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1 Introduction

The magnitude of the expected excess return on stocks relative to bonds (the

equity premium) constitutes one of the major puzzles in financial economics.

As Mehra and Prescott (1985) show, the standard endowment economy model

predicts an equity premium that is far too small. One proposed explanation

is that the return on equities is high to compensate investors for the risk of

a rare disaster (Reitz (1988)). An open question has therefore been whether

the risk is sufficiently high, and the rare disaster sufficiently severe, to quan-

titatively explain the equity premium. Recently, however, Barro (2006) shows

that it is possible to explain the equity premium using such a model when

the probability of a rare disaster is calibrated to international data on large

economic declines.

While the models of Reitz (1988) and Barro (2006) advance our under-

standing of the equity premium, they fall short in other respects. Most impor-

tantly, these models predict that the volatility of stock market returns equals

the volatility of dividends. Numerous studies have shown, however, that this

is not the case. In fact, there is excess stock market volatility; the volatil-

ity of stock returns far exceeds that of dividends (e.g. Shiller (1981), LeRoy

and Porter (1981), Keim and Stambaugh (1986), Campbell and Shiller (1988),

Cochrane (1992), Hodrick (1992)). While the models of Barro and Reitz ad-

dress the equity premium puzzle, they do not address this volatility puzzle.

This paper proposes two modifications to the disaster risk model of Barro

(2006). First, rather than being constant, the probability of a rare disaster is

stochastic and varies over time. Second, the representative agent, rather than

having power utility preferences, has recursive preferences. I show that such

a model can generate volatility of stock returns close to that in the data at

reasonable values of the underlying parameters. Moreover, high stock market

volatility does not occur because of high volatility in all assets; the volatility

of the government bill rate remains low, as in the data.

Both time-varying disaster probabilities and recursive preferences are nec-

essary to match the model to the data. Time-varying disaster probabilities are
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important because they produce time-varying discount rates. If the probabil-

ity of a rare disaster rises, the premium that investors require to hold equities

also rises. Thus the rate at which investors discount future cash flows rises,

and stock prices fall. Through this mechanism, a time-varying probability of

a rare disaster generates excess stock market volatility.

Clearly time-varying disaster probabilities are important; also important,

however, are recursive preferences. These preferences, introduced by Kreps

and Porteus (1978) and Epstein and Zin (1989) retain the appealing scale-

invariance of power utility, but allow for separation between the willingness to

take on risk and the willingness to substitute over time. Power utility requires

that these are driven by the same parameter. As I show, power utility implies

that the response of the riskfree rate to a change in the disaster probability

exceeds the response of the equity premium. This generates counterfactual

predictions. Increasing the agent’s willingness to substitute over time reduces

the effect of the disaster probability on the riskfree rate. With recursive pref-

erences, this can be accomplished without simultaneously reducing the agent’s

risk aversion.

In what follows, I solve two models. First, to highlight the importance of

recursive utility, I solve a model in which the disaster probability is constant

and the agent has recursive preferences. To enable comparison with the second

model, I assume continuous time. Disaster risk is modeled by introducing a

Poisson process for jumps into the standard diffusion model for consumption

growth (as in Naik and Lee (1990)) and recursive preferences are modeled

following Duffie and Epstein (1992).

The second model is the main contribution of the paper and allows for

time-varying disaster probabilities and recursive utility with unit elasticity of

intertemporal substitution (EIS). The assumption that the EIS is equal to 1

allows the model to be solved in closed form up to a set of ordinary differential

equations. A time-varying disaster probability is modeled by allowing the

intensity for jumps to follow a square-root process (Cox, Ingersoll, and Ross

(1985)). The solution for the model reveals that allowing the probability of

a disaster to vary not only implies a time-varying equity premium, it also
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increases the level of the equity premium. This is because the risk of an

increase in disaster probability leads to a fall in stock prices and therefore

itself requires compensation. The dynamic nature of the model therefore leads

the equity premium to be higher than what static considerations alone would

predict.

Several recent papers also address the potential of rare disasters to ex-

plain the aggregate stock market. Gabaix (2007) assumes power utility for the

representative agent, while also assuming the economy is driven by a linearity-

generating process that combines the probability of a rare disaster with the

degree to which dividends respond to a consumption disaster. This combina-

tion of assumptions allows him to derive closed-form solutions for equity prices

as well as prices for other assets. In Gabaix’s numerical calibration, only the

degree to which dividends respond to the disaster varies over time. Therefore

the economic mechanism driving stock market volatility in Gabaix’s model is

quite different than the one considered here. Barro (2007) and Martin (2007)

solve models with a constant disaster probability and recursive utility. In con-

trast, the model considered here focuses on the case of time-varying disaster

probabilities. In contemporaneous independent work, Gourio (2008) specifies

a model in which the probability of a disaster varies between two discrete

values. He solves this model numerically assuming recursive preferences. A

different, though related, approach is taken by Veronesi (2004), who assumes

that the drift of dividends follows a Markov switching process, with a small

probability of falling into a low state. While the physical probability of a low

state is constant, the representative investor’s subjective probability is time-

varying due to learning. Veronesi assumes exponential utility; this allows for

the inclusion of learning but makes it difficult to assess the magnitude of the

excess volatility generated through this mechanism.

A related literature derives asset pricing results assuming endowment pro-

cesses that include jumps, with a focus on option pricing. Liu, Pan, and Wang

(2005) consider an endowment process in which jumps occur with a constant

intensity; their focus is on uncertainty aversion but they also consider recur-

sive utility. My model departs from theirs in that the probability of a jump
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varies over time. Drechsler and Yaron (2008) show that a model with jumps

in the volatility of the consumption growth process can explain the behavior

of implied volatility and its relation to excess returns. They focus on the case

of EIS greater than one and derive approximate analytical and numerical so-

lutions. Santa-Clara and Yan (2006) consider time-varying jump intensities,

but restrict attention to a model with power utility and implications for op-

tions. In contrast, the model considered here focuses on recursive utility and

implications for the aggregate market.

The outline of the paper is as follows. Section 2 solves a model with

constant disaster probabilities and recursive utility with general elasticity of

intertemporal substitution. Section 3 solves the model with time-varying dis-

aster risk and unit elasticity of substitution. Section 4 discusses the calibration

and simulation of the model, and its fit to aggregate stock market data. Sec-

tion 5 concludes.

2 Constant disaster risk

2.1 Model assumptions

Assume that aggregate consumption solves the following stochastic differential

equation:

dCt = µCt− dt+ σCt− dBt + (eZt − 1)Ct− dNt.

Here, Nt is a Poisson process with constant intensity λ. Zt is a random variable

whose time-invariant distribution ν is independent of Nt and Bt. The notation

Ct− denotes lims↑tCs, while Ct denotes lims↓tCs.

The model focuses on negative jumps, i.e. disasters, and for that reason Zt

is assumed to be negative. In what follows, I use the notation Eν to denote

expectations of functions of Zt taken with respect to the ν-distribution. The

t subscript on Zt will be omitted when not essential for clarity. The diffusion

term µCt− dt + σCt− dBt represents the behavior of consumption in normal

times, and implies that, when no disaster takes place, log consumption growth

is normally distributed with mean µ− 1
2
σ2 and variance σ2. Rare disasters are
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captured by the Poisson process Nt. Roughly speaking, λ is the probability of

a jump over a given unit of time.1

Following Duffie and Epstein (1992), I define the utility function Vt for the

representative agent using the following recursion:

Vt = Et

∫ ∞

t

f(Cs, Vs) ds, (1)

where

f(C, V ) =
β

1− 1
ψ

C1− 1
ψ − ((1− γ)V )

1
θ

((1− γ)V )
1
θ
−1

, (2)

and θ = (1 − γ)/(1 − 1
ψ
). Note that Vt represents continuation utility, i.e.

utility of the future consumption stream. Equations (1) and (2) define the

continuous-time analogue of the utility function in Epstein and Zin (1989)

and Weil (1990). The parameter β > 0 is the rate of time preference, ψ > 0

can be interpreted as the elasticity of intertemporal substitution and γ > 0

can be interpreted as relative risk aversion.

2.2 Solution

In what follows, I solve for asset prices using the state-price density. The

advantage of this method is that it generalizes to the case of time-varying

disaster probabilities. A necessary first step when assuming recursive utility

is to solve for the value function. Accordingly, Section 2.2.1 describes the

solution for the value function. The solution for the riskfree rate, the wealth-

consumption ratio and the risk premium on the consumption claim follows

easily. Section 2.2.2 describes the solution for the price-dividend ratio for the

dividend claim and Section 2.2.3 describes the solution for the expected rate

of return on government bills, allowing for partial default.

