate of convergence the combined estimator bβ ≡ bπbβS +(1− bπ)bβF of the
APE will be the same as for bβS, and the asymptotic distribution of the latter would dominate the
asymptotic distribution of bβ in this setting.
3.2.4 Computation

For estimation of, and inference on, the APE we propose using a simple instrumental variables (IV)

procedure. Consider the instrumental variables fit associated with the linear regression of ∆Y on
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a constant and the interactions 1(|∆X| > hN) ·∆X and 1(|∆X| ≤ hN) ·∆X with 1(|∆X| ≤ hN),

1(|∆X| ≤ hN )·∆X and 1(|∆X |>hN )
∆X serving as excluded instruments. The coefficients on the first two

regressors will equal δa and bβS as defined by (15) above, while the coefficient on the last regressor
will equal bβF (as given in (14) with δa replacing bδa). The robust standard errors reported by most
statistical packages will be asymptotically valid.18

If the mixed discrete-continuous case discussed above is of relevance, then we may combine these

‘IV moment conditions’ together with the ‘moment’ 1(|∆X| ≤ hN)−π to form a single quasi-GMM
problem. We can then estimate of the average partial effect by bβ ≡ bπbβS+(1−bπ)bβF . A combination
of the conventional GMM covariance matrix and the textbook delta method may be used to form

standard errors for bβ.
4 Multiple regressors and time periods

In this section we extend our basic model to permit multiple regressors and panels of arbitrary

length. Formally we analyze the following correlated random coefficients model:

Yt =W
0
td (A,Ut) +X

0
tb (A,Ut) , t = 1, ..., T,

where Wt and Xt are q × 1 and p × 1 vectors of observable regressors and d (A,Ut) and b (A,Ut)

corresponding random coefficients (all with bounded moments).

Our marginal stationarity restriction is

Ut|W,X,A∼ Us|W,X,A,

for s 6= t, W =(W1, . . . ,WT )
0 and X =(X1, . . . ,XT )

0. This implies that

E[d (A,Ut) |W,X] = δ (W,X)

and

E[b (A,Ut) |W,X] = β (W,X) .

To complete the model we make the additional restrictions that

δ (W,X) ≡ δ, β (W,X) = β (X) .

In this model W is a T × q matrix of aggregate ‘time shifters’. Typically we think of these

regressors as varying deterministically with t, and hence the coefficients d (A,Ut) as capturing time-

and individual-specific trends. The T ×p matrix of regressors X includes the choice/policy variables

of primary interest.

The two period model considered in the preceding sections is contained within the above family

18Note these standard errors will implicitly include estimates of asymptotically negligible terms. However, this may
improve small sample coverage of the resulting confidence intervals (cf., Newey 1994b).
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with T = p = 2 and q = 1. The matrix of time shifters and its corresponding coefficient vector

parameterize the common intercept shift across periods:

W =

Ã
0

1

!
, δ =δa,

while the choice variable and the conditional means of the random coefficients are given by

X =

Ã
1 X1

1 X2

!
, β (X)=

Ã
α (X)

β (X)

!
.

As before, the parameters of interest are δ ≡ E[d (A,Ut)] and β≡ E[b (A,Ut)].

The above model is a special case of the CRC model proposed and analyzed by Chamberlain

(1992a), who worked with a more general setup where regressors and trend coefficients were permit-

ted to vary parametrically (i.e.,W =W(θ), X = X(θ), and δ = δ(θ)). Identification of δ and β in

the overidentified setup T > p was considered in detail by Chamberlain (1992a), we begin with ‘just

identified’ case T = p, which he did not consider, and return to the overidentified case subsequently.

4.1 Just identification

Writing Y = (Y1, ..., YT )0 we have

E[Y|W,X] =Wδ +Xβ(X). (16)

Define X̃ to be the (scalar) determinant of the matrix of regressors,

X̃ = det(X),

and X∗ to be the adjoint (or adjunct) matrix to X, i.e., the transpose of the matrix of cofactors of
X,

X∗ ≡ adj(X),

so that, X∗X = X̃ · I, and, when X̃ 6= 0, X−1 = (1/X̃) · X∗ (recall that with T = p that X is a

square matrix). Premultiplication of the vector of conditional means of Yt by the adjoint matrix

X∗ thus yields
E[X∗Y|W,X] = X∗Wδ + X̃ · β(X),

which implies that

E[X∗Y|X,W, X̃ = 0] = X∗Wδ,

assuming Y and X have at least T + 1 moments finite (ensuring E[||X∗Y||] <∞).
Provided the random (T × q) matrix X∗W has q-dimensional support conditional on X̃ = 0,

the coefficient vector δ is identified by a population regression of X∗Y on X∗W conditional on

X̃ ≡ det(X) = 0. By analogy with the estimation results for the scalar case presented above, a

22



consistent estimator of δ can be constructed using a weighted least-squares regression of X∗iYi on

X∗iWi across all observations i = 1, ...,N, with weights equal to 1(|X̃i| ≤ hN ). Thus, estimation

of δ still involves a one-dimensional nonparametric regression problem in the (scalar) conditioning

variable X̃i.

In the T = 2 case considered in the preceding sections we have

X̃ = det

Ã
1 X1

1 X2

!
= ∆X,

so that

X∗Wδ =

"
X2 −X1

−1 1

#Ã
0

1

!
δa =

Ã
−X1δa

δa

!
,

and

X∗Y =

Ã
X2Y1 −X1Y2

∆Y

!
.

When X̃ = ∆X = 0, the two rows of X∗Y −X∗Wδ are proportional to each other, and either

could be used to define a nonparametric estimator of δa; in the preceding sections, the second row

was used.

Returning to the general case with T = p ≥ 2, given identification of δ, identification of βM
follows from the equality

E[Y −Wδ|W,X] = Xβ(X).

