
NBER WORKING PAPER SERIES

INFERRING WELFARE MAXIMIZING TREATMENT ASSIGNMENT UNDER
BUDGET CONSTRAINTS

Debopam Bhattacharya
Pascaline Dupas

Working Paper 14447
http://www.nber.org/papers/w14447

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
October 2008

Previously circulated under the title: "Nonparametric Inference on Efficient Treatment Assignment
under Budget Constraints". We thank Andrew Chesher, Kei Hirano, Simon Lee as well as seminar
participants at the Econometric Society winter meetings, Bristol ESRC Econometrics group meeting,
Dartmouth, Oxford, UCL and the World Bank for useful comments. Dupas gratefully acknowledges
funding from the Acumen Fund. The views expressed herein are those of the author(s) and do not
necessarily reflect the views of the National Bureau of Economic Research.

© 2008 by Debopam Bhattacharya and Pascaline Dupas. All rights reserved. Short sections of text,
not to exceed two paragraphs, may be quoted without explicit permission provided that full credit,
including © notice, is given to the source.



Inferring Welfare Maximizing Treatment Assignment under Budget Constraints
Debopam Bhattacharya and Pascaline Dupas
NBER Working Paper No. 14447
October 2008, Revised June 2009
JEL No. C01,C14,I38

ABSTRACT
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allocation rule based on multiple covariates, increase bed-net use by 8 percentage points (25 percent)
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1 Introduction

Vulnerable populations in developing countries often lack access to critical health and educational

facilities. Enhancing their access can generate both high private returns and, in many cases,

signi�cant positive externalities for society. Examples include improvement of female literacy rates

or decreasing the incidence of infectious disease. These considerations often lead the governments

to subsidize access to such key health and educational resources. However, such subsidizing e¤orts

are also typically constrained by binding budget ceilings. When budgets are such that only a small

fraction of a target population can receive a given subsidy, the eligibility rule used to decide who

will receive the subsidy can have an important e¤ect on the overall bene�t arising from the subsidy

program.

In this paper, we consider the problem of allocating a �xed amount of resources to a target

population with the aim of maximizing the mean population outcome, and the dual problem of

estimating the minimum cost of achieving a given mean outcome in the population by e¢ cient

targeting of a treatment. We set-up a statistical framework for studying this problem and apply it to

design welfare-maximizing allocation of subsidies for an e¤ective malaria control tool �insecticide-

treated bed nets or ITNs�among households in a malaria-endemic region of Kenya. Our treatment of

interest is making subsidized ITNs available to a section of this population and the welfare measure

of interest is the fraction of households using an ITN.1 We �nd that, if available resources allow us

to treat only 50% of the target population, randomly allocating ITN subsidies is 19% (8 percentage

points) less e¢ cient than optimally allocating them based on a set of observed characteristics.

Allocating the subsidies according to wealth only is 9% (4 percentage points) less e¢ cient than

allocating them based on a set of relevant covariates. Finally, allocating the subsidies based on all

covariates but wealth is 10 to 16% (4 to 7 percentage points) less e¢ cient than allocating them

based on the complete set of relevant covariates.

Our paper contributes to a recent but steadily expanding literature in statistics and economics,

discussed below, on how experimental evidence on treatment e¤ect heterogeneity may be used to

maximize gains from social programs. Our substantive contribution is to study such problems

in the presence of aggregate budget constraints�an extremely common situation in real life but

largely ignored in the treatment choice literature. The constraint makes the treatment assignment

problem analytically very di¤erent from the unconstrained case and leads to novel inferential theory

concerning a set of interesting parameters (denoted by  and � below) which, to our knowledge,

are new to the treatment e¤ects literature.

Our proposed allocation rule is based on sample data from an experiment where the treatment

was randomly assigned. From a decision theoretic angle, it can be interpreted as the Bayes rule

corresponding to an uninformative prior under a nonparametric set-up, i.e., where no functional

1While incidence of malaria or wages lost due to malaria are the "ultimate" outcomes of interest, we concentrate

on ITN use because researchers can observe it directly and thus avoid self-reporting errors, and also because it is a

good proxy for health outcomes. Indeed, multiple trials have established that ITN use leads to signi�cant reductions

in morbidity and mortality, especially among young children (see Lengeler (2004) for a review).
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form or distributional assumptions are made about the underlying random variables. The frequen-

tist expected welfare resulting from our proposed rule depends on the marginal distribution of

the conditional average treatment e¤ect (CATE, henceforth). Speci�cally, when the budget limits

the treatment fraction to c 2 (0; 1), the welfare-maximizing treatment threshold and the resulting
expected welfare approximate respectively the (1� c)th marginal quantile (denoted by ) and the
corresponding generalized Lorenz share (denoted by �) in the population distribution of the random

variable � (X) �where � (x) represents the average treatment e¤ect for the subpopulation whose

value of the observed characteristic X is x. Given this, exact �nite-sample inference for � and

 becomes analytically intractable�especially when X contains continuous components�and this

leads us to asymptotic analysis.

The key technical challenge we face in conducting asymptotic inference on � and  is that the

population moment condition de�ning  is a step-function in � (�), which invalidates the use of
standard methods, e.g., Andrews (1994), Newey (1994) and Chen, Linton and van Keilegom (2003)

(CLV, henceforth). We bypass this problem by using additional smoothing in de�ning the estimates

and show that  and � can be estimated at fast enough rates even if � (�) is left nonparametric. As a
corollary, we also derive inference theory for the dual policy parameter, viz. the minimum fraction

of the population which has to be treated in order to attain a target level of mean outcome. The

value function for this dual problem is the inverse function of � (�).
The methods proposed here have wider applicability, beyond subsidy targeting in developing

countries, to nearly any situation of constrained treatment assignment such as deciding eligibility

rules for access to credit under aggregate fund constraints or allocating the unemployed to subsidized

job-training programs when subsidy totals are limited by the government�s budget outlay. We also

discuss extensions of our methods to situations involving partial treatment take-up, the presence of

spillover e¤ects and, �nally, the design of conditional cash-transfer programs which are becoming

increasingly popular in developing countries.

The rest of the paper is organized as follows. Section 2 sets up the problem, introduces the es-

timands of interest and discusses the decision theoretic underpinnings of our methodology. Section

3 discusses where the present paper �ts in the relevant literature in econometrics and development

economics. Section 4 introduces the estimators and discusses some key issues regarding rate of con-

vergence. Section 5 develops the relevant distribution theory and section 6 presents the benchmark

case of parametric inference. Section 7 discusses extensions to (i) partial take-up of subsidy, (ii) the

design of conditional cash transfer programs (iii) optimal targeting in presence of spillover e¤ects

and (iv) formulation of the best linear allocation rule. Section 8 presents the application to the

welfare-maximizing allocation of bed nets in Kenya and section 9 concludes. The appendix contains

some illustrative order of magnitude calculations alluded to in the text as well as proofs of all the

theorems. The words "optimal" and "e¢ cient" are used in the text to mean "welfare-maximizing"

and do not have any "minimum variance" connotation.
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2 Formulation of the Problem

2.1 Set-up

Let Y denote an household-level outcome which can be either binary or continuous and let S denote

a binary treatment whose value can be a¤ected directly by policy. Let X denote observed covariates

which includes both discrete and continuous components and U denote unobserved determinants of

Y . In the bed-net example, analyzed below in detail, the population of interest is rural households

of western Kenya. We have a simple random sample drawn from two districts in Western Kenya.

Each household is an observation. Y is a binary outcome which equals 1 if the household owns

and uses a bed net. X is the presence of a child under 10, the wealth per capita and ownership of

a bank account, while U represents unobserved determinants of Y . The treatment, i.e., S = 1, is

o¤ering a highly subsidized bed net to the household. Y1 and Y0 are the value of the outcome Y

with and without the treatment, respectively, i.e., Y = SY1 + (1� S)Y0.
Let � (x; s) denote the expected outcome at S = s for households with X = x: i.e. if an

household with characteristic X = x is randomly selected from the population and assigned a value

s of S, then its expected outcome is � (x; s). If S is independent of U conditional on X as in a

randomized trial (the case studied here), then a nonparametric regression of Y on X for households

with S = s in the sample can be used to recover this function.

We will �rst consider an idealized version of a social planner�s problem where � (x; s) and the

marginal distribution ofX with support X are known to the planner. The planner faces a constraint
on what fraction of households can be administered the treatment (S = 1). Suppose this fraction is

c. We de�ne the planner�s idealized problem as the choice of a set A � X such that if an household�s
value of X is in this set, then the planner assigns that person to the treatment and not otherwise.

We will assume that the planner wants to maximize mean outcome.2 Then the planner�s problem

is

max
A�X

Z
x2X

[� (x; 1) 1 (x 2 A) + � (x; 0) 1 (x =2 A)] dF (x)

subject to

c =

Z
x2X

1 (x 2 A) dF (x) . (1)

Obviously, the budget constraint will hold with equality at the optimum. It is also intuitive that

the optimal set A will include those x�s where � (x; 1) is "large" relative to � (x; 0). The following

proposition formalizes this intuition. We will use the notation � (x) to mean � (x; 1) � � (x; 0), to

be called the conditional average treatment e¤ect (CATE) henceforth. Here the reader may note

that while we allow for negative program impacts (i.e. Pr [� (X) < 0] � 0), the present problem

is interesting only if Pr (� (X) > 0) > c; otherwise, the e¢ cient assignment rule would be to give

treatment to everybody whose average treatment e¤ect is positive.

2More generally, if the planner is interested in maximizing (a possibly covariate weighted) outcome utility, then

� (x; 1) represents the expected value of the planner�s utility de�ned on outcomes for individuals with X = x and

S = 1.
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Proposition 1 The solution to the planner�s problem

max
A�X

Z
x2X

[� (x; 1) 1 (x 2 A) + � (x; 0) 1 (x =2 A)] dF (x)

subject to

c =

Z
x2X

1 (x 2 A) dF (x)

is of the form A� = fx : � (x) > g where � (x) � � (x; 1)� � (x; 0) and  satis�es

c =

Z
x2X

1 (� (x) > ) dF (x) .

Proof. Appendix
For the optimal choice of A, the value function, capturing the maximal gains from covariate

based allocation, will be

� (c) =

Z
x2X

[� (x; 1) 1 f� (x) >  (c)g+ � (x; 0) 1 f� (x) �  (c)g] dF (x)

=

Z
x2X

� (x; 1) dF (x)�
Z
x2X

� (x)� 1 f� (x) �  (c)g dF (x) . (2)

The above proposition implies that one can solve for  (c) from

c =

Z
x2X

1 f� (x) >  (c)g dF (x) . (3)

The above equation shows that  (c) is the (1� c)th quantile for the marginal distribution of the
CATE, i.e., the random variable � (X). Let us denote the population c.d.f. of this distribution by

G (�). The corresponding value function from (2) can be written as

� (c) = E [� (X; 1)]�
Z
z2�

[z � 1 fz �  (c)g] dG (z) ,

where
R
z2� [z � 1 fz �  (c)g] dG (z) is the generalized Lorenz share of � (X), corresponding to the

percentile (1� c) and � is the support of � (X).
It is worth stressing here that  is the (1� c)th quantile in the distribution of the CATE and

thus very di¤erent from the (1� c)th quantile treatment e¤ect which has often been discussed in
the treatment e¤ect literature (c.f., Abadie (2002) and references therein). Similarly for �.

Remark: While we focus the current paper on the mean utility of outcome as the objective,
the idea applies in principle to any functional of the overall outcome distribution. Let F1 (�jx)
and F0 (�jx) denote the marginal C.D.F. of the outcome, conditional on X, under treatment and no
treatment respectively. These marginals can be identi�ed using experimental data from randomized

treatment allocation. If we �x the treatment set to be A � X , then the C.D.F. of the overall outcome
corresponding to the choice A is

G (�;A) =
Z
x2X

[F1 (�jx)� 1 (x 2 A) + F0 (�jx)� 1 (x =2 A)] dF (x) .
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If the planner wishes to maximize a functional F (�) of the C.D.F. G (�;A), then the optimization
problem reduces to

max
A�X

F (G (�;A)) s.t. c =
Z
x2X

1 (x 2 A) dF (x) .

For the mean utility case studied in this paper, F (G (�;A)) �
R
U (w) dG (w;A), with U (w) �

w denoting the mean outcome case. Similarly, F (G (�;A)) � G�1 (0:5;A) denotes the median

maximization case. The form of the solution and the related distribution theory will of course

change depending on the choice of F (�).
Remark: Since our preferred analysis is fully nonparametric, it is not necessary to consider

whether covariates should be entered as main e¤ects only or via interactions. Secondly, since we

will be ultimately concerned with the � (x; �)�s�which are to be understood as expected outcome
values at X = x, averaged over all other covariates� the issue of whether to "control for other

covariates" is irrelevant here.

2.2 Parameters of interest

Treatment threshold:  (c) is a natural policy parameter of interest because it represents the
treatment threshold for a speci�c budget c. Interestingly, it also equals �0 (c), which measures the

shadow cost of the budget constraint, i.e., how much will the maximized expected outcome increase

if the subsidy budget increases in�nitesimally from c. Alternatively,  (c) measures the expected

treatment e¤ect on the "last" household made eligible for treatment under our budget-constrained

rationing rule.

Value function: � (c), the value function corresponding to the above optimization problem,
represents the maximum mean outcome obtainable from a budget outlay of c. We consider � to be

fundamentally a more important parameter than . It is useful for deciding on the budget outlay

necessary for achieving a target mean level of outcome. It also represents a "�rst-best" scenario

against which alternative suboptimal but easier-to-implement allocations can be compared.

Minimizing expenditure: The dual formulation of the problem is where the planner�s objec-

tive is to achieve an expected outcome equal to b by allocating treatment based on covariates. The

parameter of interest is the minimum amount of funds necessary to achieve b. This problem can

be represented as

min
A�X

Z
x2X

1 fx 2 Ag dF (x) (4)

subject to Z
x2X

[� (x; 1) 1 (x 2 A) + � (x; 0) 1 (x =2 A)] dF (x) = b. (5)

One can almost repeat the proof of proposition 1 to show that the optimal A will again be of the

form A� = fx : 1 f� (x) >  (b)gg where  (b) is such that A� satis�es (5). Note that by duality, the
minimum value of (4) is simply ��1 (b) where � (�) is de�ned in (2) and the inverse is well-de�ned
because � (�) is monotone increasing. In particular, setting b equal to the currently observed mean
outcome of an existing program, one can calculate how much resources could be saved by e¢ cient

allocation.
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Restricted value function: Suppose x1 � x = (x1; x2) and consider situations where x2 is

an infeasible conditioner, either because conditioning on it is banned (e.g., x2 is race)3 or because

observing it is costly (e.g., x2 is income). De�ne

� (x1; S) = EX2jX1=x1 [� (x1; x2; S)] . (6)

Then the covariate-restricted optimization problem becomes

max
A�X1

Z
x12X1

[� (x1; 1) 1 (x1 2 A) + � (x1; 0) 1 (x1 =2 A)] dF (x1) s.t.

c =

Z
x12X1

1 (x1 2 A) dF (x1) .

