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1. Introduction 
 
    
 This paper explores a set of constraints on the effects of control policies on 

fluctuations from the perspective of the frequency domain.  Aspects of these constraints 

were initially discussed in Brock and Durlauf (2004,2005) but otherwise do not appear to 

have been previously explored in economics contexts.  The constraints we study represent 

fundamental limits on the effects of alternative policies in the sense that they describe how 

frequency-specific tradeoffs in volatility generically apply to linear feedback rules. 

The sorts of constraints we explore may be illustrated in the following example. 

Suppose one is considering how different controls affect the variance of a state variable tx .  

Underlying the statistic ( )var tx C , the variance of the process given a control, is the 

spectral density of x  given the rule, ( )xC
f ω , because the variance is the integral of the 

spectral density, i.e.  

 

 ( ) ( )var
t x C
x C f d

π

π
ω ω

−
= ∫ . (1) 

 

In fact, the spectral representation of the variance of the state means one can understand 

the sum of the variances from random and orthogonal sine and cosines of different 

frequencies.  By implication, calculations of the effects of a rule on the overall variance 

mask the effects on fluctuations at the different frequencies in [ ],π π− .  Further, eq. (1) 

hints at the idea that a rule that minimizes the overall variance may exacerbate fluctuations 

at certain frequencies.  A major goal of this paper is to determine under what 

circumstances this must happen and what forms such fundamental tradeoffs take. In the 

control literature, these tradeoffs are known as design limits.   

 Design limits are a well established area of study in control theory.1  An important 

class of results of this type are sometimes known as Bode integral constraints, after 

Hendrik Bode who first proposed them in the 1930’s.  The great bulk of the work in 

                                                 
1Our description of linear systems owes much to the formulation in Kwakernaak and Sivan 
(1972), especially chapter 6. 
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control theory focuses on single-input, single-output (SISO) systems.  One methodological 

contribution of this paper is that we derive frequency tradeoffs for multiple-input multiple-

output (MIMO) systems. While there does exist a set of disparate results in the control 

literature on frequency tradeoffs for multivariate systems, this work has largely been done 

for continuous time systems.2  Some of our discrete time results for backwards-looking 

systems appear to be new, although they naturally follow from existing results.  A second 

methodological contribution is that we study these tradeoffs when expectations of future 

state variables affect current values; a property that, while of course natural for economic 

models, does not arise in engineering contexts.  A third contribution of our analysis is that 

we consider SIMO (single-input, multiple-output) systems as well as MIMO ones.  We 

defer consideration of systems with arbitrary dimensions to future work, noting here that 

the 2 2×  cases we study capture a range of important contexts, most notably the evaluation 

of macroeconomic stabilization policy.   

 Why should frequency-specific tradeoffs be of interest to a policymaker?  One 

reaction to the recognition that policymakers face frequency-by-frequency constraints might 

be that these constraints are irrelevant if the objective of a policymaker is to minimize the 

overall variance of some combination of states and controls of the system; such loss 

functions are standard in the literature on evaluating monetary policy rules. We argue that 

our results are of interest for several reasons.  First, there is no principled reason why 

policymaker loss functions should only depend on the overall variances of variables of 

interest, and in fact time-nonseparable preferences for policymakers can lead to the 

assignment of different loss function weights across frequency-specific fluctuations.  

Examples of this property are found in Otrok (2001) and Otrok, Ravikumar, and 

Whiteman (2002).  Second, differences in the approximation value of a given model to 

fluctuations at different frequencies may lead to a focus on higher versus lower frequency 

fluctuations using a model to assess policies; this type of reasoning is developed in Onatski 

and Williams (2003).  Third, there are classes of problems for which the frequency 

restrictions matter, even if loss functions only depend on unconditional variances.  

Specifically, evaluating the robustness of policy rules in the face of model uncertainty may 

                                                 
2See Seron, Braslavsky, and Goodwin (1997), and Skogestad and Postlethwaite (1996) 
for surveys. Examples of discrete time analyses include Chen and Nett (1993,1995). 
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be facilitated using the constraints we describe; an initial example of such an analysis is 

Brock and Durlauf (2005).   

In our judgment, the most important contribution of this paper is its introduction of 

the idea that macroeconomic stabilization policies involve tradeoffs that are hidden when a 

policy is evaluated by calculation of its effects on variance.  In this sense, when a policy 

maker chooses a control it must face (for backwards-looking models) the inevitable result 

that the controlled system will exhibit frequency bands that are robust in the sense that 

shocks to the system at those frequency bands will be moderated while simultaneously 

there will always be frequency bands that are fragile in the sense that shocks at those 

frequency bands will be magnified, not moderated3.  This kind of result is sometimes also 

called a “conservation law” or “waterbed” result in the engineering literature.  Indeed we 

will exhibit various conservation laws and waterbed results and illustrate their consequences 

for a set of two sector macroeconomic models of inflation and the output gap that are 

commonly used in the macroeconomics literature.  

