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Abstract

We consider the problem of efficiently allocating a binary treatment among a

target population based on a set of discrete and continuous observed characteris-

tics. The goal is to maximize the population mean of an eventual outcome when

a budget constraint limits what fraction of the population can be treated. Using

sample data resulting from randomized treatment allocation, the ATE conditional

on covariates (CATE) is nonparametrically estimated in a first step. The optimal

treatment threshold and resulting value function, which are non-smooth functionals

of the CATE, are estimated based on sample realizations of the estimated CATE.

We derive large-sample distribution theory for these estimates and for the estimated

dual value, i.e. the minimum resources needed to attain a specific average outcome

via efficient treatment assignment. These inferential methods are applied to the op-

timal provision of anti-malaria bed nets, using data from a randomized experiment

conducted in western Kenya. We find that a government which can afford to distrib-

ute subsidized bed nets to only 50% of its target population can, with an efficient

allocation rule based on multiple covariates, increase bed-net use by 8 percentage

points (25 percent) relative to random allocation and by 4 percentage points (11

percent) relative to one based on wealth only. Our methods can be extended to

infer optimal design of eligibility in conditional cash transfer programs.

1 Introduction

Vulnerable populations in developing countries often lack access to critical health and

educational facilities. Enhancing their access can generate both high private returns and,
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in many cases, significant positive externalities for society. Examples include improvement

of female literacy rates or decreasing incidence of infectious diseases. These considerations

often lead governments and private charities in developing countries to subsidize access

to such key health and educational resources. However, such subsidizing efforts are also

typically constrained by binding budget ceilings. When budgets are such that only a small

fraction of a target population can receive a given subsidy, the eligibility rule used to decide

who will receive the subsidy can have an important effect on the overall benefit arising

from the subsidy program. Even when budget constraints are not explicitly binding, as

in many high-income countries, efficient use of available resources for treating vulnerable

sections of society is still an important policy objective.

This paper considers the problem of allocating a fixed amount of resources to a tar-

get population with the aim of maximizing the mean outcome across members of the

population, and the dual problem of estimating the minimum cost of achieving a given

mean outcome in the population by proper targeting of a treatment. We show how, in the

presence of observationally heterogeneous treatment effects, experimental data on a repre-

sentative sample of the population can be used to infer the optimal treatment assignment

rule. We apply this methodology to design optimal allocation of an effective malaria con-

trol tool — insecticide-treated bed nets — among households in a malaria-endemic region

of Kenya. Our treatment of interest is making subsidized bednets available to a section

of this population and the outcome of interest is the mean effective usage rate (the share

of households using a bed net). We find that, if available resources allow us to treat only

50% of the target population, randomly allocating bed nets is 19% (8 percentage points)

less efficient than optimally allocating them based on a set of observed characteristics.

Allocating the bed nets according to wealth only is 9% (4 percentage points) less efficient

than allocating them based on a set of relevant covariates. Finally, allocating the bed nets

based on all covariates but wealth is 10 to 16% (4 to 7 percentage points) less efficient

than allocating them based on the complete set of relevant covariates.

From the perspective of econometric methodology, our analysis is based on functionals

of the marginal distribution of the conditional average treatment effect (CATE, hence-

forth). In particular, we show that when the budget limits the fraction of the treated to

c ∈ (0, 1), the optimal treatment threshold γ and the resulting value function ρ are equiv-
alent respectively to the (1− c)th marginal quantile and Lorenz share for the random

variable θ (X) — where θ (x) represents the average treatment effect for the subpopula-

tion whose value of the observable characteristic X is x. The parameters ρ and γ, which

appear to be new to the treatment effects literature, can be expressed as solutions to semi-

parametric moment conditions involving the infinite-dimensional initial parameter θ (·),
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typically a function of both discrete and continuous covariates. However, the functional

form of θ (·) is not known but estimated in an initial step; the estimated γ and ρ are

based on the empirical distribution of the estimated θ (·). The key technical challenge
in conducting inference on ρ and γ is that the population moment condition defining γ

is a step-function in θ (·). Consequently, neither the classic semiparametric methods, c.f.
Pakes and Pollard (1989), Andrews (1994) or Newey (1994), nor its recent extensions to

nonsmooth sample moments (but smooth population moments), c.f. Ai and Chen (2003)

or Chen, Linton and van Keilegom (2003) (CLV, henceforth), can be used here directly.

We bypass this problem by using additional smoothing in defining the estimates and

show that γ and ρ can be estimated at fast enough rates even if θ (·) is left nonparamet-
ric. Since γ and ρ are functionals of the single-dimensional index θ (·), the convergence
rate of their estimates will not depend on the dimension of the continuous components

of X.1 Moreover, ρ but not necessarily γ can be estimated at the parametric rate under

a set of regularity conditions. We will argue below that the value function ρ is often a

more interesting policy parameter than the treatment threshold γ. The relatively fast

rate for ρ means that we can estimate such policy-relevant scalar parameters well with

comparatively small sample sizes without making any ad-hoc parametric assumptions on

the data generating process. As a corollary, we also derive inference theory for the dual

policy parameter, viz. the minimum fraction of the population which has to be treated in

order to attain a target level of mean outcome. The value function for this dual problem

is simply the inverse of ρ (·), which is monotone increasing as a function of c.
On a broader substantive level, this paper suggests and describes how a government

may use experimental (pilot) data to infer the eligibility rule that will generate the max-

imum possible benefit from a program before rolling out the program at a large scale.

While generating and collecting experimental data on the effectiveness of an intervention

and how it varies across possible beneficiaries has so far been limited to medical inter-

ventions, there has been a recent push for more experimental evidence on the impact of

social programs, as part of a general effort to improve the effectiveness of aid (Duflo,

Kremer and Glennerster, 2006). For example, the World Bank recently launched the

DIME initiative, an effort to increase the number of Bank-funded projects with impact

evaluation components. Because the goal of impact evaluations is often to identify simply

whether a program works, the parameter of interest for the evaluators is typically the

average treatment effect (ATE). For this reason, experiments are typically not designed

to precisely estimate interaction coefficients, i.e. how the effect of the program varies by

1For deriving these rates, we will require that the estimate of θ (.) converges in sup norm faster than

n1/4 and this requires a sample size that is large relative to the dimension of X.
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observable covariates. We show here that relatively precise inference on the value of the

optimal allocation rule is possible even when the experimental sample size does not permit

very precise estimation of the (observable) heterogeneity in the treatment effect (i.e. γ

and ρ can be estimated at faster rates than the function θ (·), itself). Experimental data
generated by a pilot program can thus be used not only to estimate whether a program

is worth scaling-up, but also to infer how the program should be scaled-up. The methods

developed here have wider applicability, beyond subsidy targeting in developing coun-

tries, to any situation of constrained treatment assignment. Examples include assigning

patients to expensive surgical procedures, deciding eligibility rules for access to credit or

allocating the unemployed to job-training programs.

The rest of the paper is organized as follows. Section 2 sets up the problem, introduces

the parameters of interest and discusses the relation of the present paper to the relevant

literature in econometrics and development economics. Section 3 introduces the estimators

and discusses some key issues regarding rate of convergence for the parameters of interest.

Section 4 develops the relevant distribution theory. Section 5 presents the benchmark case

of parametric inference. Section 6 presents the application to the optimal allocation of

bed nets in Kenya. Section 7 discusses an extension to the design of conditional cash

transfer programs and section 8 concludes. All proof are collected in the appendix.

2 Formulation of the Problem

2.1 Set-up

Let Y denote an individual level outcome and let S denote a binary treatment whose

level can be affected directly by policy. Let X denote observed covariates and U denote

unobserved determinants of Y . In the bed-net example, analyzed below in details, the

population of interest is rural households of western Kenya. We have a simple random

sample drawn from two districts in Western Kenya. Each household is an observation. Y

is equal to 1 if the household owns and uses a bed net. X is the presence of a child under

10 in the household, the household’s wealth per capita and ownership of a bank account,

while U represents unobserved determinants of take-up. S = 1 denotes offering a highly

subsidized bed net to the household.

Let φ (x, s) denote the expected outcome at S = s for individuals with X = x: i.e.

if an individual with characteristic X = x is randomly selected from the population and

assigned a value s of S, then her expected outcome is φ (x, s). If S is independent of U

conditional on X as in a randomized trial (the case studied here), then a nonparametric
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regression of Y on X for individuals with S = s in the sample can be used to recover this

function.2 This paper considers the case where X includes both discrete and continuous

variables, S is binary and allocation to the treatment was randomized at the individual

level.

We will be primarily concerned with a social planner’s problem which is as follows.

The planner faces a constraint on what fraction of individuals can be administered the

treatment (S = 1). Suppose this fraction is c and let X denote the support of X. We

define the planner’s problem as the choice of a set A ⊂ X such that if an individual’s

value of X is in this set, then the planner assigns that person to the treatment and not

otherwise. We will assume that the planner wants to maximize mean outcome.3 Then

the planner’s problem is

max
A⊂X

Z
x∈X

[φ (x, 1) 1 (x ∈ A) + φ (x, 0) 1 (x /∈ A)] dF (x)

subject to

c =

Z
x∈X

1 (x ∈ A) dF (x) . (1)

It is obvious that the budget constraint will hold with equality at the optimum. It is also

intuitive that the optimal set A will include those x’s where φ (x, 1) is "large" relative

to φ (x, 0). The following proposition formalizes this intuition. We will use the notation

θ (x) to mean φ (x, 1)− φ (x, 0).

Proposition 1 The solution to the planner’s problem

max
A⊂X

Z
x∈X

[φ (x, 1) 1 (x ∈ A) + φ (x, 0) 1 (x /∈ A)] dF (x)

subject to

c =

Z
x∈X

1 (x ∈ A) dF (x)

is of the form A∗ = {x : θ (x) > γ} where θ (x) ≡ φ (x, 1)− φ (x, 0) and γ satisfies

c =

Z
x∈X

1 (θ (x) > γ) dF (x) .

2Otherwise, φ (x, ·) has to be identified by either using IV based methods or by assuming unconfounded
(conditional on covariates) treatment assignments. Bhattacharya, Chandra and Chen (2007) investigate

this case in the context of assigning a continuous treatment.
3More generally, if the planner is interested in maximizing (a possibly covariate weighted) outcome

utility, then φ (x, 1) represents the expected value of the planner’s utility defined on outcomes for indi-

viduals with X = x.
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Proof. Appendix
Note that the problem is interesting only if c < Pr (θ (X) > 0); otherwise, the optimal

assignment rule would be to give treatment to everybody whose average treatment effect

is positive.

For the optimal choice of A, the value function, capturing the maximal gains from

covariate based allocation, will be

ρ (c) =

Z
x∈X

[φ (x, 1) 1 {θ (x) > γ (c)}+ φ (x, 0) 1 {θ (x) ≤ γ (c)}] dF (x)

=

Z
x∈X

φ (x, 1) dF (x)−
Z
x∈X

θ (x)× 1 {θ (x) < γ (c)} dF (x) . (2)

The above proposition implies that one can solve for γ (c) from

c =

Z
x∈X

1 {θ (x) > γ (c)} dF (x) .

The above equation simply states that γ (c) is the (1− c)th quantile for the marginal

distribution of the average treatment effect (conditional on X), i.e., the random variable

θ (X). Let us denote the population c.d.f. of this distribution by G (·). The corresponding
value function from (2) can be written as

ρ (c) = E [φ (X, 1)]−
Z
z∈Θ

[z × 1 {z ≤ γ (c)}] dG (z) ,

where
R
z∈Θ [z × 1 {z ≤ γ (c)}] dG (z) is the generalized Lorenz share of θ (X), correspond-

ing to the percentile (1− c) and Θ is the support of θ (X).

2.2 Parameters of interest

Treatment threshold: γ (c) is a natural policy parameter of interest because it repre-
sents the treatment threshold for a specific budget c. Interestingly, it also equals ρ0 (c),

which measures the shadow cost of the budget constraint, e.g. how much will the max-

imized expected outcome increase if the subsidy budget increases infinitesimally from c.

Alternatively, γ (c) measures the expected treatment effect on the "last" individual made

eligible for treatment under our budget-constrained rationing rule.

Value function: ρ (c), the value function corresponding to the above optimization
problem, represents the maximum mean outcome obtainable from a budget outlay of c.

We consider ρ to be fundamentally a more important parameter than γ for several reasons.

First, it is useful for deciding on the budget outlay necessary for achieving a target mean

level of outcome (more on this below). Second, any choice of conditioning covariates is
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likely to be controversial in real life and some could be politically or legally infeasible.

Some relevant covariates are also costly and/or difficult to measure. For example, in

poorer areas in developing countries where the majority of households do not file tax

returns, measuring income or wealth levels typically requires labor-intensive household

surveys. Under-reporting of income and assets is a common problem, especially if the

population surveyed is aware of the existence of an eligibility threshold (Martinelli and

Parker, 2007). The unrestricted value function therefore represents a "first-best" scenario

against which alternative allocations which are feasible and/or based on easily measurable

covariates can be compared. The (unrestricted) γ may be less relevant relevant from a

policy perspective if such an unrestricted allocation will never be feasible in real life.

Equivalent expenditure: The dual formulation of the optimal allocation problem
is as follows. Suppose the planner’s objective is to achieve an expected outcome equal to

b by allocating treatment based on covariates. The parameter of interest is the minimum

amount of funds necessary to achieve b. This dual problem can be represented as

min
A⊂X

Z
x∈X

1 {x ∈ A} dF (x) (3)

subject to Z
x∈X

[φ (x, 1) 1 (x ∈ A) + φ (x, 0) 1 (x /∈ A)] dF (x) = b. (4)

One can almost repeat the proof of proposition 1 to show that the optimal A will again

be of the form A∗ = {x : 1 {θ (x) > γ (b)}} where γ (b) is such that A∗ satisfies (4). Note
that by duality, the minimum value of (3) is simply ρ−1 (b) where ρ (·) is defined in (2)
and the inverse is well-defined because ρ (·) is monotone increasing. In particular, setting
b equal to the currently observed mean outcome of an existing program, one can calculate

how much resources could be saved by optimal allocation.

Restricted value function: Suppose x1 ⊂ x = (x1, x2) and consider situations where

x2 is an infeasible conditioner, either because conditioning on it is banned or because

observing it is costly. Define

ξ (x1, S) = EX2|X1=x1 [φ (x1, x2, S)] . (5)

Then the optimization problem becomes

max
A⊂X1

Z
x1∈X1

[ξ (x1, 1) 1 (x1 ∈ A) + ξ (x1, 0) 1 (x1 /∈ A)] dF (x1) s.t.

c =

Z
x1∈X1

1 (x1 ∈ A) dF (x1) .

Call the unrestricted maximum ρun (c) and the restricted one, which conditions only on

X1, ρres (c). The difference ρun (c)−ρres (c)measures the efficiency cost of these restrictions
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on implementation. When gathering information on X1 (e.g. income) is expensive, one

can compare the above efficiency cost against the cost of gathering information on X1 to

decide on whether the extra survey cost is worthwhile to undertake.

Note that all of the above are finite-dimensional parameters and therefore potentially

estimable at the parametric rate. However, we will show below that although ρ (and its

dual) is indeed estimable at parametric rates under appropriate conditions, the same does

not appear to hold for γ.

2.3 Related Literature and Contributions

This paper contributes to the new and growing literature on treatment choice (c.f. Da-

hejia (2001), Manski (2004), Hirano and Porter (2006) in econometrics and the related

problem of optimal allocation of inputs in production processes (c.f. Graham, Imbens and

Ridder (2005, 2006) and Bhattacharya (2006)). The present paper differs from the above

works substantively as it studies optimal allocation under budget constraints— a problem

that leads to interesting economic parameters that are apparently new to the economet-

rics literature. Analytically, the paper differs from Graham, Imbens and Ridder (2006)

and Bhattacharya (2006) in that it analyzes optimal allocation rules based on both dis-

crete and continuous conditioners. This makes the problem nonparametric in a nontrivial

way. Furthermore, deriving the asymptotic properties of the relevant estimates requires

independent analysis owing to the lack of smoothness of the corresponding population

moment conditions with respect to the underlying infinite-dimensional parameters. In

particular, methods described in Newey-McFadden’s Handbook of Econometrics chapter

(NM, henceforth) or in CLV appear to be not directly applicable here.

