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Abstract

We consider the problem of efficiently allocating a binary treatment among a
target population based on a set of discrete and continuous observed characteris-
tics. The goal is to maximize the population mean of an eventual outcome when
a budget constraint limits what fraction of the population can be treated. Using
sample data resulting from randomized treatment allocation, the ATE conditional
on covariates (CATE) is nonparametrically estimated in a first step. The optimal
treatment threshold and resulting value function, which are non-smooth functionals
of the CATE, are estimated based on sample realizations of the estimated CATE.
We derive large-sample distribution theory for these estimates and for the estimated
dual value, i.e. the minimum resources needed to attain a specific average outcome
via efficient treatment assignment. These inferential methods are applied to the op-
timal provision of anti-malaria bed nets, using data from a randomized experiment
conducted in western Kenya. We find that a government which can afford to distrib-
ute subsidized bed nets to only 50% of its target population can, with an efficient
allocation rule based on multiple covariates, increase bed-net use by 8 percentage
points (25 percent) relative to random allocation and by 4 percentage points (11
percent) relative to one based on wealth only. Our methods can be extended to

infer optimal design of eligibility in conditional cash transfer programs.

1 Introduction

Vulnerable populations in developing countries often lack access to critical health and

educational facilities. Enhancing their access can generate both high private returns and,



in many cases, significant positive externalities for society. Examples include improvement
of female literacy rates or decreasing incidence of infectious diseases. These considerations
often lead governments and private charities in developing countries to subsidize access
to such key health and educational resources. However, such subsidizing efforts are also
typically constrained by binding budget ceilings. When budgets are such that only a small
fraction of a target population can receive a given subsidy, the eligibility rule used to decide
who will receive the subsidy can have an important effect on the overall benefit arising
from the subsidy program. Even when budget constraints are not explicitly binding, as
in many high-income countries, efficient use of available resources for treating vulnerable
sections of society is still an important policy objective.

This paper considers the problem of allocating a fixed amount of resources to a tar-
get population with the aim of maximizing the mean outcome across members of the
population, and the dual problem of estimating the minimum cost of achieving a given
mean outcome in the population by proper targeting of a treatment. We show how, in the
presence of observationally heterogeneous treatment effects, experimental data on a repre-
sentative sample of the population can be used to infer the optimal treatment assignment
rule. We apply this methodology to design optimal allocation of an effective malaria con-
trol tool — insecticide-treated bed nets — among households in a malaria-endemic region
of Kenya. Our treatment of interest is making subsidized bednets available to a section
of this population and the outcome of interest is the mean effective usage rate (the share
of households using a bed net). We find that, if available resources allow us to treat only
50% of the target population, randomly allocating bed nets is 19% (8 percentage points)
less efficient than optimally allocating them based on a set of observed characteristics.
Allocating the bed nets according to wealth only is 9% (4 percentage points) less efficient
than allocating them based on a set of relevant covariates. Finally, allocating the bed nets
based on all covariates but wealth is 10 to 16% (4 to 7 percentage points) less efficient
than allocating them based on the complete set of relevant covariates.

From the perspective of econometric methodology, our analysis is based on functionals
of the marginal distribution of the conditional average treatment effect (CATE, hence-
forth). In particular, we show that when the budget limits the fraction of the treated to
¢ € (0,1), the optimal treatment threshold 7 and the resulting value function p are equiv-
alent respectively to the (1 — ¢)th marginal quantile and Lorenz share for the random
variable 0 (X) — where 6 (x) represents the average treatment effect for the subpopula-
tion whose value of the observable characteristic X is . The parameters p and 7y, which
appear to be new to the treatment effects literature, can be expressed as solutions to semi-

parametric moment conditions involving the infinite-dimensional initial parameter 6 (-),



typically a function of both discrete and continuous covariates. However, the functional
form of 6 (-) is not known but estimated in an initial step; the estimated v and p are
based on the empirical distribution of the estimated 6 (-). The key technical challenge
in conducting inference on p and ~ is that the population moment condition defining ~y
is a step-function in 6 (). Consequently, neither the classic semiparametric methods, c.f.
Pakes and Pollard (1989), Andrews (1994) or Newey (1994), nor its recent extensions to
nonsmooth sample moments (but smooth population moments), c.f. Ai and Chen (2003)
or Chen, Linton and van Keilegom (2003) (CLV, henceforth), can be used here directly.
We bypass this problem by using additional smoothing in defining the estimates and
show that v and p can be estimated at fast enough rates even if  (-) is left nonparamet-
ric. Since 7 and p are functionals of the single-dimensional index 6 (-), the convergence
rate of their estimates will not depend on the dimension of the continuous components
of X.! Moreover, p but not necessarily v can be estimated at the parametric rate under
a set of regularity conditions. We will argue below that the value function p is often a
more interesting policy parameter than the treatment threshold ~. The relatively fast
rate for p means that we can estimate such policy-relevant scalar parameters well with
comparatively small sample sizes without making any ad-hoc parametric assumptions on
the data generating process. As a corollary, we also derive inference theory for the dual
policy parameter, viz. the minimum fraction of the population which has to be treated in
order to attain a target level of mean outcome. The value function for this dual problem
is simply the inverse of p (-), which is monotone increasing as a function of c.

On a broader substantive level, this paper suggests and describes how a government
may use experimental (pilot) data to infer the eligibility rule that will generate the max-
imum possible benefit from a program before rolling out the program at a large scale.
While generating and collecting experimental data on the effectiveness of an intervention
and how it varies across possible beneficiaries has so far been limited to medical inter-
ventions, there has been a recent push for more experimental evidence on the impact of
social programs, as part of a general effort to improve the effectiveness of aid (Duflo,
Kremer and Glennerster, 2006). For example, the World Bank recently launched the
DIME initiative, an effort to increase the number of Bank-funded projects with impact
evaluation components. Because the goal of impact evaluations is often to identify simply
whether a program works, the parameter of interest for the evaluators is typically the
average treatment effect (ATE). For this reason, experiments are typically not designed

to precisely estimate interaction coefficients, i.e. how the effect of the program varies by

'For deriving these rates, we will require that the estimate of @ (.) converges in sup norm faster than

n'/* and this requires a sample size that is large relative to the dimension of X.



observable covariates. We show here that relatively precise inference on the value of the
optimal allocation rule is possible even when the experimental sample size does not permit
very precise estimation of the (observable) heterogeneity in the treatment effect (i.e. v
and p can be estimated at faster rates than the function 6 (-), itself). Experimental data
generated by a pilot program can thus be used not only to estimate whether a program
is worth scaling-up, but also to infer how the program should be scaled-up. The methods
developed here have wider applicability, beyond subsidy targeting in developing coun-
tries, to any situation of constrained treatment assignment. Examples include assigning
patients to expensive surgical procedures, deciding eligibility rules for access to credit or
allocating the unemployed to job-training programs.

The rest of the paper is organized as follows. Section 2 sets up the problem, introduces
the parameters of interest and discusses the relation of the present paper to the relevant
literature in econometrics and development economics. Section 3 introduces the estimators
and discusses some key issues regarding rate of convergence for the parameters of interest.
Section 4 develops the relevant distribution theory. Section 5 presents the benchmark case
of parametric inference. Section 6 presents the application to the optimal allocation of
bed nets in Kenya. Section 7 discusses an extension to the design of conditional cash

transfer programs and section 8 concludes. All proof are collected in the appendix.

2 Formulation of the Problem

2.1 Set-up

Let Y denote an individual level outcome and let S denote a binary treatment whose
level can be affected directly by policy. Let X denote observed covariates and U denote
unobserved determinants of Y. In the bed-net example, analyzed below in details, the
population of interest is rural households of western Kenya. We have a simple random
sample drawn from two districts in Western Kenya. Each household is an observation. Y
is equal to 1 if the household owns and uses a bed net. X is the presence of a child under
10 in the household, the household’s wealth per capita and ownership of a bank account,
while U represents unobserved determinants of take-up. S = 1 denotes offering a highly
subsidized bed net to the household.

Let ¢ (z,s) denote the expected outcome at S = s for individuals with X = z: i.e.
if an individual with characteristic X = x is randomly selected from the population and
assigned a value s of S, then her expected outcome is ¢ (x,s). If S is independent of U

conditional on X as in a randomized trial (the case studied here), then a nonparametric



regression of Y on X for individuals with S = s in the sample can be used to recover this
function.? This paper considers the case where X includes both discrete and continuous
variables, S is binary and allocation to the treatment was randomized at the individual
level.

We will be primarily concerned with a social planner’s problem which is as follows.
The planner faces a constraint on what fraction of individuals can be administered the
treatment (S = 1). Suppose this fraction is ¢ and let X denote the support of X. We
define the planner’s problem as the choice of a set A C X such that if an individual’s
value of X is in this set, then the planner assigns that person to the treatment and not
otherwise. We will assume that the planner wants to maximize mean outcome.® Then
the planner’s problem is

max/ex[qﬁ(x,l)l(xEA)—l—(b(m,O)l(xgéA)]dF(x)

ACX
subject to
c:/ 1(x € A)dF (x). (1)
TEX

It is obvious that the budget constraint will hold with equality at the optimum. It is also
intuitive that the optimal set A will include those x’s where ¢ (z,1) is "large" relative

to ¢ (x,0). The following proposition formalizes this intuition. We will use the notation
6 (x) to mean ¢ (x,1) — ¢ (z,0).

Proposition 1 The solution to the planner’s problem

max/ex[qﬁ(x,l)l(xGA)—I—gb(x,O)l(a:q_fA)]dF(:E)

ACX

subject to
c:/ 1(z € A)dF (x)
rzeX

is of the form A* = {x : 0 (x) > v} where 0 (x) = ¢ (z,1) — ¢ (x,0) and v satisfies

c:/exl(g(x)>7)dF(x).

2Otherwise, ¢ (z, -) has to be identified by either using IV based methods or by assuming unconfounded
(conditional on covariates) treatment assignments. Bhattacharya, Chandra and Chen (2007) investigate

this case in the context of assigning a continuous treatment.
3More generally, if the planner is interested in maximizing (a possibly covariate weighted) outcome

utility, then ¢ (z, 1) represents the expected value of the planner’s utility defined on outcomes for indi-

viduals with X = z.



Proof. Appendix m

Note that the problem is interesting only if ¢ < Pr (6 (X) > 0); otherwise, the optimal
assignment rule would be to give treatment to everybody whose average treatment effect
is positive.

For the optimal choice of A, the value function, capturing the maximal gains from

covariate based allocation, will be
p@ = [ 6@ >0} +0 @010 @) <1 (O F ()
= /Exsb(% 1) dF () —/eXQ(fE) x 1{0 (z) <7 ()} dF (z). (2)

The above proposition implies that one can solve for v (¢) from

c:/exl{e(x)>7(c)}dF(a:).

The above equation simply states that 7 (c¢) is the (1 — ¢)th quantile for the marginal
distribution of the average treatment effect (conditional on X), i.e., the random variable
0 (X). Let us denote the population c.d.f. of this distribution by G (-). The corresponding

value function from (2) can be written as

p<c>:E[¢<X,1>]_/ =X 1{z <1 (0}]dG (=),

z€0

where [, _o [z x 1{z < v(c)}]dG (z) is the generalized Lorenz share of 6 (X), correspond-
ing to the percentile (1 — ¢) and © is the support of 6 (X).

