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1. Introduction 

 

 When suitable data on actual choices are not available, researchers studying consumer 

preferences sometimes pose hypothetical choice scenarios and ask respondents to state the 

actions they would choose if they were to face these scenarios.  The data on stated choices are 

then used to estimate random utility models, in the same manner as are data on actual choices.  

See, for example, Beggs, Cardell, and Hausman (1981), Fischer and Nagin (1981), Louviere and 

Woodworth (1983), Manski and Salomon (1987), and Ben-Akiva and Morikawa (1990). 

 Manski (1999) reasoned that stated choices may differ from actual ones because 

researchers provide respondents with different information than they have when facing actual 

choice problems.  The norm has been to pose incomplete scenarios, ones in which respondents 

are given only a subset of the information they would have in actual choice settings.  When 

scenarios are incomplete, stated choices cannot be more than point predictions of actual choices. 

 Elicitation of choice probabilities overcomes the inadequacy of stated-choice analysis by 

permitting respondents to express uncertainty about their behavior in incomplete scenarios.  

Manski (1999) sketched how elicited choice probabilities may be used to estimate random utility 

models with random coefficients.  This paper further develops the approach and reports the first 

empirical implementation. 

The paper is organized as follows. In Section 2, the random utility model usually used in 

the analysis of stated choice data is presented. Assuming an extreme value distribution of the 

random utility term leads to the standard multinomial logit model and to the mixed-logit model 

when the utility function has random coefficients. In Section 3, the advantages of eliciting choice 

probabilities as opposed to stated choices are discussed and it is shown that estimation of the 



utility function parameters is simpler and relies on weaker distributional assumptions. 

In Section 4, we apply the "elicited choice probability" methodology to estimate 

preferences for reliability in the supply of electricity to households in Israel. We describe the 

process of eliciting choice probabilities in hypothetical scenarios from a sample of households 

and analyze their responses. We then use the elicited choice probabilities to estimate mean 

preferences and willingness to pay for reductions in the duration or frequency of electricity 

outages. We also present estimates of individual preferences which are derived from the model 

in a straightforward manner.  Conclusions close the paper. 

 

 

2. Econometric Analysis of Stated Choices 

 

 Let i denote an individual asked to respond to a choice scenario.  In standard stated-

choice analysis, the respondent is presented with J hypothetical alternatives, j = 1, . . . , J and is 

asked to choose one.  Let yi denote the stated choice.  Let person i have observed attributes si.  

Let each alternative j presented to person i have stated characteristics vij.  For example, in a study 

of preferences for electricity reliability, the alternatives may differ in the stated duration and 

frequency of electricity outages and in the price of electricity. 

 It is common to assume that the utility of alternative j has the random-coefficients form 

 

                                              Uij  =  xijβi  +  εij .                                 (1) 

 

Here xij = x(vij, si) is a specified function of observed alternative characteristics and personal 
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attributes, while εij is a utility component that is observed by the decision maker but not by the 

researcher.  Let xi  ≡ (xij ,j = 1, . . . , J) .  It is also common to assume that εi  ≡  (εij ,j = 1, . . . , J) 

are independent and identically distributed (i. i. d.) conditional on xi, with the Type I extreme 

value distribution.  Then the probability of stating choice j conditional on xi and βi has the 

multinomial logit form 
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Finally, assume that β is statistically independent of x, with density )|( θβf  across the 

population of potential respondents, where the form of f is known up to the parameter vector θ.  

This yields the mixed-logit model of McFadden and Train (2000): 

 

1

( | , ) ( | )
ij

ih

x

i xJ
h

eP y j x f d
e

β

βθ β θ β
=

= =
∑∫ .                     (3) 

 

These choice probabilities provide the basis for estimation of the parameters θ by maximum 

likelihood or another method. 
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3. Econometric Analysis of Elicited Choice Probabilities 

 

3.1. Elicited Choice Probabilities and Stated Choices 

 

 Stated choice analysis assumes that individual i responding to a choice scenario knows 

the value of both xi and εi, and, hence, is able to state a definite utility-maximizing choice.  

However, the researcher only provides the stated characteristics vi ≡ (vij, j = 1,  . . , J), which 

determine xi but not εi.  It is therefore questionable that the respondent knows εi when the 

scenario is posed. 

 Eliciting choice probabilities enables respondents to express uncertainty about εi.  It 

permits a person to treat εi as a vector of utility components whose value need not be known 

when responding to the choice scenario, but which would be known in an actual choice setting.  

Formally, suppose that person i forms a subjective distribution for εi, derives the subjective 

probability that he would choose each alternative in an actual choice setting, and reports these 

subjective probabilities to the researcher.  Let qij denote the choice probability reported by person 

i for alternative j.  Then qij is the subjective probability that person i places on the event that the 

realizations of εi will make option j optimal. 

Suppose in particular that person i has utility function (1) and, given the stated 

characteristics vi, places a continuous subjective distribution Qi on εi.  Then his subjective choice 

probability for alternative j is 

 

 qij  =  Qi[xijβi + εij > xikβi + εik, all k ≠ j].                                    (4) 
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The right-hand side of (4) gives a subjective random utility interpretation of elicited choice 

probabilities. 

Subjective distribution Qi expresses resolvable uncertainty; that is, uncertainty about 

utility components that are not stated in the choice scenario but that would be known in an actual 

choice setting.  A person contemplating a choice scenario may also face unresolvable 

uncertainty.  That is, there may be utility components that the person believes would remain 

unknown in an actual choice setting.  The usual economic assumption is that a person copes with 

unresolvable uncertainty by maximizing subjective expected utility.  If a person only faces 

unresolvable uncertainty when responding to the choice scenario, he would place subjective 

probability one on the alternative that maximizes expected utility. 

It is important to understand how elicited choice probabilities and stated choices are 

related to one another.  Assuming that persons form subjective distributions in the manner 

described above, Juster (1966) and Manski (1990) reasoned that a person asked a stated-choice 

question computes his subjective choice probability for each alternative and reports the one with 

the highest probability.  Thus, when person i states that he would choose alternative j, he means 

that qij ≥ qik, all k ≠ j.  He does not necessarily mean that Uij ≥ Uik, all k ≠ j, as assumed in 

standard stated choice analysis.  The latter assumption is essentially correct only when qij = 1, 

which means that person i places subjective probability one on the event (Uij ≥ Uik, all k ≠ j).1

The above reasoning implies that the standard derivation of the mixed-logit model, 

described in Section 2, is valid only when the subjective choice probabilities of all respondents 

take the extreme values zero and one.  Suppose to the contrary that a group of respondents place 

                                                 
1 We say that the assumption is “essentially correct” because the utility inequalities hold with subjective probability 
one, not with certainty. 
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a non-extreme subjective probability, say 0.6, on choosing alternative j.  If asked to state their 

choices, all of these respondents would state that they would choose j, and the standard 

derivation assumes that all of them would choose j in actuality.  However, if respondents have 

accurate expectations and if their realizations of ε are statistically independent, then only 0.6 of 

them would actually choose j. 

Eliciting choice probabilities is more informative than asking for stated choices. When a 

person is sure that he would choose option j, he can express this belief by placing probability one 

on j.  When he is uncertain whether he would choose j, he can report a non-extreme choice 

probability. 