Call the unrestricted maximum �un (c) and the restricted one, which conditions only on X1, �res (c).

The di¤erence �un (c) � �res (c) measures the welfare cost of these covariate restrictions on imple-

mentation. When gathering information on X2 (e.g. income) is expensive and costs v per person,

one can compare �un (c� v)��res (c) to decide on whether the extra survey cost for learning income
is worthwhile to undertake. This is especially relevant for developing countries where the majority

of hhds do not �le tax returns, so that measuring wealth levels typically requires labor-intensive

hhd surveys. Under-reporting of income and assets is also a common problem, especially if the

population surveyed is aware of the existence of an eligibility threshold (Martinelli and Parker,

2007).

Note that all of the above are �nite-dimensional parameters and therefore potentially estimable

at the parametric rate. However, we will show below that although � (and its dual) is indeed

estimable at parametric rates under appropriate conditions, the same does not appear to hold for

.

2.3 Feasible policy and decision-theoretic issues

The "population problem" described above is not feasible in general because the distributions of

(Y1; X) and (Y0; X) will typically be unknown to the planner. The feasible version of the problem

can be studied via a decision theoretic approach as follows. Let zn = f(Yi; Si; Xi) ; i = 1; 2; :::ng be
the data and let QY1;XjZn (�; �jzn) denote the planner�s subjective probability distribution for the
random variables (Y1; X), given the data zn. Similarly for (Y0; X). The planner�s treatment choice

problem can now be formulated as

max
A(zn)

( R
U (y1) 1 (x 2 A (zn)) dQY1;XjZn (y1; xjzn)

+
R
U (y0) 1 (x =2 A (zn)) dQY0;XjZn (y0; xjzn)

)
(7)

subject to

c =

Z
1 (x 2 A (zn)) dQXjZn (xjzn) .

The solution to this problem is exactly analogous to the solution implied by proposition 1 where

all expectations and quantiles are now taken w.r.t. the subjective distribution Q�;�jZn rather than

3See Pope and Sydnor (2007) for some other relevant issues regarding legal restrictions on pro�ling.
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the unknown population distributions. Now, the question is: what should the planner use as a

subjective distribution Q�;�jZn?

We focus on the case where the planner makes the "natural" choice, viz., he uses the empirical

distribution Fn (�) of the observed data Zn as Q�;�jZn .4 Since no distributional or functional form
assumptions are made in our set-up, this corresponds to the predictive distribution of the random

variables (Y1; X) and (Y0; X) in a nonparametric Bayesian approach under a certain uniformative

prior (see appendix section 10.1). Thus "parameter uncertainty" is accounted for here via its e¤ect

on the planner�s subjective expected utility, as in standard Bayesian decision theory. We will call

this resulting Fn (�)-based rule the empirical welfare maximizing rule (EWM). It is analogous to the
conditional empirical success rule that Manski (2004) uses (without specifying an explicit decision

theoretic justi�cation) for the unconstrained problem under a known covariate distribution. The

resulting solution from our EWM rule is the sample counterpart of the rule given in proposition 1

above.

Now, the welfare W resulting from the EWM rule is a random variable, in an ex ante, i.e.,

frequentist sense and, following a Manski (2004)-type analysis, one may try to bound its exact

�nite-sample frequentist expectation �W � E (W ), where

W � � (X; 1) 1
n
�̂ (X) > ̂ (c)

o
+ � (X; 0) 1

n
�̂ (X) � ̂ (c)

o
.

The exact �nite sample distribution of W , owing to its dependence on �̂ (�) and ̂, is analytically
intractable, especially when X has continuous components. So we do not attempt to construct

Manski-type �nite-sample bounds here. Instead, we focus on the limiting value of this expectation

as n ! 1, which (under regularity conditions) will equal the same � that was de�ned w.r.t. the
infeasible problem. This alternative interpretation of ��i.e., the limiting value of the (frequentist)

expected welfare arising from the EWM rule�is probably the more relevant one in the context of

the underlying decision problem.

Speci�cally, we construct a frequentist con�dence interval for �, using the asymptotic distri-

bution of the estimated value function� to be denoted by �̂EWM� arising from our EWM rule.

This would, in turn, let us construct asymptotic frequentist con�dence intervals (CI, henceforth)

for both the dual value and the welfare loss from restricted covariate choice under EWM rule.

The asymptotic approach is helpful for handling nonparametric regression functionals �̂ (x) when

X includes continuous components without making arbitrary functional form assumptions (e.g.,

E [Y1jX;S] has a probit form). The asymptotic approximation is also likely to be accurate in our
application because we have a fairly large sample size (about 1000) relative to the e¤ective number

of parameters (1 for the value function). Indeed, sections 4, 5 and 6 below show that the dimension

of conditioning covariates does not appear in the relevant asymptotic distributions. This distrib-

ution theory, though much harder to derive than in the unconstrained case, is easy to work with

and can be used to construct large-sample frequentist CI for � and related functionals. But before

4Since X is allowed to have continuous components here, "using Fn (�)" should be understood as inclusive of
smoothing where necessary.
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we develop this theory in detail, it would be interesting to consider how the EWM compares with

alternative decision making approaches.

Toward that end, note that since the value function from the EWM rule and that from a general

Bayes procedure (i.e. under a general prior) are both functions of zn, one can compare them from

a purely frequentist perspective, as in the predictive inference literature, c.f. Smith (1998), Cox

(1975). One way to do this here is to focus on how fast the di¤erence in the respective value

functions �̂Bayes and �̂EWM falls with the sample size n, in terms of frequentist probability and it

turns out in general that they will di¤er byOp
�
1
n

�
(see appendix sec 10.1 for a demonstration). Thus

the asymptotic frequentist CI for p limn!1 �̂Bayes which equals p limn!1 �̂EWM�both equalling

��will not di¤er numerically from each other up to �rst order because, as we will show below in

theorem 4,

�̂EWM � p lim
n!1

�̂EWM = Op

�
1p
n

�
>> Op

�
1

n

�
for large n. Thus, not only does the EWM approach correspond to a Bayesian one with an uninfor-

mative prior in a nonparametric setting, the Bayesian (under other priors) and EWM distinction

is also unimportant in regards to the (frequentist) asymptotic CI, on which we focus our analy-

sis. Nonetheless, from a �nite-sample inference perspective, it might be instructive to compare

the Bayesian CI�s under alternative informative priors and with the EWM ones, using smaller and

smaller subsets of our sample data. This exercise is reserved for future research.

Some non-subjective alternatives to the Bayesian approach like the minmax regret criterion

(MRC) have been proposed in the literature (c.f., Savage (1951), Manski (2004, 2005)). The

MRC seems somewhat unsuited for our problem because our constraint is in an expectations form

where the expectation is taken w.r.t. the unknown distribution of the covariates. A subjective

expectations approach can handle this quite naturally. However, as a general issue, it would be

interesting to explore MRC based treatment choice analysis under budget constraints�a problem

that we also leave for future research.5 A di¤erent but related issue, not addressed in the paper,

is whether the planner, in addition to being risk-averse and Bayesian, should also be averse to

parameter uncertainty beyond its e¤ect on the subjective expected utility. This distinction between

ambiguity aversion and Bayesian risk-aversion has been researched in economic theory (c.f., Ahn et

al (2009) for a summary) and has been addressed by Manski (2005) in the context of unconstrained

treatment choice. We provide a brief discussion in the appendix section 10.2.

3 Related Literature and Contributions

Our paper contributes to a relatively recent and growing literature on treatment choice. For related

works in econometrics see Chamberlain (2000), Chamberlain and Imbens (2003), Dehejia (2001),

5One alternative is to assume that the planner knows the population marginal of X, which may hold in some

situations. Another, less attractive, approach might be to rede�ne the objective as mean outcome net of costs. But

this requires putting a controversial monetary value on possibly nonmonetary outcomes. Besides, a (roughly) �xed

budget appears to be the more realistic set-up for subsidy disbursement in poor countries, c.f., reference [36] below.
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Manski (2001, 2004, 2005) and Hirano and Porter (2008). In labor economics see Berger, Black and

Smith (2001), Frolich (2006), Behnke, Frolich and Lechner (2008), Lechner and Smith (2007), the

papers in Eberts, O�Leary and Wandner (ed., 2002) and references therein. In medical statistics,

see Gunter, Zhu and Murphy (2007) and Collins, Murphy, Nair and Strecher (2007). The present

paper di¤ers from the above works substantively as it studies welfare maximizing allocations under

aggregate budget constraints�which, to our knowledge, has not been explored analytically in the

literature.6 Such constraints make the problem both substantively more realistic and analytically

richer.

A small set of recent papers have addressed the related problem of input allocation in production

processes�c.f., Graham, Imbens and Ridder (2005, 2006) and Bhattacharya (2006). The present

paper di¤ers from the above ones in that it analyzes e¢ cient allocation based on both discrete and

continuous conditioners, which makes the problem nonparametric in a nontrivial way. Deriving

the asymptotic properties of the relevant estimates requires independent analysis owing to the lack

of smoothness of the corresponding population moment conditions with respect to the underlying

in�nite-dimensional parameters. In particular, methods described in Newey-McFadden�s Handbook

of Econometrics chapter (NM, henceforth) or in CLV are not directly applicable here.

Recently, Hahn, Hirano and Karlan (2007) have considered the problem of designing an exper-

iment with a view to minimize the variance of the estimated unconditional ATE, estimated from

it. Their goal is therefore fundamentally di¤erent from the present paper. In principle, one could

construct an HHK (2007) type experimental design for e¢ cient estimation of the parameters we

introduce in the present paper.

In ongoing work, Bhattacharya, Chandra and Chen (2007) are investigating optimal covariate-

based allocation of a continuous resource, e.g., Medicare spending on heart-attack patients, using

observational data and instrumental variations. There the distribution theories are very di¤erent

due to endogeneity and more structure is needed on the underlying production function to guarantee

unique solutions to a planner�s optimization problem.

A few recent studies have used experimental data to estimate the parameters of dynamic struc-

tural models of behavior and utilized the estimates to simulate the e¤ects of counterfactual policy

interventions (c.f. Attanasio, Meghir and Santiago (2006) and Du�o, Hanna and Ryan (2007)).

Mahajan, Tarozzi, Yoong and Blackburn (2008) discuss identi�cation and estimation of a static

structural model of ITN adoption using observational data alone and use the estimated parameters

to perform counterfactual policy analysis. Todd and Wolpin (2006, 2007) discuss the estimation of

structural models of behavior using pre-program data and compare predictions of their estimated

model with subsequent experimental data. In contrast, we propose here a methodology through

which experimental data can be used directly to infer the welfare-maximizing targeting of programs

under budget constraints.

6Manski (2005) studies planning problems which satisfy �separability� and speci�cally mentions (page 10�11)

budget constraints as a situation where separability is violated and, consequently, not studied by him.
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4 Estimation

We now formally de�ne our estimates corresponding to the EWM approach described in section

2.3. Suppose X �
�
Xd; Xc

�
where Xd contains the discrete components of X and Xc is a p-variate

vector of the continuous components of X with support X c and density f (�). Let K (�) be any
standard density kernel and �n a sequence of bandwidths converging to zero at an appropriate rate,

to be speci�ed later, as n!1. De�ne the preliminary quantities

�̂ (Xi) =
1

n� 1
X
j 6=i

yisi
�pn

K

�
Xc
j �Xc

i

�n

�
1
�
Xd
j = Xd

i

�
�̂ (Xi) =

1

n� 1
X
j 6=i

yi f1� sig
�pn

K

�
Xc
j �Xc

i

�n

�
1
�
Xd
j = Xd

i

�
�̂ (Xi) � 1

n� 1
X
j 6=i

si
�pn
K

�
Xc
j �Xc

i

�n

�
1
�
Xd
j = Xd

i

�
�̂(Xi) � 1

n� 1
X
j 6=i

1� si
�pn

K

�
Xc
j �Xc

i

�n

�
1
�
Xd
j = Xd

i

�
.

Now �̂ (Xi) can be de�ned in terms of the above quantities as

�̂ (Xi) =
�̂ (Xi)

�̂ (Xi)
� �̂ (Xi)

�̂(Xi)
.

The natural estimates of our parameters of interest would have been given by solutions to the

equations

0 = 1� c� 1

n

nX
i=1

1
n
�̂ (Xi) � ̂

o
,

0 = �̂� 1

n

nX
i=1

�̂ (Xi; 1) +
1

n

nX
i=1

�̂ (Xi)� 1
n
�̂ (Xi) � ̂

o
.

Notice that the �rst sample moment condition above is not di¤erentiable in either �̂ (�) or in ̂,
so that usual �rst-order expansions cannot be used. More interestingly, it turns out that even

the population analog of the �rst moment condition is not di¤erentiable in the nonparametric

component. Indeed, the analogous population moment conditions are given by

0 = 1� c�
Z
x2X

1 f� (x) � g dF (x) ,

0 = �� E [� (X; 1)] +
Z
� (x) 1 f� (x) � g dF (x)| {z }

�

,

where � (�) and � (�) should be thought of as preliminary parameters which are estimated in a
nonparametric �rst-step. Now notice that the �rst moment condition is di¤erentiable in the scalar

 if � (X) has a density but not functionally di¤erentiability in � (�), owing to the presence of
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the indicator. This makes it infeasible to directly apply the methods of e.g. CLV which requires

di¤erentiability of all the population moment conditions with respect to both the �nite and the

in�nite dimensional parameters.