2.2 Parameters of interest

Treatment threshold: ~ (c) is a natural policy parameter of interest because it repre-
sents the treatment threshold for a specific budget c. Interestingly, it also equals p' (¢),
which measures the shadow cost of the budget constraint, e.g. how much will the max-
imized expected outcome increase if the subsidy budget increases infinitesimally from c.
Alternatively, v (¢) measures the expected treatment effect on the "last" individual made
eligible for treatment under our budget-constrained rationing rule.

Value function: p(c), the value function corresponding to the above optimization
problem, represents the maximum mean outcome obtainable from a budget outlay of c.
We consider p to be fundamentally a more important parameter than  for several reasons.
First, it is useful for deciding on the budget outlay necessary for achieving a target mean

level of outcome (more on this below). Second, any choice of conditioning covariates is
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likely to be controversial in real life and some could be politically or legally infeasible.
Some relevant covariates are also costly and/or difficult to measure. For example, in
poorer areas in developing countries where the majority of households do not file tax
returns, measuring income or wealth levels typically requires labor-intensive household
surveys. Under-reporting of income and assets is a common problem, especially if the
population surveyed is aware of the existence of an eligibility threshold (Martinelli and
Parker, 2007). The unrestricted value function therefore represents a "first-best" scenario
against which alternative allocations which are feasible and/or based on easily measurable
covariates can be compared. The (unrestricted) v may be less relevant relevant from a
policy perspective if such an unrestricted allocation will never be feasible in real life.
Equivalent expenditure: The dual formulation of the optimal allocation problem
is as follows. Suppose the planner’s objective is to achieve an expected outcome equal to
b by allocating treatment based on covariates. The parameter of interest is the minimum

amount of funds necessary to achieve b. This dual problem can be represented as

i / _Hred}dr() 3)
subject to
/GX[¢(x,1>1(xeA)+¢(x,0)1(x¢A)]dF(x):b. (4)

One can almost repeat the proof of proposition 1 to show that the optimal A will again
be of the form A* = {z : 1{0 (z) > v (b)}} where 7 (b) is such that A* satisfies (4). Note
that by duality, the minimum value of (3) is simply p~! (b) where p(-) is defined in (2)
and the inverse is well-defined because p (-) is monotone increasing. In particular, setting
b equal to the currently observed mean outcome of an existing program, one can calculate
how much resources could be saved by optimal allocation.

Restricted value function: Suppose ;1 C x = (21, x2) and consider situations where
Zo is an infeasible conditioner, either because conditioning on it is banned or because

observing it is costly. Define
5(1‘1, S) = EXZ\Xlzzl [Cb ($1>$27 S)] . (5)
Then the optimization problem becomes

max € (21, 1)1 (21 € A) + & (21,0) 1 (xy € A)|dF (1) s.t.

ACXL Jorex
¢ - / 1 (21 € A)dF (1)
T1€X]

Call the unrestricted maximum p,,, (¢) and the restricted one, which conditions only on

X1, pres (¢). The difference p,,, (¢)—p,.. (¢) measures the efficiency cost of these restrictions
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on implementation. When gathering information on X; (e.g. income) is expensive, one
can compare the above efficiency cost against the cost of gathering information on X; to
decide on whether the extra survey cost is worthwhile to undertake.

Note that all of the above are finite-dimensional parameters and therefore potentially
estimable at the parametric rate. However, we will show below that although p (and its
dual) is indeed estimable at parametric rates under appropriate conditions, the same does

not appear to hold for ~.

2.3 Related Literature and Contributions

This paper contributes to the new and growing literature on treatment choice (c.f. Da-
hejia (2001), Manski (2004), Hirano and Porter (2006) in econometrics and the related
problem of optimal allocation of inputs in production processes (c.f. Graham, Imbens and
Ridder (2005, 2006) and Bhattacharya (2006)). The present paper differs from the above
works substantively as it studies optimal allocation under budget constraints— a problem
that leads to interesting economic parameters that are apparently new to the economet-
rics literature. Analytically, the paper differs from Graham, Imbens and Ridder (2006)
and Bhattacharya (2006) in that it analyzes optimal allocation rules based on both dis-
crete and continuous conditioners. This makes the problem nonparametric in a nontrivial
way. Furthermore, deriving the asymptotic properties of the relevant estimates requires
independent analysis owing to the lack of smoothness of the corresponding population
moment conditions with respect to the underlying infinite-dimensional parameters. In
particular, methods described in Newey-McFadden’s Handbook of Econometrics chapter
(NM, henceforth) or in CLV appear to be not directly applicable here.

Recently, Hahn, Hirano and Karlan (2007) have considered the problem of designing
an experiment with a view to minimize the variance of the estimated unconditional ATE,
estimated from it. Their method is based on covariate-based treatment assignment and
uses data from a pilot experiment which is run prior to the main experiment. The goal
of HHK is therefore fundamentally different from the present paper. In principle, one
could construct an HHK (2007) type experimental design for efficient estimation of the
parameters we introduce in the present paper.

In a working paper, Bhattacharya, Chandra and Chen (2007) are investigating optimal
covariate-based allocation of a continuous resource, e.g., Medicare spending on heart-
attack patients, using observational data and instrumental variations. Analytically, that
problem differs significantly from the present paper because distribution theories are very

different under endogeneity and more structure is needed on the underlying production



function to guarantee unique solutions to a planner’s optimization problem.

More broadly, the present paper proposes a new use of experimental data on social
programs. So far, experimental data have typically been collected and used to measure
the impact of a program and determine whether the program is worth its cost or not.
A few recent studies have also used experimental data to estimate the parameters of
dynamic structural models and utilized the estimates to simulate the effects of counter-
factual policy interventions (c.f. Attanasio, Meghir and Santiago, 2006 and Duflo, Hanna
and Ryan, 2007). On the other hand, Todd and Wolpin (2006, 2007) discuss the estima-
tion of structural models of behavior using pre-program data and compare predictions of
their estimated model with subsequent experimental data. In contrast, we propose here a
new methodology through which experimental data can be used directly to infer optimal
targeting of programs. As randomized trials of social programs (e.g. PROGRESA in Mex-
ico) become more common in both developed and developing countries, the methodology
we propose will help governments and aid-agencies roll out positive-impact programs via
efficient allocation rules. The present paper also discusses, albeit briefly, how analogous
methods can be used to design optimal eligibility in conditional cash-transfer programs,

which have gained popularity in a large number of central and south American countries.

3 Estimation

Now we define our estimates formally. Suppose X = (X 4 X C) where X¢ contains the
discrete components of X and X°¢ is a p-variate vector of the continuous components of
X with support X and density f (-). First define the quantities

N 1 iSi X(':_Xic
B = R () 1 -
J#i "

5 1 yi{l —sif o (X7 — X7 d _ yd
v(X;) = n—l%: — K( — 1 (X=X
JF

N 1 Si Xj—X§

) = 3 (S L =
i "

. 1 1—s;  (X5— X/

) = S () e = x)
i "




The natural estimates of our parameters of interest would have been given by solutions

to the equations

0 — 1—c_ 1t An o) <4,

0 = p—E[&(XJ)} +%Zé(xi)x1{é(xi)ga}.

Notice that the first sample moment condition above is not differentiable in either 9()
or in 4, so that usual first-order expansions cannot be used. More interestingly, it turns
out that even the population analog of the first moment condition is not differentiable in
the nonparametric component. Indeed, the analogous population moment conditions are

given by
0 = l—c—/ 1{0 () <} dF (),
reX

0 = p_EWX,l)H/9@)1{9(@9}@@),

[ J/

¢

where 0 (-) and ¢ (-) should be thought of as preliminary parameters which are estimated
in a nonparametric first-step. Now notice that the first moment condition is differentiable
in the scalar v if 6 (X) has a density but not functionally differentiability in 6 (-), owing
to the presence of the indicator. This makes it infeasible to directly apply the methods
of e.g. CLV which requires differentiability of all the population moment conditions with
respect to both the finite and the infinite dimensional parameters.

So we use further smoothing to construct our estimators. For each t € [—A, A], choose
a symmetric (about zero) kernel L (-) with bounded support [—1,1], the corresponding
C.D.F. kernel L (t) = ffl L (s)ds and a sequence of bandwidth h,, converging (slowly) to

zero as n — oo. Now define 4, and p by




A ~

so that p = E[¢(X,1)] — (.

The smoothing applied in (6) is similar in spirit to Horowitz’s (1992) analysis of
smoothed maximum score. But in that problem, the finite-dimensional parameter of in-
terest does not explicitly depend on any infinite-dimensional underlying parameter. In
contrast, here the key parameters of interest, viz., v and p, are based on the infinite-
dimensional component 6 (-) through (population) moments that are not smooth in 6 (-).
Thus the present estimators lie at the intersection of classical 2-step semiparametric esti-
mators and smoothing-based estimators for countering non-differentiability. This makes

both the results and the proofs substantially different from both strands of the literature.

4 Large sample theory

The discrete regressors will not play any substantive roles in our analysis; so we will
drop them in our discussion from now on and put them back into our final results at
the end. Every condition we use will have to hold conditional on each specific value
assumed by the discrete regressors. In our proofs, the notation é(x) and ¥ will be used
to denote values intermediate between 0 (x) and 6 (x) and 4 and ~y,, respectively; M; and
M (z) will denote a bounded positive constant and a uniformly bounded positive function,
respectively whose actual values may be different in different places. The latter would be
used in the expressions for upper bounds for various quantities which appear in the proof.

Assumptions
A0(i) (v;,X;,S;) i=1,2,..n is a random sample, 0 (X) is continuously distributed.
AO0(ii) S is randomly allocated so that

1@ v pyig—1,X —a) = E(Y|S = 0,X = )

= EY ()| X=2)—EY ()X =2
ATE(z)

where Y (1) and Y (0) are the conventional notations for the outcome with and

without treatment respectively for an individual.

Conditional on every value x¢ assumed by the discrete regressors, the support X°¢
of the continuous components X is a p-dimensional compact set and the density of X¢
satisfies that f (z) > § > 0 for all z € X°. Furthermore, the density is ¢-times continuously

differentiable with the derivatives uniformly bounded on X*°.
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A2 -1 <—-A<0(z) <A<1forevery z e X.

A3 K (-) is an gth order p-dimensional bounded kernel, with ¢ > p and the bandwidth

sequence o, satisfying (i) o, — 0 (ii) /no? — 0

A4(i) The kernel L (-) is uniformly bounded with a bandwidth sequence h, — 0 and

nh,, — 0o.

Assumptions AO(i) and (ii) define the set-up. Al is somewhat restrictive but is rou-
tinely assumed (c.f. Hirano, Imbens and Ridder (2003), assumption 2). If this fails, we
can simply redefine the problem such that we are designing allocations based only on
those values of X where this condition holds. Assumption A2 is standard and further-
more, like in the case of assumption Al, we can redefine the problem for those values of
X where this condition holds. Assumption A3 (i) is standard. Assumption A3 (ii) is an
"undersmoothing" requirement, which is commonly used in semiparametric problems for

bias removal; it is also a key condition for assumption B10 below (c.f. NM, lemma 8.10).