Recently, Hahn, Hirano and Karlan (2007) have considered the problem of designing

an experiment with a view to minimize the variance of the estimated unconditional ATE,

estimated from it. Their method is based on covariate-based treatment assignment and

uses data from a pilot experiment which is run prior to the main experiment. The goal

of HHK is therefore fundamentally different from the present paper. In principle, one

could construct an HHK (2007) type experimental design for efficient estimation of the

parameters we introduce in the present paper.

In a working paper, Bhattacharya, Chandra and Chen (2007) are investigating optimal

covariate-based allocation of a continuous resource, e.g., Medicare spending on heart-

attack patients, using observational data and instrumental variations. Analytically, that

problem differs significantly from the present paper because distribution theories are very

different under endogeneity and more structure is needed on the underlying production

8



function to guarantee unique solutions to a planner’s optimization problem.

More broadly, the present paper proposes a new use of experimental data on social

programs. So far, experimental data have typically been collected and used to measure

the impact of a program and determine whether the program is worth its cost or not.

A few recent studies have also used experimental data to estimate the parameters of

dynamic structural models and utilized the estimates to simulate the effects of counter-

factual policy interventions (c.f. Attanasio, Meghir and Santiago, 2006 and Duflo, Hanna

and Ryan, 2007). On the other hand, Todd and Wolpin (2006, 2007) discuss the estima-

tion of structural models of behavior using pre-program data and compare predictions of

their estimated model with subsequent experimental data. In contrast, we propose here a

new methodology through which experimental data can be used directly to infer optimal

targeting of programs. As randomized trials of social programs (e.g. PROGRESA in Mex-

ico) become more common in both developed and developing countries, the methodology

we propose will help governments and aid-agencies roll out positive-impact programs via

efficient allocation rules. The present paper also discusses, albeit briefly, how analogous

methods can be used to design optimal eligibility in conditional cash-transfer programs,

which have gained popularity in a large number of central and south American countries.

3 Estimation

Now we define our estimates formally. Suppose X ≡
¡
Xd,Xc

¢
where Xd contains the

discrete components of X and Xc is a p-variate vector of the continuous components of

X with support X and density f (·). First define the quantities

µ̂ (Xi) =
1

n− 1
X
j 6=i

yisi
σpn

K

µ
Xc

j −Xc
i

σn

¶
1
¡
Xd

j = Xd
i

¢
ν̂ (Xi) =

1

n− 1
X
j 6=i

yi {1− si}
σpn

K

µ
Xc

j −Xc
i

σn

¶
1
¡
Xd

j = Xd
i

¢
π̂ (Xi) ≡

1

n− 1
X
j 6=i

si
σpn

K

µ
Xc

j −Xc
i

σn

¶
1
¡
Xd

j = Xd
i

¢
δ̂(Xi) ≡

1

n− 1
X
j 6=i

1− si
σpn

K

µ
Xc

j −Xc
i

σn

¶
1
¡
Xd

j = Xd
i

¢
.

Then θ̂ (Xi) is defined as

θ̂ (Xi) =
µ̂ (Xi)

π̂ (Xi)
− ν̂ (Xi)

δ̂(Xi)
.
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The natural estimates of our parameters of interest would have been given by solutions

to the equations

0 = 1− c− 1
n

nX
i=1

1
n
θ̂ (Xi) ≤ γ̂

o
,

0 = ρ̂− Ê
h
φ̂ (X, 1)

i
+
1

n

nX
i=1

θ̂ (Xi)× 1
n
θ̂ (Xi) ≤ γ̂

o
.

Notice that the first sample moment condition above is not differentiable in either θ̂ (·)
or in γ̂, so that usual first-order expansions cannot be used. More interestingly, it turns

out that even the population analog of the first moment condition is not differentiable in

the nonparametric component. Indeed, the analogous population moment conditions are

given by

0 = 1− c−
Z
x∈X

1 {θ (x) ≤ γ} dF (x) ,

0 = ρ−E [φ (X, 1)] +

Z
θ (x) 1 {θ (x) ≤ γ} dF (x)| {z }

ζ

,

where θ (·) and φ (·) should be thought of as preliminary parameters which are estimated
in a nonparametric first-step. Now notice that the first moment condition is differentiable

in the scalar γ if θ (X) has a density but not functionally differentiability in θ (·), owing
to the presence of the indicator. This makes it infeasible to directly apply the methods

of e.g. CLV which requires differentiability of all the population moment conditions with

respect to both the finite and the infinite dimensional parameters.

So we use further smoothing to construct our estimators. For each t ∈ [−A,A], choose
a symmetric (about zero) kernel L (·) with bounded support [−1, 1], the corresponding
C.D.F. kernel L̄ (t) =

R t
−1 L (s) ds and a sequence of bandwidth hn converging (slowly) to

zero as n→∞. Now define γ̂, and ρ̂ by

1

n

nX
i=1

(
L̄

Ã
γ̂ − θ̂ (Xi)

hn

!
− {1− c}

)
= 0,

1

n

nX
i=1

φ̂ (Xi, 0) L̄

Ã
γ̂ − θ̂ (Xi)

hn

!
+ φ̂ (Xi, 1)

(
1− L̄

Ã
γ̂ − θ̂ (Xi)

hn

!)
− ρ̂ = 0. (6)

For future use, also define

ζ̂ =
1

n

nX
i=1

θ̂ (Xi)× L̄

Ã
γ̂ − θ̂ (Xi)

hn

!
,

Ê [φ (X, 1)] =
1

n

nX
i=1

µ̂ (Xi)

π̂ (Xi)
,
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so that ρ̂ = Ê [φ (X, 1)]− ζ̂.

The smoothing applied in (6) is similar in spirit to Horowitz’s (1992) analysis of

smoothed maximum score. But in that problem, the finite-dimensional parameter of in-

terest does not explicitly depend on any infinite-dimensional underlying parameter. In

contrast, here the key parameters of interest, viz., γ and ρ, are based on the infinite-

dimensional component θ (·) through (population) moments that are not smooth in θ (·).
Thus the present estimators lie at the intersection of classical 2-step semiparametric esti-

mators and smoothing-based estimators for countering non-differentiability. This makes

both the results and the proofs substantially different from both strands of the literature.

4 Large sample theory

The discrete regressors will not play any substantive roles in our analysis; so we will

drop them in our discussion from now on and put them back into our final results at

the end. Every condition we use will have to hold conditional on each specific value

assumed by the discrete regressors. In our proofs, the notation θ̃ (x) and γ̃ will be used

to denote values intermediate between θ̂ (x) and θ (x) and γ̂ and γ0, respectively; M1 and

M (x) will denote a bounded positive constant and a uniformly bounded positive function,

respectively whose actual values may be different in different places. The latter would be

used in the expressions for upper bounds for various quantities which appear in the proof.

Assumptions

A0(i) (Yi,Xi, Si) i = 1, 2, ...n is a random sample, θ (X) is continuously distributed.

A0(ii) S is randomly allocated so that

µ (x)

π (x)
− ν (x)

δ (x)
= E (Y |S = 1,X = x)−E (Y |S = 0,X = x)

= E (Y (1) |X = x)−E (Y (0) |X = x)

≡ ATE(x)

where Y (1) and Y (0) are the conventional notations for the outcome with and

without treatment respectively for an individual.

Conditional on every value xd assumed by the discrete regressors, the support X c

of the continuous components Xc is a p-dimensional compact set and the density of Xc

satisfies that f (x) ≥ δ > 0 for all x ∈Xc. Furthermore, the density is q-times continuously

differentiable with the derivatives uniformly bounded on X c.
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A2 −1 < −A ≤ θ (x) ≤ A < 1 for every x ∈ X .

A3 K (·) is an qth order p-dimensional bounded kernel, with q > p and the bandwidth

sequence σn satisfying (i) σn → 0 (ii)
√
nσqn → 0

A4(i) The kernel L̄ (·) is uniformly bounded with a bandwidth sequence hn → 0 and

nhn →∞.

Assumptions A0(i) and (ii) define the set-up. A1 is somewhat restrictive but is rou-

tinely assumed (c.f. Hirano, Imbens and Ridder (2003), assumption 2). If this fails, we

can simply redefine the problem such that we are designing allocations based only on

those values of X where this condition holds. Assumption A2 is standard and further-

more, like in the case of assumption A1, we can redefine the problem for those values of

X where this condition holds. Assumption A3 (i) is standard. Assumption A3 (ii) is an

"undersmoothing" requirement, which is commonly used in semiparametric problems for

bias removal; it is also a key condition for assumption B10 below (c.f. NM, lemma 8.10).

4.1 Consistency of γ̂

The following lemma will be useful in several proofs below. We will introduce several high

level assumptions before invoking the lemma.

B1. supx∈X
¯̄̄
θ̂ (x)− θ (x)

¯̄̄
= Op

½³
lnn
nσpn

´1/2
+ σqn

¾
.

B2. supu∈[−A,A]
¯̄̄
f̂θ (u)− fθ (u)

¯̄̄
= op (1)

B3 (i) The first derivative of kernel L̄ (·), denoted by L, is also uniformly bounded.
B4. (i) hn → 0, nhn →∞,

√
nh2n →∞ and n1/4

½³
lnn
nσpn

´1/2
+ σqn

¾
→ 0.

Sufficient low level conditions for B1 and B2 are fairly standard. In particular, for B1

c.f. Hansen (2008). For B2, c.f. Pagan and Ullah (1999) theorem 2.8.

Lemma 1 Under assumptions A0-A3, A4(i), B1, B2, B3(i) and B4(i),

sup
t∈[−A,A]

¯̄̄
F̂θ̂ (t)− Fθ (t)

¯̄̄
P→ 0.

Proof. Appendix
We are now ready to state and prove the first consistency result with one additional

assumption.

B5. The density of θ (X) is strictly positive on an open set containing γ0

12



Theorem 1 Under assumptions A0-A3, A4(i), B1, B2, B3(i) and B4(i) and B5, we have
that

γ̂ − γ0 = op (1)

Proof. Appendix

4.2 Distribution Theory for γ̂

Assume that L̄ (·) is differentiable and let

f̂θ̂ (t) =
1

nhn

nX
i=1

L

Ã
t− θ̂ (Xi)

hn

!
.

The asymptotic behavior of f̂θ̂ (t) will be useful for our distribution theories. Toward that

end, add to the above assumptions that:

A4 (ii) The kernel L̄ (·) has two derivatives which are also uniformly bounded.
B4 (ii) 1

h2n
×
½³

lnn
nσpn

´1/2
+ σqn

¾
→ 0.

Lemma 2 Under assumptions A0-A4 and B1-B5,

sup
u∈[−A,A]

¯̄̄
f̂θ̂ (u)− fθ (u)

¯̄̄
= op (1) .

Proof. Appendix
The following first-order expansion for γ̂ will be used for deriving the distribution

theory for γ̂:

(γ̂ − γ0)

=
n
f̂θ̂ (γ̃)

o−1(
Fθ (γ0)−

1

n

nX
i=1

L̄

µ
u− θ (Xi)

hn

¶)

+
n
f̂θ̂ (γ̃)

o−1 "1
n

nX
i=1

Ã
L̄

µ
u− θ (Xi)

hn

¶
− L̄

Ã
u− θ̂ (Xi)

hn

!!#
.

The proof will proceed in three steps: step 1 is that the multiplier
n
f̂θ̂ (γ̃)

o−1
converges

in probability to {fθ (γ)}−1. Step 2 is that the term T1n will be Op

³
1√
n

´
. Finally in step 3

we will show, using U-statistic type decompositions, that the term T2n will be Op

³
1√
nhn

´
.

Thus, we will eventually get that
√
nhn (γ̂ − γ0) will converge to normal distribution.

The following additional assumptions will be used in the proof.

13



B7. For some r ≥ 2, the density of θ (X) is (r − 1) times continuously differentiable,
the derivative is bounded and Lipschitz in a neighborhood of γ0 and nh2r+1n → λ < ∞.
Denote the above derivative at γ0 by f

(r−1)
θ (γ0).

B8. lnn√
nσpnh

3/2
n

→ 0 and σ2qn
√
n

h
3/2
n

→ 0

B9. L (·) is symmetric around zero and has bounded support [−1, 1], is of order r andR∞
−∞ L2 (u) du =

R 1
−1 L

2 (u) du <∞.
B10. V ar(Y |S = 1) and V ar (Y |S = 0) are finite.
B11.

√
n supx∈X k{µ̂ (x)− µ(x)} {π̂ (x)− π(x)}k = op (1) and

√
n supx k{π̂ (x)− π(x)}k2 =

op (1).

Assumption B11 is also a well-known requirement for
√
n -normality for semiparamet-

ric estimators (c.f. NM, section 8.3).

Theorem 2 Under assumptions A0-A4 and B1-B11, we have thatp
nhn (γ̂ − γ0)

d→ N

µ
β,

τ 2 (γ0) + ω2 (γ0)

fθ (γ0)

Z 1

−1
L2 (u) du

¶
,

where

τ 2 (γ0) = E

(½
δ (X)Y (1− S)− ν (X) (1− S)

δ2 (X)
f (X)

¾2
|θ (X) = γ0

)

ω2 (γ0) = E

(½
π (X)Y S − µ (X)S

π2 (X)
f (X)

¾2
|θ (X) = γ0

)

β = (−1)r+1
√
λ

r!
× f

(r−1)
θ (γ0)

Z 1

−1
urL (u) du.

Proof. Appendix
Incorporating the discrete regressors back into the analysis is straightforward. If we

denote X =
¡
Xc, Xd

¢
and the discrete regressor (vector) Xd assumes values a1, ...aJ and

suppose fXc|Xd=aj (x|aj) denotes the conditional density of Xc, conditional on Xd = aj.

Then we simply replace

τ 2 (γ0) = E

(½
δ (X)Y (1− S)− ν (X) (1− S)

δ2 (X)
f
¡
Xc,Xd

¢¾2
|θ (X) = γ0

)

ω2 (γ0) = E

(½
π (X)Y S − µ (X)S

π2 (X)
f
¡
Xc, Xd

¢¾2
|θ (X) = γ0

)
,

where f
¡
xc, xd

¢
≡
PJ

j=1 fXc|Xd=aj (x
c|aj) 1

¡
xd = aj

¢
.

14



4.3 Consistency for ρ̂

Theorem 3 Under assumptions A0-A4 and B1-B11, we have that

ζ̂ − ζ0 = op (1) .

Proof. Appendix

4.4 Distribution theory for ρ̂

Recall that ρ̂ = 1
n

Pn
i=1 φ̂ (Xi, 1) − ζ̂. We will analyze the first term using the following

lemma and then ζ̂, using theorem 2.

Lemma 3 Under assumptions A0-A4 and B1-B11,

1√
n

nX
j=1

h
φ̂ (Xj, 1)− φ (Xj, 1)

i
=

1√
n

nX
j=1

{π (Xj)YjSj − µ (Xj)Sj} f (Xj)
1

π2 (Xj)
+ op (1)

=
1√
n

nX
j=1

1

{E (S|Xj)}2
{E (S|Xj)× YjSj −E (SY |Xj)× Sj}+ op (1) .

Proof. Appendix
The final step is to derive the large sample distribution of ζ̂, for which the following

expansion will be used.

ζ̂ − ζ0

=
1

n

nX
i=1

θ (Xi) L̄

µ
γ0 − θ (Xi)

hn

¶
− ζ0| {z }

T1n

+
1

n

nX
i=1

n
θ̂ (Xi)− θ (Xi)

o½
L̄

µ
γ0 − θ (Xi)

hn

¶
− 1

hn
θ (Xi)L

µ
γ0 − θ (Xi)

hn

¶¾
| {z }

T2n

+(γ̂ − γ0)
1

nhn

nX
i=1

θ (Xi)L

µ
γ0 − θ (Xi)

hn

¶
| {z }

T3n

+Rn

The proof will work by showing that Rn is op
³

1√
n

´
and T1n, T2n and T3n are all Op

³
1√
n

´
.

The following additional assumptions will be used.

15



B4 (iii)
√
n

h2n
×
½³

lnn
nσpn

´1/2
+ σqn

¾2
→ 0 which is implied by

√
n

h2n
×σ2qn → 0 and

³
lnn√
nσpnh2n

´
→

0.