When X̃ ≡ det(X) 6= 0, premultiplying both sides of this relation by X−1 yields

E[X−1(Y−Wδ) | X = x] ≡ β(x),

so that, assuming Pr(X̃ 6= 0) > 0

E[X−1(Y −Wδ) | X̃ 6= 0] = E[β(X) | X̃ 6= 0] ≡ βM

by iterated expectations.

If X̃ 6= 0 with probability one, then the movers average partial effect coincides with the overall
or full average partial effect (i.e., βM =β= E[b (A,Ut)]). Heuristically, βM is identified as an average

of a generalized least-squares regression of the detrended conditional mean E[Y|W,X]−Wδ on

X, averaging over those observations with X̃ = det(X) 6= 0.
Because the expectation of X−1(Y −Wδ) will generally be undefined when X̃ is continuously

distributed with positive density near zero, estimation of βM will involve the same trimmed mean

as discussed for the special T = p = 2 case above. The extension of the feasible estimator bβF to

this context is

bβF =

PN
i=1 1(

¯̄̄
X̃i

¯̄̄
> hN) ·X−1i (Yi−Wi

bδ)PN
i=1 1(

¯̄̄
X̃i

¯̄̄
> hN )

, (17)
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where bδ is the nonparametric estimator
bδ = " NX

i=1

1(
¯̄̄
X̃i

¯̄̄
≤ hN) (X

∗
iWi)

0 (X∗iWi)

#−1
×

NX
i=1

1(
¯̄̄
X̃i

¯̄̄
≤ hN ) (X

∗
iWi)

0 (X∗Y) . (18)

This estimator will converge in probability to βM at a one-dimensional nonparametric rate if

hN → 0 at the appropriate rate, provided the term

ξ̂ ≡
PN

i=1 1(
¯̄̄
X̃i

¯̄̄
> hN ) ·X−1i WiPN

i=1 1(
¯̄̄
X̃i

¯̄̄
> hN )

does not diverge too quickly as N →∞.

In the mixed discrete-continuous case Pr(X̃ = 0) > 0, and estimation of β̂ requires estimation

of

βS = lim
h↓0

ν(h)− ν(0)
h

,

where ν(x) ≡ E[X−1Y|X̃ = x]; the resulting estimator converges at the rate for nonparametric

estimation of the derivative of a one-dimensional regression function.

4.2 Overidentification

When T > p, the vector of common trend parameters δ will satisfy some conditional moment

restrictions, and, as Chamberlain (1992a) shows, these may suffice for identification and construction

of root-N-consistent and asymptotically-normal estimators of δ. In this overidentified setting, for

each realized matrix of regressors X there will be a T × (T − p) matrix Z ≡ ζ(X) of functions of X

for which

Z0X = 0;

from the relation (16) above, it follows that

Z0E[Y|W,X] ≡ Z0Wδ + Z0Xβ(X)

= Z0Wδ,

so that

E[Z0(Y −Wδ) |W,X] = 0,

which, depending upon the form ofW, will typically serve to identify the trend coefficients δ.

For example, in the T = 2 example considered above, suppose the restriction α(x) ≡ α is

imposed, so that

δ ≡ (α, δa)0, W =

Ã
1 0

1 1

!
, X ≡ (X1,X2)

0;
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then, taking Z = (X2,−X1)0, the parameters α and δa will satisfy

E[X2Y1 −X1Y2 − α(X1 +X2)− δaX1|X1,X2] = 0,

which implies that α and δa will be identified as population least-squares regression coefficients of

X2Y1 −X1Y2 on (X1 +X2) and X1, respectively. Alternatively, restricting β(x) = β but leaving

a(x) unrestricted, δa and β will be identified by the population regression of ∆Y on a constant and

∆X, that is, the population analogue of the usual fixed-effects regression estimator.

Even in the just-identified setting (T = p), it may be possible to obtain consistent estimators of

δ that achieve the parametric rate of convergence. If

W̃ ≡W− E[W | X]

has a covariance matrix of full rank, then δ will be identified by

δ =V(W̃)
−1C(W̃,Y).

For the special cases considered above, where V(W̃) = 0, this is not applicable, but such restrictions

may be useful when W includes regressors which are not deterministic functions of X even when

T = p.

Overidentification also makes estimation of β less problematic. As Chamberlain (1992a) shows,

defining bβi ≡ (X0iV−1i Xi)
−1X0

iV
−1
i (Yi −Wi

bδ)
for bδ a root-N-consistent estimator of δ and Vi ≡ ν(Wi,Xi) positive definite with probability one,

the sample mean of bβi will be a root-N -consistent estimator of β when Vi = V( Yi −Wiδ|Xi)

and

E
∙

1

det(X0V−1X)

¸
<∞. (19)

This estimator also attains the semiparametric efficiency bound for estimation of β. Chamberlain

(1992a) shows that a feasible version, based upon an efficient estimator of δ and consistent estimators

of {Vi}Ni=1, will also be semiparametrically efficient.
As the order of overidentification T − p increases, condition (19) becomes less restrictive even

if the components of X are continuously distributed. For example, consider the p = 2 case with

Xt = (1,Xt)0 and suppose that Xt
iid∼ N (0, 1) and Vi ≡ I; then

det(X0iV
−1
i Xi) =

TX
t=1

(Xt − X̄)2 ∼ χ2T−1,

and (19) will hold as long as T − 1 > 2, i.e., T ≥ 4 here. More generally, as T − p increases, the

density of det(X0
iV
−1
i Xi) should approach zero more rapidly as its argument approaches zero —

ensuring (19) holds — provided the continuous components of Xi are weakly dependent across rows
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and the matrix Vi is well-behaved.