4.1 Consistency of ¥

The following lemma will be useful in several proofs below. We will introduce several high

level assumptions before invoking the lemma.
. 1/2
BI. supweX’Q(x)—Q(a:)) :OP{CLHTT;) +02L}.

B2 sup,cia.n |fo (u) = fo ()] = 0, (1)
B3 (i) The first derivative of kernel L (-), denoted by L, is also uniformly bounded.

1/2
B4. (i) h, — 0, nh, — 0o, v/nh? — oo and n'/* { <TIZHTZL> +01 5 — 0.

Sufficient low level conditions for B1 and B2 are fairly standard. In particular, for Bl
c.f. Hansen (2008). For B2, c.f. Pagan and Ullah (1999) theorem 2.8.

Lemma 1 Under assumptions A0-A3, A4(i), B1, B2, B3(i) and B4(i),

sup |F (1) — Fy (1) Lo.
te[—A,A]
Proof. Appendix m
We are now ready to state and prove the first consistency result with one additional
assumption.

B5. The density of 6 (X) is strictly positive on an open set containing 7,

12



Theorem 1 Under assumptions A0-AS3, A4 (i), B1, B2, B3(i) and B4(i) and B5, we have
that

ﬁ‘Vozop(l)

Proof. Appendix m

4.2 Distribution Theory for ¥

Assume that L (-) is differentiable and let

fi () = H—LZL <—t_Z:X1‘>> .

The asymptotic behavior of f@ (t) will be useful for our distribution theories. Toward that
end, add to the above assumptions that:

A4 (ii) The kernel L () has two derivatives which are also uniformly bounded.
1/2
B4 (i) & x {(%) +ag} 0.

Lemma 2 Under assumptions A0-A4 and B1-B5,

[y = s )] = 0, 1)

Proof. Appendix m
The following first-order expansion for 4 will be used for deriving the distribution

theory for 4:

(% =)
= {hat {Fe ) %E:; (u )
Hho) %Z(L (u :H(XZ)> _L<%(X)>>]

i=1
. —1
The proof will proceed in three steps: step 1 is that the multiplier { fa (7)} converges

in probability to {fy (7)} . Step 2 is that the term T}, will be O, ( > Finally in step 3

we will show, using U-statistic type decompositions, that the term 75, will be O, (W)
Thus, we will eventually get that v/nh, (¥ — v,) will converge to normal distribution.

The following additional assumptions will be used in the proof.

13



B7. For some r > 2, the density of 6 (X) is (r — 1) times continuously differentiable,
the derivative is bounded and Lipschitz in a neighborhood of v, and nh? ™! — \ < cc.
Denote the above derivative at 7, by fg(r_l) (70)-

BS. \/H«II%T;LZ/Z — 0 and o2 h\?/l/i — 0

B9. L (+) is symmetric around zero and has bounded support [—1, 1], is of order r and
2 L2 (u) du = fil L? (u) du < .

B10. Var(Y|S =1) and Var (Y|S = 0) are finite.

BI1. ynsup,ex [[{ft (z) — (@)} {7 (z) = (@)} = 0, (1) and y/wsup, | {# (z) — m(x)}||* =
op (1).

Assumption B11 is also a well-known requirement for y/n -normality for semiparamet-

ric estimators (c.f. NM, section 8.3).

Theorem 2 Under assumptions A0-A4 and B1-B11, we have that

Vi (5= 70) % N (ﬁ, - ”j}egjf = 1 12 (u) du) ,

where

0% (X)

) = E{{”(X)ii}(g‘()()Sf(X)} |9<X>=%}

g = (—1)T+1gx gr_l) (7o) /_1uTL(u)du.

() = E{{“X)Y“‘S)‘”(X“l‘s)fm} |9<X)=%}

Proof. Appendix m

Incorporating the discrete regressors back into the analysis is straightforward. If we
denote X = (X ©X d) and the discrete regressor (vector) X¢ assumes values ay, ...a; and
suppose fxe|xi—q, (7|a;) denotes the conditional density of X¢, conditional on X 4 = qj.

Then we simply replace

(0 = E{{MX)Y@—S)—u(X)(l—S)HXC?Xd)} re<x>=%}

7 )
) = E{{”X)if&fmsf(X%Xd)} |9(X)=%},

where f (2°,27) = Z}']:1 Sxexiza, (2¢a;) 1 (2% = ay).
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4.3 Consistency for p

Theorem 3 Under assumptions A0-A4 and B1-B11, we have that
é —Co=0,(1).

Proof. Appendix m

4.4 Distribution theory for p

Recall that p = =37 | ¢ (X;,1) — C. We will analyze the first term using the following

lemma and then 6 , using theorem 2.

Lemma 3 Under assumptions A0-A4 and B1-B11,
J R
1 « 1
= ﬁ Z {m(X;)Y;S; — pu(X;) S5t f(X5) ) o (1)
: j

Z{E S|X 2{E(S|X>XY}‘Sj—E(SY|Xj)ij}+Op(1).

Proof. Appendix m
The final step is to derive the large sample distribution of é’ , for which the following

expansion will be used.
¢~ o

_ %ie(x»L(W_h—i(X")) — ¢
+%§:{9(Xi)—0(X¢)} {L <%_h7i(XZ)) —hinQ(Xi)L (70_]179“()(1))}

(5 — ) nzn Ze (X)) L (%_h—i(X)) LR,

-~

T3 n

The proof will work by showing that R, is o, <ﬁ> and Ty, Th, and T, are all O, (%)

The following additional assumptions will be used.
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2

N nn 1/2 q T : V/n 2q Inn
B4 (iii) Y5 x{ (= + 0% ¢ — 0 which is implied by 35 x0;7 — 0 and Ttz ) —

—_—

3

B12. nh8 — oo, r of assumption B7 is at least 4 and nh?" — 0.

Theorem 4 Under assumptions A0-A5, B1-B12,
R 1 <&
\/E{C—CO} = %;{¢1¢+¢m+¢3i—¢4i}+0p(1);

where

Vi = Yoo (7o) —1(0(X;) <)}
Yy = 0(X;) x 1{0(X;) <} — (o
Uy = 1(O(X) < 7g) x T M)

x fx (Xi)

7T2 (Xz)
Yy = 1(0(X;) <) X OX)¥ill - (;S;Z)()_()V FI =5 X fx (Xi).

It follows by an ordinary CLT (under standard second moment restrictions) that \/n {& — Co}

will be mean-zero normal.

Proof. Appendix m

To incorporate the discrete regressors back into the analysis, we simply replace the
terms fx (X;) in ¥g; and ¢y, by f (X7, X{T) = Z}]:l fxe|xiza; (Xflaj) 1 (X{ = a;), where
fxeixa—p (alb) denotes the density of X¢ at a, conditional on X% = b.

The final variance can be consistently estimated using sample cross-products, under
standard conditions for the WLLN.

Corollary 5 From the previous lemma and the theorem, it follows that

\/ﬁ(ﬁ_loo)

= = St ba Y~ Y} + Z E(51%) x ¥ib, = B (SY|X,) x
=1

{EB(s1x))

—I—op(l).

Remark 1 It may be noted here that the estimation error in 0 (+) affects the distribution
of p through the terms 14, and 1.

The variances can be estimated by the average of squares of the terms in the linear

expansions above and that this estimate will be consistent follows from the standard
WLLN.
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4.5 Distribution theory for dual

Recall that the value function for the dual problem § (b) represents the smallest fraction
of individuals who have to be assigned to treatment (optimally) to guarantee that the
expected mean outcome is at least b. In other words, p [0 (b)] equals b, where ¢ (b) plays
the role of ¢ in the primal problem. From a standard first-order expansion argument, it
follows that

p {5 (b)}

where p{0 (b)} = b. Since p(c) = E{¢(X,1)} — fi:(l_c) tdG (t), it follows that p' (c)
equals G™! (1 — ¢) which is simply 7 (¢). Replacing, we get that

NI (IR WG CUGIEVALICH

from which the asymptotic normality of y/n (5 (b) =9 (b)) follows.

+OP (1):

Remark 2 The qualitative difference between the asymptotic distributions of 4 and p is
somewhat intriguing. It is caused jointly by the facts that the moment condition defining
is nonsmooth in 0 (-) and also that 0 (-) is unknown. If 0 (-) were known, then realizations
of 0 (X) would be observed and so its estimated quantile would bey/n-normal. Conversely,
if the moment condition were smooth and 6 (-) unknown, then a CLV- type analysis would
lead to v/n-normality for 4 under reqularity conditions. One way to interpret the difference
between the asymptotic distributions of 4 and p is to note that v = G (0)"" (1 — ¢) and
p= fllch (0)" (u) du where G (0) represents the c.d.f. of 0(X). This suggests that ~
s the value at a point of a monparametric function while p is its integral. Thus 7y is
somewhat analogous to the value of a demand function at a price whereas p is akin to
the (approzimate) consumer surplus (c.f. NM (1994), page 2195) calculated from that
demand curve. So it is likely that 4 would behave like a purely nonparametric estimator
whereas p behaves like a parametric one. However, we recognize that this analogy is not
perfect because G (0)71 (+) is mot a standard density or conditional mean function, since
0 () is unknown. It is also interesting to observe that the mean of 0 (X) is estimable
at the parametric rate, i.e., % S {9 (X;)—E0 (X)]} = O, (1), which can be shown
by using U-statistic type results (c.f., proof of lemma 3 below). This may suggest that
a quantile of 6 (X) should also be estimable at the parametric rate. But this assertion
remains to be either proved or disproved. What we have shown so far is that there exists
one estimator of v that converges slower than the parametric rate while the corresponding

estimator for p has the \/n-normal distribution, asymptotically.
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Bias Removal: Notice that we have always used bias-removal in our analysis above.
This is not necessary and may, in fact increase the MSE for 7, estimation. From the
proof of theorem 2, it is easy to see that if the density fp () has bounded derivatives up
to order (r — 1), then the bias of (§ — ~,) is given by

_ r+1 ha, (r-1) ' T r
8= (-1 x 0 0) [ L) duto(h).

Using the formula for the variance, one gets that the MSE is given by

(r-1) 1 2 2 2 1
B2 [ 0 7«](%) /1 WL (1) du] . nzn {T (7(?0?7?) (7o) /1 L2 (u) du]l,
h )4 g B

()

N

c )ril
2rB? :
Horowitz (1992) calculates analogous quantities for his smoothed maximum score estima-

implying an MSE minimizing bandwidth choice of h,, = )\*nfrlﬂ, where \* = (

tor and discusses both estimation of \* and adjusts the asymptotic theory of the eventual
estimators to allow for an estimated A\*.

The above choice of h,, does not work for theorem 4 because (c.f. step 6A in the proof)
for this choice of h,,, we have that y/nhl, = O (nm> which blows up to +o00 and so we

cannot have a /n-rate for ¢ and thus for p. So we need to choose h,, to be smaller than
the one that is MSE-optimal for ~.

5 Parametric Analysis

It is useful to compare our results from a nonparametric analysis to a benchmark para-
metric model which is easier to estimate and thus potentially more useful for applied
work. The parametric analysis has the obvious limitation that it is susceptible to mis-
specification of the functional form and thus may lead to a suboptimal value function.
In our application we show the results for both parametric and nonparametric specifica-
tions and estimate the efficiency loss arising from the potential mis-specification of the
parametric model.

