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1 Introduction

Becker (1973) introduces the use of two-sided matching theory to analyze empirical evidence on marriages
between men and women. He models marriage as a competitive market with endogenous transfers between
spouses. Other markets can be modeled as two-sided matching games with finite numbers of heterogeneous
agents. Examples include the matching of workers to firms and upstream to downstream firms. Simpler match-
ing games where one side of the market may care only about money include families to houses and bidders
to multiple objects for sale in an auction. Theoretical work is also ongoing on models of one and many-sided
matching.

Matching games are distinguished from simpler models of markets because agents on all sides of the market
make a limited number of matches. Either agents may be able to make an exogenously limited number of
matches, or nonlinearities in match payoffs may endogenously limit the number of matches of any given party.
Either way, agents on the same side of the market are rivals to match with agents on the other side. In marriage,
each woman can have only one husband, so men compete to marry the most attractive women.

Matching games are inviting frameworks for empirical work as the models apply to a finite number of
agents with flexible specifications for the production functions generating match output. A typical dataset for
a matching market lists a series of observed matches and some characteristics about the parties in each match.
Economists assume the data come from a market in equilibrium and want to estimate the production function
generating match output for observed and counterfactual matches.

This paper provides a structural estimator for the production function that gives the total output of a match as
a function of observable agent characteristics. This production function subsumes individual agent preferences
in a transferable utility matching game, a game where matched agents exchange monetary transfers as part of
a price-taking matching equilibrium. The match production function governs who matches with whom, the
dependent variable data I use for estimation. I do not use data on the equilibrium transfers, although matched
agents exchange such monies in the economic model. Using data on only observed matches is helpful for
studying markets such as marriage, where the idea of exchanging money in a market setting is an approximation
to how resources are allocated in a household, as well as for studying relationships between firms, where the
monies exchanged are often private contractual details.

I present an empirical example from industrial organization. I use data on the identities of the suppliers of
individual car parts for particular car models. In this upstream-downstream market, a match is a car part for
a specific car model, and the two sides of the market are car part suppliers, like Bosch and Delphi, and the
final assemblers of cars, like General Motors and Toyota. Suppliers typically produce many different car parts.
I focus on two related empirical questions. First, I estimate the returns to specialization from the viewpoint
of the supplier. I estimate how these returns from specialization vary at the levels of producing car parts for
a particular car, for a particular brand of car, for a particular assembler (parent company) and for a particular
home region for a brand (Europe, North America, Asia). Second, I examine whether suppliers that can meet the
quality levels of Asian assemblers (Honda and Toyota receive the highest quality ratings from sources such as
Consumer Reports) are better able to compete and win contracts from non-Asian suppliers. If so, this pattern
of sorting is consistent with an explanation where matching with Toyota makes a supplier higher quality or
with an explanation where Toyota only matches with high-quality suppliers. Either way, matching with Toyota
coincides with a competitive edge that helps win business from non-Asian assemblers. In other words, the
empirical evidence is compatible with a story where matching with one type of firm (Asian assemblers) may
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be complementary with matching with other firms (non-Asian assemblers).
The methodological contributions are split into identification and estimation. Match data comes from the

outcome to a market, which intermingles the preferences of all participating agents and finds an equilibrium. An
agent may not match with its most preferred partner because that partner is taken. Given this rivalry for partners,
it is not obvious what types of economic parameters are identified from having equilibrium outcome data from
matching markets. Identification asks the question of just what economic parameters can be learned from
data on who matches with whom? Aspects of match production functions can be identified in a transferable
utility setting. I explore the nonparametric identification of match production functions using data on only
equilibrium matches. Identification relies on inequalities implied by the equilibrium concept known as pairwise
stability.1 The results are split into results on cardinal and ordinal identification. Cardinal identification is
probably more important in many empirical applications. Cardinal identification using qualitative match data
arises because cardinal properties of match production functions govern sorting patterns in transferable utility
matching games. I extend the results of Becker (1973) in several dimensions. For example, I show how to
identify the relative importance of the components of a vector of agent characteristics in a match production
function. This allows a researcher to measure which characteristics drive the sorting patterns seen in the data.

Ordinal identification asks whether a researcher can identify the relative ordering of match production for
different types of matches. Here, I extend identification results from the semiparametric multinomial choice
(maximum score) literature by Manski (1975) and especially Matzkin (1993). The extension is non-trivial
because one cannot freely vary the choice set of a single agent when using data that are the equilibria to
matching games. In matching, one can only choose a partner if the partner agrees to match with you. I prove
the ordinal identification of match production functions by varying the exogenous distribution of the types of
agents in a matching market.

My identification arguments do not require data on objects that are not found in many datasets but are
important in matching models: the endogenous prices, the number of physical matches that an agent can make
(quotas), or continuous outcomes such as production levels, revenues and profits. Quotas are often a modeling
abstraction in many-to-many matching; not requiring data on such an abstraction is an advantage. The prices
transferred between upstream and downstream firms are often private contractual details and are not observed.
Estimation without data on this endogenous variable will be needed for many empirical applications.

For estimation, I provide a computationally simple maximum score estimator for match production func-
tions. The estimator uses inequalities derived from necessary conditions for pairwise stability.2 Evaluating the
statistical objective function is computationally simple: checking whether an inequality is satisfied requires
only evaluating match production functions and pairwise comparisons. Numerically computing the global
maximum of the objective function is somewhat harder (it requires a global optimization routine) although
estimation is certainly doable with software built into commercial packages such as Matlab or Mathematica.

There are three conceptual insights that are important for practical matching estimation. First, using maxi-
mum score avoids the need to non-parametrically estimate conditional match probabilities in a first stage, as a

1The cooperative game theoretic equilibrium concept of pairwise stability is not a special case of the noncooperative Nash solution
concept, which Bajari, Hong and Ryan (2007b), Ciliberto and Tamer (2007) and Pakes, Porter, Ho and Ishii (2006) among others provide
estimators for. Here I exploit the pairwise stability solution concept to investigate nonparametric identification under partial observation of
the equilibrium outcomes (matches, not prices). The noncooperative papers do not study nonparametric identification.

2There is tradition of using necessary conditions and inequalities to estimate complex games. See Haile and Tamer (2003) and Bajari,
Benkard and Levin (2007a). No previous research has used maximum score, the original estimator based on inequalities, to estimate
complex games.
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finite-sample analog of the identification arguments would seem to require. The conditioning arguments are all
the observable exogenous agent characteristics in a matching market and would be of extremely high dimension
in any dataset of economic importance. Therefore, maximum score avoids a data curse of dimensionality in
the size of the matching market, arising from needing to estimate match probabilities nonparametrically. The
second insight is that maximum score avoids having to compute an equilibrium to a matching market as part
of evaluating a statistical objective function. Only necessary conditions (inequalities) from equilibrium are im-
posed. Third, maximum score avoids having to manually compute integrals over econometric unobservables,
although the underlying economic model allows these unobservables to affect the matches that are observed, to
an extent that will be discussed in detail.

A traditional simulated method of moments or simulated maximum likelihood estimator interacts the last
two issues: inside the statistical objective function, a solution to a matching game must be computed for each
combination of a empirically distinct matching market and a vector of simulation draws for all the econometric
unobservables for that market. This interaction of nested solutions and integrals over error terms creates a
computational curse of dimensionality in the size of matching markets. To understand the logic behind the
combinatorics, let there be 3 men and 3 women in a marriage market. None of the agents can be single (for
simplicity only). Let the ordered pair 〈1,2〉 refer to a marriage between man 1 and woman 2. It turns out that
there are 32 = 9 possible marriages that can happen, which are

〈1,1〉 , 〈1,2〉 , 〈1,3〉 , 〈2,1〉 , 〈2,2〉 , 〈2,3〉 , 〈3,1〉 , 〈3,2〉 , 〈3,3〉 .

Each individual can join only one marriage in an assignment of men to women for the entire market. There are
3! = 6 possible assignments for the entire market,

{〈1,1〉 ,〈2,2〉 ,〈3,3〉} , {〈1,1〉 ,〈2,3〉 ,〈3,2〉} , {〈1,2〉 ,〈2,1〉 ,〈3,3〉} , {〈1,2〉 ,〈2,3〉 ,〈3,1〉} , {〈1,3〉 ,〈2,1〉 ,〈3,2〉} , {〈1,3〉 ,〈2,2〉 ,〈3,1〉} .

Now let there be 100 men and 100 women in a marriage market. There are 1002 = 10,000 matches and 100! =

9.33× 10157 market-wide assignments. The number of atoms in the universe is much lower, at around 1079,
than the number of possible assignments. Forming the probability that the observed assignment represents
the market’s equilibrium assignment will not be possible if a matching mechanism must be solved inside a
1002 = 10,000 dimensional numerical integral over match-specific unobservables, and this integral must be
repeatedly evaluated at different structural parameter values in an outer optimization routine.

This paper relies on one non-primitive assumption about the stochastic structure of the model, which will be
discussed in detail soon. I feel the downside of the non-primitive nature of this assumption is far outweighed by
the benefits it gives. Throughout the paper, I will argue that, because of the above combinatorics, writing down
a parametric distribution and computing a likelihood by numerical integration is computationally prohibitive.
In particular, the combinatorics of checking whether an assignment satisfies known necessary conditions to be a
stable assignment (with no transfer data) become much worse with many-to-many matching, which is the case
I study in the automotive supplier empirical example and in a separate application to FCC spectrum auctions
(Bajari and Fox, 2007). The maximum score estimator in this paper 1) naturally generalizes concepts such as
assortative matching from the matching literature, 2) gives full support to the dependent variable data on match
assignments and so cannot be easily rejected, 3) does not suffer from a computational curse of dimensionality
in the size of the market, and 4) does not suffer from a data curse of dimensionality. As a bonus, the maximum
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score framework allows the study of nonparametric identification of matching games, which is important as it
is not obvious what can learned about structural parameters from data on who matches with whom. This is the
first paper to study nonparametric identification in any type of matching game.

The paper is organized as follows. Section 2 provides a brief overview of some results from matching
theory and discusses the role of matching estimation in empirical work. Section 3 outlines a many-to-many
matching game. Section 4 discusses how to add econometric error terms to a matching game. Section 5
discusses cardinal identification and Section 6 discusses ordinal identification. Section 7 discusses estimation
with the maximum score estimator and relevant asymptotic results. Section 8 provides Monte Carlo evidence
about the performance of the estimator. Section 9 is the empirical application to automotive suppliers and
assemblers. Section 10 sits somewhat apart from the remainder of the paper; the section provides an alternative
model and asymptotic theory for the practical situation of having one large matching market, rather than a
number of separate markets. Having developed my approach to estimation and identification in detail, Section
11 compares the approach to some parametric estimators for various types of matching games that have been
recently introduced in the literature.

2 One-to-one, two-sided matching games with transfers

Not all readers will be intimately familiar with matching theory. This section covers some classic results and
then shows how identification, estimation and numerical analysis are needed to extend them.

2.1 The sorting characterization of Becker

In two-sided matching models, agents are rivals to match with the most attractive partners on the other side of
the market. In a classic paper, Becker (1973) studies the matching of men and women in marriage. The model
is static, there is perfect information, the agents are price takers and each agent can have at most one match, of
an opposite gender. There are a finite set of men indexed by a scalar type xm and a finite set of women indexed
by a scalar type xw.3 Think of xm as the years of schooling of a man and xw as the years of schooling of a
woman. Assume xm and xw have continuous support. A matching is the ordered pair 〈xm,xw〉.4 Each person can
have at most one match; 〈0,xw〉 represents a single woman and 〈xm,0〉 is a single man.

If a couple xm and xw marries, their marriage produces total output f (xm,xw). I call f (xm,xw) the production
function. Married men and women split the production from their marriage in a market equilibrium. If pm

x is the
equilibrium payoff to man xm and pw

x is the equilibrium payoff to woman xw, it is a result that pm
x + pw

x = f (xm,xw)

if xm and xw are married and pm
x + pw

x ≤ f (xm,xw) if they are not married. Otherwise, the equilibrium is not
pairwise stable as xm and xw would prefer to deviate and match with each other. We say men and women have
transferable utility if they can express utility in terms of money.

Becker (1973) uses matching theory to predict the pattern of sorting between men xm and women xw.
Assortative matching occurs when men with high levels of schooling match with women with high levels of
schooling. Anti-assortative matching is when high-schooled men match with low-schooling women, and vice

3Sattinger (1979) studies a similar model with a continuum, rather than a finite number, of agents. Tinbergen (1947) did early work on
a related model.

4For matches, I use 〈·, ·〉 for an ordered pair instead of (·, ·), as matches are a special object in this paper. The convention is that the
characteristics of the man appears in the first coordinate and the characteristic of the woman is the second coordinate.
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versa. Assortative matching will occur if xm and xw are complements over the entire support, or

∂ f (xm,xw)
∂xm∂xw > 0 ∀xm ∈ R,xw ∈ R, (1)

when f is twice differentiable. Assortative matching occurs because high-xm men and high-xw women produce
incrementally more output together. Likewise, anti-assortative matching occurs when xm and xw are substitutes,
or ∂ f (xm,xw)

∂xm∂xw < 0. If ∂ f (xm,xw)
∂xm∂xw = 0, say when f (xm,xw) = xm + xw, then any sorting pattern is compatible with

equilibrium.5

The Becker result can be used in empirical work. Say the researcher has a dataset from an equilibrium
to a one-to-one, two-sided matching market with scalar types. If high type agents match, the researcher can
conclude xm and xw are (weakly) complements. If there is anti-assortative matching, one may conclude that xm

and xw are substitutes. No information on pm
x and pw

x is needed for this inference, even though in the model
matched agents exchange these monies in equilibrium. This as an advantage: we can learn about the marriage
production function f (xm,xw) with data on only who matches with whom.

2.2 Equilibrium computation

Koopmans and Beckmann (1957) and Shapley and Shubik (1972) show how to compute an equilibrium to a
one-to-one matching model with a finite number of men and a finite number of women. The production of
a match between man a and woman i is given as f〈a,i〉, which is unrestricted to be f〈a,i〉 = f

(
xm

a ,xw
i
)
, where xm

a

and xw
i are scalar types, although the types of Becker are a special case. In this transferable utility world, the

equilibrium matching maximizes the sum of economy-wide production, so the equilibrium marriages can be
found using a social planner’s problem, here a linear programming problem. Likewise, the equilibrium payoffs
pm

a for man a and pw
i for woman i can be calculated by using the dual linear program to the social planner’s

problem. See Roth and Sotomayor (1990, Chapter 8) for details on these linear programming formulations.

2.3 Limitations of the Becker sorting characterization

The Becker (1973) sorting characterization is the first instance of using matching models in empirical work.
However, the subsequent theoretical matching literature has not been able to analytically characterize the sort-
ing between agents on two sides of a market under these relevant generalizations: 1) Each type xm or xw is a
vector with unrestricted distributions of xm and xw; 2) the type f〈a,i〉 is match and not agent specific; 3) each
agent can make more than one match, up to some agent-specific quota qm

a or qw
i ; 4) payoffs are not additively

separable across these multiple matches; and 5) the sign of ∂ f (xm,xw)
∂xm∂xw is not constant over the support of xm and

xw. Consider vector types xm and xw: an agent may have a religion, income, physical appearance in addition to
the earlier years of schooling. The theoretical literature cannot analytically characterize the equilibrium sorting
using simple properties like complements and substitutes.

In the situations without analytical characterizations of sorting patterns, numerical analysis is needed to
compute an equilibrium for a given production function f (xm,xw) and distributions of agent characteristics
Gm (xm) and Gw (xw). In some models, the theoretical literature shows it is possible to generalize the linear
programming tools above to compute an equilibrium.

5The equilibrium assignment (matching) of men to women will be unique if there is not a non-generic case such as f (xm,xw) = xm +xw.
The prices pm

x and pw
x will typically lie in intervals rather than being unique.
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2.4 Uses of matching estimation

The production function f (xm,xw) is typically not known in empirical applications. This paper shows how to
use data on who matches with whom in equilibrium to estimate match production functions like f (xm,xw). The
research goal is primarily positive: to understand the relative importance of various observed agent character-
istics in the equilibrium sorting of agents that we see in the data. For marriage, we can measure the relative
importance of religion, income, schooling and physical appearance in the production of a match.

A related goal is to distinguish the contributions of match production functions and the distribution of
exogenous agent characteristics, Gm (xm) and Gw (xw), in the equilibrium sorting. For example, Choo and Siow
(2006) estimate changes in the sorting patterns between broad types of men and women across decades in the
United States, and in part ask whether changes in match production functions are behind the differences in
sorting patterns.

As with any structural paper, estimating a match production function is a key step towards being able to
compute counterfactual equilibria. A researcher can use the computational tools discussed above to simulate
market equilibria under the same f (xm,xw) but different Gm (xm) and Gw (xw) or a different f (xm,xw) and the same
Gm (xm) and Gw (xw). For example, a researcher could estimate match production functions in a many-to-many
matching market with scale economies, and then recompute the equilibrium to the market when the production
function is changed to not allow scale economies.

3 Many-to-many matching games

I am the first empirical researcher to study many-to-many matching without additive separability in an up-
stream firm’s payoffs across multiple downstream firm partners. These interactions in payoffs across partners
are the key behind many empirical issues, as the empirical application to car parts suppliers and assemblers
will illustrate. This section outlines a two-sided, many-to-many matching game without econometric errors.
Simpler models such as marriage are special cases. In the next section, I discuss how to extend these models
to introduce econometric error terms.

Some theoretical results on one-to-one, two-sided matching with transferable utility have been generalised
by Kelso and Crawford (1982) for one-to-many matching, Leonard (1983) and Demange, Gale and Sotomayor
(1986) for multiple-unit auctions, as well as Sotomayor (1992), Camiña (2006) and Jaume, Massó and Neme
(2007) for many-to-many matching with additive separability in payoffs across multiple matches. These models
are applications of general equilibrium theory to games with typically finite numbers of agents. Dagsvik (2000)
and Choo and Siow (2006) pioneered the structural estimation of one-to-one (marriage), logit-based empirical
matching models with discrete agent types. The identification strategy used in this paper can be extended to the
cases studied by Kovalenkov and Wooders (2003) for one-sided matching, Ostrovsky (2004) for supply chain,
multi-sided matching, and Garicano and Rossi-Hansberg (2006) for the one-sided matching of workers into
coalitions known as firms with hierarchical production.6 Overall, this paper uses the term “matching game”
to encompass a broad class of models, including some games where the original theoretical analyses used
different names.

6Lucas (1978) and Rosen (1982) are predecessors to Garicano and Rossi-Hansberg (2006).
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3.1 Matching markets

Consider an example where automobile assemblers (think General Motors and Toyota) match with automotive
parts suppliers (think Bosch and Johnson Controls). Several exogenous objects define a matching market. Let
U be a finite set of upstream firms, indexed by i. Let D be a finite of downstream firms, indexed by a. Let
Q : U ∪D→ N+ be the set of quotas, where qu

a ∈ Q is the quota of an upstream firm a and qd
i ∈ Q is the quota of

the downstream firm i. A quota represents the maximum number of physical matches that a firm can have. Let
X be the collection of all payoff-relevant exogenous characteristics. I will be specific about the elements of X

below. A matching market also has the exogenous preferences of agents, which I will also discuss below.
The space of matches is (U ∪{0})× (D∪{0}). Let µ = 〈a, i〉 be a match between downstream firm or auto-

mobile assembler a and upstream firm or car parts supplier i. As before, 〈a,0〉 refers to an unfilled quota slot
for an assembler and 〈0, i〉 refers to an unfilled quota slot for a supplier. A matching market outcome is a tuple
(A,T ). An assignment, or a finite collection of matches, is an element of the power set of (U ∪{0})× (D∪{0}).
For any assignment A = {µ1,µ2, . . .}, T =

{
tµ1 , tµ2 , . . .

}
is a set of transfers for all matches in A. Each tµ1 ∈ R

and represents a payment for a downstream firm to an upstream firm. In a marriage market with 100 matched
couples, A is a finite set of 100 marriages and T is a finite set of 100 transfers between each of the married
couples. A key concern that will come up at several points is that the number of matches in an assignment is
often very large in a matching game. Altogether, the combination of the exogenous and endogenous elements
of a matching market form the tuple (D,U,Q,X ,A,T ).

Given an outcome (A,T ), the payoff of i ∈U is

ru (~x(i,Cu
i (A)))+ ∑

a∈Cu
i (A)

t〈a,i〉. (2)

The payoff at (A,T ) for a ∈ D for the match 〈a, i〉 ∈ A is rd (~x(i,{a}))− t〈a,i〉. I use the convention that the car
assembler is sending positive transfers to the car parts supplier, but the notation allows transfers to be negative.
I will now explain each of the elements of the notation that enters these payoffs.

Cu
i ⊆D∪{0} is a coalition of downstream firms that may match with upstream firm i. Cu with no arguments

is an arbitrary collection of downstream firms. If the assignment A is an argument to the function Cu
i (A), then

Cu
i (A)≡

{a ∈ D | 〈a, i〉 ∈ A} if {a ∈ D | 〈a, i〉 ∈ A} 6= /0

{0} if {a ∈ D | 〈a, i〉 ∈ A}= /0

is the set of downstream firms matched to upstream firm i at the assignment A. Cd ⊆U ∪{0} and Cd
a (A) have

similar interpretations for downstream firms.
A feasible assignment A is one that is under quotas for all agents. This means Cu

i (A) ≤ qu
i ∀ i ∈ U and

Cd
a (A)≤ qd

a ∀a ∈ D.7 Quotas ensure that firms are rivals to match with the most attractive partners on the other
side, as opposed to all firms choosing the most attractive partner.8

This paper studies matching in characteristic space. Let~x(i,Cu) be the vector of characteristics correspond-
ing to the set of matches involving firm i ∈U and the set of potential downstream firm partners in Cu.9 I will

7The maximum quota qu
i of an upstream firm will determine the maximum number of arguments of f (~x), the primary object of

estimation. When upstream firm i does not use all of its quota, null arguments can be included in the argument vector~x of f (~x) to refer to
the unfilled match slots.

8Quotas are not necessary; some other explanation such as decreasing returns to scale may explain why all matches do not occur.
9I use the vector notation~x for characteristics only. Later I will refer to the individual, scalar elements of~x as, say, xk .
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consider three types of characteristics. First consider the most standard case where each agent has a fixed type,

a vector ~xd
a for downstream firm a and a vector ~xu

i for upstream firm i. For example, ~xd
a could be the geographic

location of a’s assembly plant, information on the cars manufactured by a, the markets a sells to, etc. Likewise,
~xu

i could be the geographic location of supplier i, the past experience of the supplier, etc. Allowing types to
be vectors is an important extension of existing theoretical work. In this case, ~x(i,Cu) = cat

(
~xu

i ,x
d
a1

, . . . ,xd
an

)
,

where Cu = {a1, . . . ,an}.10 X is the collection of characteristics for all potential matches in a market, whether
the matches are part of the assignment A or not. Formally, X =

{
~x(i,Cu) | i ∈U,Cu ⊆ D, |Cu| ≤ qu

i
}

.
I also consider cases where covariates vary directly at the match 〈a, i〉 or group-of-matches Cu levels. For

match-specific characteristics, the long vector ~x(i,Cu) = cat
(
~xu,d
〈a1,i〉, . . . ,~x

u,d
〈an,i〉

)
, where each ~xu,d

〈a,i〉 is the vector

of characteristics of the match 〈a, i〉. An example of an element of ~xu,d
〈a,i〉 is a measure of whether two firms’

inventory information systems are compatible. For group-specific characteristics, the vector ~x(i,Cu) is not a
concatenation of shorter vectors for covariates that operate at the match 〈a, i〉 level. An example of group-
specific characteristics is that~x(i,Cu) might include the percentage of supplier i’s assemblers that are located in
countries with rigorous environmental regulations.

All upstream firms have the same revenue function, ru (~x(i,Cu)), which gives the structural revenue of
upstream firm i for the potential downstream firm partners in Cu. The potential nonlinearities in ru (~x(i,Cu)) are
key to this paper’s empirical application to upstream-downstream markets. Downstream firm a has structural
revenues rd (~x(i,{a})) from its potential match 〈a, i〉. I assume that the structural revenues of downstream firms
are additively separable across multiple upstream firm partners: rd (~x(Cd ,{a}

))
= ∑i∈Cd rd (~x(i,{a})), where

Cd ⊆U ∪{0} is a collection of upstream firms.
At a matching market outcome (A,T ), the total profits of i ∈U are given by (2). The fact that transfers enter

additively separably for both upstream and downstream firms allows us to focus on the following production
function.

Definition 1. The production function for (i,Cu) for i ∈U and Cu ⊆ D is

f (~x(i,Cu))≡ ru (~x(i,Cu))+ ∑
a∈Cu

rd (~x(i,{a})) .

For the marriage example of one-to-one matching with fixed types, f (~x(i,{a}))≡ ru (cat
(
~xu

i ,~x
d
a
))

+rd (cat
(
~xu

i ,~x
d
a
))

.
For many-to-many matching, separability of rd (~x(i,{a})) across multiple upstream firm partners makes the

set of arguments of f finite. Consider an example with matches 〈a, i〉, 〈b, i〉 and 〈b, j〉. If the model allowed
arbitrary nonlinearities in both upstream and downstream firms’ structural revenue functions, there would be
a set of firms {a,b, i, j} with production f (~x(〈{i, j} ,{a,b}〉)), even though a and b, b and j as well as i and j

have no direct links.11 Requiring rd (~x(i,{a})) to be additively separable across multiple upstream firm matches
makes the maximum number of matches described by ~x(i,Cu) equal to the maximum quota of any upstream
firm, max

{
qu

i | i ∈U,qu
i ∈ Q

}
.

Sometimes I will view f (·) as an abstract function to be identified and estimated. In this case, I write f (~x),
where the argument~x is an arbitrary vector of characteristics.

10The concatenation operator makes one long vector out of a set of shorter vectors.
11In an empirical application, a researcher can choose a functional form for f so that nonlinearities in an upstream firm’s profits across

its downstream firm partners are distinguished from a downstream firm’s nonlinearities across its upstream firm partners. Some additional
assumption needs to be placed on production functions for nonparametric identification.
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3.2 Pairwise stability

Because binding quotas prevent an agent from unilaterally adding a new partner without dropping an old
one, the equilibrium concept in matching games allows an agent to consider exchanging a partner. I use the
innocuous convention that suppliers pick assemblers.

Definition 2. A feasible outcome (A,T ) is a pairwise stable equilibrium when:

1. For all 〈a, i〉 ∈ A, 〈b, j〉 ∈ A, 〈b, i〉 /∈ A, and 〈a, j〉 /∈ A,

ru (~x(i,Cu
i (A)))+ ∑

c∈Cu
i (A)\{a}

t〈c,i〉+ t〈a,i〉 ≥ ru (~x(i,(Cu
i (A)\{a})∪{b}))+ ∑

c∈Cu
i (A)\{a}

t〈c,i〉+ t̃〈b,i〉, (3)

where t̃〈b,i〉 ≡ rd (~x(i,(Cu
i (A)\{a}

)
∪{b}

))
−
(

rd
(
~x
(

j,Cu
j (A)

))
− t〈b, j〉

)
.

2. For all 〈a, i〉 ∈ A,

ru (~x(i,Cu
i (A)))+ ∑

c∈Cu
i (A)\{a}

t〈c,i〉+ t〈a,i〉 ≥ ru (~x(i,Cu
i (A\{a})))+ ∑

c∈Cu
i (A)\{a}

t〈c,i〉.

3. For all 〈a, i〉 ∈ A,
rd (~x(i,Cu

i (A)))− t〈a,i〉 ≥ 0.

4. For all 〈a, i〉 /∈ A where
∣∣Cu

i (A)
∣∣< qu

i and
∣∣Cd

a (A)
∣∣< qd

a , there exists no t̃〈a,i〉 ∈ R such that

ru (~x(i,Cu
i (A)))+ ∑

c∈Cu
i (A)\{a}

t〈c,i〉 < ru (~x(i,Cu
i (A)∪{a}))+ ∑

c∈Cu
i (A)\{a}

t〈c,i〉+ t̃〈a,i〉

and
rd (~x(i,Cu

i (A)∪{a}))− t̃〈a,i〉 ≥ 0.

Part 1 of the definition of pairwise stability says that upstream firm i would prefer its current assembler a instead
of some alternative assembler b at the transfer t̃〈b,i〉 that would make assembler b switch to sourcing the part in
question from i instead of its equilibrium supplier, j. Because of transferable utility, supplier i can always cut
its price and attract b’s business; at an equilibrium, it would lower its profit from doing so if the new business
supplanted the relationship with a. This is the main component of the definition of pairwise stability that I will
focus on in this paper.

Parts 2 and 3 deal with matched agents not profiting by unilaterally dropping a relationship and becoming
unmatched. These are individual rationality conditions: all matches must give an incremental positive surplus.
Finally, Part 4 involves two firms with free quota not wanting to form a new match. For the most part, I will not
focus on these conditions in this particular paper because implementing them in identification and estimation
would require more types of data. Parts 2–4 compare being matched to unmatched, and so implementing the
restrictions from Parts 2–4 would require data on unmatched agents. A person being single or unmarried is
often found in the data. The notion that a car parts supplier in an upstream–downstream market would have a
free quota slot is a modeling abstraction. It is hard to find data on quotas.

I have not imposed sufficient conditions to ensure the existence of an equilibrium. In many-to-one, two-
sided matching with complementarities across matches on the same side of the market, Hatfield and Milgrom
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(2005), Pycia (2008) and Hatfield and Kojima (2008) demonstrate that preference profiles can be found for
which there is no pairwise stable outcome.12 The counterexamples mean that general existence theorems do
not exist.13

Many interesting matching empirical applications require investigating possibilities outside of the scope
of current existence theorems. I maintain the assumption that the data on an assignment represent part of an
equilibrium for the game.14 I discuss multiple equilibrium assignments below.

3.3 Using matches only: local production maximization

A matching game outcome (A,T ) has two components: the assignment, sorting or matching A and the equilib-
rium transfers T . I consider using data on only A. This is because researchers often lack data on transfers, even
when the agents use transfers. Car parts suppliers and automobile assemblers exchange money, but the transfer
values are private, contractual details that are not released to researchers.

I will exploit the transferable utility structure of the game to derive an inequality that involves A but not T .
Consider an example where Cu

i (A) = {a} and Cu
j (A) = {b}. The inequality (3) becomes

ru (~x(i,{a}))+ t〈a,i〉 ≥ ru (~x(i,{b}))+ rd (~x(i,{b}))−
(

rd ( j,{b})− t〈b, j〉

)
, (4)

after substituting the definition of t̃〈b,i〉. Likewise, there is another inequality for upstream firm j’s deviation to
match with a instead of b:

ru (~x( j,{b}))+ t〈b, j〉 ≥ ru (~x( j,{a}))+ rd (~x( j,{a}))−
(

rd (i,{a})− t〈a,i〉

)
. (5)

Adding (4) and (5), cancelling the transfers t〈a,i〉 and t〈b, j〉 that now are the same on both sides of the inequality,
and substituting the definition of a production function, Definition 1, creates the new inequality

f (~x(i,{a}))+ f (~x( j,{b}))≥ f (~x(i,{b}))+ f (~x( j,{a})) .