Nevertheless, the trimming scheme used to estimate β in the just-identified setting may still be

helpful in the overidentified case, even when (19) holds. Defining the (infeasible) trimmed mean

β̂ =

PN
i=1 1(det(X

0
iV

−1
i Xi) > hN ) · (X0iV−1i Xi)

−1X0
iV
−1
i (Yi−Wiδ)PN

i=1 1(det(X
0
iV
−1
i Xi) > hN )

,

it is straightforward to show this will be asymptotically equivalent to the sample mean of β̂i when

E[β(X)|det(X0iV−1i Xi) ≤ h] is smooth (Lipschitz-continuous) in h, condition (19) holds, and hN =

o(1/
√
N). Since β̂ will still be consistent for β even when (19) fails, a feasible version of the trimmed

mean β̂ may be better behaved in finite samples if the design matrix (X0iV
−1
i Xi) is nearly singular

for some observations.

5 Empirical application: the demand for calories

5.1 Model and estimation

We assume that the logarithm of total household calorie availability per capita in period t, ln (Calt),

varies according to

ln (Calt) = at(A,Ut) + bt(A,Ut) ln(Expt) + ct(A,Ut)Exp
−1
t (20)

where Expt denote real household expenditure per capita in year t and at(A,Ut), bt(A,Ut), ct(A,Ut)

are random coefficients. The household-by-period-specific elasticity of calorie demand equals

�t(Exp; A,Ut) = bt(A,Ut)− ct(A,Ut)Exp
−1
t , (21)

which is similar to a heterogenous ‘rank three’ Engel curve specification (e.g., Lewbel 1991). We

use this specification both because it saturates the identifying power of our three period panel

and because the large number of very poor households in our sample suggests the need to allow

for nonlinearity in the calorie ‘Engel’ curve. For bt(A,Ut) > 0 and ct(A,Ut) < 0 (21) implies a

calorie elasticity which declines with total outlay toward bt(A,Ut). Strauss and Thomas (1995) and

Subramanian and Deaton (1996) discuss the arguments and evidence for an elasticity of calorie

demand which declines with total outlay.

Let Xt =
¡
1, ln(Expt),Exp

−1
t

¢0
and Yt = ln (Calt) with X and Y as defined above. Letting

t = 0, 1, 2 denote the 2000, 2001 and 2002 waves of our panel we allow for common intercept and

slope drift of the form

E [a1 (A,U1)− a0 (A,U0)|X] = δ2001a

E [b1 (A,U1)− b0 (A,U0)|X] = δ2001b

E [c1 (A,U1)− c0 (A,U0)|X] = δ2001c
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with an analogous restriction holding across periods 1 and 2. This specification allows for the

demand elasticity to shift over time (albeit in a way that is homogenous — in a functional sense —

across households). The 2000 to 2002 period coincided with the ‘coffee crisis’ in Nicaragua, so there

is some a priori reason to believe that macro-shifts in the demand elasticity may be important.19

Defining

W =

⎛⎜⎝ 0 0

X 0
1 0

0 X 0
2

⎞⎟⎠ ,

gives, under marginal stationarity, a general semiparametric regression model of

E[Y|W,X] =Wδ +Xβ(X),

with δ =
¡
δ2001a , δ2001b , δ2001c , δ2002a , δ2002b , δ2002c

¢0 and
β(x) = (E[a0 (A,Ut)|X = x],E[b0 (A,Ut)|X = x],E[c0 (A,Ut)|X = x])0

= (α (x) , β (x) , γ (x))0 .

Relative to prior work, the distinguishing feature of the above model is that it allows for the

elasticity of calorie demand to vary across households and time in a way that may co-vary with total

outlay. The specification also allows a household’s elasticity to structurally vary with its income,

albeit in a restricted way. Subramanian and Deaton (1996), in contrast, allow a household’s calorie

elasticity to structurally vary with income in a fully nonparametric way. However they assume that

this nonlinear mapping is homogenous across all households.

Below we compare estimates of �t(q) = E [�t(q; A,Ut)] with those derived from conventional

panel data estimators as well as the (now standard) cross-sectional local linear regression estimator

popularized in this context by Subramanian and Deaton (1996). As noted above, the elasticity

estimate based upon the conventional within-household regression estimator will — loosely speaking

— overemphasize those households with large year-to-year changes in total expenditure. In poor

village economies, like those from which our data are drawn, the ability to smooth consumption

over time can vary significantly across households and therefore the within-household elasticity

estimate may be far from the desired population average.

Nonparametric estimates based on cross-section data may also be affected by correlated house-

hold heterogeneity. Subramanian and Deaton (1996), in the absence of panel data, use a single

cross-section to estimate the calorie elasticity.20 Their estimate is the sample analog of the deriv-

19Skoufias (2003) finds that the estimated calorie demand elasticity is largely insensitive to aggregate price changes
in Indonesia.
20We focus on Subramanian and Deaton (1996) paper as its basic modelling approach has become prototypical in

this literature (e.g., Skoufias, 2003, Logon, 2006, Smith and Subandoro, 2007). Behrman and Deolalikar (1987), who
work with a small two-period panel, use conventional linear fixed-effects methods to study the demand for calories.
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ative of the conditional expectation function E [ ln(Cal0)| ln(Exp0) = q] , which under (20) equals

∂E [ ln(Cal0)| ln(Exp0) = q]
∂q

= β (q)− γ (q)

eq
+

½
∇qβ (q) q +

∇qγ (q)

eq

¾
,

where, in an abuse of our established notation, β (q) = E [b0 (A,Ut)| ln(Exp0) = q] and γ (q) =

E [c0 (A,Ut)| ln(Exp0) = q]. The first term is structural, while the second reflects heterogeneity

bias. If β (q) and γ (q) vary with income in the population, then the cross-sectional kernel regression

estimator will be inconsistent.

Our point is not to argue for the superiority of one approach or the other, but to highlight the

substantive differences between then. At the cost of a parametric form for the household’s elasticity,

our method allows for substantial correlated heterogeneity across households. Subramanian and

Deaton (1996), while allowing for nonlinearity in the structural mapping from (log) income to (log)

calories, assumes substantial homogeneity across households. Richer panel data could lessen these

trade-offs.