As an illustration, consider the linear parametric form, i.e.
y=50+x'61+(50+x/51)5—u

implying a conditional ATE given by

0(x) = Bo+2'By+ (0o +2'61) — (By+2'By)
= (504‘1'/(51.
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The optimal treatment rule is now described by the threshold v defined by
¢=Prif(z) =]
yielding a value function

p<c>=E{ o+ By + (3o + 200)] x 19 () 2 ) }
+(Bo+a'By) x 1(0(z) <)

More generally, suppose 6 (x) is parametrically specified as G (z,3), where G (-) is
known; typically S can be estimated at parametric rates using, say, GMM. For estimation
of v and p, we will still use smoothing with bandwidth sequence h,, and the c.d.f. kernel
L (+) to handle the nonsmoothness. For some specific functional forms of G (-, ), e.g., a
linear one, the function h () = [1{G (z,3) < v} dF (x) may be differentiable in 3 and
then no smoothing would be necessary; but smoothing-based methods are more generally
applicable and so we focus on that.

The distribution theory for p (c¢) and 4 (¢) corresponding to a parametric specification
of () is a simpler version of the nonparametric case. In particular, we will get that
both v and p can be estimated at the y/n-rate. The details are as follows. Recall the

asymptotic expansion for 4:

Vi (5 =)
_ {fe W)}l % :1 {Fo (vo) = L (% — GhiXi,50)>}

+H{h@} %Z L<%_GhiXi’ﬁ0>)—L %_GhSX"’ﬁ)

Using similar steps as in the proof of theorem 2 below, the first term is asymptotically

normal with mean equal to

(1) () % 1 "L (u) du
r!

+ 0 (v/nh})

n—oo

m /nh!, x [

which is finite if lim,, o, v/nh! < cc.

As for the second term, (and this is what makes 4 a /n-consistent estimator in the
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parametric case) notice that

nhy, — hy,
+Tn7
where )
n — 1" G <Xi,5> — Yo
T <M-———— M, (X)L ,

with M a fixed positive constant and M; (X) a uniformly bounded function. Since
vn (B - ﬁ) = O, (1), by assumptions B4(i) and A4 (ii), the RHS of the previous display

goes to zero if nh? — oco. Then we have that

1S | (= G(Xi B\ - 70_G<Xia3)
I G e R B

_ [\/ﬁ (3 - 5)'VG (Xi, By, 50)} X fax.s) (Vo) +0p (1)

This implies that /n (y —7,) will converge to a zero mean normal if nh?" — 0 and
nh! — oo and when the density of G (X, 3,) has uniformly bounded derivatives up to

order (r — 1) where r > 3. The result for p will follow.

6 Application to bednet provision

6.1 Background

We now apply this inference method to the optimal allocation of heavily subsidized long-
lasting insecticide-treated nets (ITNs) to households, using experimental evidence from
Kenya.

The rationale for public funding of ITNs comes from their proven efficacy in reducing
the burden of malaria through the presence of both large private and large social returns
to I'TN use. I'TNs have been shown to reduce overall child mortality by up to 38 percent

in regions of Africa where malaria is the leading cause of death among children under 5.*

4See Lengeler (2004) for a review. Earlier estimates of ITN use on reductions in child mortality from
a randomized trial in Gambia were as high as 60 percent, but most estimates from randomized trials in

Africa are closer to 20 percent.
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ITN coverage protects pregnant women and their children from the serious detrimental
effects of maternal malaria. In addition, I'TN use can help avert some of the substantial
direct costs of treatment and the indirect costs of malaria infection on lost income.” Lucas
(2007) estimates that, alone, the gains to education of a malaria-free environment more
than compensate for the cost of an ITN. Costing $5 - $7 a net, however, ITNs are not
affordable to most families (Dupas, 2008; Cohen and Dupas, 2007). For this reason, there
is a large consensus that I'TNs should be fully subsidized (WHO, 2007; Sachs, 2005).

Teklehaimanot, McCord and Sachs (2007) estimate that providing one free long-lasting
I'TN for every two at-risk person in sub-Saharan Africa would amount to 2.5 billion dollars.
The funds committed by governments and donor agencies for ITNs have not yet reached
that amount, however. For example, the Government of Kenya estimates that around 1
million pregnant women are in need of an ITN every year, but their budget will allow
them to provide only 0.5 million nets per year to pregnant women over the next 5 years
(Kenya Round 7 Proposal, 2007).

Under such a budget constraint, the question of how to allocate the available ITNs
among households becomes an important policy question. If the treatment effect (the
health impact of getting a subsidized ITN) is exactly the same for everyone in the pop-
ulation, then all possible allocations will lead to the same overall gains. However, when
there is heterogeneity in the treatment effect (e.g. the health impact of getting a sub-
sidized I'TN varies with observable covariates, such as socioeconomic status, presence of
children in the household, etc.), the gains can be maximized by a covariate-based alloca-
tion. While the health impact of using an ITN might be homogenous, the health impact
of getting a highly subsidized ITN might vary across covariates since usage rates (condi-
tional on having a net) are likely to vary across covariates. For example, households who
can afford to purchase an ITN in the absence of any subsidy (because they have access
to credit or are wealthy enough) will not benefit from the treatment very much (i.e. their
¢ (x,0) will be large and thus for them the difference ¢ (x,1) — ¢ (x,0) is likely to be
small). Likewise, since young children are the most vulnerable to the disease, households
without young children might not benefit much from the treatment (i.e. their ¢ (x, 1) will
be small and thus the difference ¢ (z,1) — ¢ (z,0) is likely to be small). For these reasons,
the treatment effect is likely to vary across observable covariates such as wealth, access to
financial services, and the presence of young children. An allocation rule that takes into

account such heterogeneity could potentially generate important efficiency gains.

Ettling et al. (1994) find that poor households in a malaria-endemic area of Malawi spend roughly

28 percent of their cash income treating malaria episodes.
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6.2 Design

For this application we use data form a randomized experiment conducted with rural
households in Western Kenya in 2007 (Dupas, 2008). The price at which household could
purchase an ITN varied from $0 (a free ITN) to $4, and households were randomly assigned
to a price. In this application, we consider two groups: households that faced a very low
(highly subsidized) price ($0 or $0.50) and households that faced a high price of $2 or
more. Table 1 presents summary statistics on the 985 households that form the sample
used in the analysis. The take-up rate of the ITN was 84% in the low price group and 16%
in the high price group. Conditional on take-up, the usage rate was slightly higher in the
low price group than in the high price group (70% versus 58%), leading to unconditional
usage rates of 61% and 7%, respectively. In what follows, we consider the low price group
as the treatment group and the high price coup constitutes the control. The treatment
is thus “having access to a low-price ITN” (note that the take-up in the low price group
was not 100%, since some of the "treated" had to pay a small fee to access the net. In
such case, the expected cost of giving eligibility to a group of size N is lower than N times
the unit cost of the treatment. For treatments that do not require cost-sharing, however,
the take-up is likely to be close to 100%).

Table 2 presents evidence of heterogeneity in the treatment effect. The table shows
the results of an OLS regression of ITN on usage on the treatment, three covariates, and
the interactions between the treatment and the covariates. The covariates are: a binary
variable equal to 1 if the household includes at least one child under 10; the natural
log of the value of the household’s wealth per capita; and a binary variable equal to
1 if the household owns a bank account. The first covariate (presence of a child) was
chosen as an indicator of the private returns to using a bed net (since young children
are the most vulnerable to malaria). The two other covariates were chosen as proxies for
socioeconomic status and ability to pay. They were measured through a baseline survey
administered through household visits. In particular, wealth per capita was measured
as follows: households were asked to list all their assets (including animal assets) and to
estimate their resale value. The combined value of all assets combined was then divided by
household size to obtain the "wealth per capita" indicator. The treatment was randomized
at the individual-level so no clustering correction is needed. We find that having a higher
wealth per capita correlates with a higher ITN usage rate in the absence of treatment,
and the treatment effect appears significantly higher for households with a child under 10
and significantly lower for households that own a bank account. An F-test of the joint

significance of the three interaction terms rejects the null hypothesis. This suggests that
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a covariate-based allocation will lead to important efficiency gains.

6.3 Analysis
6.3.1 Non-Parametric Analysis: Choice of Kernels and Bandwidths

For bias-removal, we use the higher order kernels corresponding to r = 4 and ¢ = 3.

K(s) = 05x (3—=5*) x¢(s),

_ 15 (7 . 10 4 16
= |z~ — —1<s< :
L(s) 32(58 35 +3s+15>><1( 1<s<1)+1(s>1)

where ¢ (+) is the standard normal density. Two bandwidths are needed for the non-
parametric estimation: the bandwidth o,, in the estimation of the conditional ATE 6 (X),
and the bandwidth h, in the smoothing correction. Figure 1 graphs how the estimated
treatment threshold 4 (Panel A) and value function p (Panel B) vary with h,, for a range
of possible ,,. We find that both estimates are insensitive to the choice of h,,. They are
also quite stable over a large range of 0,. In Figure 2, we present 4 and p for two budget
constraint levels: ¢ = 50% (Panel A) and ¢ = 25% (Panel B). The stability of p over a
reasonable range of bandwidths suggests that the choice of bandwidths should have little
effect on the nonparametric estimates of the value function.

Figure 3 graphs a leave-one-out cross validation criterion function for 6 (z). The

function is plotted over the range o, € [0.3,0.4], which correspond roughly to n =/

1/8 respectively. The function seems to dip around o, = 0.33. Given the small

and n~
sensitivity of our estimates of p and, to a certain extent, v to the choice of o, we show
the results for both ¢,, = 0.3 and ¢,, = 0.4. We use h,, = 0.35; recall that the results seem

very insensitive to the choice of h,, for a given choice of o,,.

6.3.2 Conditional ATE

The nonparametric estimate of the CATE 0 (z) = ¢ (2;,1) — ¢(2;,0) was computed cor-
responding to two bandwidths o,, = 0.3 and o,, = 0.4. The parametric estimate of 6 (X)
was computed as 0 (x) = (50 + 2 51> , where &y and &, are OLS estimates in the regression
(presented in Table 2):

yi = By + i, + doTreatment; + x;0,Treatment; + &;.

Figure 4 graphs the kernel density of the conditional ATE 6 (X) computed with the
two proposed bandwidths. Observations with X such that 6 (X) is below —0.2 or above

0.9 were discarded in accordance with assumption A2 (ii) above.
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Figure 5 presents the c.d.f. of the conditional ATE 6 (X) computed both parametri-
cally and nonparametrically. The stepwise shape for the c.d.f. in the parametric model is
essentially due to the binary nature of two of the three covariates since the interaction of

the treatment with wealth appears to be nearly zero in the parametric case.

6.3.3 Unrestricted and restricted Value Functions

In what follows, we compare the "first best" allocation (the unrestricted case, in which
the allocation is based on all three covariates) with three "restricted" cases: (i) basing the
allocation on the first two covariates only, leaving out wealth, which is typically harder
to observe without conducting expensive household surveys; (ii) means-testing where the
allocation is based only on wealth— which is extremely common in both developed and
developing countries, and (iii) purely random allocation which is not covariate-based at
all. Notice that in the random allocation case, the estimated value function is linear in c:
p(c) = li{c x & (25,1) + (1= ¢) x &(xi,())}.
Cr—

Figure 6 graphs the parametric and nonparametric estimates for the treatment thresh-
old v (¢) and the value function p (¢) in the unrestricted case. The nonparametric estimates
seem very stable over the two choices of bandwidth. The nonparametric estimates of the
unrestricted value function are higher than the parametric estimates.