I call this a local production maximization inequality: “local” because only exchanges of one downstream firm
per upstream firm are considered, and “production maximization” because the implication of pairwise stability
says that the total output from two matches must exceed the output from two matches formed from an exchange
of partners.

The local production maximization inequality suggests that interactions between the characteristics of
agents in production functions drive the equilibrium pattern of sorting in a market. As the same set of firms

12Pycia (2007) has both existence and nonexistence results for matching markets without endogenous prices (Gale and Shapley, 1962).
13The fact that a pairwise stable equilibrium does not exist does not mean a decentralized matching market will unravel. Kovalenkov

and Wooders (2003) and others study relaxed equilibrium concepts where it is easier to show existence, such as, for example, imposing a
switching cost to deviate from the proposed assignment.

14In the non-nested-with-matching literature on estimating normal form Nash games, Ciliberto and Tamer (2007) throw out a particular
realization of the error term’s contribution to the likelihood if no pure-strategy equilibrium exists. Bajari, Hong and Ryan (2007b) compute
all equilibria including mixed strategy equilibria, as a mixed strategy equilibrium is guaranteed to exist in a normal form Nash game. In
matching, there is no notion of a mixed strategy equilibrium, as quotas are binding for every realization of the game. In a mixed strategy,
players’ actions are random, so a woman in a marriage market with quota 1 could find herself married to two men because of a random
realization in a mixed strategy equilibrium.

More technically, Nash’s existence theorem relies on a fixed-point argument requiring continuous strategies, like mixed strategies.
Existence theorems in matching games rely on Tarski’s fixed point theorem, which relies on monotonic operators and hence requires
structure on preferences to ensure this monotonicity.
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appears on both sides of the inequality, terms that do not involve interactions between the characteristics of
firms difference out. In a one-to-one matching game, if f (~x(i,{a})) = β ′u~x

u
i + β ′d~x

d
a , then a local production

maximization inequality is

β
′
u~x

u
i +β

′
d~x

d
a +β

′
u~x

u
j +β

′
d~x

d
b ≥ β

′
u~x

u
i +β

′
d~x

d
b +β

′
u~x

u
j +β

′
d~x

d
a , (6)

or 0 ≥ 0, so the definition has no empirical content. Theoretically, the uninteracted characteristics are valued
equally by all potential partner firms and are priced out in equilibrium.

For some policy questions, the cancellation of characteristics that are not interactions between the charac-
teristics of multiple firms is an empirical advantage. Many datasets lack data on all important characteristics of
firms. If some of these characteristics affect the production of all matches equally, the characteristics difference
out and do not affect the assignment of upstream to downstream firms. If the policy questions of interest are
not functions of these unobserved characteristics, then differencing them out leads to empirical robustness to
missing data problems.15

More generally, the equilibrium concept of pairwise stability can be used to form a local production maxi-
mization inequality.

Lemma 1. Given a pairwise stable outcome (A,T ), let B1 ⊆ A, let π be a permutation of the downstream firm
partners in B1, and let

B2 = {〈π 〈a, i〉 , i〉 | 〈a, i〉 ∈ B1} .

Then the inequality

∑
〈a,i〉∈B1

f (~x(i,Cu
i (A)))≥ ∑

〈a,i〉∈B2

f (~x(i,Cu
i ((A\B1)∪B2))) (7)

holds.

All proofs are found in the appendix.16 The definition of a local production maximization inequality is similar
to (7), except that no particular outcome (A,T ) needs to be stated.

Definition 3. Let there be a set of matches B1 and let B2 be a permutation π of B1, B2 = {〈π 〈a, i〉 , i〉 | 〈a, i〉 ∈ B1} .
For each i where 〈a, i〉 ∈ B1, let there be a set of downstream firms Cu

i such that 〈a, i〉 ∈ B1 implies a ∈Cu
i . Call

∑
〈a,i〉∈B1

f (~x(i,Cu
i ))≥ ∑

〈a,i〉∈B1

f (~x(i,(Cu
i \{a})∪{π 〈a, i〉}))

a local production maximization inequality.17

The local production maximization inequality lemma is both good and bad news. The good news is that the
definition of pairwise stability is powerful: the condition that no upstream firm wants to swap a single down-
stream firm partner for a single new partner at the equilibrium transfers implies local production maximization

15In demand estimation methods such as Berry, Levinsohn and Pakes (1995), investigators are often concerned that the endogenous
prices are correlated with unobserved product characteristics. As instruments are hard to find, typically researchers assume that the ob-
served product characteristics, other than price, are independent of the unobserved characteristics. By contrast, Lemma 1 shows that
transfers difference out. The advantage of differencing out further unobserved product characteristics involves a concern that the unob-
served characteristics are correlated with the observed characteristics.

16A permutation π of the downstream firm partners applied to a set of matches {〈a, i〉 ,〈b, j〉 ,〈c,k〉} gives each upstream firm a new
downstream firm partner. An example of a permutation is {〈c, i〉 ,〈a, j〉 ,〈b,k〉}. For simplicity of notation, I let π 〈a, i〉= c give the index
of the new downstream firm partner c of the upstream firm i.

17The notation B2 is not strictly speaking needed for Definition 3. Later I use B1 and B2 when showing that an inequality satisfies
Definition 3.
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inequalities involving large sets of downstream matches B1 and corresponding permutations B2. The potential
large size of B1 in the lemma will be important for some of the nonparametric identification theorems below.

The bad news is that it is computationally intensive to check that any assignment A satisfies the lemma’s
necessary conditions for pairwise stability without observing data on the equilibrium transfers t〈a,i〉.18 In many-
to-many matching games, checking the necessary conditions for pairwise stability means that (7) would have to
be evaluated for all pairs (B1,B2) of a unique B1 ⊆ A and a valid permutation B2.19 For example, in the empirical
application to automobile assemblers and car parts suppliers in this paper, there is one type of car component
where suppliers compete to provide 1349 parts on individual cars. Given an outcome assignment A, there are

1349

∑
k=1

 1349

i

 · i!≈ 8.34×103638 (8)

pairs (B1,B2) that distinguish unique inequalities (7) that would need to be checked.20 Section 7 will propose
an estimator that does not require itemizing all theoretically valid necessary conditions.21

4 Adding econometric error terms

4.1 Data on many independent matching markets

I will consider identification using data on the population of different matching markets. As before, a matching
market is described by (D,U,Q,X ,A,T ). Like in the automotive assemblers and suppliers empirical example,
data on the transfers T are often not available. Similarly, quotas, Q, are often an abstraction of the matching
model and are not found in datasets like the one on automotive assemblers and suppliers. Therefore, I will
explore identification using data on (D,U,X ,A). From now on, I subsume D and U into X in order to use more
concise notation. The researcher then observes (A,X) across markets.22

With data on the population of statistically independent and identically distributed as well as economically
unrelated matching markets, the researcher is able to identify Pr(A | X), the probability of observing assignment
A given that the market has characteristics X =

{
~x(i,Cu) | i ∈U,Cu ⊆ D, |Cu| ≤ qu

i
}

. I use a probability mass

18I have no proof that satisfying (7) for all pairs (B1,B2) is a sufficient (as opposed to necessary) condition for A to be part of a pairwise
stable equilibrium (A,T ) in many-to-many matching games. Sotomayor (1999) implies that in a game where each firm’s payoffs are
additively separable across multiple matches, f (~x(i,{a,b})) = f (~x(i,{a}))+ f (~x(i,{b})), then checking all sets with two matches and
their permutations, such as B1 = {〈a, i〉 ,〈c, j〉} and B2 = {〈a, j〉 ,〈c, i〉}, should be enough. Additively separability across multiple matches
rules out many interesting empirical applications, such as studying automotive supplier specialization in the empirical example in this
paper. In the application, each supplier can supply many parts and there may be specialization gains to supplying more than one part to a
downstream customer.

19If the pairwise stable assignment was unique, checking all necessary conditions might lead to a likelihood estimator, as used by
Sørensen (2007) for a matching game where agents are not allowed to exchange money. This type of estimator will be infeasible in
many-to-many matching games with transfers, when the transfers are not observed. If the transfers were observed by the researcher, the
likelihood estimator would have to recognize the endogenous formation of the transfers as part of the equilibrium.

20This simple calculation overstates matters for the production function I use in the empirical work. If supplier i supplies two parts for
the same car, the inequalities that switch those two car parts would not need to be checked. In this case, the set of matches for each supplier
would appear in (8).

21Some inequalities will be implied by others. For example, adding two inequalities of the form (7) gives another valid inequality.
However, there is not an underlying structure where checking all inequalities where B1 contains two matches will imply all inequalities
where B1 contains three matches in general many-to-many matching games.

22For sake of brevity in the discussion of nonparametric identification, I assume the researcher has data on all elements of X . By adding
additional notation, one could extend the nonparametric identification results to the case where some elements of X are missing. For
example, all of the agents in the market may not be observed. See Fox (2007) for a related discussion on estimating the single-agent
multinomial choice model without data on all available choices.
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function Pr(A | X) because the observed outcome, a finite set of matches A, is the realization of a discrete
random variable.

Why do we need Pr(A | X)? Consider a hypothetical situation where the same suppliers sell both car seats
and car tires. Each car has only one seat supplier and one tire supplier. Assume that the matching market for
car seats in statistically and economically independent of the market for car tires. It could be that, even if the X

variables are identical because the suppliers and assemblers are identical in both markets, for seats supplier 1
is the dominant firm and for tires supplier 2 is the dominant firm. If there were no error terms in the matching
model and each market had a unique equilibrium assignment, then Pr(A | X) = 1 for the A that is the pairwise
stable equilibrium assignment, and Pr(A | X) = 0 for any other A. The seats and tires dataset would statistically
reject this deterministic matching model. For another example, if agents in a marriage market have the scalar
type years of schooling and the schooling levels of men and women are complements in match production, then
men and women will assortatively match in equilibrium. However, when a real dataset is examined, the sorting
will not be so perfect. Even if most agents match assortatively, there will be some instances in the data where
men with high schooling levels match with women with low schooling levels. If the model is not augmented
with econometric error terms, the model will be inconsistent with this data and the model will be rejected by
the data, in a statistical sense. Therefore, a properly specified econometric model will have to add error terms
in order to rationalize the data.

To ensure that the model gives full support to the data, I wish that Pr(A | X) > 0 for any physically feasible
(matches of each agent under that agent’s quota) assignment A.23 The probability Pr(A | X) will be induced by
a stochastic structure S. In a model with match-〈a, i〉-specific error terms, S ∈S will represent the distribution
of the error terms. Then

Pr(A | X)≡ Pr
(

A | X ; f 0,S0
)
≡ EQ|X

[
Pr
(

A | X ,Q; f 0,S0
)]

,

where Pr
(
A | X ,Q; f 0,S0) is the probability of an assignment A being observed given the exogenous charac-

teristics X , the exogenous quotas Q, the true match production function f 0, and the true distribution of the
error terms S0. The functions f 0 and S0 are unknown to the econometrician and are arguments to the endoge-
nous variable data generating process Pr

(
A | X ,Q; f 0,S0), but they are fixed across markets and are not random

variables. The matching model and any equilibrium assignment selection rule together induce the distribu-
tion Pr

(
A | X ,Q; f 0,S0). I will discuss primitive formulations of error terms in detail below. The quotas in Q

are unmeasured, so the econometrician observes data on Pr
(
A | X ; f 0,S0)≡ EQ|X

[
Pr
(
A | X ,Q; f 0,S0)], where the

expectation over Q is taken with respect to its distribution conditional on X .24

4.2 The rank order property

I wish to identify both cardinal and ordinal features of f 0, the match production function that generates the data.
I will rely on some ideas from the maximum score literature to add econometric randomness to the matching
outcomes.25 Identification of single-agent discrete choice models in the maximum score literature relies on an

23This focus on allowing errors to affect the realization of A distinguishes this paper’s approach to matching games from the work on
estimating Nash games by Pakes, Porter, Ho and Ishii (2006), which does not allow for these errors in general normal form Nash games
and so, except in a few cases such as ordered choice, does imply the analog to Pr(A | X) = 0 for some physically possible A’s.

24The transfers T do not need to be integrated out because T is a separate endogenous outcome from A.
25Maximum score is a partial identification approach. In single-agent discrete choice problems with the payoff structure x′a,iβ + εa,i for

agent i and choice a, S represents the distribution of error terms εa,i. S is not identified under the standard (rank order property) conditions
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intermediate (non-primitive) property that I call the rank-order property. For example, Manski (1975) studies
the identification of both binary and multinomial choice models using a rank-order property. Different sufficient
conditions on S, in single-agent discrete choice the distribution of choice-specific error terms, imply the rank
order property for binary and for multinomial choice.26 Sufficient conditions for the rank order property in
matching models require more exposition. Therefore, I first describe a non-primitive rank order property for
matching games and discuss how it relates to the deterministic analysis of Becker (1973). Later I will discuss
sufficient primitive conditions.

First consider one-to-one matching. Say each agent has a one-dimensional type, schooling. The econo-
metrician observes Pr(A | X) = Pr

(
A | X ; f 0,S0), which here is the likelihood of a certain sorting pattern given

a distribution of schooling levels among men and among women. Say also that the schooling levels of men
and women are everywhere complements in production. Then men and women would assortatively match in
a deterministic model. In a stochastic econometric model, the rank order property will in effect say, for as-
signments A1 and A2, Pr(A1 | X) > Pr(A2 | X) whenever A2 can be formed from A1 by having less assortative
matching: some couples with higher schooling levels will exchange partners with couples that have lower
schooling levels. The intuition for why Pr(A1 | X) > Pr(A2 | X) traces back to production functions: the sum of
production under A1 will exceed that of A2 if schooling levels are complements. Even though A1 and A2 can
both occur with positive probability because of econometric unobservables (unlike in Becker), here Becker’s
idea that assortative matching occurs when types are complements can be made stochastic by rank ordering the
probabilities of assignments by how much assortative matching occurs.

The general model allows many-to-many matching, where pairwise stability does not give a link to economy-
wide production (“efficiency”), as well as a general space of observable characteristics X , not just scalar types.
The rank order property is stated as an assumption and can be seen as a stochastic version of local production
maximization.

Assumption 1. Let A1 be a feasible assignment for a market with characteristics X . Let B1 ⊆ A1 and let π be a
permutation of the downstream firm partners in B1, giving

B2 = {〈π 〈a, i〉 , i〉 | 〈a, i〉 ∈ B1} .

Let A2 = (A1\B1)∪B2. Let S∈S be any distribution of the error terms and let f ∈F be any production function.
Assume that

∑
〈a,i〉∈B1

f (~x(i,Cu
i (A1))) > ∑

〈a,i〉∈B2

f (~x(i,Cu
i (A2))) (9)

if and only if
Pr(A1 | X ; f ,S) > Pr(A2 | X ; f ,S) .

Keep in mind that X , f and S are held fixed: the rank-order property is an assumption about the stochastic
structure of the model.

To understand the rank order property, consider a situation where A1 contains thousands of matches and
B1 = {〈a, i〉 ,〈b, j〉} contains only two matches. Then A2 = (A1\B1)∪B2 is equal to A1 except that the matches

for the identification of β in either binary or multinomial choice problems (Manski, 1975, 1988). In matching, I will focus on identifying
f and not S.

26For example, the binary choice model is identified under median independence and the multinomial choice model is identified under
exchangeability of the joint distribution of the choice-specific errors (Fox, 2007).

14



B2 = {〈a, j〉 ,〈b, i〉} form. Given X and Q, neither A1 or A2 may be a stable assignment to the matching model
without error terms. But A1 might dominate A2 in the deterministic model in that at least two agents in B2 would
prefer to match with each other instead of their assigned partners, leading to A1. More generally, if the local
production maximization inequality (9) is satisfied, then some agents in B1 want to deviate in the deterministic
matching model. In a model with error terms, both A1 and A2 could be pairwise stable assignments to some
realizations of the unobserved components in the matching model. The assumption says that A1 will be more
likely to be a pairwise stable assignment to some realized model than A2.

The assumption is that among two very similar assignments, A1 and A2, which differ in at most one down-
stream firm match per upstream firm, the assignment that cannot be pairwise stable in the deterministic game
is less likely to occur. This is certainly a natural assumption that a researcher could use when interpreting
descriptive empirical results on sorting patterns through the lens of matching theory.

As the quotas in Q are not observed in many empirical applications, a slightly more primitive version of
Assumption 1 is that (9) holds if and only if Pr(A1 | X ,Q; f ,S) > Pr(A2 | X ,Q; f ,S), for any valid Q. Then taking
expectations with respect to Q | X gives Assumption 1. Even if Q is unobserved, for the most part I have only
considered inequalities where the total number of matches of each agent in A1 and A2 is kept the same.27 If
unmatched agents are not considered in B1 and B2 and if A1 is a feasible assignment for Q, A2 is also a feasible
assignment for that Q.

4.3 Sufficient condition for the rank order property

This subsection explores a sufficient condition for the rank order property, Assumption 1, in the context of
models where assignments have unobserved components in production. In this subsection only, I assume that
the outcome (A,T ) is in the core. The core is an equilibrium concept. A core outcome is robust to deviations by
any group of firms. If the group of all firms cannot improve its joint payoff, a core assignment must maximize
the sum of production for the entire matching economy. Consequently, the decentralized matching market
assignment can be restated as a social planning problem.28

There is a finite, although potentially large, number of assignments. The social planning problem is a single-
agent, unordered, discrete choice problem of Manski (1975), where the single agent is the social planner. From
Manski’s work, we know the sufficient condition that will arise. For an assignment A, let its total production be

∑〈a,i〉∈A f
(
~x
(
i,Cu

i (A)
))

+ ψA, where ψA is an unobserved component of the production of assignment A. Let ψ

be the vector of all ψA’s. Let ψ have the density S and let ψ be independent of Q and X .29 Let Pr(A | Q,X ; f ,S)

be the probability A is the core assignment.

Lemma 2. Let the equilibrium concept be the core and let the density S conditional on X exist, have full support
and be exchangeable in the elements of ψ. Then the rank order property, Assumption 1, holds.

27Unmatched agents 0 could be included in matches in B1. For nonparametric identification, data on unmatched agents will not be
needed, except for one theorem.

28The necessary conditions from pairwise stability are enough to nonparametrically identify production functions. Extra inequalities
from the stronger equilibrium concept the core will not be required. However, the social planning property ensures a unique assignment
with probability 1. If some observables or unobservables in production have a continuous distribution, then the probability that any two
assignments both solve the social planning problem is 0. To eliminate the role of the equilibrium assignment selection rule, this section
considers only games where the outcome is in the core.

29More generally, there is no need for the density S to be the same for all markets X . See Fox (2007) for more discussion of letting X be
a conditioning argument in S, for the single agent, multinomial choice case.
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This lemma was proved in Goeree, Holt and Palfrey (2005) and is a slight generalization of a result in Manski
(1975). See the appendix for another proof.30

The social planner errors can be interpreted as errors in the deterministic model from finding the true
core solution. One could then view exchangeability of the joint density as a structural assumption on the
equilibrium assignment selection process. Adding errors to a deterministic model is similar to the quantile
response equilibrium method of perturbing behavior (Goeree et al.). The social planning problem is a structural
assumption that does exactly generalize the intuition from the empirical matching literature (without error
terms) that assignments with, say, more assortative matching are more likely to occur.31

4.4 Match-specific error terms

In the literature on estimating perfect-information Nash games Andrews, Berry and Jia (2004); Bajari, Hong
and Ryan (2007b); Beresteanu, Molchanov and Molinari (2008); Berry (1992); Bresnahan and Reiss (1991);
Ciliberto and Tamer (2007); Jia (2008); Mazzeo (2002); Tamer (2003), a typical assumption is that the payoff
to an agent a from taking action i is r

(
~xa,i
)
+εa,i, where~xa,i are observables covariates and εa,i is a player-a-and-

action-i-specific shock. This payoff structure is borrowed from the literature on single-agent discrete choice
models. In a perfect information Nash game, the εa,i’s are assumed to be common knowledge for all players;
only the econometrician lacks data on them. These errors are added to the model to be able to fit any observed
equilibrium.32

The analog of the practice for perfect information Nash games in matching games (a non-nested class of
games) is match-specific error terms ε〈a,i〉. The equilibrium assignment to a transferable utility matching game
whose outcome is in the core of the game can be computed with a linear programming problem.33 Let the total
output of a set of downstream firm partners Cu for upstream firm i be

f (~x(i,Cu))+ ∑
a∈Cu

ε〈a,i〉, (10)

where ε〈a,i〉 is the match-ε〈a,i〉-specific error term, which is independent of all components of X and Q. Let the

30An exchangeable joint density satisfies g(y1,y2, . . . ,yn) = g(πy1,πy2, . . . ,πyn) for any permutation π of any vector of arguments
(y1, . . . ,yn).

31An exchangeable joint density for assignment level errors is a sufficient but not necessary condition for the rank order property. Con-
sider the comparison of an assignment A1 = {〈1,1〉 ,〈2,2〉 ,〈3,0〉 ,〈0,3〉}, where downstream and upstream firms 3 are both unmatched, to
another assignment A2 = {〈1,2〉 ,〈2,3〉 ,〈3,1〉} where all firms are matched. The local production maximization inequality in Assumption
1 does not allow comparing A1 and A2 because A2 is not a rearrangement of downstream firm partners from A1: A2 does not reallocate the
former states of being unmatched. Therefore, the comparison of A1 and A2 is not relevant for the rank order property. However, the social
planner with exchangeable errors model makes predictions about the relative frequencies of A1 and A2 based on their relative sums of pro-
duction. For example, Lemma 2 says ∑〈a,i〉∈A1 f (~x(i,Cu

i (A))) = ∑〈a,i〉∈A2 f (~x(i,Cu
i (A))) if and only if Pr(A1 | X ; f ,S) = Pr(A2 | X ; f ,S).

This is despite the fact that in A1 match 〈3,3〉 will often form if it gives more production than being unmatched, so, in many realizations
of uncertainty, A1 will not be be a stable assignment. Therefore, the rank order property is a weaker assumption than a social planner with
exchangeable assignment-level errors.

32Two other sets of assumptions have some drawbacks. First, in static, private information Nash games, agents do not know the error
terms εa,i of rival players and hence the equilibrium actions of rivals. Therefore, there could be ex-post regret: a firm entered the market
predicting it would be a monopolist and found instead that it was one of several firms, a situation where it is not profitable. (In matching
games, because of the physical property that the number of matches of each agent must be under its quota, not knowing whether your
partner will agree to match with you when you take your action makes it impossible to ensure that the resulting equilibrium is pairwise
stable. See Section 11.1 for more discussion.) Second, the assumption that εa,i is pure measurement error or a shock to profits after matches
are formed (expectational error) implies that the equilibrium assignment A is a deterministic function of X . Therefore, it will be easy to
reject the model as it will assign probability 0 to many A’s that may be found in the data.

33Pairwise stability is equivalent to the core for one-to-one matching games and many-to-many matching games where payoffs are
additively separable across multiple matches. The core is a stronger solution concept for many-to-many matching games where payoffs
are not additively separable across multiple matches.
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stochastic structure S represent the distribution of ε〈a,i〉. Then, in the perfect information world where ε〈a,i〉 is
observed by all agents in the model but is not in the data,

Pr(A | X ,Q; f ,S) =
∫

ε

1 [Asolvesassignment linearprogram | X ,Q,ε]dS (ε) , (11)

where ε is the vector of error terms for all U ·D possible matches as well as the option of being single for
each agent. Under this model, S can be chosen so that each physically feasible A will always have positive
probability.

Unfortunately, the integrand in (11) includes a linear program and the resulting Pr(A | X ,Q; f ,S) does not
have the nice properties for the single-agent multinomial choice model that Manski (1975) found when, say,
εa,i was iid across choices for the same agent. For matching, unlike single-agent discrete choice, it is not a
theorem that iid errors yield the rank order property for matching, Assumption 1. If the rank order property for
matching is a natural, stochastic generalization of the core property found by Becker (1973) and others, then iid
errors is not a primitive condition for the stochastic structure S that gives this natural generalization, exactly.

All models are approximations to reality. If the true production function is thought to include iid match-
specific shocks as in (10) and therefore assignment probabilities are given by (11), then the rank order property
may actually be a pretty close approximation. After all, the transferable utility and price-taking structure of
the game does naturally imply that adding production functions is much more natural than in a noncooperative
Nash game. I now present simulation results that examine how closely a perfect-information matching game
with shocks as in (10) is approximated by the rank order property, a natural generalization of prior work on
matching games without econometric errors.

Table 1 includes results from simulations that compute assignment probabilities for a one-to-one, two-sided
matching game where match production is f (~x(i,{a}))+ ε〈a,i〉.34 The matching game has three upstream firms
and three downstream firms. The deterministic payoffs of the game are chosen so that ∑〈a,i〉∈A1

f (~x(i,{a})) =

∑〈a,i〉∈A2
f (~x(i,{a})) for two assignments, A1 and A2. As A1 and A2 differ by rearrangements of one downstream

firm per upstream firm, the rank order property, Assumption 1, requires that Pr(A1 | X ; f ,S) = Pr(A2 | X ; f ,S).
Neither A1 or A2 is a deterministic stable assignment.35 The deterministic payoffs ∑〈a,i〉∈A1

f (~x(i,{a})) are
constructed so that deviation by agents in A2 is more attractive in an ease metric (two matched pairs could
exchange partners, leaving the third pair alone) to provide a more compelling test against the idea that the rank
order property is satisfied. The details of the game are in the notes to Table 1.

Table 1 considers six distributions S for iid match-specific unobservables. The table uses a simulation of
the integral in (11) to compute Pr(A1 | X ; f ,S)−Pr(A2 | X ; f ,S), a measure of how far off the rank order property
is. The first line considers a standard normal distribution. As the variance is small and both A1 and A2 are not
stable assignments in the deterministic game, the assignment probabilities are individually small. However,
the difference Pr(A1 | X ; f ,S)−Pr(A2 | X ; f ,S) = −0.01514 is large relative to the magnitudes. The second line
increases the normal standard deviation to 6. Both assignment probabilities increase to around 0.079, but
the difference Pr(A1 | X ; f ,S)−Pr(A2 | X ; f ,S) decreases in absolute value to 0.00009. The third line increases
the standard deviation to 20; now the probabilities are around 0.065, although Pr(A1 | X ; f ,S)−Pr(A2 | X ; f ,S)

remains small, at 0.00011.
I also investigate to what degree the previous simulations relied on normality. The final three experiments

34The game is one-to-one matching, so Q is observed and the same for all markets.
35In other words, neither A1 or A2 would solve the linear programming assignment problem if all errors ε〈a,i〉 were 0.
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Table 1: Assignment probabilities for two assignments with equal deterministic production with iid match-
specific unobservables, by distribution

# Firms Distribution Error standard Pr(A1 | X ; f ,S) Pr(A2 | X ; f ,S) Pr(A1 | X ; f ,S)−
U = D for iid errors, S deviation Pr(A2 | X ; f ,S)

3 N (0,1) 1 0.02126 0.03640 -0.01514
3 N (0,36) 6 0.07897 0.07888 0.00009
3 N (0,400) 20 0.06554 0.06543 0.00011
3 0.33 ·N (0.5,0.04)+0.67 ·N (−0.5,0.123) 0.53 0.000098 0.001791 -0.00163
3 0.33 ·N (2.5,0.04)+0.67 ·N (−2.5,0.123) 2.44 0.047894 0.045908 0.001986
3 0.33 ·N (8.0,4.0)+0.67 ·N (−6.0,6.25) 6.98 0.033811 0.033967 -0.000156

The rank order property says Pr
(
A1 | X ; f 0,S

)
−Pr

(
A2 | X ; f 0,S

)
= 0 for any S. Total match production is f (X (i,{a}))+ε〈a,i〉, with

the error’s distribution given in the table. The assignment is calculated using linear programming (Roth and Sotomayor, 1990), as in (11).
Each integral is simulated by using 1 million draws of the realizations for the collection of error terms for all matches and being single.
Given the number of replications, the differences in the table probably do not reflect simulation error.

There are three upstream firms and three downstream firms in a one-to-one, two-sided matching game. The production of being un-
matched is 0. The deterministic match production levels for matching with the three downstream firms are {3,1,2.8} for upstream firm 1,
{1,2.8,1} for upstream firm 2, and {3,1,1} for upstream 3. I compute the probabilities for the assignments A1 = {〈1,2〉 ,〈2,3〉 ,〈3,1〉},
with production 1+1+3 = 5, and A2 = {〈1,1〉 ,〈2,3〉 ,〈3,2〉}, with production 3+1+1 = 5. I chose the example so that assignment A2
will be “more vulnerable” to a deviation to an assignment A3 = {〈1,1〉 ,〈2,2〉 ,〈3,3〉} with deterministic production 3+2.8+2.8 = 8.6, as
only two matched pairs in A2, rather than all three pairs in A1, need to exchange partners to deviate to A3.

in Table 1 consider asymmetric mixed normal distributions with two modes. Again, it appears that the absolute
value of Pr(A1 | X ; f ,S)−Pr(A2 | X ; f ,S) is smaller when the standard deviation of the errors is higher.

Table 1 implies that assignment probabilities that differ by exchanges of only one downstream firm for
each upstream firm are nearly rank-ordered by their deterministic payoffs, when true payoffs include match-
specific stochastic components. Based on these simulation results, I conjecture that maximum score will have
a relatively small bias if the stochastic structure of the model involves iid match-specific unobservables in
production. I will explore this conjecture with a Monte Carlo study later, in Section 8.

4.5 Multiple equilibrium assignments

Return to using pairwise stability as the only equilibrium concept. In a one-to-one matching game or a many-
to-many matching game with additive separability across multiple matches (Sotomayor, 1999), generically
there will be only one equilibrium assignment.36 In more complex many-to-many matching games, multiple
assignments may be pairwise stable. In a game with multiple equilibrium assignments, (11) becomes

Pr(A | Q,X ; f ,S) =
∫

ε

1[Aselectedassignment | Astable, X ,Q,ε] ·1 [Apairwisestable | X ,Q,ε]dS (ε) . (12)

Let ϒ(A | Q,X ; f ,S) be equal to
∫

ε
1 [Apairwisestable | Q,X ,ε]dS (ε) . Define A1 and A2 as in Assumption 1. For a

model with multiple equilibrium assignments, the rank order property, Assumption 1, will hold under the fol-
lowing conditions: 1) ϒ(A1 | Q,X ; f ,S)> ϒ(A2 | Q,X ; f ,S) if and only if inequality (7) holds, and 2) Pr(A1 | Q,X ; f ,S)>

36Again, if the equilibrium is in the core of the matching game, the equilibrium assignment is the solution to a linear programming
program. If the total payoff to a match f (~x(i,Cu))+∑a∈Cu ε〈a,i〉 has a continuous distribution because of continuous elements of~x(i,Cu)
or ε〈a,i〉, then the event that two or more assignments solve the linear programming problem has probability zero. Here the probability is
taken across markets.
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Pr(A2 | Q,X ; f ,S) if and only if ϒ(A1 | Q,X ; f ,S) > ϒ(A2 | Q,X ; f ,S). Part 1 says A1 will more likely to be stable
than A2 if A1 has a higher production after an exchange of one downstream firm for each upstream firm in
some set B1 ⊆ A1. Part 2 says the equilibrium assignment selection rule preserves the rank ordering of stabil-
ity: assignments that are more likely to be stable are more likely to occur. These conditions together imply
Assumption 1 and hence allow a unified framework to be used to study identification and estimation of match-
ing games, regardless of the number of stable assignments for each ε and X combination. Assumptions about
an equilibrium assignment selection rule may be strong, but for now they are currently the only feasible al-
ternative for matching games with large numbers of agents and multiple equilibrium assignments. Under this
assumption, the resulting maximum score estimator will be consistent without any change to deal with multiple
equilibrium assignments.