A person reporting non-extreme probabilities expresses the belief that, in an actual choice 

setting, he would possess choice-relevant information beyond the characteristics vi provided to 

him in the choice scenario; that is, some of the uncertainty he faces is resolvable.  Equation (4) 

quantifies the information that person i anticipates learning in an actual choice setting.  If he 

believes that he would acquire no further information in an actual setting, then Qi is degenerate 

and he reports extreme choice probabilities.  If he believes that he might obtain information that 

would affect his choice, then Qi is non-degenerate and he reports non-extreme choice 

probabilities. 

 

 3.2. The Linear Mixed Logit Subjective Random Utility Model  

 

 To use elicited choice probabilities to estimate the subjective random utility model (4) 

requires assumptions on the subjective distribution Qi that each respondent i places on εi and 

assumptions on the cross-sectional distribution of the random coefficients β.  This subsection and 
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the next pose assumptions similar to those maintained in standard stated-choice analysis.  The 

result is an extremely simple form of econometric analysis.  Section 3.4 considers weaker 

assumptions that may be more credible. 

The standard practice in stated-choice analysis has been to assume that the components of 

(εij, j = 1, . . . , J) are objectively i. i. d. with the extreme value distribution.  Suppose that 

respondents make the same assumption subjectively.  Then the choice probabilities (4) have the 

multinomial logit form 
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Applying the log-odds transformation to (5) yields the linear mixed logit model 
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where i ibβ η= + , 1( )ij ij i iu x x ,η= −  and the alternative designated j = 1 is arbitrarily chosen. 

Standard analysis of stated choices assumes that the cross-sectional distribution of β, 

hence η, is statistically independent of x.  Let this assumption hold.2  Without loss of generality, 

set E(η) = 0 as a normalization.   It then follows that b = E(β), E(u│x) = 0, and (6) is the linear 

mean regression model 

                                                 
2 In the application of Section 4, the attributes v of the hypothetical alternatives are randomly drawn; hence, η is 
statistically independent of v. We will assume that η is statistically independent of the observed personal attributes s 
that are determinants of x; hence, η is statistically independent of x in our application. 
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3.3. Rounding and Symmetry of Preferences 

 

If model (7) is taken literally, the mean-preference parameters b may be consistently 

estimated by least squares, without need to assume anything about the shape of the distribution 

of β.  This contrasts with standard econometric analysis of stated choices, where the researcher 

must specify a parametric family of distributions for β.  

However, we cannot take the model quite literally.  As will be discussed in Section 4, 

respondents tend to round their responses to the nearest five or ten percent.  Such minor rounding 

has been found to be commonplace in elicitation of subjective probabilities; see Manski (2004) 

and Manski and Molinari (2008). 

 Rounding of interior subjective probabilities (say, from 43 percent to 45 percent) is 

relatively unproblematic.  However, rounding of values near zero and one raises a serious 

difficulty due to the sensitivity of the log odd function near the boundaries of the [0, 1] interval.  

At the extreme, some respondents report subjective choice probabilities equal to zero or one, thus 

generating log odds that equal minus or plus infinity.  Hence, least squares estimation breaks 

down.3

 The inference problem created by rounding of small (large) subjective probabilities to 

 
3 One should not drop the cases with choice probabilities equal to zero or one, because this truncates the sample in a 
response-based manner.  One might consider an ad hoc transformation of reported zeroes and ones to values near 
these boundaries, but the least squares estimates are sensitive to the transformation performed. 
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zero (one) can be resolved if preferences are symmetrically distributed with center at b. 

Symmetry of preferences has been a common assumption in stated-choice analysis, which 

typically supposes that β has a normal distribution.  Symmetry implies that the unobserved uij are 

symmetrically distributed about zero conditional on xi and, hence, have median zero conditional 

on xi.  Thus, we have the linear median regression model 

 

1
1

[ln | ] ( ) ,ij
ij i

i

q
M x x x b

q
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

                                                 (8) 

 

whose parameters may be estimated by least absolute deviations (LAD) in the absence of 

rounding. 

 A well-known robustness property of the median of a random variable is its invariance to 

transformations that do not alter the ordering of values relative to the median.  Thus, if y is a 

random variable with median M, then M is also the median of any function f(y) such that 

 and   This holds even if the function f transforms small 

values of y to -∞ and large ones to ∞.  Hence, equation (8) continues to be the same linear 

median regression if small values of q are replaced by zero and large values by one. 

( )y M f y M< ⇒ < ( ) .y M f y M> ⇒ >

 In the application of Section 4 we will assume that preferences are symmetrically 

distributed.  When a reported subjective probability is zero or one, we transform it to a value 

close to zero or one.  We then estimate model (8) by LAD, whose result is insensitive to the 

specific transformation used.  For brevity, we will continue to refer to b as the “mean 

preferences” rather than the more cumbersome “center of symmetry of the preference 

distribution.” 
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3.4. Models with Weaker Assumptions on Respondent Beliefs 

The linear mixed logit model derived above has many appealing properties. The basic 

rm of

metric analysis of stated choices.  

As disc

ixed logit model is its assumption 

that eac

eveloped numerous 

approac

 

 

fo  the model presented in Section 3.2 places no restrictions on the population distribution of 

preference parameters and is easily estimable by least squares.  The robust-to-rounding version 

of the model developed in Section 3.3 requires only that the distribution of preferences be 

symmetric and is easily estimable by least absolute deviations. 

These properties compare favorably with standard econo

ussed in Section 3.1, the standard approach is valid only when respondents are certain of 

their stated choices.  It requires specification of a parametric family for the distribution of 

preferences.  Moreover, it requires often difficult numerical maximization of a likelihood 

function or solution of a set of nonlinear moment equations. 

Perhaps the main unappealing feature of the linear m

h respondent i believes (εij, j = 1, . . . , J) to be i. i. d. with the extreme value distribution.  

This distributional assumption is highly convenient.  As a consequence, it has been prominent as 

an assumption on the objective distribution of ε from the original conditional logit model of 

McFadden (1974) through the more recent mixed-logit model of McFadden and Train (2000).  

However, convenience does not make an assumption credible.  Previous applications of the 

assumption have not been able to motivate it persuasively.  Neither can we. 

Cognizant of the problem, econometricians have over the years d

hes to discrete choice analysis that rest on more credible, albeit less convenient, 

assumptions about objective probability distributions; see, for example, Manski (1975, 2007), 

Horowitz (1992), and Matzkin (1992).  These approaches can also be applied in the present 
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setting, which requires assumptions on subjective distributions.  We discuss one here. 

 

Maximum Score Estimation of Subjective Random Utility Models 

 k), Manski (1999) suggested 

assumi

x x

Considering a binary choice setting with alternatives (j,

ng only that each person i places subjective median zero on εij − εik and that the cross-

sectional distribution of β is symmetric.  The first assumption yields the inequality 

 

0.5 ( ) 0.iij ij ikq β≥ ⇔ − ≥                                           (9) 

 

he second assumption yields the inequality 

0.x x x b≥ ≥ ⇔ − ≥                          (10) 

 

oited to estimate b by the maximum score method (Manski, 1975, 

Indeed, inequality (10) may be applied to stated-choice data as well as to elicited choice 

 against the fact that 

T

 

( 0.5 | ) 0.5 ( )ij ij ikP q

 Inequality (10) can be expl

1985). 

 

probabilities.  As discussed in Section 3.1, a person’s statement that he would choose option j 

over k means that qij ≥ 0.5.  Hence, the maximum score method can be used to estimate a 

subjective random utility model with stated choice data.  In contrast with the standard approach, 

one need not assume that respondents are certain about their stated choices. 