B12. nh6n →∞, r of assumption B7 is at least 4 and nh2rn → 0.

Theorem 4 Under assumptions A0-A5, B1-B12,

√
n
n
ζ̂ − ζ0

o
=

1√
n

nX
i=1

{ψ1i + ψ2i + ψ3i − ψ4i}+ op (1) ,

where

ψ1i = γ0 {Fθ (γ0)− 1 (θ (Xj) ≤ γ0)}
ψ2i = θ (Xi)× 1 {θ (Xi) ≤ γ0}− ζ0

ψ3i = 1 (θ (Xi) ≤ γ0)×
π (Xi)YiSi − µ (Xi)Si

π2 (Xi)
× fX (Xi)

ψ4i = 1 (θ (Xi) ≤ γ0)×
δ (Xi)Yi (1− Si)− ν (Xi) (1− Si)

δ2 (Xi)
× fX (Xi) .

It follows by an ordinary CLT (under standard second moment restrictions) that
√
n
n
ζ̂ − ζ0

o
will be mean-zero normal.

Proof. Appendix
To incorporate the discrete regressors back into the analysis, we simply replace the

terms fX (Xi) in ψ3i and ψ4i by f
¡
Xc

i ,X
d
i

¢
≡
PJ

j=1 fXc|Xd=aj (X
c
i |aj) 1

¡
Xd

i = aj
¢
, where

fXc|Xd=b (a|b) denotes the density of Xc at a, conditional on Xd = b.

The final variance can be consistently estimated using sample cross-products, under

standard conditions for the WLLN.

Corollary 5 From the previous lemma and the theorem, it follows that

√
n (ρ̂− ρ0)

= − 1√
n

nX
i=1

{ψ1i + ψ2i + ψ3i − ψ4i}+
1√
n

nX
i=1

E (S|Xi)× YiSi −E (SY |Xi)× Si

{E (S|Xi)}2
+ op (1) .

Remark 1 It may be noted here that the estimation error in θ̂ (·) affects the distribution
of ρ̂ through the terms ψ3i and ψ4i.

The variances can be estimated by the average of squares of the terms in the linear

expansions above and that this estimate will be consistent follows from the standard

WLLN.
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4.5 Distribution theory for dual

Recall that the value function for the dual problem δ (b) represents the smallest fraction

of individuals who have to be assigned to treatment (optimally) to guarantee that the

expected mean outcome is at least b. In other words, ρ [δ (b)] equals b, where δ (b) plays

the role of c in the primal problem. From a standard first-order expansion argument, it

follows that

√
n
³
δ̂ (b)− δ (b)

´
= −
√
n (ρ̂ (δ (b))− ρ {δ (b)})

ρ0 {δ (b)} + op (1) ,

where ρ {δ (b)} = b. Since ρ (c) = E {φ (X, 1)} −
R G−1(1−c)
−∞ tdG (t), it follows that ρ0 (c)

equals G−1 (1− c) which is simply γ (c). Replacing, we get that

√
n
³
δ̂ (b)− δ (b)

´
= −
√
n (ρ̂ (δ (b))− ρ {δ (b)})

γ {δ (b)} + op (1) ,

from which the asymptotic normality of
√
n
³
δ̂ (b)− δ (b)

´
follows.

Remark 2 The qualitative difference between the asymptotic distributions of γ̂ and ρ̂ is

somewhat intriguing. It is caused jointly by the facts that the moment condition defining γ

is nonsmooth in θ (·) and also that θ (·) is unknown. If θ (·) were known, then realizations
of θ (X) would be observed and so its estimated quantile would be

√
n-normal. Conversely,

if the moment condition were smooth and θ (·) unknown, then a CLV— type analysis would
lead to

√
n-normality for γ̂ under regularity conditions. One way to interpret the difference

between the asymptotic distributions of γ̂ and ρ̂ is to note that γ = G (θ)−1 (1− c) and

ρ =
R 1
1−cG (θ)

−1 (u) du where G (θ) represents the c.d.f. of θ (X). This suggests that γ

is the value at a point of a nonparametric function while ρ is its integral. Thus γ is

somewhat analogous to the value of a demand function at a price whereas ρ is akin to

the (approximate) consumer surplus (c.f. NM (1994), page 2195) calculated from that

demand curve. So it is likely that γ̂ would behave like a purely nonparametric estimator

whereas ρ̂ behaves like a parametric one. However, we recognize that this analogy is not

perfect because G (θ)−1 (·) is not a standard density or conditional mean function, since
θ (·) is unknown. It is also interesting to observe that the mean of θ (X) is estimable
at the parametric rate, i.e., 1√

n

Pn
i=1

n
θ̂ (Xi)− E [θ (X)]

o
= Op (1), which can be shown

by using U-statistic type results (c.f., proof of lemma 3 below). This may suggest that

a quantile of θ (X) should also be estimable at the parametric rate. But this assertion

remains to be either proved or disproved. What we have shown so far is that there exists

one estimator of γ that converges slower than the parametric rate while the corresponding

estimator for ρ has the
√
n-normal distribution, asymptotically.
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Bias Removal: Notice that we have always used bias-removal in our analysis above.
This is not necessary and may, in fact increase the MSE for γ0 estimation. From the

proof of theorem 2, it is easy to see that if the density fθ (·) has bounded derivatives up
to order (r − 1), then the bias of (γ̂ − γ0) is given by

β = (−1)r+1h
r
n

r!
× f

(r−1)
θ (γ0)

Z 1

−1
urL (u) du+ o (hrn) .

Using the formula for the variance, one gets that the MSE is given by

h2rn ×
"
f
(r−1)
θ (γ0)

r!

Z 1

−1
urL (u) du

#2
| {z }

C

+
1

nhn

∙
τ 2 (γ0) + ω2 (γ0)

fθ (γ0)

Z 1

−1
L2 (u) du

¸
| {z }

B

,

implying an MSE minimizing bandwidth choice of hn = λ∗n−
1

2r+1 , where λ∗ =
¡

C
2rB2

¢ 1
2r+1 .

Horowitz (1992) calculates analogous quantities for his smoothed maximum score estima-

tor and discusses both estimation of λ∗ and adjusts the asymptotic theory of the eventual

estimators to allow for an estimated λ∗.

The above choice of hn does not work for theorem 4 because (c.f. step 6A in the proof)

for this choice of hn, we have that
√
nhrn = O

³
n

1
2(2r+1)

´
which blows up to +∞ and so we

cannot have a
√
n-rate for ζ̂ and thus for ρ̂. So we need to choose hn to be smaller than

the one that is MSE-optimal for γ.

5 Parametric Analysis

It is useful to compare our results from a nonparametric analysis to a benchmark para-

metric model which is easier to estimate and thus potentially more useful for applied

work. The parametric analysis has the obvious limitation that it is susceptible to mis-

specification of the functional form and thus may lead to a suboptimal value function.

In our application we show the results for both parametric and nonparametric specifica-

tions and estimate the efficiency loss arising from the potential mis-specification of the

parametric model.

As an illustration, consider the linear parametric form, i.e.

y = β0 + x0β1 + (δ0 + x0δ1)S − u

implying a conditional ATE given by

θ (x) = β0 + x0β1 + (δ0 + x0δ1)− (β0 + x0β1)

= δ0 + x0δ1.
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The optimal treatment rule is now described by the threshold γ defined by

c = Pr [θ (x) ≥ γ]

yielding a value function

ρ (c) = E

(
[β0 + x0β1 + (δ0 + x0δ1)]× 1 (θ (x) ≥ γ)

+ (β0 + x0β1)× 1 (θ (x) < γ)

)
.

More generally, suppose θ (x) is parametrically specified as G (x, β), where G (·) is
known; typically β can be estimated at parametric rates using, say, GMM. For estimation

of γ and ρ, we will still use smoothing with bandwidth sequence hn and the c.d.f. kernel

L̄ (·) to handle the nonsmoothness. For some specific functional forms of G (·, ·), e.g., a
linear one, the function h (β) =

R
1 {G (x, β) ≤ γ} dF (x) may be differentiable in β and

then no smoothing would be necessary; but smoothing-based methods are more generally

applicable and so we focus on that.

The distribution theory for ρ̂ (c) and γ̂ (c) corresponding to a parametric specification

of θ (·) is a simpler version of the nonparametric case. In particular, we will get that
both γ and ρ can be estimated at the

√
n-rate. The details are as follows. Recall the

asymptotic expansion for γ̂:

√
n (γ̂ − γ0)

=
n
f̂θ̂ (γ̃)

o−1 1√
n

nX
i=1

½
Fθ (γ0)− L̄

µ
γ0 −G (Xi, β0)

hn

¶¾

+
n
f̂θ̂ (γ̃)

o−1⎧⎨⎩ 1√
n

nX
i=1

⎡⎣L̄µγ0 −G (Xi, β0)

hn

¶
− L̄

⎛⎝γ0 −G
³
Xi, β̂

´
hn

⎞⎠⎤⎦⎫⎬⎭ .
Using similar steps as in the proof of theorem 2 below, the first term is asymptotically

normal with mean equal to

lim
n→∞

√
nhrn ×

"
(−1)r+1f (r−1)θ (γ0)×

R 1
−1 u

rL (u) du

r!

#
+ o

¡√
nhrn

¢
which is finite if limn→∞

√
nhrn <∞.

As for the second term, (and this is what makes γ̂ a
√
n-consistent estimator in the
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parametric case) notice that

1√
n

nX
i=1

⎡⎣L̄µγ0 −G (Xi, β)

hn

¶
− L̄

⎛⎝γ0 −G
³
Xi, β̂

´
hn

⎞⎠⎤⎦
=
√
n
³
β̂ − β

´0 1
nhn

nX
i=1

∇G (Xi, β)L

µ
γ0 −G (Xi, β0)

hn

¶
+Tn,

where

|Tn| ≤M
n
°°°β̂ − β

°°°2
2
√
nh2n

1

n

nX
i=1

M1 (Xi)L
0

⎛⎝G
³
Xi, β̃

´
− γ0

hn

⎞⎠ ,
with M a fixed positive constant and M1 (X) a uniformly bounded function. Since
√
n
³
β̂ − β

´
= Op (1), by assumptions B4(i) and A4 (ii), the RHS of the previous display

goes to zero if nh4n →∞. Then we have that

1√
n

nX
i=1

⎡⎣L̄µγ0 −G (Xi, β0)

hn

¶
− L̄

⎛⎝γ0 −G
³
Xi, β̂

´
hn

⎞⎠⎤⎦
=

∙√
n
³
β̂ − β

´0
∇G (Xi, β0, δ0)

¸
× fG(X,β) (γ0) + op (1) .

This implies that
√
n (γ̂ − γ0) will converge to a zero mean normal if nh

2r
n → 0 and

nh4n → ∞ and when the density of G (X, β0) has uniformly bounded derivatives up to

order (r − 1) where r ≥ 3. The result for ρ̂ will follow.

6 Application to bednet provision

6.1 Background

We now apply this inference method to the optimal allocation of heavily subsidized long-

lasting insecticide-treated nets (ITNs) to households, using experimental evidence from

Kenya.

The rationale for public funding of ITNs comes from their proven efficacy in reducing

the burden of malaria through the presence of both large private and large social returns

to ITN use. ITNs have been shown to reduce overall child mortality by up to 38 percent

in regions of Africa where malaria is the leading cause of death among children under 5.4

4See Lengeler (2004) for a review. Earlier estimates of ITN use on reductions in child mortality from

a randomized trial in Gambia were as high as 60 percent, but most estimates from randomized trials in

Africa are closer to 20 percent.
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ITN coverage protects pregnant women and their children from the serious detrimental

effects of maternal malaria. In addition, ITN use can help avert some of the substantial

direct costs of treatment and the indirect costs of malaria infection on lost income.5 Lucas

(2007) estimates that, alone, the gains to education of a malaria-free environment more

than compensate for the cost of an ITN. Costing $5 - $7 a net, however, ITNs are not

affordable to most families (Dupas, 2008; Cohen and Dupas, 2007). For this reason, there

is a large consensus that ITNs should be fully subsidized (WHO, 2007; Sachs, 2005).

Teklehaimanot, McCord and Sachs (2007) estimate that providing one free long-lasting

ITN for every two at-risk person in sub-Saharan Africa would amount to 2.5 billion dollars.

The funds committed by governments and donor agencies for ITNs have not yet reached

that amount, however. For example, the Government of Kenya estimates that around 1

million pregnant women are in need of an ITN every year, but their budget will allow

them to provide only 0.5 million nets per year to pregnant women over the next 5 years

(Kenya Round 7 Proposal, 2007).

Under such a budget constraint, the question of how to allocate the available ITNs

among households becomes an important policy question. If the treatment effect (the

health impact of getting a subsidized ITN) is exactly the same for everyone in the pop-

ulation, then all possible allocations will lead to the same overall gains. However, when

there is heterogeneity in the treatment effect (e.g. the health impact of getting a sub-

sidized ITN varies with observable covariates, such as socioeconomic status, presence of

children in the household, etc.), the gains can be maximized by a covariate-based alloca-

tion. While the health impact of using an ITN might be homogenous, the health impact

of getting a highly subsidized ITN might vary across covariates since usage rates (condi-

tional on having a net) are likely to vary across covariates. For example, households who

can afford to purchase an ITN in the absence of any subsidy (because they have access

to credit or are wealthy enough) will not benefit from the treatment very much (i.e. their

φ (x, 0) will be large and thus for them the difference φ (x, 1) − φ (x, 0) is likely to be

small). Likewise, since young children are the most vulnerable to the disease, households

without young children might not benefit much from the treatment (i.e. their φ (x, 1) will

be small and thus the difference φ (x, 1)−φ (x, 0) is likely to be small). For these reasons,

the treatment effect is likely to vary across observable covariates such as wealth, access to

financial services, and the presence of young children. An allocation rule that takes into

account such heterogeneity could potentially generate important efficiency gains.

5Ettling et al. (1994) find that poor households in a malaria-endemic area of Malawi spend roughly

28 percent of their cash income treating malaria episodes.
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6.2 Design

For this application we use data form a randomized experiment conducted with rural

households in Western Kenya in 2007 (Dupas, 2008). The price at which household could

purchase an ITN varied from $0 (a free ITN) to $4, and households were randomly assigned

to a price. In this application, we consider two groups: households that faced a very low

(highly subsidized) price ($0 or $0.50) and households that faced a high price of $2 or

more. Table 1 presents summary statistics on the 985 households that form the sample

used in the analysis. The take-up rate of the ITN was 84% in the low price group and 16%

in the high price group. Conditional on take-up, the usage rate was slightly higher in the

low price group than in the high price group (70% versus 58%), leading to unconditional

usage rates of 61% and 7%, respectively. In what follows, we consider the low price group

as the treatment group and the high price coup constitutes the control. The treatment

is thus “having access to a low-price ITN” (note that the take-up in the low price group

was not 100%, since some of the "treated" had to pay a small fee to access the net. In

such case, the expected cost of giving eligibility to a group of size N is lower than N times

the unit cost of the treatment. For treatments that do not require cost-sharing, however,

the take-up is likely to be close to 100%).

Table 2 presents evidence of heterogeneity in the treatment effect. The table shows

the results of an OLS regression of ITN on usage on the treatment, three covariates, and

the interactions between the treatment and the covariates. The covariates are: a binary

variable equal to 1 if the household includes at least one child under 10; the natural

log of the value of the household’s wealth per capita; and a binary variable equal to

1 if the household owns a bank account. The first covariate (presence of a child) was

chosen as an indicator of the private returns to using a bed net (since young children

are the most vulnerable to malaria). The two other covariates were chosen as proxies for

socioeconomic status and ability to pay. They were measured through a baseline survey

administered through household visits. In particular, wealth per capita was measured

as follows: households were asked to list all their assets (including animal assets) and to

estimate their resale value. The combined value of all assets combined was then divided by

household size to obtain the "wealth per capita" indicator. The treatment was randomized

at the individual-level so no clustering correction is needed. We find that having a higher

wealth per capita correlates with a higher ITN usage rate in the absence of treatment,

and the treatment effect appears significantly higher for households with a child under 10

and significantly lower for households that own a bank account. An F-test of the joint

significance of the three interaction terms rejects the null hypothesis. This suggests that
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a covariate-based allocation will lead to important efficiency gains.