1More precisely, the probability of k jumps over the course of a period τ is equal to

e−λτ (λτ)k

k! , where τ will be measured in units of years. In the calibrations that follow, the

parameter λ will be set to equal 0.0170, implying a 0.0167 probability of a single jump over

the course of a year, a 0.00014 probability of two jumps, and so forth.
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2.2.1 The value function

The first step in solving the model is to solve for the value function, i.e. utility

as a function of wealth. Let Wt denote the wealth of the representative agent

and J the value function. I conjecture that

J(W ) =
W 1−γ

1− γ
j1−γ (3)

for a constant j. Let St denote the value of the claim to aggregate consumption,

and conjecture that the price-dividend ratio for this claim is constant:

St
Ct

= l. (4)

The process for consumption and the conjecture (4) imply that St satisfies

dSt = µSt− dt+ σSt− dBt + (eZt − 1)St−dNt. (5)

Furthermore, conjecture that the riskfree rate is a constant r. The Bellman

equation for an investor who allocates wealth between the consumption claim

and the riskfree asset is

sup
α,C

{
JW (Wα(µ− r + l−1) +Wr − C) +

1

2
JWWW

2α2σ2+

λEν
[
J(W (1 + α(eZ − 1)))− J(W )

] }
+ f(C, J) = 0, (6)

where JW is the first derivative of J with respect to wealth and JWW is the

second derivative. This formula follows from an application of Ito’s Lemma to

J (see Duffie (2001, Appendix F) for Ito’s Lemma with jumps).

Substituting (3) into (6) and taking the derivative with respect to α implies

the following first order condition:

W 1−γj1−γ(µ− r + l−1)− γW 1−γj1−γασ2 +

W 1−γj1−γλEν
[
(1 + α(eZ − 1))−γ(eZ − 1)

]
= 0.

In equilibrium, α must equal 1. Therefore,

µ+ l−1 − r = γσ2 − λEν
[
e−γZ(eZ − 1)

]
. (7)
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Let rC denote the instantaneous expected return on the consumption claim,

defined as the drift in the price, plus the dividend, plus the expectation of the

jump in the price, as a proportion of the current price:

rC ≡ µ+ l−1 + λEν [e
Z − 1].

It follows from (7) that the instantaneous equity premium on the consumption

claim is given by

rC − r = γσ2 + λEν
[−e−γZ(eZ − 1) + eZ − 1

]
. (8)

Equation (7) also has an interpretation: it is the instantaneous premium on

the consumption claim conditional on no disasters.

There are several noteworthy features of (8). The first term, equal to risk

aversion times consumption volatility, is the equity premium under the stan-

dard diffusion model. The second term is therefore the compensation for the

possibility of a rare disaster. Because Z < 0, the contribution of the disaster

risk term to the equity premium is positive and increasing in the disaster in-

tensity λ. Finally, the risk premium depends only on risk aversion, not on the

elasticity of intertemporal substitution. The risk premium, including the dis-

aster risk term, is therefore the same for recursive utility as for power utility,

a result also found by Liu, Pan, and Wang (2005) and Barro (2007).

In equilibrium, W = S. Therefore, the conjecture (4) is equivalent to

W

C
= l, (9)

Let fC denote the first derivative of f(C, V ) with respect to C. As shown in

Appendix A.1, the envelope condition

JW = fC (10)

together with the form of J , (3), and the conjecture that the wealth-consumption

ratio is constant, implies that

l = β−ψjψ−1. (11)

Equations for l and j follow from the Bellman equation and are given in

Appendix A.1.
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The equation for the riskfree rate follows from substituting the equation

for l into (7). Rearranging implies that

r = β +
1

ψ
µ− 1

2

(
γ +

γ

ψ

)
σ2 +

λEν

[
−(e−γZ − 1) +

(
1− 1

θ

)
(e(1−γ)Z − 1)

]
. (12)

The first three terms in (12) are the same as in the standard model without

disaster risk and reflect the roles of the discount rate, intertemporal smoothing

and precautionary savings respectively. The last term arises from the risk of

rare disasters. To understand this term, first consider the special case of

power utility (θ = 1). Because e−γZ > 1, the riskfree rate is decreasing in λ.

An increase in the probability of a rare disaster increases the representative

investor’s desire to save, and thus lowers the riskfree rate. The greater is risk

aversion, the greater is this effect.

In the case of recursive utility, the interpretation of (12) is more compli-

cated. To fix ideas, assume γ > 1. For 1 − 1
θ
> 0, or equivalently, γ > 1

ψ
,

an increase in λ has a smaller impact on the riskfree rate for recursive utility

than for power utility. That is, increasing the agent’s willingness to substitute

over time reduces the dependence of r on λ.

2.2.2 The state-price density and the dividend claim

Given the state-price density, the price of any risky asset follows from a no-

arbitrage condition. Duffie and Skiadas (1994) show that the state-price den-

sity πt relates to the value function via the formula

πt = exp

{∫ t

0

fV (Cs, Vs) ds

}
fC(Ct, Vt). (13)

Let Yt denote the dividend. I model dividends as levered consumption, i.e.

Yt = Cφ
t as in Abel (1999) and Campbell (2003). Ito’s Lemma then implies

dYt = µY Yt− dt+ φσYt− dBt + (eφZt − 1)Yt− dNt, (14)

where

µY = φµ+
1

2
φ(φ− 1)σ2.

8



Let F (Yt) denote the price of the dividend claim (the argument that follows

will verify that the price is indeed a function of Yt). No arbitrage implies that

F (Yt) = Et

[∫ ∞

t

Ys
πs
πt
ds

]
. (15)

Given a jump-diffusion process xt, let Dxt denote the drift of that process,

δxt the diffusion, and J (xt) the expected jump in the process, provided that

a jump occurs. As shown in Appendix A.2, the no-arbitrage condition (15)

implies that F satisfies the following:

πt(DFt) + Ft(Dπt) + Ytπt + (δπt)(δFt) + λJ (πtFt) = 0, (16)

where Ft = F (Yt). Conjecture that

F (Yt) = lY Yt (17)

for a constant lY (which, by definition, equals the price-dividend ratio on the

dividend claim). Appendix A.2 shows that substituting (17) into (16) implies

µY + l−1
Y − r = φγσ2 + λEν

[
e−γZ − 1

]− λEν
[
e(φ−γ)Z − 1

]
. (18)

Let re denote the instantaneous expected return on the dividend claim.

Analogously to the expected return on the consumption claim, re equals the

drift in the price, plus the dividend, plus the expectation of the jump in the

price, as a proportion of the current price. The conjecture that the price-

dividend ratio is a constant implies that the proportional drift in the price

is the same as the proportional drift in the dividend, and the expectation

of the proportional jump in the price is the same as the expectation of the

proportional jump in the dividend process. Therefore

re = µY + l−1
Y + λEν

[
eφZ − 1

]
. (19)

It follows from (18) and (19) that the instantaneous equity premium equals

re − r = φγσ2 + λEν
[
e−γZ

(
1− eφZ

)
+ eφZ − 1

]
. (20)

The first term in (20) appears in the standard diffusion model and equals

risk aversion multiplied by the instantaneous covariance of the consumption
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process with the dividend process. The second term accounts for jump risk.

It follows from this expression that the term multiplying λ is positive and

therefore that disaster risk raises the risk premium and is increasing in λ.2

Equations (12) and (18) imply that the price-dividend ratio equals

lY =

(
β − µY +

1

ψ
µ− 1

2

(
γ +

γ

ψ
− 2φγ

)
σ2 +

λEν

[(
1− 1

θ

) (
e(1−γ)Z − 1

)− (e(φ−γ)Z − 1)

])−1

. (21)

The first three terms inside the outer parentheses in (21) appear in the stan-

dard diffusion model. To understand the last term, it is useful to consider

several special cases. For the remainder of this section, I assume that γ is

greater than 1.

First consider the consumption claim, corresponding to φ = 1. In this case,

the disaster risk term inside of the parentheses in (21) reduces to λEν
[−1

θ
e(1−γ)Z

]
.

The term in the exponent is positive under the maintained assumption that

γ > 1, so λEν
[−1

θ
e(1−γ)Z

]
takes the sign opposite to that of θ. It follows that

the price-dividend ratio decreases in the probability of a disaster if and only

if θ < 0, i.e. if and only if the EIS is greater than 1. This observation is also

made by Barro (2007).

Next consider the case of unit EIS. In the limit as the EIS approaches

one, 1 − 1/θ approaches 1 and the disaster risk term inside the parentheses

approaches λEν
[
e(1−γ)Z − e(φ−γ)Z]

. Because Z < 0, this expression is positive

if and only if φ > 1. Therefore the price-dividend ratio decreases in λ if and

only if equity is levered, i.e. if φ > 1.