Panel A of Figure 7 graphs the estimates of the value function p (¢) when conditioning
is done on wealth but no other covariates and Panel B of Figure 7 graphs the estimates

of p(c) when the allocation is purely random.

6.3.4 Efficiency Losses

Representing all four cases (unrestricted allocation, allocation on all covariates but wealth,
allocation based on wealth only, and random allocation) on the same graph helps visualize
the efficiency loss when the optimal allocation is not implementable, as well as the gains
from means-testing compared to non-wealth based allocations. Figure 8 combines the
parametric estimates of the value function p(c¢) for all four cases in Panel A and the
nonparametric estimates in Panel B. In contrast to the parametric estimates, the non-
parametric estimates suggest that means-testing is a clear "second best", generating a
higher mean outcome than random allocation does. The parametric estimates for the
means-tested case is visually indistinguishable from the random allocation case— a fact

more clearly depicted in Table 3.
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We compute the standard errors of the efficiency losses generated by the three subopti-
mal allocations over a range of budget levels in Table 3. Panel A presents the parametric
estimates and Panel B the nonparametric estimates. Panel C presents the differences
between the parametric and nonparametric estimates. As noted in Figures 6B and 7A,
the estimates of the unrestricted value function are significantly different between the
parametric and the nonparametric analyses (column 2, Panel C). The non-parametric
estimates are overall quite robust to the choice of bandwidth o.

The estimated inefficiency of basing the allocation on all covariates but wealth is
between 11% (for o = 0.3) and 15% (for o = 0.4 ) when the budget allows to treat 25%
of the population (Panel B, column 3). This means that p,., (25) is 3 to 4 percentage
points lower than p,, (25). (Note The gap between the two non-parametric estimates
comes from the gap in the estimates of p,,, (25). The gap in the estimates of p,, (25) is
less than 1 percentage point, but off of a base of 0.25 it amounts to close to 4 percent.)

The inefficiency of basing the allocation on wealth only is estimated at 7%-8% (Panel
B, column 4) when the budget allows to treat 25% of the population. This means that
Pres (25) is 2 percentage points lower than p,,, (25). When estimated non-parametrically,
the efficiency loss due to random allocation is higher, at 20% (5 pp) for ¢ = 0.3 and 18%
(4pp) for o0 = 0.4 (Table 3, column 5).

Overall, the estimates presented in Table 3 suggest that the efficiency costs of restricted
allocation schemes can be substantial. In the Kenyan context analyzed here, we also find
that means-testing only does not generate a much higher outcome than an allocation
based on covariates other than wealth. Depending on the cost of collecting information
on households’ assets (or other proxies for wealth), which typically requires labor- and
time-consuming household survey efforts in countries where too few people pay taxes
for the tax returns to be informative, the efficiency gain of a means-tested allocation

compared to other allocation schemes might not be worth its cost.

6.3.5 Dual Problem

In Table 4 we report the minimum resources needed to attain a certain expected outcome:
we compute the share of the population that needs to be treated in order to achieve a given
target value function by allocating treatment based on all three covariates (column 2). We
then calculate the additional resources that are needed when the optimal, unrestricted
allocation is not possible, and the allocation is instead based on all covariates except
wealth (column 3), only on wealth (column 4) or the allocation is purely random (column

5). The nonparametric estimates with the bandwidth o = 0.4 suggest that an allocation
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based on all covariates but wealth requires treating an additional. 8.7 percentage points
of the population compared to the optimal allocation in order to reach a mean usage rate
p = 0.40 (Panel B2, column 3). An allocation based on wealth only would require treating
an additional 9 percentage points of the population compared to the optimal allocation
(Panel B2, column 4). The additional spending is even higher when the allocation is
purely random: an extra 12.4 percentage points of the population need to be treated to
reach the target usage rate, compared to the optimal allocation (Panel B2, column 5).
Allocation rules based on wealth only ("means-testing") are very common in devel-
oped countries, e.g. housing benefits; food stamps or Medicaid in the US, but less so
in developing countries where wealth or income data are not easily verifiable due to the
absence of tax records. By comparing these estimates of the minimum resources needed
to attain a certain expected outcome across restricted cases (means-testing only vs. "all
but wealth" and random allocations), one can judge whether it is worth collecting the

data needed to means-test.

7 Extension: conditional cash-transfer programs

In some government programs, transfers can be, and often are, contingent both on the
household’s characteristics as well as its having attained the outcome of interest. Such
programs are currently being implemented in at least 16 developing countries (c.f., the
website " go.worldbank.org/BWUC1ICMXMO0") in Asia and in south and central America.
The larger ones among these include Oportunidades, previously known as PROGRESA,
in Mexico and the Bolsa Escola in Brazil. These programs typically pay a transfer only
if the household sends its children to school and pays regular visits to health clinics for
preventive care. For such behavior-contingent transfers, the budget constraint changes
because transfers are paid only when the desired outcome is realized. However, methods
analogous to those developed above can be used to devise optimal design of such behavior-
contingent transfers, as follows.

Consider the set-up where the target outcome is binary (e.g. children attending school)
and covariates X with support X can include both discrete and continuous components.
Now the set A will represent "eligibility for being offered the program". The eventual
outcome, denoted by Y, is the joint occurrence of (an eligible) household participating
in the program and sending its children to school. Transfers are made if and only if the
household is both eligible (i.e., its value of X lies in A) and the outcome Y = 1 is realized.
In this case, ¢ (x,s) will denote the probability that Y = 1 for a randomly picked z-type
household when offered the treatment s € {0,1}. Notice that the relevant policy in this
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case is deciding whom to offer the program and so identifying ¢ (z, s) will not require any
corrections for nonrandom take-up as long as the program was offered purely randomly.
This is in contrast to identifying the mean effect of participation in the program.

Now the planner’s problem becomes one of determining "optimal eligibility", viz.

max/ X[gzﬁ(x,l)l(xeA)—l—gb(x,O)l(xq_fA)]dF(x)

ACX [,

subject to the budget constraint
c:/ 6 (1) x 1(x € A)dF (z),
reX

which differs from (1) because a transfer is made here only when the outcome Y =1 is

attained. Simple algebra shows that this optimization problem is equivalent to

min/ ¢ (x,0) x 1(z € A)dF (x) s.t. /€X¢(m,1) x1(z e A)dF (z) =c,

ACX [ocx

implying a solution of the form
A= {2 € X 6(x,0) < a}, with / (@) x1(0(@.0) < )dF (@) =
€
and a corresponding value function
p=c+ E[p(X,0)x1{p(X,0) > a}].

The analogous estimates & and ji can be obtained via c.d.f. type smoothing as solutions

—Z{c— (X, 1) xL(%(XO))} = 0,
ct = Z{ (X;,0) x (1—E(#>)}—ﬂ — 0.

In future work, we intend to explore large sample theory for these estimates and apply

to

them to study optimal eligibility rules, using data from the Oportunidades program in

Mexico.

8 Conclusion

This paper considered a social planner’s problem of allocating a binary treatment among a

target population based on observed characteristics in the presence of budget constraints.
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Outcome data from a randomized allocation of treatment to a representative sample are
used to estimate the average treatment effect 6 (-) conditional on covariates X and the
marginal distribution of ¢ (X) in the population. This distribution is used to design
an optimal targeting rule which maximizes a mean outcome. In this rule, the optimal
treatment threshold v and the corresponding value function p equal respectively a quantile
and the corresponding Lorenz share in the population distribution of 6 (X). We show
that v can be consistently estimated and p can be estimated both consistently and at
the parametric rate, even when 0 (-) is nonparametrically estimated. This result holds
even though the population moment conditions defining the finite-dimensional parameters
(v, p) are not differentiable in 6 (-), so that existing methods for semiparametric moment
condition models cannot be applied here.

From a broader substantive standpoint, this paper contributes to a nascent literature
on the possible uses that can be made of experimental data in designing optimal policies.
We suggest how governments may use experimental (pilot) data to infer the participation
eligibility rule that will generate the maximum possible benefit from a program before
rolling out the program on a larger scale. Applying our method to experimental data on
the provision of anti-malaria bed nets in western Kenya, we find that a government which
can afford to distribute subsidized bed nets to only 50% of its target population can, if
using an allocation rule based on multiple covariates, increase actual bed-net coverage
by 8 percentage points (19%) relative to random allocation and by 4 percentage points
(9%) relative to an allocation scheme based on wealth only. Future work will extend these
methods to the design of optimal eligibility in conditional cash-transfer programs, which

have gained popularity in a large number of central and south American countries.
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Table 1
Summary Statistics

Sample Mean
Treatment 0.16
(0.36)
Outcome =1 (All) 0.16
(0.36)
Outcome =1 (Treatment Group) 0.61
(0.49)
Outcome = 1 (Control Group) 0.07
(0.26)
Has a child under 10 years of age 0.55
(0.50)
Household Size 7.01
(2.63)
Household's Wealth in US$, per capita 44
(28)
Owns a Bank Account 0.13
(0.34)
Observations (households) 985
Table 2
Treatment Effects
Dependent Variable Outcome
Treatment 0.455
(0.312)
Has a child under 10 years of age 0.018
(0.021)
Treatment X Has a child under 10 years of age 0.102
(0.054)*
Log Wealth per Capita 0.024
(0.017)
Treatment X Log Wealth per Capita 0.007
(0.040)
Has a bank account 0.052
(0.031)*
Treatment X Has a bank account -0.178
(0.105)*
Constant -0.13
(0.129)
Observations 985
R-Squared 0.30
Joint F-Test for three interaction terms 2.15
Prob > F 0.092

Standard Deviations in parentheses. Household-level data collected in Western Kenya in 2007. "Treatment” is a dummy equal to
1 if the household received a coupon for a bed net to be purchased at a low price ($0 or $0.50), and 0 if the household received a
coupon for a bed net to be purchased at a price of $2 or above. Outcome = 1 only if (1) the household has redeemed the coupon and
(2) the household had started using the bed net at the time of the follow-up visit.



Table 3
Allocation Efficiency

1) (2) 3 4) ©)
Restricted Cases:
Efficieny Loss as a share of p(c)

Population share
¢ that the program Value Function p(c): All covariates Nothing (random
can afford to treat  Unrestricted Case  except wealth Wealth only assignment)

Panel A: Parametric Estimates

0.00 0.08

0.25 0.22 0.00 0.08 0.08
(0.01) *** (0.02) (0.04) * (0.05) *

0.50 0.37 0.00 0.09 0.08
(0.02) *** (0.01) (0.05) * (0.04) *

Panel B: Non-Parametric Estimates
B1. Bandwidth ¢ = 0.3

0.00 0.08

0.25 0.26 0.15 0.08 0.20
(0.01) *** (0.05) *** (0.04) ** (0.04) ***

0.50 0.42 0.16 0.09 0.19
(0.03) *** (0.05) *** (0.04) *** (0.04) ***

B2. Bandwidth ¢ = 0.4

0.00 0.08

0.25 0.25 0.11 0.07 0.18
(0.01) *** (0.05) ** (0.04) (0.04) ***

0.50 0.41 0.10 0.11 0.16
(0.02) *** (0.04) ** (0.03) *** (0.03) ***

Panel C: Differences between Non-Parametric (bandwdith ¢ = 0.3)
and Parametric Estimates

0.25 0.04 0.14 0.00 0.13
(0.01) ** (0.05) *** (0.06) (0.05) ***

0.50 0.05 0.16 0.01 0.11
(0.02) ** (0.04) *** (0.05) (0.04) **

Unrestricted case: conditioning on all 3 covariates available (presence of a child under 5, bank account ownership and normal log
of value of household’s wealth per capita.) Standard errors in parentheses, significant at 1% (***), 5%(**), 10% (*) levels.