 These nice features of maximum score estimation must be balanced

inequality (9) point-identifies b only if the attributes x have sufficiently rich support, as 

explained in Manski (1988) and elsewhere.  Researchers typically present only a finite set of 
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distinct choice scenarios to respondents, which do not suffice for point identification.  One may, 

nevertheless, exploit (9) to bound b.  The maximum score method consistently estimates the 

bounds.  We give an illustrative application in Section 4.7. 

 

 

4. Estimating Preferences for Electricity Reliability 

We have applied the “elicited-choice-probabilities” approach to estimate consumer 

valuatio

ies using the stated-choice approach.  Section 4.2 describes 

our res

.1. Stated-Choice Studies 

 

Various theoretical and applied models have been developed in the resource and energy 

 

n of residential electricity reliability in Israel. Knowledge of consumer willingness to pay 

for reliability is an important component of a rational planning strategy for capacity investment 

in the generation and transportation of electricity, as well as a key factor in determining an 

optimal electricity pricing schedule. 

Section 4.1 cites previous stud

earch design.  Section 4.3 reports basic findings on the elicited choice probabilities.  

Section 4.4 presents estimates of the mean consumer preferences β in models of form (8).  

Section 4.5 derives estimates of willingness-to-pay for electricity reliability by persons with the 

mean preferences.  Section 4.6 presents findings on the dispersion of preferences.  Finally, 

Section 4.7 uses the maximum score method to estimate a simple version of the model with 

weakened assumptions discussed in Section 3.4.  

 

4
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literature to estimate the marginal value of service reliability.4  Models have often been 

stimated using stated-choice data, with customers asked to choose among different bundles of 

service

of Israeli households to pay for reduced power outages. They found the conjoint 

analysi

In the present study, a stratified random sample of 557 Israeli households was drawn and 

an adult member of each household was interviewed in person about his or her preferences for 

reliability of home electricity supply.  The interviews were performed in summer 2005 by a 

                                                

e

 attributes.  Important stated attributes include the number and duration of outages, as well 

as the cost of service.  Revelt and Train (1998) and Goett et al. (2002) used stated-choice data to 

estimate mixed logit models of the type described in equation (3).  Cai et al. (1998) used a 

different methodology -- an extension of the “double-bounded” procedure used in studies of 

contingent valuation of natural resources -- to estimate willingness to pay for electricity service 

attributes.   

A previous study of the Israeli electricity market was conducted by Beenstock et al. 

(1998). They used both conjoint analysis and contingent-valuation data to estimate the 

willingness 

s more reliable. Here, they asked consumers to rank the hypothetical alternatives and they 

analyzed the rank-ordered data. Their estimates indicate that the perceived cost of unsupplied 

electricity to Israeli households in 1991 was between 2.3 US dollars per KWh (in the 

spring/autumn during morning/midday hours) and 11 dollars per KWh (in the winter during 

afternoon/evening hours). 

 

4.2. Study Design 

 

 
4  See Caves et al. (1990) for a comparison of the different approaches and Lawton et al. (2003) for a recent 

review of U.S. results. 
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professional survey research firm, with responses recorded on laptop computers using Computer 

ssisted Personal Interview (CAPI) software. 

 
es. Each alternative is characterized by a different 

bi-monthly electricity bill and by different numbers of outages and different average duration of 
the out
choosing one of the two alternatives. The chance of each alternative should be a number between 

you give a 5% chance to one alternative it means that there is almost no possibility that you will 
ternative it 

means that almost surely you will choose it."  

arameters of a random utility model.

0 minutes, and 120 to 240 minutes.  In our analysis, we 

took th

                                                

A

Each respondent was asked to report choice probabilities in ten different “games.”  A 

game specifies a scenario in which the person is presented with two alternative bundles of 

attributes (J = 2) and is asked to state his or her chances of choosing each alternative. 

 The games were introduced as follows: 

"In each game we will show you two alternativ

ages. In each game, you should evaluate what is the chance in percentage terms of 

0 and 100 and the chances given to the two alternatives should add up to 100. For example, if 

choose that alternative. On the other hand, if you give an 80% or over chance to an al

 

Since the early 1990s, economists have developed considerable experience similarly asking 

respondents to state expectations of future events as the “percent chance” that the event will 

occur; Manski (2004) reviews the literature.  The novelty in the present study is our use of 

responses to this type of question as a replacement for actual choice data to estimate the 

5p

In each game, the alternatives presented to sample members differed in the duration (D) 

and frequency (F) of outages and in the corresponding electricity bill (C).  Thus, a stated 

alternative is a (D, F, C) triple. The stated frequencies of outages were 0 (perfect reliability), 1, 2, 

4, 5 and 8 outages per season. The duration of an outage was stated as an interval of length 0 to 

10 minutes, 10 to 60 minutes, 60 to 12

e duration to be the mid-point of the interval; that is, 5, 35, 90 or 180 minutes.  The stated 

 
5 Delavande (2008) uses a different type of probabilistic expectations data to estimate a random utility model.  She 
has data on actual choices and uses elicited expectations to characterize the attributes of alternatives. 
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electricity bill (C) took one of five values: the household’s actual electricity bill, 15 or 40 percent 

above the actual bill, or 10 or 20 percent below the actual bill.  The stated combinations of (D, F, 

C) were randomly generated, but dominated alternatives were excluded. 

 The value that a person attaches to electricity reliability may depend on the timing of 

outages.  For example, an anticipated outage at 11 AM on a weekday in the summer may be 

valued differently than an unanticipated outage at 8 PM on a weekend day in the winter.  To 

assess the variation of valuation with timing, each game was set in a scenario characterized by 

three timing variables. The first timing variable is season: 50 percent of the games were set in the 

e 360 NIS. In alternative 2 you 

summer, 41 percent in the winter, and 9 percent were set in the spring (fall is very short in 

Israel). The second variable relates to the time of day when outages occur: during peak hours (39 

percent), off-peak hours (30 percent), or intermediate hours (31 percent).  The third timing 

variable refers to the days of the week, specifically whether outages occur during the weekend or 

not. An additional characteristic of the scenario is the availability of advance warning on the 

outages. This feature was present in only 9 percent of the games. 

 To illustrate, here is how a typical game was described: 

 

“Suppose you are in the summer and all the outages occur between 5PM and 10PM (peak hour 

in summer) during weekends and there is no advance warning. In alternative 1 you are offered 5 

outages lasting up to 10 minutes each and the electricity bill will b

are offered 0 outages and the electricity bill will be 480 NIS.” 

 

The abbreviation NIS stands for New Israeli Shekel, the currency unit.  One NIS was worth 

about 22 US cents when the survey was administered in the summer of 2005. 
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The games were played in 10 out of the 36 possible scenarios. These were the scenarios 

deemed to be of greatest interest and/or relevance for analysis.  (For example, all weekend hours 

ere considered off-peak.)  In order not to confuse the respondent by changing the timing 

os changed across 

respond

e regularity and have occurred even more frequently in the 

past.  T

 games and 38 (6.8 percent) gave 

sponses in nine games.  In all, 5430 responses were obtained from the 557 sample members.  

s 5430/5570 = 0.975.   

Let qi1 and qi2 denote the choice probabilities (percent chance divided by 100) for the two 

alternat

w

scenario in each game, the same scenario was maintained during 5 successive games. Thus, a 

respondent plays 5 different games in each of two scenarios. The scenari

ents to cover the ten timing possibilities of interest. These scenarios and their frequency 

in the sample are listed in Table 1. 