Finally consider power utility, for which θ = 1. The disaster risk term

reduces to λEν
[
1− e(φ−γ)Z]

, which is positive if and only if φ > γ. Therefore,

for power utility, the price-dividend ratio decreases in the disaster probability

if and only if leverage exceeds risk aversion.

This last point suggests that the power utility model might encounter dif-

ficulties in a dynamic setting in which λ is allowed to vary. For values of risk

2Note that eφZ is between 0 and 1. Therefore eφZ +
(
1− eφZ

)
e−γZ is a weighted average

of e−γZ > 1 and 1, and is therefore greater than 1.
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aversion exceeding leverage, a low price-dividend ratio would indicate that dis-

aster risk is low and the equity premium is low as well. When risk aversion

exceeds leverage, the price-dividend ratio would predict excess returns with a

positive, not a negative sign, contradicting the data. Moreover, the riskfree

rate would be more volatile than the equity premium in such a model.

Equation (21) suggests that recursive utility can help solve this problem.

For γ > 1, 1 − 1
θ
> 0 if and only if γ > 1

ψ
. Assuming parameter values

in these ranges, the disaster risk term in (21) arising from recursive utility,

λEν
[(

1− 1
θ

)
(e(1−γ)Z − 1)

]
, is positive. This term therefore leads the price-

dividend ratio to increase less, or possibly to decrease, in the disaster proba-

bility.

The net effect of an increase in the disaster probability on the price-

dividend ratio reflects the interplay between the effects on the equity premium,

on expected future cash flows, and on the riskfree rate. As shown above, the

equity premium is increasing in λ regardless of the choice of parameters (pro-

vided, of course, that γ and φ are positive). Increasing λ decreases future

expected cash flows; this effect is relatively small because the probability of

a rare disaster is low, and unlike the effect on the equity premium or riskfree

rate, it is not amplified by the curvature in the utility function. Finally, the

riskfree rate is decreasing in λ for power utility. It is also decreasing for re-

cursive utility provided that θ > 0. For power preferences with γ > φ, the

riskfree rate effect dominates the other two effects, and the price-dividend ra-

tio increases in the probability of a disaster. For recursive preferences, it is

possible for this effect to reverse because the riskfree rate effect is weaker.

2.2.3 Risk of default

As discussed in Barro (2006), disasters often coincide with at least a partial

default on government securities. This point is of empirical relevance if one

tries to match the behavior of the riskfree asset to the rate of return on govern-

ment securities in the data. I therefore allow for partial default on government

debt, and consider the rate of return on this defaultable security.
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Let Lt be the price process for government liabilities and assume that

dLt
Lt

= rL dt+
(
eZL,t − 1

)
dNt,

where rL is the “face value” of government debt (i.e. the amount investors

receive if there is no default), ZL,t is a random variable whose distribution

will be described shortly and Nt is the same Poisson process that drives the

consumption process. Assume that, in event of a disaster, there will be a

default on government liabilities with probability q. I follow Barro (2006) and

assume that in the event of default, the percent loss is equal to the percent

fall in consumption. Therefore,

ZL,t =





Zt with probability q

0 otherwise

Arguments similar to those used to price the dividend claim imply that

rL = r+λEν
[
e−γZ − 1

]−λ (
(1− q)Eν

[
e−γZ − 1

]
+ qEν

[
e(1−γ)Z − 1

])
. (22)

Let rb denote the instantaneous expected return on government debt. Then

rb = rL + λqEν
[
eZ − 1

]
, (23)

with rL given in (22). The instantaneous equity premium relative to the

government bill rate is therefore (20), plus r, minus (23):

re − rb = φγσ2 + λEν
[
eφZ − e(φ−γ)Z + (1− q)

(
e−γZ − 1

)
+ q(e(1−γ)Z − eZ)

]
.

While the the presence of default for government debt affects the equity

premium, it does not affect the price-dividend ratio (21), nor for that matter

the total expected return on equities. It only affects how this expected return

is decomposed into the equity premium and the government bill rate. Much of

the discussion in Section 2.2.2 therefore is unaffected by default. That is, the

problems with the power utility model, namely that the price-dividend ratio

increases rather than increases in λ, cannot be solved by allowing default on

government bills.
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Of course, the possibility of default does affect the government bill rate.

The premium attached to government bills is increasing in λ; the greater the

risk of disaster, the greater the risk of default, and the more compensation

investors require to hold bills. On the other hand, the riskfree rate is decreasing

in λ for a wide range of parameter values. These effects offset each other, so

that the expected return on government debt varies less with λ than the riskfree

rate.

3 Time-varying disaster risk

Now consider the case in which the disaster intensity λ is not constant, but

rather follows the process

dλt = κ(λ̄− λt) dt+ σλ
√
λt dBλ,t.

For analytical convenience, the Brownian motion Bλ,t is assumed to be inde-

pendent of Bt, the Brownian motion driving the consumption and dividend

processes. Given that the risk of disasters has a much greater impact on the

equity premium than does diffusion risk, this assumption is unlikely to signif-

icantly affect the results.

Figure 1 plots the probability density function for λt, assuming the param-

eter values discussed below. The unconditional mean of the process is λ̄ and is

calibrated to 0.017 per annum (see Barro (2006)). The distribution is highly

skewed; there is a long right tail of high values for λ. The skewness arises on

account of the square root term. A high realization of λt makes the process

more volatile, and thus high values are more likely than they would be under a

standard auto-regressive process. Thus the model implies that there are times

when “rare” disasters can occur with high probability, but that these times

are themselves unlikely.

Further assume that the EIS is equal to 1. This has the advantage of

leading to closed-form solutions. Moreover, independent empirical evidence

suggests that this value is not unreasonable. Duffie and Epstein (1992) show

that, for the limiting case of ψ = 1, preferences can be expressed using the
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aggregator

f(C, V ) = β(1− γ)V

(
logC − 1

1− γ
log((1− γ)V )

)
. (24)

The model for consumption and dividends is the same as in the previous

section, except that the disaster intensity is time-varying.

3.1 The value function

I follow the blueprint of the solution in the constant disaster risk case, first

solving for the value function and the wealth-consumption ratio. These will

allow the state-price density to be expressed in terms of the model’s primitives.

Conjecture that the value function takes the form

J(λ,W ) = I(λ)
W 1−γ

1− γ
, (25)

where I is a function of λ that will be derived in this section. Also conjec-

ture that the price-dividend ratio for the claim to aggregate consumption is

a constant l, as in (4). The price of the consumption claim therefore follows

the process given by (5) with time-varying disaster intensity λt. Let rt denote

the riskfree rate. The Bellman equation for an investor who allocates wealth

between the consumption claim and the riskfree asset is therefore

sup
αt,Ct

{
JWWtαt(µ− rt + l−1) + JWWtrt − JWCt + Jλκ(λ̄− λt)+

1

2
JWWW

2
t α

2
tσ

2 +
1

2
Jλλσ

2
λλt + λtEν

[
J(Wt(1 + αt(e

Zt − 1)), λt)− J(Wt, λt)
] }

+ f(Ct, J) = 0, (26)

where Jλ denotes the first derivative of J with respect to λ and Jλλ the second

derivative of J with respect to λ.

Reasoning identical to that in Section 2.2.1 implies that, in equilibrium,

µ− rt + l−1 = γσ2 − λtEν
[
e−γZ(eZ − 1)

]
. (27)

Let rCt denote the instantaneous expected return on the consumption claim.

As in Section 2.2.1, this is defined as the drift in the price, plus the dividend,
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plus the expected jump in the price, all as a proportion of the current price:

rCt ≡ µ+ l−1 + λtEν
[
eZ − 1

]
.

It then follows from (27) that the instantaneous equity premium on the con-

sumption claim is given by

rCt − rt = γσ2 + λtEν
[−e−γZ(eZ − 1) + eZ − 1

]
. (28)

Equation (27) gives the instantaneous premium conditional on no disasters.

Both terms reduce to their counterparts in Section 2.2.1 for constant λt. Be-

cause the EIS equals one, the dynamic nature of the model does not effect the

premium for the consumption claim.

The value of the wealth-consumption ratio follows from the equilibrium

condition W = S (and therefore W/C = l), and the envelope condition (10).

Note that

fC(C, V ) = β(1− γ)
V

C
. (29)

At the optimum, V is given by (25). The envelope condition therefore implies

I(λ)W−γ = β(1− γ)I(λ)
W 1−γ

1− γ

1

l−1W
.

Solving for l yields l = β−1, which equals the limit of (A.7) as ψ approaches

one. The equation for the riskfree rate follows from (27):

rt = µ+ β − γσ2 + λtEν
[
e−γZ

(
eZ − 1

)]
, (30)

For λt constant, this equation reduces to (12) in the case of ψ = 1.