6.3 Analysis

6.3.1 Non-Parametric Analysis: Choice of Kernels and Bandwidths

For bias-removal, we use the higher order kernels corresponding to r = 4 and q = 3.

K(s) = 0.5×
¡
3− s2

¢
× φ (s) ,

L̄(s) =
15

32

µ
7

5
s5 − 10

3
s3 + 3s+

16

15

¶
× 1 (−1 ≤ s ≤ 1) + 1 (s > 1) .

where φ (·) is the standard normal density. Two bandwidths are needed for the non-
parametric estimation: the bandwidth σn in the estimation of the conditional ATE θ (X),

and the bandwidth hn in the smoothing correction. Figure 1 graphs how the estimated

treatment threshold γ̂ (Panel A) and value function ρ̂ (Panel B) vary with hn for a range

of possible σn. We find that both estimates are insensitive to the choice of hn. They are

also quite stable over a large range of σn. In Figure 2, we present γ̂ and ρ̂ for two budget

constraint levels: c = 50% (Panel A) and c = 25% (Panel B). The stability of ρ̂ over a

reasonable range of bandwidths suggests that the choice of bandwidths should have little

effect on the nonparametric estimates of the value function.

Figure 3 graphs a leave-one-out cross validation criterion function for θ (x). The

function is plotted over the range σn ∈ [0.3, 0.4], which correspond roughly to n−1/6

and n−1/8, respectively. The function seems to dip around σn = 0.33. Given the small

sensitivity of our estimates of ρ and, to a certain extent, γ to the choice of σn, we show

the results for both σn = 0.3 and σn = 0.4. We use hn = 0.35; recall that the results seem

very insensitive to the choice of hn for a given choice of σn.

6.3.2 Conditional ATE

The nonparametric estimate of the CATE θ̂ (x) = φ̂ (xi, 1) − φ̂(xi, 0) was computed cor-

responding to two bandwidths σn = 0.3 and σn = 0.4. The parametric estimate of θ (X)

was computed as θ̂ (x) =
³
δ̂0 + x0δ̂1

´
, where δ̂0 and δ̂1 are OLS estimates in the regression

(presented in Table 2):

yi = β0 + x0iβ1 + δ0Treatmenti + x0iδ1Treatmenti + εi.

Figure 4 graphs the kernel density of the conditional ATE θ (X) computed with the

two proposed bandwidths. Observations with X such that θ (X) is below −0.2 or above
0.9 were discarded in accordance with assumption A2 (ii) above.
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Figure 5 presents the c.d.f. of the conditional ATE θ (X) computed both parametri-

cally and nonparametrically. The stepwise shape for the c.d.f. in the parametric model is

essentially due to the binary nature of two of the three covariates since the interaction of

the treatment with wealth appears to be nearly zero in the parametric case.

6.3.3 Unrestricted and restricted Value Functions

In what follows, we compare the "first best" allocation (the unrestricted case, in which

the allocation is based on all three covariates) with three "restricted" cases: (i) basing the

allocation on the first two covariates only, leaving out wealth, which is typically harder

to observe without conducting expensive household surveys; (ii) means-testing where the
allocation is based only on wealth— which is extremely common in both developed and

developing countries, and (iii) purely random allocation which is not covariate-based at

all. Notice that in the random allocation case, the estimated value function is linear in c:

ρ̂(c) =
1

n

nX
i=1

n
c× φ̂ (xi, 1) + (1− c)× φ̂ (xi, 0)

o
.

Figure 6 graphs the parametric and nonparametric estimates for the treatment thresh-

old γ (c) and the value function ρ (c) in the unrestricted case. The nonparametric estimates

seem very stable over the two choices of bandwidth. The nonparametric estimates of the

unrestricted value function are higher than the parametric estimates.

Panel A of Figure 7 graphs the estimates of the value function ρ (c) when conditioning

is done on wealth but no other covariates and Panel B of Figure 7 graphs the estimates

of ρ (c) when the allocation is purely random.

6.3.4 Efficiency Losses

Representing all four cases (unrestricted allocation, allocation on all covariates but wealth,

allocation based on wealth only, and random allocation) on the same graph helps visualize

the efficiency loss when the optimal allocation is not implementable, as well as the gains

from means-testing compared to non-wealth based allocations. Figure 8 combines the

parametric estimates of the value function ρ (c) for all four cases in Panel A and the

nonparametric estimates in Panel B. In contrast to the parametric estimates, the non-

parametric estimates suggest that means-testing is a clear "second best", generating a

higher mean outcome than random allocation does. The parametric estimates for the

means-tested case is visually indistinguishable from the random allocation case— a fact

more clearly depicted in Table 3.
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We compute the standard errors of the efficiency losses generated by the three subopti-

mal allocations over a range of budget levels in Table 3. Panel A presents the parametric

estimates and Panel B the nonparametric estimates. Panel C presents the differences

between the parametric and nonparametric estimates. As noted in Figures 6B and 7A,

the estimates of the unrestricted value function are significantly different between the

parametric and the nonparametric analyses (column 2, Panel C). The non-parametric

estimates are overall quite robust to the choice of bandwidth σ.

The estimated inefficiency of basing the allocation on all covariates but wealth is

between 11% (for σ = 0.3) and 15% (for σ = 0.4 ) when the budget allows to treat 25%

of the population (Panel B, column 3). This means that ρres (25) is 3 to 4 percentage

points lower than ρun (25). (Note The gap between the two non-parametric estimates

comes from the gap in the estimates of ρun (25). The gap in the estimates of ρun (25) is

less than 1 percentage point, but off of a base of 0.25 it amounts to close to 4 percent.)

The inefficiency of basing the allocation on wealth only is estimated at 7%-8% (Panel

B, column 4) when the budget allows to treat 25% of the population. This means that

ρres (25) is 2 percentage points lower than ρun (25). When estimated non-parametrically,

the efficiency loss due to random allocation is higher, at 20% (5 pp) for σ = 0.3 and 18%

(4pp) for σ = 0.4 (Table 3, column 5).

Overall, the estimates presented in Table 3 suggest that the efficiency costs of restricted

allocation schemes can be substantial. In the Kenyan context analyzed here, we also find

that means-testing only does not generate a much higher outcome than an allocation

based on covariates other than wealth. Depending on the cost of collecting information

on households’ assets (or other proxies for wealth), which typically requires labor- and

time-consuming household survey efforts in countries where too few people pay taxes

for the tax returns to be informative, the efficiency gain of a means-tested allocation

compared to other allocation schemes might not be worth its cost.

6.3.5 Dual Problem

In Table 4 we report the minimum resources needed to attain a certain expected outcome:

we compute the share of the population that needs to be treated in order to achieve a given

target value function by allocating treatment based on all three covariates (column 2). We

then calculate the additional resources that are needed when the optimal, unrestricted

allocation is not possible, and the allocation is instead based on all covariates except

wealth (column 3), only on wealth (column 4) or the allocation is purely random (column

5). The nonparametric estimates with the bandwidth σ = 0.4 suggest that an allocation
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based on all covariates but wealth requires treating an additional. 8.7 percentage points

of the population compared to the optimal allocation in order to reach a mean usage rate

ρ = 0.40 (Panel B2, column 3). An allocation based on wealth only would require treating

an additional 9 percentage points of the population compared to the optimal allocation

(Panel B2, column 4). The additional spending is even higher when the allocation is

purely random: an extra 12.4 percentage points of the population need to be treated to

reach the target usage rate, compared to the optimal allocation (Panel B2, column 5).

Allocation rules based on wealth only ("means-testing") are very common in devel-

oped countries, e.g. housing benefits; food stamps or Medicaid in the US, but less so

in developing countries where wealth or income data are not easily verifiable due to the

absence of tax records. By comparing these estimates of the minimum resources needed

to attain a certain expected outcome across restricted cases (means-testing only vs. "all

but wealth" and random allocations), one can judge whether it is worth collecting the

data needed to means-test.

7 Extension: conditional cash-transfer programs

In some government programs, transfers can be, and often are, contingent both on the

household’s characteristics as well as its having attained the outcome of interest. Such

programs are currently being implemented in at least 16 developing countries (c.f., the

website " go.worldbank.org/BWUC1CMXM0") in Asia and in south and central America.

The larger ones among these include Oportunidades, previously known as PROGRESA,

in Mexico and the Bolsa Escola in Brazil. These programs typically pay a transfer only

if the household sends its children to school and pays regular visits to health clinics for

preventive care. For such behavior-contingent transfers, the budget constraint changes

because transfers are paid only when the desired outcome is realized. However, methods

analogous to those developed above can be used to devise optimal design of such behavior-

contingent transfers, as follows.

Consider the set-up where the target outcome is binary (e.g. children attending school)

and covariates X with support X can include both discrete and continuous components.

Now the set A will represent "eligibility for being offered the program". The eventual

outcome, denoted by Y , is the joint occurrence of (an eligible) household participating

in the program and sending its children to school. Transfers are made if and only if the

household is both eligible (i.e., its value of X lies in A) and the outcome Y = 1 is realized.

In this case, φ (x, s) will denote the probability that Y = 1 for a randomly picked x-type

household when offered the treatment s ∈ {0, 1}. Notice that the relevant policy in this
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case is deciding whom to offer the program and so identifying φ (x, s) will not require any

corrections for nonrandom take-up as long as the program was offered purely randomly.

This is in contrast to identifying the mean effect of participation in the program.

Now the planner’s problem becomes one of determining "optimal eligibility", viz.

max
A⊂X

Z
x∈X

[φ (x, 1) 1 (x ∈ A) + φ (x, 0) 1 (x /∈ A)] dF (x)

subject to the budget constraint

c =

Z
x∈X

φ (x, 1)× 1 (x ∈ A) dF (x) ,

which differs from (1) because a transfer is made here only when the outcome Y = 1 is

attained. Simple algebra shows that this optimization problem is equivalent to

min
A⊂X

Z
x∈X

φ (x, 0)× 1 (x ∈ A) dF (x) s.t.
Z
x∈X

φ (x, 1)× 1 (x ∈ A) dF (x) = c,

implying a solution of the form

A∗ = {x ∈ X : φ (x, 0) ≤ α} , with
Z
x∈X

φ (x, 1)× 1 (φ (x, 0) ≤ α) dF (x) = c,

and a corresponding value function

µ = c+E [φ (X, 0)× 1 {φ (X, 0) > α}] .

The analogous estimates α̂ and µ̂ can be obtained via c.d.f. type smoothing as solutions

to

1

n

nX
i=1

(
c− φ̂ (Xi, 1)× L̄

Ã
α̂− φ̂ (Xi, 0)

hn

!)
= 0,

c+
1

n

nX
i=1

(
φ̂ (Xi, 0)×

Ã
1− L̄

Ã
α̂− φ̂ (Xi, 0)

hn

!!)
− µ̂ = 0.

In future work, we intend to explore large sample theory for these estimates and apply

them to study optimal eligibility rules, using data from the Oportunidades program in

Mexico.

8 Conclusion

This paper considered a social planner’s problem of allocating a binary treatment among a

target population based on observed characteristics in the presence of budget constraints.
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Outcome data from a randomized allocation of treatment to a representative sample are

used to estimate the average treatment effect θ (·) conditional on covariates X and the

marginal distribution of θ (X) in the population. This distribution is used to design

an optimal targeting rule which maximizes a mean outcome. In this rule, the optimal

treatment threshold γ and the corresponding value function ρ equal respectively a quantile

and the corresponding Lorenz share in the population distribution of θ (X). We show

that γ can be consistently estimated and ρ can be estimated both consistently and at

the parametric rate, even when θ (·) is nonparametrically estimated. This result holds
even though the population moment conditions defining the finite-dimensional parameters

(γ, ρ) are not differentiable in θ (·), so that existing methods for semiparametric moment
condition models cannot be applied here.

From a broader substantive standpoint, this paper contributes to a nascent literature

on the possible uses that can be made of experimental data in designing optimal policies.

We suggest how governments may use experimental (pilot) data to infer the participation

eligibility rule that will generate the maximum possible benefit from a program before

rolling out the program on a larger scale. Applying our method to experimental data on

the provision of anti-malaria bed nets in western Kenya, we find that a government which

can afford to distribute subsidized bed nets to only 50% of its target population can, if

using an allocation rule based on multiple covariates, increase actual bed-net coverage

by 8 percentage points (19%) relative to random allocation and by 4 percentage points

(9%) relative to an allocation scheme based on wealth only. Future work will extend these

methods to the design of optimal eligibility in conditional cash-transfer programs, which

have gained popularity in a large number of central and south American countries.
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Sample Mean
Treatment 0.16

(0.36)
Outcome = 1 (All) 0.16

(0.36)
Outcome = 1  (Treatment Group) 0.61

(0.49)
Outcome = 1 (Control Group) 0.07

(0.26)
Has a child under 10 years of age 0.55

(0.50)
Household Size 7.01

(2.63)
Household's Wealth in US$, per capita 44

(28)
Owns a Bank Account 0.13

(0.34)
Observations (households) 985

Dependent Variable Outcome
Treatment 0.455

(0.312)
Has a child under 10 years of age 0.018

(0.021)
Treatment X Has a child under 10 years of age 0.102

(0.054)*
Log Wealth per Capita 0.024

(0.017)
Treatment X Log Wealth per Capita 0.007

(0.040)
Has a bank account 0.052

(0.031)*
Treatment X Has a bank account -0.178

(0.105)*
Constant -0.13

(0.129)
Observations 985
R-Squared 0.30
Joint F-Test for three interaction terms 2.15
Prob > F 0.092

Table 2
Treatment Effects

Table 1
Summary Statistics

Standard Deviations in parentheses. Household-level data collected in Western Kenya in 2007. "Treatment" is a dummy equal to 
1 if the household received a coupon for a bed net to be purchased at a low price ($0 or $0.50), and 0 if the household received a 
coupon for a bed net to be purchased at a price of $2 or above.  Outcome = 1 only if (1) the household has redeemed the coupon and 
(2) the household had started using the bed net at the time of the follow-up visit.



(1)

0.00 0.08
0.25 0.22 0.00 0.08 0.08

(0.01) *** (0.02)  (0.04) * (0.05) *
0.50 0.37 0.00 0.09 0.08

(0.02) *** (0.01)  (0.05) * (0.04) *

B1. Bandwidth σ = 0.3

0.00 0.08
0.25 0.26 0.15 0.08 0.20

(0.01) *** (0.05) *** (0.04) ** (0.04) ***
0.50 0.42 0.16 0.09 0.19

(0.03) *** (0.05) *** (0.04) *** (0.04) ***

B2. Bandwidth σ = 0.4

0.00 0.08
0.25 0.25 0.11 0.07 0.18

(0.01) *** (0.05) ** (0.04)  (0.04) ***
0.50 0.41 0.10 0.11 0.16

(0.02) *** (0.04) ** (0.03) *** (0.03) ***

0.25 0.04 0.14 0.00 0.13
(0.01) ** (0.05) *** (0.06)  (0.05) ***

0.50 0.05  0.16 0.01 0.11
(0.02) ** (0.04) *** (0.05)  (0.04) **

Panel C: Differences between Non-Parametric (bandwdith σ = 0.3) 
and Parametric Estimates 

Unrestricted case: conditioning on all 3 covariates available (presence of a child under 5, bank account ownership and normal log
of value of household's wealth per capita.) Standard errors in parentheses, significant at 1% (***), 5%(**), 10% (*) levels.

Population share 
c  that the program 
can afford to treat

The table reads as follows: (Panel B1, second row): by treating a share 0.25 of the population, a value function of 0.26 will be
reached if the allocation can be based on all covariates (unrestricted case, column 2). In the presence of restrictions on what the
conditioning can be based on, the efficiency of targetting decreases. The value function will be 15 % lower than in the
unrestricted case if the allocation conditions on everything but wealth; it will be 8% lower if it conditions only on wealth (column
4), and 20% lower if the allocation is random (column 5).