The literature on Nash games, a non-nested class with matching games, presents some alternative strategies
to dealing with multiple equilibria. For estimation, the method of Bajari, Hong and Ryan (2007b) and the
lower bound to the likelihood of Ciliberto and Tamer (2007) require nesting calls to computer software that
compute all equilibria to a game for each realization of error terms.37 As the combinatorics in (8) state, even
checking whether a single assignment satisfies all the known necessary conditions for a stable assignment is
computationally infeasible in the empirical application in this paper. Further, the statistical objective function
in Ciliberto and Tamer requires a first stage, nonparametic estimate of Pr(A | X) for all market characteristics
X and assignments A observed in the data.38 I will argue below that such a first-stage nonparametric estimator
will suffer from a data curse of dimensionality because A and X are usually of very high dimension in matching
games. Maximum score will eliminate this first-stage, nonparametric estimation and hence the data curse of
dimensionality.

4.6 Do search and switching costs give the rank order property?

Search is another model for the stochastic structure S of a matching game. The perfect information benchmark
is perfect assortative matching if scalar inputs are complements in production for one-to-one matches. The
complements result can be embedded in a search model with forward-looking agents. Shimer and Smith
(2000) show that complementarities in the production function plus complementarities in the first and cross-
partial derivatives are sufficient for assortative matching in a search model with one-to-one matching and scalar
agent types where costs are driven by time discounting. Atakan (2006) shows that complementarities in the
production function alone drive assortative matching in a model with additive search costs.

Atakan (2007) shows that there exists a constrained (by the search technology) efficient equilibrium for
general production functions. I conjecture that some variant of the maximum score estimator in this paper will
be consistent in the constrained efficient world of Atakan (2007).

Kovalenkov and Wooders (2003) worry about the nonexistence of equilibria as defined by standard concepts
and therefore discuss the ε-core solution concept. In an ε-core equilibrium, a coalition B ⊆U ∪D that wants
to deviate must pay a switching cost, equal to |B|ε, where ε > 0 is the switching cost and |B| is the number
of firms in the coalition. The introduction of switching costs implies that there may be multiple equilibrium

37Andrews, Berry and Jia (2004) and Beresteanu, Molchanov and Molinari (2008) study the same model as Ciliberto and Tamer (2007).
38In private communications, Tamer suggests that a GMM estimator with moment inequalities in the observed and predicted game

outcomes could be used to avoid this first stage. This approach would still require simulating the probability that an outcome is an
equilibrium. The maximum score estimator that I will propose avoids simulating equilibrium probabilities by working with rank orders of
probabilities rather than probabilities themselves.
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assignments. Therefore, the rank order property will be based on the equilibrium assignment selection rule in
(12).

5 Cardinal nonparametric identification

No previous paper has studied the nonparametric identification of matching games. It is not obvious what types
of parameters one can learn about using data on equilibrium matches but not the choice set available to each
agent in equilibrium. Because firms on the same side of the market are rivals to match with potential partners,
the failure for a match to form does not mean that the match gives low production. In this section, I generalize
the identification results in Becker (1973), described in Section 2.1, to the case of many-to-many matching with
vectors of agent characteristics, among other extensions. As (1) shows, in Becker’s scalar types world one can
only identify whether the inputs of men and women are complements or substitutes in the production function.
Likewise, in other settings the full cardinality of f cannot be identified from data on assignments alone.

As mentioned before, I will explore identification with market-level data on (A,X). Let (A,X) be statistically
independent across matching markets. With this data, I can identify both Pr(A | X) and G(X), the distribution of
X across markets.

5.1 Cardinal identification preliminaries

I use an extension of a standard definition for point identification by Gourieroux and Monfort (1995, Section
3.4).

Definition 4. Let F be a class of production functions. Let f 0 ∈F be the production function and let S0 ∈S

be the stochastic structure in the data generating process.

• f 0 is identified within the class of production functions F if there does not exist f 1 6= f 0 ∈F , stochastic
structure S1 ∈ S , and some possibly empty set Y of market characteristics of probability 0 such that
Pr
(
A | X ; f 1,S1)= Pr

(
A | X ; f 0,S0) for all (A,X) with X /∈ Y .

• Let c(·) be a known function that produces either a scalar, vector, another function of ~x or a vector of
functions of ~x. A feature of f 0 c

(
f 0) is identified within the class of production functions F if there

does not exist f 1 ∈F where c
(

f 1) 6= c
(

f 0), stochastic structure S1 ∈S , and some possibly empty set Y

of market characteristics of probability 0 such that Pr
(
A | X ; f 1,S1) = Pr

(
A | X ; f 0,S0) for all (A,X) with

X /∈ Y .

The probability of Y is
∫
Y dG(X). I maintain the following assumption for the discussion of cardinal identifi-

cation.

Assumption 2.

1. Each f ∈F is three times differentiable in all of its arguments.

2. The collection of market characteristics X has support equal to the product of the supports of each~x(i,Cu)

in X . Each~x(i,Cu) has support on an open rectangle on RK , where K = |~x(i,Cu)|.

20



I make this assumption to focus on cross-partial derivatives, like Becker. These conditions can be relaxed.39

The features of the production functions that govern sorting depend on how the characteristics that enter
~x(i,Cu) vary. I will present results where characteristics vary at the levels of the individual firm i, the individual
match 〈a, i〉, and the group Cu of downstream firms matching with one upstream firm. Keep in mind that a
unit of observation is a market. When I informally speak of ~x(i,Cu) varying, what I mean is that there are two
markets with very similar characteristics X , except for the values of ~x(i,Cu) for some assembler i and set of
parts suppliers Cu.40

5.2 Cardinal identification theorems

5.2.1 Cardinal identification with firm-specific characteristics

First I consider firm-specific characteristics. Let there be Ku characteristics for each upstream firm and Kd

characteristics for each downstream firm. In this case, the vector

~x(i,Cu) = cat
((

xu
i,1, . . . ,x

u
i,Ku

)
,
(

xd
a1,1, . . . ,x

d
a1,Kd

)
, . . . ,

(
xd

an,1, . . . ,x
d
an,Kd

))
,

where Cu = {a1, . . . ,an} is a finite set of n downstream firms and where xd
a,e is the eth out of the Kd characteristics

of downstream firm a. Recall that~x is an arbitrary characteristic vector of the form~x(i,Cu).

Theorem 1. Let ~x(i,Cu) = cat
((

xu
i,1, . . . ,x

u
i,Ku

)
,
(

xd
a1,1, . . . ,x

d
a1,Kd

)
, . . . ,

(
xd

an,1, . . . ,x
d
an,Kd

))
. Let ~x be a given point

of evaluation of f .

1. Let x1 and x2 be scalar characteristics in ~x from two different firms, either one upstream firm and one

downstream firm or two downstream firms. Assume ∂ f 0(~x)
∂x1∂x2

6= 0. Then the sign of ∂ f 0(~x)
∂x1∂x2

is identified.

2. Let x1 and x2 be scalar characteristics in ~x from two different firms, and let x3 and x4 be two scalar

characteristics from two different firms as well. The identities of the firms in the two pairs (x1,x2) and

(x3,x4) can be the same or not. Assume ∂ f 0(~x)
∂x1∂x2

6= 0 and ∂ f 0(~x)
∂x3∂x4

6= 0. Then the ratio ∂ f 0(~x)
∂x1∂x2

/
∂ f 0(~x)
∂x3∂x4

is

identified.

Part 1 shows that Becker’s result for the case of scalar types for men and women applies to each pair of scalar
characteristics for distinct firms. Part 1 also extends Becker to a local notion of identification: f ’s inputs can
be complements at some areas of support and substitutes at other areas. Note that Theorem 1 does not allow a
researcher to tell whether a pair of inputs are “more” complementary at some ~xa than some other point ~xb. For
example, ∂ f (~xa)

∂x1∂x2
= 5 and ∂ f (~xb)

∂x1∂x2
= 7 cannot be distinguished from any other pair of positive values.

Becker studies only scalar types. Part 2 of the theorem shows the econometrician can go further and
identify the relative importance of the complementarities for two pairs of characteristics. This is perhaps the
most important result on identification in this paper. The econometrician can run a “horse race” where he
or she tries to measure the relative importance of several pairs of characteristics. This is not just a ordinal

39While there are definitions such as increasing differences (Milgrom and Shannon, 1994) that encompass complementarities without
relying on differentiable f ’s and continuous support for the x’s, working with broader definitions makes the results harder to interpret and
to compare to Becker’s.

40The proofs of the identification theorems use data on different X’s in part to satisfy the technical requirement in Definition 4 that f 0

and any alternative f 1 make different predictions for a set of X’s with positive probability.
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comparison, as in ∂ f 0(~x)
∂x1∂x2

>
∂ f 0(~x)
∂x1∂x3

. Rather, the cardinal ratio of the degree of complementarities, ∂ f 0(~x)
∂x1∂x2

/
∂ f 0(~x)
∂x3∂x4

,
can be identified from qualitative data on who matches with whom.41

This proof of this theorem is the first result on the nonparametric identification of matching games and
the most novel piece of original mathematics in the paper. The intuition behind the proof of Part 1 is that
a market with characteristics X can be found where either assortative or anti-assortative matching on x1 and
x2 is possible. Which occurs determines the sign of ∂ f 0(~x)

∂x1∂x2
. A technical complexity handled in the proof is

that Definition 4 requires a continuum of such market characteristics X . The intuition for the proof of Part 2
is that the relative magnitudes of the cross-partials can be seen by whether assortative matching in one pair
of characteristics dominates assortative matching in another pair when the distribution of firm characteristics
prevents assortative matching in both pairs of characteristics simultaneously. In marriage, an example could
be when agents with high levels of intelligence have poor physical appearances. If physically attractive people
marry each other, this is evidence complementarities for physical appearance exceed those for intelligence.

5.2.2 Cardinal identification with match-specific characteristics

The characteristics in~x(i,Cu) can be specific to the individual matches 〈a, i〉. Now let Cu be a set of n downstream
firms and let

~x(i,Cu) = cat
((

xu,d
〈a1,i〉,1, . . . ,x

u,d
〈a1,i〉,K

)
, . . . ,

(
xu,d
〈an,i〉,1, . . . ,x

u,d
〈an,i〉,K

))
,

where there are K characteristics for each potential match 〈a, i〉, with xu,d
〈a,i〉,e being the eth such scalar characteris-

tic. Consider an application to international trade, where supplier i may be in a different country than assembler
a. The match-specific characteristic xu,d

〈a,i〉,e may be the tariff rate that a’s country levies on i’s exports. In this
case, the feature of f that governs sorting is f ’s own-second derivatives.42

Theorem 2. Let the two scalars x1 and x2 be distinct elements of~x(i,Cu)= cat
((

xu,d
〈a1,i〉,1, . . . ,x

u,d
〈a1,i〉,K

)
, . . . ,

(
xu,d
〈an,i〉,1, . . . ,x

u,d
〈an,i〉,K

))
,

corresponding to different matches. Let~x be a given point of evaluation of f .

1. Assume ∂ 2 f 0(~x)
∂ 2x1

6= 0. The sign of ∂ 2 f 0(~x)
∂ 2x1

is identified.

2. Assume ∂ 2 f 0(~x)
∂ 2x1

6= 0 and ∂ 2 f 0(~x)
∂ 2x2

6= 0. The ratio ∂ 2 f 0(~x)
∂ 2x1

/
∂ 2 f 0(~x)

∂ 2x2
is identified.

Like with firm-specific characteristics, a researcher can measure the relative importance of sorting on various
characteristics in the production function, ∂ 2 f 0(~x)

∂ 2x1
/

∂ 2 f 0(~x)
∂ 2x2

.43

Note that the proofs of the cardinal identification theorems are more general than the statements. The
proofs do not require strong properties on the characteristics not given special attention in the statement of
the theorems. For example, x1 and x2 could be match-specific, allowing Theorem 2 to be applied, while x3–x6

could be firm specific, requiring Theorem 1. The presence of the match-specific x1 and x2 does not invalidate
applying Theorem 1 to x3–x6.

41The identification of ∂ f 0(~x)
∂x1∂x2

/ ∂ f 0(~x)
∂x3∂x4

seems parallel to the identification of marginal rates of substitution in single-agent choice. With
this parallel, using the word “cardinal” may seem inappropriate as the ratio of marginal utilities is preserved under positive monotonic
transformations of utility. However, the ratio of cross-partial derivatives is not preserved under positive monotonic transformations of
utility. Therefore, there is no fundamental link between Theorem 1 and the ordinal identification results in Section 6.

42If f is differentiable, a function f is concave in x1 at~x when ∂ 2 f (~x)
∂ 2x1

> 0 and convex when ∂ 2 f (~x)
∂ 2x1

< 0.
43Some might think firm-specific characteristics are a special case of match-specific characteristics. Firm-specific characteristics in-

crease the difficulty of showing the identification of features of f 0 because the same firm characteristics must appear on the left and the
right sides of a local production maximization inequality. By contrast, hypothetical markets exist where the match-specific characteristics
for the matches 〈a, i〉 and 〈a, j〉 may take on any pair values, under Assumption 2.
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5.2.3 Cardinal identification with group-specific characteristics

Characteristics can be specific to the group of downstream firms and an upstream firm that the group matches
with. Let ~x(i,Cu) =

(
xgroup
(i,Cu),1, . . . ,x

group
(i,Cu),K

)
, where there are K scalar group-(i,Cu)-specific characteristics, with

the eth such scalar characteristic being xgroup
(i,Cu),e. An example of using the estimator in this paper for the group-

characteristic case is Bajari and Fox (2007), who model bidders matching to a package of geographic licenses in
a spectrum auction. A characteristic of a package of licenses is the extent of the geographic complementarities
among the licenses. Bajari and Fox use a measure like the gravity equation in international trade to create a
proxy for these geographic complementarities.

Theorem 3. Let the two scalars x1 and x2 be distinct elements of~x(i,Cu) =
(

xgroup
(i,Cu),1, . . . ,x

group
(i,Cu),K

)
, corresponding

to different matches. Let~x be a given point of evaluation of f .

1. Assume ∂ 2 f 0(~x)
∂ 2x1

6= 0. The sign of ∂ 2 f 0(~x)
∂ 2x1

is identified.

2. Assume ∂ 2 f 0(~x)
∂ 2x1

6= 0 and ∂ 2 f 0(~x)
∂ 2x2

6= 0. The ratio ∂ 2 f 0(~x)
∂ 2x1

/
∂ 2 f 0(~x)

∂ 2x2
is identified.

The proof of this theorem is omitted because the mathematical argument is nearly identical to the proof of
Theorem 2.

5.3 A parametric, cardinally identifiable class

For practical estimation, empirical researchers should work with a production function f that is uniquely de-
termined given the features that the previous theorems show are identified. Consider a parametric example of
specifying a production function class F when only cross-partial derivative information is identifiable. Con-
sider the case where all inputs are continuous and firm-specific. The production function

fβ (~x(i,Cu)) =
Ku

∑
c=1

Kd

∑
e=1

(
β

u,d
c,e ∑

a∈Cu
xu

i,c · xd
a,e

)
,

forms all pairwise multiplicative interactions between individual characteristics of the upstream firm, i, and the
individual characteristics of each downstream firm. Each upstream firm characteristic is indexed by c and each
downstream firm characteristic is indexed by e. Each parameter β

u,d
c,e is a positive cross-derivative that remains

constant over the entire support of the production function, which is unnecessarily restrictive. The production
function is exchangeable in the identities of downstream firms: β

u,d
c,e is the same for all downstream firms. A

matching is a qualitative outcome, so a scale normalization is needed. One normalization is β
u,d
1,1 =±1, for the

first characteristic of each upstream firm and each downstream firm.44

This parametric example is additively separable across downstream firms. Many empirical applications,
such as the work on automotive supplier specialization in this paper, will involve interactions between multiple
downstream firms matched to the same upstream firm. Interactions between the characteristics of downstream
firms could be added, as in

fβ (~x(i,Cu)) =
Ku

∑
c=1

Kd

∑
e=1

(
β

u,d
c,e

n

∑
a=1

xu
i,c · xd

a,e

)
+

Kd

∑
e=1

Kd

∑
g=1

(
β

d,d
e,g

n−1

∑
a=1

n

∑
b=a+1

xd
a,e · xd

b,g

)
,

44If a researcher uses an extremum estimator, he or she can estimate the model once for β
u,d
1,1 = +1 and another time for β

u,d
1,1 =−1 and

choose as the final estimates the parameter vector with the highest objective function values.
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for Cu = {1, . . . ,n}, where the new parameters β
d,d
e,g reflect the interaction of individual characteristics between

two downstream firms, a and b. If the production function is to be exchangeable in the identities of downstream
firms, β

d,d
e,g = β

d,d
g,e .

6 Ordinal nonparametric identification

The cardinal identification analysis is sufficient for many matching empirical applications. However, it is
impossible to use the cardinal analysis to tell apart two production functions with, for firm-specific charac-
teristics, the same cross-partial derivatives. For example, f 1 ((x1,x2)) = −(x1− x2)

2 and f 2 ((x1,x2)) = 2x1 · x2

both have ∂ f (~x)
∂x1∂x2

= 2. For f 1, f 1 ((1,1)) = 0 and f 1 ((2,1)) = −1. For f 2, f 2 ((1,1)) = 2 and f 2 ((2,1)) = 4. So
f 1 ((1,1)) > f 1 ((2,1)) yet f 2 ((1,1)) < f 2 ((2,1)). Identifying cross-partial derivatives does not tell us whether
production is higher at one argument~x than another argument.

I now focus on the ordinal identification of f . By ordinal identification, I mean that for any two sets of
characteristics for a group of matches ~x1 and ~x2, I wish to know whether f (~x1) > f (~x2) or the reverse. Ordinal
identification is helpful in distinguishing whether an individual match characteristic xk in~x is actually a “good”
that raises output.

Matzkin (1993) proves the ordinal identification of utility functions for the single-agent multinomial choice
model under Manski (1975)’s assumptions about the error terms: the single-agent equivalent of Assumption
1. The preliminaries of my analysis follow Matzkin’s. However, in the single-agent model, one can vary the
characteristics of the choices facing the single agent. In a matching market, an agent must pay the appropriate
transfer to match with a partner, and that transfer is both an outcome of the game and assumed to not be in the
data. Therefore, I extend the mathematical arguments in Matzkin to show ordinal identification of, here, the
production function f , by using only exogenous information on X , the collection of characteristics of all agents
and potential matches in a matching market. In other words, I work with the equilibrium structure of the game
and variation in the exogenous market-level characteristics of matches to show identification.

6.1 Preliminaries for ordinal identification

Positive monotonic transformations preserve ordinal rankings, so we must rule those transformations out. The
following assumption previews the result that production functions can be identified up to a positive monotonic
transformation. This is good news, as it might have been the case that the equilibrium concept of pairwise
stability, which involves exchanges of one downstream firm per upstream firm, is not enough to identify pro-
duction functions involving coalitions with many downstream firms. For example, inequalities that involve the
exchange of only one downstream firm per upstream firm can identify a production function with ten matches,
even if each match being is represented by a vector of five characteristics, for fifty arguments total.45

Assumption 3. Let F be a class of production functions. For any two members of this class F , f 1 and f 2, for
no positive, strictly monotonic function m is it the case that f 1 (~x) = m◦ f 2 (~x) for all~x.

Matzkin (1993) presents classes of functions that rule out positive monotonic transformations. An example is
the class of least-concave functions.

45With real data, this would be implemented using a parametric functional form because of the curse of dimensionality in nonparametric
estimation.
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Manski (1975, 1985, 1988) discusses the semiparametric point identification of single-agent discrete choice
models using an assumption that at least one covariate entering the payoff of each choice has a continuous dis-
tribution. Matzkin (1991, 1993) extends the semiparametric identification arguments of Manski to single-agent
discrete choice models where the deterministic payoff of a choice is a nonparametric function of characteris-
tics. The equivalent characteristic assumption for matching follows. Recall that ~x is one long vector of scalar
characteristics. Call the first, scalar element of this vector, x1. Call all other elements ~x−1. The collection of
market characteristics is X .

Assumption 4.

• The conditional density of characteristic 1, g(x1 |~x−1,X\~x), has an everywhere positive density in R.46

• Each f ∈F is continuous in its argument x1 and is either strictly increasing or strictly decreasing in x1.

• X has support equal to the product of the marginal supports of the scalar elements of X .

• Each scalar element of X has either strictly discrete or strictly continuous support.

• Each f ∈F is continuous in any scalar element of X with continuous support.

The assumption allows all but one of the characteristics to have discrete or qualitative support.47 This assump-
tion replaces the earlier Assumption 2, which is only for the cardinal identification theorems.48

The technical use of Assumption 4 involves the lack of a positive monotonic transformation and its relation-
ship to a strict inequality. I state the argument in a separate lemma because the continuous covariate argument
is used in the same way in the proofs of the three ordinal identification theorems.

Lemma 3. Let f 1 and f 2 be production functions in a class F satisfying Assumption 3. If Assumption 4 holds,
then there exists two vectors~xa and~xb such that either

f 1 (~xa) > f 1 (~xb) and f 2 (~xa) < f 2 (~xb)

or
f 1 (~xa) < f 1 (~xb) and f 2 (~xa) > f 2 (~xb) .

This lemma will be used where~xa and~xb are part of X for the same matching market.

6.2 Ordinal identification theorems

Identification proofs in the single-agent maximum score tradition (Matzkin, 1993) typically amount mathemat-
ically to Lemmas 2 and 3. Consequently, the identification proof for case each focuses on an issue that is new

46The notation X\~x means all elements of X other than those in the specified vector~x.
47The assumption that the support of x1 is R, rather than some compact subset of R, is made for convenience. Manski (1988) and

Horowitz (1998) show how to relax the full support assumption for the identification of single-agent binary choice models. A continuous
product quality could be a candidate for the continuous upstream product characteristic x1.

48The identification arguments in this paper are not related to the identification at infinity arguments made in the literature on selection
and the related work on the special regressor estimator of Lewbel (2000). Identification based on special regressor arguments might
be possible if there are match-specific regressors with full support and independence from the error terms. Arguments exist to weaken
the full support assumptions (Magnac and Maurin, 2007). Special regressor identification arguments do not lead to tractable estimators
for matching games. The Lewbel single-agent, multinomial choice estimator requires multidimensional density estimation and therefore
suffers from a data curse of dimensionality in the number of choices.
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to matching games: embedding the inequalities from Lemma 3 in a local production maximization inequality,
meaning an inequality where each upstream firm switches at most one downstream firm at a time. Thus, the
proofs look for market characteristics X where the comparisons in Lemma 3 are decisive in rank ordering the
production of two larger, otherwise similar assignments, A1 and A2. As with cardinal identification, I consider
group, match and firm-specific characteristics separately. Identification is Definition 4 subject to the lack of a
positive monotonic transformation in Assumption 3. I list the theorems in increasing difficulty of the proofs.

Group-specific characteristics allow the arguments of production functions to move around more flexibly
than in the other cases.

Theorem 4. Let~x(i,Cu) =
(

xgroup
(i,Cu),1, . . . ,x

group
(i,Cu),K

)
. Then the production function is identified in the class F .

Match-specific characteristics make the identification proof more complex than before. The reason is that
the equilibrium concept of pairwise stability, Definition 2, involves only one unmatched pair deviating at a time.
To show identification, we must start with Lemma 3 and be able to construct local production maximization
inequalities where the coalition characteristics differ by the arguments corresponding to only one match be-
tween an upstream and a downstream firm. Remember the production function requires a vector of arguments
for each match of an upstream firm.

Theorem 5. Let ~x(i,Cu) = cat
((

xu,d
〈a1,i〉,1, . . . ,x

u,d
〈a1,i〉,K

)
, . . . ,

(
xu,d
〈an,i〉,1, . . . ,x

u,d
〈an,i〉,K

))
. Also, let there be assignments

A that contain as many groups of matches as the maximum quota of an upstream firm. The production function

is identified in the class F .

The theorem requires the matching market to be sufficiently large so that the comparisons needed for identifi-
cation can be formed. The matching market may need to allow several firms on each side of the market because
pairwise stability considers firms swapping only one partner at a time, while a production function can have as
its arguments the characteristics of the matches involving many downstream firms.

Firm-specific characteristics require an additional normalization. Ordinal identification requires the ability
to distinguish production functions with additive, firm-specific components, such as f

(
cat
(
~xu

i ,~x
d
a
))

= β ′u~x
u
i +

β ′d~x
d
a . The availability of data for firms that are unmatched and an assumption that the production of an un-

matched firm is always zero allow for identification. Some location normalization of the production of the
matches involving both upstream and downstream firms is necessary, as (6) shows non-interacted terms, of
which a constant is a special case, drop out in the local production maximization inequality. If unmatched
firms are observable in data and the value of an unmatched firm is set to zero, then non-interacted terms that
only “turn on” when a firm is matched are identifiable.49 Informally, identification considers the probabilities of
assignments where certain firms are unmatched.50 Firms that are more likely to be unmatched in an assignment
are likely to have lower contributions to production.

Theorem 6. Let ~x(i,Cu) = cat
((

xu
i,1, . . . ,x

u
i,Ku

)
,
(

xd
a1,1, . . . ,x

d
a1,Kd

)
, . . . ,

(
xd

an,1, . . . ,x
d
an,Kd

))
. Let the value of any

firm remaining unmatched be 0, or f
(
~xd

a
)

= f
(
~xu

i
)

= 0 for all i ∈ U , a ∈ D and f ∈ F . Further, let there be

assignments A that contain as many matched coalitions as three times the maximum quota of an upstream firm.

Then the production function is identified in the class F .
49What is important for the identification argument is that a specified class of partners for each firm have the same, known value for

each firm. Being unmatched is commonly used in the linear programming formulations of one-to-one matching games (Koopmans and
Beckmann, 1957).

50Choo and Siow (2006) estimate a logit-based one-to-one matching model of marriage that requires data on the fraction of each
observable type of man or woman that is single.
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7 Estimation as the number of markets gets large

I now discuss how the previous identification arguments can form the basis for a practical estimator. A re-
searcher has some data from M statistically independent matching markets. The econometrician observes the
exogenous characteristics Xm and the endogenous market assignment Am for each market m. The asymptotics
will be in M.

There are at least two curses of dimensionality in matching estimation. First, following the identification
argument directly leads to a potentially consistent estimator of the production function, but a data curse of
dimensionality. One nonparametrically estimates the assignment probabilities Pr(A | X) = Pr

(
A | X ; f 0,S0) with

data from multiple markets. The estimates P̂r(A | X) allow some version of the identification arguments to be
applied. As P̂r(A | X) converges in probability to Pr(A | X), the estimator f̂ will likely converge to f 0, the true
production function in the data generating process. Unfortunately, the first-stage nonparametric estimation of
Pr(A | X) is not a tractable strategy for many datasets as the dimensionality of both A and X in Pr(A | X) may be
high (thousands or millions of elements in X is not unusual).

Likewise, a traditional maximum likelihood estimator faces a computational curse of dimensionality in
having to simulate equation (11), even for the simple case of one-to-one matching. The number of error
terms being integrated out in (11) is on the order of U ·D, the total number of potential matches in a market.
The integrand involves computing an equilibrium assignment for a matching market. In one-to-one matching,
such a computation is a linear program that itself can be computationally costly. Alternatively, for a given
pair (Am,Xm), the local production maximization inequalities from Lemma 1 might need to be checked to
construct at least an upper bound to the likelihood. The text following Lemma 1 discusses why matching
combinatorics make checking all inequalities computationally difficult. Multiple equilibrium assignments add
additional complications for equilibrium assignment computations.

This section provides a maximum score estimator, which follows the work of Manski (1975) for the single
agent model. The maximum score estimator works directly with the production function f instead of Pr(A | X).
Also, the maximum score estimator avoids all nested computations. Further, all inequalities do not need to be
included with probability 1 to maintain the consistency of the estimator.

7.1 Semiparametric vs nonparametric estimation

I restrict attention to a semiparametric version of the estimator to focus attention on practical implementation.51

“Semiparametric” refers to not imposing a parametric structure on S in Pr
(
A | X ; fβ ,S

)
while specifying fβ up

to a finite vector of parameters β . The parameter space for fβ is a special case of the earlier identification
assumptions. Here I do not use any special properties of a given parametric class, such as the linear index
fβ (~x) =~x′β in Manski (1975).

Assumption 5.

1. The production function fβ ∈F where F =
{

fβ
}

β∈B and B ⊆ R|β |, |β |< ∞. B is compact.

51The matching identification theorems are nonparametric. Matzkin (1993) studies the nonparametric maximum score estimation of
single-agent discrete choice models with more than two choices. She examines several technical issues that are needed for estimation
using an infinite dimensional space of functions F . These include appropriate metrics to define compactness of F , regularity conditions
on F , and the proof of the uniform convergence of the objective function. Matzkin’s arguments can be extended to the matching maximum
score estimator.
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2. Identification: Let β 0 ∈B and S0 ∈S be the true parameters that generate the data. For any β 1 6= β 0,
β1 ∈B, and for any S1 ∈S , there exists a set of market characteristics X with positive probability and
two assignments A1 and A2 such that Pr

(
A1 | X ; f

β 0 ,S0
)

> Pr
(

A2 | X ; f
β 0 ,S0

)
while Pr

(
A1 | X ; f

β 1 ,S1
)

<

Pr
(

A2 | X ; f
β 1 ,S1

)
for any X ∈X .

3. Each~x in X has one or more elements with continuous support.

4. X is independently and identically distributed across markets.

As I have shown nonparametric identification of f 0, or of features of f 0, under various conditions, the paramet-
ric restrictions in Assumption 3 are purely for computationally tractable estimation. Part 2 assumes identifica-
tion to focus on the asymptotic properties of the estimator. Part 2 will be enough to show that β 0 is the unique
global maximum to the maximum score objective function. See the example in Section 5.3 for an example of
choosing fβ based on the identifiable features from the cardinal nonparametric identification theorems.

7.2 The matching maximum score estimator

First say the researcher examines a one-to-one matching model such as marriage. Assume the researcher uses
data on only matched couples. Then the maximum score objective function is

QM (β ) =
1
M ∑

m∈M
∑

〈a,i〉,〈b, j〉∈Am

1
[

fβ (~x(i,{a}))+ fβ (~x( j,{b})) > fβ (~x(i,{b}))+ fβ (~x( j,{a}))
]
. (13)

The indicator functions 1 [·] are equal to 1 when the local production maximization inequality in brackets is true
and 0 otherwise. The score of correct predictions increases by 1 when a production maximization inequality
holds for a trial guess of β . The matching maximum score estimator β̂M receives the highest score of satisfied
inequalities. The fraction of satisfied inequalities is a measure of statistical fit such as R2 in a regression. As
the objective function is a step function, there will always be more than one global maximum; finding one is
sufficient for estimation.