Finally, to solve for I(λ), I substitute (25) and the optimal policy func-

tions into (26). Algebraic computations in Appendix B.1 verify that (25) is a

solution to (26), with I given by

I(λ) = ea+bλ, (31)

where

a =
1− γ

β

(
µ− 1

2
γσ2

)
+ (1− γ) log β + b

κλ̄

β
,

b =
κ+ β

σ2
λ

−
√(

κ+ β

σ2
λ

)2

− 2
Eν [e(1−γ)Z − 1]

σ2
λ

.
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Unlike the value function for the model with constant disaster risk, the

value function given by (25) and (31) depends on λt. In the calibration below,

b > 0 and γ > 1. Therefore an increase in disaster risk reduces utility for the

representative agent. As the following section shows, the price of the dividend

claim falls when the disaster probability rises. The agent requires compen-

sation for this risk (because utility is recursive, marginal utility depends on

the value function), and thus time-varying disaster risk increases the equity

premium.

3.2 The state-price density and the dividend claim

Given the value function, it is possible to compute the process for the state-

price density, and therefore to price any risky asset using the no-arbitrage

condition. The state-price density πt is given by (13) for both the constant

disaster risk model and the time-varying disaster risk model. However, the

processes Ct and Vt are different.

As in Section 2.2.2, I derive the price of the dividend claim for dividends

Yt = Cφ
t . Yt follows the process (14), where the intensity λ varies over time. I

conjecture that the price of this claim can be written as a function F of λt and

Yt. As shown in Appendix B.2, the no-arbitrage condition (15) implies that

πt(DFt) + Ft(Dπt) + Ytπt + (δπt)
>(δFt) + λtJ (πtFt) = 0, (32)

where Ft = F (λt, Yt). Because there are two (independent) sources of uncer-

tainty, the diffusion terms δFt and δπt are 2× 1 vectors.

In Appendix B.2, I show that (32) is solved by a function of the form

F (λ, Y ) = G(λ)Y (33)

where

G(λ) =

∫ ∞

0

exp {aφ(t) + bφ(t)λ} dt, (34)

and where aφ and bφ satisfy the ordinary differential equations

a′φ(t) = µY − µ− β + γσ2 − γσ2φ+ κλ̄bφ(t) (35)

b′φ(t) =
1

2
σ2
λbφ(t)

2 + (bσ2
λ − κ)bφ(t) + Eν

[
e(φ−γ)Z − e(1−γ)Z]

(36)
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with boundary conditions aφ(0) = bφ(0) = 0.

The price of the claim to total dividends can be understood as the integral

of prices of claims to dividends at single points in time. The function aφ(t)

represents the effect of maturity on the price of these claims for λt equal to

zero. Equation (35) shows that as maturity increases, aφ is incremented by

the value of expected dividend growth and decremented by the values of the

riskfree rate and the equity premium when λt = 0. The final term in (35)

represents the effect of future changes in λt on the price. It depends on the

effect of λt on the price (represented by bφ(t)), on the average value of λt (λ̄)

and on κ, the speed at which λt reverts to this average value.

The function bφ(t) represents the effect of maturity interacted with λt.

The term Eν [e
(φ−γ)Z − e(1−γ)Z ] in (36) summarizes the effect of λ on the price-

dividend ratio in the static model for ψ = 1 (see (21)); that is, it represents

a combination of the equity premium, riskfree rate, and cash flow effect. The

term bσ2
λbφ(t) is an additional component of the equity premium in the dy-

namic model, and will be discussed further below. The remaining two terms,

1
2
σ2
λbφ(t)

2 and −κbφ(t) represent the effect of future changes in λt on the price.

The former is a Jensen’s inequality term; all else equal, a more volatile eq-

uity premium increases the price-dividend ratio. The latter represents the fact

that, if λt is high in the present, λt is likely to decrease in the future on account

of mean reversion.

Figure 2 shows aφ(t) and bφ(t) as functions of time for parameter values

described below. The top panel shows that aφ asymptotes to a decreasing

linear function. The fact that this is decreasing is necessary for convergence

if λt varies over time.3 The asymptote is linear because bφ(t) asymptotes to

a constant. The figure also shows that bφ(t) is negative, and thus the price-

dividend ratio is decreasing in λt. Thus the equity premium effect, together

with the cash flow effect, dominates the riskfree rate effect at these parameter

values. The magnitude of bφ(t) increases in t. This is a duration effect. The

further out in time the cash flows occur, the more the price of the claim varies

3When λt does not vary over time, then convergence requires that aφ(t) + bφ(t)λ̄ is

decreasing.
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with the discount rate.

As discussed in Section 2.2, the instantaneous expected return is defined

as the drift in the price (as a proportion), plus the dividend yield, plus the

expected jump in in the price (as a proportion). For this more general model,

this implies

ret ≡
1

Ft
(DFt + Yt + λtJ (Ft)) . (37)

Equation (32) can be rearranged to give a convenient characterization of the

risk premium. No-arbitrage implies that the riskfree rate is characterized by

rt = −Dπt
πt

− λt
J (πt)

πt
. (38)

Combining (32), (37) and (38) implies a useful characterization of the equity

premium:

ret − rt = −
(
δπt
πt

)> (
δFt
Ft

)
− λt

(J (Ftπt)

Ftπt
− J (Ft)

Ft
− J (πt)

πt

)
.

The first term represents the portion of the equity premium that is compen-

sation for diffusion risk (which includes time-varying λt), while the second

represents the portion from jump risk. The second term can be understood as

the jump equivalent of a covariance. The greater the covariance of the price

Ft with the marginal utility process πt, the more the asset provides a hedge

and the lower is the risk premium.

To write this equation in terms of the model primitives, first note that Ito’s

Lemma applied to the state-price density implies that

δπt
πt

=


 −γσ
bσλ

√
λt


 . (39)

The negative of the first element of the vector (39) is the price of diffusion

risk, where the negative of the second element is the price of risk associated

with time-varying λt. Second, note that Ito’s Lemma applied to Ft = F (λt, Yt)

implies that

δFt =


 YtG(λt)φσ

YtG
′(λt)σλ

√
λt


 . (40)
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Further calculations in Appendix B.2 show that

ret − rt = φγσ2 − λt
G′

G
bσ2

λ + λtEν
[
e−γZ(1− eφZ) + eφZ − 1

]
. (41)

The first term is identical to its counterpart in the static model and equals

risk aversion multiplied by the instantaneous covariance with consumption.

The second term is new to the dynamic model. This is the risk premium due

to time-variation in disaster risk. Because bφ is negative, G′ is also negative.

Moreover, b is positive, so this term represents a positive contribution to the

equity premium. Finally, the last term represents the portion of the equity

premium arising from disaster risk itself. It takes the same form as its coun-

terpart in the static model of Section 2, except, of course, that it varies over

time.

3.3 Risk of default

The calculation for the government bill rate is similar to the corresponding cal-

culation in the case of constant disaster risk. The face value of the government

bill is given by

rLt = rt + λtEν
[
e−γZt − 1

]− λt
(
(1− q)Eν

[
e−γZt − 1

]
+ qEν

[
e(1−γ)Zt − 1

])
.

This is also the expected return, conditional on no disasters occurring. The

instantaneous expected return on government debt is

rbt = rLt + λtqEν
[
eZ − 1

]
. (42)

Figure 3 shows the face value of government debt, rLt , the instantaneous ex-

pected return on government debt rbt and the riskfree rate rt as a function of

λt. Because of the required compensation for default, rLt lies above rt. The ex-

pected return lies between the two because the actual cash flow that investors

receive from the government bill will be below rLt if default occurs.

All three rates decrease in λt because, at these parameter values, a higher

λt induces a greater desire to save. However, rLt and rbt are less sensitive to

changes in λ than rt because of an opposing effect: the greater is λt, the greater
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is the risk of default, and therefore the greater the return investors demand for

holding the government bill. Because of a small cash flow effect, rbt decreases

more than rLt , but still less than rt.

The instantaneous equity premium relative to the government bill rate is

equal to (41) plus rt, minus rbt .

re − rb = φγσ2 − λt
G′

G
bσ2

λ +

λtEν
[
eφZ − e(φ−γ)Z + (1− q)

(
e−γZ − 1

)
+ q(e(1−γ)Z − eZ)

]
.

This instantaneous equity premium is shown in Figure 4 (solid line). The

difference between the dashed line and the solid line represents the hedging

component of the equity premium, namely −bλtσ2
λ
G′
G

, and shows that this term

is large in magnitude. The dashed line represents the equity premium in the

standard diffusion model without disaster risk and is negligible compared with

the disaster risk component.