So we use further smoothing to construct our estimators. Suppose that � (X) is bounded

between [�M;M ] on the support of X. Then choose a symmetric (about zero) kernel L (�) with
bounded support, w.l.o.g. [�1; 1], the corresponding C.D.F. kernel �L (t) =

R t
�1 L (s) ds for each t 2

[�1; 1] and a sequence of bandwidths hn converging (slowly) to zero as n!1. The C.D.F. kernel
simply converts the indicator function 1 f� (x) � g to a smooth function that changes smoothly
from 0 to 1 as � (x)�  changes sign from positive to negative in �nite samples but approaches the

indicator as n!1.
Now de�ne ̂, and �̂ by

1

n

nX
i=1

(
�L

 
̂ � �̂ (Xi)

hn

!
� f1� cg

)
= 0,7

�̂� 1

n

nX
i=1

"
�̂ (Xi; 1) + �̂ (Xi)

(
1� �L

 
̂ � �̂ (Xi)

hn

!)#
= 0. (8)

For future use, also de�ne

�̂ =
1

n

nX
i=1

�̂ (Xi)� �L
 
̂ � �̂ (Xi)

hn

!
,

Ê [� (X; 1)] =
1

n

nX
i=1

�̂ (Xi)

�̂ (Xi)
,

so that �̂ = Ê [� (X; 1)]� �̂.
The smoothing applied in (8) is similar in spirit to Horowitz�s (1992) analysis of the smoothed

maximum score. But in that problem, the �nite-dimensional parameter of interest does not explic-

itly depend on any in�nite-dimensional underlying parameter. In contrast, here the key parameters

of interest, viz.,  and �, are based on the in�nite-dimensional component � (�) through popula-
tion moments that are not smooth in � (�). Thus the present estimators lie at the intersection
of classical 2-step semiparametric estimators and smoothing-based estimators for countering non-

di¤erentiability. This makes both the results and the proofs substantially di¤erent from both

strands of the literature.

5 Large sample theory

The discrete regressors will not play any substantive roles in our analysis; so we will drop them in

our proofs and put them back into our �nal results at the end. In our proofs, the notation ~� (x)

and ~ will be used to denote values intermediate between �̂ (x) and � (x) and ̂ and , respectively;

7Note that under the resulting rule, the budget constraint will be satis�ed only in an approximate sense and, in

general, not exactly.
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M1 and M (x) will denote a bounded positive constant and a uniformly bounded positive function

respectively, whose actual values may be di¤erent in di¤erent places. The latter will be used in the

expressions for upper bounds for various quantities which appear in the proof. Let

� (x) � Pr (s = 1jx = X) ; � (x) � E (Y jS = 1; X = x)� � (x)

and

� (x) � Pr (s = 0jx = X) ; � (x) � E (Y jS = 0; X = x)� � (x) .

Assumptions

A0(i) (Yi; Xi; Si) i = 1; 2; :::n is a random sample, � (X) is continuously distributed.

A0(ii) S is randomly allocated8 so that

� (x)

� (x)
� � (x)

� (x)
= E (Y jS = 1; X = x)� E (Y jS = 0; X = x)

= E (Y (1) jX = x)� E (Y (0) jX = x)

� ATE(x)

where Y (1) and Y (0) are the conventional notations for the outcome with and without

treatment respectively for an household.

A1 Conditional on every value xd assumed by the discrete regressors, the support X c of the
continuous components Xc is a p-dimensional compact set and the density of Xc satis�es that

f (x) � � > 0 for all x 2 Xc. Furthermore, the density is q-times continuously di¤erentiable

with the derivatives uniformly bounded on X c.

A2 For some M > 0, � (x) 2 [�M;M ] for every x 2 X .

A3 K (�) is an qth order p-dimensional bounded kernel, with q > p and the bandwidth sequence

�n satisfying (i) �n ! 0 (ii)
p
n�qn ! 0.

A4 The kernel �L (�) is uniformly bounded with a bandwidth sequence hn ! 0 and nhn !1.

Assumptions A0 (i) and (ii) de�ne the set-up. A1 and A2 are somewhat restrictive but are

routinely assumed (c.f. Hirano, Imbens and Ridder (2003), assumption 2). In fact, we can simply

rede�ne the problem such that we are designing allocations based only on those values of X where

they hold. Assumption A3 part (i) is standard. Assumption A3 part (ii) is an "undersmoothing"

requirement, which is commonly used in semiparametric problems for bias removal; it is also a key

condition for assumption B10 below (c.f. NM, lemma 8.10).

8 It is enough to assume that S is allocated randomly conditional on X, for the theory to go through. But in our

empirical example and, indeed, most real life social experiments, treatment is in fact fully randomized.
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5.1 Consistency of ̂

Let f̂� (u) and f� (u) denote respectively the estimated and the true density of � (X) at u.

B1. supx2X
����̂ (x)� � (x)��� = Op

��
lnn
n�pn

�1=2
+ �qn

�
.

B2. supu2[�M;M ]

���f̂� (u)� f� (u)��� = op (1)

B3 (i) The �rst derivative of kernel �L (�), denoted by L, is also uniformly bounded.

B4. (i) hn ! 0, nhn !1,
p
nh2n !1 and n1=4

��
lnn
n�pn

�1=2
+ �qn

�
! 0.

Su¢ cient low level conditions for B1 and B2 are fairly standard. In particular, for B1 c.f.

Hansen (2008). For B2, c.f. Pagan and Ullah (1999) theorem 2.8.

We are now ready to state and prove the �rst consistency result with one additional assumption.

B5. The density of � (X) is strictly positive on an open set containing 

Theorem 1 Under assumptions A0-A3, A4(i), B1, B2, B3(i) and B4(i) and B5, we have that

̂ �  = op (1)

Proof. Appendix

5.2 Distribution Theory for ̂

Assume that �L (�) is di¤erentiable and let

f̂�̂ (t) =
1

nhn

nX
i=1

L

 
t� �̂ (Xi)

hn

!
.

The asymptotic behavior of f̂�̂ (t) will be useful for our distribution theories. Toward that end, add

to the above assumptions that:

A4 (ii) The kernel �L (�) has two derivatives which are also uniformly bounded.

B4 (ii) 1
h2n
�
��

lnn
n�pn

�1=2
+ �qn

�
! 0.

The following �rst-order expansion for ̂ will be used for deriving the distribution theory for ̂:

(̂ � )

=
n
f̂�̂ (~)

o�1(
F� ()�

1

n

nX
i=1

�L

�
u� � (Xi)

hn

�)
| {z }

T1n

+
n
f̂�̂ (~)

o�1 " 1
n

nX
i=1

 
�L

�
u� � (Xi)

hn

�
� �L

 
u� �̂ (Xi)

hn

!!#
| {z }

T2n

.

The proof will proceed in three steps: step 1 is that the multiplier
n
f̂�̂ (~)

o�1
converges in probabil-

ity to ff� ()g�1. Step 2 is that the term T1n will be Op
�
1p
n

�
. Finally in step 3 we will show, using
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U-statistic type decompositions, that the term T2n will be Op
�

1p
nhn

�
. Thus, we will eventually

get that
p
nhn (̂ � ) will converge to normal distribution.

The following additional assumptions will be used in the proof.

B7. For some r � 2, the density of � (X) is (r � 1) times continuously di¤erentiable, the
derivative is bounded and Lipschitz in a neighborhood of  and nh2r+1n ! � < 1. Denote the
above derivative at  by f (r�1)� ().

B8. lnnp
n�pnh

3=2
n

! 0 and �2qn
p
n

h
3=2
n

! 0

B9. L (�) is symmetric around zero and has bounded support [�1; 1], is of order r and
R1
�1 L2 (u) du =R 1

�1 L
2 (u) du <1.

B10. V ar(Y jS = 1) and V ar (Y jS = 0) are �nite.
B11.

p
n supx2X kf�̂ (x)� �(x)g f�̂ (x)� �(x)gk = op (1) and

p
n supx kf�̂ (x)� �(x)gk2 =

op (1).

Assumption B11 is also a well-known requirement for
p
n -normality for semiparametric esti-

mators (c.f. NM, section 8.3).

Theorem 2 Under assumptions A0-A4 and B1-B11, we have that

p
nhn (̂ � )

d! N

�
�;
�2 () + !2 ()

f� ()

Z 1

�1
L2 (u) du

�
,

where

�2 () = E

(�
� (X)Y (1� S)� � (X) (1� S)

�2 (X)
f (X)

�2
j� (X) = 

)

!2 () = E

(�
� (X)Y S � � (X)S

�2 (X)
f (X)

�2
j� (X) = 

)

� = (�1)r+1
p
�

r!
� f (r�1)� ()

Z 1

�1
urL (u) du.

Proof. Appendix
Incorporating the discrete regressors back into the analysis is straightforward. Let X =�

Xc; Xd
�
, let the discrete regressor (vector)Xd assumes values a1; :::; aJ and suppose fXcjXd=aj (xjaj)

denotes the density of Xc, conditional on Xd = aj . Then we simply replace

�2 () = E

(�
� (X)Y (1� S)� � (X) (1� S)

�2 (X)
f
�
Xc; Xd

��2
j� (X) = 

)

!2 () = E

(�
� (X)Y S � � (X)S

�2 (X)
f
�
Xc; Xd

��2
j� (X) = 

)
,

where f
�
xc; xd

�
�
PJ
j=1 fXcjXd=aj (x

cjaj) 1
�
xd = aj

�
.
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5.3 Consistency for �̂

Theorem 3 Under assumptions A0-A4 and B1-B11, we have that

�̂� � = op (1) .

Proof. Appendix

5.4 Distribution theory for �̂

Recall that �̂ = 1
n

Pn
i=1 �̂ (Xi; 1)� �̂. The �rst term will be analyzed via lemma 3 in the appendix

and the following expansion will be used to show that �̂ is asymptotically
p
n-normal:

�̂ � �

=
1

n

nX
i=1

� (Xi) �L

�
 � � (Xi)

hn

�
� �| {z }

T1n

+
1

n

nX
i=1

n
�̂ (Xi)� � (Xi)

o�
�L

�
 � � (Xi)

hn

�
� 1

hn
� (Xi)L

�
 � � (Xi)

hn

��
| {z }

T2n

+(̂ � ) 1

nhn

nX
i=1

� (Xi)L

�
 � � (Xi)

hn

�
| {z }

T3n

+Rn.

The proof will show that Rn is op
�
1p
n

�
and T1n, T2n and T3n are all Op

�
1p
n

�
.

The following additional assumptions will be used.

B4 (iii)
p
n
h2n
�
��

lnn
n�pn

�1=2
+ �qn

�2
! 0 which is implied by

p
n
h2n
� �2qn ! 0 and

�
lnnp
n�pnh2n

�
! 0.

B12. nh6n !1, r of assumption B7 is at least 4 and nh2rn ! 0.

Theorem 4 Under assumptions A0-A5, B1-B12,
p
n (�̂� �)

= � 1p
n

nX
i=1

f 1i +  2i +  3i �  4ig

+
1p
n

nX
i=1

E (SjXi)� YiSi � E (SY jXi)� Si
fE (SjXi)g2

+ op (1) ,

where

 1i =  fF� ()� 1 (� (Xj) � )g
 2i = � (Xi)� 1 f� (Xi) � g � �

 3i = 1 (� (Xi) � )� � (Xi)YiSi � � (Xi)Si
�2 (Xi)

� fX (Xi)

 4i = 1 (� (Xi) � )� � (Xi)Yi (1� Si)� � (Xi) (1� Si)
�2 (Xi)

� fX (Xi) .
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It follows by an ordinary CLT (under standard second moment restrictions) that
p
n (�̂� �)

will be mean-zero normal.

Proof. The proof works by showing that

p
n
n
�̂ � �

o
=

1p
n

nX
i=1

f 1i +  2i +  3i �  4ig+ op (1) ,

where the  terms are described above and then combining this with an asymptotic expansion of
1
n

Pn
i=1 �̂ (Xi; 1). Details are in the appendix.

To incorporate the discrete regressors back into the analysis, we simply replace the terms fX (Xi)

in  3i and  4i by f
�
Xc
i ; X

d
i

�
�
PJ
j=1 fXcjXd=aj (X

c
i jaj) 1

�
Xd
i = aj

�
, where fXcjXd=b (ajb) denotes

the density of Xc at a, conditional on Xd = b.

The �nal variance can be consistently estimated using sample cross-products, under standard

conditions for the WLLN.

Remark 1 It may be noted here that the estimation error in �̂ (�) a¤ects the distribution of �̂
through the terms  3i and  4i.

5.5 Distribution theory for dual

Recall that the value function for the dual problem � (b) represents the smallest fraction of house-

holds who have to be assigned to treatment (optimally) to guarantee that the expected mean

outcome is at least b. In other words, � [� (b)] equals b, where � (b) plays the role of c in the primal

problem. From a standard �rst-order expansion argument, it follows that

p
n
�
�̂ (b)� � (b)

�
= �

p
n (�̂ (� (b))� � f� (b)g)

�0 f� (b)g + op (1) ,

where � f� (b)g = b. Since � (c) = E f� (X; 1)g �
R G�1(1�c)
�1 tdG (t), it follows that �0 (c) equals

G�1 (1� c) which is simply  (c). Replacing, we get that

p
n
�
�̂ (b)� � (b)

�
= �

p
n (�̂ (� (b))� � f� (b)g)

 f� (b)g + op (1) ,

from which the asymptotic normality of
p
n
�
�̂ (b)� � (b)

�
follows.

Remark : The qualitative di¤erence between the asymptotic distributions of ̂ and �̂ is some-
what intriguing. It is caused jointly by the facts that the moment condition de�ning  is nonsmooth

in � (�) and also that � (�) is unknown. If � (�) were known, then realizations of � (X) would be ob-
served and so its estimated quantile would be

p
n-normal. Conversely, if the moment condition were

smooth and � (�) unknown, then a CLV�type analysis would lead to
p
n-normality for ̂ under reg-

ularity conditions. One way to interpret the di¤erence between the asymptotic distributions of ̂

and �̂ is to note that  = G (�)�1 (1� c) and � =
R 1
1�cG (�)

�1 (u) du where G (�) represents the

c.d.f. of � (X). This suggests that  is the value at a point of a nonparametric function while

� is its integral. Thus  is somewhat analogous to the value of a demand function at a price
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whereas � is akin to the (approximate) consumer surplus (c.f. NM (1994), page 2195) calculated

from that demand curve. So it is likely that ̂ would behave like a purely nonparametric estimator

whereas �̂ behaves like a parametric one. However, we recognize that this analogy is not perfect

because G (�)�1 (�) is not a standard density or conditional mean function, since � (�) is unknown.
It is also interesting to observe that the mean of � (X) is estimable at the parametric rate, i.e.,
1p
n

Pn
i=1

n
�̂ (Xi)� E [� (X)]

o
= Op (1), which can be shown by using U-statistic type results. This

may suggest that a quantile of � (X) should also be estimable at the parametric rate. But this

assertion remains to be either proved or disproved. What we have shown so far is that there exists

one estimator of  that converges slower than the parametric rate while the corresponding estimator

for � has the
p
n-normal distribution, asymptotically.