The table reads as follows: (Panel B1, second row): by treating a share 0.25 of the population, a value function of 0.26 will be
reached if the allocation can be based on all covariates (unrestricted case, column 2). In the presence of restrictions on what the
conditioning can be based on, the efficiency of targetting decreases. The value function will be 15 % lower than in the
unrestricted case if the allocation conditions on everything but wealth; it will be 8% lower if it conditions only on wealth (column
4), and 20% lower if the allocation is random (column 5).



Table 4
Dual Problem: Cost of Reaching a Target Outcome

@ 2 ©) (4) ©)
Unrestricted case: Restricted Cases:
Objective  Share of population Additional share that needs to be treated to
Function: that needs to be achieve the target when conditioning on:
Target  treated to reach this All covariates Nothing (random
p(c) target except wealth Wealth only assignment)

Panel A: Parametric Computation

0250  0.291 0.001 0.039 0.039
(0.026) *** (0.009) (0.020) * (0.023) *

0400 0552 0.000 0.057 0.058
(0.047) *** (0.010) (0.036) (0.035) *

Panel B: Non-Parametric Computation
B1. Bandwidth ¢ = 0.3

0250  0.235 0.059 0.033 0.095
(0.018) *** (0.025) ** (0.018) * (0.024) **

0400  0.463 0.136 0.069 0.147
(0.037) *** (0.041) *** (0.048) (0.038) ***

B2. Bandwidth ¢ = 0.4

0250  0.247 0.047 0.031 0.083
(0.019) *** (0.021) ** (0.020) (0.021) ***

0400  0.486 *** 0.087 0.090 0.124
(0.035) *** (0.033) *** (0.029) **  (0.033) ***

Panel C: Differences between Non-Parametric (bandwdith ¢ = 0.3)
and Parametric Estimates

0250  -0.056 0.058 -0.006 0.056
(0.023) (0.022) *** (0.028) (0.023) **

0400  -0.089 0.136 0.012 0.089
(0.037) (0.038) *** (0.055) (0.038) **

Standard errors in parentheses, significant at 1% (***), 5%(**), 10% (*) levels.

The table reads as follows: (Panel B1, row 1): to reach a target value function of 0.250, a share 0.235 of the population
needs to be treated if the allocation can be based on all covariates (unrestricted case, column 2). In the presence of
restrictions on what the conditioning can be based on, the efficiency of targetting decreases. Compared to the
unrestricted case, an additional 0.059 of the population needs to be treated if the conditioning is based on all covariates
except wealth (column 3). Compared to the unrestricted case, an additional 0.033 of the population needs to be treated
if the conditioning is based on wealth only (column 4). If the allocation is purely random, an additional 0.095 of the
population needs to be treated (compared to the unrestricted case) to achieve the 0.250 target value function (column

5).



Figure 1
Sensitivity of y and p to the Choice of Bandwidths
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Figure 2

Panel A. y(c) and p(c) when c= 0.50
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Figure 4

Kernel Density of Estimates of Conditional ATE 0(X)
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Figure 6

Panel A. Threshold y(c), Unrestricted Case
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Figure 7

Panel A. Value Function p(c), Restricted Case: Conditioning on Wealth Only
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Figure 8

Panel A. Value Function p(c), Parametric Model
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9 Appendix (Proofs)

In the proofs below, CMT will denote continuous mapping theorem and DCT the Lebesgue
dominated convergence theorem.
Proposition 1:

Proof. Note that for a generic set A, the objective function equals

/X[¢(ac,1)—¢(x,0)] (x € A)dF ( / 6 (2,0) dF (z), (7)

and the second term does not depend on A. So in the proof below, we will simply refer
to the first term as the objective function.

Note that the objective function for a generic choice set A can be written as
[ 0@Neen 0@ >par@+ [ 0@ 10w <)@
= /mGX [0 (x)]1(z e A)1{0(x) > ~v}dF () +/:1:€X 0 (x)]1(ze A)1{0(x) <~}dF ()
[ BE@IE 0@ >N @~ [ pEliee)1E) >} ()
+/M 0(2)]1{0 () > v} dF ().
= [ BE@NEe 0@ < dF @ - [ pE)Le g1 > b ()
o[ BE@NE@ >, )
Now, the first term in the previous display is bounded above by
v tee 1w <syar @), ©
while the second term, without the negative sign, is strictly bounded below by
'y/mexl(x%/l)l{@(x)>fy}dF(x). (10)
Now from the budget constraint, we have that
¢ - /Mux € A)dF (z)

[ [ eeanoe s
and

F(x)
+l(ze A)1{6(x) >~}
c:/ 1{0(z) >~} = / (¢ A)1{0(x) >y} +1(x € A)1{0(z) > v}|dF (x)
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whence it follows that

v/Xl(meA)l{@(a:)sfy}dF(x):v/ L(a ¢ A)1{0(x) > 1} dF (2).  (11)

eXx

It follows from (8), (9), (10), (11) that the objective function in (7) is bounded above by

/ 0(2)]1{0(2) > 7} dF (& / 6 (2,0)dF (z
reX
which corresponds to setting A = {x € X : 6 () > v} with v = 7 (¢) satisfying

c:/exl{ﬁ(x)>7(c)}dF(x).

| ]
Lemma 1:
We want to show that

Fy(t) — Fy (t)

- > (t_Zin)> ~F(t)
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Therefore,

sup [F (1) — Fy (1))
te[—A.A]

n

%ZW (X)) < 1) = Fy (1)}

S { () - e gt)}‘

=1
L (tﬂzﬂ) ) X {n1/4 sup

By assumption B3(i) (i.e. L (-) is uniformly bounded), assumption B4(i) (i.e. nh: — oo)
and assumption B1, the third term is o, (1). The first term is o, (1) by the standard

Glivenko-Cantelli theorem. The second term is o, (1) by Horowitz (1992), lemma 4 under

IN

sup
te[—A.A]

+ sup
te[-A.A]

n

1 1
+n1/4h (ﬁ Z Sup
n i=1

9(@-@(@)‘}

te[—A.A]

assumptions about L and that 6 (X) has a Lebesgue density which is uniformly bounded
above (analogous to his proof that lim, o Pr (|0’z| < «), here we have that
lir%Pr(|t—9(X)|<a) = lin%)Pr(—Oz<t—9(X)<a)
= hII(l)PI“(t—O&<9(X)<t+O&)
= 11II%) [Fg (t—i—oz) —Fg (t—a)]

seR

< 21 {ax sl 91} =0

and the rest of the proof is identical to Horowitz lemma 4).
Theorem 1:
Proof. Fix ¢ > 0. Then Fy(yy+¢e)—1+c>0and 1 —c— Fy(y,—¢) > 0, by

assumption (B5). Therefore, we have that

Pr(|§ =7y >¢) < %+€)+Pr(7<vo—€)
< ( 9) > Fy (o +9)) +Pr (£ (3) < Fj (3 — )

<1—c>F 70+€)>+Pr(1—6 < Fy (v, )>

te[—A.A]

< Pr(Ry(+e)—1+e<Fo(y+e)—Fy(v+9))
+Pr(1—c—Fe(7 e) < Fy(yo—¢)— Fe(%—s))
< Pr<F9(70—|—5)—1+c< sup ‘F@(t)—Fg(t)‘)

+Pr (1 —c—Fy(yy—¢e) < sup ‘Fg (t) — Fp (ﬂ‘)

te[—A.A]
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both of which converge to zero by lemma 1.
]

Lemma 2:

Proof.

fé(u)—fe(u):nimZL <%H<Xz)> — fo (u)

By triangle inequality,

~

fiw = fow)| < swp | folw) = folw)]+ sup

u€[—A,A] ue[—A,A]

sup
u€[—A,A]

fy ) = fo (W]

The first term is o, (1) under assumption B2. As for the second term, notice that

liwy=foo)| = % {L<t_z¢>”<t_2¢)}‘

/ t_é(Xi)
< R S

1 Inn\ Y2
= Op (h_%x{<n70'£> +UZ}>,

by assumptions B2 and B3. Therefore by assumption B4, we get the conclusion. m

Theorem 2:
To derive the distribution theory for 4, we will use the following first-order approxi-
mation

A

Fy(19) =1 —c=Fy () = F3 (7o) + (3 = 70)f3 (3)

where 7 is intermediate between 4 and ~y,. This gives us the following expansion for 4.



Proof. Step 1. We first show that

fa () = fo (v0) 2 0. (13)

L@ =fa)| = 73 = f @] +1f2() = fa ()

sw)b )= L)+ o (3) o ()]
fe[fA.A} ~~

INIA

P 2 op(1) by CMT and theorem 1
op(1), by lemma 2

op(1).

Step 2: We will show that

Vb { B 0) = L (2525} = 50, ), (14

Observe that

i)

= ;;{Fe 7o) = 1(0(Xi) SWo)}vL%Zn:{l(ﬁ(Xi) S%)—L(i% _hi(Xi))}

1=1

Now,

wﬁ%_fv—Qyﬂw 0(X) <70)} =0, (1).

-~

Op(1)

We will show that

B (VahTy —8) = hoVar (Vi) + {B (VamTi - 8)} —0 ()
and thus
VAT — = 0, (1). (17)

Now,

Var (\/_Tln




Observe that

o (- [y —s 2 Al fnyo—s 2
= / {L(O )—1} fg(s)ds—i—/ {L(O )} fo(s)ds
_a I, o I,
and both of the terms in the previous display converge to zero by the DCT since lim, .o, L (a) =

1=1-1lim,, o L (a).
Next,

= mbo- [ LB s
=m0 [TE(2=) hwas- [ 2 () ne

— 0, by the DCT.
Thus, from (18), we have that
Var (\/ETM) — 0 asn — o0. (19)

Next, consider

B = £{L000) <09 -1 (251E)]
|

E (7o) _/ Fy (7o — uhn) L (u) d“}
R !

= (=12 x fe(r_l) (7o) X / u"L (u)du+ o (h]), by assumption B7.
r —1
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This implies that

nh;+1/2 . 1
E (x/nhnTm) = (—1)”1\/_T x £ () x / u'L (u) du+ o (h)
— 3, by assumption B7. (20)

Now, (19) and (20) imply (16) and thus (17).
Step 3: We will now analyze the second term in (12):
L~ |7 (70— 0(X)) 7 VO—é(Xz‘)
= — L|\——— ) —-L|—— || du,
using U-statistic type decompositions to show that
Vi ¢
VnhaSy = NG > A (Z) = E{Qun (Z)}] = Den (Z5) = E o (Z))}])
j=1
+op (1)
4N (0,77), (21)

where the triangular arrays Ay, (Z;), A2, (Z;) and the constant n? > 0, will be specified

below.
To that end observe that

Vi = |7 (70— 0(X0) 7 VO—é(Xi)
s, = G L (n5 ) - (2

f Vhn ) {b(x)—0 (Xi)}2L’ (%;70) .