Value Function ρ(c): 
Unrestricted Case 

Panel B: Non-Parametric Estimates

Restricted Cases: 
Efficieny Loss as a share of ρ(c)

All covariates 
except wealth Wealth only

Table 3
Allocation Efficiency 

Nothing (random 
assignment)

Panel A: Parametric Estimates

(2) (4) (5)(3)



(1)

0.250 0.291 0.001 0.039 0.039
(0.026) *** (0.009)  (0.020) * (0.023) *

0.400 0.552 0.000 0.057 0.058
(0.047) *** (0.010)  (0.036)  (0.035) *

B1. Bandwidth σ = 0.3
0.250 0.235 0.059 0.033 0.095

(0.018) *** (0.025) ** (0.018) * (0.024) ***
0.400 0.463 0.136 0.069 0.147

(0.037) *** (0.041) *** (0.048)  (0.038) ***

B2. Bandwidth σ = 0.4
0.250 0.247 0.047 0.031 0.083

(0.019) *** (0.021) ** (0.020)  (0.021) ***
0.400 0.486 *** 0.087 0.090 0.124

(0.035) *** (0.033) *** (0.029) *** (0.033) ***

0.250 -0.056 0.058 -0.006 0.056
(0.023)  (0.022) *** (0.028)  (0.023) **

0.400 -0.089 0.136 0.012 0.089
(0.037)  (0.038) *** (0.055)  (0.038) **

Standard errors in parentheses, significant at 1% (***), 5%(**), 10% (*) levels.

Table 4
Dual Problem: Cost of Reaching a Target Outcome

Restricted Cases: 
Additional share that needs to be treated to 

achieve the target when conditioning on:

(2) (4) (5)

Objective 
Function: 

Target 
ρ(c )

Unrestricted case: 
Share of population 

that needs to be 
treated to reach this 

target

Panel C: Differences between Non-Parametric (bandwdith σ = 0.3) 
and Parametric Estimates 

The table reads as follows: (Panel B1, row 1): to reach a target value function of 0.250, a share 0.235 of the population
needs to be treated if the allocation can be based on all covariates (unrestricted case, column 2). In the presence of
restrictions on what the conditioning can be based on, the efficiency of targetting decreases. Compared to the
unrestricted case, an additional 0.059 of the population needs to be treated if the conditioning is based on all covariates
except wealth (column 3). Compared to the unrestricted case, an additional 0.033 of the population needs to be treated
if the conditioning is based on wealth only (column 4). If the allocation is purely random, an additional 0.095 of the
population needs to be treated (compared to the unrestricted case) to achieve the 0.250 target value function (column
5).

(3)

Panel A: Parametric Computation

All covariates 
except wealth Wealth only

Nothing (random 
assignment)

Panel B: Non-Parametric Computation



Figure 1

Panel A. Threshold γ

 Panel B.  Value Function ρ

Sensitivity of γ and ρ to the Choice of Bandwidths
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Figure 2

Panel A. γ(c) and ρ(c) when c= 0.50

 Panel B.  γ(c) and ρ(c) when c= 0.25
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Figure 3

Leave-one-out Cross-Validation Criterion
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Cumulative Distribution Function of Conditional ATE θ(X)

Kernel Density of Estimates of Conditional ATE θ(X)

Figure 4

Figure 5
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Figure 6

 Panel A. Threshold γ(c), Unrestricted Case

 Panel B. Value Function ρ(c), Unrestricted Case
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 Panel A. Value Function ρ(c), Restricted Case: Conditioning on Wealth Only

 Panel B. Value Function ρ(c), Random Allocation

Figure 7
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Figure 8

 Panel B. Value Function ρ(c), Non-Parametric Analysis (Bandwidth σ=0.4)

 Panel A. Value Function ρ(c), Parametric Model
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9 Appendix (Proofs)

In the proofs below, CMTwill denote continuous mapping theorem and DCT the Lebesgue

dominated convergence theorem.

Proposition 1:
Proof. Note that for a generic set A, the objective function equalsZ

x∈X
[φ (x, 1)− φ (x, 0)] 1 (x ∈ A) dF (x) +

Z
x∈X

φ (x, 0) dF (x) , (7)

and the second term does not depend on A. So in the proof below, we will simply refer

to the first term as the objective function.

Note that the objective function for a generic choice set A can be written asZ
x∈X

[θ (x)] 1 (x ∈ A) 1 {θ (x) > γ} dF (x) +
Z
x∈X

[θ (x)] 1 (x ∈ A) 1 {θ (x) ≤ γ} dF (x)

=

Z
x∈X

[θ (x)] 1 (x ∈ A) 1 {θ (x) > γ} dF (x) +
Z
x∈X

[θ (x)] 1 (x ∈ A) 1 {θ (x) ≤ γ} dF (x)

−
Z
x∈X

[θ (x)] 1 (x /∈ A) 1 {θ (x) > γ} dF (x)−
Z
x∈X

[θ (x)] 1 (x ∈ A) 1 {θ (x) > γ} dF (x)

+

Z
x∈X

[θ (x)] 1 {θ (x) > γ} dF (x) .

=

Z
x∈X

[θ (x)] 1 (x ∈ A) 1 {θ (x) ≤ γ} dF (x)−
Z
x∈X

[θ (x)] 1 (x /∈ A) 1 {θ (x) > γ} dF (x)

+

Z
x∈X

[θ (x)] 1 {θ (x) > γ} dF (x) . (8)

Now, the first term in the previous display is bounded above by

γ

Z
x∈X

1 (x ∈ A) 1 {θ (x) ≤ γ} dF (x) , (9)

while the second term, without the negative sign, is strictly bounded below by

γ

Z
x∈X

1 (x /∈ A) 1 {θ (x) > γ} dF (x) . (10)

Now from the budget constraint, we have that

c =

Z
x∈X

1 (x ∈ A) dF (x)

=

Z
x∈X

"
1 (x ∈ A) 1 {θ (x) ≤ γ}
+1 (x ∈ A) 1 {θ (x) > γ}

#
dF (x)

and

c =

Z
x∈X

1 {θ (x) > γ} =
Z
x∈X

[1 (x /∈ A) 1 {θ (x) > γ}+ 1 (x ∈ A) 1 {θ (x) > γ}] dF (x)
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whence it follows that

γ

Z
x∈X

1 (x ∈ A) 1 {θ (x) ≤ γ} dF (x) = γ

Z
x∈X

1 (x /∈ A) 1 {θ (x) > γ} dF (x) . (11)

It follows from (8), (9), (10), (11) that the objective function in (7) is bounded above byZ
x∈X

[θ (x)] 1 {θ (x) > γ} dF (x) +
Z
x∈X

φ (x, 0) dF (x) ,

which corresponds to setting A = {x ∈ X : θ (x) > γ} with γ ≡ γ (c) satisfying

c =

Z
x∈X

1 {θ (x) > γ (c)} dF (x) .

Lemma 1:
We want to show that

sup
t

¯̄̄
F̂θ̂ (t)− Fθ (t)

¯̄̄
= op (1) .

F̂θ̂ (t)− Fθ (t)

=
1

n

nX
i=1

L̄

Ã
t− θ̂ (Xi)

hn

!
− Fθ (t)

=
1

n

nX
i=1

L̄

Ã
t− θ̂ (Xi)

hn

!
− 1

n

nX
i=1

L̄

µ
t− θ (Xi)

hn

¶
+
1

n

nX
i=1

½
L̄

µ
t− θ (Xi)

hn

¶
− 1 (θ (Xi) ≤ t)

¾
+
1

n

nX
i=1

{1 (θ (Xi) ≤ t)− Fθ (t)}

=
1

nhn

nX
i=1

L

Ã
t− θ̃ (Xi)

hn

!n
θ (Xi)− θ̂ (Xi)

o
+
1

n

nX
i=1

½
L̄

µ
t− θ (Xi)

hn

¶
− 1 (θ (Xi) ≤ t)

¾
+
1

n

nX
i=1

{1 (θ (Xi) ≤ t)− Fθ (t)} .
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Therefore,

sup
t∈[−A.A]

¯̄̄
F̂θ̂ (t)− Fθ (t)

¯̄̄
≤ sup

t∈[−A.A]

¯̄̄̄
¯1n

nX
i=1

{1 (θ (Xi) ≤ t)− Fθ (t)}
¯̄̄̄
¯

+ sup
t∈[−A.A]

¯̄̄̄
¯1n

nX
i=1

½
L̄

µ
t− θ (Xi)

hn

¶
− 1 (θ (Xi) ≤ t)

¾¯̄̄̄
¯

+
1

n1/4hn

Ã
1

n

nX
i=1

sup
t∈[−A.A]

¯̄̄̄
¯L
Ã
t− θ̃ (Xi)

hn

!¯̄̄̄
¯
!
×
½
n1/4 sup

a

¯̄̄
θ (a)− θ̂ (a)

¯̄̄¾
By assumption B3(i) (i.e. L (·) is uniformly bounded), assumption B4(i) (i.e. nh4n →∞)
and assumption B1, the third term is op (1). The first term is op (1) by the standard

Glivenko-Cantelli theorem. The second term is op (1) by Horowitz (1992), lemma 4 under

assumptions about L̄ and that θ (X) has a Lebesgue density which is uniformly bounded

above (analogous to his proof that limα→0 Pr (|b0x| < α), here we have that

lim
α→0

Pr (|t− θ (X)| < α) = lim
α→0

Pr (−α < t− θ (X) < α)

= lim
α→0

Pr (t− α < θ (X) < t+ α)

= lim
α→0

[Fθ (t+ α)− Fθ (t− α)]

≤ 2 lim
α→0

½
α× sup

s∈R
[fθ (s)]

¾
= 0,

and the rest of the proof is identical to Horowitz lemma 4).

Theorem 1:
Proof. Fix ε > 0. Then Fθ (γ0 + ε) − 1 + c > 0 and 1 − c − Fθ (γ0 − ε) > 0, by

assumption (B5). Therefore, we have that

Pr (|γ̂ − γ0| > ε) ≤ Pr (γ̂ > γ0 + ε) + Pr (γ̂ < γ0 − ε)

≤ Pr
³
F̂θ̂ (γ̂) > F̂θ̂ (γ0 + ε)

´
+Pr

³
F̂θ̂ (γ̂) < F̂θ̂ (γ0 − ε)

´
= Pr

³
1− c > F̂θ̂ (γ0 + ε)

´
+Pr

³
1− c < F̂θ̂ (γ0 − ε)

´
≤ Pr

³
Fθ (γ0 + ε)− 1 + c < Fθ (γ0 + ε)− F̂θ̂ (γ0 + ε)

´
+Pr

³
1− c− Fθ (γ0 − ε) < F̂θ̂ (γ0 − ε)− Fθ (γ0 − ε)

´
≤ Pr

Ã
Fθ (γ0 + ε)− 1 + c < sup

t∈[−A.A]

¯̄̄
F̂θ̂ (t)− Fθ (t)

¯̄̄!

+Pr

Ã
1− c− Fθ (γ0 − ε) < sup

t∈[−A.A]

¯̄̄
F̂θ̂ (t)− Fθ (t)

¯̄̄!
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both of which converge to zero by lemma 1.

Lemma 2:
Proof.

f̂θ̂ (u)− fθ (u) =
1

nhn

nX
i=1

L

Ã
u− θ̂ (Xi)

hn

!
− fθ (u)

By triangle inequality,

sup
u∈[−A,A]

¯̄̄
f̂θ̂ (u)− fθ (u)

¯̄̄
≤ sup

u∈[−A,A]

¯̄̄
f̂θ (u)− fθ (u)

¯̄̄
+ sup

u∈[−A,A]

¯̄̄
f̂θ̂ (u)− f̂θ (u)

¯̄̄
.

The first term is op (1) under assumption B2. As for the second term, notice that¯̄̄
f̂θ̂ (t)− f̂θ (t)

¯̄̄
=

¯̄̄̄
¯ 1nhn

nX
i=1

(
L

Ã
t− θ̂ (Xi)

hn

!
− L

µ
t− θ (Xi)

hn

¶)¯̄̄̄
¯

=

¯̄̄̄
¯ 1nh2n

nX
i=1

L0

Ã
t− θ̃ (Xi)

hn

!n
θ̂ (Xi)− θ (Xi)

o¯̄̄̄¯
≤

supx

¯̄̄
θ̂ (x)− θ (x)

¯̄̄
h2n

1

n

nX
i=1

¯̄̄̄
¯L0
Ã
t− θ̃ (Xi)

hn

!¯̄̄̄
¯

= Op

Ã
1

h2n
×
(µ

lnn

nσpn

¶1/2
+ σqn

)!
,

by assumptions B2 and B3. Therefore by assumption B4, we get the conclusion.

Theorem 2:
To derive the distribution theory for γ̂, we will use the following first-order approxi-

mation

Fθ (γ0) = 1− c = F̂θ̂ (γ̂) = F̂θ̂ (γ0) + (γ̂ − γ0)f̂θ̂ (γ̃)

where γ̃ is intermediate between γ̂ and γ0. This gives us the following expansion for γ̂.

(γ̂ − γ0)

=
n
f̂θ̂ (γ̃)

o−1 n
Fθ (γ0)− F̂θ̂ (γ0)

o
=

n
f̂θ̂ (γ̃)

o−1(
Fθ (γ0)−

1

n

nX
i=1

L̄

Ã
γ0 − θ̂ (Xi)

hn

!)

=
n
f̂θ̂ (γ̃)

o−1(
Fθ (γ0)−

1

n

nX
i=1

L̄

µ
γ0 − θ (Xi)

hn

¶)

+
n
f̂θ̂ (γ̃)

o−1(1
n

nX
i=1

"
L̄

µ
γ0 − θ (Xi)

hn

¶
− L̄

Ã
γ0 − θ̂ (Xi)

hn

!#)
. (12)
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Proof. Step 1. We first show that

f̂θ̂ (γ̃)− fθ (γ0)
P→ 0. (13)¯̄̄

f̂θ̂ (γ̃)− fθ (γ0)
¯̄̄
≤

¯̄̄
f̂θ̂ (γ̃)− fθ (γ̃)

¯̄̄
+ |fθ (γ̃)− fθ (γ0)|

≤ sup
s∈[−A.A]

¯̄̄
f̂θ̂ (s)− fθ (s)

¯̄̄
| {z }

op(1), by lemma 2

+ |fθ (γ̃)− fθ (γ0)|| {z }
op(1) by CMT and theorem 1

= op (1) .

Step 2: We will show thatp
nhn

½
Fθ (γ0)− L̄

µ
γ0 − θ (Xi)

hn

¶¾
= β + op (1) . (14)

Observe that

Tn =
1

n

nX
i=1

½
Fθ (γ0)− L̄

µ
γ0 − θ (Xi)

hn

¶¾
=

1

n

nX
i=1

{Fθ (γ0)− 1 (θ (Xi) ≤ γ0)}+
1

n

nX
i=1

½
1 (θ (Xi) ≤ γ0)− L̄

µ
γ0 − θ (Xi)

hn

¶¾
≡ T2n − T1n. (15)

Now, p
nhnT2n =

p
hn ×

1√
n

nX
i=1

{Fθ (γ0)− 1 (θ (Xi) ≤ γ0)}| {z }
Op(1)

= op (1) .

We will show that

E
³p

nhnT1n − β
´2
= hnV ar

¡√
nT1n

¢
+
n
E
³p

nhnT1n − β
´o2
→ 0 (16)

and thus p
nhnT1n − β = op (1) . (17)

Now,

V ar
¡√

nT1n
¢

= V ar

Ã
1√
n

nX
i=1

½
1 (θ (Xi) ≤ γ0)− L̄

µ
γ0 − θ (Xi)

hn

¶¾!

= V ar

½
1 (θ (Xi) ≤ γ0)− L̄

µ
γ0 − θ (Xi)

hn

¶¾
= E

½
1 (θ (Xi) ≤ γ0)− L̄

µ
γ0 − θ (Xi)

hn

¶¾2
−
½
Fθ (γ0)− E

½
L̄

µ
γ0 − θ (Xi)

hn

¶¾¾2
(18)
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Observe that

E

µ
1 (θ (Xi) ≤ γ0)− L̄

µ
γ0 − θ (Xi)

hn

¶¶2
=

Z A

−A

½
L̄

µ
γ0 − s

hn

¶
− 1 (s ≤ γ0)

¾2
fθ (s) ds

=

Z γ0

−A

½
L̄

µ
γ0 − s

hn

¶
− 1 (s ≤ γ0)

¾2
fθ (s) ds

+

Z A

γ0

½
L̄

µ
γ0 − s

hn

¶
− 1 (s ≤ γ0)

¾2
fθ (s) ds

=

Z γ0

−A

½
L̄

µ
γ0 − s

hn

¶
− 1
¾2

fθ (s) ds+

Z A

γ0

½
L̄

µ
γ0 − s

hn

¶¾2
fθ (s) ds

and both of the terms in the previous display converge to zero by the DCT since lima→∞ L̄ (a) =

1 = 1− lima→−∞ L̄ (a).