More generally, given Am and Xm, let Im be the inequalities that the econometrician includes for market m.
An inequality in Im is indexed by the matches B1 ⊆ Am that index matches on the left side that will be dissolved
and the matches B2 on the right side formed from those dissolutions. See Definition 3 for the definitions of B1,
B2 and a local production maximization inequality. The maximum score estimator is any parameter vector β̂M

that maximizes

QM (β ) =
1
M ∑

m∈M
∑

(B1B2)∈Im

1

[
∑

〈a,i〉∈B1

fβ (~x(i,Cu
i (Am))) > ∑

〈a,i〉∈B2

fβ (~x(i,Cu
i ((Am\B1)∪B2)))

]
. (14)

Evaluating QM (β ) is computationally simple: there is no nested equilibrium computation to a matching game,
as say Pakes (1986) and Rust (1987) proposed for dynamic programming problems. Another key idea behind
the computational simplicity of maximum score estimation is that there are no error terms ε〈a,i〉 in (14), even
though the estimator may perform well if the data are generated from a model with such errors (see Sections
4.4 and 8). Not all inequalities will be satisfied, even at the maximizer β̂M and even at the probability limit of
the objective function.52

52This distinguishes maximum score from a moment inequality approach.
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7.3 Consistency and inference

Even given these computational advantages over methods that require nested solutions to matching games or
numerical integration, there can still be a very large number of local production maximization inequalities,
as Section 3.3 makes clear for the automotive assembler and supplier example. If all such inequalities were
included, the estimator would suffer from a computational curse of dimensionality. Luckily, inequalities only
need to be included with some positive probability for the estimator to be consistent.53 This means researchers
can sample from the set of theoretically valid inequalities. Let N (A,X) be this set of theoretically valid local
production maximization inequalities of the form (B1,B2), given assignment A (A1 in the notation of Lemma
1) and observable characteristics X . Let I (B1,B2 | X) be the probability, conditional on X , that a researcher
includes an inequality when (B1,B2) ∈ N (A,X). Hence, I (B2,B1 | X) is the probability of sampling (B2,B1) when
(B2,B1) ∈ N (A2,X), for some other assignment A2.

Assumption 6. For all (B1,B2) ∈ N (A,X) and for any feasible pair (A,X),

1. I (B1,B2 | X) = I (B2,B1 | X).

2. I (B1,B2 | X) > 0.

Because all inequalities needed for identification are included in the limit as M→∞, sampling inequalities does
not change point identification to set identification.

The following theorem states that the matching maximum score estimator is consistent. The asymptotics
are in the number of independent markets.

Theorem 7. As M → ∞, any β̂M ∈ B that maximizes the matching maximum score objective function is a

consistent estimator of β 0 ∈B, the parameter vector in the data generating process.

The proof is a straightforward application of a general consistency theorem for extremum estimators in Newey
and McFadden (1994), which generalizes the early work of Manski (1975, 1985) on maximum score. The
insight here is not the consistency proof, but the general idea that maximum score can be interpreted as a
necessary conditions approach for inequalities, at least for matching games with transfers. In terms of data
requirements and computation, two practical aspects of the estimator are that Pr

(
A | X ; fβ ,S

)
does not have to

be manually computed for each guess of β and S and Pr(A | X) does not need to be nonparametrically estimated
in a first stage. The maximum score estimator is consistent in part because of a law of large numbers, as by the
law of iterated expectations over the random variables A and X ,

plimM→∞

1
M

M

∑
m=1

1 [Am = A] = EX {Pr(A | X)} ,

where 1 [Am = A] equals 1 if assignment A occurs in market m.54

53This estimator will not have a normal distribution, if asymptotics are in the number of markets. Therefore, I will avoid discussing how
the choice of inequalities relates to statistical efficiency. For consistency, all valid inequalities from Lemma 1 do not need to be included
with positive probability for some parametric functional forms. Consider the standard linear index case fβ (~x) =~x′β . Then results in
Manski (1975) can be adapted to show only inequalities involving pairs of matches B1 = {〈a, i〉 ,〈b, j〉} need to be included.

54The proof shows that the true production function f 0 maximizes the probability limit of the objective function. Such an argument
would not work if the objective function involved minimizing the number of incorrect predictions times a penalty term (other than the
current 1s and 0s) reflecting the difference between the production levels of the matches in the data and some counterfactual matches,
when evaluated at a hypothetical f . The rank order property suggests maximizing the number of correct inequalities, not allowing a
violation in one inequality in order to minimize the degree of a violation in another inequality.
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Kim and Pollard (1990) show that the binary (two) choice maximum score estimator converges at the rate
of 3√M (instead of the more typical

√
M) and that its limiting distribution is too complex for use in inference.

Abrevaya and Huang (2005) show that the bootstrap is inconsistent while Delgado, Rodríguez-Poo and Wolf
(2001) show that another resampling procedure, subsampling, is consistent. Subsampling was developed by
Politis and Romano (1994). The book Politis, Romano and Wolf (1999) provides a detailed overview of
subsampling.

An alternative to subsampling is smoothing the indicator functions in the maximum score objective func-
tion. For the single-agent binary-choice maximum score estimator, Horowitz (1992) proves that a smoothed
estimator converges at a rate close to

√
M (the exact rate depends on the smoothing parameter and smoothness

assumptions about the model) and is asymptotically normal with a variance-covariance matrix than can be es-
timated and used for inference. Further, Horowitz (2002) shows the bootstrap is consistent for his smoothed
maximum score estimator.

7.4 Computation

Because of the combinatorics inherent in matching games and the multiple equilibrium assignments in some
matching games, maximum score has advantages over methods that require repeatedly computing equilibrium
assignments or computing high-dimensional integrals. Still, some readers may be concerned about optimization
for the maximum score estimator. The maximum score estimator is a step function. Smoothing the maximum
score step function does not solve the main issue in the computational cost of numerically maximizing the
objective function: the presence of local hills providing tempting regions for a local optimization routine to
converge to.

Manski and Thompson (1986) and Pinkse (1993) present optimization algorithms for the single-agent max-
imum score estimator where the parameters enter linearly into the payoff function. In the Monte Carlo study
and in the empirical application below, I numerically maximize the maximum score objective function using
the global optimization routine known as differential optimization (Storn and Price, 1997).

For a finite sample, the objective function is a step function and so there is a continuum of global maxima,
even if the parameter β is point identified asymptotically. Any global maximum is a consistent estimator.
Smoothing the indicator functions will remove this numerical indeterminacy.

8 Monte Carlo evidence

This section presents evidence that the maximum score estimator works well in finite samples and with iid
match-specific errors. The Monte Carlo study examines games of one-to-one, two-sided matching. Section 4.4
provides background on this class of games and argues that the rank order property holds only approximately
under iid match-specific errors. I present an alternative sufficient condition involving a social planner’s errors,
but in the Monte Carlo study I restrict attention to the iid errors case.

Each agent is distinguished by two characteristics, for upstream firm i, xu
1,i and xu

2,i, and for downstream firm
a, xd

1,a and xd
2,a. The total output from a match of i to a is

fβ1,β2

(
cat
(
~xu

i ,~x
d
a

))
+ ε〈a,i〉 = β1xu

1,i · x
d
1,a +β2xu

2,i · x
d
2,a + ε〈a,i〉.
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I impose the scale normalization β1 = ±1. The sign of β1 is superconsistently estimable, so I set it to the true
value of +1 throughout the study. For each side of the market and upstream firms as an example, xu

1,i

xu
2,i

∼ N

 10

10

 ,

 1 1/2

1/2 1

 .

The high means of 10 ensure that the characteristic values are usually positive. The nonzero covariance suggests
a multivariate estimator might give different estimates than a univariate estimator. I set β2 = 1.5, so that the
second observable characteristic is more important in sorting.

In the first set of experiments, the match-specific ε〈a,i〉’s are iid with a normal distribution with a standard
deviation of either 1 or 5. In the second set of experiments, the match-specific ε〈a,i〉’s are iid with one of two
mixed normal distributions, each with two components. The first mixed normal distribution is 0.35 ·N

(
−5,22)+

0.65 ·N
(
2,22), which has a standard deviation of 1.43. The second distribution is 0.35 ·N

(
−5,22)+0.65 ·N

(
2,52),

which has a standard deviation of 3.33.
I sample match specific errors and solve for the optimal assignment using the linear programming problem

discussed in Section 2.2. The linear programming formulation ensures that all consummated matches provide
non-negative surplus. Very few of the agents are unmatched in the fake data as the means of both characteristics
are high.

While not shown, I have plotted scatterplots of the characteristics for matched pairs. Consider fake data
with 30 upstream and 30 downstream firms and an error standard deviation of 1. Because β2 = 1.5 > β1 = 1,
typically the matched firms will appear more assortatively matched on characteristic 2 than 1. With an error
standard deviation of 5, positive assortative matching on either characteristic will be hard to visually detect in
the fake data.55

Table 2 reports estimates of the bias and root mean-squared error (RMSE) of the matching maximum score
estimates under various specifications. Consider the upper-left panel: normal errors with a standard deviation
of 1. The bias and RMSE are high for 3 downstream and 3 upstream firms (6 total) for each market and 100
markets. The bias and RMSE are larger for 10 firms on each side of the market and only 10 markets. However,
both the bias and RMSE decrease when more firms are added to each market: the third row reports 30 firms
on each side and 10 markets. The bias and RMSE decrease further with 60 firms on each side and 10 markets.
The fifth row then shows that increasing the number of markets to 40 further reduces the bias and RMSE.

Another question is how well the estimator works in a finite sample with data on only one fairly large
matching market. The seventh row of the upper-left panel uses 100 firms on each side of the market, but only
one market. The bias and RMSE then decline in the eighth row as the number of firms on each side increases
to 200.

Qualitatively similar changes in the bias and RMSE occur for each of the other three panels: normal errors
with a larger standard deviation (no visual sorting pattern in the data) and two forms of the mixed normal
distribution. Using a bimodal, mixed normal distribution suggests that the estimator fulfills its semiparametric
claims: it is not so sensitive to the distribution of the data generating process. In these experiments, the
estimator is not very biased when there are iid errors, despite the discussion in Section 4.4.

55For each replication, the Monte Carlo study reports the maximum provided by the optimization routine, which is a consistent estimator
under the conditions in this paper. If the maximum reported by the optimization package tends to always be near the lower bound of the
set of finite-sample maxima, it could create an apparent downward, finite-sample bias. In practice, the range of global maxima is small.
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Table 2: Monte Carlo results, true value β2 = 1.5

Normal errors

# Upstr. & # Markets Errors Bias RMSE
# Downstr. std. dev.

3 100 1 0.154 0.896
10 10 1 0.431 2.61
30 10 1 0.026 0.406
60 10 1 0.016 0.264
60 40 1 0.013 0.154

100 1 1 0.074 0.551
200 1 1 0.058 0.355

3 100 5 0.484 3.32
10 10 5 0.602 2.80
30 10 5 0.185 0.852
60 10 5 0.054 0.442
60 40 5 0.011 0.056

100 1 5 0.231 1.05
200 1 5 0.128 0.398

Mixed normal errors, two components, asymmetric

# Upstr. & # Markets Errors Bias RMSE
# Downstr. std. dev.

3 100 1.48 0.216 1.13
10 10 1.48 0.254 1.11
30 10 1.48 0.099 0.454
60 10 1.48 0.028 0.281
60 40 1.48 0.010 0.160
100 1 1.48 0.084 0.600
200 1 1.48 0.022 0.381

3 100 3.33 0.426 2.77
10 10 3.33 0.336 1.56
30 10 3.33 0.072 0.600
60 10 3.33 0.058 0.382
60 40 3.33 0.030 0.199
100 1 3.33 0.129 0.721
200 1 3.33 0.056 0.444

The true parameter is β2 = 1.5. The population bias is E
[
β̂2−1.5

]
, and the population RMSE is

√
E
[(

β̂2−1.5
)2
]

, where 1.5 is the

value of β2 used to generate the fake data.
The model is estimated 500 or 1000 times for each simulation of bias and RMSE. A fake dataset consists of the listed number of inde-

pendent markets. New observable variables X and match-specific errors of the form ε〈a,i〉 are drawn for each market and each replication.
Each market is a one-to-one, two-sided matching game. The number of upstream firms (or men) always equals the number of downstream
firms (or women). The equilibrium assignment is calculated using a linear programming problem, as discussed in Section 2.2.

The distribution of the fixed agent types is given in the text. On the left table, the errors ε〈a,i〉 have N
(
0,σ2) distributions, where σ is

the standard deviation listed in the table. In the top half of the right table, the errors have the mixed normal distribution 0.35 ·N
(
−5,22)+

0.65 ·N
(
2,22), which has the standard deviation listed in the table. This is a bimodal density. In the bottom half of the right table, the

error distribution is 0.35 ·N
(
−5,22)+0.65 ·N

(
2,52).

Each agent has a vector of two types. The coefficient on the product of the first types is normalized to one. The estimate of the sign of
the coefficient is superconsistent and so I do not explore its finite sample properties.
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9 Empirical application to automotive suppliers

I now present an empirical application about the matching of suppliers to assemblers in the automobile industry.
Automobile assemblers are well-known, large manufacturers, such as BMW, Ford or Honda. Automotive
suppliers are less well-known to the public, and range from large companies such as Bosch to smaller firms
that specialize in one type of car part. A car is one of the most complicated manufacturing goods sold to
individual consumers. Making a car be both high quality and inexpensive is a technical challenge. Developing
the supply chain is an important part of that challenge. More so than in many other manufacturing industries,
suppliers in the automobile industry receive a large amount of coverage in the industry press because of their
economic importance.

A matching opportunity in the automotive industry is an individual car part that is needed for a car. Let
La be the set of parts assembler a ∈ D needs suppliers for. A particular part l ∈ La in the data is attached to a
supplier, i∈U . Therefore a match in this industry is a triple 〈a, i, l〉. The same supplier can supply more than one
part to the same assembler: 〈a, i, l〉 and 〈a, i,h〉 represent two different matches (car parts) between assembler a

and supplier i. This is a two-sided, many-to-many matching game between assemblers and suppliers, with the
added wrinkle that a supplier can be matched to the same assembler multiple times.56

The data group car parts into component categories, and I treat each component category as a statistically
independent matching market. In my data, there are 593 distinct component categories, such as “Pedal Assem-
bly” and “Coolant/Water Hoses.” I assume any nonlinearities between multiple matches involving the same
supplier occur only within component categories; there are no spillovers across the different matching markets.
A triplet 〈a, i, l〉 in the data then could be the front pads of a Fiat 500 (a car) supplied by Federal-Mogul. Front
pads are in the component category (matching market) disk brakes.

The automotive supplier empirical example is a good showcase for the strengths of the matching estimator.
The matching markets modeled here contain many more agents than the markets modeled in some other papers
on estimating matching games, which are discussed in Section 11. The computational simplicity of maximum
score, or some other approach that avoids repeated computations of model outcomes, is needed here. Other
than my related use of the estimator in Bajari and Fox (2007), this is the first empirical application to a many-to-
many matching market where the payoffs to a set of matches are not additively separable across the individual
matches. I focus on specialization in the portfolio of matches for a given supplier. Finally, matched firms
exchange money, but the prices of the car parts are not in publicly available data. The matching estimator does
not require data on the transfers, even though they are present in the economic model being estimated.

9.1 Where is specialization the most important?

I focus on upstream firms or suppliers. This section examines to what extent suppliers benefit from special-
ization. My production function specification says suppliers may specialize in four areas: parts (in the same
component category) for an individual car, parts for cars from a particular brand (Chevrolet, Audi), parts for
cars from a particular parent company or assembler (General Motors, Volkswagen) and parts for cars for brands
with headquarters on a particular continent. Given my data, I group brands into three continents: Asia (Japan

56Alternatively, this is just a standard two-sided, many-to-many matching game where the car parts are one side of the market and the
assembler of each car part is a part-specific characteristic.
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and Korea), Europe, and North America.57 The management literature has suggested that supplier specializa-
tion may be a key driver of assembler performance (Dyer, 1996, 1997).58 Here I focus on how specialization
can affect the production from a set of car-part relationships centered around a single supplier.59

In a slight generalization of the notation from the earlier part of the paper, let Cu be a collection of car parts
(a, l), where a is the assembler and l is the car part, in market (component category) m. The production function
for upstream firm i is

fβ (~x(i,Cu)) = βCont.xContinent (Cu)+βPGxParentGroup (Cu)+βBrandxBrand (Cu)+βCarxCar (Cu) . (15)

The parameters βCont., βPG, βBrand and βCar are estimable parameters. The latter three are real numbers; βCont. =

±1, as qualitative data like matches cannot identify the scale of production. The match-specific characteristic
xParentGroup (Cu) is the Herfindahl-Hirschman Index (HHI) of specialization at the parent group for that supplier.
For example, if the supplier produced car parts for only the three American parent groups, the HHI for parent
groups would be

xParentGroup (Cu) =
(

#Chryslerparts inCu

#totalparts inCu

)2
+
(

#Fordparts inCu

#totalparts inCu

)2
+
(

#GMparts inCu

#totalparts inCu

)2
.

More generally,

xParentGroup (Cu) = ∑
a∈DPG

(∣∣LPG
a ∩Cu

∣∣
|Cu|

)2

,

where |Cu| is the number of parts in Cu, DPG is the set of parent groups, LPG
a is the set of car parts for parent

group a, and
∣∣LPG

a ∩Cu
∣∣ is the number of car parts a sources from i, for this component category. This HHI

measure will be computed for both the matches seen in the data and for the counterfactual matches in local
production maximization inequalities.

The other three characteristics are similar HHI measures. By construction, two parts for the same car also
have the same brand, parent group and continent. Two car parts for cars from the same brand are automati-
cally in the same parent group and the brand only has one headquarters, so the parts are from a brand with a
headquarters in the same continent as well. Two cars from the same parent group are not necessarily from the
same continent, as the Ford-owned brand Mercury is from North America while the Ford-owned brand Volvo
is from Europe. As I model each component category as a separate matching market, I do not consider special-
ization benefits from producing different component categories of parts for the same assembler or car model.
I could allow across-category spillovers at the expense of treating each component category as a statistically
independent matching market.

57As stated, grouping at the continent of headquarters level occurs by the brand and not the parent company. So Opel is grouped into
the European continent even though it has been a subsidiary of General Motors since the 1930s. Some brands have headquarters in one
continent but produce cars in other continents as well. The continent specialization measure focuses on the continent where the brand has
its headquarters.

58Novak and Wernerfelt (2007) study co-production of parts by the same supplier for the same car model. They use data on only eight
cars and do not discuss the relative specialization at higher levels of organization, such as brand, parent group and headquarters continent.

59A few suppliers are owned by assemblers. I ignore this vertical integration decision in my analysis, in part because I lack data on
supplier ownership and in part because vertical integration is just an extreme version of specialization, the focus of my investigation. If
a supplier sends car parts to only one assembler, that data is recorded and used as an endogenous matching outcome. Vertical integration
in automobile manufacturing has been studied previously (Monteverde and Teece, 1982; Novak and Eppinger, 2001; Novak and Stern,
2007b,a).
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It should be clear that the four match-specific characteristics in (15) are highly correlated. Just as univari-
ate linear least squares applied to each covariate separately produces different slope coefficients than multi-
variate linear least squares when the covariates are correlated, a univariate matching theoretic analysis (such
as Becker (1973)) on each characteristic separately will be inadequate here. A univariate analysis of say
βPGxParentGroup (Cu

i
)

would just amount to saying that βPG > 0 when each supplier does more business with cer-
tain parent groups than others. In principle, even this conclusion about the sign of βPG could be wrong if the
correlation with the other three characteristics is not considered in estimation. What is even more interesting
in this empirical application is to measure the relative importance of each of the four types of specializa-
tion: at which level do the returns to specialization occur? This requires formal statistical analysis to estimate
βCont., βPG, βBrand and βCar. Less parametrically, Theorem 3 says we can identify the relative importances of
group-specific characteristics by identifying the ratios of the second derivatives of the production function in
each characteristic. Here we are parametric in the choice of a production function, but (15) is a parametric
implementation of the spirit behind the nonparametric identification result in Theorem 3.60

The data come from SupplierBusiness, an analyst firm. There are 1252 suppliers, 14 parent companies, 52
car brands, 392 car models, and 52,492 car parts divided into 593 distinct matching markets, which again are
combinations of component categories and continents of assembly of the car. While the data cover different
model years, for simplicity I ignore the time dimension and treat each market as clearing simultaneously.61 The
data also lack complete coverage of all car models. The coverage is best in Europe followed by North America;
Asia is the worst. I disregard cars manufactured in Asia during estimation, although Asian brands assembled in
Europe and and North America are a major focus below. Again, cars assembled in Europe and North America
are treated as separate matching markets, although that could be weakened if a particular economic question
required it.62

I use the maximum score estimator, (14), to compute point estimates, and subsampling to produce confi-
dence intervals. I use local production maximization inequalities with the left and right side matches being of
the form B1 = {〈a, i, l〉 ,〈b, j,h〉} and B2 = {〈a, j,h〉 ,〈b, i, l〉}, where B1 and B2 are as in Definition 3. I include two
suppliers per inequality, and they exchange one car part each.63 These exchanges produce more than enough
inequalities for parametric estimation. For matching markets with large numbers of car parts, this scheme’s
combinatorics will produce a computationally intractable number of inequalities. I randomly sample 2000 in-
equalities for the large matching markets. All theoretically valid inequalities with two different suppliers are
sampled with an equal probability, which satisfies Assumption 6.

Table 3 presents point estimates and subsampled confidence intervals for the four HHI specialization mea-
sures.64 We see that all four estimates are positive, meaning as expected specialization on these dimensions

60The estimator is semiparametric as I do not impose a parametric structure for the distribution of error terms.
61Car models are refreshed around once every five years. A dynamic matching model would be a different paper.
62I do not have any data on the suppliers, other than their portfolio of car parts. Geographic location of a supplier’s plant would likely be

a good predictor of which assembler and assembler plants the supplier provides parts for. However, geographic location is to a large degree
an endogenous matching outcome. Supplier plants are often built to service particular assembly plants. With just-in-time production at
many assembly sites, supplier factories are built short distances away so parts can be produced and shipped to the assembly site within
hours, in many cases. The production function returns to specialization from a supplier’s viewpoint thus encapsulate the cost savings from
needing to build only one supplier factory for a particular assembler factory.

63The local production maximization inequalities used in estimation keep the number of car parts produced by each supplier the same.
With strong returns to specialization, it may be more efficient to have fewer but individually larger suppliers. The optimality of supplier
size is not imposed as part of the estimator. Not imposing the optimality of supplier size might be an advantage, as other concerns such as
capacity constraints and antitrust rules could limit supplier size.

64I estimate βCont. by optimizing the maximum score objective function over the other parameters, first fixing βCont. = +1 and then
fixing βCont. = −1. I then take the set of estimates corresponding to the maximum of the two objective function values as the final set of
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Table 3: Different types of supplier specialization: production function parameter estimates
Production function estimates Sample statistics for HHI Measures

HHI Measure Point Estimate 95% CI Mean Standard Deviation

Continent +1 Superconsistent 0.799 0.192
Parent Group 5.71 (4.06, 8.06) 0.457 0.303

Brand 8.82 (0.611, 12.4) 0.341 0.311
Model 91.2 (73.8, 130) 0.256 0.312

# Inequalities 532,939
% Satisfied 75.3

increases match production. Sample statistics for the four measures (taken by weighting each supplier, rather
than each car part, once) are also listed in order to help explore the economic magnitudes of the point estimates.
The production function parameters show that a given level of specialization at the parent group level is 5.7
times more important in production than the same level of specialization at the continent-of-brand-headquarters
level. Most specialization benefits occur within firm boundaries rather than across them. At the same time, the
standard deviation of parent group specialization HHI, from each supplier’s viewpoint, is 0.303, meaning the
variation in this parent group specialization across suppliers is high. A naive researcher might be inclined to
interpret this dispersion as evidence parent group specialization is unimportant. This would be wrong: the
maximum score estimator accounts for the fact that more available matching opportunities occur across firm
boundaries rather than within them. Only an estimate of a structural parameter such as the coefficient on parent
group tells us the importance of parent group in the production from a set of supplier relationships.

Table 3 also shows that specialization at the brand and model levels is even more important than specializa-
tion at the parent group level, although the brand and parent group confidence intervals substantially overlap.
The high point estimate of 91.2 for model specialization is, qualitatively, logical: car models of even the same
brand may be built in separate plants and some benefits from specialization may occur from saving on the
need to have multiple supplier plants for each model. Also, the technological compatibility of car parts occurs
mainly at the model level. Notice how the standard deviation of the HHI specialization measure is about the
same (around 0.3) for the parent group, brand and model measures, and how the mean HHI declines from
parent group to brand to model. Again, naive researchers might use the means to conclude that specialization
at the model level is less important or use the standard deviations to conclude that specialization at all three
levels are equally important. The structural estimates of the match production function give statistically consis-
tent estimates of the relative importance of the types of specialization in the production functions for supplier

estimates. The estimate of a parameter that can take only two values is superconsistent, so I do not report a confidence interval. The point
estimate was always βCont. = +1 (specialization raises production) in initial specifications with smaller numbers of inequalities. In later
specifications with more inequalities, I only fix βCont. = +1 in order to reduce the computational time by half.

I use the numerical optimization routine differential evolution, in Mathematica. For differential evolution, I use a population of 200
points and a scaling factor of 0.5. The numerical optimization is run five times with different initial populations of 200 points. I take
the point estimates corresponding to the maximum reported objective function value over the five runs. For inference, I use subsample
sizes equal to 1/4 of the matching markets. Unfortunately, the literature on subsampling has not produced data dependent guidelines for
choosing the subsample size. I use 100 replications (fake artificial datasets) in subsampling. Following the asymptotic theory, I sample
from the 593 distinct matching markets (component categories and continents of final assembly).

To give readers an idea about computational time, constructing the inequalities and producing the estimates in Table 3 took 13.6 hours
on a single core of a late 2007 vintage desktop computer. The five estimation runs took 2.1 of those hours and the 100 subsampling
replications took 8.2 hours. The remainder of the time was spent in data processing. Computational time is approximately linear in the
number of inequalities. Using at most 200 inequalities per market, instead of 2000, reduces the total computational time to 1.0 hours,
roughly corresponding to a speed level of 2000/200 = 10 times compared to the previous level of 13.6 hours.
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relationships.65

9.2 Do suppliers to Asian assemblers have an edge among non-Asian assemblers?

The magazine Consumer Reports and other sources routinely record that brands with headquarters in Asia
(Japan, Korea) have higher quality automobiles than brands with headquarters in Europe or North America.66

Toyota is often rated one of the highest-quality brands. The parts supplied to Toyota must be of high quality
in order for Toyota to produce quality cars. Liker and Wu (2000) document that suppliers to Japanese-owned
brands in the US produce fewer parts requiring reworking or scrapping, for example. Because of this emphasis
on quality, the suppliers to Toyota have to undergo a rigorous screening and training program, the Supplier De-
velopment Program, before producing a large volume of car parts for Toyota (Langfield-Smith and Greenwood,
1998). Indeed, there is a hierarchy of suppliers, with more trusted Toyota suppliers being allowed to supply
more car parts (Kamath and Liker, 1994; Liker and Wu, 2000).

It is possible that being able to supply a higher-quality assembler such as Toyota coincides with a com-
petitive edge for the supplier, allowing them to win business from non-Asian assemblers as well. There are
two plausible reasons that a competitive edge might exist. First, Toyota’s Supplier Development Program and
similar programs at other manufacturers might upgrade the quality of the participating suppliers. This causal
quality upgrade from supplying Toyota would allow the suppliers to better compete for business from other
assemblers as well, because all assemblers value quality to some degree. Alternatively, there could be a se-
lection story: only a priori high-quality suppliers are allowed to supply high-quality assemblers. In the data,
supplying Toyota is just a proxy for being a high-quality firm. I cannot use cross-sectional matching data to
answer whether supplying high-quality assemblers causally upgrades the quality of suppliers or whether the
Asian assemblers just select high-quality suppliers. Rather, I seek to learn if there is any competitive edge at
all: are suppliers to Asian assemblers more likely to sell parts to non-Asian assemblers?67

To my knowledge, no previous empirical paper has directly investigated whether matching with one type of
partner increases (even if non-causally) the chance of matching with a different type of partner. To investigate
the presence of this competitive edge, I generalize the production function for supplier i in (15) to be

fβ (~x(i,Cu)) = βCont.xContinent (Cu)+βPGxParentGroup (Cu)+βBrandxBrand (Cu)+βCarxCar (Cu)+

βAsianCont.x
Continent (Cu)xSupplierToAsian (Cu

i (Am)) , (16)

for assignment Am. The new term xContinent (Cu)xSupplierToAsian (Cu
i (Am)

)
is an interaction between the specializa-

tion HHI at the continent level and a measure of supplying Asian assemblers, which I describe below. The
total benefit of specialization at the continent level is

(
βCont. +βAsianCont.xSupplierToAsian (Cu

i (Am)
))
· xContinent (Cu).

65There are 532,939 inequalities in the 593 distinct matching markets. Of those, 400,891 or 75.3% are satisfied at the reported point
estimates. The fraction of satisfied inequalities is a measure of statistical fit. In the maximum score objective function, an inequality is
satisfied if the left side exceeds the right side by 0.0001. This small perturbation to the sum of productions on the right side ensures that
inequalities such as 0 > 0 will not be counted as being satisfied because of some numerical approximation error for zero, resulting in, say,
2.0×10−15 > 1.0×10−15.

66Many brands with headquarters in Asia manufacture cars in Europe and North America.
67In the non-causal interpretation, one should not use the production function to explore counterfactuals where xSupplierToAsian (Cu

i (A))
changes because the equilibrium assignment A changes. In this interpretation, xSupplierToAsian (Cu

i (A)) is just a marker for supplier quality
that cannot be changed. One parallel for the non-causal interpretation is the best linear predictor interpretation for linear regression. The
best linear predictor summarizes factual patterns in the data, just like the non-causal interpretation of production functions summarizes
facts about sorting patterns.
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If the coefficient βAsianCont. on the interaction term is negative, this means that suppliers selling more car parts
to brands with headquarters in Asia tend to benefit less from specialization at the continent level. The potential
estimate βAsianCont. < 0 is compatible with the suppliers to Asian assemblers having a competitive edge and
being able to win business from non-Asian suppliers.

I wish to use measures for xSupplierToAsian (Cu
i (Am)

)
that do not impose any mechanical relationship between

xSupplierToAsian (Cu
i (Am)

)
and the previous HHI specialization measures. In other words, xSupplierToAsian (Cu

i (Am)
)

should not be a measure of specialization from the supplier’s viewpoint. I use two different Asian supplier
measures. The first is just an indicator variable equal to 1 when Cu

i (Am) contains at least one match with a
Asian brand. This represents the supplier being able to meet the quality thresholds of Asian assemblers. The
second measure is a measure of the market share of the supplier in the “market” (not a formal matching market)
for car parts for Asian assemblers. The second measure is

xSupplierToAsian,2 (Cu
i (Am)) =

#Asianassemblerparts inCu
i andmarketm

total#Asianassemblerpartsall suppliers inm
,

where Cu
i (Am) is a set of car parts for supplier i in a component category market m with equilibrium assignment

Am. xSupplierToAsian,2 (Cu
i (Am)

)
is not a measure of whether a supplier is specialized; it is a measure of the fraction

of the available Asian contracts the supplier has. I treat each xSupplierToAsian (Cu
i (Am)

)
measure as an unchanging

characteristic of supplier i in market m in a local production maximization inequality. I do not recompute
the measure for the counterfactual exchange of partners on the right side of the inequalities, like I do for the
HHI measures. Appendix B explores the alternative specification, where xSupplierToAsian (Cu) is recomputed with
counterfactual matches Cu, in some detail.