5.2 Data description and overview

We use data collected in conjunction with an external evaluation of the Nicaraguan conditional

cash transfer program Red de Protección Social (RPS) (see IFPRI, 2005). The RPS evaluation

sample is a panel of 1,581 households from 42 rural communities in the departments of Madriz and

Matagalpa, located in the northern part of the Central Region of Nicaragua. Twenty one of the

sampled communities were randomly assigned to participate in the RPS program. Each sampled

household was first interviewed in August/September 2000 with follow-ups attempted in October of

both 2001 and 2002. Here we analyze a balanced panel of 1,358 households from all three waves.21

The survey was fielded using an abbreviated version of the 1998 Nicaraguan Living Standards

Measurement Survey (LSMS) instrument. As such it includes a detailed consumption module with

information on household expenditure, both actual and in kind, on 59 specific foods and several

dozen other common budget categories (e.g., housing and utilities, health, education, and house-

hold goods). The responses to these questions were combined to form an annualized consumption

aggregate, Cit. In forming this variable we followed the algorithm outlined by Deaton and Zaidi

(2002).

In addition to recording food expenditures, actual quantities of foods acquired are available.

Using conversion factors listed in the World Bank (2002) and Instituto Nacional de Estadísticas y

Censos (2005) (henceforth INEC) we converted all food quantities into grams. We then used the

caloric content and edible percent information in the Instituto de Nutrición de Centro América y

Panamá (2000) (henceforth INCAP) food composition tables to construct a measure of daily total

21A total of 1,359 households were successfully interviewed in all three waves. One of these households reports zero
food expenditures (and hence caloric availability) in one wave and is dropped from our sample. The preparation of
our estimation sample from the raw public release data files involved some complex and laborious data-processing.
We outline the procedures used in this section. A sequence of heavily commented STATA do files, which read in the
IFPRI (2005) release of the data and output a text file of our estimation sample will eventually be made available
online at http://www.econ.berkeley.edu/~bgraham/.
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calories available for each household.22 The logarithm of this measure divided by household size,

Yit, serves as the dependent variable in our analysis.

The combination of both expenditure and quantity information at the household-level also al-

lowed us to estimate unit prices for foods. These unit values were used to form a Paasche cost-of-

living index for the ith household in year t of

Iit =

∙
Sit

½XF

f=1
Wf,it

³
P b
f /Pf,it

´¾
+ (1− Sit)Jit

¸−1
, (22)

where Sit is the fraction of household spending devoted to food, Wf,it the share of overall food

spending devoted to the f th specific food, Pf,it the year t unit price paid by the household for food

f , and P b
f its ‘base’ price (equal to the relevant 2001 sample median price). We use 2001 as our base

year since it facilitates comparison with information from a nationwide LSMS survey fielded that

year. Following the suggestion of Deaton and Zaidi (2002) we replace household-level unit prices

with village medians in order to reduce noise in the price data. In the absence of price information

on nonfood goods we set Jit equal to one in 2001 and to the national consumer price index (CPI)

in 2000 and 2002. Our independent variable of interest is real per capita consumption in thousands

of Cordobas: Expit = ([Cit/Iit]/1, 000)/Mit; Mit is total household size.

Tables 1, 2 and 3 summarize some key features of our estimation sample. Panel A of Tables 1

give the share of total food spending devoted to each of eleven broad food categories. Spending on

staples (cereals, roots and pulses) accounts for about half of the average household’s food budget

and over two thirds of its calories (Tables 1 and 2). Among the poorest quartile of households an

average of around 55 percent of budgets are devoted to, and over three quarters of calories available

derived from, staples. Spending on vegetables, fruit and meat accounts for less than 15 percent of

the average household’s food budget and less than 3 percent of calories available. That such a large

fraction of calories are derived from staples, while not good dietary practice, is not uncommon in

poor households elsewhere in the developing world (cf., Subramanian and Deaton, 1996; Smith and

Subandoro, 2007).

Panel B of the table lists real annual expenditure in Cordobas per adult equivalent and per

capita. Adult equivalents are defined in terms of age- and gender-specific FAO (2001) recommended

energy intakes for individuals engaging in ‘light activity’ relative to prime-aged males. As a point

of reference the 2001 average annual expenditure per capita across all of Nicaragua was a nominal

C$7,781, while amongst rural households it was C$5,038 (World Bank. 2003). The 42 communities

in our sample, consistent with their participation in an anti-poverty demonstration experiment, are

considerably poorer than the average Nicaraguan rural community.23

22 In forming our measure of calorie availability we followed the general recommendations of Smith and Subandoro
(2007).
23 In October of 2001 the Coroba-to-US$ exchange rate was 13.65. Therefore per capita consumption levels in our

sample averaged less than US$ 300 per year.
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Panel A: Expenditure Shares (%)
All Lower 25% Upper 25%

2000 2001 2002 2000 2001 2002 2000 2001 2002
Cereals 49.1 36.0 32.7 53.3 40.9 35.7 45.7 31.6 29.4
Roots 1.3 3.1 2.7 1.3 2.6 2.0 1.5 3.6 3.6
Pulses 11.6 12.5 13.6 11.2 13.8 16.5 10.6 10.7 11.3
Vegetables 3.2 4.9 4.5 2.8 4.3 3.4 3.8 5.8 5.3
Fruit 0.6 0.9 1.1 0.5 0.7 0.9 0.8 1.2 1.2
Meat 3.1 6.9 7.7 2.2 4.0 5.1 5.3 9.9 10.4
Dairy 11.2 14.7 17.3 9.0 12.0 15.0 13.1 16.8 19.2
Oil 4.0 5.0 5.0 3.5 5.2 5.0 3.9 4.7 4.7
Other foods 15.8 16.0 15.4 16.2 16.7 16.5 15.4 15.7 14.9
Staples♦ 62.1 51.6 49.0 65.8 57.3 54.1 57.8 45.9 44.3

Panel B: Total Real Expenditure & Calories
Expenditure per adult 5, 506 4, 679 4, 510 2, 503 2, 397 2, 200 9, 481 7, 578 7, 460
(Expenditure per capita) (4, 277) (3, 764) (3, 887) (2, 016) (2, 130) (2, 102) (7, 302) (5, 845) (6, 114)
Food share 71.2 69.2 68.8 73.8 69.1 68.6 67.0 67.9 67.6