Bias Removal: Notice that we have always used bias-removal in our analysis above. This is
not necessary and may, in fact increase the MSE for  estimation. From the proof of theorem 2, it

is easy to see that if the density f� (�) has bounded derivatives up to order (r � 1), then the bias of
(̂ � ) is given by

� = (�1)r+1h
r
n

r!
� f (r�1)� ()

Z 1

�1
urL (u) du+ o (hrn) .

Using the formula for the variance, one gets that the MSE is given by

h2rn �
"
f
(r�1)
� ()

r!

Z 1

�1
urL (u) du

#2
| {z }

C

+
1

nhn

�
�2 () + !2 ()

f� ()

Z 1

�1
L2 (u) du

�
| {z }

B

,

implying an MSEminimizing bandwidth choice of hn = ��n�
1

2r+1 , where �� =
�

C
2rB2

� 1
2r+1 . Horowitz

(1992) calculates analogous quantities for his smoothed maximum score estimator and discusses

both estimation of �� and adjusts the asymptotic theory of the eventual estimators to allow for an

estimated ��.

The above choice of hn does not work for theorem 4 because (c.f. step 6A in the proof) for

this choice of hn, we have that
p
nhrn = O

�
n

1
2(2r+1)

�
which blows up to +1 and so we cannot

have a
p
n-rate for �̂ and thus for �̂. So we need to choose hn to be smaller than the one that is

MSE-optimal for .

6 Parametric Analysis

It is useful to compare our results from a nonparametric analysis to a benchmark parametric model

which is easier to estimate and thus potentially more useful for applied work. The plug-in approach

in the parametric case does not have a Bayesian interpretation, unlike in the nonparametric case and

is not justi�able, in general, from a decision theoretic standpoint. However, the di¤erence in value

function from a plug-in approach and a Bayesian approach will still be of the orderOp
�
1
n

�
and higher

order corrections can be made to the plug-in approach that yield similar Op
�
1
n

�
improvements

in �nite samples (see appendix). Nonetheless, the parametric approach has the insurmountable
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limitation that it is susceptible to mis-speci�cation of functional form, leading to a suboptimal

value function, even in the limit. In our application we show the results for both parametric and

nonparametric speci�cations and estimate the asymptotic welfare loss arising from the potential

mis-speci�cation of the parametric model.

To get an idea for the distribution theory, suppose � (x) is parametrically speci�ed as G (x; �),

where G (�) is known; typically � (the so-called "pseudo-true value") can be estimated at parametric
rates using, say, GMM. For estimation of  and � resulting from the plug-in approach, we will still

use smoothing with the c.d.f. kernel �L (�) to handle the nonsmoothness, e.g.,

1

n

nX
i=1

8<:�L
0@ ̂ �G

�
Xi; �̂

�
hn

1A� f1� cg
9=; = 0

For some speci�c functional forms ofG (�; �), e.g., a linear one, the function h (�) =
RM
�M 1 fG (x; �) � g dF (x)

may be di¤erentiable in � and then no smoothing would be necessary; but smoothing-based methods

are more generally applicable and so we focus on that.

The key result is that both  and � can be estimated at the
p
n-rate. To see this, recall the

asymptotic expansion for ̂:

p
n (̂ � )

=
n
f̂�̂ (~)

o�1 1p
n

nX
i=1

�
F� ()� �L

�
 �G (Xi; �)

hn

��

+
n
f̂�̂ (~)

o�18<: 1p
n

nX
i=1

24�L� �G (Xi; �)
hn

�
� �L

0@ �G
�
Xi; �̂

�
hn

1A359=; .
Using similar steps as in the proof of theorem 2 in the appendix, the �rst term is asymptotically

normal with mean equal to

lim
n!1

p
nhrn �

"
(�1)r+1f (r�1)� ()�

R 1
�1 u

rL (u) du

r!

#
+ o

�p
nhrn

�
which is �nite if limn!1

p
nhrn <1.

As for the second term, (and this is what makes ̂ a
p
n-consistent estimator in the parametric

case) notice that

1p
n

nX
i=1

24�L� �G (Xi; �)
hn

�
� �L

0@ �G
�
Xi; �̂

�
hn

1A35
=

p
n
�
�̂ � �
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where
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�̂ � �2
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1A ,
with M a �xed positive constant and M1 (X) a uniformly bounded function. Since

p
n
�
�̂ � �

�
=

Op (1), by assumptions B4(i) and A4 (ii), the RHS of the previous display goes to zero if nh4n !1.
Then we have that
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�
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�
� fG(X;�) () + op (1) .

This implies that
p
n (̂ � ) will converge to a zero mean normal if nh2rn ! 0 and nh4n ! 1 and

when the density of G (X;�) has uniformly bounded derivatives up to order (r � 1) where r � 3.
The result for �̂ will follow.

7 Extensions

7.1 Partial subsidy and partial take-up

In-kind transfer programs are sometimes characterized by two features�viz., (i) vouchers are dis-

tributed among eligible households and these have to be redeemed for getting the product and

(ii) the amount of subsidy is not large enough that obtaining the product and selling it in the

open market afterwards is pro�table for every eligible household. The �rst feature implies that

voucher cashing may not translate 1-for-1 into using the product�because households can obtain

the product and sell it outside. The second feature implies that voucher cashing itself can be less

than 100%, which loosens the planner�s budget constraint. The voucher allocation problem now

becomes

max
A�X

Z
x2X

[� (x; 1) 1 (x 2 A) + � (x; 0) 1 (x =2 A)] dF (x)

subject to the budget constraint

c =

Z
x2X

h (x)� 1 (x 2 A) dF (x) ,

where h (x) denotes the probability that an x-type household cashes the voucher upon getting it

(though not necessarily uses the good itself) and � (x; �) has the same interpretation as in section 2.
The solution will have the same form as described in proposition 1, i.e., A� = fx : � (x; 1)� � (x; 0) > g,
but  will now be determined by

c =

Z
x2X

h (x)� 1 (� (x; 1)� � (x; 0) > ) dF (x) ,

rather than (3). The h (�) function can be identi�ed from experimental data and inference theory

for this version of the problem can be determined analogously using C.D.F. type smoothing.
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7.2 Conditional cash-transfer programs

In some government programs, transfers are contingent both on the household�s characteristics as

well as its having attained the outcome of interest. Such programs are currently being implemented

in at least 16 developing countries (c.f., the website "go.worldbank.org/BWUC1CMXM0") in Asia

and in south and central America. These programs typically pay a transfer only if the household

sends its children to school and pays regular visits to health clinics for preventive care. For such

behavior-contingent transfers, the budget constraint changes because transfers are paid only when

the desired outcome is realized.

Consider the set-up where the target outcome is binary (e.g. children attending school) and

covariates X with support X can include both discrete and continuous components. Now the set A

will represent "eligibility for being o¤ered the program". The eventual outcome, denoted by Y , is

the joint occurrence of (an eligible) household participating in the program and sending its children

to school. Transfers are made if and only if the household is both eligible (i.e., its value of X lies

in A) and the outcome Y = 1 is realized. In this case, � (x; s) will denote the probability that

Y = 1 for a randomly picked x-type household when o¤ered the treatment s 2 f0; 1g. Notice that
the relevant policy in this case is deciding whom to o¤er the program and so identifying � (x; s)

will not require any corrections for nonrandom take-up as long as the program was o¤ered purely

randomly. This is in contrast to identifying the mean e¤ect of participation in the program.

Now the planner�s problem becomes one of determining "optimal eligibility", viz.

max
A�X

Z
x2X

[� (x; 1) 1 (x 2 A) + � (x; 0) 1 (x =2 A)] dF (x)

subject to the budget constraint

c =

Z
x2X

� (x; 1)� 1 (x 2 A) dF (x) ,

which di¤ers from (1) because a transfer is made here only when the outcome Y = 1 is attained.

Simple algebra shows that this optimization problem is equivalent to

min
A�X

Z
x2X

� (x; 0)� 1 (x 2 A) dF (x) s.t.
Z
x2X

� (x; 1)� 1 (x 2 A) dF (x) = c,

implying a solution of the form

A� = fx 2 X : � (x; 0) � �g , with
Z
x2X

� (x; 1)� 1 (� (x; 0) � �) dF (x) = c,

and a corresponding value function

� = c+ E [� (X; 0)� 1 f� (X; 0) > �g] .

The analogous estimates �̂ and �̂ can be obtained via c.d.f. type smoothing.
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7.3 Optimizing under externalities

Some recent program evaluation studies have found that treatments e¤ects on treatment-eligibles

can have spillover e¤ects on behavioral outcomes of non-eligibles living in the same village or local-

ity, c.f., Attanasio, Meghir and Santiago (2006), Angelucci and De Giorgi (forthcoming) or Sobel

(2006) and references therein. Such externalities can signi�cantly boost the eventual e¢ cacy of

prevention programs against infectious diseases, such as the use of anti-malarial ITNs considered in

our application below. In that context, spillover can work through two mutually reinforcing chan-

nels: one, ITN use by subsidized households leads to increased ITN take-up and use by neighbors

via peer e¤ects (Dupas, 2009); and two, ITN use by a subsidized household protects neighboring

households against malaria by reducing the chance of transmission of the parasite (Hawley et al.,

2003).

One can modify our analysis to utilize gains from such spillover.9 Suppose spillover occurs

only within villages. Then one can consider optimization at the village level only and allocate the

treatment within the village by randomization. A more e¢ cient scheme is to optimize based on both

village and household level characteristics, which is what we describe now. Let X denote household

characteristics (including those that are common to all households in the village) and � denote the

distribution of all combinations of X in the village from which the household comes. For example, if

xi �(xi1; xi2)=(have child under 10, income below poverty line), then �i=(�i11; �i10; �i01; �i00), where
�ijk is the fraction of households in i�s village with X1 = j and X2 = k.

Let � (x; s; w) denote the expected outcome of an x-type household, receiving treatment s 2
f0; 1g when the fraction of households getting treatment in its village is w 2 [0; 1]. Spillovers are
captured by @�(�;�;w)@w 6= 0. Now consider a generic treatment choice rule where a household i is treated
only if �i 2 B and xi 2 A

�
�i
�
. So if �i =2 B, then no household in i�s village gets the treatment

and if �i 2 B, xi =2 A
�
�i
�
then i will not get the treatment but a fraction p

�
A
�
�i
��
�
P
�ijk � 0

in its village will, where the last sum is over those combinations of X that are in A.

In the above example, a possible candidate pair (not necessarily optimal) could be of the form:

B = f� : �1 + �2 � 0:5g and A (�) = ff1; 1g [ f1; 0g if �1 < 0:5g and A (�) = ff1; 1g if �1 � 0:5g.
For this case, p (A (�)) = �1+ �2 if �1+ �2 � 0:5 and �1 < 0:5; p (A (�)) = �1 if �1+ �2 � 0:5 and
�1 � 0:5; and p (A (�)) = 0 if �1 + �2 < 0:5. In other words, if the proportion of households who

have a child under 10 and are poor is above 50%, treating all of them would be enough to generate

positive spillovers onto other households in the village and therefore treating those with children

under 10 but who are not poor is not necessary. But if the proportion of households who have a

child under 10 and are poor is not high enough to generate enough positive spillover onto others,

treating those households with a child under 10 but are not poor will be necessary.

Under a rule fB;A (�)g, the expected outcome of a household with X = x and � = � will be

9See pre-exisiting work by Graham, Imbens and Ridder (2009, section 6) on the related but di¤erent theme of

designing optimal peer-group formation to maximize gains from peer-e¤ects.
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given by

� (x; 1; p (A (�)))� 1 f� 2 B; x 2 A (�)g+ � (x; 0; p (A (�)))� 1 f� 2 B; x =2 A (�)g
+� (x; 0; 0)� 1 f� =2 Bg

Denoting by FX;� (�; �) the joint distribution of (X;�) in the population, the "idealized" allocation
problem becomes

max
B;A(:)

Z 264 � (x; 1; p (A (�)))� 1 f� 2 B; x 2 A (�)g
+� (x; 0; p (A (�)))� 1 f� 2 B; x =2 A (�)g

+� (x; 0; 0)� 1 f� =2 Bg

375 dFX;� (x; �)
s.t. Z

1 f� 2 B; x 2 A (�)g dFX;� (x; �) = c.

This problem is substantively di¤erent from the previous ones due to the presence of A inside the

� (�) function. An additional technical complication is that � (�) will be in�nite dimensional if X is

allowed to be continuous. For these reasons, this case requires independent analysis and is left to

future research.

7.4 Best Linear Rule

The rule described above requires computing � (x) nonparametrically for every household, which

can be onerous for a practitioner. An alternative that is easier to implement is an index-based rule

of the form: treat if x0� >  and not otherwise. This problem can be solved by noting that for the

optimal choice of �, the index x0� should sort the data in the same way as � (x). This preserves

the ranking of households based on � (X) and thus allots treatment to those who bene�t the most

from it. So one can estimate a suitably "normalized" � by

�̂ = argmax
�

nX
i=1

nX
j=1

8<: 1
�
�̂ (xi) > �̂ (xj)

�
1
�
x0i� > x0j�

�
+1
�
�̂ (xi) < �̂ (xj)

�
1
�
x0i� < x0j�

� 9=;
and the threshold  can be estimated from a smoothed version of c = 1

n

Pn
i=1 1

�
x0i�̂ > ̂

�
.This

objective function di¤ers from Han�s maximum rank correlation estimator�s because �̂ (�) is non-
parametrically estimated here. An alternative is to approximate � (�) directly by a linear index x0�
where � is estimated by an OLS regression of �̂ (xi) on xi, i.e., �̂ = (

Pn
i=1 xix

0
i)
�1
�Pn

i=1 xi�̂ (xi)
�
.

This estimator may be analyzed via U-statistic techniques.