We believe the scenarios posed to be realistic in the Israel context.  There has been an 

ongoing public debate in Israel about problems in generating the amount of electricity needed to 

satisfy growing demand.  During the summer, in particular, newspapers are full of alarming news 

about warnings from the electricity company that it will not be able to generate enough 

electricity.  Outages occur with som

hus, we think that the survey respondents are not surprised when presented with scenarios 

where outages occur in different frequencies and durations. 

 

4.3. The Elicited Choice Probabilities 

 

The response rate to the questions posed was very high.  Of the 557 sample members, 

500 (89.8 percent) reported choice probabilities in all ten

re

Thus, the overall item response rate wa

ives elicited from individual i in a given game.  In all cases, we have qi2 = 1 - qi1.  That is, 
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the elicited choice probabilities always add up to 1. 

The elicited percent-chance responses for alternative 1 are tabulated in Table 2 and their 

histogram is shown in Figure 1. The table and figure show that most responses are multiples of 

ten and

ential for our analysis, but gross rounding 

would 

nt responses were 20 

and 80

at least 0.84 of the cases.  We say 

“at lea

pute these estimates, we replace reported zero probabilities by 0.001 

 almost all of the rest are multiples of five.  The bimodality of the histogram in the figure 

reflects the random assignment of the stated characteristics of alternatives. 

Minor rounding of responses is inconsequ

be problematic.  It is therefore important to observe that the data do not show evidence of 

gross rounding.  In particular, the elicited choice probabilities are not concentrated at the values 

0, 50, and 100; the frequencies of these responses are just 0.08, 0.05, and 0.08 respectively.  

Instead, the distribution of responses is weakly bimodal.  The most prevale

 percent, with response frequencies of 0.118 and 0.119. 

Table 2 shows the importance of eliciting choice probabilities rather than stated choices.  

A stated choice question only permits the respondent to state a 0 or 100 percent chance of 

choosing an alternative.  When given the opportunity to state a value in the [0, 1] interior, sample 

members state an interior value in 0.84 of their responses.  Thus, respondents find the stated 

scenario too incomplete to give a definitive choice response in 

st 0.84” because some of the observed responses of 0 and 100 percent may be rounded 

versions of interior values. 

 

4.4. Estimation of Mean Preferences 

 

Table 3 presents LAD estimates of the parameters β in model (8) for three specifications 

of the attributes x.  To com
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and ones by 0.999. As discussed in Section 3, LAD estimation of a median regression function is 

e use in place of zero and one. 

The estimates in Table 3 use 3947 of the available 5430 observations, and comprise data 

from 55

y but zero duration.  We 

were c

mit precise inference.  We therefore decided to focus on the 

scenari

insensitive to the specific values that w

6 of the 557 households. (The one deleted household participated in only a single game, 

which was dropped for one of the reasons described here).  The reduction in sample size 

occurred for two reasons.  First, we had to drop 990 games where the software erroneously 

generated alternatives in which outages occur with positive frequenc

oncerned that respondents might be confused by such alternatives, so we dropped the 

games in which they occurred. 

Second, we dropped the 493 observations on games played in scenarios with advance 

warning of electricity outages.  The reduction in consumer welfare caused by outages may 

depend on whether advance warning is given; hence, the utility parameters β should be interacted 

with this feature of the scenario.  However, our sample of 493 observations with advance 

warning was too small to per

os with unannounced outages, for which we have many more observations.  The latter 

also are the scenarios of most interest to policy makers in Israel. 

Recall that the unobserved component of utility in equation (6) has the form 

.)( 1 iiijij xxu η−=   Thus, the random parameter specification implies that u is heteroskedastic and 

that it is correlated across the games played by a given sample member.  These features of u do 

not affect the consistency of LAD estimation but do affect statistical inference. 

We obtained the standard errors of the parameter estimates shown in Table 3 by cluster 

bootstr

parameters, we 

apping the sample.  Cluster bootstrapping means that, to generate a pseudo-estimate of the 

drew 556 respondents with replacement from the actual sample of 556 
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respondents and used the data on all of the games played by these persons to re-estimate the 

model. We repeated this process 500 times to generate 500 pseudo estimates of β. The reported 

standar

e group. Respondents 

lf-reported whether their household income is below the Israeli average income (36 percent), at 

21 percent), or above average (25 percent).  The remaining 18 percent 

refused

inute per 

outage 

d errors are the standard deviations of these 500 pseudo estimates. 

 

Parameter Estimates 

The three columns of Table 3 present estimates of successively richer utility models.  

Column (1) reports estimates of a simple model that takes the attributes of an alternative to be D, 

F, and C.  We further allow the electricity-cost coefficient to vary by incom

se

the average income (

 to answer the question and were assigned to a residual group.  We would have preferred 

to ask respondents to report their household incomes, but this aspect of the questionnaire design 

was not under our control.  Respondents were not told the average Israeli income.  Hence, there 

is reason to question the accuracy of the self-reports of being below or above average. 

In any case, the parameter estimates have the expected negative signs and the standard 

errors indicate that they are statistically precise. Observe that the marginal disutility of electricity 

cost is smaller for higher income households. 

This first model makes the unrealistic assumptions that (a) the disutility of an additional 

outage is the same regardless of its duration and (b) the disutility of an additional m

is the same regardless of the number of outages.  To enable a more flexible description of 

utility, the model in column (2) adds to x the total outage time T = F × D.  This gives the 

following specification of the utility function: 

( )ij iC j iD j iF j iT j ijU IncomeGroup C D F Tβ β β β ε= × + + + + .    (11) 
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This specification extends Beenstock et al. (1998), who used only attribute T, without separate 

appearance of F and D. 

 Comparing the estimates in columns (1) and (2) shows that adding total outage time T to 

the model has essentially no effect on the electricity-cost coefficients, but it sharply reduces the 

magnitudes of the coefficients on D and F, which are now stat m 

nce they allow for asymmetric marginal effects of D and F. Recall that 

 the interactions do not reject the hypothesis that the utility effect of outages 

does no

istically indistinguishable fro

zero.  The new coefficient on T is negative and is statistically precise.   Nevertheless, we include 

D and F in the model si

we will use the estimated coefficients to compute the willingness to pay (WTP) for reductions in 

outages. The standard errors we report for WTP will account for the imprecision of the estimated 

coefficients on F and D.  

The models in columns (1) and (2) presume that consumer valuation of electricity 

reliability does not depend on the timing of outages.  As described in Section 3, the scenario 

specified for each game contains three timing indicators: season, hour, and weekend/weekday.  

In principle, the reduction in consumer welfare caused by outages may vary with these aspects of 

timing. 

To explore this matter, we interacted D, F, and T with timing indicators.  For simplicity, 

we grouped the off-peak and intermediate hours into a single off-peak category.  We did not 

foresee any reason why the electricity-cost coefficients should vary with the timing of outages 

and, hence, did not interact C with the timing indicators. 

F-tests of

t vary across seasons (p-value 0.11). This result is in line with the general opinion of 

experts in the area and with the fact that there is little seasonal difference in household energy 

consumption in Israel. 
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With these preliminary results in mind, we present in column (3) a model that interacts D, 

F and T

 in welfare associated with off-peak weekday outages. Notice that the 

estimat

ics and estimated a separate model for each sub-sample.  

e performed three splits of the sample, these being by age, education level, and income 

he model in column (3) of Table 3.  Appendix Table 

A1 pre

two groups, the estimates of the coefficients on F, D, T and their interactions with the timing 

                                                

 with dummy variables that distinguish peak from off-peak weekday hours and weekdays 

relative to the weekend.  Comparison of the estimates in columns (2) and (3) shows that addition 

of the interactions does not materially change the coefficients of the model in column (2), which 

now give the reduction

ed interactions for D and F are much larger than those for T (relative to their off peak 

weekday coefficients). Individually, these interactions effects are not precisely estimated but, 

jointly, they cannot be rejected.6  In any event, the standard error of the WTP will reflect the 

imprecision of the interaction effects.  