Calories per adult 2, 701 3, 015 2, 948 1, 706 2, 127 2, 013 3, 738 3, 849 3, 758
(Calories per capita) (2, 086) (2, 435) (2, 529) (1, 350) (1, 854) (1, 873) (2, 842) (2, 962) (3, 041)
Percent energy deficient 51.0 39.3 39.7 85.0 69.7 76.2 19.8 14.5 13.0

Table 1: Real food expenditure budget shares of RPS households from 2000 to 2002
NOTES: Authors’ calculations based on a balanced panel of 1,358 households from the RPS evaluation dataset (see IFPRI (2005)). Real
household expenditure equals total annualized nominal outlay divided by a Paasche cost-of-living index. Base prices for the price index
are 2001 sample medians. The nominal exchange rate in October of 2001 was 13.65 Cordobas per US dollar. Total calorie availability
is calculated using the RPS food quantity data and the calorie content and edible portion information contained in INCAP (2000).
Lower and upper 25 percent refers to the bottom and top quartiles of households based on the average of year 2000, 2001 and 2002 real
consumption per adult equivalent and thus contains the same set of households in all three years.
♦ Sum of cereal, roots and pulses.
"Adults" correspond to adult equivalents based on FAO (2001) recommended energy requirements for light activity.
Percentage of households with estimated calorie availability less than FAO (2001) recommendations for light activity given household
demographics.
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Calorie Shares (%)
All Lower 25% Upper 25%

2000 2001 2002 2000 2001 2002 2000 2001 2002
Cereals 57.7 60.3 59.9 60.1 63.9 62.0 55.5 57.1 57.4
Roots 1.5 1.5 1.6 1.9 1.5 1.2 1.6 1.8 2.1
Pulses 13.1 11.3 12.8 12.1 11.3 13.3 13.1 11.0 12.1
Vegetables 0.7 0.7 0.6 0.6 0.6 0.4 0.8 0.9 0.8
Fruit 0.3 0.5 0.4 0.3 0.3 0.4 0.5 0.7 5.8
Meat 0.7 1.3 1.3 0.5 0.7 0.7 1.3 1.9 1.9
Dairy 4.1 4.3 4.5 3.4 3.0 3.4 4.7 5.2 5.5
Oil 6.9 7.6 7.5 5.8 6.9 6.7 7.4 8.1 8.0
Other foods 15.0 12.6 11.4 14.7 11.9 11.9 15.2 13.2 11.5
Staples♦ 72.3 73.1 74.3 74.7 76.7 76.6 70.2 69.9 71.7

Table 2: Calorie shares of RPS households from 2000 to 2002
NOTES: Authors’ calculations based on a balanced panel of 1,358 households from the RPS evalua-
tion dataset (see IFPRI (2005)). Total calorie availability is calculated using the RPS food quantity
data and the calorie content and edible portion information contained in INCAP (2000). Lower
and upper 25 percent refers to the bottom and top quartiles of households based on the average of
year 2000, 2001 and 2002 real consumption per adult equivalent and thus contains the same set of
households in all three years.
♦ Sum of cereal, roots and pulses.

Using the FAO (2001) energy intake recommendations for ‘light activity’ we categorized each

household, on the basis of its demographic structure, as energy deficient, or not. By this criterion

approximately 40 percent of households in our sample are energy deficient each period. Amongst

the poorest quartile this fraction rises to over 75 percent. These figures are reported in Panel B of

Table 1.

Table 3 reports the median amount of Cordobas paid per one thousand calories by food type

and expenditure quartiles. As found in other parts of the developing world, ‘rich’ households spend

more per calorie than poor households, however, these price differences are not especially large in

our sample. If quality upgrading is an important feature of food demand, then the elasticity of

calorie demand with respect to total expenditure may be quite low even if the elasticity of food

expenditure is quite high (Behrman and Deolalikar, 1987; Subramanian and Deaton, 1996).

5.3 Computation

For computation we employ an ‘instrumental variables’ procedure. Our estimates of π, δ, βS and

βM are given by the solution to (suppressing the dependence of our estimator on the choice of

bandwidth) XN

i=1
ψi(bθ)/N = 0,
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Median Cordobas Paid per 1,000 calories
All Bottom 25% Top 25%

2000 2001 2002 2000 2001 2002 2000 2001 2002
Cereals 2.3 1.3 1.2 2.1 1.2 1.0 2.7 1.5 1.4
Roots 5.7 8.6 7.2 3.0 7.2 6.0 6.5 8.6 7.2
Pulses 2.6 2.6 2.3 2.6 2.6 2.4 2.6 2.6 2.6
Vegetables 20.5 23.2 22.7 17.2 22.5 19.6 22.5 24.2 23.5
Fruit 6.6 6.3 6.6 5.4 5.1 5.3 6.6 6.6 6.7
Meat 18.2 19.1 18.6 15.5 18.6 18.6 18.5 20.1 19.3
Dairy 9.3 10.1 10.0 9.1 10.6 10.4 9.7 10.2 10.1
Oil 1.6 1.5 1.5 1.6 1.6 1.5 1.6 1.5 1.5
Other foods 3.0 3.1 3.1 3.0 2.9 2.7 3.2 3.5 3.6

All foods 3.0 2.4 2.4 2.6 2.0 2.0 3.5 3.0 2.9

Table 3: Real Cordobas spent by RPS households from 2000 to 2002 per 1,000 calories available by
food category
NOTES: Authors’ calculations based on a balanced panel of 1,358 households from the RPS evalua-
tion dataset (IFPRI, 2005). Reported calorie prices are the median among households with positive
consumption in the relevant category. Lower and upper 25 percent refers to the bottom and top
quartiles of households based on the average of year 2000, 2001 and 2002 real consumption per adult
equivalent. See notes to Table 1 for additional details.