Next,

Fθ (γ0)−E

½
L̄

µ
γ0 − θ (Xi)

hn

¶¾
= Fθ (γ0)−

Z A

−A
L̄

µ
γ0 − s

hn

¶
fθ (s) ds

= Fθ (γ0)−
Z γ0

−A
L̄

µ
γ0 − s

hn

¶
fθ (s) ds−

Z A

γ0

L̄

µ
γ0 − s

hn

¶
fθ (s) ds

=

Z γ0

−A

∙
1 (s ≤ γ0)− L̄

µ
γ0 − s

hn

¶¸
fθ (s) ds−

Z A

γ0

L̄

µ
γ0 − s

hn

¶
fθ (s) ds

→ 0, by the DCT.

Thus, from (18), we have that

V ar
¡√

nT1n
¢
→ 0 as n→∞. (19)

Next, consider

E (T1n) = E

½
1 (θ (Xi) ≤ γ0)− L̄

µ
γ0 − θ (Xi)

hn

¶¾
=

½
Fθ (γ0)−

Z A

−A
L̄

µ
γ0 − s

hn

¶
fθ (s) ds

¾
=

½
Fθ (γ0)− L̄

µ
γ0 − s

hn

¶
Fθ (s) |A−A −

1

hn

Z A

−A
Fθ (s)L

µ
γ0 − s

hn

¶
ds

¾
=

(
Fθ (γ0)−

Z γ0+A
hn

γ0−A
hn

Fθ (γ0 − uhn)L (u) du

)

= (−1)r+1h
r
n

r!
× f

(r−1)
θ (γ0)×

Z 1

−1
urL (u) du+ o (hrn) , by assumption B7.
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This implies that

E
³p

nhnT1n
´

= (−1)r+1
√
nh

r+1/2
n

r!
× f

(r−1)
θ (γ0)×

Z 1

−1
urL (u) du+ o (hrn)

→ β, by assumption B7. (20)

Now, (19) and (20) imply (16) and thus (17).

Step 3: We will now analyze the second term in (12):

Sn =
1

n

nX
i=1

"
L̄

µ
γ0 − θ (Xi)

hn

¶
− L̄

Ã
γ0 − θ̂ (Xi)

hn

!#
du,

using U-statistic type decompositions to show thatp
nhnSn =

√
hn√
n

nX
j=1

{[λ1n (Zj)−E {λ1n (Zj)}]− [λ2n (Zj)−E {λ2n (Zj)}]}

+op (1)
d→ N

¡
0, η2

¢
, (21)

where the triangular arrays λ1n (Zj), λ2n (Zj) and the constant η2 > 0, will be specified

below.

To that end observe thatp
nhnSn =

√
hn√
n

nX
i=1

"
L̄

µ
γ0 − θ (Xi)

hn

¶
− L̄

Ã
γ0 − θ̂ (Xi)

hn

!#

=

√
hn√
nhn

nX
i=1

n
θ̂ (Xi)− θ (Xi)

o
L

µ
γ0 − θ (Xi)

hn

¶

+

√
hn

2
√
nh2n

nX
i=1

n
θ̂ (Xi)− θ (Xi)

o2
L0

Ã
θ̃ (Xi)− γ0

hn

!
.

The second term in absolute value has an expectation which is of the order of

sup
x∈X

¯̄̄
θ (x)− θ̂ (x)

¯̄̄2 √n
h
3/2
n

= Op

⎧⎨⎩
(µ

lnn

nσpn

¶1/2
+ σqn

)2 √
n

h
3/2
n

⎫⎬⎭→ 0, by assumption B8.

Thus we get thatp
nhnSn =

√
hn√
n

nX
i=1

"
L̄

µ
θ (Xi)− γ0

hn

¶
− L̄

Ã
θ̂ (Xi)− γ0

hn

!#

=
1√
nhn

nX
i=1

n
θ (Xi)− θ̂ (Xi)

o
L

µ
γ0 − θ (Xi)

hn

¶
+ op (1)

= − 1√
nhn

nX
i=1

n
θ̂ (Xi)− θ (Xi)

o
L

µ
γ0 − θ (Xi)

hn

¶
+ op (1) .
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Now, note that

θ̂ (Xi)− θ (Xi) =

½
µ̂ (Xi)

π̂ (Xi)
− µ(Xi)

π (Xi)

¾
−
(
ν̂ (Xi)

δ̂(Xi)
− ν (Xi)

δ (Xi)

)
(22)

We will simply work with the first term because the proof is exactly analogous for the

second term and show that

1√
nhn

nX
i=1

n
θ̂ (Xi)− θ (Xi)

o
L

µ
γ0 − θ (Xi)

hn

¶
= Op (1) .

Step 3A: Now,

1√
n

nX
i=1

½
µ̂ (Xi)

π̂ (Xi)
− µ(Xi)

π (Xi)

¾
1

hn
L

µ
θ (Xi)− γ0

hn

¶
=

1√
n

nX
i=1

½
µ̂ (Xi)− µ(Xi)

π (Xi)

¾
1

hn
L

µ
θ (Xi)− γ0

hn

¶
− 1√

n

nX
i=1

½
µ (Xi)

π (Xi)

π̂ (Xi)− π(Xi)

π (Xi)

¾
1

hn
L

µ
θ (Xi)− γ0

hn

¶
− 1√

n

nX
i=1

{µ̂ (Xi)− µ(Xi)} {π̂ (Xi)− π(Xi)}
π (Xi) π̂ (Xi)

1

hn
L

µ
θ (Xi)− γ0

hn

¶
+
1√
n

nX
i=1

µ(Xi) {π̂ (Xi)− π(Xi)}2

π2 (Xi) π̂ (Xi)

1

hn
L

µ
θ (Xi)− γ0

hn

¶
. (23)

The last two terms in absolute value have expectations that are bounded above by a posi-

tive scalar times
√
n supx k{µ̂ (x)− µ(x)} {π̂ (x)− π(x)}k and√n supx k{π̂ (x)− π(x)}k2,

respectively and these are both op (1) under standard conditions (c.f. NM, section 8.3)

which is assumption B11 above.
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Now, the first two terms in (23) add up to

1√
n

nX
i=1

π (Xi) µ̂ (Xi)− µ (Xi) π̂ (Xi)

π2 (Xi)

1

hn
L

µ
θ (Xi)− γ0

hn

¶
=
√
n

1

n (n− 1)

nX
i=1

X
j 6=i

∙
1

π2 (Xi)
{π (Xi)YjSj − µ (Xi)Sj}

1

σpn
K

µ
Xj −Xi

σn

¶
× 1

hn
L

µ
θ (Xi)− γ0

hn

¶¸

≡
√
n

1

n (n− 1)

nX
i=1

X
j 6=i

wn (Zi, Zj)

=
1√

n (n− 1)

nX
i=1

X
j 6=i
[wn (Zi, Zj)−E (wn (Zi, Zj) |Zi)−E (wn (Zi, Zj) |Zj) +E (wn (Zi, Zj))]| {z }

U1n

+
1√
n

nX
j=1

[E (wn (Zi, Zj) |Zj)− E (wn (Zi, Zj))]| {z }
U2n

+
1√
n

nX
i=1

E (wn (Zi, Zj) |Zi)| {z }
U3n

. (24)

Step 3B: We first show that

U3n = op (1) . (25)

Notice that

E

⎡⎣ 1
hn
L
³
θ(Xi)−γ0

hn

´
π2 (Xi)

× {π (Xi)YjSj − µ (Xi)Sj}
1

σpn
K

µ
Xj −Xi

σn

¶
|Zi

⎤⎦
L.I.E.
= E

⎡⎣ 1
hn
L
³
θ(Xi)−γ0

hn

´
π2 (Xi)

×
½
π (Xi)

µ (Xj)

f (Xj)
− µ (Xi)

π (Xj)

f (Xj)

¾
1

σpn
K

µ
Xj −Xi

σn

¶
|Zi

⎤⎦
=

1
hn
L
³
θ(Xi)−γ0

hn

´
π2 (Xi)

×
Z

π (Xi)µ (x)− µ (Xi)π (x)

f (x)

1

σpn
K

µ
x−Xi

σn

¶
f (x) dx

=

1
hn
L
³
θ(Xi)−γ0

hn

´
π2 (Xi)

×
Z
[π (Xi)µ (Xi + uσn)− µ (Xi)π (Xi + uσn)]K (u) du

A1
= H (Xi)×

1

hn
L

µ
θ (Xi)− γ0

hn

¶
×O (σqn) ,

for some uniformly bounded function H by assumption. Therefore,

U3n = O (σqn)×
1√
n

nX
i=1

H (Xi)×
1

hn
L

µ
θ (Xi)− γ0

hn

¶
= Op

¡√
nσqn

¢
= op (1)
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by assumption B8.

Step 3C: The term

U1n =
1√

n (n− 1)

nX
i=1

X
j 6=i
[wn (Zi, Zj)−E (wn (Zi, Zj) |Zi)− E (wn (Zi, Zj) |Zj) +E (wn (Zi, Zj))]

can be analyzed using essentially the steps of Powell, Stoker and Stock (1989), lemma 3.1,

whence one can conclude that

E
¡
U2
1n

¢
= o (1) (26)

The key step is to show that

E
¡
w2n (Zi, Zj)

¢
= o (n) .

Observe that

n−1E
¡
w2n (Zi, Zj)

¢
= n−1E

(
1

π4 (Xi)
{π (Xi)YjSj − µ (Xi)Sj}2

1

σ2pn
K2

µ
Xj −Xi

σn

¶
×
∙
1

hn
L

µ
θ (Xi)− γ0

hn

¶¸2)

= n−1E

⎧⎨⎩ 1
π4(Xi)

1

σ2pn
K2
³
Xj−Xi

σn

´
×
h
1
hn
L
³
θ(Xi)−γ0

hn

´i2
×{π2 (Xi)E (Y

2S|Xj) + µ2(Xi)E (S|Xj)− 2π (Xi)µ (Xi)E (Y S|Xj)}

⎫⎬⎭

=
1

nσpnh2n

Z
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
π4(X)

K2 (u)×
h
L
³
θ(x)−γ0

hn

´i2
×

⎧⎪⎨⎪⎩
π2 (x)E (Y 2S|X = x+ uσn)

+µ2(x)E (S|X = x+ uσn)

−2π (x)µ (x)E (Y S|X = x+ uσn)

⎫⎪⎬⎪⎭

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
fX (x) fX (x+ uσn) dudx

= O

µ
1

nσpnh2n

¶
→ 0 which is implied by B8.

Step 3D: Now consider the term

U2n =
1√
n

nX
j=1

[E (wn (Zi, Zj) |Zj)−E (wn (Zi, Zj))]
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Observe that

E (wn (Zi, Zj) |Zj)

= E

½∙
1

π2 (Xi)
{π (Xi)YjSj − µ (Xi)Sj}

1

σpn
K

µ
−Xj +Xi

σn

¶
×
∙
1

hn
L

µ
θ (Xi)− γ0

hn

¶¸¸
|Yj, Sj,Xj

¾
=

Z ∙
1

π2 (x)
{π (x)YjSj − µ (x)Sj}

1

σpn
K

µ
−Xj + x

σn

¶
×
∙
1

hn
L

µ
θ (x)− γ0

hn

¶¸¸
f (x) dx

=

Z ∙
π (Xj + uσn)YjSj − µ (Xj + uσn)Sj

π2 (Xj + uσn)
K (u)×

∙
1

hn
L

µ
θ (Xj + uσn)− γ0

hn

¶¸¸
f (Xj + uσn) du

=

∙
1

π2 (Xj)
{π (Xj)YjSj − µ (Xj)Sj} f (Xj)×

∙
1

hn
L

µ
θ (Xj)− γ0

hn

¶¸¸Z
K (u) du+O (σqn)

=

⎡⎢⎢⎢⎣
∙

1

π2 (Xj)
{π (Xj)YjSj − µ (Xj)Sj} f (Xj)

¸
| {z }

W (Zj)

×
∙
1

hn
L

µ
θ (Xj)− γ0

hn

¶¸
| {z }

V1n(θ(Xj))

⎤⎥⎥⎥⎦
+O (σqn) .

Notice that

E {W (Zj)Vn (θ (Xj))}
= E {Vn (θ (Xj))E (W (Zj) |Xj)}

= E

½
Vn (θ (Xj)) f (Xj)

π2 (Xj)
E ({π (Xj)E {YjSj|Xj}− µ (Xj)E (S|Xj)})

¾
= E

½
Vn (θ (Xj)) f (Xj)

π2 (Xj)
× 0
¾
= 0.

Now

V ar (U2n) = V ar

(
1√
n

nX
j=1

[E (wn (Zi, Zj) |Zj)−E (wn (Zi, Zj))]

)
= V ar {[E (wn (Zi, Zj) |Zj)−E (wn (Zi, Zj))]}
= V ar {E (wn (Zi, Zj) |Zj)}
= E (W (Zj)V1n (θ (Xj)) +O (σqn))

2 −O
¡
σ2qn
¢

= E
©
W 2 (Zj)V

2
1n (θ (Xj))

ª
+O

¡
σ2qn
¢

= O
¡
E
©
W 2 (Zj)V

2
1n (θ (Xj))

ª¢
.
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Now, let ω2 (s) = E {W 2 (Zj) |θ (Xj) = s}. Then

E
©
W 2 (Zj)V

2
1n (θ (Xj))

ª
=

Z A

−A
ω2 (s)

∙
1

hn
L

µ
s− γ0
hn

¶¸2
fθ (s) ds

=
1

hn

Z A−γ0
hn

−A−γ0
hn

ω2 (γ0 + uhn)L
2 (u) fθ (γ0 + uhn) du

=
1

hn
ω2 (γ0) fθ (γ0)

Z A−γ0
hn

−A−γ0
hn

L2 (u) du+ terms of smaller order.

This implies that

V ar
³p

hnU2n
´

= V ar

Ãr
hn
n

nX
j=1

[E (wn (Zi, Zj) |Zj)−E (wn (Zi, Zj))]

!

→ ω2 (γ0) fθ (γ0)

Z ∞

−∞
L2 (u) du. (27)

Now we will apply the Liapunov condition and use the Lindeberg CLT for triangular

arrays. Consider the array

Rnj =

√
hn√
n
[E (wn (Zi, Zj) |Zj)−E (wn (Zi, Zj))] ,

which is independent across j and E (Rnj) = 0. Let Un =
Pn

j=1Rnj. Then

E
¡
U2
n

¢
=

nX
j=1

E
¡
R2nj

¢
=

hn
n

nX
j=1

E (E (wn (Zi, Zj) |Zj)−E (wn (Zi, Zj)))
2

=
hn
n

nX
j=1

V ar (W (Zj)V1n (θ (Xj))) + o (1)

=
hn
hn

ω2 (γ0) fθ (γ0)

Z ∞

−∞
L2 (u) du+ o (1)

→ ω2 (γ0) fθ (γ0)

Z ∞

−∞
L2 (u) du.

by (27). To apply the Liapunov condition, observe that for any ε > 0,
nX

j=1

E |Rnj|2+ε = n

µ
hn
n

¶2+ε
2

E |W (Zj)V1n (θ (Xj))|2+ε

= O

Ã
n

µ
hn
n

¶ 2+ε
2 1

h1+εn

!
= O

³
(hnn)

−ε/2
´
→ 0.

43



Thus the Liapunov condition holds and applying the Lindeberg CLT, we get that

Un =

√
hn√
n

nX
j=1

[E (wn (Zi, Zj) |Zj)−E (wn (Zi, Zj))]
d→ N

µ
0, ω2 (γ0) fθ (γ0)

Z ∞

−∞
L2 (u) du

¶
.