 

Parameter Estimates for Sub-Populations 

It may be that households with different observed characteristics have systematically 

different preferences and expectations.  To investigate this possibility, we split the sample into 

sub-samples with different characterist

W

respectively.  In each case, we estimated t

sents the estimates. 

We first split the sample between households where the respondent was 50 years of age 

or older and those where the respondent was less than 50 years old.  There are 1739 observations 

from 244 "old" households and 2208 observations from 312 "young" households. Comparing the 

 
6 An F test for zero interactions between "peak" and D, F and T has p-value less than 0.01, while a similar test for 
the interaction with D and F only has p-value 0.03. Similarly, an F test for the interactions between "weekend" and 
D, F and T has p value less than 0.01, while a similar test for the interaction with D and F only has p-value 0.12. 
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variables do not significantly differ from one another (p-value 0.45). The only statistically 

significant difference between the age groups is in the coefficients of the cost variable (C) and its 

interact

me groups: below average income (198 

househ

h 

househ

omists are often concerned about the possibility 

of orde

oughtfulness of the responses may diminish or improve as 

e questioning proceeds.     

ions with the income group (p-value 0.027).   

We next split the sample according to the respondent’s education level. There are 179 

households where the respondent finished college and 377 households where the respondent did 

not. Comparing the two groups, the estimates of the coefficients of F, D, T and their interactions 

with the timing variables again do not significantly differ from one another (p-value 0. 58). In 

this case, the cost coefficients do no differ between the education groups either (p-value 0.28).  

Finally, we split the sample into three inco

olds), average income (119 households), above average (140 households) and households 

that did not provide this information (99 households). In this case, there are statistically 

significant differences in the coefficients of D and F and their interactions with the timing 

variables (p-value 0.004 and 0.08, respectively). 

In sum, there is some evidence that preferences and expectations may vary wit

old characteristics such as age and income, but not education. For simplicity, in what 

follows we ignore these differences. 

 

Ordering Effects 

Survey researchers and experimental econ

ring effects in responses when persons are asked sequences of questions.  Persons may 

tire as they proceed through the questions, but they also may become more familiar with the 

mode of questioning.  Hence, the th

th
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Recall that each of our households faced five games in each scenario, and that the 

scenari

es and games 4-5 to be the “late” games.  In the other, we defined 

the five

ear to be moderate ordering effects that should give caution to application of 

some o

 the 

os were played one after the other. Ordering effects could occur within each scenario and 

across scenarios.  To investigate these possibilities, we considered two definitions of “early” and 

“late” games.  For each definition, we separately estimated the model of Table 3, column (3), 

using data from the early and late games.  In one definition, we defined games 1-3 within a 

scenario to be the “early” gam

 games of the first scenario to be the early games and those of the second scenario to be 

the late games. 

We found that splitting the data in these ways had essentially no effect on the four 

estimated cost coefficients. However, some of the nine duration/frequency coefficients 

moderately differed when estimated on different data subsamples, to an extent that appears not 

attributable solely to finite-sample statistical variation.  As a consequence, some of our 

willingness to pay estimates remained unchanged, while others measurably differed.  In sum, we 

found what app

f our estimates.  However, the observed effects were neither strong nor pervasive enough 

to render the estimates unusable.  We have no basis to conjecture about the cognitive processes 

that may generate ordering effects.  We think this is an important subject for future research. 

 

4.5. Willingness to Pay for Reliability 

 

In this section, we use the parameter estimates in column (3) of Table 3 to estimate the 

willingness of a consumer with mean preferences to pay for electricity reliability.  Willingness to 

pay (WTP) equals the negative of the ratio of the marginal utility of an outage attribute to
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marginal utility of electricity cost.  The frequency and duration of outages are negatively valued 

money the household is willing to pay for a reduction in 

these attributes. 

ion of an outage D.  Thus, the table shows the amounts that a person with mean 

prefere

estimated 

separat

Finding

n when there is one outage per season.  We find that WTP declines with F, 

                                                

attributes, so we report the amount of 

Table 4 evaluates WTP for a unit reduction in F and D at specified values of (F, D) and 

specified timings for outages.  Each column concerns one of the three timing scenarios: weekday 

peak, weekday off-peak, and weekend off-peak. There are no peak hours on weekends. 

To enhance comparability of the findings for D and F, the entries in the table divide the 

WTP for a reduction in D by the number of outages F, and they divide the WTP for a reduction 

in F by the durat

nces is willing to pay for a one-minute reduction in outage, where the reduction may be 

achieved by reducing the duration or frequency of outages. 

For specificity, Table 4 considers a household with average income. We 

e electricity-cost parameters for households with below average and above average 

incomes, so their WTP are fixed multiples of the calculations presented in the table.  

Specifically, a household with below (above) average income has 0.51 (3.75) times the WTP 

amounts shown.7  

 

s 

The top panel of the table shows WTP for one-minute reductions achieved by reducing 

the duration of outages.  Consider the findings for weekends.  The estimate of 0.98  for F = 1 

indicates that the consumer is willing to pay 0.98 US dollars for a one-minute reduction achieved 

by reducing duratio

 
7 The standard errors of the estimates also change, but not necessarily proportionally. 
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being 0.36 US dollars per minute when there are five outages per season. 

e table shows that WTP during peak hours on weekdays is very similar to that during 

weeken

ally very imprecise, so 

we will

 a duration of 60 minutes.  WTP declines with D, being 

25 US 

ecise, even though the coefficients 

on F an

r of outages than for 

shorter

Th

ds.  In contrast, consumers place little or no value on reductions in the duration of 

outages during off-peak hours.  The estimates are small in magnitude and, for the most part, are 

statistically indistinguishable from zero. 

The bottom panel of Table 4 shows WTP for one-minute reductions achieved by reducing 

the duration of outages.  The estimates for D = 10 and D = 30 are statistic

 focus on the much more precise estimates for D ≥ 60. 

 Consider the findings for weekends.  The estimate of 0.42 for D = 60 indicates that the 

consumer is willing to pay  0.42 US dollars for a one-minute reduction achieved by reducing the 

frequency of outages when outages have

cents per minute when outages have last for five hours.  The table shows that WTP during 

weekdays is very similar to that during weekends, both for peak and for off-peak hours.  It is 

noteworthy that most of the WTP estimates are statistically pr

d D and their interactions with the timing variables usually are not.  

In sum, the WTP for a one-minute reduction in outage time is similar during weekends 

and during peak hours on weekdays. Consumers, however, value differently how this one minute 

reduction in outage time is achieved. They are willing to pay more when a one minute reduction 

in outage time is obtained by reducing the duration of outages than by reducing the number of 

outages during the season. During the weekday off peak hours, this pattern is reversed as 

consumers are willing to pay somewhat more for reductions in the numbe

 durations per outage.  

The welfare cost of outages is often expressed in terms of money per KWh of electricity 
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unsupplied. To translate the estimated WTP amounts of Table 4 into this measure, we multiply 

them by 60 minutes and divide by the average KWh of electricity consumption, which varies by 

timing scenario and income group.8 Table 5 presents these estimates in US dollars per KWh 

unsupplied. 