Table 4 produces estimates of a supplier’s competitive edge, βAsianCont.. There are two sets of estimates
corresponding to the two measures of being a supplier to Asian assemblers. Look at the first set of estimates,
which uses the indicator variable equal to 1 if a supplier has any Asian contracts. The first four rows represent
the point estimates of the HHI specialization measures. Compared to Table 3, the lower point estimates for the
non-normalized specialization parameters coincide with the normalized parameter, here βCont., being relatively
more important.68 For suppliers that do not supply Asian assemblers, the return to specialization at the con-
tinental level is relatively more important than in the model without the Asian interaction. The coefficient on
the interaction with the Asian dummy (supplying any car part to a brand with an Asian headquarters) is -1.09.
For firms supplying at least one car part to an Asian assembler, the effect of specialization at the continental
level is +1− 1.09, or in economic magnitude, approximately 0. This is a large effect: suppliers that can meet
the quality standards of Asian assemblers can equally compete for business from assemblers with headquarters
in Asia, Europe and North America.

Table 4 lists a separate set of point estimates for the market share measure of being an Asian supplier.
The point estimate for βAsianCont. is -5.30. In the data, the mean across suppliers of xSupplierToAsian,2 (Cu

i (Am)
)

is 0.111 and its standard deviation is 0.204. This implies that a one-standard deviation increase in the Asian
market share lowers the gains from continental specialization by −5.30 ·0.204 =−1.08, which compares closely
to the coefficient of -1.09 in the specification with the Asian dummy. The interpretation is very similar to the
specification with the dummy, except for the fact that the point estimates on the other three HHI specialization

68With the interaction term included in (16), the normalized specialization measure is more precisely the HHI for continent specialization
for those suppliers with zero parts supplied to assemblers with headquarters in Asia, xSupplierToAsian (Cu

i (Am)) = 0. Suppliers with no Asian
contracts have a 0 value for the interaction term, xContinent (Cu)xSupplierToAsian (Cu

i (Am)). 48% of supplier / matching market combinations
do not supply any assembler brand with its headquarters in Asia.
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Table 4: Supplier competitive edge from supplying Asian assemblers
HHI Measure Estimate 95% CI Estimate 95% CI

Continent +1 Superconsistent +1 Superconsistent

Parent Group 2.06 (0.751, 2.76) 5.90 (5.64, 8.50)

Brand 5.08 (3.39, 7.51) 9.41 (6.86, 13.5)

Model 40.9 (10.6, 56.7) 101 (76.0, 147)

Continent * Asian Dummy -1.09 (-1.14, -0.956)

Continent * Asian % -5.30 (-6.67, -4.56)

# Inequalities 532,939 532,939

% Satisfied 0.760 0.758

measures have about doubled. This means that the relative importance of specialization at the continental level
is lower for all firms than in the specification with the dummy.

Combined, the point estimates in Table 4 are consistent with a story where suppliers to brands with head-
quarters in Asia have a competitive edge. It may be that matching with an Asian assembler gives a supplier a
quality upgrade and thus the power to win more business from other assemblers. Or it may be the case that the
Asian assemblers select the suppliers with a priori high quality. Regardless, this example shows the usefulness
of the matching estimator in determining the relative importance of the characteristics that affect the produc-
tion from a match. A lot can be learned about structural parameters just by looking at the sorting patterns of
supplier-assembler relationships as an equilibrium outcome to a matching game.

10 Asymptotics in the number of matches

Often a researcher has data on one large matching market. For example, Bajari and Fox (2007) study the
matching of bidders to items for sale in a spectrum auction with 85 winning bidders and 480 items. The
maximum score matching estimator in (13) can be computed using data from one matching market. There can
be a lot of information found in the sorting patterns of a single, large matching market. However, the asymptotic
distribution calculated as the number of matching markets grows large probably is a poor approximation for the
finite-sample distribution of the maximum score estimator using data on one market. This section introduces
an alternative asymptotic argument that lets the number of recorded matches in a matching market grow large.
To the extent that any asymptotic approximation to the finite-sample distribution is a good one, asymptotics
in the number of recorded agents will likely allow more accurate inference in datasets with a small number of
large matching markets.

In terms of computer programming, the estimator in this section is the same as (13). However, I introduce
what in a formal sense amounts to a new matching model in order to understand the estimator’s properties. I
prove consistency and derive the asymptotic distribution under this new data generating process. Consequently,
I will not rely on any previous results. For the sake of brevity, I focus on semiparametric estimation and
inference. I do not reprove the six nonparametric identification theorems under this new model, although they
do go through for the new model under appropriate assumptions.

In this section only, I assume the econometrician observes some finite number of recorded agents from
an aggregately deterministic market. I let H represent the number of matches in the dataset and I analyze the
asymptotics as H → ∞. Readers may already be thinking of the complications in such an asymptotic argu-
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ment. As new agents are added to a matching market, the matches of existing agents will likely change as
the equilibrium assignment will change. Asymptotics where the existing dependent variable data change with
the addition of new data are beyond the scope of the current paper.69 Instead, I introduce the fiction that the
real-life matching market with H agents is a subset of some very large matching market. As H gets larger in the
asymptotic approximation, the researcher collects more data on a single matching market. Again, the fiction is
not to be taken literally: there were only 480 items for sale in the auction studied by Bajari and Fox (2007).
When M = 1, the asymptotic distribution produced by this exercise is likely a more accurate approximation to
the estimator’s distribution than using asymptotics in the number of distinct matching markets.

The same matching maximum score estimator (13) can be thought of as consistent as M→∞ or H→∞. For
inference, a researcher must choose the asymptotic approximation that is best for the data at hand.

10.1 The new matching model in characteristic space

Let there be one very large matching market. This market is so large that there are an uncountable number
of agents in it. Therefore, it is necessary to model each agent as existing in characteristic space, rather than
using the indices a ∈ D and i ∈U familiar from the previous large-M model. Because the characteristic-space
notation can become a bit complex, in this section I restrict attention to an example: one-to-one, two-sided
matching with agent-specific characteristic vectors. The consistency and distribution results can be generalized
to many-to-many matching and match and group-specific characteristics, at the cost of making the notation
denser.

Because I focus on the example of one-to-one matching, I return to the language of men, women and
marriage. Let each man have a characteristic vector ~xm and each woman have a characteristic vector ~xw. The
production from a match is fβ (~xm,~xw), where β is a finite vector of parameters. Again for simplicity, let the
characteristic vectors have continuous support and let them have a density. The exogenous features of the
matching market include gm (~xm), the density of ~xm, as well as gw (~xw). The equilibrium outcome in this market
includes a density gβ ,S

m,w (〈~xm,~xw〉), which gives the frequency of the ordered pair 〈~xm,~xw〉, representing a mar-
riage between a man with characteristics ~xm and a woman with characteristics ~xw. The density gβ ,S

m,w (〈~xm,~xw〉) is
the analog of the assignment in the previous model. By the physical feasibility of the matching equilibrium,
gm (~xm) =

∫
gβ ,S

m,w (~xm,~xw)d~xw and gw (~xw) =
∫

gβ ,S
m,w (~xm,~xw)d~xw. The special notation gβ ,S

m,w (~xm,0) gives the density
for single men and gβ ,S

m,w (0,~xw) gives the density for single women. I assume the density gβ ,S
m,w (〈~xm,~xw〉) is de-

terministically computed as part of the equilibrium; there are no stochastic elements affecting gβ ,S
m,w (〈~xm,~xw〉),

although each individual man~xm’s match is a random draw from the derived conditional density, gβ ,S
w|m (~xw |~xm).70

I index gβ ,S
m,w (〈~xm,~xw〉) by the parameters β from fβ (~xm,~xw) and the distribution S of any unmeasured stochastic

terms, because gβ ,S
m,w (〈~xm,~xw〉) is an equilibrium outcome that depends on model parameters, even if it is not

a stochastic outcome. See Section 4 for more on stochastic structures in matching games. As previously, let
β ∈B and S ∈S .

As before, the matching maximum score estimator will use local production maximization inequalities. Let

69An asymptotic distribution is used as approximation to the finite-sample distribution, which often cannot be derived analytically.
Normally, a researcher does not model the real-world process of collecting more observations to construct an asymptotic approximation
for inference. If an observation is a past US president, the researcher does not model presidential elections in the year 3000.

70The literature has some examples of aggregately deterministic matching models with a continuum of agents. Sattinger (1979) studies
a perfect information, one-to-one, two-sided matching game with a continuum of agents. Each agent is distinguished by a scalar type.
Choo and Siow (2006) analyze a model with a deterministic aggregate assignment, where each agent has errors ε〈a,i〉 for each match 〈a, i〉.
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there be values~xm
1 ,~xw

2 ,~xm
3 and~xw

4 . Then a local production maximization inequality is

fβ (~xm
1 ,~xw

2 )+ fβ (~xm
3 ,~xw

4 ) > fβ (~xm
1 ,~xw

4 )+ fβ (~xm
3 ,~xw

2 ) ,

which says that the production from two matches exceeds that from an exchange of partners. This inequality
is indexed by the two pairs of matched couples,

〈
~xm

1 ,~xw
2
〉

and
〈
~xm

3 ,~xw
4
〉
. These two marriages can be seen as

independent draws from gβ ,S
m,w (〈~xm,~xw〉). If the two matches in an inequality are chosen with probabilities equal

to their probabilities in the economy, an inequality itself has a density equal to gβ ,S
m,w
(〈

~xm
1 ,~xw

2
〉)
·gβ ,S

m,w
(〈

~xm
3 ,~xw

4
〉)

.
A rank order property will underlie the consistency of the estimator.

Assumption 7. Let
〈
~xm

1 ,~xw
2
〉

and
〈
~xm

3 ,~xw
4
〉

be two hypothetical marriages. Assume, for any β ∈B and S ∈S ,

fβ (~xm
1 ,~xw

2 )+ fβ (~xm
3 ,~xw

4 ) > fβ (~xm
1 ,~xw

4 )+ fβ (~xm
3 ,~xw

2 )

if and only if
gβ ,S

m,w (〈~xm
1 ,~xw

2 〉) ·g
β ,S
m,w (〈~xm

3 ,~xw
4 〉) > gβ ,S

m,w (〈~xm
1 ,~xw

4 〉) ·g
β ,S
m,w (〈~xm

3 ,~xw
2 〉) .

This rank order property is a condition on the equilibrium sorting pattern. It says that if an exchange of spouses
produces a lower sum of production, then the frequency of observing marriages with the same characteristics
as the exchange of partners must be lower than observing matches with characteristics that give higher payoffs.
Assumption 7 is a natural extension of the more traditional Assumption 1, which considers different assign-
ments to the same matching market. Like Assumption 1, this rank order property is not formally motivated
with a model where each consumer has match-specific shocks ε〈a,i〉 . However, it is easy to algebraically show
that aggregately deterministic, logit-based matching model in Choo and Siow (2006), which has match-specific
shocks, satisfies Assumption 7.71 Section 11 discusses logit-based matching models.

10.2 Estimation with one market

Let the number of matches in the data be H. Because each dataset is finite, the researcher observes a set of
matches of the form 〈a(i) , i〉, where i is a woman and a(i) is a convenience function that gives her husband.
Aside from the normalizing constant, the maximum score objective function in (13) can be rewritten as

1
H (H−1)

H−1

∑
i=1

H

∑
j=i+1

1
[

fβ
(
~xm

a(i),~x
w
i

)
+ fβ

(
~xm

a( j),~x
w
j

)
> fβ

(
~xm

a( j),~x
w
i

)
+ fβ

(
~xm

a(i),~x
w
j

)]
. (17)

The double summation forms all unique pairs of two coalitions. Han (1987) introduced a similar estimator
for single-agent ordered choice and showed that it was consistent. He called it a maximum rank correlation
estimator.

Note that, other than the denominator 1
H(H−1) , computationally (17) is identical to (13), from the M → ∞

case. The two estimators are identical in terms of computer programming and point estimates. The new esti-
mator has the same practical implementation advantages as the previous estimator. In matching, the distinction
between maximum score and maximum rank correlation will be in the asymptotic distribution used for infer-
ence.

71In Choo and Siow (2006), Assumption 7 is satisfied with match probabilities replacing the density gβ ,S
m,w
(〈

~xm
1 ,~xw

3
〉)

, as Choo and Siow
allow only characteristics with discrete support in~xm and~xw.
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For space reasons, I do not repeat the investigation of nonparametric identification of the production func-
tion, but all the results go through. It is easy to adapt results in Han (1987) to show parametric identification
for β if fβ (~xm,~xw) is a linear index. Here I assume identification in order to focus on the asymptotic theory. The
following assumption is sufficient for the consistency of the semiparametric estimator in (17).

Assumption 8.

1. The production function fβ ∈F where F =
{

fβ
}

β∈B and B ⊆ R|β |, |β |< ∞. B is compact.

2. Identification: Let β 0 ∈B and S0 ∈S be the true parameters that generate the data. For any β 1 6= β 0,
β1 ∈B, and for any S1 ∈S , there exists a set of pairs of match characteristics X with positive probabil-
ity such that gβ 0,S0

m,w
(〈

~xm
1 ,~xw

2
〉)
·gβ 0,S0

m,w
(〈

~xm
3 ,~xw

4
〉)

> gβ 0,S0
m,w

(〈
~xm

1 ,~xw
4
〉)
·gβ 0,S0

m,w
(〈

~xm
3 ,~xw

2
〉)

while gβ 1,S1
m,w

(〈
~xm

1 ,~xw
2
〉)
·

gβ 1,S1
m,w

(〈
~xm

3 ,~xw
4
〉)

< gβ 1,S1
m,w

(〈
~xm

1 ,~xw
4
〉)
·gβ 1,S1

m,w
(〈

~xm
3 ,~xw

2
〉)

for any
(
~xm

1 ,~xw
2 ,~xm

3 ,~xw
4
)
∈X .

3. All characteristics are agent-specific and continuous.

4. Each match 〈~xm,~xw〉 is an independent draw from gβ 0,S0
m,w (〈~xm,~xw〉).

As the maximum score and maximum rank correlation literatures show, for the linear index functional forms
of fβ (~xm,~xw), only one characteristic of ~xm needs to have continuous support. In matching, continuous support
for all elements of~xm and~xw simplifies the statement of the rank order property, Assumption 7.72

The estimator is consistent as more data are collected on agents from an underlying very large matching
market.

Theorem 8. As H→ ∞, any parameter vector β̂H ∈B that maximizes the maximum rank correlation objective

function (17) is a consistent estimator for β 0 ∈B, the parameter vector in the data generating process.

Sherman (1993) shows that the maximum rank correlation estimator is
√

H-consistent and asymptotically nor-
mal. The objective function at a given β is a U-statistic of second order. As H grows, the terms in the double
summation grow proportionately to H2. Intuitively, the inner summation acts like a smoother without requiring
an explicit kernel and bandwidth. The derivation relies on a general set of results for the asymptotic distribution
of U-processes in Sherman (1994).

Because of the need to impose scale normalizations, we need a specific functional form for the production
function. Let fβ (~xm,~xw) = ∑

Km
k=1 ∑

Kw
l=1 βk,l~xm

k ~xw
l , where~xm =

(
~xm

1 , . . . ,~xm
Km

)
and~xw =

(
~xw

1 , . . . ,~xw
Kw

)
. Normalize β1,1 =

±1 and let β̃ be a vector of the KmKw− 1 other elements of β . The kernel of this maximum rank correlation
estimator is defined to be

τ

(
~xm

1 ,~xw
2 , β̃ ; β1,1

)
= E~xm

3 ,,~xw
4

[
1

[
Km

∑
k=1

Kw

∑
l=1

βk,l~x
m
1,k~x

w
2,l +

Km

∑
k=1

Kw

∑
l=1

βk,l~x
m
3,k~x

w
4,l >

Km

∑
k=1

Kw

∑
l=1

βk,l~x
m
1,k~x

w
4,l +

Km

∑
k=1

Kw

∑
l=1

βk,l~x
m
3,k~x

w
2,l

]]
.

If the smoothness conditions on the kernel τ in Assumption A4 in Sherman (1993) hold, then Theorem 4 in
Sherman shows

√
H
(

β̃H − β̃0

)
→ N

(
0,V−1

∆V−1
)

,

72Otherwise the statement would involve a probability measure over inequalities, rather than a density evaluated at a point.
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where 2V = E~xm
1 ,~xw

2
∇2τ

(
~xm

1 ,~xw
2 , β̃ 0; β 0

1,1

)
and ∆ =

(
E~xm

1 ,~xw
2

∇1τ

(
~xm

1 ,~xw
2 , β̃ 0; β 0

1,1

))(
E~xm

1 ,~xw
2

∇1τ

(
~xm

1 ,~xw
2 , β̃ 0; β 0

1,1

))′
, where

∇1 is the gradient operator and ∇2 creates the Hessian, with all derivatives taken with respect to the argument
β̃ .73 The elements of 2V and ∆ can be consistently estimated, so this distribution can be used for asymptotically
valid inference.74

The estimator as H → ∞ converges at the rate
√

H while the estimator as M → ∞ converges at the rate
3√M. This should not be taken to mean that the H → ∞ estimator makes more use of the data, because more
information is collected when one samples a completely new market than when one samples a new match
within a given, large market.

11 Literature comparisons

There are other, more parametric, matching estimators for both matching games where money can be exchanged
(like in this paper) and matching games where money is not used. I review these two literatures separately.

11.1 Other estimators for matching games with transfers

Dagsvik (2000), Choo and Siow (2006) and Weiss (2007) introduce logit matching models one-to-one (mar-
riage), two-sided matching games with transferable utility.75 These estimators are computationally simple
because they exploit the mathematics behind the aggregate data multinomial logit model (McFadden, 1973;
Berry, 1994). However, to my knowledge, these estimators have not been expanded to the case of many-to-
many matching. The discussion about the combinatorics in the number of necessary conditions at the end of
Section 3.3 suggests that any extension of the logit estimators to many-to-many matching will be difficult.

There is a subtler distinction between my matching model and the logit-based matching models that focuses
on the timing of when equilibrium transfers t〈a,i〉 are computed, and what the timing implies about the models’
abilities to give positive probability to any feasible assignment: Pr(A | X) > 0 for any feasible A. Focus on Choo
and Siow (2006). In their paper, the data generating process is not (11): there is no linear program. Rather,
men and women are divided into a finite number of classes. Each man has error terms for women of a certain
class, but not each woman individually. Likewise, each woman has error terms for each male type. Then prices
are set to equate the supply and demand of men and women for each type of marriage. Therefore, this model
is deterministic at the aggregate level: the iid logit shocks average out because an infinite number of each type
of man and each type of woman are assumed to exist. In effect, each agent plays the equivalent of a mixed
strategy from a Nash game, where the randomness across matching partners is governed by the parametric logit
distribution.

This type of model may be appropriate to apply to the US marriage market, where there are a large number
of agents and a coarse set of demographics to distinguish them. However, the model will not be compatible
with typical assignment data if applied to a dataset with a smaller number of men and women. Say there are

73A previous draft computed these derivatives for a case with match-specific characteristics, which more closely follows the derivative
calculations in Sherman (1993).

74A population mean such as E~xm
1 ,~xw

2
∇2τ

(
~xm

1 ,~xw
2 , β̃ 0; β 0

1,1

)
can be estimated by a sample average evaluated at the point estimates β̂H

instead of the true parameter values β 0. First and second derivatives with respect to β̃ can be computed using finite differences (perturb
elements of the estimated ˆ̃

βH by e > 0) or, given a functional form for fβ (~xm,~xw), by symbolic calculation.
75Dagsvik (2000) actually analyzes a more general model of matching in contract space; transferable utility is a special case.
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only two men, a and b, and two women, i and j, in the market. Prices are set before the logit shocks are
realized and after the two men make unilateral decisions to marry the two women. If Pr(〈a, i〉) is the probability
a marries i at the equilibrium prices, Pr(〈a, i〉) · Pr(〈b, i〉) is the probability that both men marry woman i. A
woman cannot marry two men in most countries, so this prediction of the model will be counterfactual and the
model will be rejected by the data. By contrast, the data generation process in (11) has the error terms enter
a linear programming problem that ensures, for every realization of the errors for all agents, that the resulting
assignment is physically feasible.76

11.2 Estimators for games without transfers

Recently, Boyd, Lankford, Loeb and Wyckoff (2003), Sørensen (2007), and Gordon and Knight (2006) esti-
mate Gale and Shapley (1962) matching games, which do not use transfers as part of the equilibrium concept.77

Whether a researcher should estimate a game with or without endogenous transfers depends on the market in
question. Games with endogenous transfers often give different equilibrium predictions than games without
transfers. Nonparametric identification has not previously been studied for any matching games. Their empir-
ical applications study many-to-many matching, but all the papers rule out preferences over sets of partners;
rather utilities are defined over only singleton matches.78

The main drawback of these approaches is computational. For a given value of parameters, these approaches
use simulation to evaluate a likelihood or moments-based objective function. In Boyd et al. and Gordon and
Knight, a nested equilibrium computation produces the model’s prediction for the data for each draw of the
error terms from some parametric distribution. Sørensen treats the unobservables as nuisance parameters and
samples them from a parametric likelihood that enforces sufficient conditions for the data to be the equilibrium
to a matching game.

Several simplifications must be imposed that the current paper weakens in the class of games with trans-
fers. First, a researcher must take a stand and on all model components needed to compute an equilibrium. For
example, quotas, the number of matches a firm can make, are typically unobserved. Boyd et al. and Sørensen
assume that a firm can make only as many matches as are observed in the data. By contrast, a necessary con-
ditions approach does not force one to consider inequalities that raise the number of matches, which preserves
consistency without violating unobserved quotas.

The definition of a matching market may be unclear to the econometrician. Boyd et al. and Sørensen limit
the size of markets for computational reasons because an equilibrium to a matching game must be calculated or
enforced for every trial parameter vector and realization of the error terms. Consistency is broken if the market
is defined too narrowly. By contrast, the current paper uses necessary conditions. A market can be defined
conservatively for robustness without damaging the validity of the necessary conditions. A researcher can use

76A related distinction between the two models lies in how prices are formed. In Choo and Siow (2006), prices are only functions of the
discrete type of one’s marriage partner. Prices are formed before the logit shocks are realized. By contrast, in (11) a full matching game is
solved for each realization of the error terms. In this model, the distinction between error terms ε〈a,i〉 and the characteristics in X is only
whether the exogenous variable in question is recorded in the data or not. Equilibrium prices given by the model, even if not recorded in
the data, will be a function of the error terms ε〈a,i〉 for all potential matches 〈a, i〉.

77Hitsch, Hortaçsu and Ariely (2008) use data on both desired and rejected matches to estimate preferences without using an equilibrium
model. They then find that a calibrated model’s prediction fits observed matching behavior. Echenique (2006) examines testable restrictions
on the lattice of equilibrium assignments of the Gale and Shapley (1962) model.

78A similar assumption for matching games with transfers would be that production functions are additively separable across multiple
matches: f (X (i,{a,b})) = f (~x(i,{a}))+ f (~x(i,{b})). This would rule out the study of spectrum auctions in Bajari and Fox (2007) and
the automotive supplier specialization empirical example in this paper.
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a constant number of inequalities from each market, so there is no need to limit the size of a matching market
for computational reasons.

Matching games without transfers have a lattice of multiple equilibrium assignments. Nested solutions
methods require auxiliary assumptions to resolve the multiplicity problem. Sørensen and Gordon and Knight
restrict preferences to generate a unique equilibrium. Boyd et al. impose an auxiliary equilibrium selection
rule. By contrast, Section 4.5 argues that the maximum score necessary conditions approach can be valid in the
presence of multiple equilibrium assignments.79

12 Conclusions

This paper discusses identification and estimation of production functions in matching games first studied by
Koopmans and Beckmann (1957), Shapley and Shubik (1972) and Becker (1973). These matching games allow
endogenous transfers that are additively separable in payoffs. Under a pairwise stable equilibrium, production
functions must satisfy inequalities that I call local production maximization: if an exchange of one downstream
firm per upstream firm produces a higher production level, than it cannot be individually rational for some
agent. For some simple matching games this condition is related to social efficiency, but for general many-to-
many matching games it is not.

It is not obvious what types of economic parameters are identified from data on only who matches with
whom. The identification theorems cover both cardinal and ordinal properties of production functions. The
cardinal results generalize the work of Becker (1973) to the case of each agent having a vector of types, many-
to-many matching as well as production functions where pairs of inputs are not complements over their entire
supports. The ordinal results extend the single-agent work of Matzkin (1993) to matching games, where agents
cannot unilaterally choose partners and so identification requires working with the equilibrium structure of the
game.

I introduce a semiparametric estimator for matching games. The matching maximum score estimator has
computational advantages that eliminate three aspects of a computational curse of dimensionality in the size of
the market. First, the estimator avoids the need to nest an equilibrium computation in the statistical objective
function. Second, the maximum score estimator does not require numerical integrals over match-specific error
terms. Third, inequalities need to be included only with some positive probability, which is extremely impor-
tant given the combinatorics of necessary conditions for pairwise stability in many-to-many matching. Also,
evaluating the objective function involves only calculating match production levels and checking inequalities.
Numerical optimization can use global optimization routines.

There are also data advantages. The estimator uses data on only observed matches and agent characteristics.
It does not require the often unavailable data on endogenous transfers, quotas and production levels. For
example, the empirical application to automotive suppliers and assemblers is typical in that the parties exchange
transfers but those transfers are not shared with researchers. Also, the estimator does not require any first-stage
nonparametric estimates of assignment probabilities as a function of all exogenous characteristic data.

79Further, game with transfers with an outcome in the core (say a marriage game) have unique equilibrium assignments with probability
1, without resorting to preference restrictions or equilibrium selection rules.
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A Proofs

A.1 Lemma 1: Pairwise stability implies local production maximization

Substitute t̃〈b,i〉 into (3) and cancel the transfers ∑c∈Cu
i (A)\{a} t〈c,i〉 to give

ru (~x(i,Cu
i (A)))+ t〈a,i〉 ≥ ru (~x(i,(Cu

i (A)\{a})∪{b}))+ rd (~x(i,(Cu
i (A)\{a})∪{b}))−

(
rd
(
~x
(

j,Cu
j (A)

))
− t〈b, j〉

)
.

Call this no-deviation inequality nd
(
〈a, i〉 ,〈b, j〉 ,A, t〈a,i〉, t〈b, j〉

)
. If π 〈a, i〉 is the new downstream partner of i in the

permutation, let j (π 〈a, i〉) be a function that gives the original partner of π 〈a, i〉, in B1. So 〈π 〈a, i〉 , j (π 〈a, i〉)〉 ∈
B1. Now form ∑〈a,i〉∈B1

nd
(
〈a, i〉 ,〈π 〈a, i〉 , j (π 〈a, i〉)〉 ,A, t〈a,i〉, t〈π〈a,i〉, j(π〈a,i〉)〉

)
. This gives

∑
〈a,i〉∈B1

ru (~x(i,Cu
i (A)))+ ∑

〈a,i〉∈B1

t〈a,i〉 ≥

∑
〈a,i〉∈B1

ru (~x(i,(Cu
i (A)\{a})∪{π 〈a, i〉}))+

∑
〈a,i〉∈B1

{
rd (~x(i,(Cu

i (A)\{a})∪{π 〈a, i〉}))−
(
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(
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(

j (π 〈a, i〉) ,Cu
j(π〈a,i〉) (A)

))
− t〈π〈a,i〉, j(π〈a,i〉)〉

)}
.

By the definition of a permutation, each t〈a,i〉 for 〈a, i〉 ∈ B1 appears on the both left and right sides. The transfers
cancel. Similarly, each equilibrium rd

(
~x
(

j (π 〈a, i〉) ,Cu
j(π〈a,i〉) (A)

))
appears on the right side with a negative

sign and each deviation rd (~x(i,(Cu
i (A)\{a}

)
∪{π 〈a, i〉}

))
appears on the right side with a positive sign. Moving

∑〈a,i〉∈B1
rd
(
~x
(

j (π 〈a, i〉) ,Cu
j(π〈a,i〉) (A)

))
to the left side and substituting the definition of a production function,

Definition 1, gives the local production maximization inequality in the lemma.

A.2 Lemma 2: Sufficient condition for the rank order property

Inspect the formula

Pr(A1 | Q,X ; f ,S)=
∫

∞

−∞

∫
∑〈a,i〉∈A1

f(~x(i,Cu
i (A1)))+ψA1−∑〈a,i〉∈A2
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−∞

. . .
∫
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f(~x(i,Cu

i (AJ)))

−∞

S (ψ)dψ,

If there are J physically feasible assignments A1, . . .AJ , Pr(A2 | Q,X ; f ,S) is just the same function, with ∑〈a,i〉∈A2
f
(
~x
(
i,Cu

i (A2)
))

+

ψA2 replacing ∑〈a,i〉∈A1
f
(
~x
(
i,Cu

i (A1)
))

+ψA1 in the upper limits of the integrals and ∑〈a,i〉∈A1
f
(
~x
(
i,Cu

i (A1)
))

re-
placing ∑〈a,i〉∈A2

f
(
~x
(
i,Cu

i (A2)
))

in the first upper limit. Pr(A1 | Q,X ; f ,S) is the same function as Pr(A2 | Q,X ; f ,S)

by the exchangeability of S (ψ), except for the A1 and A2 arguments. Because Pr(A1 | Q,X ; f ,S) is increasing
in ∑〈a,i〉∈A1

f
(
~x
(
i,Cu

i (A1)
))

and decreasing in ∑〈a,i〉∈A2
f
(
~x
(
i,Cu

i (A2)
))

, Pr(A1 | Q,X ; f ,S) > Pr(A2 | Q,X ; f ,S). Re-
versing the order of these arguments proves the other direction.