The second term in absolute value has an expectation which is of the order of

2
o ! 1/2
sup |0 (x) — 0 (x)‘ h3—\/7_2 =0, {{ (H—Z> + U?L} }?Z} — 0, by assumption BS8.

:L‘EX no-n

Thus we get that

S :'gg F(ﬂﬁ%:ﬁ)_i(mxi—%>
1

= — Y {9 (X;)— 0 (XZ)} L <% _hi<Xi>> +0,(1)
— :Lh y {x) -0}z (% _hi(Xi)> +o,(1)



Now, note that

ey [ X)) [p(X)v(x)
0 (X:) —0(X;) {ﬁ(XZ) W(Xi)} {3(}(@) 5(Xi)} (22)

We will simply work with the first term because the proof is exactly analogous for the

second term and show that

/:L (Xz B N(Xz) 1 0 (Xz — 7o
i1 ™ (Xi) } h_nL < P >
L X)) —w(X) 1, (00X —
n | (Xi) 7 (X5) hnL ( hy, )
1 () — pX)HA (XG) —m(X)} 1 (0(X) — 7
R X7 (X) h‘f( . )

(23)

The last two terms in absolute value have expectations that are bounded above by a posi-

tive scalar times v/ sup, [[{ft (¢) — u(@)} {# (2) — 7(2)}|| and v/ sup, [[{# (@) — 7 ()},
respectively and these are both o, (1) under standard conditions (c.f. NM, section 8.3)

which is assumption B11 above.
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Now, the first two terms in (23) add up to

1 =7 (X)) (X)) — (X)) 7 (X)) 1, (0(X:) — 7,
Ly (X) o (X5) g()()_L(u>

Vi 72 (X;) I I
B 1 a 1 1 X; - X; 1 [0(X5) =7,
= \/ETL (TL — 1) ; < 2 (Xz) {7T (Xz) Y}SJ - M(Xz) S]} O_;ZK ( o > X hnL ( I
1 n
= /n wp (Z;, Z;
H(TL— 1) iy ( ])

m Z ' [wn (Zi, Zj) - F (wn (Z,‘, Zj) |Zl> —F (wn (ZZ-’ Zj) |Z]) + B (wn (Zi7 Z]))]

. J# d
+% (B (w (2. 2))|2) - B (w, (2, 2,))
\}HZE wn (22, 2,)|2,). (24)

J/

g

USn
Step 3B: We first show that
Usp, = 0, (1). (25)
Notice that

1 9(Xi)=0
2 h"LW(Q&; L roms (%)) 7k () 12
17 (0Xi)—
S e B A AT
ﬁl’ e(Xii—n% 7 (X T) — ) m(x T i
: 752()@ >></ CMUEVIESLIBRI EES A PIY
17 (9(Xi)=
_ h"LWg ()?:) ) X / [ (X)) (X + uoy) — 0 (X:) m (X; + uo)] K (u) du
A (X)) % hinL (%ﬂ‘%) < 0 (09),

for some uniformly bounded function H by assumption. Therefore,

Uy = O (07) % S H(X) % hinL (%n—%) — 0, (Viio?) = o, (1)
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by assumption BS.
Step 3C: The term

Uin = n—l ZZ W (Zi; Zj) — E(wn (Zi, Z5) | Zi) — E (wa (Zi, Z3) | Z) + E(wn (Z5, Z;))]
i=1 j#i

can be analyzed using essentially the steps of Powell, Stoker and Stock (1989), lemma 3.1,
whence one can conclude that

E(Uf,) =0(1) (26)
The key step is to show that
E(w2(Z;,Z;)) =o(n).

Observe that

= nlE{w‘l(Xi) {m(X)Y;S; — n(X,) S5} _K2 (X anX> § lhiL <%n_%>r}

- e A (S5) [ (M5 ﬂ
< {m? (X;) E (Y2S]X;) + p?(X0) E (SI1X;) — 2m (X)) p (Xo) B (Y'S|XG)
| ey < () [ (5]
1

- 72 (z) E(Y2S|X =z + uo,) N dud
] | F@)E (S|X =2 + uo,) (Pl Pl duds

| =27 (z) pu () E(YS|X = x + uoy)

3

1
= 0 — 0 which is implied by BS8.
nanh2

Step 3D: Now consider the term

%:%iww%%MWEM%%M
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Observe that

w,(4.2)|2)

E{L2 o (o) = ot () s
LJ ( ) ()| o
V(X +u07;2Y)§+W(3( +u0n [hi < (X +W” —To Hf(X-Jruan)du
e (TS, — () 851 () [hL( ) - 7)H/K (u)du + 0 (o)

J

J% {m(X;)Y;S; — u(X;)S;}f (Xj)], X [hinL (%n_%)},

1O (09).

Notice that

Now

v~

W(Z;) Vln(gzxj))

i 0
_ E{vn<e<xj>E< () 1%)

E ({7 (X;) E{Y;5;] X5} — p (X )E(S|Xj)})}

= Var{[E (w. (2. 2)12,) ~ E (w, (Z. Z))]}
= Var{E (wa (%, 7)) |7,)}

= E(W(Z) Vi (0 j>> +0(09)* =0 (o)
— B{W(Z) VA (0(5,)} + 0 ()

~ otz vmw(X ).
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=
—~

X;) =s}. Then
Vi (0(X5)) }

)
)
AN m)r
— /Aw (s) |:h'nL( " fo(s)ds
_ hi ;M(%Jruhn)ﬁ(wfe(%+Uhn)du

A—70

1 n
= —w? () fo (7o) / "o (u) du + terms of smaller order.
I, —A-70

n

This implies that
Var (Vi) = Var (\/g S8 (s (20 7)) 7)) — B (2 ij)

W 0) fo () / " 2 (u) d (27)

Now we will apply the Liapunov condition and use the Lindeberg CLT for triangular

arrays. Consider the array
Vi,
NG

which is independent across j and E (R,;) = 0. Let U, = > 7 | Ry;. Then

Rpj = (B (wn (Zi, Z) | Z;) — B (wn (Zs, Z5))]

E(U) = Y E(R)
_ % ]:1 E(E (w, (Zi, Z;)|Z;) — E (wn (Zi, Z;)))*
_ %;Var (W (Z;) Vin (0 (X;))) + 0 (1)
— R fa) [ 2 @duto()
~ P fin) [ P

by (27). To apply the Liapunov condition, observe that for any ¢ > 0,

2+¢

: & hn 2 &
S EIRGET = 0 ()T EIW () Vil (05
j=1




Thus the Liapunov condition holds and applying the Lindeberg CLT, we get that

_ Vs TN Z — E(w. (Z. 7)) 4 W2 * 2 (1) du
U= S 3B o (42)12) = B o (2 )] 4 X (0.2 00 ) [ 22 @)

(28)

Putting together (25), (26), (27) and (27), we get that

Ve {5 -t e (M)
= VhoUp, + \/7U2n + \/7U3n

_ Y V2 B0 2020)|2) = E (w2 Z))) + 0, 1)

- rzm )= B ()]

5N (O,w (7o) fo (%)/oo

—0o0

L? (u) du) :
where
Ain (Z;)
_ [ Wf;@ (7 (X,)Y;S; — (X)) sj}} hi i} (W)

and

S (s) = E{{“XWS‘“(X)Sf(X)} |0<X>=s}. (20)

where
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Thus we get that

S = g > Do (Z) = dan (2} + 0, (1) N (0,77)

which establishes (21).

To get the expression for 72, note further that

E{ i (Z5) Aan (Z)}
_ m(X5) Y58 —p(X5) 85 0(X) V(1= 9) —v(XH) (X =55) oy (O
= E{ 7 (X;) X 52 X;) fFX) L (
Now,

{m (X;) Y58 — u(X;) S} x {0 (X;) Y; (1 = S)) —v(X;) (1= 5))}
= Sj(1=8;) x{m(X;)Y; — pu(X;)} x {6 (X;)Y; —v(X;)}
_ 0,

since S; (1 —S;) = 0 for every j. Therefore, E{\i,(Z;) \on (Z;)} = 0. Moreover,
E (M, (Z;)) = 0. Therefore, cov (A1, (Z;) , A2y (Z;)) = 0. This implies that

7 = {7 (30) + &2 ()} % fo (%) / I (w) du, (31)

o0

where

) B S(X)Y(1—8)—v(X)(1-25) 2 B
() = E{{ = r] re<x>—%}

) = E{{“X)frf(}(f(x)sf(m} |0<X>=%}.

Now put together (13), (14), (21) and (31) to conclude from (12) that

S (A _ L Y Zn N N
nhn (7 - 70) - f9 (70> \/7_L ~ {)\1n (ZJ) )\Qn (ZJ)} + P (1)
d 72 (79) + w2 (v9) [ ;9
— N (0, 00 /_OOL (u) du> .

Theorem 3:
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E—¢ = %ZMX»E(&‘?X”)—@
_ %Zé(Xi)LC—:n(Xi)) _% 9<Xz)L<%_hi(XZ)>
#2000 |2 (251 1o <)

1 n
+= D A0(X) 1{0 (X)) <70} — o}
i=1
=op(1), by st;;dard WLLN.

Now,
Tl = |- _ {fwmi (ﬁ_f?n(Xi)> B (% _’fn(XZ))H
) %2 @(XJ};@(XZ) Wi (i—}i(&)) _é(XZ)L<7—§n(X1)>‘
Ao ()
) Sup‘g(xh)n—ﬁ(x)‘% |, (a—fﬂ(&)) _é<Xi)L<@—§n<Xz>>'
() s (8)

Since L, L are uniformly bounded, the above display is of the form

SUD e x 0 () —0 (a:)‘ nhy (3 — %)2 1/2
S hn X Op (1) + n—hi X Op (1) .

Now, theorem 3 implies that nh, (5 —v,)* = O, (1), Assumptions B1 and B4 (i) imply

that w =0, (1) and that nh3 — oco. Thus we have that T3, = o, (1).

As for Ty, observe that since 6 (+) is uniformly bounded, by using steps exactly anal-

ogous to step 2 in the proof of theorem 2 (leading to (14)), we will get by the DCT that
TQn = Op (1) |
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Theorem 4:

Proof. We will work with the following expansion

Ton

Step 4: Under assumptions Bl and B8, the fourth term in (32) will be o, (%) since
L’ (+) is assumed to be uniformly bounded in absolute value. As for the fifth term, observe

by the previous theorem, that ('y%)i =0, <#> =0 (ﬁ) by assumption B12. So the

fifth term in (32) will be o, (ﬁ) That the sixth term is o, (1) follows from combining
the two previous results.