4 Calibration and Simulation

This section first describes the calibration of the time-varying disaster risk

model and results from simulated data. I then compare these results with

those obtained from a model with constant disaster risk.

4.1 Calibration

Table 1 describes the parameters in the main case. Most parameters are set to

values considered by Barro (2006) to highlight this model’s novel implications.

In the model, time is measured in units of years and parameter values should

be interpreted accordingly. The drift rate µ is calibrated so that in normal

periods, the expected growth rate of log consumption is 2.5% per annum.4 The

standard deviation of log consumption σ is 2% per annum. These parameters

are chosen as in Barro to match postwar data in G7 countries. The average

disaster intensity is λ̄, set equal to 0.017. The decline in consumption when a

4The value µ = 2.52% reflects an adjustment for Jensen’s inequality.
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disaster does occur, Zt, is calibrated to the empirical distribution of declines

in GDP. The probability of default given disaster, q, is set equal to 0.4, which

is the probability of default given a disaster. These values are calculated by

Barro based on data for 35 countries over the period 1900–2000.

Leverage, φ, is set equal to 2.8. This is slightly lower than the value used

by Bansal and Yaron (2004) in their calibrated model of the equity premium.

Given the high ratio of dividend volatility to consumption volatility, this value

is conservative. Barro considers values of risk aversion equal to 3 and 4 and

values of the rate of time preference equal to 0.02 and 0.03. I choose risk

aversion equal to 3 and rate of time preference equal to 0.02 because, given

other parameter choices, these deliver the closest match to the equity premium

and the riskfree rate in the present model.

The novel parameters are the EIS ψ, the mean reversion of the disaster

intensity, κ, and the volatility parameter for the disaster intensity, σλ. The

EIS is set equal to 1 for tractability. A number of studies have concluded

that reasonable values for this parameter lie in a range close to one, or slightly

lower than 1 (see Campbell (2003) for a discussion). Mean reversion κ is chosen

to match the autocorrelation of the price-dividend ratio in annual U.S. data.

Because λt is the single state variable, the autocorrelation of price-dividend

ratio implied by the model will approximately equal the autocorrelation of λt.

Setting κ equal to 0.142 generates an autocorrelation for the price-dividend

ratio equal to 0.865, its value in the data. The volatility parameter σλ is chosen

to be 0.09; this generates a reasonable level of volatility in stock returns.

4.2 Results for the time-varying disaster risk model

Table 2 describes moments from a simulation of the model as well as moments

from annual U.S. data. Annual U.S. data come from Robert Shiller’s web-

site. Data are from 1890 to 2004 and are described in detail in Shiller (1989,

Chap. 26).

The model is discretized using an Euler approximation (e.g. Lord, Koekkoek,

and van Dijk (2006)) and simulated at a monthly frequency for 50,000 years;
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simulating the model at higher frequencies produces negligible differences in

the results.5 The monthly results are then compounded to an annual frequency

to compare with the annual data set. Two types of moments are reported. The

first type (referred to as “population” in the tables) are calculated based on

all years in the simulation. The second type (referred to as “conditional” in

the tables) are calculated after first eliminating years in which one or more

disasters took place. This second type therefore conditions on no disasters

occurring. Neither corresponds exactly to U.S. data, and for this reason, the

data should be viewed as an approximate benchmark.

Table 2 shows that the model generates a realistic equity premium. In

population, the equity premium is 5.6%, while, conditional on no disasters,

the equity premium is 6.4%. In the historical data it is 6.0%. The expected

return on the government bill is 2.5% in population, 2.8% conditional on no

disasters, and 2.0% in the data. The model predicts equity volatility of 18.4%

per annum in population and 16.4% conditional on no disasters. The observed

volatility is 18.5%. The Sharpe ratio is 0.31 in population, 0.38 conditional

on no disasters and 0.32 in the data (the Sharpe ratio is substantially higher

over the postwar period that in the long data set).

The model is able to generate reasonable volatility for the stock market

without generating excessive volatility for the government bill or for consump-

tion and dividends. The volatility of the government bill is 3.6% in population,

much of which is due to realized disasters; it is 2.7% conditional on no disas-

ters. This compares with a volatility of 5.9% in the data. Given that interest

rate volatility in the data arises largely from unexpected inflation that is not

captured by the model, the data volatility should be viewed as an upper bound

on reasonable model volatility.

The volatilities for consumption and dividends predicted by the model for

periods of no disasters are also below their data counterparts. Conditional on

no disasters, consumption volatility is 2.0%, compared with 3.6% in the data.

Dividend volatility is 5.6%, compared with 11.5% in the data. Including rare

5The discrete-time approximation requires setting λt to equal zero in the square root

when it is negative. However, this occurs in less than 1% of the simulated draws.
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disasters in the data simulated from the model has a large effect on dividend

volatility. When the rare disasters are included, dividend volatility is 17.2%.

The difference between the effect of including rare disasters on returns as

compared with the effect on fundamentals is striking. Unlike dividends, returns

exhibit a relatively small difference in volatility when calculated with and

without rare disasters: 18.4% versus 16.4%. This is because a large amount

of the volatility in returns arises from variation in the equity premium. Risk

premia are equally variable regardless of whether disasters actually occur in

the simulated data or not.

The model also generates excess return predictability, as shown in Table 3.

I regress long-horizon excess returns (the log return on equity minus the log

return on the government bill) on the price-dividend ratio in simulated data.

I calculate this regression for returns measured over horizons ranging from 1

to 10 years. Table 3 reports results for the entire simulated data set (“pop-

ulation moments”) for periods in the simulation in which no disasters occur

(“conditional moments”) and for the historical sample.

Panel A of Table 3 shows population moments from simulated data. The

coefficients on the price-dividend ratio are negative: a high price-dividend ratio

corresponds to low disaster risk and therefore predicts low future expected

returns on stocks relative to bonds. The R2 for the long-horizon regression is

4% at a horizon of 1 year, rising to 14% at a horizon of 10 years. Panel B

reports conditional moments. The conditional R2s are larger: 16% at a horizon

of 1 year, rising to 56% at a horizon of 10 years. The unconditional R2 values

are much lower because, when a disaster occurs, nearly all of the unexpected

return is due to the shock to cash flows.

The data moments fall in between the population and conditional moments.

As demonstrated in a number of studies (e.g. Campbell and Shiller (1988),

Cochrane (1992), Fama and French (1989), Keim and Stambaugh (1986)) and

replicated in this sample, high price-dividend ratios predict low excess returns.

While returns exhibit predictability over a wide range of sample periods, the

high persistence of the price-dividend ratio leads sample statistics to be un-

stable (see, for example, Lettau and Wachter (2007) for calculations of long-
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horizon predictability using this data set but for differing sample periods),

and unusually low when calculated over recent years. For this reason, the R2

statistics in the data should be viewed as an approximate benchmark.

Another potential source of variation in returns is variation in expected

future consumption growth. According to the model, a low price-dividend ratio

indicates not only that the equity premium is likely to be high in the future,

but also that consumption growth is likely to be low because of the increased

probability of a disaster. However, a number of studies (e.g. Campbell (2003),

Cochrane (1994), Hall (1988), Lettau and Ludvigson (2001)) have found that

consumption growth exhibits little predictability at long horizons, a finding

replicated in Panel B of Table 4. It is therefore of interest to quantify the

amount of consumption growth predictability implied by the model.

Table 4 reports the results of running long-horizon regressions of consump-

tion growth on the price-dividend ratio in data simulated from the model and

in historical data. Panel A shows the population moments implied by the

model. The model does imply some predictability in consumption growth, but

the effect is very small. The R2 values never rise above 6%, even at long hori-

zons. This predictability arises entirely from the realization of a rare disaster.

When these rare disasters are conditioned out, there is zero predictability be-

cause consumption follows a random walk (in simulated data, the coefficient

values are less than .001 and the R2 values are less than .0001). Thus the

model accounts for both the predictability in long-horizon returns and the

absence of predictability in consumption growth.

4.3 Comparison with the constant disaster risk model

It is instructive to contrast the results in the previous section with results when

the probability of a rare disaster does not vary over time. Table 5 calculates

moments corresponding to those in Table 2 for the constant disaster risk model.

The long-horizon regressions in Tables 3 and 4 are not repeated because, when

disaster risk is constant, the predictability coefficients and R2 statistics are zero

at all horizons. The first calibration (results reported in Panel A) corresponds
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to the parameters in Barro (2006), and replicates the results in that paper.6

The second calibration (results reported in Panel B) alters these parameters

slightly: rather than assuming power utility, the EIS is set to 1. This highlights

the role of recursive utility when nothing else changes. The third calibration

(results reported in Panel C) maintains the assumptions of the second set, but

raises leverage from 1.5 to 2.8. This shows the effect of an increase in leverage

when nothing else changes.