Our estimates are somewhat higher than those estimated by Beenstock et al. (1998) for 

the Isra

analysis of stated choice probabilities.  Comparisons should also be made with 

caution

eli economy in 1991-1992.  The estimates are more in line with those reported for the 

United States by Doane et al. (1998) and Woo et al. (1991).  Comparison of our estimates with 

earlier ones by other authors should be made with caution because our methodology differs from 

that of previous work.  Whereas the earlier estimates are based on analysis of stated choices, ours 

is based on 

 because the time periods differ and because there is no inherent reason why WTP should 

be the same in different countries and/or in different periods. 

 

4.6. The Dispersion of Preferences 

 

Recall that we assumed a random-coefficient model for utility, with i ibβ η= + .  Sections 

4.4 and 4.5 analyzed the mean preferences b and the derived WTP of persons with these 

preferences.  In this section, we study the dispersion of preferences.  Our analysis is quite simple.  

 does not require parametric distributional assumptions on preferences.  Nor does it employ the 

 methods typically applied to random-coefficients models 

estimated with actual or stated choice data. 

                                                

It

cumbersome maximum likelihood

 
8  We use the actual KWh consumed for the households in the sample, which is an average for the whole bi-

monthly billing cycle. We adjust this average KWh to the different scenarios using the national averages for 
electricity consumption in the different scenarios and their relative frequency during the billing cycle.  
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Consider sample member i.  We first apply our estimate of b to equation (6) to estimate 

the un -specific observed utility components ui2.  We then estimate the person preference 

parameters ηi by solving the equations .)( 122 iiii xxu η−=   

We can solve exactly for η when the number of observations (games) per person is equal 

to the number of regressors in the model (the dimension of η). When the number of observations 

per person is larger than the number of regressors, we compute the least squares solution for η. 

We use the model in column (3) of Table 3 to compute .  Our computations allow the 

valuatio

tions available to estimate ηi.  Under this assumption, the 

model 

e 

two ma

ijû

n of outages to vary with their timing but assume that timing affects only the mean 

preference b and not the individual component ηi. While somewhat restrictive, this assumption 

greatly increases the number of observa

has five random components.  Hence, we can compute η for the 448 sample members who 

played five or more games. 

Table 6 presents selected quantiles of the estimated distribution of βi.  The findings hav

in features that warrant attention.  First, we find considerable dispersion of preferences 

across the population.  In each case, the interquartile range of the preference parameter is large 

relative to its mean value.  Second, although the majority of the estimates of all coefficients are 

negative as expected, sizable fractions are positive (see Table 7).  Positive values are contrary to 

standard consumer theory, which presumes that households should negatively value electricity 

outages and price. 

Some of the dispersion and positivity of the estimated coefficients may be a consequence 

of the probability rounding discussed in Sections 3 and 4.3.  Recall that the LAD estimation we 

used to estimate mean preferences in the population is robust to rounding.  However, there is no 

robust way to estimate individual preference parameters.  Our use of equation (6) to estimate 
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person-specific βi inevitably rests on the rounded probability values that subjects report and, in 

particular, on the way that we interpret reports of zero probability. 

Rounding may partially explain our findings on the distribution of individual preferences, 

but we 

4.7. Ma

alue distribution.  In this section we present findings based 

n the model with weaker assumptions discussed in Section 3.4.  Here we assume only that each 

y the maximum score method. 

Define yir for each game r = 1, . . . , Ri played by individual i to be 

0 otherwise,

⎧
⎪

⎩

doubt that this is the entire story.  Our utility model, as any such model, can no more than 

approximately describe consumer behavior.  The model delivers sensible findings regarding 

mean preferences, but more questionable ones about the full distribution of preferences.  This 

suggests that the model should not be taken as the final word when analyzing consumer 

preferences for electricity reliability. 

 

ximum Score Estimation of Mean Willingness-to-Pay 

 

 The empirical findings presented in Sections 4.4 through 4.6 are based on the mixed-logit 

model developed in Sections 3.2 and 3.3.  As discussed earlier, this model has many appealing 

properties.  However, it makes the hard-to-motivate assumption that each respondent i believes 

(εij, εij) to be i. i. d. with the extreme v

o

person i places subjective median zero on εij − εik, and we appl

2 if 0.5r
i

ir

q
y

≥
= ⎨
⎪

 

where qi2

1

r is the elicited probability of choosing alternative 2 in game r.  The score function can 

be written  
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{ }2 1
1 1 1

( ) ( ) 0
iRN N

i i r

S b R y I x x b
= = =

= − − − ≥                                                 (12) i ir i r i r∑ ∑∑

where I  is the indicator function taking the value one when the expression within the curly 

brackets is true and zero otherwise. Thus, one loses a point when the value of y differs from that 

of the indicator function. 

The maximum score estimate is the set of values of b that minimize the number of wrong 

predictions, which is 

{ }2 1
1 1

( ) ( ) 0
iRN

∗
ir i r i r

i r

S b y I x x b
= =

= − − ≥∑∑ .                                                         (13) 

Observe that is a step function.  Hence, standard derivative-based local optimization 

 a finer grid within this neighborhood.  We do not report confidence 

interva

 identified models is not available. We only know that the estimates are 

consistent under the maintained assump

To ease the computational burden, we estimate simpler utility function specifications than 

specifications that eliminate all interaction terms.   These are 

1

S∗b

routines cannot be applied.  Instead, we perform a grid search, which guarantees that we find the 

global minimum of S∗b .  We first use a coarse grid to locate a neighborhood of the global 

minimum and then search

ls or other measures of precision because asymptotic distribution theory for MS 

estimation of partially

tions. 

those underlying the estimates in Table 3. Specifically, we estimate parameters for two 

1 1 1
ij iC j iT j ijU C Tβ β ε= + +                                                            (14a) 

2U C D F2 2 2 2 .ij iC j iD j iF j ijβ β β ε= + + +                                             (14b) 

In each case, the mean values of the parameters can at most be identified up to scale.  To fix the 

scale, we impose the normalization 1Cb = − .  Hence, there is one parameter to estimate in the 
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first specification of the utility function, 1
Tb  and two parameters in the second one, 2

Db   and 2
Fb . 

 Consider the first specification.  We found that the minimum value of S∗boccurs in the 

short interval [ 1.2772, 1.2223].− −   For comparison, LAD estima

yields  = -0.0010206, which imply 

tion of the mixed logit model 

1
Cb  = -0.0007817 and  1

Tb T

C

b
b  = 1.31.  Thus, t

MS estimates for 

he LAD and the 

T

C

b
b  are very similar. 

Consider the second specification.  We found that the minimum value of occurs in 

the two small regions 116.34]) ( 5.89,[ 116.66, 116.65]).− − − ∪ − − −  Thus, the 

estimate of the first parameter is up to 0.01 rounding) and the estimate of the 

 = -0.000597,  

S∗b

( 5.90,[ 116.58,

 essentially a point (

second parameter is a very short interval.  For comparison, LAD estimation of the mixed logit 

model yields 2
Cb 2

Db  = -0.0048388, and 2  = -0.1060176, implying Fb D

Cb
b = 8.131 and  

F

C

b
b  = 177.6.  Thus, the LAD estimates of D

C

b
b and F

C

b
b  are moderately larger than the MS estimates, 

cifications are reasonably close to one another.  It would

le

 

 

5. Conclusion 

 

This paper makes two contributions. First, it extends the Manski (1999) approach to the 

but not very different. 