A.3 Theorem 1: Cardinal identification with firm-specific covariates

A.3.1 Part 1

The vector ~x is given in the statement of the theorem. To avoid confusion of the point ~x with the function
~x
(
i,Cu

i
)
, I relabel the vector~x as~y inside this proof. I will focus on the case where ∂ f 0(~y)

∂x1∂x2
> 0. The proof for the

case where ∂ f (~y)
∂x1∂x2

< 0 is very similar.
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For an arbitrary f 1 ∈F , f 1 6= f 0 where ∂ f 1(~y)
∂x1∂x2

< 0, by Definition 4 I must show that there does not exist
S1 corresponding to f 1 where Pr

(
A | X ; f 0,S0) = Pr

(
A | X ; f 1,S1) for all (A,X) except perhaps a set of X of

probability 0. By the key Assumption 1, a sufficient condition involves showing that there exists a continuum
of market characteristics X with positive probability and a corresponding matching situation where f 0 and f 1

give different implications for a local production maximization inequality, of the form in Definition 3. At each
of these markets X , there will be a particular assignment A1 and another assignment A2 where, by Assumption
1, Pr

(
A1 | X ; f 0,S0)> Pr

(
A2 | X ; f 0,S0) while Pr

(
A1 | X ; f 1,S1)< Pr

(
A2 | X ; f 1,S1) for any S1 ∈S . Therefore, the

conditions of Definition 4 will be satisfied.
Let me explain the steps of the proof. First, I derive an appropriate local production maximization inequality

and show that the inequality will be reversed if the production function is f 1 instead of f 0. Second, I show how
I can embed the characteristics in the local production maximization inequality into a matching market with
characteristics X . Third, I show that I can locally vary all the characteristics in X to find a continuum of markets
X with the property of Pr

(
A1 | X ; f 0,S0) > Pr

(
A2 | X ; f 0,S0) while Pr

(
A1 | X ; f 1,S1) < Pr

(
A2 | X ; f 1,S1) for any

S1 ∈S .
First, I explore deriving a local production maximization inequality. Let ek = (0, . . . ,0,1,0, . . . ,0), where the

1 is in the kth position. Without loss of generality, let x1 be the first position of ~x and let x2 be the second
position. The definition of a cross-partial derivative is the limit of the middle difference quotient:

∂ f (~y)
∂x1∂x2

= lim
h→0

f (~y+he1 +he2)− f (~y+he1)− f (~y+he2)+ f (~y)
h2 . (18)

Let ν > 0 be given. By the definition of a limit, we can find h > 0 such that∣∣∣∣ ∂ f (~x)
∂x1∂x2

− f (~y+he1 +he2)− f (~y+he1)− f (~y+he2)+ f (~y)
h2

∣∣∣∣< ν .

As ∂ f 0(~y)
∂x1∂x2

> 0, there will be a h0 > 0 such that the numerator of the middle difference quotient at f = f 0 is
positive, or

f 0
(
~y+h0e1 +h0e2

)
− f 0

(
~y+h0e1

)
− f 0

(
~y+h0e2

)
+ f 0 (~y) > 0,

or
f 0
(
~y+h0e1 +h0e2

)
+ f 0 (~y) > f 0

(
~y+h0e1

)
+ f 0

(
~y+h0e2

)
. (19)

As ∂ f 1(~y)
∂x1∂x2

< 0, there exists h1 > 0 where

f 1 (~y+he1 +he2)+ f 1 (~y) < f 1 (~y+he1)+ f 1 (~y+he2) . (20)

The argument for f 1 is symmetric to the argument for f 0 and is omitted. Set h = min
{

h0,h1}.
Now let me argue that (19), and by a similar argument (20), is a local production maximization inequality:

it satisfies Definition 3. To do this I need to form B1 and B2, as in the definition, and show how a hypothetical
swap of downstream firm partners could produce (19). Let B1 = {〈a, i〉 ,〈b, j〉} and B2 = {〈a, j〉 ,〈b, i〉}, where these
indices refer to arbitrary firms I am creating to show (19) satisfies Definition 3. Also, let there be some Cu

i and
Cu

j of sufficient size to reproduce the number of non-empty ( /0, representing unfilled matches) elements of~y. We
require a∈Cu

i , a /∈Cu
j , b∈Cu

j , and b /∈Cu
i . Then define~x

(
i,Cu

i
)
=~y+he1 +he2,~x

(
j,Cu

j

)
=~y,~x

(
i,
(
Cu

i \{a}
)
∪{b}

)
=
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~y + he1 and ~x
(

j,
(

Cu
j \{b}

)
∪{a}

)
= ~y + he2. With π 〈a, i〉 = b and π 〈b, j〉 = a, inspection shows (19) satisfies

Definition 3.
Further, it is important to show that this exchange of partners can be accomplished with firm-specific

characteristics, as that is a maintained hypothesis in the theorem being proved. The theorem requires that x1

and x2 be from different firms. As only one upstream firm’s characteristics enter each production function, it is
without loss of generality to say that x2 is a characteristic of a downstream firm. To complete the argument that
(19) satisfies Definition 3 for the case of firm-specific characteristics, let downstream firms a and b have the
same baseline characteristics, except that firm a has he2 more of characteristic x2 than firm b. Using the notation
~x(i,Cu) = cat

((
xu

i,1, . . . ,x
u
i,Ku

)
,
(

xd
d1,1, . . . ,x

d
d1,Kd

)
, . . . ,

(
xd

dn,1, . . . ,x
d
dn,Kd

))
for Cu = {d1, . . . ,dn}, then xd

a,2−he2 = xd
b,2,

where now a is one of the firms in Cu
i . On the left of (19), the match 〈a, i〉 puts the downstream firm a with

he2 more x2 in either a direct partnership with an upstream firm i with h1e1 more x1 than upstream firm j or
an indirect partnership with another downstream firm, say ci ∈ Cu

i , with h1e1 more x1 than the corresponding
downstream firm c j in Cu

j . In notation, either xu
i,1−he1 = xu

j,1 or xd
ci,1
−he1 = xd

c j ,1
.80

The matches 〈a, j〉 and 〈b, i〉 form on the right side of (19). The firm a with h2e2 more of x2 is transferred
from the set of matches involving i with h1e1 more x1 to the set of matches involving j without any more x1.
Likewise, the downstream firm b without any more x2 matches to i and its downstream firm partners, which
together have h1e1 more x1 than the matches involving j. The important requirement that is satisfied is that each
move switches the characteristics of only the firm that is actually switching. Therefore, (19) satisfies Definition
3 for the case of firm-specific characteristics.

The second step of the proof is that I will argue that I can embed B1 and B2 in an entire matching market.
Let B3 be a larger set of matches that includes the matches corresponding to the downstream firms in Cu

i \{a}
and Cu

j \{b}. The exact choice of B3 plays no role in the proof, other than to ensure Cu
i \{a} and Cu

j \{b} are large
enough given the number of non-empty elements (representing filled quota slots) in ~y. Then set A1 = B1 ∪B3

and A2 = B2∪B3. Likewise, let there be some collection X of characteristics for all potential matches, including
but not limited to the matches in A1∪A2. The choice of X plays no role in the proof, except that X must contain
~x
(
i,Cu

i
)

=~y+he1 +he2,~x
(

j,Cu
j

)
=~y,~x

(
i,
(
Cu

i \{a}
)
∪{b}

)
=~y+he1 and~x

(
j,
(

Cu
j \{b}

)
∪{a}

)
=~y+he2.

Assumption 1 and (19) imply Pr
(
A1 | X ; f 0,S0) > Pr

(
A2 | X ; f 0,S0) while Assumption 1 and (20) imply

Pr
(
A1 | X ; f 1,S1)< Pr

(
A2 | X ; f 1,S1) for any S1 ∈S .

I now move to the third stage of the proof. Definition 4 requires a continuum of markets with characteristics
X with this property. The definition of a continuous function g(z) states that g−1 (V ) is an open neighborhood
of z whenever V is an open neighborhood of g(x). F contains only continuous functions, so

g(~z1,~z2,~z3,~z4 | f )≡ f (~z1)+ f (~z2)− f (~z3)− f (~z4)

is also a continuous function in the tuple (~z1,~z2,~z3,~z4), for any f ∈F . Because the inequalities are strict, there
is an open neighborhood V 0 around

g
(
~x(i,Cu

i ) ,~x
(

j,Cu
j

)
,~x(i,(Cu

i \{a})∪{b}) ,~x
(

j,
(

Cu
j \{b}

)
∪{a}

)
; f 0
)

80Note some abuses of notation: if x2 is the second characteristic of~x(i,Cu
i ), I then say it is also the second characteristic of~xd

a , xd
a,2. This

is done for clarity: to keep “2” referring to the same variable whether I am referring to it as an element of the entire vector of production
function arguments~x(i,Cu

i ) or as an element of the vector of characteristics of firm a,~xd
a .
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where p > 0 for p ∈V 0 and there is an open neighborhood V 1 around

g
(
~x(i,Cu

i ) ,~x
(

j,Cu
j

)
,~x(i,(Cu

i \{a})∪{b}) ,~x
(

j,
(

Cu
j \{b}

)
∪{a}

)
; f 1
)

< 0

where p < 0 for p ∈V 1. Because the tuple v =
(
~x
(
i,Cu

i
)
,~x
(

j,Cu
j

)
,~x
(
i,
(
Cu

i \{a}
)
∪{b}

)
,~x
(

j,
(

Cu
j \{b}

)
∪{a}

))
is

the same in both the f 0 and f 1 constructions, W = g−1 (V 0; f 0)∩g−1 (V 1; f 1) 6= /0 and is itself an open neighbor-
hood of v, as both g−1 (V 0; f 0) and g−1 (V 1; f 1) are open sets by the definition of continuity and topologies are
closed under finite intersections.

Divide any market characteristics X into X1 and X2, where X1 is the set comprised of ~x
(
i,Cu

i
)
, ~x
(

j,Cu
j

)
,

~x
(
i,
(
Cu

i \{a}
)
∪{b}

)
and ~x

(
j,
(

Cu
j \{b}

)
∪{a}

)
, where here these terms represent the characteristics of the cor-

responding four matches given an arbitrary X (the function arguments (~z1,~z2,~z3,~z4) above) rather than terms
involving the ~y from the statement of the theorem. Also, X2 = X\X1, so X is a one-to-one change of vari-
ables (or just notation) of (X1,X2). By Assumption 2, X has support equal to the product of the marginal
supports of its elements. Therefore, the probability that (X1,X2) lies in W ×Rs is strictly positive, where
s is the number of elements of X2. By construction, all market characteristics (X1,X2) in W ×Rs satisfy
Pr
(
A1 | X ; f 0,S0)> Pr

(
A2 | X ; f 0,S0) while Pr

(
A1 | X ; f 1,S1)< Pr

(
A2 | X ; f 1,S1) for any S1 ∈S .

A.3.2 Part 2

We are given a point~y (relabeled from~x in the statement of the theorem) and there is an arbitrary f 1 ∈F where
∂ f 0(~y)
∂x1∂x2

/
∂ f 0(~y)
∂x3∂x4

6= ∂ f 1(~y)
∂x1∂x2

/
∂ f 1(~y)
∂x3∂x4

. The goal in broad generality is the same as Part 1: show there exists a contin-
uum of X and two assignments A1 and A2 where Pr

(
A1 | X ; f 0,S0) > Pr

(
A2 | X ; f 0,S0) while Pr

(
A1 | X ; f 1,S1) <

Pr
(
A2 | X ; f 1,S1) for any S1 ∈S . The proof is more challenging than the proof of Part 1 because now we are

trying to identify the value of some feature of f 0, here ∂ f 0(~y)
∂x1∂x2

/
∂ f 0(~y)
∂x3∂x4

, rather than just the sign of some feature,
as before.

I will show that the term ∂ f 0(~y)
∂x1∂x2

/
∂ f 0(~y)
∂x1∂x3

is identified, where x1 is the same characteristic in the numerator

and the denominator. Then, by Young’s / Clairaut’s / Schwarz’s theorem, arbitrary ratios ∂ f 0(~y)
∂x1∂x2

/
∂ f 0(~y)
∂x3∂x4

can

be identified by comparing, say, ∂ f 0(~y)
∂x1∂x2

/
∂ f 0(~y)
∂x1∂x3

to ∂ f 0(~y)
∂x3∂x4

/
∂ f 0(~y)
∂x3∂x1

. Cross-partial derivatives are symmetric if
the second partial derivatives are continuous, which they are because Assumption 3 states f is three times
differentiable.

By Part 1 of theorem, we know the signs of ∂ f 0(~y)
∂x1∂x2

and ∂ f 0(~y)
∂x1∂x3

if they are nonzero, as Part 2 requires. If f 1

implies different signs for ∂ f 1(~y)
∂x1∂x2

and ∂ f 1(~y)
∂x1∂x3

, then by Part 1 we can distinguish f 0 and f 1. So we can restrict

attention to the case where the signs of ∂ f 0(~y)
∂x1∂x2

and ∂ f 1(~y)
∂x1∂x2

as well as ∂ f 0(~y)
∂x1∂x3

and ∂ f 1(~y)
∂x1∂x3

are the same. I will first
consider the case where ∂ f (~y)

∂x1∂x2
> 0 and ∂ f (~y)

∂x1∂x3
> 0 for f ∈

{
f 0, f 1}. The other cases are discussed at the end of

the proof.
The outline of the proof follows. The most novel step comes first: I find a key inequality that arises from

the numerator of the middle difference quotient, (18), and that has a different direction for f 0 and f 1. For
example, this can be seen as a situation where f 0 would predict sorting on characteristics x1 and x2 while
f 1 would predict sorting on characteristics x1 and x3 when sorting on both pairs simultaneously is physically
impossible. The second step is that I show that this inequality is a local production maximization inequality.
The third step is that I embed the firms in the local production maximization inequality into a larger matching
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market with characteristics X . The fourth and final step is that I show there is a continuum of matching market
characteristics X where f 0 and f 1 give different predictions the local production maximization inequality and
so where Pr

(
A1 | X ; f 0,S0) > Pr

(
A2 | X ; f 0,S0) while Pr

(
A1 | X ; f 1,S1) < Pr

(
A2 | X ; f 1,S1) for any S1 ∈ S , for

appropriate choices of A1 and A2.
Let h1,2 be the limit argument from the middle difference quotient, (18), for ∂ f (~y)

∂x1∂x2
. Likewise, let h1,3 be

the limit argument for ∂ f (~y)
∂x1∂x3

. Consider the case ∂ f 0(~y)
∂x1∂x2

/
∂ f 0(~y)
∂x1∂x3

>
∂ f 1(~y)
∂x1∂x2

/
∂ f 1(~y)
∂x1∂x3

and let
{

h1,2,n
}

n∈N be a sequence
that converges to 0. Let

{
h1,3,n

}
n∈N be a sequence

h1,3,n = h1,2,n

√
1
2

(
∂ f 0 (~y)
∂x1∂x2

/
∂ f 0 (~y)
∂x1∂x3

+
∂ f 1 (~y)
∂x1∂x2

/
∂ f 1 (~y)
∂x1∂x3

)
. (21)

{
h1,3,n

}
n∈N converges to 0 and

h2
1,3,n

h2
1,2,n

=
1
2

(
∂ f 0 (~y)
∂x1∂x2

/
∂ f 0 (~y)
∂x1∂x3

+
∂ f 1 (~y)
∂x1∂x2

/
∂ f 1 (~y)
∂x1∂x3

)

is the mean of the two ratios of cross-partial derivatives for all n ∈ N. This choice of h1,3,n ensures

∂ f 0 (~y)
∂x1∂x2

/
∂ f 0 (~y)
∂x1∂x3

>
h2

1,3,n

h2
1,2,n

>
∂ f 1 (~y)
∂x1∂x2

/
∂ f 1 (~y)
∂x1∂x3

(22)

for all n ∈ N.
Let τ = ∂ f 0(~y)

∂x1∂x2
/

∂ f 0(~y)
∂x1∂x3

− ∂ f 1(~y)
∂x1∂x2

/
∂ f 1(~y)
∂x1∂x3

and

ϒ
(
h1,2,h1,3; f

)
=

f
(
~y+h1,2e1 +h1,2e2

)
− f

(
~y+h1,2e1

)
− f

(
~y+h1,2e2

)
+ f (~y)

h2
1,2

·

(
f
(
~y+h1,3e1 +h1,3e3

)
− f

(
~y+h1,3e1

)
− f

(
~y+h1,3e3

)
+ f (~y)

h2
1,3

)−1

(23)

for f ∈F . By the definition of a cross-partial derivative, (18), the ratio ϒ
(
h1,2,n,h1,3,n; f

)
converges to ∂ f (~y)

∂x1∂x2
/

∂ f (~y)
∂x1∂x3

for f ∈
{

f 0, f 1} as n→ 0 and
(
h1,2,n,h1,3,n

)
→ (0,0). Then there exists some n1 ∈ N where, for all n ≥ n1, n ∈ N,∣∣∣ϒ(h1,2,n,h1,3,n; f 0)− ∂ f 0(~y)

∂x1∂x2
/

∂ f 0(~y)
∂x1∂x3

∣∣∣ < τ

3 and
∣∣∣ϒ(h1,2,n,h1,3,n; f 1)− ∂ f 1(~y)

∂x1∂x2
/

∂ f 1(~y)
∂x1∂x3

∣∣∣ < τ

3 . The choice of distance τ

3

ensures that

ϒ

(
h1,2,n,h1,3,n; f 0

)
>

h2
1,3,n

h2
1,2,n

> ϒ

(
h1,2,n,h1,3,n; f 1

)
(24)

for all n≥ n1, n ∈ N. Define

∆
(
h1,2,h1,3; f

)
= f

(
~y+h1,2e1 +h1,2e2

)
− f

(
~y+h1,2e1

)
− f

(
~y+h1,2e2

)
+ f (~y)−(

f
(
~y+h1,3e1 +h1,3e3

)
− f

(
~y+h1,3e1

)
− f

(
~y+h1,3e3

)
+ f (~y)

)
for f ∈ F . Choose

(
h1,2,h1,3

)
=
(
h1,2,n,h1,3,n

)
. Substituting the definition of ϒ

(
h1,2,n,h1,3,n; f

)
into (24) and
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resulting algebra shows that, at
(
h1,2,h1,3

)
, the ratios h2

1,3,n/h2
1,2,n cancel in all terms and

f 0 (~y+h1,2e1 +h1,2e2
)
− f 0 (~y+h1,2e1

)
− f 0 (~y+h1,2e2

)
+ f 0 (~y)

f 0
(
~y+h1,3e1 +h1,3e3

)
− f 0

(
~y+h1,3e1

)
− f 0

(
~y+h1,3e3

)
+ f 0 (~y)

> 1 >
f 1 (~y+h1,2e1 +h1,2e2

)
− f 1 (~y+h1,2e1

)
− f 1 (~y+h1,2e2

)
+ f 1 (~y)

f 1
(
~y+h1,3e1 +h1,3e3

)
− f 1

(
~y+h1,3e1

)
− f 1

(
~y+h1,3e3

)
+ f 1 (~y)

(25)
and so

∆

(
h1,2,h1,3; f 0

)
> 0 > ∆

(
h1,2,h1,3; f 1

)
.

At this value
(
h1,2,h1,3

)
, f 0 and f 1 have different signs for a key term ∆

(
h1,2,h1,3; f

)
. The same style of ar-

guments and the same choice of h1,3,n, (21), will apply to the case ∂ f 0(~y)
∂x1∂x2

/
∂ f 0(~y)
∂x1∂x3

<
∂ f 1(~y)
∂x1∂x2

/
∂ f 1(~y)
∂x1∂x3

. Only a few
inequalities are reversed.

Now I will argue that ∆
(
h1,2,h1,3; f

)
can be used to form a local production maximization inequality. Rear-

range the inequality ∆
(
h1,2,h1,3; f

)
> 0 so that all signs are positive:

f
(
~y+h1,2e1 +h1,2e2

)
+ f

(
~y+h1,3e1

)
+ f

(
~y+h1,3e3

)
+ f (~y) >

f
(
~y+h1,3e1 +h1,3e3

)
+ f

(
~y+h1,2e1

)
+ f

(
~y+h1,2e2

)
+ f (~y) . (26)

Clearly this inequality is satisfied when ∆
(
h1,2,h1,3; f

)
> 0. The inequality (26) satisfies Definition 3 for

some choice of B1 and B2. Let B1 = {〈a, i〉 ,〈b, j〉 ,〈c,k〉 ,〈g, l〉} and B2 = {〈g, i〉 ,〈a, j〉 ,〈b,k〉 ,〈c, l〉}, where the
permutation π is implied by the definitions of B1 and B2. Also, let a ∈ Cu

i , b ∈ Cu
j , c ∈ Cu

k and g ∈ Cu
l . Let

~x
(
i,Cu

i
)

=~y + h1,2e1 + h1,2e2, ~x
(

j,Cu
j

)
=~y + h1,3e1, ~x

(
k,Cu

k
)

=~y + h1,3e3, ~x
(
l,Cu

l
)

=~y, ~x
(
i,
(
Cu

i \{a}
)
∪{g}

)
=~y +

h1,2e1, ~x
(

j,
(

Cu
j \{b}

)
∪{a}

)
=~y+h1,3e1 +h1,3e3, ~x

(
k,
{

Cu
k\{c}

}
∪{b}

)
=~y, and ~x

(
l,
(
Cu

l \{g}
)
∪{c}

)
=~y+h1,2e2.

Using the notation ~x
(
i,Cu

i
)

= cat
((

xu
i,1, . . .x

u
i,Ku

)
,
(

xd
d1,1, . . .x

d
d1,Kd

)
, . . . ,

(
xd

dn,1, . . .x
d
dn,Kd

))
: xd

a,2− h1,2e2 = xd
g,2; ei-

ther xu
i,1−h1,2e1 = xu

l,1 or xd
mi,1
−h1,2e1 = xd

ml ,1
for two firms mi ∈Cu

i , mi 6= a and ml ∈Cu
l , ml 6= g; xd

c,2−h1,3e3 = xd
b,2;

and either xu
j,1− h1,3e1 = xu

k,1 or xd
m j ,1
− h1,3e1 = xd

mk ,1
for two firms m j ∈ Cu

j , m j 6= b and mk ∈ Cu
k , mk 6= c. By

inspection, it can be seen that each match in B1 exchanges a downstream firm partner for a match in B2. Mean-
while, each set of arguments ~x

(
i,Cu

i
)

on the right can be formed by an exchange of single downstream firm’s
characteristics from a set of arguments on the left. Therefore, this construction satisfies Definition 3 for the
case of firm-specific characteristics.

As in the proof of Part 1, I can embed B1 and B2 into a larger matching market. Let B3 be a larger set
of matches that includes the matches corresponding to the downstream firms in Cu

i \{a}, Cu
j \{b}, Cu

k\{c} and
Cu

l \{g}. The exact choice of B3 plays no role in the proof, other than to ensure the sets of the form Cu
i \{a} are

large enough given the number of non-empty elements in ~y. Then set A1 = B1 ∪B3 and A2 = B2 ∪B3. Likewise,
I will invent some collection X of characteristics for all potential matches, including but not limited to the
matches in A1∪A2. The choice of X plays no role in the proof, except that X must contain the eight terms of the
form~x

(
i,Cu

i
)

listed in the previous paragraph.
Assumption 1 states that if (26) holds for f ∈F , then Pr(A1 | X ; f ,S) > Pr(A2 | X ; f ,S) for any S ∈S . Above,

we found
(
h1,2,h1,3

)
where ∆

(
h1,2,h1,3; f 0) > 0 and hence where (26) holds for the true f 0. Likewise, as this

point ∆
(
h1,2,h1,3; f 1)< 0 and hence (26) does not hold for the alternative f 1.

Now we need to show that there exists a continuum of markets X where Pr
(
A1 | X ; f 0,S0)> Pr

(
A2 | X ; f 0,S0)
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while Pr
(
A1 | X ; f 1,S1)< Pr

(
A2 | X ; f 1,S1) for any S1 ∈S . Because each f ∈F is continuous, the function

g(z; f ) = g(~z1, . . . ,~z8; f ) = f (~z1)+ f (~z2)+ f (~z3)+ f (~z4)− ( f (~z5)− f (~z6)− f (~z7)− f (~z8))

is itself continuous. Let v =
(
~x
(
i,Cu

i
)
,~x
(

j,Cu
j

)
, . . . ,~x

(
l,
(
Cu

l \{g}
)
∪{c}

))
. Let V 0 be an open set around g

(
v; f 0)

where p > 0 for p ∈ V 0 and let V 1 be an open set around g
(
v; f 1) where p < 0 for p ∈ V 1. Such open neigh-

borhoods exist as g is continuous. Because the tuple v is the same in both the f 0 and f 1 constructions,
W = g−1 (V 0; f 0)∩g−1 (V 1; f 1) 6= /0 and is itself an open neighborhood of v, as both g−1 (V 0; f 0) and g−1 (V 1; f 1)
are open sets by the definition of continuity and topologies are closed under finite intersections. By construc-
tion, g

(
z; f 0) > 0 is equivalent to saying a local production maximization inequality is satisfied; the opposite

local production maximization inequality is satisfied for f 1 when g
(
z; f 1)< 0.

Divide any market characteristics X into X1 and X2, where X1 is the set comprised of the eight elements of
the tuple v or the eight arguments of the g function. Also, X2 = X\X1, so X is a one-to-one change of variables
(or just notation) of (X1,X2). By Assumption 2, X has support equal to the product of the marginal supports of
its elements. Therefore, the probability that (X1,X2) lies in W ×Rs is strictly positive, where s is the number
of elements of X2. All market characteristics (X1,X2) in W ×Rs satisfy Pr

(
A1 | X ; f 0,S0) > Pr

(
A2 | X ; f 0,S0)

while Pr
(
A1 | X ; f 1,S1) < Pr

(
A2 | X ; f 1,S1) for any S1 ∈S , by the key Assumption 1. By the arguments at the

beginning of the proof, identification has been shown for the case under consideration.
Recall that by Part 1 of the theorem we can focus on cases where the signs of the cross partials are the same

for f 0 and f 1. Before we restricted attention to the case ∂ f (~y)
∂x1∂x2

> 0, ∂ f (~y)
∂x1∂x3

> 0 and ∂ f (~y)
∂x1∂x2

>
∂ f (~y)

∂x1∂x3
for f ∈

{
f 0, f 1}.

∂ f (~y)
∂x1∂x2

>
∂ f (~y)

∂x1∂x3
is without loss of generality,81 but ∂ f (~y)

∂x1∂x2
> 0 and ∂ f (~y)

∂x1∂x3
> 0 for f ∈

{
f 0, f 1} are conditions with

some loss of generality. Now we need to argue that the above arguments go through for the other three cases:
∂ f (~y)

∂x1∂x2
< 0 and ∂ f (~y)

∂x1∂x3
> 0; ∂ f (~y)

∂x1∂x2
> 0 and ∂ f (~y)

∂x1∂x3
< 0; as well as ∂ f (~y)

∂x1∂x2
< 0 and ∂ f (~y)

∂x1∂x3
< 0. This is simple: in some

of these new cases key inequalities may reverse direction, but as ∂ f 0(~y)
∂x1∂x2

/
∂ f 0(~y)
∂x1∂x3

6= ∂ f 1(~y)
∂x1∂x2

/
∂ f 1(~y)
∂x1∂x3

for all cases, the

same arguments as above will show
(
h1,2,h1,3

)
can be chosen to lie in between ∂ f 0(~y)

∂x1∂x2
/

∂ f 0(~y)
∂x1∂x3

and ∂ f 1(~y)
∂x1∂x2

/
∂ f 1(~y)
∂x1∂x3

.
One this is done, the arguments about local production maximization inequalities, embedding these matches in
a larger matching market, and then finding a continuum of matching markets where f 0 and f 1 make different
predictions can all be repeated without much change.82

A.4 Theorem 2: Cardinal identification, match-specific covariates

To a large degree, the arguments for the proof of Theorem 2 mirror those of Theorem 1. However, as Theorem
2 involves match-specific characteristics and second derivatives rather than firm-specific characteristics and
cross-partial derivatives, it is not enough to simply assert that the proofs are similar enough that the proof of
Theorem 2 can be disregarded.

81In part, there is no loss in generality because identifying ∂ f 0(~y)
∂x1∂x2

/ ∂ f 0(~y)
∂x1∂x3

is equivalent to identifying its inverse, ∂ f 0(~y)
∂x1∂x3

/ ∂ f 0(~y)
∂x1∂x2

.
82If ∂ f (~y)

∂x1∂x2
/ ∂ f (~y)

∂x1∂x3
< 0 for f ∈

{
f 0, f 1}, then (21) will involve the square root of a negative number. To fix this, let (21) involve

the absolute values of ∂ f (~y)
∂x1∂x2

/ ∂ f (~y)
∂x1∂x3

for f ∈
{

f 0, f 1}. For the case ∂ f 0(~y)
∂x1∂x2

/ ∂ f 0(~y)
∂x1∂x3

> ∂ f 1(~y)
∂x1∂x2

/ ∂ f 1(~y)
∂x1∂x3

, (31) will become ∂ f 0(~y)
∂x1∂x2

/ ∂ f 0(~y)
∂x1∂x3

>

−
h2

1,3,n
h2

1,2,n
> ∂ f 1(~y)

∂x1∂x2
/ ∂ f 1(~y)

∂x1∂x3
. Following the steps of the algebra in the earlier argument, the 1 in (25) will be a -1 and the pair of inequalities

in (25) will reverse directions once both sides are multiplied by the -1. A different local production maximization inequality will arise, but
otherwise the argument is similar to the earlier argument.
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A.4.1 Part 1

The vector ~x is given in the statement of the theorem. To avoid confusion of the point ~x with the function
~x
(
i,Cu

i
)
, I relabel the vector ~x as ~y inside this proof. I will prove Part 1 for the case where f 0 is concave in x1 at

x1, ∂ 2 f 0(~y)
∂ 2x1

> 0. The case when f 0 is convex is similar mathematically and so is omitted.

For an arbitrary f 1 ∈F , f 1 6= f 0 where ∂ 2 f 1(~y)
∂ 2x1

< 0, by Definition 4 I must show that there does not exist
S1 corresponding to f 1 where Pr

(
A | X ; f 0,S0) = Pr

(
A | X ; f 1,S1) for all (A,X) except perhaps a set of X of

probability 0. By the key Assumption 1, a sufficient condition involves showing that there exists a continuum
of market characteristics X with positive probability and a corresponding matching situation where f 0 and f 1

give different implications for a local production maximization inequality, of the form in Definition 3. At each
of these markets X , there will be a particular assignment A1 and another assignment A2 where, by Assumption
1, Pr

(
A1 | X ; f 0,S0)> Pr

(
A2 | X ; f 0,S0) while Pr

(
A1 | X ; f 1,S1)< Pr

(
A2 | X ; f 1,S1) for any S1 ∈S . Therefore, the

conditions of Definition 4 will be satisfied.
One definition of a second derivative is

∂ 2 f (~y)
∂ 2x1

= lim
h→∞

f (~y+2he1)−2 f (~y+he1)+ f (~y)
h2 , (27)

where as in the proof of Theorem 1, e1 = (1,0,0, . . . ,0) is a vector of 0’s except in the first element. Because
both ∂ 2 f 0(~y)

∂ 2x1
and ∂ 2 f 1(~y)

∂ 2x1
are limits, there will be some h = min

{
h0,h1}, where h0 and h1 are the respective limit

arguments for f 0 and f 1, where both

f 0 (~y+2he1)+ f 0 (~y) > 2 f 0 (~y+he1) (28)

and
f 1 (~y+2he1)+ f 1 (~y) < 2 f 1 (~y+he1) (29)

hold.
Now I will argue that (28) and by the same argument (29) are local production maximization equations,

Definition 3. Let B1 = {〈a, i〉 ,〈b, j〉} and B2 = {〈a, j〉 ,〈b, i〉}. Also let there be sufficiently large (to handle
~y) sets Cu

i and Cu
j where a ∈ Cu

i , a /∈ Cu
j , b ∈ Cu

j , and b /∈ Cu
i . Also define ~x

(
i,Cu

i
)

= ~y + 2he1, ~x
(

j,Cu
j

)
= ~y,

~x
(
i,
(
Cu

i \{a}
)
∪{b}

)
=~y + he1 and ~x

(
j,
(

Cu
j \{b}

)
∪{a}

)
=~y + he1. Using the match-specific characteristics no-

tation~x(i,Cu) = cat
((

xu,d
〈d1,i〉,1, . . .x

u,d
〈d1,i〉,K

)
, . . . ,

(
xu,d
〈dn,i〉,1, . . .x

u,d
〈dn,i〉,K

))
, let xu,d

〈a,i〉,1−he1 = xu,d
〈a, j〉,1 = xu,d

〈b,i〉,1 and xu,d
〈a,i〉,1−

2he1 = xu,d
〈b, j〉,1. With π 〈a, i〉 = b and π 〈b, j〉 = a, inspection shows (19) satisfies Definition 3 for the case of

match-specific characteristics.
I can embed B1 and B2 in a matching market. Let B3 be a larger set of matches that includes the matches

corresponding to the downstream firms in Cu
i \{a} and Cu

j \{b}. The exact choice of B3 plays no role in the
proof, other than to ensure Cu

i \{a} and Cu
j \{b} are large enough given the number of non-empty elements in ~y.