8 Application to bednet provision

8.1 Background

We now apply our inference method to the allocation of subsidies for long-lasting insecticide-treated

nets (ITNs) to households, using experimental evidence from Kenya.
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The rationale for public funding of ITNs comes from their proven e¢ cacy in reducing the burden

of malaria through the presence of both large private and large social returns to ITN use. ITNs

have been shown to reduce overall child mortality by up to 38 percent in regions of Africa where

malaria is the leading cause of death among children under 5.10 ITN coverage protects pregnant

women and their children from the serious detrimental e¤ects of maternal malaria. In addition,

ITN use can help avert some of the substantial direct costs of treatment and the indirect costs of

malaria infection on lost income.11 Lucas (2007) estimates that, alone, the gains to education of

a malaria-free environment more than compensate for the cost of an ITN. Costing $5 - $7 a net,

however, ITNs are not a¤ordable to most families (Cohen and Dupas, 2007; Dupas, forthcoming).

For this reason, there is a large consensus that ITNs should be fully subsidized (WHO, 2007; Sachs,

2005).

Teklehaimanot, McCord and Sachs (2007) estimate that providing one free long-lasting ITN for

every two at-risk persons in sub-Saharan Africa would amount to 2.5 billion dollars. The funds

committed by governments and donor agencies for ITNs have not yet reached that amount, however.

For example, the Government of Kenya estimates that around 1 million pregnant women are in

need of an ITN every year, but their budget will allow them to provide only 0.5 million nets per

year to pregnant women over the next 5 years (Kenya Round 7 Proposal, 2007).

Under such a budget constraint, the question of how to allocate the available ITNs among

households becomes an important policy question. If the treatment e¤ect (the health impact

of getting a subsidized ITN) is exactly the same for everyone in the population, then all possible

allocations will lead to the same overall gains. However, when there is heterogeneity in the treatment

e¤ect (e.g. the health impact of getting a subsidized ITN varies with observed covariates, such as

socioeconomic status, presence of children in the household, etc.), the gains can be maximized by

a covariate-based allocation. While the health impact of using an ITN might be homogenous, the

health impact of getting a highly subsidized ITN might vary across covariates since usage rates

(conditional on having a net) are likely to vary across covariates. For example, households who can

a¤ord to purchase an ITN in the absence of any subsidy (because they have access to credit or are

wealthy enough) will not bene�t from the treatment very much (i.e. their � (x; 0) will be large and

thus for them the di¤erence � (x; 1)� � (x; 0) is likely to be small). Likewise, since young children
are the most vulnerable to the disease, households without young children might not bene�t much

from the treatment (i.e. their � (x; 1) will be small and thus the di¤erence � (x; 1)�� (x; 0) is likely
to be small). For these reasons, the treatment e¤ect is likely to vary across observed covariates

such as wealth, access to �nancial services, and the presence of young children. An allocation rule

that takes into account such heterogeneity could potentially generate important welfare gains.

10See Lengeler (2004) for a review. Earlier estimates of ITN use on reductions in child mortality from a randomized

trial in Gambia were as high as 60 percent, but most estimates from randomized trials in Africa are closer to 20 percent.
11Ettling et al. (1994) �nd that poor households in a malaria-endemic area of Malawi spend roughly 28 percent of

their cash income treating malaria episodes.
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8.2 Design

For this application we use data from a randomized experiment conducted with rural households

in Western Kenya in 2007 (Dupas, forthcoming). The price at which a household could purchase

an ITN varied in steps of $0.50 from $0 (a free ITN) to $4, and households were randomly assigned

to a price. People had three months to redeem the voucher entitling them to an ITN at the

assigned price. In this application, we consider two groups: households that faced a very low

(highly subsidized) price ($0 or $0.50) and households that faced a high price of $2 or more. Table

1 presents summary statistics on the 985 households that form the sample used in the analysis. The

take-up rate of the ITN subsidy was 84% in the low price group and 16% in the high price group.

Conditional on take-up, the usage rate was slightly higher in the low price group than in the high

price group (70% versus 58%), leading to unconditional usage rates of 61% and 7%, respectively.

In what follows, we consider the low price group as the treatment group and the high price group

constitutes the control. The treatment is thus �having access to a low-price ITN�. One may note

that the short-run take-up in the low price group was not 100%, since some of the "treated" had

to pay a small fee (i.e., $0.50) to access the net�i.e., the subsidy was not 100% for everyone. This

situation corresponds to our discussion in section 7.1. In the analysis below, however, we assume

that take-up was 100% in the treatment group. In other words, we consider that those who did not

take-up the subsidy cost as much to the government as those who took-up the subsidy but didn�t

use their net. There are two reasons behind this approximation. First, the take-up was 100% for

households that were o¤ered the net for free. We could thus have restricted our de�nition of the

"treatment group" to those that were randomly assigned a free net and we would be in the exact

case described above. We could not do that for sample size reasons, however. Second, the price of

$0.50 was also quite low and we believe that if people had more than three months to redeem their

voucher, the take-up would potentially have reached 100% at this price. In particular, since the

take-up at intermediate prices (e.g., $1) was not negligible, people who did not take-up the $0.50

subsidy could simply have taken it up and sold their voucher to an ineligible household for a pro�t.

While this did not happen in the pilot experiment we use here, it would likely happen for a large

government program implemented nation-wide on a continuous basis. That said, to extrapolate

our results to lower subsidy rates (higher prices), one would need to follow the procedure outlined

in section 7.1.

Table 2 presents suggestive evidence of heterogeneity in the treatment e¤ect. The table shows

the results of an OLS regression of ITN usage on the treatment, three covariates, and the interactions

between the treatment and the covariates. The covariates are: a binary variable equal to 1 if the

household includes at least one child under 10; the natural log of the value of the household�s

wealth per capita; and a binary variable equal to 1 if the household owns a bank account. The �rst

covariate (presence of a child) was chosen as an indicator of the private returns to using a bed net

(since young children are the most vulnerable to malaria). The two other covariates were chosen

as proxies for socioeconomic status and ability to pay. They were measured through a baseline

survey administered through household visits. In particular, wealth per capita was measured as
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follows: households were asked to list all their assets (including animal assets) and to estimate

their resale value. The combined value of all assets was then divided by household size to obtain

the "wealth per capita" indicator. The treatment was randomized at the household-level so no

clustering correction is needed. We �nd that having a higher wealth per capita correlates with a

higher ITN usage rate in the absence of treatment, and the treatment e¤ect appears signi�cantly

higher for households with a child under 10 and signi�cantly lower for households that own a bank

account. An F-test of the joint signi�cance of the three interaction terms is signi�cant at 10%

which, super�cially, suggests that a covariate-based allocation may lead to important welfare gains.

8.3 Analysis

8.3.1 Non-Parametric Analysis: Choice of Kernels and Bandwidths

For bias-removal, we use the higher order kernels corresponding to r = 4 and q = 3, viz.,

K(s) = 0:5�
�
3� s2

�
� � (s) ,

�L(s) =
15

32

�
7

5
s5 � 10

3
s3 + 3s+

16

15

�
� 1 (�1 � s � 1) + 1 (s > 1) ,

where � (�) is the standard normal density. Two bandwidths are needed for the non-parametric
estimation: the bandwidth �n in the estimation of the conditional ATE � (X), and the bandwidth

hn in the smoothing correction. Figure 1 graphs how the estimated treatment threshold ̂ (Panel

A) and value function �̂ (Panel B) vary with hn for a range of possible �n. We �nd that both

estimates are insensitive to the choice of hn. They are also quite stable over a large range of �n:

In Figure 2, we present ̂ and �̂ for two budget constraint levels: c = 0:5 (Panel A) and c = 0:25

(Panel B). The stability of �̂ over a reasonable range of bandwidths suggests that the choice of

bandwidths should have little e¤ect on the nonparametric estimates of the value function.

Figure 3 graphs a leave-one-out cross validation criterion function for � (x). The function is

plotted over the range �n 2 [0:3; 0:4], which correspond roughly to n�1=6 and n�1=8, respectively.
The function seems to dip around �n = 0:33. Given the small sensitivity of our estimates of � and,

to a certain extent,  to the choice of �n, we show the results for both �n = 0:3 and �n = 0:4. We

use hn = 0:35; recall that the results seem very insensitive to the choice of hn for a given choice of

�n.

To see how our results are a¤ected by choice of a higher order kernel, we also repeat and report

part of the analysis for a standard normal kernel. The results are numerically not very di¤erent

and do not imply any substantively di¤erent conclusion. Since we have a large sample size�close

to 200 for each cell de�ned by the discrete regressors�and a single continuous regressor, we prefer

the higher order kernels for our analysis.

8.3.2 Conditional ATE

The nonparametric estimate of the CATE �̂ (x) = �̂ (x; 1) � �̂(x; 0) was computed corresponding

to two bandwidths �n = 0:3 and �n = 0:4. The parametric estimate of � (X) was computed as
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�̂ (x) =
�
�̂ + x0�̂1

�
, where �̂ and �̂1 are OLS estimates in the regression (presented in Table 2):

yi = �0 +X
0
i�1 + �0Si +X

0
i�1 � Si + "i.

Figure 4 graphs the kernel density of the conditional ATE � (X) computed with the two proposed

bandwidths. Observations with X such that � (X) is below �0:2 or above 0:9 were discarded in

accordance with assumption A2 above. These cuto¤s were the 1 and 99 percentile values in the

empirical distribution of � (X).

Figure 5 presents the c.d.f. of the conditional ATE � (X) computed both parametrically and

nonparametrically. The stepwise shape for the c.d.f. in the parametric model is essentially due to

the binary nature of two of the three covariates since the interaction of the treatment with wealth

appears to be nearly zero in the parametric case.

8.3.3 Unrestricted and Restricted Value Functions

In what follows, we compare the "�rst best" allocation (the unrestricted case, in which the allocation

is based on all three covariates) with three "restricted" cases: (i) basing the allocation on the �rst

two covariates only, leaving out wealth, which is typically harder to observe without conducting

expensive household surveys; (ii)means-testing where the allocation is based only on wealth�which
is extremely common in both developed and developing countries, and (iii) purely random allocation

which is not covariate-based at all. Notice that in the random allocation case, the estimated value

function is linear in c:

�̂(c) =
1

n

nX
i=1

n
c� �̂ (Xi; 1) + (1� c)� �̂ (Xi; 0)

o
.

Figure 6 graphs the parametric and nonparametric estimates for the treatment threshold  (c)

and the value function � (c) in the unrestricted case. The nonparametric estimates seem very stable

over the two choices of bandwidth. The nonparametric estimates of the unrestricted value function

are higher than the parametric estimates.

Panel A of Figure 7 graphs the estimates of the value function � (c) when conditioning is done

on wealth but no other covariates and Panel B of Figure 7 graphs the estimates of � (c) when the

allocation is purely random.

8.3.4 Welfare Losses

Representing all four cases (unrestricted allocation, allocation on all covariates but wealth, alloca-

tion based on wealth only, and random allocation) on the same graph helps visualize the welfare

loss when the optimal allocation is not implementable, as well as the gains from means-testing com-

pared to non-wealth based allocations. Figure 8 combines the parametric estimates of the value

function � (c) for all four cases in Panel A and the nonparametric estimates in Panel B. In contrast

to the parametric estimates, the non-parametric estimates suggest that means-testing is a clear

"second best", generating a higher mean outcome than random allocation does. The parametric
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estimates for the means-tested case is visually indistinguishable from the random allocation case�

a fact more clearly depicted in Table 3a.

We compute the standard errors of the welfare losses generated by the three suboptimal allo-

cations over a range of budget levels in Table 3a. Panel A presents the parametric estimates and

Panel B the nonparametric estimates. Panel C presents the di¤erences between the parametric and

nonparametric estimates. As noted in Figures 6B and 7A, the estimates of the unrestricted value

function are signi�cantly di¤erent between the parametric and the nonparametric analyses (column

2, Panel C). The non-parametric estimates are overall quite robust to the choice of bandwidth �.

The estimated ine¢ ciency of basing the allocation on all covariates but wealth is between 11%

(for � = 0:3) and 15% (for � = 0:4 ) when the budget allows us to treat 25% of the population

(Panel B, column 3). This means that �res (25) is 3 to 4 percentage points lower than �un (25).

(Note that the gap between the two non-parametric estimates comes from the gap in the estimates

of �un (25). The gap in the estimates of �un (25) is less than 1 percentage point, but o¤ of a base

of 0.25 it amounts to close to 4 percent.)

The ine¢ ciency of basing the allocation on wealth only is estimated at 7%-8% (Panel B, column

4) when the budget allows to treat 25% of the population. This means that �res (25) is 2 percentage

points lower than �un (25). When estimated non-parametrically, the welfare loss due to random

allocation is higher, at 20% (5 pp) for � = 0:3 and 18% (4pp) for � = 0:4 (Table 3, column 5).

Overall, the estimates presented in Table 3a suggest that the welfare costs of restricted allocation

schemes can be substantial. In the Kenyan context analyzed here, we also �nd that means-testing

only does not generate a much higher outcome than an allocation based on covariates other than

wealth. Depending on the cost of collecting information on households�assets (or other proxies for

wealth), which typically requires labor- and time-consuming household survey e¤orts in countries

where too few people pay taxes for the tax returns to be informative, the welfare gain of a means-

tested allocation compared to other allocation schemes might not be worth its cost.

Table 3b reports analogous results for a standard normal kernel which is not a higher-order

kernel. The results are numerically somewhat di¤erent but do not imply any substantively di¤erent

conclusion. But, given our sample sizes, we report the other results only for the higher-order kernel.

8.3.5 Dual Problem

In Table 4 we report the minimum resources needed to attain a certain expected outcome: we

compute the share of the population that needs to be treated in order to achieve a given target

value function by allocating treatment based on all three covariates (column 2). We then calculate

the additional resources that are needed when the optimal, unrestricted allocation is not possible,

and the allocation is instead based on all covariates except wealth (column 3), only on wealth

(column 4) or the allocation is purely random (column 5). The nonparametric estimates with the

bandwidth � = 0:4 suggest that an allocation based on all covariates but wealth requires treating

an additional. 8.7 percentage points of the population compared to the optimal allocation in order

to reach a mean usage rate � = 0:40 (Panel B2, column 3). An allocation based on wealth only
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would require treating an additional 9 percentage points of the population compared to the optimal

allocation (Panel B2, column 4). The additional spending is even higher when the allocation is

purely random: an extra 12.4 percentage points of the population need to be treated to reach the

target usage rate, compared to the optimal allocation (Panel B2, column 5).