We are encouraged that the WTP estimates obtained by LAD and MS estimation of 

simple utility functions spe  be useful to 

compute MS estimates of richer utility specifications.  However, MS estimation of long 

parameter vectors, such as those estimated by LAD in Table 3, is computationally very difficult.  

Hence, we suffice with the simp r specifications considered here. 
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estimation of random utility models with random coefficients using elicited choice probabilities 

instead of stated choices. The linear mixed logit model developed in Section 3 requires weaker 

parametric restrictions than conventional mixed-logit analysis of stated choices and is much 

asier to implement.  However, this model still requires certain distributional assumptions, 

amely symmetry of the cross-sectional distribution of preferences and the i. i. d. extreme-value 

the subjective distribution of ε.  The linear model estimable by maximum score 

eakens the latter assumption considerably. 

methodology allows for estimation of individual 

prefere

e

n

assumption on 

w

Second, the paper reports the first application of the "elicited choice probability" 

methodology. We estimate preferences for electricity reliability in Israel. We use the estimated 

mean preferences to estimate willingness to pay for reductions in the duration of electricity 

outages. We find that households with mean preferences are willing to pay significant amounts 

of money for electricity reliability. During weekends and peak weekday hours, consumers are 

willing to pay more  for a one minute reduction in outage time obtained by reducing average 

duration of outages than by reducing the number of outages. However, during the weekend off 

peak hours, this pattern is reversed. The 

nces in a straightforward manner, and we find that preferences for electricity reliability 

exhibit considerable dispersion in the population.  

As described in the paper, eliciting choice probabilities from a sample of households 

proved to be no more difficult than eliciting stated choices.  Choice probabilities allow 

consumers to express uncertainty about their actual behavior whereas stated choices do not. 

Thus, it seems that we can get "more for the buck" by adopting this approach in applied research. 
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Table 1: Distribution of Scenarios     
   
Scena
   
No advance warning, off peak, weekday, winter 587 10.8 

nce warning, peak, weekday, summer 

rio Count Percent 

584 10.8 

kend, summer 537 9.9 
nce warning, peak, weekday, spring 499 9.2 

 
100 

No adva
No advance warning, intermediate, weekend, winter 568 10.5 
No advance warning, intermediate, weekday, summer 569 10.5 
No advance warning, off peak, weekend, winter 524 9.7 
No advance warning, off peak, weekday, summer 531 9.8 
No advance warning, peak, weekday, winter 538 9.9 
No advance warning, intermediate, wee
No adva
Advance warning, peak, weekday, summer 493 9.1 
  
Total 5,430 
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Table 2: Tabulation of Choice Probabilities
    

 

 (for alternative 1) 
    

Percent Cum. 
  

 

 Frequency. 
  
0 432 8.0 8.0 

0.0 8.0 
0.5 8.5 
7.4 15.8 
0.0 15.8 
0.2 16.0 
11.8 27.9 
0.2 28.1 

30 541 10.0 38.0 
35 3 0.1 38.1 
40 488 9.0 47.1 
45 12 0.2 47.3 
49 5 0.1 47.4 
50 252 4.6 52.0 
51 3 0.1 52.1 
55 10 0.2 52.3 
60 534 9.8 62.1 
65 4 0.1 62.2 
70 480 8.8 71.0 
75 2 0.0 71.1 
80 645 11.9 82.9 
85 11 0.2 83.1 
90 433 8.0 91.1 
95 17 0.3 91.4 
99 12 0.2 91.6 
100 454 8.4 100.0 
    
Total 5,430 100  

1 1 
5 26 
10 400 
12 1 
15 11 
20 642 
25 11 
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Table 3. LAD Estimates of Utility Function Parameters1

Dependent variable: log probability ratio  
 

 (1) (2) (3) 
    
Cost:  baseline -0.00 016 -0.00148 
 [0.00032] [0.0003 [0.00032] 
    
         Dummy for average income 0.000 0.0008 0.00073 
 [0.000 [0.0003 [0.00036] 
    
        Dummy for above ave  inco e 0.001 0.0015 0.00128 
 [0.000 [0.0003 [0.00038] 
    
        Dummy for missing in e 0.000 0.0005 0.00048 
 [0.000 [0.0004 [0.00046] 
    
Duration -0.00 -0.00082 0.00122 
 [0.000 [0.0010 [0.00189] 
    
Frequency -0.11 -0.0113 -0.0049 
 [0.014 [0.0300 [0.0565] 
    
Total Outage Time (T = Fx -- -0.0009 -0.00080 
  [0.0002 [0.00041] 
    
Duration X Weekend -- -- -0.0039 
   [0.0022] 
 -- --  
Duration X Peak   -0.0032 
   [0.0024] 
    
Frequency X Weekend -- -- 5 
   [0.0646] 
    

uency X Peak -- -- 0.0233 
 [0.0676] 

    
T X Weekend -- -- 0.00009 
   [0.0005] 
    
T X Peak -- -- -0.00022 
   [0.00049] 
    
    
Observations 3947 3947 3947 
        
1 Cluster-bootstrapped standard errors based on 500 replications. 

142 -0.0 3 
0] 

76 8 
35] 5] 

rage m 36 1 
35] 6] 

com 38 5 
45] 5] 

467
47] 8] 

82 
9] ] 

D) 2 
0] 

-0.039

Freq
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Table 4: M ge Time1

(Households with erage Income) 
 

ean WTP (US dollars) for a 1-minute Reduction in Outa
 Av

 (1) (3) 
eduction in D Weekday, Peak Weekda  Off-Peak Weekend, ff-Peak 

0.88 - 0.98 
 (0.49) ( (0.

F=2 0.59 05 0.60 
( (0.

F=3 0.49 0.47 
 (0.17) (0.10) (0.17) 

0.40 
 (0.14) ( (0.

F=5 0.42 16 0.36 
( (0.

  
eduction in F Weekday, Peak Weekda  Off-Peak Weekend, ff-Peak 

 -0.24 1.51 
 (1.08) ( (1.

D=30 0.12 28 0.64 
(0.31) ( (0.

D=60 0.21 0.42 
 (0.13) (0.19) (0.17) 

 5 0.35 
 (0.08) (0.11) (0.

D=120 0.25 25 0.31 
(0.07) (0.08) (0.

D=150 0.26 24 0.29 
 (0.07) (0.08) (0.08) 

0.27 24 0.28 
 (0.08) (0.08) (0.

D=300 0.28 24 0.25 
(0.09) (0.09) (0.

   
r-bootstrapped standard errors are in paren ses. 

(2) 
R y,   O

F=1 0.12 
0.45) 48) 
0.

 (0.25) 0.18) 24) 
0.11 

F=4 0.45 0.14 
0.08) 13) 
0.

 (0.13) 0.07) 11) 
  
R y,   O

D=10 0.38 
1.56) 13) 
0.

 0.46) 35) 
0.26 

D=90 0.24 0.2
11) 

0.
 09) 

0.

D=180 0.
08) 

0.
 08) 

 
1Cluste the
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5 ost (US dollars per KWh un
                                                             

Table : Mean Outage C supplied)1

                                  
 
Redu  D Wee eak Weekd Peak Weeke Peak 

47.22 
( ( (

28.56 
( ( (

22.34 

F=4 21.38 19.24 

    
Redu  F Wee eak Weekd Peak Weeke Peak 

- 72.37 
( ( (

30.73 
( ( (

(

D=180 
(3.88) 
11.99 

 (4.26) (5.20) (3.81) 
  

Cluster-bootstrapped standard errors are in parentheses. 