Then set A1 = B1 ∪B3 and A2 = B2 ∪B3. Likewise, let there be a collection X of characteristics for all potential
matches, including but not limited to the matches in A1∪A2. The choice of X plays no role in the proof, except
that X must contain the four terms of the form~x(i,Cu) described in the previous paragraph.

Assumption 1 and (19) imply Pr
(
A1 | X ; f 0,S0) > Pr

(
A2 | X ; f 0,S0) while Assumption 1 and (20) imply

Pr
(
A1 | X ; f 1,S1) < Pr

(
A2 | X ; f 1,S1) for any S1 ∈ S . Now we need to find a continuum of markets X with
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this property. Define
g(z; f ) = g(~z1,~z2,~z3,~z4; f ) = f (~z1)+ f (~z2)− f (~z3)− f (~z4) .

As f ∈F is continuous, g is continuous in the tuple (~z1,~z2,~z3,~z4). Let

v =
(
~x(i,Cu

i ) ,~x
(

j,Cu
j

)
,~x(i,(Cu

i \{a})∪{b}) ,~x
(

j,
(

Cu
j \{b}

)
∪{a}

))
.

Let V 0 be an open set around g
(
v; f 0) where p > 0 for p ∈ V 0 and let V 1 be an open set around g

(
v; f 1) where

p < 0 for p ∈ V 1. Such sets exist by the continuity of g. By the continuity of g and the fact that topologies are
closed under finite intersections, W = g−1 (V 0; f 0)∩g−1 (V 1; f 1) is a nonempty, open neighborhood of v where
g
(
z; f 0)> 0 and g

(
z; f 1)< 0 for z ∈W .

Divide any market characteristics X into X1 and X2, where X1 is the set comprised of the eight elements of the
tuple v. Also, X2 = X\X1, so X is a one-to-one change of variables (or just notation) of (X1,X2). By Assumption
2, X has support equal to the product of the marginal supports of its elements. Therefore, the probability that
(X1,X2) lies in W ×Rs is strictly positive, where s is the number of elements of X2. All market characteristics
(X1,X2) in W ×Rs satisfy Pr

(
A1 | X ; f 0,S0)> Pr

(
A2 | X ; f 0,S0) while Pr

(
A1 | X ; f 1,S1)< Pr

(
A2 | X ; f 1,S1) for any

S1 ∈ S , by the key Assumption 1. By the arguments at the beginning of the proof, identification has been
shown for the case under consideration.

A.4.2 Part 2

We are given a point~y (relabeled from~x in the statement of the theorem) and there is an arbitrary f 1 ∈F where
∂ 2 f 0(~y)

∂ 2x1
/

∂ 2 f 0(~y)
∂ 2x2

6= ∂ 2 f 1(~y)
∂ 2x1

/
∂ 2 f 1(~y)

∂ 2x2
. The goal is to show there exists a continuum of X and two assignments A1

and A2 where Pr
(
A1 | X ; f 0,S0) > Pr

(
A2 | X ; f 0,S0) while Pr

(
A1 | X ; f 1,S1) < Pr

(
A2 | X ; f 1,S1) for any S1 ∈ S .

By Part 1, we can restrict attention to the case where the pair ∂ 2 f 0(~y)
∂ 2x1

and ∂ 2 f 1(~y)
∂ 2x1

as well as the pair ∂ 2 f 0(~y)
∂ 2x2

and
∂ 2 f 1(~y)

∂ 2x2
have the same signs. I first consider the case where ∂ 2 f (~y)

∂ 2x1
> 0 and ∂ 2 f (~y)

∂ 2x2
> 0 for f ∈

{
f 0, f 1}. The other

cases are discussed at the end of the proof.
Let h1 be the index for the approximation term on the right side of (27) for ∂ 2 f (~y)

∂ 2x1
and let h2 be the index for

∂ 2 f (~y)
∂ 2x2

. Consider the case ∂ 2 f 0(~y)
∂ 2x1

/
∂ 2 f 0(~y)

∂ 2x2
>

∂ 2 f 1(~y)
∂ 2x1

/
∂ 2 f 1(~y)

∂ 2x2
and let

{
h1,n
}

n∈N be a sequence that converges to 0.
Let

{
h2,n
}

n∈N be a sequence

h2,n = h1,n

√
1
2

(
∂ 2 f 0 (~y)

∂ 2x1
/

∂ 2 f 0 (~y)
∂ 2x2

+
∂ 2 f 1 (~y)

∂ 2x1
/

∂ 2 f 1 (~y)
∂ 2x2

)
. (30)

{
h2,n
}

n∈N converges to 0 and

h2
2,n

h2
1,n

=
1
2

(
∂ 2 f 0 (~y)

∂ 2x1
/

∂ 2 f 0 (~y)
∂ 2x2

+
∂ 2 f 1 (~y)

∂ 2x1
/

∂ 2 f 1 (~y)
∂ 2x2

)

is the mean of the two ratios of second partial derivatives for all n ∈ N. This choice of h2,n ensures

∂ 2 f 0 (~y)
∂ 2x1

/
∂ 2 f 0 (~y)

∂ 2x2
>

h2
2,n

h2
1,n

>
∂ 2 f 1 (~y)

∂ 2x1
/

∂ 2 f 1 (~y)
∂ 2x2

(31)
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for all n ∈ N.
Let τ = ∂ 2 f 0(~y)

∂ 2x1
/

∂ 2 f 0(~y)
∂ 2x2

− ∂ 2 f 1(~y)
∂ 2x1

/
∂ 2 f 1(~y)

∂ 2x2
and

ϒ(h1,h2; f ) =
f (~y+2h1e1)−2 f (~y+h1e1)+ f (~y)

h2
1

·

(
f (~y+2h2e2)−2 f (~y+h2e2)+ f (~y)

h2
2

)−1

(32)

for f ∈F . By the definition of a second partial derivative, (27), the ratio ϒ(h1,h2; f ) converges to ∂ 2 f (~y)
∂ 2x1

/
∂ 2 f (~y)
∂ 2x2

for f ∈
{

f 0, f 1} as n→ 0 and
(
h1,n,h2,n

)
→ (0,0). Then there exists some n1 ∈ N where, for all n ≥ n1, n ∈ N,∣∣∣ϒ(h1,h2; f 0)− ∂ 2 f 0(~y)

∂ 2x1
/

∂ 2 f 0(~y)
∂ 2x2

∣∣∣ < τ

3 and
∣∣∣ϒ(h1,h2; f 1)− ∂ 2 f 1(~y)

∂ 2x1
/

∂ 2 f 1(~y)
∂ 2x2

∣∣∣ < τ

3 . The choice of distance τ

3 ensures
that

ϒ

(
h1,h2; f 0

)
>

h2
2,n

h2
1,n

> ϒ

(
h1,h2; f 1

)
(33)

for all n≥ n1, n ∈ N. Define

∆(h1,h2; f ) = f (~y+2h1e1)−2 f (~y+h1e1)+ f (~y)− ( f (~y+2h2e2)−2 f (~y+h2e2)+ f (~y))

for f ∈ F . Choose (h1,h2) =
(
h1,n,h2,n

)
for n ≥ n1. Substituting the definition of ϒ(h1,h2; f ) into (33) and

resulting algebra shows that at (h1,h2), the ratios h2
2,n/h2

1,n cancel in all terms and

f 0 (~y+2h1e1)−2 f 0 (~y+h1e1)+ f 0 (~y)
f 0 (~y+2h2e2)−2 f 0 (~y+h2e2)+ f 0 (~y)

> 1 >
f 1 (~y+2h1e1)−2 f 1 (~y+h1e1)+ f 1 (~y)
f 1 (~y+2h2e2)−2 f 1 (~y+h2e2)+ f 1 (~y)

and so
∆

(
h1,h2; f 0

)
> 0 > ∆

(
h1,h2; f 1

)
.

At this value
(
h1,2,h1,3

)
, f 0 and f 1 have different signs for a key term ∆

(
h1,h2; f 0). The same style of arguments

will apply to the case ∂ 2 f 0(~y)
∂ 2x1

/
∂ 2 f 0(~y)

∂ 2x2
<

∂ 2 f 1(~y)
∂ 2x1

/
∂ 2 f 1(~y)

∂ 2x2
. Only a few inequalities are reversed.

Now we can rearrange the inequality ∆
(
h1,h2; f 0)> 0 , giving

f (~y+2h1e1)+2 f (~y+h2e2)+ f (~y) > f (~y+2h2e2)+2 f (~y+h1e1)+ f (~y) . (34)

We can show that this is a local production maximization inequality, Definition 3, for some choice of B1

and B2. Let B1 = {〈a, i〉 ,〈b, j〉 ,〈c,k〉 ,〈g, l〉} and B2 = {〈g, i〉 ,〈a, j〉 ,〈b,k〉 ,〈c, l〉}, where the permutation π is im-
plied by the definitions of B1 and B2. Also, let a ∈ Cu

i , b ∈ Cu
j , c ∈ Cu

k and g ∈ Cu
l . Let ~x

(
i,Cu

i
)

= ~y + 2h1e1,
~x
(

j,Cu
j

)
=~y + h2e2, ~x

(
k,Cu

k
)

=~y + h2e2, ~x
(
l,Cu

l
)

=~y, ~x
(
i,
(
Cu

i \{a}
)
∪{g}

)
=~y, ~x

(
j,
(

Cu
j \{b}

)
∪{a}

)
=~y + h1e1,

~x
(
k,
{

Cu
k\{c}

}
∪{b}

)
= ~y + h1e1, and ~x

(
l,
(
Cu

l \{g}
)
∪{c}

)
= ~y + 2h2e2. Using the match-specific characteris-

tics notation ~x(i,Cu) = cat
((

xu,d
〈d1,i〉,1, . . .x

u,d
〈d1,i〉,K

)
, . . . ,

(
xu,d
〈dn,i〉,1, . . .x

u,d
〈dn,i〉,K

))
, let xu,d

〈a,i〉,1− 2h1e1 = xu,d
〈g,l〉,1 = xu,d

〈g,i〉,1 =

xu,d
〈b, j〉,1 = xu,d

〈c,k〉,1 = xu,d
〈c,l〉,1; xu,d

〈a,i〉,1−h1e1 = xu,d
〈a, j〉,1 = xu,d

〈b,k〉,1; xu,d
〈c,l〉,2−2h2e2 = xu,d

〈a,i〉,2 = xu,d
〈c, j〉,2 = xu,d

〈b,k〉,2 = xu,d
〈g,l〉,2 = xu,d

〈g,i〉,2;
and xu,d

〈c,l〉,2−h2e2 = xu,d
〈b, j〉,2 = xu,d

〈c,k〉,2. By inspection, it can be seen that each match in B1 exchanges a downstream
firm partner for a match in B2. Meanwhile, each set of arguments~x

(
i,Cu

i
)

on the right can be formed by replac-
ing the characteristics associated with a single match in a set of arguments ~x

(
i,Cu

i
)

on the left side. Therefore,
Definition 3 is satisfied.

Now we embed B1 and B2 into a larger matching market. Let B3 be a larger set of matches that includes the
matches corresponding to the downstream firms in Cu

i \{a}, Cu
j \{b}, Cu

k\{c} and Cu
l \{g}. The exact choice of B3
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plays no role in the proof, other than to ensure the sets of the form Cu
i \{a} are large enough given the number

of non-empty elements in ~y. Then set A1 = B1 ∪B3 and A2 = B2 ∪B3. Likewise, let there be some collection X

of characteristics for all potential matches, including but not limited to the matches in A1∪A2. The choice of X

plays no role in the proof, except that X must contain the eight terms of the form ~x
(
i,Cu

i
)

listed in the previous
paragraph.

Assumption 1 states that if (34) holds for f ∈F , then Pr(A1 | X ; f ,S) > Pr(A2 | X ; f ,S) for any S ∈S . Above,
we found a h1 and an h2 where ∆

(
h1,h2; f 0) > 0 and hence where (26) holds for the true f 0. Likewise, as this

point ∆
(
h1,h2; f 1)< 0 and hence (26) does not hold for the alternative f 1.

Now we need to show that there exists a continuum of markets X where Pr
(
A1 | X ; f 0,S0)> Pr

(
A2 | X ; f 0,S0)

while Pr
(
A1 | X ; f 1,S1)< Pr

(
A2 | X ; f 1,S1) for any S1 ∈S . Because each f ∈F is continuous, the function

g(z; f ) = g(~z1, . . . ,~z8; f ) = f (~z1)+ f (~z2)+ f (~z3)+ f (~z4)− ( f (~z5)− f (~z6)− f (~z7)− f (~z8))

is itself continuous. Let v =
(
~x
(
i,Cu

i
)
,~x
(

j,Cu
j

)
, . . . ,~x

(
l,
(
Cu

l \{g}
)
∪{c}

))
. Let V 0 be an open set around g

(
v; f 0)

where p > 0 for p ∈ V 0 and let V 1 be an open set around g
(
v; f 1) where p < 0 for p ∈ V 1. Such open neigh-

borhoods exist as g is continuous. Because the tuple v is the same in both the f 0 and f 1 constructions,
W = g−1 (V 0; f 0)∩g−1 (V 1; f 1) 6= /0 and is itself an open neighborhood of v, as both g−1 (V 0; f 0) and g−1 (V 1; f 1)
are open sets by the definition of continuity and topologies are closed under finite intersections. By construc-
tion, g

(
z; f 0) > 0 is equivalent to saying a local production maximization inequality is satisfied; the opposite

local production maximization inequality is satisfied for f 1 when g
(
z; f 1)< 0.

Divide any market characteristics X into X1 and X2, where X1 is the set comprised of the eight elements of
the tuple v or the eight arguments of the g function. Also, X2 = X\X1, so X is a one-to-one change of variables
(or just notation) of (X1,X2). By Assumption 2, X has support equal to the product of the marginal supports of
its elements. Therefore, the probability that (X1,X2) lies in W ×Rs is strictly positive, where s is the number
of elements of X2. All market characteristics (X1,X2) in W ×Rs satisfy Pr

(
A1 | X ; f 0,S0) > Pr

(
A2 | X ; f 0,S0)

while Pr
(
A1 | X ; f 1,S1) < Pr

(
A2 | X ; f 1,S1) for any S1 ∈S , by the key Assumption 1. By the arguments at the

beginning of the proof, identification has been shown for the case under consideration.
Before we restricted attention to the case ∂ 2 f (~y)

∂ 2x1
> 0 and ∂ 2 f (~y)

∂ 2x2
> 0 for f ∈

{
f 0, f 1}. However, it should be

clear that for other cases, we can always find two sequences so that h2
2,n/h2

1,n lies in between ∂ 2 f 0(~y)
∂ 2x1

/
∂ 2 f 0(~y)

∂ 2x2
and

∂ 2 f 1(~y)
∂ 2x1

/
∂ 2 f 1(~y)

∂ 2x2
. That is the key insight of the proof: find a market where f 0 and f 1 give different implications

for the local production maximization inequality.

A.5 Lemma 3: Continuous characteristics for ordinal identification

Without loss of generality, the goal of the proof is to show that the set

W 1 =
{
(~xa,~xb) | f 1 (~xa) > f 1 (~xb) and f 2 (~xa) < f 2 (~xb)

}
is non-empty. Let~x = cat((x1) ,~x−1).

First we want to show that, again without loss of generality,

W 2 =
{
(~xa,~xb) | f 1 (~xa)≥ f 1 (~xb) and f 2 (~xa) < f 2 (~xb)

}
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is non-empty. Assume not. Then f 1 and f 2 induce the same ordering, or preference relation in utility theory.
The “only if” direction of Theorem 1.2 in Jehle and Reny (2000) shows that there must exist some positive,
strictly monotonic function m such that f 1 (~xa) = m ◦ f 2 (~xb) over the range of values taken on by f 2. As this
contradicts Assumption 3, W 2 must be non-empty. The proof in Jehle and Reny is left as an exercise for the
reader. Here is a quick sketch: pick an arbitrary point ~xc, let yc = f 2 (~xc) and m(yc) = f 1 (~xc). Repeat for all
points. m is strictly increasing over the values f 2 takes on because if f 2 (~xc) > f 2 (~xd) then f 1 (~xc) > f 1 (~xd),
under the contradiction, and f 1 (~x) = m◦ f 2 (~x).

We have shown W 2 is non-empty. Take a point (~xa,~xb)∈W 2. Then add δ1 > 0 to the x1 element of~xa. Because
f 1 is strictly increasing in x1, f 1 (~xa + e1δ1) > f 1 (~xb), where e1 = (1,0,0, . . . ,0) is a vector of length equal to the
length of ~xa. Because f 2 is continuous, there exists a δ2 > 0 where f 2 (~xa− e1δ2) < f 2 (~xb) is preserved. Let
δ = min{δ1,δ2}. The points~xa + e1δ and~xb satisfy the requirements of the lemma.

A.6 Theorem 4: Ordinal identification, group characteristics

Let f 0, f 1 ∈F , where f 0 is the production function to be identified and f 1 is an alternative where f 1 (~x) 6= m ◦
f 0 (~x) for all~x any for any positive monotonic function m. The goal is to show there exists a continuum of X and
two assignments A1 and A2 where Pr

(
A1 | X ; f 0,S0)> Pr

(
A2 | X ; f 0,S0)while Pr

(
A1 | X ; f 1,S1)< Pr

(
A2 | X ; f 1,S1)

for any S1 ∈S .
Lemma 3 produces ~x1 and ~x2 such that f 0 (~x1) > f 0 (~x2) and f 1 (~x1) < f 1 (~x2) or f 0 (~x1) < f 0 (~x2) and f 1 (~x1) >

f 1 (~x2). Focus on the first case. An inequality such as f 0 (~x1) > f 0 (~x2) considers a group of matches centered
around an upstream firm on the left and another group of matches centered around an upstream firm on the
right. This is not a local production maximization inequality (Definition 3), which would require at least two
groups, each centered on an upstream firm, on both the left and the right.

Consider a third set of characteristics,~x3. The exact value of~x3 will not matter for the case of group-specific
characteristics. Add its production to both sides of the inequality f (~x1) > f (~x2) to give

f (~x1)+ f (~x3) > f (~x2)+ f (~x3) . (35)

This inequality is satisfied for f = f 0; the opposite direction is satisfied for f = f 1.
I will now argue that this is a local production maximization inequality, Definition 3. Let B1 = {〈a, i〉 ,〈b, j〉}

and B2 = {〈b, i〉 ,〈a, j〉}. Also let there be sufficiently large (to handle~y) sets Cu
i and Cu

j where a∈Cu
i , a /∈Cu

j , b∈Cu
j ,

and b /∈ Cu
i . Also define ~x

(
i,Cu

i
)

=~x1, ~x
(

j,Cu
j

)
=~x3, ~x

(
i,
(
Cu

i \{a}
)
∪{b}

)
=~x2 and ~x

(
j,
(

Cu
j \{b}

)
∪{a}

)
=~x3.

Using the group-specific characteristics notation~x(i,Cu) =
(

xgroup
(i,Cu),1, . . . ,x

group
(i,Cu),K

)
, these four distinct groups can

have the four different covariate vectors listed. With π 〈a, i〉= b and π 〈b, j〉= a, inspection shows (35) satisfies
Definition 3 for the case of match-specific characteristics.

We can embed these four groups into a larger matching market. Let B3 be a larger set of matches that
includes the matches corresponding to the downstream firms in Cu

i \{a} and Cu
j \{b}. The exact choice of B3

plays no role in the proof, other than to ensure Cu
i \{a} and Cu

j \{b} are large enough given the number of
non-empty elements in an arbitrary ~x. Then set A1 = B1 ∪B3 and A2 = B2 ∪B3. Likewise, let there be some
collection X of characteristics for all potential matches, including but not limited to the matches in A1∪A2. The
choice of X plays no role in the proof, except that X must contain ~x

(
i,Cu

i
)
, ~x
(

j,Cu
j

)
, ~x
(
i,
(
Cu

i \{a}
)
∪{b}

)
and

~x
(

j,
(

Cu
j \{b}

)
∪{a}

)
.
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Definition 4 requires that we find a set of X with positive probability and two assignments A1 and A2 where
Pr
(
A1 | X ; f 0,S0) > Pr

(
A2 | X ; f 0,S0) while Pr

(
A1 | X ; f 1,S1) < Pr

(
A2 | X ; f 1,S1) for any S1 ∈S . Unlike for the

cardinal identification theorems, where I assumed all observable characteristics are continuous for transparency,
here we assume that there need be only one component of a group-specific characteristics vector, ~x, x1, with
continuous and full support. Partition X into (X ′,X ′′), where X ′ has all of the continuously varying character-
istics in X (variables whose marginal density conditional on X ′′ has support equal to a connected subset of the
real line) and X ′′ is the collection of all variables with discrete support in X . We will fix X ′′ and vary only the
elements in X ′. Likewise, for each ~x, partition it into ~x = (~x′,~x′′), where ~x′ has all of the continuous variables in
~x and~x′′ has all of the discrete variables. Assume the arguments of f are appropriately reordered to respect this
partition. Further, x1 is the first element of~x′.

Let
g
(
~z′1,~z

′
2,~z
′
3,~z
′
4; f
)
≡ f

((
~z′1,~x

′′
1
))

+ f
((

~z′2,~x
′′
3
))
− f

((
~z′3,~x

′′
2
))
− f

((
~z′4,~x

′′
3
))

,

where
(
~z′1,~z

′
2,~z
′
3,~z
′
4
)

are arbitrary continuous arguments and~x′′1 , ~x′′2 , and~x′′3 are the discrete components of the~x1,
~x2 and ~x3 in (35). As each f ∈F is continuous in its arguments with continuous support, then so is g. Let v′

be the continuous elements of
(
~x
(
i,Cu

i
)
,~x
(

j,Cu
j

)
,~x
(
i,
(
Cu

i \{a}
)
∪{b}

)
,~x
(

j,
(

Cu
j \{b}

)
∪{a}

))
, or, in notation,

v′ =
(
~x′
(
i,Cu

i
)
,~x′
(

j,Cu
j

)
,~x′
(
i,
(
Cu

i \{a}
)
∪{b}

)
,~x′
(

j,
(

Cu
j \{b}

)
∪{a}

))
. Let V 0 be an open set around g

(
v′; f 0)

where p > 0 for p ∈ V 0 and let V 1 be an open set around g
(
v′; f 1) where p < 0 for p ∈ V 1. Such sets exist by

the continuity of g. By the continuity of g and the fact that topologies are closed under finite intersections,
W = g−1 (V 0; f 0)∩g−1 (V 1; f 1) is a nonempty, open neighborhood of v′ where g

(
z; f 0)> 0 and g

(
z; f 1)< 0 for

z ∈W .
Divide any continuous market characteristics X ′ into X ′1 and X ′2, where X ′1 is the set comprised of the four

elements of the tuple v′ or the four arguments of the g function. Also, X ′2 = X ′\X ′1, so X ′ is a one-to-one change
of variables (or just notation) of

(
X ′1,X

′
2
)
. By Assumption 4, X ′1 has support equal to the product of the marginal

supports of its elements. With these notational additions, X is a change of variables from
(
X ′1,X

′
2,X
′′). For

any X ′′, the probability that
(
X ′1,X

′
2
)

lies in W ×Rs is strictly positive, where s is the number of elements of
X ′2. All market characteristics

(
X ′1,X

′
2
)

in W ×Rs and the fixed X ′′ satisfy Pr
(
A1 | X ; f 0,S0) > Pr

(
A2 | X ; f 0,S0)

while Pr
(
A1 | X ; f 1,S1) < Pr

(
A2 | X ; f 1,S1) for any S1 ∈ S , by the key Assumption 1. By the arguments at

the beginning of the proof, identification has been shown for the case under consideration. The case with
f 0 (~x1) < f 0 (~x2) and f 1 (~x1) > f 1 (~x2) is similar: just reverse the local production maximization inequalities.

A.7 Theorem 5: Ordinal identification, match characteristics

Let f 0, f 1 ∈F , where f 0 is the production function to be identified and f 1 is an alternative where f 1 (~x) 6= m ◦
f 2 (~x) for all~x and for any positive monotonic function m. The goal is to show there exists a continuum of X and
two assignments A1 and A2 where Pr

(
A1 | X ; f 0,S0)> Pr

(
A2 | X ; f 0,S0)while Pr

(
A1 | X ; f 1,S1)< Pr

(
A2 | X ; f 1,S1)

for any S1 ∈S .
Lemma 3 produces ~x1 and ~x2 such that f 0 (~x1) > f 0 (~x2) and f 1 (~x1) < f 1 (~x2) or f 0 (~x1) < f 0 (~x2) and f 1 (~x1) >

f 1 (~x2). Focus on the first case. An inequality such as f 0 (~x1) > f 0 (~x2) considers a group of matches centered
around an upstream firm on the left and another group of matches centered around an upstream firm on the right.
This is not a local production maximization inequality (Definition 3), which would require at least two groups,
each centered on an upstream firm, on both the left and the right. We will now construct a local production
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maximization inequality.
For match-specific characteristics, ~x(i,Cu) = cat

((
xu,d
〈a1,i〉,1, . . .x

u,d
〈a1,i〉,K

)
, . . . ,

(
xu,d
〈am,i〉,1, . . .x

u,d
〈am,i〉,K

))
. Let m =

|Cu| be the number of downstream firms in the set Cu, and hence the number of matches involving upstream
firm i. Therefore, an alternative representation of ~x(i,Cu) is as a tuple of vectors rather than a concatenation
of vectors (one long vector). For this proof only, let ~x1 =

(
~xu,d
〈1,1〉, . . . ,~x

u,d
〈m,1〉

)
, where each ~xu,d

〈1,1〉 for a = 1, . . .m

is itself potentially a vector. Likewise, let ~x2 =
(
~xu,d
〈1,2〉, . . . ,~x

u,d
〈n,2〉

)
, where upstream firm 2 has n matches, each

with a vector of characteristics. To further simplify notation, expand the shorter of the two characteristics
collections ~x1 and ~x2 to have the same number of component matches by adding empty sets to the production
vector. Call the common number of component matches h = max{m,n}. If m = 2 and n = 3,~x1 is expanded to be(
~xu,d
〈1,1〉,~x

u,d
〈2,1〉, /0

)
.

Starting with an inequality f (~x1) > f (~x2), we can construct a series {~wc}h−1
c=1 of coalition characteristics

that add the same terms to both sides of f (~x1) > f (~x2) to create a local production production maximization
inequality of the form

f (~x1)+
h−1

∑
c=1

f (~wc) > f (~x2)+
h−1

∑
c=1

f (~wc) (36)

This inequality will be satisfied for f = f 0, and will be satisfied with the < direction for f = f 1.
A local production maximization inequality must satisfy Definition 3. The main challenge is that each group

characteristic on the right side of the inequality must differ in only one vector of match-specific characteristics
from a characteristics vector on the left side. This is because the equilibrium concept of pairwise stability does
not allow more than one downstream firm to switch for each upstream firm. To show that (36) is indeed a
local production maximization inequality, we need to show that we can pick {~wc}h−1

c=1 so that each term on the
right side is only one match-specific characteristic vector separate from a term on the left side. The general
construction of an ~wc for c≤ h−1 is

~wc =
(
~xu,d
〈1,1〉, . . . ,~x

u,d
〈h−c,1〉,~x

u,d
〈1,2〉, . . . ,~x

u,d
〈c,2〉

)
.

The construction is motivated as follows. From Definition 3, let B1 = {〈d0,u0〉 ,〈d1,u1〉 , . . . ,〈dh−1,uh−1〉} and B2 =

{〈d1,u0〉 ,〈d2,u1〉 , . . . ,〈d0,uh−1〉}. The group centered around upstream firm u0, with characteristics ~x
(
u0,Cu0

)
=

~x1, replaces one downstream firm, d0 ∈ Cu0 , with a new firm, d1 ∈ Cu1 . A valid new match-specific value
for u0’s new partner d1 is, by intentional choice, ~x(u0,{d1}) = ~xu,d

〈1,2〉, the first vector in ~x2.83 This results in

a group of matches with characteristics ~w1 =~x
(
u0,
(
Cu0\{d0}

)
∪{d1}

)
=
(
~xu,d
〈1,1〉, . . . ,~x

u,d
〈h−1,1〉,~x

u,d
〈1,2〉

)
appearing on

the right side of (36). Recall that we need to add the same terms on the left and right sides to move from
f (~x1) > f (~x2) to (36). So we add f (~w1) = f

(
~x
(
u1,Cu1

))
on the left side. The group centered around upstream

firm u1 replaces one downstream firm, d1 ∈Cu1 , with d2 ∈Cu2 . On the right side, ~w2 =~x
(
u1,
(
Cu1\{d1}

)
∪{d2}

)
=(

~xu,d
〈1,1〉, . . . ,~x

u,d
〈h−2,1〉,~x

u,d
〈1,2〉,~x

u,d
〈2,2〉

)
. As before, f (~w2) = f

(
~x
(
u2,Cu2

))
appears on the left side as well.

This iterative process truncates. A hypothetical ~wh equals~x2, one of the original two vectors from the begin-
ning of the proof. Also,~x1 equals a hypothetical ~w0, the beginning of the iterative process. The above construc-
tion shows that each~x(uc,Cuc)=~wc on the left side exchanges one downstream firm dc to yield~x(uc,(Cuc\{dc})∪{dc+1})=

~wc+1 on the right side. By inspection, each collection of characteristics ~x(uc,(Cuc\{dc})∪{dc+1}) is differ-
ent from ~x(uc,Cuc) by the characteristics of one match: ~x(uc,{dc+1}) =~xu,d

〈c+1,2〉 instead of ~x(uc,{dc}) =~xu,d
〈h−c,1〉.

83Keep in mind that the characteristics are match-specific, so there is no requirement that the characteristics of a firm be the same on the
left and right sides.
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Therefore, (36) is a valid local production maximization inequality according to Definition 3.
We can embed these groups into a larger matching market. Let B3 be a larger set of matches that includes

the matches corresponding to the downstream firms in Cu
0\{d0} , . . . ,Cu

h−1\{dh−1}. The exact choice of B3 plays
no role in the proof, other than to ensure Cu

0\{d0} , . . . ,Cu
h−1\{dh−1} are large enough given the number of non-

empty elements in an arbitrary~x. Then set A1 = B1∪B3 and A2 = B2∪B3. Likewise, let there be some collection
X of characteristics for all potential matches, including but not limited to the matches in A1∪A2. The choice of
X plays no role in the proof, except that X must contain the h elements ~x

(
u0,Cu0

)
, . . . ,~x

(
uh−1,Cuh−1

)
and the h

elements~x
(
u0,
(
Cu0\{d0}

)
∪{d1}

)
, . . . ,~x

(
uh−1,

(
Cuh−1\{dh−1}

)
∪{d0}

)
, as constructed previously.