As Panel A shows, the power utility model with constant disaster probabil-

ities is capable of replicating the equity premium in the data, and reconciling

it with a low riskfree rate. This model is not, however, capable of replicating

the volatility of the stock market. Stock return volatility is about equal to div-

idend volatility.7 That is, the conditional volatility of stock returns is 3.3%.

This compares with a volatility of 18.5% in the data. The population volatility

of stock returns is 6.7%, still far below the data volatility. As a consequence,

the Sharpe ratio predicted by the model is 1.83 (conditional on no disasters),

much higher than the observed value (0.32).

Panel B demonstrates the effect of recursive utility. This simulation is

identical to the above, except the EIS is set equal to 1, the value from the

base case. As this simulation verifies, recursive utility makes little difference

to the equity premium. The volatility of stock returns and the Sharpe ratio

are also nearly the same. However, the government bill rate is substantially

lower: 1.7% per annum rather than 3.9%. The reason is that the inverse of the

EIS multiplies the growth rate of the economy in the formula for the riskfree

rate. Because growth is positive, power utility, with an EIS of 0.25, generates

a higher riskfree rate than recursive utility with an EIS of 1.

Panel C demonstrates the effect of increasing leverage from 1.5 to 2.8. Not

surprisingly, raising leverage increases the volatility of log dividends. However,

6The model for leverage in this paper differs slightly from Barro’s. However, the effects

of the differences are second-order.
7Stock market volatility and dividend volatility are not exactly equal because the table

reports the volatility of stock returns measured in levels, while dividends are measured in

logs. The volatility of log returns is identical to the volatility of log dividends for both

population and conditional moments.

25



this does not generate nearly enough volatility in either the conditional or

full population to match the volatility of returns in the data. These results

contrast with the model that incorporates both recursive utility and time-

varying disaster risk, which can generate a realistic amount of stock market

volatility.

5 Conclusion

This paper has shown that a continuous-time endowment model in which there

is time-varying risk of a rare disaster can explain many features of the aggre-

gate stock market. Besides explaining the equity premium without assuming

a high value of risk aversion, it can also explain the high level of stock market

volatility. The volatility of the government bill rate remains low because of a

tradeoff between an increased desire to save due to an increase in the disaster

probability and a simultaneous increase in the risk of default. The model there-

fore offers a novel explanation of volatility in the aggregate stock market that

is consistent with other macroeconomic data. Moreover, the model accounts

for economically significant excess return predictability found in the data, as

well as the lack of long-run consumption growth predictability. Finally, the

model can be solved in closed form, allowing for straightforward computation

and for potential extensions. While this paper has focused on the aggregate

stock market, the model could be extended to price additional asset classes,

such as long-term government bonds, options and exchange rates.
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Appendix

A Constant disaster risk model

A.1 Value function

The envelope condition (10) can be used to derive the relation between l (the

wealth-consumption ratio) and j (the constant in the value function) in (11).

Equation (3) implies

JW (W (C)) = (W (C))−γj1−γ

= (lC)−γ j1−γ. (A.1)

Moreover,

fC(C, V ) =
βC−

1
ψ

((1− γ)V )
1
θ
−1
, (A.2)

where it follows from (4) that

V (C) = J(W (C)) =
(lC)1−γ

1− γ
j1−γ. (A.3)

Substituting (A.3) into (A.2) implies

fC(C, V (C)) = βC−
1
ψC(1− 1

θ
)(lj)(1− 1

θ
)(1−γ)

= βC−γ(lj)
1
ψ
−γ. (A.4)

Equating (A.4) with (A.1) and solving for l implies (11).

Given (11), the expression for j follows from the fact that V (C(W )) =

J(W ), and so

f(C(W ), J(W )) =
β

1− 1
ψ

W 1−γ l
1
ψ
−1 − j1− 1

ψ

jγ−
1
ψ

. (A.5)

Substituting into the Bellman equation (6) and dividing through by W 1−γ

yields:

(
µ− 1

2
γσ2 + λ(1− γ)−1Eν

[
e(1−γ)Z − 1

])
j1−γ +

β

1− 1
ψ

βψ−1j(1− 1
ψ

)(1−ψ) − j1− 1
ψ

jγ−
1
ψ

= 0,
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and therefore

µ− 1

2
γσ2 + λ(1− γ)−1Eν

[
e(1−γ)Z − 1

]− β

1− 1
ψ

+
βψ

1− 1
ψ

j1−ψ = 0,

Rearranging implies

j =

[(
−µ+

1

2
γσ2 − λ(1− γ)−1Eν

[
e(1−γ)Z − 1

]
+

β

1− 1
ψ

)
1− 1

ψ

βψ

] 1
1−ψ

,

(A.6)

and therefore that the wealth-consumption ratio l equals:

l =

(
−µ+

1

2
γσ2 − λ(1− γ)−1Eν

[
e(1−γ)Z − 1

]
+

β

1− 1
ψ

)−1 (
1− 1

ψ

)−1

.

(A.7)

A.2 Dividend claim

By Ito’s Lemma,

d(Ftπt) + Ytπt dt = πt(DFt) dt+ Ft(Dπt) dt+ Ytπt dt+

πt(δFt) dBt + Ft(δπt) dBt + (δπt)(δFt) dt+

λJ (πtFt) dt+ ((πtFt − πt−Ft−)dNt − λJ (πtFt)) dt, (A.8)

Under mild regularity conditions (see Duffie, Pan, and Singleton (2000)), the

no-arbitrage condition (15) implies that the instantaneous expectation of (A.8)

is equal to zero. This establishes (16).

Ito’s Lemma applied to (13) implies that the diffusion term for the state-

price density is given by

δπt =
πt
fC
δfC

= − πt
fC
βγC−γ−1(lj)

1
ψ
−γCσ

= −πtγσ, (A.9)

where the second line follows from (A.4). No-arbitrage implies that the drift

of the state-price density must equal

Dπt = −rπt − λJ (πt).
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Let

Ht = exp

{∫ t

0

fV (Cs, Vs) ds

}
. (A.10)

Then

J (πt) = HtEν
[
fC(CeZt , V (CeZt))− fC(C, V (C))

]

= HtEν

[
β(CeZt)−γ(lj)

1
ψ
−γ − βC−γ(lj)

1
ψ
−γ

]

= πtEν
[
e−γZt − 1

]
. (A.11)

By Ito’s Lemma,

DFt = FY µY Yt +
1

2
FY Y Ytφ

2σ2 = lY µY Yt (A.12)

δFt = FY φσYt = lY φσYt (A.13)

Finally,

J (πtFt) = HtEν
[
fC(CeZt , V (CeZt))F (Yte

φZt)− fC(C, V (C))F (Yt)
]

= πtEν
[
e−γZtF (Yte

φZt)− F (Yt)
]

(A.14)

= lYEν
[
e(φ−γ)Z − 1

]
πtYt (A.15)

Substituting (A.9 – A.15) into (16) verifies the conjecture (17), for lY defined

implicitly by (18).

B Time-varying disaster risk model

B.1 Value function

Substituting the optimal policies α = 1 andW = lC into the Bellman equation

(26) implies

JWWtµ+ Jλκ(λ̄− λt) +
1

2
JWWW

2
t σ

2 +
1

2
Jλλσ

2
λλt +

λtEν
[
J(Wte

Zt , λt)− J(Wt, λt)
]
+ f(Ct, J) = 0. (B.1)

Using (25), the last term can be rewritten as follows:

f(C(W ), J(λ,W )) = βI(λ)W 1−γ
(

log(βW )− 1

1− γ
log(I(λ)W 1−γ)

)

= βI(λ)W 1−γ
(

log β − log I(λ)

1− γ

)
. (B.2)
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Substituting (25) and (B.2) into (B.1) and dividing through by W 1−γ implies

I(λt)µ+ I ′(λt)(1− γ)−1κ(λ̄− λt)− 1

2
γI(λt)σ

2 +
1

2
(1− γ)−1I ′′(λt)σ2

λλt

+ (1− γ)−1I(λt)λtEν
[
e(1−γ)Z − 1

]

+ βI(λt)

(
log β − log I(λ)

1− γ

)
= 0. (B.3)

Conjecture that I(λ) is given by (31), implying that I ′(λ) = bI(λ) and I ′′(λ) =

b2I(λ). Substituting into (B.3), I find

µ+ b(1− γ)−1κ(λ̄− λt)− 1

2
γσ2 +

1

2
b2σ2

λλt(1− γ)−1 +

(1− γ)−1λtEν
[
e(1−γ)Z − 1

]
+ β

(
log β − (1− γ)−1(a+ bλt)

)
= 0.