with θ =
¡
π, δ0,βS0,βM 0¢0 and

ψi (θ) =

⎛⎜⎜⎝
1(
¯̄̄
X̃i

¯̄̄
≤ hN)− π

Z0i

Ã
Ỹi − W̃iδ − X̃i

h³
1(
¯̄̄
X̃i

¯̄̄
≤ hN) 1(

¯̄̄
X̃i

¯̄̄
> hN )

´
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iÃ βS

βM

!! ⎞⎟⎟⎠ ,

where

Ỹi = X
∗
iYi, W̃i = X

∗
iWi,

and the T × q × 2p instrument matrix is given by

Zi ≡
⎡⎣1(¯̄̄X̃i

¯̄̄
≤ hN ) · W̃,1(

¯̄̄
X̃i

¯̄̄
≤ hN) · X̃i · Ip,

1(
¯̄̄
X̃i

¯̄̄
> hN )

X̃i

· Ip
⎤⎦ .

This procedure is numerically equivalent to the two-step procedure described above where in the

first step bδ and bβS
are the local linear estimates

1

N

NX
i=1

1(
¯̄̄
X̃i

¯̄̄
≤ hN)

Ã
W̃0

X̃i · Ip

!³
Ỹi − W̃i

bδ − X̃i
bβS
´
= 0,

32



with bβM
then given by

1

N

NX
i=1

1(
¯̄̄
X̃i

¯̄̄
> hN)

n
X−1i

³
Yi −Wi

bδ´− bβM
o
= 0.

The distribution of Xt does not appear to have discrete components, therefore bβM
should

provide — in principal — the basis for a consistent estimate of the average elasticity of calorie demand.

However, due to the extreme within-unit colinearity of ln(Expt) and Exp
−1
t the density of det(Xi) is

substantial in the neighborhood of zero (cf., Figure 2). The extreme ‘irregularity’ of our application,

with many ‘near stayers’ necessitates substantial trimming. For this we reason report, and prefer,

the estimate bβ = bπbβS
+ (1− bπ) bβM

.

The year 2000 estimated average elasticity of calorie demand is then given by

b�0(q) = bβ − bγq−1,
with the year 2001, 2002 elasticities also incorporating the relevant elements of bδ. We calculate aver-
age elasticities for total outlay equal to the 25th, 50th and 75th percentiles of the 2000 expenditure

distribution (respectively q equal to 2.267, 3.650 and 5.539 thousands of Cordobas).

We compute standard errors using the conventional GMM variance-covariance estimator and the

delta method (cf., Newey and McFadden, 1994). In doing so we only assume independence across

villages, not between them. While this estimator includes estimates of terms that are asymptotically

negligible, it is computationally convenient and may lead to confidence intervals with better coverage

properties in small samples.

To select hN we employ a variant of ‘k-fold’ cross-validation, choosing hN to minimize

CV (hN ) ≡
42X
v=1

MvX
j=1

ψi(bθ−v)0ψi(bθ−v)/N,

where bθ−v is the estimate calculated by omitting all Mv observations in village v. We explore the

sensitivity of our estimates to this choice of bandwidth.

5.4 Results

Table 4 reports pooled OLS and linear fixed effects estimates of δ and β. Column (a) of each panel

estimates models without aggregate time effects. Columns (b) and (c) of each panel respectively

allow for the intercept, and the intercept and slope coefficients, to shift across periods. These

aggregate time effects are jointly significant in all specifications. The implied elasticities for each

year, evaluated at each of three total expenditure levels, are reported in Table 5.

The pooled OLS and FE elasticities are similar in magnitude providing little evidence of signif-
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Pooled OLS FE-OLS
(1.a) (1.b) (1.c) (2.a) (2.b) (2.c)

β
0.4450
(0.0414)

0.4812
(0.0384)

0.4741
(0.0312)

0.4629
(0.0423)

0.5020
(0.0393)

0.4875
(0.0374)

γ
−0.4238
(0.1450)

−0.3640
(0.1325)

−0.5514
(0.0780)

−0.4010
(0.1376)

−0.3391
(0.1246)

−0.5052
(0.0835)

Aggregate Time Effects Aggregate Time Effects

δ2001a − 0.2385
(0.0400)

0.1418
(0.1706)

− 0.2400
(0.0401)

0.1907
(0.1501)

δ2002a − 0.2757
(0.0284)

0.0188
(0.1324)

− 0.2769
(0.0286)

−0.0206
(0.1378)

δ2001b − − 0.0033
(0.0734)

− − −0.0111
(0.0683)

δ2002b − − 0.0700
(0.0635)

− − 0.1002
(0.0681)

δ2001c − − 0.2575
(0.2381)

− − 0.1716
(0.1998)

δ2002c − − 0.4770
(0.1654)

− − 0.4873
(0.1604)

p-value H0 : δ = 0 − 0.000 0.000 − 0.000 0.000

Table 4: Conventional parametric estimates of the calorie Engel curve
NOTES: Estimates based on the balanced panel of 1,358 households described in the main text.
"Pooled OLS" denotes least squares applied to the pooled 2000, 2001 and 2002 samples, "FE-OLS"
denotes least squares estimates with household-specific intercepts. The standard errors are com-
puted in a way that allows for arbitrary within-village correlation in disturbances across households
and time.
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Pooled OLS FE-OLS Local Linear
(1.a) (1.b) (1.c) (2.a) (2.b) (2.c) 3

At 25th percentile

2000
0.6320
(0.0345)

0.6408
(0.0317)

0.7173
(0.0289)

0.6398
(0.0284)

0.6516
(0.0242)

0.7104
(0.0279)

0.6683
(0.5770, 0.7640)

2001 − − 0.6070
(0.0582)

− − 0.6235
(0.0475)

0.6842
(0.5831, 0.8012)

2002 − − 0.5769
(0.0359)

− − 0.5956
(0.0279)

0.6640
(0.5653, 0.7641)