Definition 4 requires that we find a set of X with positive probability and two assignments A1 and A2 where
Pr
(
A1 | X ; f 0,S0) > Pr

(
A2 | X ; f 0,S0) while Pr

(
A1 | X ; f 1,S1) < Pr

(
A2 | X ; f 1,S1) for any S1 ∈S . Unlike for the

cardinal identification theorems, where I assumed all observable characteristics are continuous for transparency,
here we assume that there need be only one component of a match-specific characteristics vector, ~x, x1, with
continuous and full support. Partition X into (X ′,X ′′), where X ′ has all of the continuously varying character-
istics in X (variables whose marginal density conditional on X ′′ has support equal to a connected subset of the
real line) and X ′′ is the collection of all variables with discrete support in X . We will fix X ′′ and vary only the
elements in X ′. Likewise, for each ~x, partition it into ~x = (~x′,~x′′), where ~x′ has all of the continuous variables in
~x and~x′′ has all of the discrete variables. Assume the arguments of f are appropriately reordered to respect this
partition. Further, x1 is the first element of~x′.

Let

g
(
~z′1, . . . ,~z

′
2h; f

)
≡ f

((
~z′1,~x

′′
1
))

+
h−1

∑
c=1

f
((

~z′c+1,~w
′′
c
))
− f

((
~z′h+1,~x

′′
2
))
−

h−1

∑
c=1

f
((

~z′h+1+c,~w
′′
c
))

,

where
(
~z′1, . . . ,~z

′
2h
)

are arbitrary continuous arguments and ~x′′1 , ~x′′2 , and ~w′′1 , . . . ,~w′′h−1 are the discrete components
of the ~x1, ~x2 and ~w1, . . . ,~wh−1 in (36). As each f ∈ F is continuous in its arguments that have continuous
support, then so is g. Let v′ be the continuous elements of the h elements ~x

(
u0,Cu0

)
, . . . ,~x

(
uh−1,Cuh−1

)
and the

h elements ~x
(
u0,
(
Cu0\{d0}

)
∪{d1}

)
, . . . ,~x

(
uh−1,

(
Cuh−1\{dh−1}

)
∪{d0}

)
. Let V 0 be an open set around g

(
v′; f 0)

where p > 0 for p ∈ V 0 and let V 1 be an open set around g
(
v′; f 1) where p < 0 for p ∈ V 1. Such sets exist by

the continuity of g. By the continuity of g and the fact that topologies are closed under finite intersections,
W = g−1 (V 0; f 0)∩g−1 (V 1; f 1) is a nonempty, open neighborhood of v′ where g

(
z; f 0)> 0 and g

(
z; f 1)< 0 for

z ∈W .
Divide any collection of continuous market characteristics X ′ into X ′1 and X ′2, where X ′1 is the set comprised

of the 2h elements of the tuple v′ or the 2h arguments of the g function. Also, X ′2 = X ′\X ′1, so X ′ is a one-to-one
change of variables (or just notation) of

(
X ′1,X

′
2
)
. By Assumption 4, X ′1 has support equal to the product of the

marginal supports of its elements. With these notational additions, X is a change of variables from
(
X ′1,X

′
2,X
′′).

For any X ′′, the probability that
(
X ′1,X

′
2
)

lies in W ×Rs is strictly positive, where s is the number of elements
of X ′2. All market characteristics

(
X ′1,X

′
2
)

in W ×Rs and the fixed X ′′ satisfy Pr
(
A1 | X ; f 0,S0)> Pr

(
A2 | X ; f 0,S0)

while Pr
(
A1 | X ; f 1,S1) < Pr

(
A2 | X ; f 1,S1) for any S1 ∈ S , by the key Assumption 1. By the arguments at

the beginning of the proof, identification has been shown for the case under consideration. The case with
f 0 (~x1) < f 0 (~x2) and f 1 (~x1) > f 1 (~x2) is similar: just reverse the local production maximization inequalities.
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A.8 Theorem 6: Ordinal identification, firm characteristics

Let f 0, f 1 ∈F , where f 0 is the production function to be identified and f 1 is an alternative where f 1 (~x) 6= m ◦
f 0 (~x) for all~x and for any positive monotonic function m. The goal is to show there exists a continuum of X and
two assignments A1 and A2 where Pr

(
A1 | X ; f 0,S0)> Pr

(
A2 | X ; f 0,S0)while Pr

(
A1 | X ; f 1,S1)< Pr

(
A2 | X ; f 1,S1)

for any S1 ∈S .
Lemma 3 produces ~x1 and ~x2 such that f 0 (~x1) > f 0 (~x2) and f 1 (~x1) < f 1 (~x2) or f 0 (~x1) < f 0 (~x2) and f 1 (~x1) >

f 1 (~x2). Focus on the first case. An inequality such as f 0 (~x1) > f 0 (~x2) considers a group of matches centered
around an upstream firm on the left and another group of matches centered around an upstream firm on the right.
This is not a local production maximization inequality (Definition 3), which would require at least two groups,
each centered on an upstream firm, on both the left and the right. We will now construct a local production
maximization inequality.

We need to add the same terms to both sides of the inequality and then argue that the resulting inequality
is a local production maximization inequality, where each coalition on the left side is different from a coalition
on the right side only in the identity of one downstream firm. The challenge with firm-specific characteristics
is that the characteristics of firms remain the same on both sides of the inequality, and different characteristics
are in~x1 and~x2.

The characteristics are firm specific: ~x(i,Cu) = cat
((

xu
i,1, . . . ,x

u
i,Ku

)
,
(

xd
a1,1, . . . ,x

d
a1,Kd

)
, . . . ,

(
xd

al ,1
, . . . ,xd

al ,Kd

))
.

In this proof only, I will use the notation f (~x1) = f
(
~xu

1,~x
d,1
1 , . . . ,~xd,1

l

)
to represent the production of a group

of matches with firm characteristics ~x1. Here, ~xu
1 =

(
xu

1,1, . . . ,x
u
1,Ku

)
and ~xd,1

a =
(

xd
a,1, . . . ,x

d
a,Kd

)
. In other words,

each argument of f
(
~xu

1,~x
d,1
1 , . . . ,~xd,1

l

)
is a vector of firm-specific characteristics. I put the 1 superscript on these

downstream firms to remind us that their characteristics are part of~x1. Also, let l be the maximum of the number
of downstream firms whose characteristics are in ~x1 and ~x2; vectors of empty sets can be added as arguments
if the numbers of downstream firms in ~x1 and in ~x2 are not equal. Altogether, f (~x1) = f

(
~xu

1,~x
d,1
1 , . . . ,~xd,1

l

)
and

f (~x2) = f
(
~xu

2,~x
d,2
1 , . . . ,~xd,2

l

)
.

The proposed rewriting of f (~x1) > f (~x2) to make it a local production maximization inequality by adding
the same terms to both sides of the inequality is

f (~x1)+
l−1

∑
a=1

f
(
~xu

1,~x
d,1
1 , . . . ,~xd,1

a

)
+ f (~xu

1)+
l

∑
a=1

f
(
~xd,1

a

)
+

l−1

∑
a=1

f
(
~xu

2,~x
d,2
1 , . . . ,~xd,2

a

)
+ f (~xu

2)+
l

∑
a=1

f
(
~xd,2

a

)
>

l−1

∑
a=1

f
(
~xu

1,~x
d,1
1 , . . . ,~xd,1

a

)
+ f (~xu

1)+
l

∑
a=1

f
(
~xd,1

a

)
+

l−1

∑
a=1

f
(
~xu

2,~x
d,2
1 , . . . ,~xd,2

a

)
+ f (~xu

2)+
l

∑
a=1

f
(
~xd,2

a

)
+ f (~x2) . (37)

The inequality holds for f = f 0 and holds with the opposite sign (<) for f = f 1.
By inspection, one can loosely verify that (37) is almost, but not quite, a local production maximization

inequality, Definition 3, with firm-specific characteristics. The term ~x1 on the left exchanges ~xd,1
l for the option

of being unmatched, 0, to add f
(
~xu

1,~x
d,1
1 , . . . ,~xd,1

l−1

)
+ f

(
~xd,1

l

)
on the right side. Following a pattern, each term

f
(
~xu

1,~x
d,1
1 , . . . ,~xd,1

a

)
on the left side splits away the term~xd,1

a to leave a f
(
~xu

1,~x
d,1
1 , . . . ,~xd,1

a−1

)
+ f
(
~xd,1

a

)
on the right.

Each term on the left involving the characteristics originally from~x2, for example f
(
~xu

2,~x
d,2
1 , . . . ,~xd,2

a

)
, combines

with an unmatched~xd,1
a+1 to form f

(
~xu

2,~x
d,2
1 , . . . ,~xd,2

a+1

)
on the right side.

The inequality (37) is not a local production maximization inequality. For example, look at the terms
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f
(
~xu

1
)
+∑

l
a=1 f

(
~xd,1

a

)
on the left side. These unmatched firms do not combine with other firms to make pairings

on the right side of (37). Therefore, as written (37) is not a local production maximization inequality according
to Definition 3. However, the statement of the theorem imposes a non-innocuous localization normalization,
which gives f

(
~xu

1
)
+ ∑

l
a=1 f

(
~xd,1

a

)
= 0 on the left and f

(
~xu

2
)
+ ∑

l
a=1 f

(
~xd,2

a

)
= 0 on the right. With this change,

(37) becomes

f (~x1)+
l−1

∑
a=1

f
(
~xu

1,~x
d,1
1 , . . . ,~xd,1

a

)
+

l−1
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a=1

f
(
~xu

2,~x
d,2
1 , . . . ,~xd,2

a

)
+ f (~xu

2)+
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∑
a=1

f
(
~xd,2

a

)
>

l−1

∑
a=1

f
(
~xu

1,~x
d,1
1 , . . . ,~xd,1

a

)
+ f (~xu

1)+
l

∑
a=1

f
(
~xd,1
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)
+

l−1

∑
a=1

f
(
~xu

2,~x
d,2
1 , . . . ,~xd,2

a

)
+ f (~x2) , (38)

which by the above informal arguments is a local production maximization inequality. I intentionally do not
remove from (37) all production functions with zero production. Even though the production f

(
~xu

1
)

of singleton
matches is zero, these production functions are needed to show (38) satisfies the definition of a local production
maximization inequality, Definition 3.

The above arguments were informal. I will now formally show that (38) satisfies Definition 3. There are
3l terms on the left side of (38). The number 3l explains the statement in the theorem, “Further, let there be
assignments A that contain as many matched coalitions as three times the maximum quota of an upstream firm.”
Let B1 = {〈d1,u1〉 , . . . ,〈d3l ,u3l〉}, where the indexing 〈dc,uc〉 follows the order on the left side of (38), from left
to right. As I will show, many of these match partners will be 0, representing being unmatched. Now let

B2 = {〈dl+1,u1〉 ,〈dl+2,u2〉 , . . . ,〈d2l ,ul〉 ,〈d2l+2,ul+1〉 , . . . ,〈d3l ,u2l−1〉 ,〈d2l+1,u2l〉 ,〈d1,u2l+1〉 , . . . ,〈dl ,u3l〉} .

The match 〈dl+1,u1〉 ∈ B2 means that the upstream firm u1, which on the left side has characteristics~x
(
u1,Cu1

)
=

~x1, exchanges a downstream firm d1 for the downstream firm dl+1 ∈Cul+1 . In this case, downstream firm d1 has
the characteristics~xd,1

l while dl+1 is actually a dummy partner, 0, representing being unmatched. For each index
c = 1, . . . ,3l, Table 5 lists the upstream firm characteristics, the characteristics for the group of all firms uc and
Cuc , downstream firm dc’s characteristics for the match in B1, the downstream firm partner in the permutation
π creating B2, the characteristics of that downstream firm partner, and the characteristics of the entire group
of all firms uc and its downstream firm partners after the switch. One can verify that the characteristics of
the firm π 〈dc,uc〉 in the fifth column are always the same as the characteristics of that downstream firm in the
third column. This is the key idea behind showing that (38) is a local production maximization inequality with
firm-specific characteristics: the characteristics of downstream firms remain the same after the permutation of
partners between B1 and B2.

For those readers who have read the earlier proofs, the following steps follow similar logical arguments as
before. We can embed these four groups into a larger matching market. Let B3 be a larger set of matches that
includes the matches corresponding to the downstream firms in Cu

0\{d0} , . . . ,Cu
h−1\{dh−1}. The exact choice of

B3 plays no role in the proof, other than to ensure Cu
0\{d0} , . . . ,Cu

h−1\{dh−1} are large enough given the number
of non-empty elements in an arbitrary ~x. Then set A1 = B1 ∪B3 and A2 = B2 ∪B3. Likewise, let there be some
collection X of characteristics for all the firms with matches in A1, and, by implication, all firms with matches
in A2. The choice of X plays no further role in the proof.

Definition 4 requires that we find a set of X with positive probability and two assignments A1 and A2 where
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Table 5: Proof of Theorem 6: Demonstrating That (38) Is a Local Production Maximization Inequality
(1) (2) (3) (4) (5) (6)

Index c ~x(uc,{0}) ~x(uc,Cuc) ~x(0,{dc}) π 〈dc,uc〉 ~x(0,{π 〈dc,uc〉}) ~x(uc,(Cuc\{dc})∪{π 〈dc,uc〉})
1 ~xu

1 ~x1 ~xd,1
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1 , . . . ,~xd,1

l−2

)
l +1 ~xu

2

(
~xu

2,~x
d,2
1

)
/0 d2l+2 ~xd,2

2

(
~xu

2,~x
d,2
1 ,~xd,2

2

)
...

...
...

...
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)
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l ~x2 =
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)
2l ~xu

2
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(
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...
...

...
...

3l /0
(
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~xd,2

l dl ~xd,1
l−1

(
~xd,1

l−1

)

Pr
(
A1 | X ; f 0,S0) > Pr

(
A2 | X ; f 0,S0) while Pr

(
A1 | X ; f 1,S1) < Pr

(
A2 | X ; f 1,S1) for any S1 ∈S . Unlike for the

cardinal identification theorems, where I assumed all observable characteristics are continuous for transparency,
here we assume that there need be only one component of a group-specific characteristics vector, ~x, x1, with
continuous and full support. Partition X into (X ′,X ′′), where X ′ has all of the continuously varying character-
istics in X (variables whose marginal density conditional on X ′′ has support equal to a connected subset of the
real line) and X ′′ is the collection of all variables with discrete support in X . We will fix X ′′ and vary only the
elements in X ′. Likewise, for each ~x, partition it into ~x = (~x′,~x′′), where ~x′ has all of the continuous variables in
~x and~x′′ has all of the discrete variables. Assume the arguments of f are appropriately reordered to respect this
partition. Further, x1 is the first element of~x′.

There is a total of 6l firms, 3l upstream and 3l downstream, in the matches in the set B1, and hence B2

as well. As in previous proofs, I can define a function g
(
~z′1, . . . ,~z

′
6l ; f

)
to be a function of the 6l vectors of

corresponding continuous firm characteristics~z′1. By convention, let the first 3l vectors of continuous charac-
teristics correspond to downstream firms and let the second 3l vectors correspond to upstream firms. Because
of the complexity of (38), to save space I will not introduce new notation to explicitly write out g

(
~z′1, . . . ,~z

′
6l ; f

)
.

It is clear from previous proofs that the following can be done. I can let g
(
~z′1, . . . ,~z

′
6l ; f

)
be inspired by the

right side of (38) subtracted from the left side. Each firm-specific characteristics vector for a downstream firm
a ∈ {1, . . .3l} is evaluated at some

(
~z′a,~x

d,′′
a

)
, where~z′a is one of the first 3l arguments of g

(
~z′1, . . . ,~z

′
6l ; f

)
and ~xd,′′

a

is the non-continuous characteristics of the corresponding firm in (38). Likewise, each upstream firm vector i is
evaluated at some

(
~z′i,~x

u,′′
i

)
, where~z′i is one of the second 3l arguments of g

(
~z′1, . . . ,~z

′
6l ; f

)
and ~xu,′′

i is the vector
of non-continuous characteristics for the corresponding upstream firm in (38). As in previous proofs, as each
f ∈F is continuous in its arguments that have continuous support, then so is g. Let v′ be the continuous ele-
ments of the 6l firm-specific characteristics in (38). Let V 0 be an open set around g

(
v′; f 0)where p > 0 for p∈V 0

and let V 1 be an open set around g
(
v′; f 1) where p < 0 for p ∈V 1. Such sets exist by the continuity of g. By the
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continuity of g and the fact that topologies are closed under finite intersections, W = g−1 (V 0; f 0)∩g−1 (V 1; f 1)
is a nonempty, open neighborhood of v′ where g

(
z; f 0)> 0 and g

(
z; f 1)< 0 for z ∈W .

Divide any collection of continuous market characteristics X ′ into X ′1 and X ′2, where X ′1 is the set comprised
of the 6l elements of the tuple v′ or the 6l arguments of the g function. Also, X ′2 = X ′\X ′1, so X ′ is a one-to-one
change of variables (or just notation) of

(
X ′1,X

′
2
)
. By Assumption 4, X ′1 has support equal to the product of the

marginal supports of its elements. With these notational additions, X is a change of variables from
(
X ′1,X

′
2,X
′′).

For any X ′′, the probability that
(
X ′1,X

′
2
)

lies in W ×Rs is strictly positive, where s is the number of elements
of X ′2. All market characteristics

(
X ′1,X

′
2
)

in W ×Rs and the fixed X ′′ satisfy Pr
(
A1 | X ; f 0,S0)> Pr

(
A2 | X ; f 0,S0)

while Pr
(
A1 | X ; f 1,S1) < Pr

(
A2 | X ; f 1,S1) for any S1 ∈ S , by the key Assumption 1. By the arguments at

the beginning of the proof, identification has been shown for the case under consideration. The case with
f 0 (~x1) < f 0 (~x2) and f 1 (~x1) > f 1 (~x2) is similar: just reverse the local production maximization inequalities.

A.9 Theorem 7: Consistency as M→ ∞

A.9.1 Constructive identification

Constructive identification follows from the identification theorems. By a law of large numbers and the law of
iterated expectations, the probability limit of the maximum score objective function is

Q∞ (β )= EX

{
∑

A∈A (X)
∑

(B1,B2)∈N(A,X)
Pr(A | X) I (B1,B2 | X)1

[
∑

〈a,i〉∈B1

fβ (~x(i,Cu
i (A))) > ∑

〈a,i〉∈B2

fβ (~x(i,Cu
i ((A\B1)∪B2)))

]}
,

where A (X) is the set of feasible assignments given X and Pr(A | X) = Pr
(

A1 | X ; f
β 0 ,S0

)
.

For each pair of an assignment A1 ∈ A (X) and a (B1,B2) ∈ N (A1,X) in the integrand above, there is an
assignment A2 ∈ A (X) that is A2 = (A1\B1)∪B2. An inequality for A1 and (B1,B2) is mutually exclusive with
a paired inequality for A2 and (B2,B1). As ties occur with probability 0, with probability 1 either the indicator
with A1 or the indicator with A2 will be 1, and the other 0. By Assumption 6, I (B1,B2 | X) = I (B2,B1 | X). The
ranking of the weights on the indicators reduces to comparing Pr

(
A1 | X ; f

β 0 ,S0
)

and Pr
(

A2 | X ; f
β 0 ,S0

)
. By

the rank order property, all parameters in the identified set make the inequality (of the pair) with the highest
weights satisfied and therefore globally maximize Q∞ (β ).

Let β 1 ∈B be some parameter vector where β 1 6= β 0. By Assumption 5, there exist a set X of X with
positive probability and two assignments A1and A2 such that Pr

(
A1 | X ; f

β 0 ,S0
)

> Pr
(

A2 | X ; f
β 0 ,S0

)
while

Pr
(

A1 | X ; f
β 1 ,S1

)
< Pr

(
A2 | X ; f

β 1 ,S1
)

for any X ∈X , for any S1 ∈S . Considering all the X ∈X , Q∞

(
β 1) <

Q∞

(
β 0) because β 1 causes inequalities with the lower of Pr

(
A1 | X ; f

β 0 ,S0
)

and Pr
(

A2 | X ; f
β 0 ,S0

)
to enter the

objective function.

A.9.2 Continuity of the limiting objective function and uniform convergence

Lemma 2.4 from Newey and McFadden (1994) can be used to prove continuity of Q∞ (β ) as well as uniform
in probability convergence of QM (β ) to Q∞ (β ). Remember that the asymptotics are in the number of markets.
The conditions of Lemma 2.4 are that the data (across markets) are iid, which can hold even if we view the
number of upstream and downstream firms as random; that the parameter space B is compact (Assumption 5),
that the terms for each market are continuous with probability 1 in β ; and that the terms for each market are
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bounded by a function whose mean is not infinite. While the terms for each market are not continuous in β

because of the indicator functions, they are continuous with probability 1 by Assumption 5, as each ~x in X has
some elements with continuous support. The value of the objective function for a given market is bounded by
the number of inequalities, which is finite.

A.10 Theorem 8: Consistency as H→ ∞

The consistency proof is very similar to the proof of Theorem 7 in Appendix A.9. Rather than repeat all the
arguments, I will focus on proving that β 0 is a global maximum of the probability limit of (17),

Q(β ) =
∫

1
[

fβ (~xm
1 ,~xw

2 )+ fβ (~xm
3 ,~xw

4 ) > fβ (~xm
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2 )
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4 ) .
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β 0
(
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β 0
(
~xm

1 ,~xw
4
)
+ f
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1 ,~xw
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3 ,~xw
4
)
∈

V there is a mutually exclusive inequality
(
~xm

1 ,~xw
4 ,~xm

3 ,~xw
2
)

/∈V . By Assumption 7,

Q
(

β
0
)

=
∫

V
gβ 0,S0
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1 ,~xw

2 〉) ·g
β 0,S0
m,w (〈~xm

3 ,~xw
4 〉)d (~xm
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β 0,S0
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2 ,~xm

3 ,~xw
4 ) .

by a pointwise comparison of each of the terms in the two integrands. Let VC be all inequalities not in V . If
a positive measure of inequalities are exchanged between V and VC to create V̄ and V̄C, then by the mutual
exclusivity and Assumption 7,

∫
V

gβ 0,S0
m,w (〈~xm

1 ,~xw
2 〉) ·g

β 0,S0
m,w (〈~xm

3 ,~xw
4 〉)d (~xm

1 ,~xw
2 ,~xm

3 ,~xw
4 ) >

∫
V̄

gβ 0,S0
m,w (〈~xm

1 ,~xw
2 〉) ·g

β 0,S0
m,w (〈~xm

3 ,~xw
4 〉)d (~xm

1 ,~xw
2 ,~xm

3 ,~xw
4 ) .

Therefore, β 0 is a global maximum of Q(β ). The identification portion of Assumption 8 can be used to show
that β 0 is the unique global maximum, as in the proof of Theorem 7.

B Empirical: Allowing the Asian indicator to be recomputed in in-
equalities

In Section 9.2 and the results in Table 4, I did not recompute the measure of being a supplier to Asian assem-
blers on the right side of the inequalities. This section explores specifications that do recompute the Asian
supplier measure for counterfactual sets of matches. I also explore why the point estimates differ between the
specifications where the measure of being a supplier to Asian assemblers is not and is recomputed.

The previous production function specification was (16), where xSupplierToAsian (Cu
i (Am)

)
is a function of only

the actual assignment, Am, and is not recomputed when Cu changes on the right side of the inequality. Table 6
reports estimates of the matching model using the production function

fβ (~x(i,Cu)) = βCont.xContinent (Cu)+βPGxParentGroup (Cu)+βBrandxBrand (Cu)+βCarxCar (Cu)+

βAsianCont.x
Continent (Cu)xSupplierToAsian (Cu) ,
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Table 6: Supplier competitive edge from supplying Asian assemblers: Supplier to Asian assembler measure
recomputed for counterfactual matches

HHI Measure Estimate 95% CI Estimate 95% CI

Continent +1 Superconsistent +1 Superconsistent
Parent Group 6.69 (6.31, 9.89) 6.35 (5.59, 9.28)

Brand 8.59 (1.28, 12.6) 9.67 (5.66, 14.1)
Model 116 (128, 172) 95.0 (87.7, 139)

Continent * Asian Dummy -0.0519 (-0.0811, 0.552)
Continent * Asian % -0.0356 (-1.55, 0.0169)

# Inequalities 532,939 532,939
% Satisfied 0.753 0.753

where now xSupplierToAsian (Cu) is recomputed each time Cu ⊆ D changes. When I do allow the Asian supplier
measure to be recomputed, the coefficient βAsianCont. is zero in terms of its economic magnitude, for both the
dummy and market share measures of being an Asian supplier. In the previous Table 4, the point estimates for
the Asian supplier measures were -1.09 for the indicator and -5.30 for the continuous market share measure.
Compared to these, the point estimates of -0.0519 and -0.0356 in Table 6 are economically small and have
confidence regions that lead to the rejection of null hypotheses of large in absolute value, negative coefficients
for βAsianCont..84

I spent some time investigating why the point estimates for βAsianCont. varied across so much across Tables
4 and 6. Here I focus on the specification with the indicator variable measure of being a supplier to an Asian
assembler. A local production maximization inequality used in estimation looks like

fβ (~x(i,Cu
i (Am)))+ fβ

(
~x
(

j,Cu
j (Am)

))
> fβ (~x(i,Cu

i ((Am\{a})∪{b})))+ fβ
(
~x
(

j,Cu
j ((Am\{b})∪{a})

))
,

for the matches of car parts and suppliers 〈a, i〉 and 〈b, j〉. On the left side are actual matches from the data; the
counterfactual matches are on the right. The indicator variable xSupplierToAsian (Cu) is either 0 or 1 for each of
the four matches, so the values of xSupplierToAsian (Cu) for an inequality can be written as, for example, {1,1} →
{1,0}.85 This notation means that, in the data, both upstream firms i and j supply at least one Asian assembler
each. After the exchange of partners, one of i and j does not serve an Asian assembler any more. Incidentally,
this can only occur if one of i and j produces only one Asian car part in component category m, in the data.
By contrast, the specification without recomputing the Asian dummy would be {1,1} → {1,1}, as a firm’s
Asian supplier status is a fixed firm characteristic. The two main types of possibilities for an inequality with
some change in xSupplierToAsian (Cu) are {1,1} → {1,0} and {1,0} → {1,1}. The case {1,0} → {1,1} occurs when
a supplier with two or more Asian-assembler car parts exchanges one of those car parts with a supplier that
supplies, in the data, no car parts to Asian assemblers.

Through some exploratory empirical work, I found that exchanges of the form {1,1} → {1,0} were driving
the differences in the point estimates.86 To confirm this, I created an artificial set of inequalities equal to the

84The confidence regions for the coefficient on the HHI specialization measure at the model level for the Asian dummy specification do
not include the point estimate for βCar. This can occur with subsampling, the method used for inference here.

85The notation uses sets instead of tuples because the order of the production functions is not recorded.
86I changed each of several types of inequalities from their Table 6 back to their Table 4 forms, and evaluated the objective function at

the Table 4 estimates. I then looked at the number of satisfied inequalities (a measure of statistical fit), and found that the {1,1} → {1,0}
inequalities were the most instrumental in increasing the statistical fit.
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Table 7: Artificial inequalities: Reconciling different point estimates between Tables 4 and 6
HHI Measure Estimate 95% CI

Continent +1 Superconsistent
Parent Group 4.55 (3.79, 6.54)

Brand 6.94 (5.14, 10.5)
Model 73.1 (78.1, 105)

Continent * Asian Dummy -1.03 (-1.05, -0.947)
Continent * Asian %

# Inequalities 532,939
% Satisfied 0.761

inequalities used in Table 6, except that 10,358 inequalities (out of the 532,939 total inequalities) of the form
{1,1} → {1,0} were replaced by the corresponding inequalities from Table 4, where the Asian indicator is not
recomputed.87 The estimates are in Table 7. We can see that the point estimates for the HHI specialization
measures are in between those in Tables 4 and 6. Further, the point estimate for βAsianCont. on the interaction
xContinent (Cu)xSupplierToAsian (Cu), the key variable being altered, is -1.03, similar to the value of -1.09 in Table 4.

The exercise in Table 7 confirms the proposition that inequalities where two suppliers exchange car parts
and one supplier ceases to be an Asian supplier drive the drop in the estimate of βAsianCont. from -1.09 in Table
4 to -0.000641 in Table 6. I will now take a speculative stab at offering an economic story to explain the point
estimates. When xSupplierToAsian (Cu

i (Am)
)

is not recomputed for counterfactual matches, the inequalities answer
the questions discussed in Section 9.2: do suppliers to Asian brands have some competitive edge with non-
Asian assemblers? When xSupplierToAsian (Cu

i
)

is recomputed for counterfactual Cu
i ’s, in addition the inequalities

ask why more suppliers are not supplying Asian assemblers if there is some competitive advantage from doing
so? The tendency would be for the terms {1,1} in the key inequalities {1,1} → {1,0} to be given a positive
weight βAsianCont., which counteracts the -1.09 coefficient for βAsianCont. found in Table 4. In Table 6, the model
deals with these two opposing forces by setting the coefficient on βAsianCont. to be near zero. The inequalities
in Table 4 are easier to understand and interpret because the estimate for the parameter βAsianCont. reflects a
fixed firm-specific characteristic xSupplierToAsian (Cu

i (Am)
)

that represents only one economic phenomenon, the
competitive edge of suppliers to Asian brands.88

87My goal was to find the minimum set of inequalities that could change and restore the point estimates of Table 4. There were 10,603
inequalities of the form {1,1} → {1,0} in the dataset behind Table 6. I modified only 10,358 inequalities. When evaluated at the point
estimates from Table 4 (except for βAsianCont.), 5992 of the 10,358 inequalities in question switch from providing a lower bound for
βAsianCont. (as in βAsianCont. > z) to providing an upper bound for βAsianCont. (as in βAsianCont. < z). The remaining 4366 of the inequalities
keep a lower bound for βAsianCont., even after the switch. The value of the lower bound z does change. I did not modify the 245 other
inequalities of the form {1,1} → {1,0} where some other sort of change in whether an inequality provided a lower or upper bound for
βAsianCont. occurred, when the inequalities are evaluated at the point estimates from Table 4.

88More mechanically, when the interaction term is xContinent (Cu)xSupplierToAsian (Cu
i (Am)), the only variation in this term between the

left and right sides of a local production maximization inequality comes from changes in the HHI specialization measure, xContinent (Cu),
from one car part being exchanged. For a company that supplies several car parts in this matching market, xContinent (Cu) and hence the
interaction change by a relatively small amount. When xSupplierToAsian (Cu) is recomputed for counterfactual downstream firm partners Cu

i ,
then firms that supply only one or two car parts to Asian assemblers have a relatively large change in xSupplierToAsian (Cu) and hence in
the interaction xContinent (Cu)xSupplierToAsian (Cu (Am)). It is unsurprising that the Table 4 specification with relatively small changes in the
interaction has a correspondingly large (in absolute value) estimate of βAsianCont. compared to the estimate for the Table 6 specification
with relatively large changes in the interaction.
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