Collecting terms in λt results in the following quadratic equation for b:

1

2
σ2
λb

2 − (κ+ β)b+ Eν
[
e(1−γ)Z − 1

]
= 0,

indicating two possible solutions

b+ =
κ+ β

σ2
λ

+

√(
κ+ β

σ2
λ

)2

− 2
Eν [e(1−γ)Z − 1]

σ2
λ

, (B.4)

and

b− =
κ+ β

σ2
λ

−
√(

κ+ β

σ2
λ

)2

− 2
Eν [e(1−γ)Z − 1]

σ2
λ

. (B.5)

Collecting constant terms results in the following characterization of a in terms

of b:

a =
1− γ

β

(
µ− 1

2
γσ2

)
+ (1− γ) log β + b

κλ̄

β
. (B.6)

Following Tauchen (2005), I choose the negative root, i.e. b = b−. The result-

ing solution has the desirable property of approaching a well-defined limit as

σλ approaches 0, as shown in Appendix B.3. However, given the parameter

choices in Table 1, the discriminant is of the order of 10−5, and therefore the

asset pricing implications of this choice are negligible.
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B.2 Dividend claim

Applying Ito’s Lemma to the product F (λ, Y )π in the case of time-varying

disaster risk yields

d(Ftπt) + Ytπt dt = πt(DFt) dt+ Ft(Dπt) dt+ Ytπt dt+

πt(δFt)
> [dBt dBλ,t]

> + Ft(δπt)
> [dBt dBλ,t]

> + (δπt)
>(δFt) dt+

λJ (πtFt) dt+ ((πtFt − πt−Ft−)dNt − λJ (πtFt)) dt, (B.7)

where I have used the fact that Bt and Bλ,t are independent. Equation (32)

then follows from the argument given in Appendix A.2.

The following argument derives a differential equation for G using (32).

First the drift, diffusion and jump terms for the state-price density are derived.

As in the case of constant disaster risk, Ito’s Lemma applied to (13) implies

that the diffusion term for the state-price density is given by

δπt =
πt
fC
δfC

It follows from (25) that continuation utility equals

V (λ,C) = J(λ,W (C)) = J(λ, lC) = l1−γI(λ)
C1−γ

1− γ
.

Therefore, by (29),

fC(C, V (λ,C)) = βl1−γI(λ)C−γ = βγI(λ)C−γ (B.8)

It follows from Ito’s Lemma that

δfC
fC

=


 −γσ
bσλ

√
λt




and therefore

δπt
πt

=


 −γσ
bσλ

√
λt


 . (B.9)

No-arbitrage implies that the drift of the state-price density is given by

Dπt = −rtπt − λJ (πt). (B.10)
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Defining Ht as in (A.10), it from (13) that

J (πt) = HtEν
[
fC(Cte

Zt , V (λt, Cte
Zt))− fC(Ct, V (λt, Ct))

]

= Htβ
γI(λt)Eν

[
C−γt e−γZt − C−γt

]

= πtEν
[
e−γZt − 1

]
. (B.11)

The calculation is completed by substituting (30) in for rt.

Next the drift, diffusion and jump terms for F are calculated. It follows

from (33) and Ito’s Lemma that

δFt =


 YtG(λt)φσ

YtG
′(λt)σλ

√
λt


 , (B.12)

DFt = G(λt)YtµY +G′(λt)Ytκ(λ̄− λt) +
1

2
G′′(λt)Ytσ2

λλt, (B.13)

J (Ft) = FtEν
[
eφZ − 1

]
. (B.14)

Finally,

J (πtFt) = HtG(λt)Eν
[
fC(CeZ , V (λt, Ce

Z))Yte
φZ − fC(Ct, V (λt, Ct))Yt

]

= HtG(λt)YtEν
[
βγI(λt)C

−γ
t e(φ−γ)Zt − βγI(λt)C

−γ
t

]

= πtFtEν
[
e(φ−γ)Z − 1

]
. (B.15)

Substituting (B.9 – B.15) into (32) implies

GµY +G′κ(λ̄− λt) +
1

2
G′′σ2

λλt −G
(
µ+ β − γσ2 + λtEν

[
e−γZ

(
eZ − 1

)])

−GλtEν
[
e−γZ − 1

]
+ 1−Gγσ2φ+G′bσ2

λλt

+GλtEν
[
e(φ−γ)Z − 1

]
= 0. (B.16)

To derive the ordinary differential equations (35) and (36), note that the

conjecture (34) implies

G′(λt) =

∫ ∞

0

exp {aφ(s) + bφ(s)λt} bφ(s) ds (B.17)

G′′(λt) =

∫ ∞

0

exp {aφ(s) + bφ(s)λt} bφ(s)2 ds. (B.18)

The solution must satisfy the boundary conditions aφ(0) = bφ(0) = 0 and

lim
t→∞

exp {aφ(t) + bφ(t)λt} = 0 ∀λt > 0.
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It follows from the boundary conditions and integration by parts that8

−
∫ ∞

0

exp {aφ(s) + bφ(s)λt} (a′φ(s) + b′φ(s)λt) ds = 1. (B.19)

It follows from (34), (B.17), (B.18) and (B.19) that each term in (B.16)

takes the form of an integral of exp {aφ(s) + bφ(s)} multiplied by an expression

that is linear in λt. Equation (34) can therefore be solved by setting the terms

within the integral equal to zero, or equivalently, solving

µY + bφ(s)κ(λ̄− λt) +
1

2
b2φ(s)σ

2
λλt − µ− β + γσ2 − λtEν

[
e−γZ(eZ − 1)

]

− λtEν
[
e−γZ − 1

]− a′φ(s)− b′φ(s)λt − γσ2φ+ bφ(s)bσ
2
λλt

+ λtEν
[
e(φ−γ)Z − 1

]
= 0. (B.20)

Collection constant terms implies (35); collecting linear terms implies (36).

Thus the price of the dividend claim is characterized by (33), where G is given

by (34), and aφ and bφ are characterized by (35) and (36) respectively, with

aφ(0) = bφ(0) = 0.

B.3 Limiting behavior

This section evaluates the solution in the limit as σλ approaches zero. When

λ is equal to its long-run mean, the limit is shown to equal the solution to

the constant disaster risk model. Choosing the solution corresponding to the

negative root for b, (B.5), it follows that

b =
κ+ β

σ2
λ

−
√(

κ+ β

σ2
λ

)2

− 2
Eν [e(1−γ)Z − 1]

σ2
λ

.

To evaluate b in the limit, consider a function g(x) of the form

g(x) = c1 −
√
c21 + c2x,

8The details of this calculation are as follows. Let h1(s) = exp {aφ(s) + bφ(s)λt} and

h2(s) = 1. Integration by parts implies
∫ ∞

0

h1(s)h′2(s) ds = lim
s→∞

(h1(s)h2(s))− h1(0)h2(0)−
∫ ∞

0

h′1(s)h2(s) ds,

where the the left hand side of the above is identically zero.
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where c1 and c2 are nonzero constants. Because g(0) = 0,

lim
x→0

g(x)

x
= g′(0) = −1

2
c−1
1 c2.

Now let c1 = κ+ β and c2 = −2Eν
[
e(1−γ)Z − 1

]
. Then b can be written as

b =
1

σ2
λ

(
c1 −

√
c21 + c2σ2

λ

)
.

It follows that

lim
σλ→0

b = −1

2
c−1
1 c2 =

Eν
[
e(1−γ)Z − 1

]

κ+ β
. (B.21)

Combining (B.21) with (B.6), it follows that

lim
σλ→0

(a+ bλ̄) =
1− γ

β

(
µ− 1

2
γσ2

)
+ (1− γ) log β + λ̄

Eν
[
e(1−γ)Z − 1

]

β
.

Therefore

lim
σλ→0

J(λ̄,W ) = exp

{
1− γ

β

(
µ− 1

2
γσ2

)
+ (1− γ) log β + λ̄

Eν
[
e(1−γ)Z − 1

]

β

}
W 1−γ

1− γ
.

(B.22)

I now evaluate the solution for the constant disaster risk model in the limit

as ψ approaches 1. It suffices to show that j1−γ approaches the exponential

term in (B.22). Let

A = −µ+
1

2
γσ2 − λ(1− γ)−1Eν

[
e(1−γ)Z − 1

]
. (B.23)

Then, by (A.6),

j =

[(
A+

β

1− 1
ψ

)
1− 1

ψ

βψ

] 1
1−ψ

=

[
A

(
1− 1

ψ

)
β−ψ + β1−ψ

] 1
1−ψ

=

[
Aβ−1

(
1− 1

ψ

)
+ 1

] 1
1−ψ

β

= exp

{
− 1

ψ
log

([
Aβ−1

(
1− 1

ψ

)
+ 1

] 1

1− 1
ψ

)
+ log β

}
.