(28)

Putting together (25), (26), (27) and (27), we get thatr
hn
n

nX
i=1

½
µ̂ (Xi)

π̂ (Xi)
− µ(Xi)

π (Xi)

¾∙
1

hn
L

µ
θ (Xi)− γ0

hn

¶¸
=

p
hnU1n +

p
hnU2n +

p
hnU3n

=

√
hn√
n

nX
j=1

[E (wn (Zi, Zj) |Zj)−E (wn (Zi, Zj))] + op (1)

=

√
hn√
n

nX
j=1

[λ1n (Zj)−E {λ1n (Zj)}]

d→ N

µ
0, ω2 (γ0) fθ (γ0)

Z ∞

−∞
L2 (u) du

¶
,

where

λ1n (Zj)

=

∙
f (Xj)

π2 (Xj)
{π (Xj)YjSj − µ (Xj)Sj}

¸
1

hn
L

µ
θ (Xj)− γ0

hn

¶
and

ω2 (s) = E

(½
π (X)Y S − µ (X)S

π2 (X)
f (X)

¾2
|θ (X) = s

)
. (29)

Similarly, we will get thatr
hn
n

nX
i=1

(
ν̂ (Xi)

δ̂(Xi)
− ν (Xi)

δ (Xi)

)
1

hn
L

µ
θ (Xi)− γ0

hn

¶
=

√
hn√
n

nX
j=1

λ2n (Zj)
d→ N

µ
0, τ 2 (γ0) fθ (γ0)

Z ∞

−∞
L2 (u) du

¶
,

where

λ2n (Zj)

=

∙
f (Xj)

δ2 (Xj)
{δ (Xj)Yj (1− Sj)− ν (Xj) (1− Sj)}

¸
1

hn
L

µ
θ (Xi)− γ0

hn

¶
and

τ 2 (s) = E

(½
δ (X)Y (1− S)− ν (X) (1− S)

δ2 (X)
f (X)

¾2
|θ (X) = s

)
. (30)
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Thus we get that

p
nhnSn =

√
hn√
n

nX
j=1

{λ1n (Zj)− λ2n (Zj)}+ op (1)
d→ N

¡
0, η2

¢
,

which establishes (21).

To get the expression for η2, note further that

E {λ1n (Zj)λ2n (Zj)}

= E

(
π (Xj)YjSj − µ (Xj)Sj

π2 (Xj)
× δ (Xj)Yj (1− Sj)− ν (Xj) (1− Sj)

δ2 (Xj)
× f2 (Xj)L

µ
θ (Xj)− γ0

hn

¶2)

Now,

{π (Xj)YjSj − µ (Xj)Sj} × {δ (Xj)Yj (1− Sj)− ν (Xj) (1− Sj)}
= Sj (1− Sj)× {π (Xj)Yj − µ (Xj)} × {δ (Xj)Yj − ν (Xj)}
= 0,

since Sj (1− Sj) = 0 for every j. Therefore, E {λ1n (Zj)λ2n (Zj)} = 0. Moreover,

E (λ1n (Zj)) = 0. Therefore, cov (λ1n (Zj) , λ2n (Zj)) = 0. This implies that

η2 =
©
τ 2 (γ0) + ω2 (γ0)

ª
× fθ (γ0)

Z ∞

−∞
L2 (u) du, (31)

where

τ 2 (γ0) = E

(½
δ (X)Y (1− S)− ν (X) (1− S)

δ2 (X)
f (X)

¾2
|θ (X) = γ0

)

ω2 (γ0) = E

(½
π (X)Y S − µ (X)S

π2 (X)
f (X)

¾2
|θ (X) = γ0

)
.

Now put together (13), (14), (21) and (31) to conclude from (12) that

p
nhn (γ̂ − γ0) =

1

fθ (γ0)

√
hn√
n

nX
j=1

{λ1n (Zj)− λ2n (Zj)}+ op (1)

d→ N

µ
0,
τ 2 (γ0) + ω2 (γ0)

fθ (γ0)

Z ∞

−∞
L2 (u) du

¶
.

Theorem 3:
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Proof.

ζ̂ − ζ0 =
1

n

nX
i=1

θ̂ (Xi) L̄

Ã
γ̂ − θ̂ (Xi)

hn

!
− ζ0

=
1

n

nX
i=1

θ̂ (Xi) L̄

Ã
γ̂ − θ̂ (Xi)

hn

!
− 1

n

nX
i=1

θ (Xi) L̄

µ
γ0 − θ (Xi)

hn

¶
| {z }

T1n

+
1

n

nX
i=1

θ (Xi)

∙
L̄

µ
γ0 − θ (Xi)

hn

¶
− 1 {θ (Xi) ≤ γ0}

¸
| {z }

T2n

+
1

n

nX
i=1

{θ (Xi) 1 {θ (Xi) ≤ γ0}− ζ0}| {z }
=op(1), by standard WLLN.

.

Now,

|T1n| =
¯̄̄̄
¯1n

nX
i=1

(
θ̂ (Xi) L̄

Ã
γ̂ − θ̂ (Xi)

hn

!
− θ (Xi) L̄

µ
γ0 − θ (Xi)

hn

¶)¯̄̄̄
¯

≤ 1

n

nX
i=1

¯̄̄̄
¯ θ̂ (Xi)− θ (Xi)

hn

¯̄̄̄
¯
¯̄̄̄
¯hnL̄

Ã
γ̃ − θ̃ (Xi)

hn

!
− θ̃ (Xi)L

Ã
γ̃ − θ̃ (Xi)

hn

!¯̄̄̄
¯

+
(γ̂ − γ0)

hn
× 1

n

nX
i=1

¯̄̄̄
¯θ̃ (Xi)L

Ã
γ̃ − θ̃ (Xi)

hn

!¯̄̄̄
¯

≤
sup

¯̄̄
θ̂ (x)− θ (x)

¯̄̄
hn

1

n

nX
i=1

¯̄̄̄
¯hnL̄

Ã
γ̃ − θ̃ (Xi)

hn

!
− θ̃ (Xi)L

Ã
γ̃ − θ̃ (Xi)

hn

!¯̄̄̄
¯

+

Ã
nhn (γ̂ − γ0)

2

nh3n

!1/2
× 1

n

nX
i=1

¯̄̄̄
¯θ̃ (Xi)L

Ã
γ̃ − θ̃ (Xi)

hn

!¯̄̄̄
¯ .

Since L, L̄ are uniformly bounded, the above display is of the form

≤
supx∈X

¯̄̄
θ̂ (x)− θ (x)

¯̄̄
hn

×Op (1) +

Ã
nhn (γ̂ − γ0)

2

nh3n

!1/2
×Op (1) .

Now, theorem 3 implies that nhn (γ̂ − γ0)
2 = Op (1), Assumptions B1 and B4 (i) imply

that
sup|θ̂(x)−θ(x)|

hn
= op (1) and that nh3n →∞. Thus we have that T1n = op (1).

As for T2n, observe that since θ (·) is uniformly bounded, by using steps exactly anal-
ogous to step 2 in the proof of theorem 2 (leading to (14)), we will get by the DCT that

T2n = op (1).
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Theorem 4:
Proof. We will work with the following expansion

ζ̂ − ζ0

=
1

n

nX
i=1

θ (Xi) L̄

µ
γ0 − θ (Xi)

hn

¶
− ζ0| {z }

T1n

+
1

n

nX
i=1

n
θ̂ (Xi)− θ (Xi)

o½
L̄

µ
γ0 − θ (Xi)

hn

¶
− 1

hn
θ (Xi)L

µ
γ0 − θ (Xi)

hn

¶¾
| {z }

T2n

+(γ̂ − γ0)
1

nhn

nX
i=1

θ (Xi)L

µ
γ0 − θ (Xi)

hn

¶
| {z }

T3n

− 1

4nh2n

nX
i=1

n
θ̂ (Xi)− θ (Xi)

o2(
−2hnL

Ã
γ̃ − θ̃ (Xi)

hn

!
+ θ̃ (Xi)L

0

Ã
γ̃ − θ̃ (Xi)

hn

!)
| {z }

T4n

+(γ̂ − γ0)
2 × 1

4nh2n

nX
i=1

θ (Xi)L
0

Ã
γ̃ − θ̃ (Xi)

hn

!
| {z }

T5n

+(γ̂ − γ0)
1

2nh2n

nX
i=1

n
θ̂ (Xi)− θ (Xi)

o"
hnL

Ã
γ̃ − θ̃ (Xi)

hn

!
− θ̃ (Xi)L

0

Ã
γ̃ − θ̃ (Xi)

hn

!#
| {z }

T6n

.(32)

Step 4: Under assumptions B1 and B8, the fourth term in (32) will be op
³

1√
n

´
since

L0 (·) is assumed to be uniformly bounded in absolute value. As for the fifth term, observe
by the previous theorem, that (γ̂−γ0)

2

h2n
= Op

³
1

nh3n

´
= op

³
1√
n

´
by assumption B12. So the

fifth term in (32) will be op
³

1√
n

´
. That the sixth term is op (1) follows from combining

the two previous results.

Step 5: The multiplier for the third term in (32) equals

1

nhn

nX
i=1

θ (Xi)L

µ
θ (Xi)− γ0

hn

¶
→ E

µ
θ (Xi)

1

hn
L̄

µ
γ0 − θ (Xi)

hn

¶¶
= γ0fθ (γ0) +O (hrn)

→ γ0fθ (γ0) ,

which follows from the standard consistency proof for e.g. kernel density estimates.
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Combining steps 4 and 5, we get that

√
n
n
ζ̂ − ζ0

o
=

1√
n

nX
i=1

½
θ (Xi) L̄

µ
γ0 − θ (Xi)

hn

¶
− ζ0

¾
+
1√
n

nX
i=1

n
θ̂ (Xi)− θ (Xi)

o½
L̄

µ
γ0 − θ (Xi)

hn

¶
− 1

hn
θ (Xi)L

µ
γ0 − θ (Xi)

hn

¶¾
+
√
n (γ̂ − γ0)× γ0fθ (γ0) + op (1) . (33)

Replacing in the previous display the asymptotic expansion of (γ̂ − γ0) from (12), we

have that

√
n
n
ζ̂ − ζ0

o
=

1√
n

nX
i=1

½
θ (Xi) L̄

µ
γ0 − θ (Xi)

hn

¶
− ζ0

¾
− γ0√

n

nX
i=1

{1 (θ (Xi) ≤ γ0)− Fθ (γ0)}

+
1√
n

nX
i=1

n
θ̂ (Xi)− θ (Xi)

o½
L̄

µ
γ0 − θ (Xi)

hn

¶
+ {γ0 − θ (Xi)}

1

hn
L

µ
γ0 − θ (Xi)

hn

¶¾

+γ0
1

2
√
nh2n

nX
i=1

n
θ̂ (Xi)− θ (Xi)

o2
L0

Ã
θ̃ (Xi)− γ0

hn

!
+op (1) . (34)

The third term in (34) in absolute value is dominated by

γ0
2
× sup

u

n
θ̂ (u)− θ (u)

o2
×
√
n

h2n

1

n

nX
i=1

¯̄̄̄
¯L0
Ã
θ̃ (Xi)− γ0

hn

!¯̄̄̄
¯

=
γ0
2
×
(µ

lnn

nσpn

¶1/2
+ σqn

)2
×
√
n

h2n
×Op (1)

= op (1) , by assumption B4(iii).

Thus from (34), we have that

√
n
n
ζ̂ − ζ0

o
=

1√
n

nX
i=1

½
θ (Xi) L̄

µ
γ0 − θ (Xi)

hn

¶
− ζ0

¾
− γ0√

n

nX
i=1

{1 (θ (Xi) ≤ γ0)− Fθ (γ0)}

+
1√
n

nX
i=1

n
θ̂ (Xi)− θ (Xi)

o½
L̄

µ
γ0 − θ (Xi)

hn

¶
+ {γ0 − θ (Xi)}

1

hn
L

µ
γ0 − θ (Xi)

hn

¶¾
+op (1) . (35)
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Step 6A: Consider the first term in (35)

=
1√
n

nX
i=1

∙
θ (Xi) L̄

µ
γ0 − θ (Xi)

hn

¶
− θ (Xi)× 1 {θ (Xi) < γ0}

¸
| {z }

T4n

+
1√
n

nX
i=1

[θ (Xi)× 1 {θ (Xi) < γ0}− ζ0]| {z }
T5n=Op(1), by CLT.

(36)

We will show that T4n = op (1) using the arguments similar to the ones used for showing

(17).

Define gθ (s) = sfθ (s) and Gθ (s) =
R s
−A gθ (t) dt. Then

E (T4n) =
√
nE

½
θ (Xi) L̄

µ
γ0 − θ (Xi)

hn

¶
−Gθ (γ0)

¾
=
√
n

½Z A

−A
L̄

µ
γ0 − s

hn

¶
gθ (s) ds−Gθ (γ0)

¾
=
√
n

∙½
L̄

µ
γ0 − s

hn

¶
Gθ (s)

¾
|A−A −

Z A

−A

1

hn
L

µ
γ0 − s

hn

¶
Gθ (s) ds−Gθ (γ0)

¸
=
√
n

"
−
Z γ0+A

hn

γ0−A
hn

L (u)Gθ (γ0 − uhn) du−Gθ (γ0)

#
= O

¡√
nhrn

¢
→ 0, by B12. (37)

Next, define gθ (s) = s2fθ (s) and Gθ (s) =
R s
−A gθ (t) dt. Then

E

½
θ (Xi) L̄

µ
γ0 − θ (Xi)

hn

¶
− θ (Xi)× 1 {θ (Xi) < γ0}

¾2
=

Z A

−A

½
L̄

µ
γ0 − s

hn

¶
− 1 {s < γ0}

¾2
gθ (s) ds

=

Z A

−A
L̄2
µ
γ0 − s

hn

¶
gθ (s) ds

+

Z γ0

−A
1 {s < γ0} gθ (s) ds

−2
Z A

−A
L̄

µ
γ0 − s

hn

¶
× 1 {s < γ0} × gθ (s) ds
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Using the DCT repeatedly (c.f. the steps leading to (15)), we get that

E

½
θ (Xi) L̄

µ
γ0 − θ (Xi)

hn

¶
− θ (Xi)× 1 {θ (Xi) < γ0}

¾2
=

Z A

−A
L̄2
µ
γ0 − s

hn

¶
gθ (s) ds+

Z γ0

−A
1 {s < γ0} gθ (s) ds

−2
Z A

−A
L̄

µ
γ0 − s

hn

¶
× 1 {s < γ0} × gθ (s) ds

→ Gθ (γ0) +Gθ (γ0)− 2Gθ (γ0) = 0.

This implies that for T4n defined in (36),

V ar (T4n) = V ar

Ã
1√
n

nX
i=1

∙
θ (Xi) L̄

µ
γ0 − θ (Xi)

hn

¶
− θ (Xi)× 1 {θ (Xi) < γ0}

¸!

= V ar

µ
θ (Xi)× L̄

µ
γ0 − θ (Xi)

hn

¶
− θ (Xi)× 1 {θ (Xi) < γ0}

¶
≤ E

½
θ (Xi) L̄

µ
γ0 − θ (Xi)

hn

¶
− θ (Xi)× 1 {θ (Xi) < γ0}

¾2
→ 0. (38)

From (37) and (38), we get that E (T4n)
2 → 0 and thus T4n = op (1).