At 50th percentile

2000
0.5612
(0.0207)

0.5799
(0.0195)

0.6252
(0.0247)

0.5728
(0.0177)

0.5949
(0.0154)

0.6259
(0.0264)

0.6548
(0.5812, 0.7213)

2001 − − 0.5579
(0.0360)

− − 0.5679
(0.0312)

0.5938
(0.5190, 0.6687)

2002 − − 0.5304
(0.0371)

− − 0.5926
(0.0266)

0.5110
(0.4507, 0.5736)

At 75th percentile

2000
0.5216
(0.0226)

0.5459
(0.0214)

0.5736
(0.0251)

0.5353
(0.0223)

0.5632
(0.0205)

0.5787
(0.0286)

0.6377
(0.5704, 0.6968)

2001 − − 0.5645
(0.0280)

− − 0.5366
(0.0336)

0.4971
(0.4326, 0.5701)

2002 − − 0.5575
(0.0346)

− − 0.5909
(0.0362)

0.4378
(0.3709, 0.5074)

Table 5: Parametric and nonparametric calorie demand elasticities
NOTES: Elasticities reported in Columns 1.a-1.c and 2.a to 2.c calculated using the estimates
reported in Table 4. The reported standard errors are computed using the delta method. The
column 3 ‘Local Linear’ elasticity estimates are based on three cross-sectional local linear kernel
regressions of the type employed by Subramanian and Deaton (1996). As in that work the bandwith
was selected informally by the eye. Below the reported elasticities are 95 percent confidence intervals
based on 1,000 bootstrap replications (with the village being treated as the relevant sampling unit).

icant heterogeneity bias. There is evidence that the elasticity of calorie demand declines with total

outlay; γ is significantly negative in all specifications. How the magnitude of the decline is modest

across the interquartile range of the 2000 household expenditure distribution. These estimates are

on the higher end of those reported in the literature, but not implausible given that our sample was

selected for its extreme poverty (cf., Strauss and Thomas, 1995, Table 34.1).

Table 5 also reports elasticity estimates based on three, corresponding to the years 2000, 2001 and

2002, cross-sectional local linear regressions of ln (Calt) onto ln (Expt) . This approach to estimating

the calorie demand elasticity was used by Subramanian and Deaton (1996) and is now virtually

standard in the literature on calorie demand. The local linear elasticity estimates differ little

from their pooled OLS or FE-OLS counterparts. Figure 1 plots the coefficient on [ln (Expt)− q]
for a grid of equally-spaced values of q between the 5th and 95th percentiles of the 2000 total

outlay distribution. While the figure shows clear evidence of a demand elasticity that declines with

total outlay, this decline is relatively muted across the interquartile range of the 2000 total outlay
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Figure 1: Local linear regression estimates of the calorie elasticity using the year 2000 cross-section.
Notes: Estimates based on a Gaussian kernel with a bandwidth selected by the ‘eye’. Confidence
bands based on 1,000 bootstrap replications with the village being treated as the sampling unit.
The elasticity is estimated at a grid of equally-spaced values between the 5th and 95th percentiles
of the 2000 total outlay distribution.

distribution. In summary the pooled OLS, fixed effects and cross-sectional nonparametric regression

estimates of the calorie demand elasticity are all rather similar.

Table 6 reports estimates of δ and β based on our CRC model. The corresponding elasticity

estimates are reported in Table 7. Column 1 is the simple ‘Mundlak/Chamberlain’ estimator bβM =

N−1PN
i=1 (X

0
iXi)

−1 (X0
iYi). Consistency of this estimator requires that E[1/det (X0

iXi)] < ∞.
Given that the density of det (X) is substantial in the neighborhood of zero (see Figure 2), this

condition is unlikely to be satisfied in the present setting. The ‘irregular’ nature of our application

is confirmed by the nonsensical elasticity estimates produced by this estimator.

Columns 2 through 4 report estimates using our procedure based on models with, respectively,

no time effects, intercept shifts only, and intercept and slope shifts together. In each column the

bandwidth is selected by the cross-validation procedure described above (as an example the cross-

validation criterion for the Column 3 specification is plotted in Figure 3). We focus on the Column
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Figure 2: Kernel density estimate of the density of det (X) .
Notes: Density estimate based on a Gaussian kernel and Silverman’s rule-of-thumb bandwidth.
The top and bottom 1 percentiles of the empirical det (X) distribution were excluded from the
estimates in order to produce a more viewable figure.

4 estimates in the discussion which follows.

Comparing the Column 4 elasticity estimates reported in Table 7 with their counterparts in

Table 5 (Column 3, 6, and 7), we see that the CRC elasticities decline more sharply with total

outlay, being higher at the 25 percentile of the outlay distribution and lower at the 75 percentile

across all three years (although sampling error suggests some caution in pushing this result too

far). Furthermore our elasticity estimates are reasonably insensitive to modest variation in the

bandwidth. Columns 5 through 8 reported estimates based on a bandwidth equal to 1/8, 1/4, 1/2

and twice the Column 4 value. For smaller bandwidths the decline of the average elasticity with

total outlay is somewhat more pronounced, while for large bandwidths it is less so.

5.5 Summary and extensions

In this paper we have outlined a new estimator for the correlated random coefficients panel data

model of Chamberlain (1992a). Our estimator is designed for situations where the regularity con-

ditions required for his method-of-moments procedure fail. We illustrate the use of our methods in

an exploration of the elasticity of demand for calories in a sample of poor Nicaraguan households.

This application is highly ‘irregular’, with many ‘near stayers’ in the sample. This implies that

(i) the elasticity estimates based on the textbook linear FE estimator may far from the relevant

population average and (ii) the use of Chamberlain’s (1992a) estimator is inappropriate. Both these

facts motivate the use of our trimmed estimator. Our estimates are suggestive, albeit not decisively
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Figure 3: Leave-own-village-out ‘IV’ quadratic form for different bandwidth values — Column 3,
Table 6 specification.
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so, of the presence of correlated random coefficient heterogeneity.