(1) (2) (3) 
ct n inio kday, P

4
ay, Off-
-7.38 

nd, Off-
F=1 2.37 

 23.58) 
2

26.80) 23.12) 
F=2 8.38 3.26 

 11.85) 
2

10.92) 11.54) 
F=3 3.71 6.81 

 (8.35) (6.22) 
8.58 

(7.95) 

 (6.87) (4.55) (6.35) 
17.37 F=5 19.98 9.65 

 (6.14) (4.13) (5.52) 

ct n inio kday, P ay, Off-
22.39 

nd, Off-
D=10 11.56 

 51.77) 92.93) 
16.73 

54.31) 
D=30 5.74 

 14.82) 
10.06 15.32 20.32 

27.28) 16.97) 
D=60 

 (6.19) 
11.50 14.85 16.85 

11.35) (8.07) 
D=90 

 (4.05) 
12.22 14.61 15.11 

(6.64) (5.50) 
D=120 

 (3.57) 
12.66 14.47 14.07 

(4.95) (4.49) 
D=150 

 (3.58) 
12.94 14.38 13.38 

(4.46) (4.07) 

 (3.72) (4.46) 
D=300 13.52 14.19 

  
1
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Table 6: Distribution of Individual β's 

       
 10% 25% 50% 75% 90% N 

      
eekday, off 

k  

 
W
pea      

Fβ  -2.3389 -0.504 -0.0903 0.2409 1.1457 448 
       

Dβ  -0.08 -0.0189 71 
      

-0.00 0.0114 20 0.038 448 9 
 

Tβ  -0.0 -0.0036 -0.00 0.0024 0.012
     
Wee peak      

100 03 6 448 
  

kday,  

Fβ  -2.3 -0.4807 -0.0 1.169
  

156 6 0.2642 7 0 448 
      

Dβ  -0.0 -0.0203 -0.00 0.0082 0.035
  

921 52 7 448 
      

Tβ  -0.0102 -0.00
 

38

Wee ff 
peak     

 -0.0005 0.0022 
  

0.0124 448 
    

kend, o
  

Fβ  -2.3 -0.5435 -0.1 .2014 1.106 48 
      

784 297 0 2 4
  

Dβ  -0.0 -0.0210 -0.0 .0076 0.035
      

927 058 0 0 448 
  

Tβ  -0.0 -0.0035 -0.00 0.012
  
      

099 02 0.0025 7 448 
     
 

Cβ  (in 1) -0.0 -0.0066 -0.0 0.002 0.007
      

come= 346 011 6 156 
 

 Cβ  (income=2) -0.0 -0.0086 -0.00 0.002 97 
  

171 17 0.0002 7 
     

 Cβ  (income=3) -0.019 -0.0065 -0.0015 0.0071 116 
  

0.0011 
     

Cβ  (income=4) -0.0501 -0.0091 -0.0024 -0.0002 0.0068 79 
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Table 7: Percentage of Negative Coefficients 

 
Weekdays 

peak Week ays peak Weeke  off 
peak  off d nds

Fβ  5  9 56 62 

Dβ 55 62  53  

Tβ  54 54  
    

Below Avera e Average Above Average id not res nd 

67 
 

 
g D po

Cβ  62 70 65 77 
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Figure 1: Histogram of elicitied probabilities
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Table A1. LAD Estimates of Utility Function Parameters for Sub-samples 

Dependent variable: 
log probability ratio        

   by Age (years)  by Education  by Income 
 Full sample  50 or older less than 50  college non-college   below average  average  above average nonresponse  

             
Cost -  - -  - -  -0.00110*** -0.000915*** -0.000436 -0.00103*** 

         (0.00025) (0.00027) (0.00027) (0.00039) 

             
Cost: ( baseline) -0.00148  -0.00151*** -0.00137***  -0.00107 -0.00167***  - - - - 
 [0.00032]  (0.000470) (0.000371)  (0.000750) (0.000349)      
             
  Dummy for average income 0.00073  0.000889 0.000561  0.000341 0.00102**  - - - - 
 [0.00036]  (0.000570) (0.000448)  (0.000862) (0.000418)      
             
  Dummy for above average income 0.00128  0.00212*** 0.000858*  0.000624 0.00200***  - - - - 
 [0.00038]  (0.000508) (0.000440)  (0.000761) (0.000500)      
             
  Dummy for missing answer 0.00048  0.0000362 0.000837*  0.000559 0.000467  - - - - 
 [0.00046]  (0.000589) (0.000482)  (0.00100) (0.000465)      
             
Duration 0.00122  0.00158 0.000926  -0.000409 0.00239  0.00753*** -0.000525 -0.00266 -0.000630 
 [0.00189]  (0.00261) (0.00250)  (0.00369) (0.00202)  (0.0024) (0.0035) (0.0050) (0.0039) 
             
Frequency -0.0049  0.00925 -0.0372  -0.110 0.0661  0.152** -0.0864 -0.0993 -0.114 
 [0.0565]  (0.0789) (0.0660)  (0.0969) (0.0565)  (0.072) (0.096) (0.13) (0.12) 
             

Total Outage Time (T = F x  D) -0.00080  -0.00100* -0.000548  -0.000143 -0.00124***  -0.00192*** -0.000509 -0.000321 0.0000644 
 [0.00041]  (0.000548) (0.000489)  (0.000753) (0.000408)  (0.00046) (0.00067) (0.00099) (0.00080) 
             
Duration X Weekend -0.0039  -0.00542* -0.00209  -0.00174 -0.00477*  -0.00657** -0.000476 -0.00828 0.00113 
 [0.0022]  (0.00315) (0.00291)  (0.00463) (0.00264)  (0.0030) (0.0058) (0.0053) (0.0045) 
             
Duration X Peak -0.0032  -0.00631** 0.000157  0.00122 00392  -0.00968*** -0.00205 -0.000426 -0.000640 

 [0.0024]  (0.00309) (0.00318)  (0.00470) (0.00306)  (0.0031) (0.0045) (0.0059) (0.0067) 

-0.
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Frequency X Weekend -0.039 -0.0531 -0.0898 0.165 
 [0.0646]  (0.0915) (0.0812)  (0.116) (0.0718)  (0.097) (0.15) (0.14) (0.14) 
    
Frequency X Peak 0. -0. 0636 0. 0156 -0.115 0.0181 0.105 0.192 

    

eekend 0. 9  0. 64 -0. 9 -0. 5 0. 05  
[0.0 05] (0. 6) (0. 6) 0.000910) (0.000516)

    
0. 9* -0. 4 -0. 2 .00144 
(0.00062) (0.00091) (0.0011) 0.0013) 

    
bservations 1379 842 1034 92 

  

n 5 tion     

5  -0.0692 0.00411  0.124 -0.131*  -0.137 

         
 0233  00635 0.  144 -0.  

 [0.0676]  (0.0972) (0.0827)  (0.119) (0.0786)  (0.093) (0.13) (0.15) (0.17) 
         

T X W 0000 0004 00035  00089 0006 0.00104 0.0000999 0.000391 -0.00161 
 0  00064 00058   (   (0.00065) (0.0011) (0.0010) (0.0010) 
         
T X Peak -0.00022  0.000313 -0.000778  -0.00120 0.000134  0010 00014 00065 -0
 [0.00049]  (0.000669) (0.000614)  (0.000928) (0.000575)  (
             
         
O 3947  1739 2208  1252 2695  6
                        
1 Boostrapped standard errors based o 00 replica s.       
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