Allocation rules based on wealth only ("means-testing") are very common in developed coun-

tries, e.g. housing bene�ts; food stamps or Medicaid in the US, but less so in developing countries

where wealth or income data are not easily veri�able due to the absence of tax records. By compar-

ing these estimates of the minimum resources needed to attain a certain expected outcome across

restricted cases (means-testing only vs. "all but wealth" and random allocations), one can judge

whether it is worth collecting the data needed to means-test.

9 Conclusion

In this paper, we have considered a social planner�s problem of allocating a binary treatment among

a target population based on observed covariates in the presence of budget constraints. The paper

proposes a simple allocation rule based on sample data from an experiment, where the treatment is

randomly allocated and examines this rule from a decision theoretic perspective. The paper then

derives and uses large-sample frequentist properties of these rules to infer (i) the expected welfare

from the rule, (ii) the minimum cost of attaining a speci�c average welfare�i.e., the dual and (iii)

the welfare loss corresponding to restricted covariate choice. These methods are applied to data

on the provision of anti-malaria bed nets in western Kenya. The empirical �ndings are that a

government which can a¤ord to distribute bed net subsidies to only 50% of its target population

can, if using an allocation rule based on multiple covariates, increase actual bed-net coverage by 8

percentage points (19%) relative to random allocation and by 4 percentage points (9%) relative to

an allocation scheme based on wealth only.

This paper has left several related topics to future research. One is to extend the methods to

the design of conditional cash-transfer programs, which have gained popularity in a large number

of central and south American countries. A second topic, outlined in section 7.3 above, concerns

how treatment externalities can be incorporated into an analysis of e¢ cient treatment assignment.

Deriving the welfare-maximizing linear rule, as discussed in section 7.4, would also be a theoreti-

cally interesting and practically relevant exercise as would be the extension to multiple treatments.

Finally, from an applications point of view, it would be interesting to compare parametric and non-

parametric Bayesian solutions and the minmax regret solutions with the EWM methods proposed

here, using smaller subsets of our sample.

A caveat to our analysis is the implicit assumption that the covariate distributions are not

a¤ected by the targeting strategy used. This may be violated if the population composition changes

in response to changes in the targeting rule, e.g., switching subsidy eligibility towards families with

children in a district may see an in�ux of families with children from neighboring districts, thereby

altering the marginal distribution of covariates. Such migration is plausible only when the size of

the transfer is high enough relative to migration costs and thus quite unlikely at the usual scale of
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in-kind transfer schemes present in the developing world today. But for larger sized transfers, this

caveat can potentially be an important one.

We would like to end with the observation that in development circles, there has been a recent

push for more experimental evidence on the impact of social programs, as part of a general e¤ort

to improve the e¤ectiveness of aid (Du�o, Kremer and Glennerster, 2006). For example, the

World Bank recently launched the DIME initiative, an e¤ort to increase the number of Bank-

funded projects with impact evaluation components. We believe that as randomized trials of social

programs, e.g., Oportunidades (PROGRESA) in Mexico, become more common in both developed

and developing countries, our methodology will become increasingly relevant in helping governments

and aid-agencies roll out positive-impact programs via e¢ cient allocation rules.
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Sample Mean
Treatment 0.16

(0.36)
Outcome = 1 (All) 0.16

(0.36)
Outcome = 1  (Treatment Group) 0.61

(0.49)
Outcome = 1 (Control Group) 0.07

(0.26)
Has a child under 10 years of age 0.55

(0.50)
Household Size 7.01

(2.63)
Household's Wealth in US$, per capita 44

(28)
Owns a Bank Account 0.13

(0.34)
Observations (households) 985

Dependent Variable Outcome
Treatment 0.455

(0.312)
Has a child under 10 years of age 0.018

(0.021)
Treatment X Has a child under 10 years of age 0.102

(0.054)*
Log Wealth per Capita 0.024

(0.017)
Treatment X Log Wealth per Capita 0.007

(0.040)
Has a bank account 0.052

(0.031)*
Treatment X Has a bank account -0.178

(0.105)*
Constant -0.13

(0.129)
Observations 985
R-Squared 0.30
Joint F-Test for three interaction terms 2.15
Prob > F 0.092

Table 2
Treatment Effects

Table 1
Summary Statistics

Standard Deviations in parentheses. Household-level data collected in Western Kenya in 2007. "Treatment" is a dummy equal to 
1 if the household received a coupon for a bed net to be purchased at a low price ($0 or $0.50), and 0 if the household received a 
coupon for a bed net to be purchased at a price of $2 or above.  Outcome = 1 only if (1) the household has redeemed the coupon and 
(2) the household had started using the bed net at the time of the follow-up visit.
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(1)

0.00 0.08
0.25 0.22 0.00 0.08 0.08

(0.01) *** (0.02)  (0.04) * (0.05) *
0.50 0.37 0.00 0.09 0.08

(0.02) *** (0.01)  (0.05) * (0.04) *

B1. Bandwidth σ = 0.3

0.00 0.08
0.25 0.26 0.15 0.08 0.20

(0.01) *** (0.05) *** (0.04) ** (0.04) ***
0.50 0.42 0.16 0.09 0.19

(0.03) *** (0.05) *** (0.04) *** (0.04) ***

B2. Bandwidth σ = 0.4

0.00 0.08
0.25 0.25 0.11 0.07 0.18

(0.01) *** (0.05) ** (0.04)  (0.04) ***
0.50 0.41 0.10 0.11 0.16

(0.02) *** (0.04) ** (0.03) *** (0.03) ***

0.25 0.04 0.14 0.00 0.13
(0.01) ** (0.05) *** (0.06)  (0.05) ***

0.50 0.05  0.16 0.01 0.11
(0.02) ** (0.04) *** (0.05)  (0.04) **

Table 3a
Allocation Efficiency 

(2) (3) (4) (5)

(with higher order kernels)

Population share 
c  that the 

program can 
afford to treat

Value Function ρ(c): 
Unrestricted Case 

Restricted Cases: 
Efficieny Loss as a share of ρ(c)

All covariates 
except wealth Wealth only

Nothing (random 
assignment)

Panel A: Parametric Estimates

Panel B: Non-Parametric Estimates

Panel C: Differences between Non-Parametric (bandwdith σ = 0.3) 
and Parametric Estimates 

Unrestricted case: conditioning on all 3 covariates available (presence of a child under 5, bank account ownership and normal log
of value of household's wealth per capita.) Standard errors in parentheses, significant at 1% (***), 5%(**), 10% (*) levels.

The table reads as follows: (Panel B1, second row): by treating a share 0.25 of the population, a value function of 0.26 will be
reached if the allocation can be based on all covariates (unrestricted case, column 2). In the presence of restrictions on what the
conditioning can be based on, the efficiency of targetting decreases. The value function will be 15 % lower than in the
unrestricted case if the allocation conditions on everything but wealth; it will be 8% lower if it conditions only on wealth (column
4), and 20% lower if the allocation is random (column 5).

36



(1)

0.00 0.08
0.25 0.22 0.00 0.08 0.08

(0.01) *** (0.02)  (0.04) ** (0.04) *
0.50 0.37 0.00 0.09 0.08

(0.03) *** (0.01)  (0.04) ** (0.04) *

B1. Bandwidth σ = 0.3

0.00 0.08
0.25 0.25 0.10 0.08 0.16

(0.01) *** (0.03) *** (0.04) ** (0.04) ***
0.50 0.40 0.06 0.08 0.14

(0.03) *** (0.03) ** (0.03) ** (0.04) ***

B2. Bandwidth σ = 0.4

0.00 0.08
0.25 0.24 0.06 0.08 0.13

(0.01) *** (0.03) ** (0.04) ** (0.04) ***
0.50 0.38 0.03 0.07 0.10

(0.03) *** (0.02)  (0.04) ** (0.04) ***

0.25 0.02 0.10 0.00 0.08
(0.01) ** (0.04) *** (0.05)  (0.04) **

0.50 0.02  0.06 0.00 0.05
(0.01)  (0.03) ** (0.04)  (0.03) *

Panel C: Differences between Non-Parametric (bandwdith σ = 0.3) 
and Parametric Estimates 

Unrestricted case: conditioning on all 3 covariates available (presence of a child under 5, bank account ownership and normal log
of value of household's wealth per capita.) Standard errors in parentheses, significant at 1% (***), 5%(**), 10% (*) levels.

Population share 
c  that the 

program can 
afford to treat

The table reads as follows: (Panel B1, second row): by treating a share 0.25 of the population, a value function of 0.26 will be
reached if the allocation can be based on all covariates (unrestricted case, column 2). In the presence of restrictions on what the
conditioning can be based on, the efficiency of targetting decreases. The value function will be 15 % lower than in the
unrestricted case if the allocation conditions on everything but wealth; it will be 8% lower if it conditions only on wealth (column
4), and 20% lower if the allocation is random (column 5).

Value Function ρ(c): 
Unrestricted Case 

Panel B: Non-Parametric Estimates

Restricted Cases: 
Efficieny Loss as a share of ρ(c)

All covariates 
except wealth Wealth only

Table 3b
Allocation Efficiency 

Nothing (random 
assignment)

Panel A: Parametric Estimates

(2) (4) (5)(3)

(with standard normal kernels)
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(1)

0.250 0.291 0.001 0.039 0.039
(0.026) *** (0.009)  (0.020) * (0.023) *

0.400 0.552 0.000 0.057 0.058
(0.047) *** (0.010)  (0.036)  (0.035) *

B1. Bandwidth σ = 0.3
0.250 0.235 0.059 0.033 0.095

(0.018) *** (0.025) ** (0.018) * (0.024) ***
0.400 0.463 0.136 0.069 0.147

(0.037) *** (0.041) *** (0.048)  (0.038) ***

B2. Bandwidth σ = 0.4
0.250 0.247 0.047 0.031 0.083

(0.019) *** (0.021) ** (0.020)  (0.021) ***
0.400 0.486 *** 0.087 0.090 0.124

(0.035) *** (0.033) *** (0.029) *** (0.033) ***

0.250 -0.056 0.058 -0.006 0.056
(0.023)  (0.022) *** (0.028)  (0.023) **

0.400 -0.089 0.136 0.012 0.089
(0.037)  (0.038) *** (0.055)  (0.038) **

Standard errors in parentheses, significant at 1% (***), 5%(**), 10% (*) levels.

Table 4
Dual Problem: Cost of Reaching a Target Outcome

(2) (3) (4) (5)

(with higher order kernels)

Objective 
Function: 

Target 
ρ(c )

Unrestricted case: 
Share of population 

that needs to be 
treated to reach this 

target

Restricted Cases: 
Additional share that needs to be treated to 

achieve the target when conditioning on:
All covariates 
except wealth Wealth only

Nothing (random 
assignment)

Panel A: Parametric Computation

Panel B: Non-Parametric Computation

Panel C: Differences between Non-Parametric (bandwdith σ = 0.3) 
and Parametric Estimates 

The table reads as follows: (Panel B1, row 1): to reach a target value function of 0.250, a share 0.235 of the population
needs to be treated if the allocation can be based on all covariates (unrestricted case, column 2). In the presence of
restrictions on what the conditioning can be based on, the efficiency of targetting decreases. An additional 0.059 of the
population needs to be treated if the conditioning is based on all covariates except wealth (column 3). An additional
0.033 of the population needs to be treated if the conditioning is based on wealth only (column 4). If the allocation is
purely random, an additional 0.095 of the population needs to be treated to achieve the 0.250 target value function
(column 5).
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Figure 1
Sensitivity of γ and ρ to the Choice of Bandwidths

Panel A. Threshold γ Panel B.  Value Function ρ
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Figure 2
Panel A. γ(c) and ρ(c) when c= 0.50  Panel B.  γ(c) and ρ(c) when c= 0.25
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Figure 3
Leave-one-out Cross-Validation Criterion
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Kernel Density of Estimates of Conditional ATE θ(X)

Figure 4
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Cumulative Distribution Function of Conditional ATE θ(X)

Figure 5
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Panel A. Threshold γ(c) Panel B. Value Function ρ(c)
Figure 6: Unrestricted Case: Conditioning on all observables
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Panel A. Restricted Case: Conditioning on Wealth Only Panel B. Random Allocation (no conditioning)
Figure 7 : Value Function ρ(c) in Restricted Case and Random Allocation Case
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 (Bandwidth σ=0.4)

Figure 8: Value Function ρ(c), Parametric vs. Non-Parametric Estimation
Panel A. Parametric Estimation Panel B. Non-Parametric Estimation
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10 Appendix

10.1 Illustrative comparison of EWM and Bayes risks

Consider a standard decision problem where the loss function is given by L (�; x) with � denoting

the action to be taken and x the value of the random variable X which will occur after the action

is taken.

We �rst show that in both the parametric and nonparametric case, the frequentist risk of the

EWM rule and that of the Bayes rule will di¤er by Op
�
1
n

�
.

Nonparametric case: Suppose that the distribution of X is not assumed to belong to a

speci�c parametric family. In this case, the EWM approach results in the expected risk

REWM (�jzn) =
Z
X
L (�; x) dFn (x)

where Fn (x) = 1
n

Pn
i=1 1 (Xi � x). In contrast, for a nonparametric Bayes (npb) solution, assume

a Dirichlet process prior (Ferguson (1973)) with base measure H (:) and concentration parameter �

on the space of distribution functions for X.12 This DP prior will result in the following predictive

distribution (c.f., Schervish (1997), prop 1.98) for a "new" draw:

Gn (x) =
�

�+ n
H(x) +

n

�+ n
� 1

n

nX
i=1

1 (Xi � x) .

The di¤erence between Fn (x) and Gn (x) is thus

jGn (x)� Fn (x)j =
�

�+ n

�����H(x)� 1

n

nX
i=1

1 (Xi � x)

����� = Op

�
1

n

�
,

uniformly in x. Furthermore, in this case, as � ! 0, i.e., the prior becomes more di¤use, the

predictive distribution tends to the empirical distribution.

Now, if the loss function is uniformly bounded on the action space, then a DCT will imply that

sup
�
jREWM (�jzn)�RBayes (�jzn)j = Op

�
1

n

�
. (9)

This will imply that the di¤erence in value functions, viz., jmin� REWM (�jzn)�min� RBayes (�jzn)j
is also Op

�
1
n

�
. To see why, suppose �� = argmin� REWM (�jzn) and ~a = argmin� RBayes (�jzn).