While our procedure is simple to implement, it does require choosing a smoothing parameter.

As in other areas of the semiparametric estimation literature, our theory provides little guidance

on this choice. In ongoing work we are studying how to extend our methods to estimate quantile

partial effects (e.g., unconditional quantiles of the distribution of b(A,Ut)) and to accommodate

additional ‘triangular endogeneity’.
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CRC-Panel
(1) (2) (3) (4) (5) (5) (6) (8)

βS − 0.2551
(0.2476)

0.3319
(0.2281)

0.4395
(0.2139)

0.0487
(0.3779)

0.1963
(0.3342)

0.2633
(0.2942)

0.4299
(0.2051)

γS − −1.0691
(0.4675)

−0.9091
(0.4525)

−0.5474
(0.4331)

−1.7739
(0.9018)

−1.5061
(0.7657)

−1.0588
(0.6849)

0.0901
(0.3628)

βM
3.0498
(13.9910)

0.3914
(0.4154)

0.8664
(0.4070)

1.0193
(0.3940)

0.3007
(0.2667)

0.4421
(0.2428)

0.8696
(0.3940)

0.3727
(0.7848)

γM
29.4492
(57.3426)

−0.5191
(0.6876)

0.0477
(0.5900)

0.7384
(0.5809)

−0.9828
(0.5329)

−0.5454
(0.5615)

0.0993
(0.4312)

−0.1069
(0.7933)

β − 0.2565
(0.2430)

0.3354
(0.2434)

0.4447
(0.2936)

0.0765
(0.3759)

0.2090
(0.3880)

0.2771
(0.4505)

0.7491
(0.2105)

γ − −1.0634
(0.4940)

−0.9027
(0.4939)

−0.5361
(0.6082)

−1.6865
(1.0328)

−1.4566
(1.1023)

−1.0323
(0.9768)

0.0897
(0.3644)

Aggregate Time Effects

δ2001a − − 0.2794
(0.0481)

1.2888
(0.4056)

0.6010
(0.3408)

0.6276
(0.3562)

0.9125
(0.3857)

1.2709
(0.3922)

δ2002a − − 0.2724
(0.0422)

0.9399
(0.3660)

0.3649
(0.3249)

0.5258
(0.3477)

0.7699
(0.3431)

0.8616
(0.3386)

δ2001b − − − −0.4816
(0.2002)

−0.1752
(0.1512)

−0.1931
(0.1634)

−0.3383
(0.1835)

−0.4697
(0.1943)

δ2002b − − − −0.3327
(0.1706)

−0.0745
(0.1501)

−0.1433
(0.1605)

−0.2575
(0.1623)

−0.3041
(0.1625)

δ2001c − − − −1.1981
(0.4304)

−0.3995
(0.4490)

−0.3755
(0.4379)

−0.6614
(0.4590)

−1.2180
(0.4216)

δ2002c − − − −0.7171
(0.4337)

0.0299
(0.4269)

−0.1435
(0.4290)

−0.5196
(0.4030)

−0.6269
(0.3942)

p-value H0 : δ = 0 − − 0.000 0.000 0.000 0.000 0.000 0.000

hN 0 0.380 0.520 0.430 0.054 0.108 0.215 0.860
Percent ‘trimmed’ 0 99.0 99.3 99.1 89.0 94.8 97.7 99.8

Table 6: Correlated random coefficient estimates of the calorie Engel curve
NOTES: Estimates based on the balanced panel of 1,358 households described in the main text. The Column 1 estimates correspond
to a ‘naive’ application of Chamberlain’s (1992) estimator with no trimming. Leave-Own-Village-Out cross validation (as described in
the main text) is used to select hN in Columns 2 to 4. Columns 5 to 8 set hN equal to 1/8, 1/4, 1/2 and 2 times its column 4 value. The
standard errors are computed in a way that allows for arbitrary within-village correlation in disturbances across households and time.
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CRC Estimates
(1) (2) (3) (4) (5) (6) (7) (8)

At 25th percentile

2000
−9.9423
(15.6502)

0.7256
(0.1069)

0.7337
(0.0533)

0.6812
(0.0749)

0.8205
(0.1751)

0.8516
(0.1841)

0.7326
(0.0973)

0.7096
(0.1112)

2001 − − − 0.7281
(0.0752)

0.8216
(0.1913)

0.8242
(0.1846)

0.6860
(0.1167)

0.7772
(0.1034)

2002 − − − 0.6649
(0.0943)

0.7328
(0.1639)

0.7716
(0.1806)

0.7043
(0.1104)

0.6820
(0.0977)

At 50th percentile

2000
−5.0196
(8.6997)

0.5479
(0.1353)

0.5828
(0.1142)

0.5916
(0.1385)

0.5386
(0.1541)

0.6081
(0.1498)

0.5600
(0.1977)

0.7245
(0.1356)

2001 − − − 0.4382
(0.1350)

0.4729
(0.1607)

0.5179
(0.1556)

0.4029
(0.2176)

0.5886
(0.1583)

2002 − − − 0.4554
(0.1039)

0.4559
(0.1605)

0.5041
(0.1422)

0.4448
(0.1951)

0.5922
(0.1427)

At 75th percentile

2000
−2.2671
(7.8200)

0.4485
(0.1676)

0.4984
(0.1572)

0.5414
(0.1892)

0.3810
(0.2141)

0.4719
(0.2136)

0.4635
(0.2808)

0.7329
(0.1581)

2001 − − − 0.2761
(0.1899)

0.2779
(0.2145)

0.3467
(0.2105)

0.2446
(0.2934)

0.4831
(0.2000)

2002 − − − 0.3382
(0.1419)

0.3011
(0.2251)

0.3546
(0.2007)

0.2998
(0.2662)

0.5420
(0.1779)

Table 7: Correlated random coefficient calorie demand elasticities
NOTES: Elasticities calculated using estimates reported in Table 6. The standard errors are computed using the delta method.
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