From the definition of the exponential, it follows that

lim
ψ→1

[
Aβ−1

(
1− 1

ψ

)
+ 1

] 1

1− 1
ψ

= exp
{
Aβ−1

}
.
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Since both this limit and the limit of 1/ψ are well-defined as ψ approaches 1,

I conclude that

lim
ψ→1

j = exp
{−β−1A+ log β

}
.

and thus

lim
ψ→1

j1−γ = exp
{−(1− γ)β−1A+ (1− γ) log β

}
.

Substituting in (B.23) for A results in the exponential term in (B.22).
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Table 1: Parameters for the time-varying disaster risk model

Panel A: Cash flow parameters

Average growth in consumption (normal times) µ 0.0252

Volatility of consumption growth (normal times) σ 0.020

Leverage φ 2.8

Average probability of a rare disaster λ̄ 0.017

Mean reversion κ 0.142

Volatility parameter σλ 0.09

Probability of default given disaster q 0.40

Panel B: Preference parameters

Rate of time preference β 0.02

Relative risk aversion γ 3.0

Elasticity of intertemporal substitution ψ 1.0

Notes: The table shows parameter values for the time-varying disaster risk

model. The process for the disaster intensity is given by

dλt = κ(λ̄− λt) dt+ σλ
√
λt dBλ,t.

The consumption (endowment) process is given by

dCt = µCt dt+ σCt dBt + (eZt − 1)Ct− dNt,

where Nt is a Poisson process with intensity λt, and Zt is calibrated to the dis-

tribution of large declines in GDP in the data. The dividend Yt equals Cφ
t . The

representative agent has recursive utility defined by Vt = Et
∫∞
t
f(Cs, Vs) ds,

with normalized aggregator

f(C, V ) = β(1− γ)V

[
logC − 1

1− γ
log((1− γ)V )

]
.

Parameter values are in annual terms.
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Table 2: Population moments from simulated data and sample moments from

the historical time series

Model U.S. Data

Population Conditional

E[Rb] 2.49 2.74 2.01

σ(Rb) 3.59 2.13 5.91

E[Re −Rb] 5.56 6.38 5.97

σ(Re) 18.41 16.37 18.48

Sharpe Ratio 0.31 0.38 0.32

σ(∆c) 6.15 1.99 3.56

σ(∆y) 17.23 5.56 11.51

Notes: The time-varying disaster risk model is simulated at a monthly fre-

quency and simulated data are aggregated to an annual frequency. Moments

are calculated using the annual data and (except for the Sharpe ratio) ex-

pressed in percentage terms. The second column reports population moments

from simulated data. The third column reports moments from simulated data

that are calculated over years in which a disaster did not occur. The last

column reports sample moments from annual U.S. data from 1890 to 2004. Rb

denotes the gross return on the government bond, Re the gross equity return,

∆c growth in log consumption and ∆y growth in log dividends.
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Table 3: Long-horizon regressions: Excess returns

Horizon in years

1 2 4 6 8 10

Panel A: Model – Population moments

β1 -0.15 -0.28 -0.48 -0.59 -0.75 -0.83

R2 0.04 0.07 0.10 0.11 0.14 0.14

Panel B: Model – Conditional moments

β1 -0.23 -0.43 -0.75 -0.96 -1.15 -1.27

R2 0.16 0.28 0.44 0.51 0.56 0.56

Panel B: U.S. Data

β1 -0.09 -0.14 -0.36 -0.48 -0.73 -0.98

t-stat -2.04 -1.84 -2.91 -2.69 -3.22 -3.75

R2 0.04 0.04 0.12 0.12 0.17 0.23

Notes: Excess returns are regressed on the lagged price-dividend ratio in data

simulated from the model and in annual data from 1890 to 2004. Specifically,

the table reports coefficients β1, R
2 statistics and, for the sample, Newey-West

t-statistics for regressions

h∑
i=1

log(Re
t+i)− log(Rb

t+i) = β0 + β1(pt − yt) + εt,

where Re
t+i and Rb

t+i are, respectively, the return on the aggregate market and

the return on the government bill between t+i−1 and t+i and pt−yt is the log

price-dividend ratio on the aggregated market. The time-varying disaster risk

model is simulated at a monthly frequency and simulated data are aggregated

to an annual frequency. Panel A reports population moments from simulated

data. Panel B reports moments from simulated data that are calculated over

years in which a disaster does not take place (for a horizon of 2, for example,

all 2-year periods in which a disaster takes place are eliminated). Panel C

reports sample moments.
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Table 4: Long-horizon regressions: Consumption growth

Horizon in years

1 2 4 6 8 10

Panel A: Model – Population moments

β1 0.03 0.06 0.10 0.15 0.16 0.19

R2 0.02 0.03 0.05 0.06 0.05 0.06

Panel B: U.S. Data

β1 0.003 -0.001 -0.007 0.002 0.006 0.040

t-stat 0.45 -0.06 -0.38 0.08 0.16 0.82

R2 0.0011 0.0000 0.0013 0.0001 0.0004 0.0129

Notes: Growth in aggregate consumption is regressed on the lagged price-

dividend ratio in data simulated from the model and in annual data from 1890

to 2004. Specifically, the table reports coefficients β1, R
2 statistics and, for

the sample, Newey-West t-statistics for regressions

h∑
i=1

∆ct+i = β0 + β1(pt − yt) + εt,

where ∆ct+i is log growth in aggregate consumption between periods t+ i− 1

and t+ i and pt − yt is the log price-dividend ratio on the aggregated market.

The time-varying disaster risk model is simulated at a monthly frequency

and simulated data are aggregated to an annual frequency. Panel A reports

population moments from simulated data. Panel B reports sample moments.

The conditional moments, namely the slope coefficient and the R2 calculated

over periods in the simulation without disasters, are equal to zero.
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Table 5: Moments implied by the constant disaster risk model

Population Conditional

Panel A: φ = 1.5, β = .03, γ = 4, ψ = 1/4

E[Rb] 3.66 3.85

σ(Rb) 2.52 0

E[Re −Rb] 5.52 6.04

σ(Re) 6.75 3.29

Sharpe Ratio 0.95 1.83

σ(∆y) 8.67 3.00

Panel B: φ = 1.5, β = .03, γ = 4, ψ = 1

E[Rb] 1.46 1.66

σ(Rb) 2.64 0

E[Re −Rb] 5.40 5.91

σ(Re) 6.69 3.23

Sharpe Ratio 0.95 1.83

σ(∆y) 8.80 3.00

Panel C: φ = 2.8, β = .03, γ = 4, ψ = 1

E[Rb] 1.44 1.66

σ(Rb) 2.74 0

E[Re −Rb] 7.89 8.79

σ(Re) 10.62 6.19

Sharpe Ratio 0.83 1.42

σ(∆y) 16.59 5.60

Notes: The constant disaster risk model is simulated at a monthly frequency

and simulated data are aggregated to an annual frequency. Moments are

calculated based on annual data and (except for the Sharpe ratio) expressed

in percentage terms. All panels assume that consumption growth is i.i.d.,

namely that σλ = 0 and λt = λ̄. Other parameters (unless otherwise noted)

are as in Table 1. The volatility of log consumption growth equals 5.67% per

year in population and 2% per year conditional on no disasters.
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Figure 1: Distribution of λt
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Notes: This figure shows the probability density function for λt, the time-

varying intensity (per year) of a disaster. Parameter values are given in Ta-

ble 1. The solid line is located at the unconditional mean λ̄ = 0.017.
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Figure 2: Components of the price-dividend ratio in the time-varying disaster

risk model
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Notes: The upper panel shows aφ as a function of horizon t; the lower panel

shows bφ as a function of t. These are components of the solution for the

price-dividend ratio in the time-varying disaster risk model. Parameter values

are given in Table 1.
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Figure 3: Government bill return in the time-varying disaster risk model
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Notes: This figure shows rb, the instantaneous expected return on a govern-

ment bill; rL, the instantaneous expected return on the bill conditional on no

default and r, the rate of return on a default-free security as functions of the

disaster intensity λ. Returns are annual.
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Figure 4: Decomposition of the equity premium in the time-varying disaster

risk model
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Notes: This figure shows the instantaneous equity premium relative to the

government bond. The solid line shows the full equity premium, the dashed

line shows the equity premium without the hedging term and the dotted line

shows the equity premium assuming there is no disaster risk. Returns are

annual.
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