Now consider a sequence bn such that nbn !1 as n!1. Then

Pr [REWM (�
�jzn)�RBayes (~ajzn) > bn]

� Pr [REWM (~ajzn)�RBayes (~ajzn) > bn]

� Pr

�
sup
�
jREWM (�jzn)�RBayes (�jzn)j > bn

�
! 0 by (9).

12For actual nonparametric Bayesian analysis, one may use other, e.g., Gaussian process or perturbed DP priors

owing to the well-known property that the DP assigns probability 1 to a set of discrete distributions (c.f., Schervish

(1997), page 56). We use the DP for our illustrations here to ease the exposition.
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A similar reasoning works for Pr [RBayes (~ajzn)�REWM (�
�jzn) > bn]. Since this argument holds

for any sequence bn of larger order than 1
n , the conclusion follows.

Parametric case: Suppose the distribution of X is known to be N (�; 1) and one has data

on past IID realizations of X, i.e. the data are zn = (x1; :::xn). Letting � (�) denote the standard
normal density, the risk function is R (�; �) =

R
L (�; x)� (x� �) dx. Since � is unknown, we consider

the plug-in and the Bayes approximation to this risk based on zn, as follows. It is worth noting

that in the parametric case, a plug-in approach does not coincide with a Bayesian approach under

an uninformative prior.

An (MLE) plug-in rule will result in the approximation

Rplug�in (�jzn) =
Z
L (�; x)� (x� �x) dx. (10)

This function, though easier to compute, does not take into account �nite-sample parameter un-

certainty in �.

On the other hand, in the Bayesian approach, a N
�
�; �2

�
prior for � will result in the posterior

risk

RBayes (�jzn) =
Z
L (�; x)

�Z 1

�1
� (x� �) g

�
�;n; �; �2; �x

�
d�

�
dx,

where

g
�
�;n; �; �2; �x

�
�
p
n+ ��2 � �

��
1

n�2 + 1
�+

n�2

n�2 + 1
�x� �

�
�
p
n+ ��2

�
is the posterior density of � satisfyingZ 1

�1
g
�
�;n; �; �2; �x

�
d� = 1,

and the resulting (posterior) predictive distribution of a new X, given the past data, is

h
�
xjzn; �; �2

�
�
Z 1

�1
� (x� �) g

�
�;n; �; �2; �x

�
d�.

If n is small, i.e. the posterior variance
�
n+ ��2

��1 is large, so that there is more (posterior)
parameter uncertainty in �, then the predictive distribution of a new X will be more dispersed.

Under convexity of L (�; �), this will lead to larger Bayes risk for every �. As � !1, i.e., the prior
becomes more di¤use, h

�
xjzn; �; �2

�
!
p
n� � (

p
n (x� �x)) and

RBayes (�jzn)!
Z
L (�; x)

p
n� �

�p
n (x� �x)

�
dx

which di¤ers from Rplug�in (�jzn) in (10), i.e., �at priors do not lead to the plug-in risk.
As n!1, of course, the two risks will get closer in probability, calculated w.r.t. the population

distribution of zn. To see the rate of approach as n ! 1 for a �xed � , let E�jzn (�) denote
expectation w.r.t. the posterior, viz., �jzn � N

�
1

n�2+1
�+ n�2

n�2+1
�x;
�
n+ ��2

	�1� and observe that
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by a standard mean value expansion,����Z 1

�1
[� (x� �)� � (x� �x)] g

�
�;n; �; �2; �x

�
d�

����
=

����Z 1

�1

�
(�x� �)�0 (x� �x) + 1

2
�00 (x� �x) (�x� �)2 + o

�
(�x� �)2

��
g
�
�;n; �; �2; �x

�
d�

����
= O

������0 (x� �x)E�jzn (�x� �) + 12�00 (x� �x)E�jzn (�x� �)2
�����

= O

������0 (x� �x) 1

n�2 + 1
f�� �xg+ 1

2
�00 (x� �x) 1

n+ ��2

�����
= Op

�
1

n

�
, uniformly in x

where the "P" in "Op (�)" corresponds to the population distribution of �x and uniformity follows
because the functions �0 and �00 are bounded uniformly on R. Now, the conclusion follows from
similar reasoning as the nonparametric case above.

Higher-order correction: Higher-order improvements in a frequentist sense and analogous
to those in predictive inference can be achieved in the parametric case as follows. Suppose in the

normal example above, our goal is to know the expected loss from action �, i.e.,

G (�; �)
def
= E [L (�;Xn+1) jXn+1 � N (�; 1)] =

Z
L (�; x)� (x� �) dx.

Since we do not know �, we can use �x to approximate it. Now, the question is whether we can �nd

a function g (�; X1; :::Xn) such that Ej�
�R

L (�; x) g (x;X1; :::Xn) dx
	
is a better approximation to

G (�; �) than the approximation E�xj�
�R
L (�; x)� (x� �x) dx

�
. To �nd such a g (�), notice that

� (x� �x)� � (x� �) = ��0 (x� �)� (�x� �) + 1
2
�00 (x� �)� (�x� �)2 + o

�
(�x� �)2

�
.

Taking expectation w.r.t. the population distribution of �x, under regularity conditions,

E�xj�

�Z
L (�; x)� (x� �x) dx

�
=

Z
L (�; x)� (x� �) dx+1

2
V ar�xj� (�x)�

Z
�00 (x� �)L (�; x) dx+o

�
1

n

�
,

(11)

where V ar (�x) = O
�
1
n

�
. So a better approximation (up to order 1

n) is provided byZ
L (�; x)

�
� (x� �x)� 1

2n
� �00 (x� �x)

�
dx,

and choosing � to minimize this risk will result in a smaller frequentist risk in �nite samples. Cox

(1975) discusses analogous higher order corrections for predictive inference problems and notes the

typically small O
�
1
n

�
order of adjustment that results from it.

10.2 Parameter uncertainty and ambiguity aversion

Suppose X has a discrete distribution with known support fa1; :::aMg and associated unknown
probabilities � = f�1; :::�Mg. This may be viewed as the nonparametric case with discrete random
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variables. Suppose the prior distribution of � is given by the Dirichlet � (�) / �Mm=1�
�1
m , which

turns out to be an uniformative prior (c.f., Chamberlain and Imbens (2003)). Then the posterior

is given by �� (�jzn) / �Mm=1�nm�1m , where nm denotes the number of times am is realized in the IID

sample zn � fx1; :::; xng, with
PM
m=1 nm = n, the sample size. Then the Bayesian posterior risk is

given by Z ( MX
m=1

L (�; am) �m

)
d�� (�jzn) =

MX
m=1

L (�; am)

Z
�md�� (�jzn)| {z }

predictive Pr(X=amjzn)

=
MX
m=1

L (�; am)�
nm
n
=

Z
L (�; x) dFn (x) ,

i.e., the EWM criterion. This equality essentially results from the underlying risk-function, i.e.,PM
m=1 L (�; am) �m being linear in the unknown parameter �. A new independent draw Xn+1 has

support fa1; :::aMg with associated predictive probabilities
�
n1
n ; :::

nM
n

	
. Its variance is given by

V ar (Xn+1jzn) = E��(�jzn) fV ar (Xn+1j�)g+ V ar��(�jzn) fE (Xn+1j�)g

= E��(�jzn)

8<:
MX
j=1

a2j�j �

0@ MX
j=1

aj�j

1A29=;| {z }
conditional uncertainty

+ V ar��(�jzn)

8<:
MX
j=1

aj�j

9=;| {z }
parameter uncertainty

= E��(�jzn)

8<:
MX
j=1

a2j�j

9=;�
0@E��(�jzn)

8<:
MX
j=1

aj�j

9=;
1A2

=

MX
j=1

a2j
nj
n
�

8<:
MX
j=1

aj
nj
n

9=;
2

.

Thus the two sources of uncertainty (conditional and parametric) in the predictive distribution of

Xn+1 are treated symmetrically in how they a¤ect the expected utility from the action �.

In contrast, an ambiguity averse planner�s objective would be of the formZ
V

(
MX
m=1

L (�; am) �m

)
d�� (�jzn) ,

where V (�) is concave and re�ects aversion to ambiguity about �, c.f. Ahn et al (2009).

10.3 Proofs of theorems

In the proofs below, CMT will denote continuous mapping theorem and DCT the Lebesgue domi-

nated convergence theorem.

Proposition 1:
Proof. Note that for a generic set A, the objective function equalsZ

x2X
[� (x; 1)� � (x; 0)] 1 (x 2 A) dF (x) +

Z
x2X

� (x; 0) dF (x) , (12)
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and the second term does not depend on A. So in the proof below, we will simply refer to the �rst

term as the objective function.

Note that the objective function for a generic choice set A can be written asZ
x2X

[� (x)] 1 (x 2 A) 1 f� (x) > g dF (x) +
Z
x2X

[� (x)] 1 (x 2 A) 1 f� (x) � g dF (x)

=

Z
x2X

[� (x)] 1 (x 2 A) 1 f� (x) > g dF (x) +
Z
x2X

[� (x)] 1 (x 2 A) 1 f� (x) � g dF (x)

�
Z
x2X

[� (x)] 1 (x =2 A) 1 f� (x) > g dF (x)�
Z
x2X

[� (x)] 1 (x 2 A) 1 f� (x) > g dF (x)

+

Z
x2X

[� (x)] 1 f� (x) > g dF (x) .

=

Z
x2X

[� (x)] 1 (x 2 A) 1 f� (x) � g dF (x)�
Z
x2X

[� (x)] 1 (x =2 A) 1 f� (x) > g dF (x)

+

Z
x2X

[� (x)] 1 f� (x) > g dF (x) . (13)

Now, the �rst term in the previous display is bounded above by



Z
x2X

1 (x 2 A) 1 f� (x) � g dF (x) , (14)

while the second term, without the negative sign, is strictly bounded below by



Z
x2X

1 (x =2 A) 1 f� (x) > g dF (x) . (15)

Now from the budget constraint, we have that

c =

Z
x2X

1 (x 2 A) dF (x)

=

Z
x2X

"
1 (x 2 A) 1 f� (x) � g
+1 (x 2 A) 1 f� (x) > g

#
dF (x)

and

c =

Z
x2X

1 f� (x) > g =
Z
x2X

[1 (x =2 A) 1 f� (x) > g+ 1 (x 2 A) 1 f� (x) > g] dF (x)

whence it follows that



Z
x2X

1 (x 2 A) 1 f� (x) � g dF (x) = 

Z
x2X

1 (x =2 A) 1 f� (x) > g dF (x) . (16)

It follows from (13), (14), (15), (16) that the objective function in (12) is bounded above byZ
x2X

[� (x)] 1 f� (x) > g dF (x) +
Z
x2X

� (x; 0) dF (x) ,

which corresponds to setting A = fx 2 X : � (x) > g with  �  (c) satisfying

c =

Z
x2X

1 f� (x) >  (c)g dF (x) .
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Lemma 1 Under assumptions A0-A3, A4(i), B1, B2, B3(i) and B4(i),

sup
t2[�M;M ]

���F̂�̂ (t)� F� (t)��� P! 0.

Proof. Observe that

F̂�̂ (t)� F� (t)

=
1

n

nX
i=1

�L

 
t� �̂ (Xi)

hn

!
� F� (t)

=
1

n

nX
i=1

�L

 
t� �̂ (Xi)

hn

!
� 1

n

nX
i=1

�L

�
t� � (Xi)

hn

�
+
1

n

nX
i=1

�
�L

�
t� � (Xi)

hn

�
� 1 (� (Xi) � t)

�

+
1

n

nX
i=1

f1 (� (Xi) � t)� F� (t)g

=
1

nhn

nX
i=1

L

 
t� ~� (Xi)

hn

!n
� (Xi)� �̂ (Xi)

o
+
1

n

nX
i=1

�
�L

�
t� � (Xi)

hn

�
� 1 (� (Xi) � t)

�

+
1

n

nX
i=1

f1 (� (Xi) � t)� F� (t)g .

Therefore,

sup
t2[�M;M ]

���F̂�̂ (t)� F� (t)���
� sup

t2[�M;M ]

����� 1n
nX
i=1

f1 (� (Xi) � t)� F� (t)g
�����

+ sup
t2[�M;M ]

����� 1n
nX
i=1

�
�L

�
t� � (Xi)

hn

�
� 1 (� (Xi) � t)

������
+

1

n1=4hn

 
1

n

nX
i=1

sup
t2[�M;M ]

�����L
 
t� ~� (Xi)

hn

!�����
!
�
�
n1=4 sup

a

���� (a)� �̂ (a)����
By assumption B3(i) (i.e. L (�) is uniformly bounded), assumption B4(i) (i.e. nh4n ! 1) and
assumption B1, the third term is op (1). The �rst term is op (1) by the standard Glivenko-Cantelli

theorem. The second term is op (1) by Horowitz (1992), lemma 4 under assumptions about �L and

that � (X) has a Lebesgue density which is uniformly bounded above (analogous to his proof that

lim�!0 Pr (jb0xj < �), here we have that

lim
�!0

Pr (jt� � (X)j < �) = lim
�!0

Pr (�� < t� � (X) < �)

= lim
�!0

Pr (t� � < � (X) < t+ �)

= lim
�!0

[F� (t+ �)� F� (t� �)]

� 2 lim
�!0

�
�� sup

s2R
[f� (s)]

�
= 0,
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and the rest of the proof is identical to Horowitz lemma 4).

Theorem 1:
Proof. Fix " > 0. Then F� ( + ")� 1+ c > 0 and 1� c�F� ( � ") > 0, by assumption (B5).

Therefore, we have that

Pr (ĵ � j > ") � Pr (̂ >  + ") + Pr (̂ <  � ")
� Pr

�
F̂�̂ (̂) > F̂�̂ ( + ")

�
+ Pr

�
F̂�̂ (̂) < F̂�̂ ( � ")

�
= Pr

�
1� c > F̂�̂ ( + ")

�
+ Pr

�
1� c < F̂�̂ ( � ")

�
� Pr

�
F� ( + ")� 1 + c < F� ( + ")� F̂�̂ ( + ")

�
+Pr

�
1� c� F� ( � ") < F̂�̂ ( � ")� F� ( � ")

�
� Pr

 
F� ( + ")� 1 + c < sup

t2[�M;M ]

���F̂�̂ (t)� F� (t)���
!