Step 5: The multiplier for the third term in (32) equals
1 ¢ 0 (Xi) — 12 (7 —0(Xi)
0(X;,)L| —— ElO0(X,)—L|——=
nhy, Z_; (X:) ( I - (X) 7 hon

= YoJo (70) )

which follows from the standard consistency proof for e.g. kernel density estimates.
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Combining steps 4 and 5, we get that

Vi{C-¢}

_ %é{e(xim@_hii(m) —Co}
+%§;{9<Xi)_9(xi)}{L (vo —hi<Xz~>) _hif(Xi)L(%—hii(?@)}

V1 (Y =) X Yoo (7o) + op(1). (33)

Replacing in the previous display the asymptotic expansion of (¥ — ~y,) from (12), we
have that

va{l-c}
= X {reor (1) o f - nZ“ ) <%) - Falr)
+% Z {b(x)-o(x)} {L (%h—e(x)> + {70 — 0(X0)} hinL (%—h_@(X))}

-l—%ﬁ Z {9 (Xi) —0 (Xi)}2 L (W)

The third term in (34) in absolute value is dominated by

%ngp{é(u)—ﬁ(u)} }{;121[/

2
1 1/2
= %x{<nna7;) +ag} x%x()()

= 0, (1), by assumption BA(iii).

(é (Xi) — ’Yo)
hn

Thus from (34), we have that

vi{l-¢}

_ %Z {emi (’70 s (X”) - 40} SO <)~ i)

+%i§jj{é<xi>—e<xi>}{i (1) 0o e (2 )

n

+o, (1). (35)
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Step 6A: Consider the first term in (35)

_ le L (2 o) 148X <)

J/

-~

T4 n

Z ) x 1{0(X3) < 7o} — Col (36)

J/

Tsn=0,(1), by CLT.

We will show that T, = o, (1) using the arguments similar to the ones used for showing
(17).
Define gy (s) = sfo (s) and Gy (s) = [, go (t) dt. Then

B = vae{oe) L (251 6o )

= \/ﬁ{/_i %h28>99(8)d5—G9(%)}
_ \/HHL 7023)Ge(s>}|AA—/ih—1L<%h—;S>Ga(s)ds—Ge(%)

_ [ /J_A ~ uhy) du— Gy (’yo)]
— O (v/nh) — 0, by B12. (37)

~i

Next, define gy (s) = s?fy (s) and Gy (s) = [~ , go () dt. Then

E{Q(Xi)L (%‘”X)) —0/(X:) x 1{0 (X)) < %}}2

L) e
ol mon
+/:)1{S<’yo}gg(s)ds
—Q/iL (%h_s) < 1{s < g} X go (5) ds

n
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Using the DCT repeatedly (c.f. the steps leading to (15)), we get that
(v — 0 (X ?
p{oca L (2= —o 00 x 1 (o) < )}

_ /_iLz(%h_j)geww/_”jumo}msws

_Q/AL(%h_S) X 1{s < 7o} X go (5) ds

—A n
— Gy (’Yo) + Gy (’Yo) —2Gy (70) =0.

This implies that for T}, defined in (36),

Var (Ty,) = Var<%i{e(xi)i<%_h—m>—0( i) x 1{0(X )<%}D

n

= var (000 x £ (257 -0 x 1 {0030 < 20}

< E{Q(Xi)L (%—hii()(g “0(X,) x 1{0(X)) < %}}2
=0 (38)

From (37) and (38), we get that E (T},)” — 0 and thus Ty, = o, (1).
Replacing in (35), we get that

ﬁ{&—co}
= \/_Z D x 1{0(X)) <o} — Col — Z{l Xi) <79) = Fo(v0) }

3 (o000 {E (00 ¢ oy o (20000 )

To, (%) . (39)

The final step is to analyze the third term in (39), using U-statistic type decompositions.
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First notice that analogous to (24) above, we have here that up to o, (1) terms:

%ﬁg{é(Xi)—Q(Xi)}{L (%—hii()@)ﬂ%_e(xi)}h_lf <%_h7i<)()>}

7S VY — (X)) SV Lk (XX
_ ZZ XWE(LXZ)V‘({):(?JYJSJ M(Xz)SJ}UnK< = )

i —0(X;
i=1 j#i hn ) _’_{VO_Q(XI)}%L (70 hs )>]

Ve T n—l Zan inZ

%1#1

- Vn(n—1) ZZ wy, (Zi, Z;) — E (wy (Zi, Z;) | Zi) — E (wn (Zi, Z;) | Z;) + E (wn (Zi, Z5))]
=1 i

J/

'

Ul n
n

an (wn (2, 2;)12;) = E (wn (2, Z)))]

(.

-~

U2n
1 n
\/EZE wn (Zi, Z;) | Z:).

J/

g

U3 n

It is straightforward (replace the kernel involving terms) to verify that we will get the

same conclusion as (26) and (25) here. So we only perform the analysis for Uy,.
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Using steps similar to the case for ¥, one gets that

E(wn (Zi, Z) | 2;)

B ey {7 (X) i85 = p(X0) S} b (22) ]
= E{|:X[(L<,YO 0(X; )‘I—{WO—Q( )}HL(YO,:: ))]]Y},SjaXJ}
[t 0 o)) (S .
[ e ey |

B / m{ﬂ'(X +uoy,) Y;S; — (X +wuoy) S;} K (u)

) _x[L(%)H% (X, + ur)} i L (=) |

] (X, +uoy) du

e T () Y85 — 1 () S} £ (X)) q
) _x[L(w)wo—e( DL (252)] [ w0
' (L8 n S '

N /
-

) x{i <%+”(Xa>> +{%Vi(zjzxj)}hif (%%X;))] +0(?).

N /

Van(0(X;))

Therefore,

(40)

'
Thj

Now, we will show that the second term in the previous display is o, (1). Recall the

02



notation w? (s) = E(W?(Z;) |0 (X;) = s) and thus

E(T5;)

+2 / in (s)L (7011: S) (70]; 5) L (70]; S) fo(s) ds. (41)

L
— /ijw?(s){i (%h: 3) —1}2f9 (s)ds+L:w2(s){E <%h—25> }Qfe (s) ds

and both of the terms in the previous display converge to zero by the DCT since lim, o L (u) =
1 =1-1lim, . o L (u). The second integral in (41) converges to zero by the DCT since
lim, 400 u?L? (u) = 0. The third integral in (41) also converges to zero by lim,, 4o uL (u) =

0 and the DCT. This implies that E (ng) — 0 and thus

1 n
0<Var (% ;Tn]) =Var (Tn]) S E (ng) — 0.

Next,
o [ (3285 vty v 1 (222

{E <%<X0 —1(0(X;) < 70)} ] }

- {0 = 0(X)} L (27

— \/EEX]{ {W(Z;)X;} %

= 0.
So it follows that the second term in (40) is o, (1).
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Thus we have that

SEE- ) 0 (202) st (2529
- = Z{ RSB e ) <1606 <90 | 0, )

L (o [0 nds)

where

() = {[{”( NS M 5 )] o ix >:a}

Using exactly analogous steps, we will also get that

{5 S (50) - (25

1 {6<ij<1—sj>— v (X)) (1-5)
Vi = 7 (X)

Y RCISIOL

where

fx (X)) x <9<Xj>s%>}+op<1>.

Finally, we get that
3 foony—oea} (i () 1 g, -0y o (25}

4N (o, JRCICRREOIAt ds) , (12)

since the covariances will be zero (as can be easily seen from the asymptotic linear ex-

pansions because S (1 — S) = 0).
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Replacing in (33), we finally arrive at

vafl-c}
_ 1 — ({7 (X)) Y;S; — n(X;) S;} . ‘
o \/ﬁ;{ 2 (X)) fx (X;) % I(H(XJ>§70)}
S PRI S U5 p ) 0 < )
Vn 4 5 (X)
70 X Jn ; {Fo (7o) = 1(0(X) < 70)}
2= D0 (X) X 1{O (X)) < 10} = G} +0, (1), (a3
|
Lemma 3:

Proof. Note that

LS (X
B ﬁ;{fr(x» w(X»}
L X)) (X)L o (X)) 7 (XG) - 7(XG)
B \/ﬁz_zl{ ™ (X;) } nez {W(XJ ™ (X;) }
1 {0 (X)) — p(Xa)} {7 (X)) — 7(X0)}
"R ™ (X) 7 (X0)

n

LX) {7 (X)) - m(X0))
v ; m(X) R (X))

(44)

The last two terms are bounded above by a positive scalar times \/n sup,, ||[{ft () — p(x)} {7 (z) — 7 (2)}|
and v/nsup, ||[{# (z) — w(z)}||?, respectively and these are both o, (1) under assumption
B11 above. Thus we only need to show that the sum of the first two terms in (44) is

asymptotically equivalent to (1/n times) a centered sample average.
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Now, the first two terms in (44) add up to

%memxi)—u(X»fr(X@)}
_ 1 _ T(X)Y;S —p(X)S; 1 (X —Xi
- R ()
= \/ﬁn(nl 1);.27210(2“2]7%)

_ ZZ W (Zi, Zj,00) — E (w(Zs, Z;,00)|Z;) — E (w(Zs, Z;,00) | Z;) + E (w(Zi, Z;, 0

"~

Uin

1 n

~~
Usn,

We will show that

E(Un)? = o(1), (45)
Uy — %Z{Ewrxj)xmj—mwj)xsj}+op<1>, (46)
Us, = op(lj)_. (47)

Observe that

for some uniformly bounded function H by assumption. Therefore, Us,, = O, (y/nol) =
0p (1) by assumption A3 and this establishes (47).
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Next observe that

1
ELTQ (X)) {m (Xi) Y;S; — n(Xi) S5}

1
1
S D)5 (
1

w2 (X, + uoy)

— r (Xj)Ygsj—u(Xj)Sj}f(Xj)/m

o, {7 (X;)Y;S; — i/ ( j)Sj}f(Xj)/ﬂ.Q( 1

Xj + ’LLO'n)

7 (7 nX) g
X;— ) i

{m (X +u0n)) YiS; — p (X +uoy,)) S5} K (u) f((X; +uow)) du

I
— —

K (u)du
K (u) udu

o 0 {2 (X)) 38, — 1 (X,) S;) f (Xj)/mmu) widu
— (1 (X)Y.S: — N RRACE) o
= {m(X;)Y;S; — n(X;) S} 72 (X)) + O (0})

1 q
- TEEXP {E(S|X;) x Y;S; — B(SY|X;) x S;} + 0 (02),

by a dominated convergence theorem, given the uniform boundedness of 7 (-). Together
with assumption A3, we get (46).

One can establish (45) by essentially repeating the proof of Powell, Stoker and Stock
(1989) lemma 3.1.

Combining (45), (46) and (47), we get that

1 [R(XD) pX)
\/ﬁ;{ﬁ-(){z) W(Xi)}
= RS, -k (X)8) () 2 4 1)

\/_Z{E S|X 2{E(S\X)xys E(SY|X;) % S;} +0,(1).

Corollary to Theorem 4
Proof. Observe that

P = Po
- %i [(}(Xj,l) - ¢(Xj,1)] +%i[¢<Xj>1) —E{¢o(X;,1)}] - {i"—Co}

J/ J/
g

Sln SZn
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By lemma 1, Sy, = O, (ﬁ) , then Sy, is a standard empirical process and so O, <%>
and {6 — Co} is O, <ﬁ>, by theorem 2. m
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