Replacing in (35), we get that

√
n
n
ζ̂ − ζ0

o
=

1√
n

nX
i=1

[θ (Xi)× 1 {θ (Xi) < γ0}− ζ0]−
γ0√
n

nX
i=1

{1 (θ (Xi) ≤ γ0)− Fθ (γ0)}

+
1√
n

nX
i=1

n
θ̂ (Xi)− θ (Xi)

o½
L̄

µ
γ0 − θ (Xi)

hn

¶
+ {γ0 − θ (Xi)}

1

hn
L

µ
γ0 − θ (Xi)

hn

¶¾
+op

µ
1√
n

¶
. (39)

The final step is to analyze the third term in (39), using U-statistic type decompositions.
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First notice that analogous to (24) above, we have here that up to op (1) terms:

1√
n

nX
i=1

n
θ̂ (Xi)− θ (Xi)

o½
L̄

µ
γ0 − θ (Xi)

hn

¶
+ {γ0 − θ (Xi)}

1

hn
L

µ
γ0 − θ (Xi)

hn

¶¾

=
√
n

1

n (n− 1)

nX
i=1

X
j 6=i

⎡⎣ 1
π2(Xi)

{π (Xi)YjSj − µ (Xi)Sj} 1
σpn
K
³
Xj−Xi

σn

´
×
h
L̄
³
γ0−θ(Xi)

hn

´
+ {γ0 − θ (Xi)} 1

hn
L
³
γ0−θ(Xi)

hn

´i ⎤⎦
≡
√
n

1

n (n− 1)

nX
i=1

X
j 6=i

wn (Zi, Zj)

=
1√

n (n− 1)

nX
i=1

X
j 6=i
[wn (Zi, Zj)−E (wn (Zi, Zj) |Zi)−E (wn (Zi, Zj) |Zj) +E (wn (Zi, Zj))]| {z }

U1n

+
1√
n

nX
j=1

[E (wn (Zi, Zj) |Zj)− E (wn (Zi, Zj))]| {z }
U2n

+
1√
n

nX
i=1

E (wn (Zi, Zj) |Zi)| {z }
U3n

.

It is straightforward (replace the kernel involving terms) to verify that we will get the

same conclusion as (26) and (25) here. So we only perform the analysis for U2n.
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Using steps similar to the case for γ̂, one gets that

E (wn (Zi, Zj) |Zj)

= E

⎧⎨⎩
⎡⎣ 1

π2(Xi)
{π (Xi)YjSj − µ (Xi)Sj} 1

σpn
K
³
−Xj+Xi

σn

´
×
h
L̄
³
γ0−θ(Xi)

hn

´
+ {γ0 − θ (Xi)} 1

hn
L
³
γ0−θ(Xi)

hn

´i ⎤⎦ |Yj, Sj,Xj

⎫⎬⎭
=

Z ⎡⎣ 1
π2(X)

{π (x)YjSj − µ (x)Sj} 1
σpn
K
³
−Xj+x

σn

´
×
h
L̄
³
γ0−θ(Xi)

hn

´
+ {γ0 − θ (Xi)} 1

hn
L
³
γ0−θ(Xi)

hn

´i ⎤⎦ f (x) dx
=

Z ⎡⎣ 1
π2(Xj+uσn)

{π (Xj + uσn)YjSj − µ (Xj + uσn)Sj}K (u)
×
h
L̄
³
γ0−θ(Xj+uσn)

hn

´
+ {γ0 − θ (Xj + uσn)} 1

hn
L
³
γ0−θ(Xj+uσn)

hn

´i ⎤⎦ f (Xj + uσn) du

=

⎡⎣ 1
π2(Xj)

{π (Xj)YjSj − µ (Xj)Sj} f (Xj)

×
h
L̄
³
γ0−θ(Xj)

hn

´
+ {γ0 − θ (Xj)} 1

hn
L
³
γ0−θ(Xj)

hn

´i ⎤⎦Z K (u) du+O (σqn)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∙
{π (Xj)YjSj − µ (Xj)Sj}

π2 (Xj)
f (Xj)

¸
| {z }

W (Zj)

×
∙
L̄

µ
γ0 − θ (Xj)

hn

¶
+ {γ0 − θ (Xj)}

1

hn
L

µ
γ0 − θ (Xj)

hn

¶¸
| {z }

V2n(θ(Xj))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+O (σqn) .

Therefore,

1√
n

nX
j=1

[E (wn (Zi, Zj) |Zj)−E (wn (Zi, Zj))]

=
1√
n

nX
j=1

[E (wn (Zi, Zj) |Zj)−W (Zj)× 1 (θ (Xj) ≤ γ0)]

+
1√
n

nX
j=1

{W (Zj)× 1 (θ (Xj) ≤ γ0)}

=
1√
n

nX
j=1

{W (Zj)× 1 (θ (Xj) ≤ γ0)}

+
1√
n

nX
j=1

W (Zj)

⎡⎣ nL̄³γ0−θ(Xj)

hn

´
− 1 (θ (Xj) ≤ γ0)

o
+ {γ0 − θ (Xj)} 1

hn
L
³
γ0−θ(Xj)

hn

´ ⎤⎦
| {z }

Tnj

. (40)

Now, we will show that the second term in the previous display is op (1). Recall the
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notation ω2 (s) = E (W 2 (Zj) |θ (Xj) = s) and thus

E
¡
T 2nj
¢

=

Z A

−A
ω2 (s)

∙½
L̄

µ
γ0 − s

hn

¶
− 1 (s ≤ γ0)

¾
+ {γ0 − s} 1

hn
L

µ
γ0 − s

hn

¶¸2
fθ (s) ds

=

Z A

−A
ω2 (s)

½
L̄

µ
γ0 − s

hn

¶
− 1 (s ≤ γ0)

¾2
fθ (s) ds

+

Z A

−A
ω2 (s)

µ
γ0 − s

hn

¶2
L2
µ
γ0 − s

hn

¶
fθ (s) ds

+2

Z A

−A
ω2 (s) L̄

µ
γ0 − s

hn

¶µ
γ0 − s

hn

¶
L

µ
γ0 − s

hn

¶
fθ (s) ds. (41)

The first term in (41) equalsZ A

−A
ω2 (s)

½
L̄

µ
γ0 − s

hn

¶
− 1 (s ≤ γ0)

¾2
fθ (s) ds

=

Z γ0

−A
ω2 (s)

½
L̄

µ
γ0 − s

hn

¶
− 1 (s ≤ γ0)

¾2
fθ (s) ds

+

Z A

γ0

ω2 (s)

½
L̄

µ
γ0 − s

hn

¶
− 1 (s ≤ γ0)

¾2
fθ (s) ds

=

Z γ0

−A
ω2 (s)

½
L̄

µ
γ0 − s

hn

¶
− 1
¾2

fθ (s) ds+

Z A

γ0

ω2 (s)

½
L̄

µ
γ0 − s

hn

¶¾2
fθ (s) ds

and both of the terms in the previous display converge to zero by the DCT since lima→∞ L̄ (u) =

1 = 1− lima→−∞ L̄ (u). The second integral in (41) converges to zero by the DCT since

limu→±∞ u2L2 (u) = 0. The third integral in (41) also converges to zero by limu→±∞ uL (u) =

0 and the DCT. This implies that E
¡
T 2nj
¢
→ 0 and thus

0 < V ar

Ã
1√
n

nX
j=1

Tnj

!
= V ar (Tnj) ≤ E

¡
T 2nj
¢
→ 0.

Next,

√
nE

½
W (Zj)

∙½
L̄

µ
γ0 − θ (Xj)

hn

¶
− 1 (θ (Xj) ≤ γ0)

¾
+ {γ0 − θ (Xj)}

1

hn
L

µ
γ0 − θ (Xj)

hn

¶¸¾

=
√
nEXj

⎧⎨⎩E {W (Zj) |Xj}
=0

×

⎡⎣ nL̄³γ0−θ(Xj)

hn

´
− 1 (θ (Xj) ≤ γ0)

o
+ {γ0 − θ (Xj)} 1

hn
L
³
γ0−θ(Xj)

hn

´ ⎤⎦⎫⎬⎭
= 0.

So it follows that the second term in (40) is op (1).
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Thus we have that

1√
n

nX
i=1

½
µ̂ (Xi)

π̂ (Xi)
− µ(Xi)

π (Xi)

¾½
L̄

µ
γ0 − θ (Xi)

hn

¶
+ {γ0 − θ (Xi)}

1

hn
L

µ
γ0 − θ (Xi)

hn

¶¾
=

1√
n

nX
j=1

½
{π (Xj)YjSj − µ (Xj)Sj}

π2 (Xj)
fX (Xj)× 1 (θ (Xj) ≤ γ0)

¾
+ op (1)

d→ N

µ
0,

Z γ0

−A
ω2 (s) fθ (s) ds

¶
,

where

ω2 (a) = E

(∙
{π (Xj)YjSj − µ (Xj)Sj}

π2 (Xj)
fX (Xj)

¸2
|θ (Xj) = a

)
Using exactly analogous steps, we will also get that

1√
n

nX
i=1

(
ν̂ (Xi)

δ̂(Xi)
− ν (Xi)

δ (Xi)

)½
L̄

µ
γ0 − θ (Xj)

hn

¶
+ {γ0 − θ (Xj)}

1

hn
L

µ
γ0 − θ (Xj)

hn

¶¾
=

1√
n

nX
j=1

½
δ (Xj)Yj (1− Sj)− ν (Xj) (1− Sj)

δ2 (X)
fX (Xj)× 1 (θ (Xj) ≤ γ0)

¾
+ op (1) .

d→ N

µ
0,

Z γ0

−A
τ 2 (s) fθ (s) ds

¶
,

where

τ 2 (a) = E

(½
δ (X)Y (1− S)− ν (X) (1− S)

δ2 (X)
f (X)

¾2
|θ (X) = a

)
.

Finally, we get that

1√
n

nX
i=1

n
θ̂ (Xi)− θ (Xi)

o½
L̄

µ
γ0 − θ (Xj)

hn

¶
+ {γ0 − θ (Xj)}

1

hn
L

µ
γ0 − θ (Xj)

hn

¶¾
d→ N

µ
0,

Z γ0

−A

©
ω2 (s) + τ 2 (s)

ª
fθ (s) ds

¶
, (42)

since the covariances will be zero (as can be easily seen from the asymptotic linear ex-

pansions because S (1− S) = 0).
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Replacing in (33), we finally arrive at

√
n
n
ζ̂ − ζ0

o
=

1√
n

nX
j=1

½
{π (Xj)YjSj − µ (Xj)Sj}

π2 (Xj)
fX (Xj)× 1 (θ (Xj) ≤ γ0)

¾

− 1√
n

nX
j=1

½
δ (Xj)Yj (1− Sj)− ν (Xj) (1− Sj)

δ2 (X)
fX (Xj)× 1 (θ (Xj) ≤ γ0)

¾

+γ0 ×
1√
n

nX
j=1

{Fθ (γ0)− 1 (θ (Xj) ≤ γ0)}

+
1√
n

nX
i=1

{θ (Xi)× 1 {θ (Xi) < γ0}− ζ0}+ op (1) . (43)

Lemma 3:
Proof. Note that

1√
n

nX
j=1

h
φ̂ (Xj, 1)− φ (Xj, 1)

i
=

1√
n

nX
i=1

½
µ̂ (Xi)

π̂ (Xi)
− µ(Xi)

π (Xi)

¾
=

1√
n

nX
i=1

½
µ̂ (Xi)− µ(Xi)

π (Xi)

¾
− 1√

n

nX
i=1

½
µ (Xi)

π (Xi)

π̂ (Xi)− π(Xi)

π (Xi)

¾
+
1√
n

nX
i=1

{µ̂ (Xi)− µ(Xi)} {π̂ (Xi)− π(Xi)}
π (Xi) π̂ (Xi)

− 1√
n

nX
i=1

µ(Xi) {π̂ (Xi)− π(Xi)}2

π2 (Xi) π̂ (Xi)
. (44)

The last two terms are bounded above by a positive scalar times
√
n supx k{µ̂ (x)− µ(x)} {π̂ (x)− π(x)}k

and
√
n supx k{π̂ (x)− π(x)}k2, respectively and these are both op (1) under assumption

B11 above. Thus we only need to show that the sum of the first two terms in (44) is

asymptotically equivalent to (
√
n times) a centered sample average.
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Now, the first two terms in (44) add up to

1√
n

nX
i=1

{π (Xi) µ̂ (Xi)− µ (Xi) π̂ (Xi)}

=
√
n

1

n (n− 1)

nX
i=1

X
j 6=i

π (Xi)YjSj − µ (Xi)Sj
π2 (Xi)

1

σpn
K

µ
Xj −Xi

σn

¶

≡
√
n

1

n (n− 1)

nX
i=1

X
j 6=i

w (Zi, Zj, σn)

=
1√

n (n− 1)

nX
i=1

X
j 6=i
[w (Zi, Zj, σn)−E (w (Zi, Zj, σn) |Zi)−E (w (Zi, Zj, σn) |Zj) +E (w (Zi, Zj, σn)| {z

U1n

+
1√
n

nX
j=1

[E (w (Zi, Zj , σn) |Zj)−E (w (Zi, Zj, σn))]| {z }
U2n

+
1√
n

nX
i=1

E (w (Zi, Zj, σn) |Zi)| {z }
U3n

.

We will show that

E (U1n)
2 = o (1) , (45)

U2n =
1√
n

nX
j=1

{E (S|Xj)× YjSj − E (SY |Xj)× Sj}+ op (1) , (46)

U3n = op (1) . (47)

Observe that

E

∙
π (Xi)YjSj − µ (Xi)Sj

π2 (Xi)

1

σpn
K

µ
Xj −Xi

σn

¶
|Zi

¸
L.I.E.
= E

∙
1

π2 (Xi)

½
π (Xi)

µ (Xj)

f (Xj)
− µ (Xi)

π (Xj)

f (Xj)

¾
1

σpn
K

µ
Xj −Xi

σn

¶
|Zi

¸
=

1

π2 (Xi)

Z
[π (Xi)µ (x)− µ (Xi)π (x)]

1

σpn
K

µ
x−Xi

σn

¶
dx

=
1

π2 (Xi)

Z
[π (Xi)µ (Xi + uσn)− µ (Xi)π (Xi + uσn)]K (u) du

A1
= H (Xi)×O (σqn) ,

for some uniformly bounded function H by assumption. Therefore, U3n = Op (
√
nσqn) =

op (1) by assumption A3 and this establishes (47).
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Next observe that

E

∙
1

π2 (Xi)
{π (Xi)YjSj − µ (Xi)Sj}

1

σpn
K

µ
Xj −Xi

σn

¶
|Zj

¸
=

Z
1

π2 (x)
{π (x)YjSj − µ (x)Sj}

1

σpn
K

µ
Xj − x

σn

¶
f (x) dx

=

Z
1

π2 (Xj + uσn)
{π ((Xj + uσn))YjSj − µ ((Xj + uσn))Sj}K (u) f ((Xj + uσn)) du

= {π (Xj)YjSj − µ (Xj)Sj} f (Xj)

Z
1

π2 (Xj + uσn)
K (u) du

+σn {π0 (Xj)YjSj − µ0 (Xj)Sj} f (Xj)

Z
1

π2 (Xj + uσn)
K (u)udu

+....+ σqn
©
π(q) (Xj)YjSj − µ(q) (Xj)Sj

ª
f (Xj)

Z
1

π2 (Xj + uσn)
K (u)uqdu

= {π (Xj)YjSj − µ (Xj)Sj}
f (Xj)

π2 (Xj)
+O (σqn)

=
1

{E (S|Xj)}2
{E (S|Xj)× YjSj −E (SY |Xj)× Sj}+O (σqn) ,

by a dominated convergence theorem, given the uniform boundedness of π (·). Together
with assumption A3, we get (46).

One can establish (45) by essentially repeating the proof of Powell, Stoker and Stock

(1989) lemma 3.1.

Combining (45), (46) and (47), we get that

1√
n

nX
i=1

½
µ̂ (Xi)

π̂ (Xi)
− µ(Xi)

π (Xi)

¾
=

1√
n

nX
j=1

{π (Xj)YjSj − µ (Xj)Sj} f (Xj)
1

π2 (Xj)
+ op (1)

=
1√
n

nX
j=1

1

{E (S|Xj)}2
{E (S|Xj)× YjSj −E (SY |Xj)× Sj}+ op (1) .

Corollary to Theorem 4
Proof. Observe that

ρ̂− ρ0

=
1

n

nX
j=1

h
φ̂ (Xj, 1)− φ (Xj, 1)

i
| {z }

S1n

+
1

n

nX
j=1

[φ (Xj, 1)−E {φ (Xj, 1)}]| {z }
S2n

−
n
ζ̂ − ζ0

o
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By lemma 1, S1n = Op

³
1√
n

´
, then S2n is a standard empirical process and so Op

³
1√
n

´
and

n
ζ̂ − ζ0

o
is Op

³
1√
n

´
, by theorem 2.
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