+Pr

 
1� c� F� ( � ") < sup

t2[�M;M ]

���F̂�̂ (t)� F� (t)���
!

both of which converge to zero by lemma 1.

The following lemma shows that f̂�̂ (�) converges to f� (�) in probability, uniformly on the support
of � (X).

Lemma 2 Under assumptions A0-A4 and B1-B5,

sup
u2[�M;M ]

���f̂�̂ (u)� f� (u)��� = op (1) .

Proof. Observe that

f̂�̂ (u)� f� (u) =
1

nhn

nX
i=1

L

 
u� �̂ (Xi)

hn

!
� f� (u)

By triangle inequality,

sup
u2[�M;M ]

���f̂�̂ (u)� f� (u)��� � sup
u2[�M;M ]

���f̂� (u)� f� (u)���+ sup
u2[�M;M ]

���f̂�̂ (u)� f̂� (u)��� .
The �rst term is op (1) under assumption B2. As for the second term, notice that���f̂�̂ (t)� f̂� (t)��� =

����� 1nhn
nX
i=1

(
L

 
t� �̂ (Xi)

hn

!
� L

�
t� � (Xi)

hn

�)�����
=

����� 1nh2n
nX
i=1

L0

 
t� ~� (Xi)

hn

!n
�̂ (Xi)� � (Xi)

o�����
�

supx

����̂ (x)� � (x)���
h2n

1

n

nX
i=1

�����L0
 
t� ~� (Xi)

hn

!�����
= Op

 
1

h2n
�
(�

lnn

n�pn

�1=2
+ �qn

)!
,
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by assumptions B2 and B3. Therefore by assumption B4, we get the conclusion.

Theorem 2:
To derive the distribution theory for ̂, we will use the following �rst-order approximation

F� () = 1� c = F̂�̂ (̂) = F̂�̂ () + (̂ � )f̂�̂ (~)

where ~ is intermediate between ̂ and . This gives us the following expansion for ̂.

(̂ � )

=
n
f̂�̂ (~)

o�1 n
F� ()� F̂�̂ ()

o
=

n
f̂�̂ (~)

o�1(
F� ()�

1

n

nX
i=1

�L

 
 � �̂ (Xi)

hn

!)

=
n
f̂�̂ (~)

o�1(
F� ()�

1

n

nX
i=1

�L

�
 � � (Xi)

hn

�)

+
n
f̂�̂ (~)

o�1( 1
n

nX
i=1

"
�L

�
 � � (Xi)

hn

�
� �L

 
 � �̂ (Xi)

hn

!#)
. (17)

Proof. Step 1. We �rst show that

f̂�̂ (~)� f� ()
P! 0: (18)

���f̂�̂ (~)� f� ()��� �
���f̂�̂ (~)� f� (~)���+ jf� (~)� f� ()j

� sup
s2[�M;M ]

���f̂�̂ (s)� f� (s)���| {z }
op(1), by lemma 2

+ jf� (~)� f� ()j| {z }
op(1) by CMT and theorem 1

= op (1) .

Step 2: We will show thatp
nhn

�
F� ()� �L

�
 � � (Xi)

hn

��
= � + op (1) . (19)

Observe that

Tn =
1

n

nX
i=1

�
F� ()� �L

�
 � � (Xi)

hn

��

=
1

n

nX
i=1

fF� ()� 1 (� (Xi) � )g+ 1

n

nX
i=1

�
1 (� (Xi) � )� �L

�
 � � (Xi)

hn

��
� T2n � T1n. (20)

Now, p
nhnT2n =

p
hn �

1p
n

nX
i=1

fF� ()� 1 (� (Xi) � )g| {z }
Op(1)

= op (1) .
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We will show that

E
�p

nhnT1n � �
�2
= hnV ar

�p
nT1n

�
+
n
E
�p

nhnT1n � �
�o2

! 0 (21)

and thus p
nhnT1n � � = op (1) . (22)

Now,

V ar
�p
nT1n

�
= V ar

 
1p
n

nX
i=1

�
1 (� (Xi) � )� �L

�
 � � (Xi)

hn

��!

= V ar

�
1 (� (Xi) � )� �L

�
 � � (Xi)

hn

��
= E

�
1 (� (Xi) � )� �L

�
 � � (Xi)

hn

��2
�
�
F� ()� E

�
�L

�
 � � (Xi)

hn

���2
(23)

Observe that

E

�
1 (� (Xi) � )� �L

�
 � � (Xi)

hn

��2
=

Z M

�M

�
�L

�
 � s
hn

�
� 1 (s � )

�2
f� (s) ds

=

Z 

�M

�
�L

�
 � s
hn

�
� 1 (s � )

�2
f� (s) ds

+

Z A



�
�L

�
 � s
hn

�
� 1 (s � )

�2
f� (s) ds

=

Z 

�M

�
�L

�
 � s
hn

�
� 1
�2

f� (s) ds+

Z A



�
�L

�
 � s
hn

��2
f� (s) ds

and both of the terms in the previous display converge to zero by the DCT since lima!1 �L (a) =

1 = 1� lima!�1 �L (a).

Next,

F� ()� E
�
�L

�
 � � (Xi)

hn

��
= F� ()�

Z M

�M
�L

�
 � s
hn

�
f� (s) ds

= F� ()�
Z 

�M
�L

�
 � s
hn

�
f� (s) ds�

Z M



�L

�
 � s
hn

�
f� (s) ds

=

Z 

�M

�
1 (s � )� �L

�
 � s
hn

��
f� (s) ds�

Z M



�L

�
 � s
hn

�
f� (s) ds

! 0, by the DCT.

Thus, from (23), we have that

V ar
�p
nT1n

�
! 0 as n!1. (24)
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Next, consider

E (T1n) = E

�
1 (� (Xi) � )� �L

�
 � � (Xi)

hn

��
=

�
F� ()�

Z M

�M
�L

�
 � s
hn

�
f� (s) ds

�
=

�
F� ()� �L

�
 � s
hn

�
F� (s) jM�M � 1

hn

Z M

�M
F� (s)L

�
 � s
hn

�
ds

�
=

(
F� ()�

Z +M
hn

�M
hn

F� ( � uhn)L (u) du
)

= (�1)r+1h
r
n

r!
� f (r�1)� ()�

Z 1

�1
urL (u) du+ o (hrn) , by assumption B7.

This implies that

E
�p

nhnT1n

�
= (�1)r+1

p
nh

r+1=2
n

r!
� f (r�1)� ()�

Z 1

�1
urL (u) du+ o (hrn)

! �, by assumption B7. (25)

Now, (24) and (25) imply (21) and thus (22).

Step 3: We will now analyze the second term in (17):

Sn =
1

n

nX
i=1

"
�L

�
 � � (Xi)

hn

�
� �L

 
 � �̂ (Xi)

hn

!#
du,

using U-statistic type decompositions to show thatp
nhnSn =

p
hnp
n

nX
j=1

f[�1n (Zj)� E f�1n (Zj)g]� [�2n (Zj)� E f�2n (Zj)g]g

+op (1)
d! N

�
0; �2

�
, (26)

where the triangular arrays �1n (Zj), �2n (Zj) and the constant �2 > 0; will be speci�ed below.

To that end observe thatp
nhnSn =

p
hnp
n

nX
i=1

"
�L

�
 � � (Xi)

hn

�
� �L

 
 � �̂ (Xi)

hn

!#

=

p
hnp
nhn

nX
i=1

n
�̂ (Xi)� � (Xi)

o
L

�
 � � (Xi)

hn

�

+

p
hn

2
p
nh2n

nX
i=1

n
�̂ (Xi)� � (Xi)

o2
L0

 
~� (Xi)� 

hn

!
.

The second term in absolute value has an expectation which is of the order of

sup
x2X

���� (x)� �̂ (x)���2 pn
h
3=2
n

= Op

8<:
(�

lnn

n�pn

�1=2
+ �qn

)2 p
n

h
3=2
n

9=;! 0, by assumption B8.
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Thus we get that

p
nhnSn =

p
hnp
n

nX
i=1

"
�L

�
� (Xi)� 

hn

�
� �L

 
�̂ (Xi)� 

hn

!#

=
1p
nhn

nX
i=1

n
� (Xi)� �̂ (Xi)

o
L

�
 � � (Xi)

hn

�
+ op (1)

= � 1p
nhn

nX
i=1

n
�̂ (Xi)� � (Xi)

o
L

�
 � � (Xi)

hn

�
+ op (1) .

Now, note that

�̂ (Xi)� � (Xi) =
�
�̂ (Xi)

�̂ (Xi)
� �(Xi)

� (Xi)

�
�
(
�̂ (Xi)

�̂(Xi)
� � (Xi)

� (Xi)

)
(27)

We will simply work with the �rst term because the proof is exactly analogous for the second term

and show that
1p
nhn

nX
i=1

n
�̂ (Xi)� � (Xi)

o
L

�
 � � (Xi)

hn

�
= Op (1) .

Step 3A: Now,

1p
n

nX
i=1

�
�̂ (Xi)

�̂ (Xi)
� �(Xi)

� (Xi)

�
1

hn
L

�
� (Xi)� 
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�

=
1p
n

nX
i=1

�
�̂ (Xi)� �(Xi)

� (Xi)

�
1

hn
L

�
� (Xi)� 

hn

�

� 1p
n

nX
i=1

�
� (Xi)

� (Xi)

�̂ (Xi)� �(Xi)
� (Xi)

�
1

hn
L

�
� (Xi)� 
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�

� 1p
n

nX
i=1

f�̂ (Xi)� �(Xi)g f�̂ (Xi)� �(Xi)g
� (Xi) �̂ (Xi)

1

hn
L

�
� (Xi)� 

hn

�

+
1p
n

nX
i=1

�(Xi) f�̂ (Xi)� �(Xi)g2

�2 (Xi) �̂ (Xi)

1

hn
L

�
� (Xi)� 

hn

�
. (28)

The last two terms in absolute value have expectations that are bounded above by a positive

scalar times
p
n supx kf�̂ (x)� �(x)g f�̂ (x)� �(x)gk and

p
n supx kf�̂ (x)� �(x)gk2, respectively

and these are both op (1) under standard conditions (c.f. NM, section 8.3) which is assumption B11

above.
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Now, the �rst two terms in (28) add up to

1p
n

nX
i=1

� (Xi) �̂ (Xi)� � (Xi) �̂ (Xi)
�2 (Xi)

1

hn
L

�
� (Xi)� 
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�

=
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n

1
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X
j 6=i

�
1
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f� (Xi)YjSj � � (Xi)Sjg

1

�pn
K

�
Xj �Xi
�n

�
� 1

hn
L

�
� (Xi)� 
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�
p
n

1

n (n� 1)
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X
j 6=i

wn (Zi; Zj)

=
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X
j 6=i

[wn (Zi; Zj)� E (wn (Zi; Zj) jZi)� E (wn (Zi; Zj) jZj) + E (wn (Zi; Zj))]| {z }
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+
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U2n

+
1p
n
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. (29)

Step 3B: We �rst show that

U3n = op (1) . (30)

Notice that

E
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�
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1
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�
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�
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for some uniformly bounded function H by assumption. Therefore,

U3n = O (�qn)�
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H (Xi)�
1
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L

�
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�
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�p
n�qn

�
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by assumption B8.
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Step 3C: The term

U1n =
1p

n (n� 1)
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X
j 6=i
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can be analyzed using essentially the steps of Powell, Stoker and Stock (1989), lemma 3.1, whence

one can conclude that

E
�
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The key step is to show that

E
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Observe that
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1
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h
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�
�(x)�
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�i2
�
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�
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�
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Step 3D: Now consider the term
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Observe that
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Notice that
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Now, let !2 (s) = E
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Now we will apply the Liapunov condition and use the Lindeberg CLT for triangular arrays. Con-
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Thus the Liapunov condition holds and applying the Lindeberg CLT, we get that
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Putting together (30), (31), (32) and (32), we get thatr
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which establishes (26).
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Lemma 3 Under assumptions A0-A4 and B1-B11,
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Proof. Note that
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Theorem 3:
Proof.
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Since L; �L are uniformly bounded, the above display is of the form

�
supx2X

����̂ (x)� � (x)���
hn

�Op (1) +
 
nhn (̂ � )2

nh3n

!1=2
�Op (1) .

Now, theorem 2 implies that nhn (̂ � )2 = Op (1), Assumptions B1 and B4 (i) imply that
supj�̂(x)��(x)j
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= op (1) and that nh3n !1. Thus we have that T1n = op (1).

As for T2n, observe that since � (�) is uniformly bounded, by using steps exactly analogous to
step 2 in the proof of theorem 2 (leading to (19)), we will get by the DCT that T2n = op (1).

Now combine with lemma 3 to conclude.

Theorem 4:
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Proof. We will work with the following expansion
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Step 4: Under assumptions B1 and B8, the fourth term in (41) will be op
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since L0 (�) is

assumed to be uniformly bounded in absolute value. As for the �fth term, observe by the previous
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Combining steps 4 and 5, we get that
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Step 6A: Consider the �rst term in (44)
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This implies that for T4n de�ned in (45),
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The �nal step is to analyze the third term in (48), using U-statistic type decompositions. First
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It is straightforward (replace the kernel involving terms) to verify that we will get the same con-

clusion as (31) and (30) here. So we only perform the analysis for U2n.

Using steps similar to the case for ̂, one gets that
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Therefore,
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Now, we will show that the second term in the previous display is op (1). Recall the notation
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!2 (s) = E
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The �rst term in (50) equalsZ M
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and both of the terms in the previous display converge to zero by the DCT since lima!1 �L (u) = 1 =

1�lima!�1 �L (u). The second integral in (50) converges to zero by the DCT since limu!�1 u2L2 (u) =

0. The third integral in (50) also converges to zero by limu!�1 uL (u) = 0 and the DCT. This
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So it follows that the second term in (49) is op (1).

Thus we have that
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where
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Using exactly analogous steps, we will also get that
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Finally, we get that
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since the covariances will be zero (as can be easily seen from the asymptotic linear expansions

because S (1� S) = 0).
Replacing in (42), we �nally arrive at
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Now, observe that
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By lemma 3, S1n = Op

�
1p
n

�
, S2n is a standard empirical process and so Op
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as shown as part of the proof of theorem 2.
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