 The use of frequency domain methods is not original per se, of course. One classic 

example is Hansen and Sargent (1980,1981) use of z −transform methods to translate 

time domain expectations into the frequency domain and thereby solve for testable 

restrictions of rational expectations models.  Another important contribution is Bowden’s 

(1977) and Whiteman’s (1985,1986) work on spectral utility and the frequency domain 

analysis of the effects of policies; Whiteman’s work is close in spirit to ours, although it 

does not address the issue of frequency-specific tradeoffs.  More recently, frequency 

methods have proven to be important in the development of the growing macroeconomic 

literature on robustness, cf. Sargent (1999), Hansen and Sargent (2007, Chapter 8)).  That 

being said, frequency domain approaches continue to be far less popular than time domain 

methods for analyzing macroeconomic dynamics.  We believe the methods developed 

here complement these other papers in demonstrating that frequency domain approaches 

have an important role in understanding stabilization policy. While, in principle, one can 

always translate results from the frequency domain to the time domain and vice versa, the 

results we exploit are an example in which working in the frequency domain is relatively 

                                                 
3The notion that a system may be “robust yet fragile” appears in the control literature, 
notably in writings of John C. Doyle, e.g. Doyle and Carlson (2000).  
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straightforward whereas it would appear that the same analysis in the time domain may well 

be intractable.4 

 Section 2 provides an analysis of four classes of models: backwards-looking MIMO 

(multiple input, multiple output) systems and hybrid backwards- and forward-looking 

MIMO systems.  We characterize Bode integral-type results for each type of model.  

Section 3 moves beyond Bode integral constraints to a broader consideration of how 

design limit occur in MIMO and SIMO systems. Section 4 applies our methods to the 

evaluation of monetary policy rules.  Section 5 contains summary and conclusions.  

Appendices follow which contains proofs of various claims made in the text. 

 

 

2. Design limits in multivariate systems 

 

i. backwards-looking models 

 

We first consider a backwards-looking system, i.e. one where expectations do not 

directly enter into the law of motion for the states.  Letting, tx  denote a 2 1×  vector of 

states, tu  a 2 1×  vector of controls, and tε  a 2 1×  vector of disturbances that is second-

order stationary across time, the canonical law of motion for a backwards-looking system is 

 

 ( ) ( )0 1t t t tA x A L x B L u ε−= + + . (2) 

 

In general, the matrix 0A  possesses off diagonal elements because of contemporary 

interdependences between the states; without loss of generality, we write the matrix as 

 

0,12
0

0,21

1

1

a
A

a

⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
. 

 

                                                 
4For example, the Bode integral constraint, which we exploit in the subsequent analysis, 
has an extremely convoluted time domain representation for a SISO system, cf. Iglesias 
(2001) equation 3.2 and surrounding discussion.  
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The moving average representation of tε  is 

 

 ( )t tW L wε = . (3) 

 

We assume that each element of ( )W L  may be written as the ratio of two finite 

dimensional polynomials,5 i.e.  

  

 ( )

( )
( )

( )
( )

( )
( )

( )
( )

,11 ,12

,11 ,12

,21 ,22

,21 ,22

n n

d d

n n

d d

w L w L

w L w L
W L

w L w L

w L w L

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

. (4) 

 
We do not require the moving average representation to be fundamental.  The reason for 

this is that our interpretation of the backwards-looking model is that it is a structural 

description of a system.6  

Our analysis focuses on linear feedback rules of the form 

 

 ( ) 1t tu U L x −= . (5) 

 

where ( )U L  is a one-sided polynomial in nonnegative powers of L .  Each choice of this 

polynomial produces a law of motion for the state vector 

 

 ( ) ( ) ( )0 1 1t t t tA x A L x B L U L x ε− −= + + . (6) 

 

with an associated moving average representation 

                                                 
5This assumption means that tε  possesses a rational spectral density matrix.  See Hansen 
and Sargent (1983) and Ito and Quah (1989) for examples of how rational spectral 
densities have been used to facilitate time series analyses. 
6See Fernandez-Villaverde, Rubio-Ramirez, Sargent and Watson (2007) for a 
comprehensive analysis of the relationship between unrestricted vector autoregressions 
and structural models, in which invertibility of analogs to ( )W L  plays a key role.   
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 ( ) ( ) ( )( )( ) ( )
1

0t tx A A L B L U L L W L w
−

= − + . (7) 

 
We assume that the elements of ( )A L , ( )B L  and ( )U L  can always be written as the ratio 

of two finite degree polynomials so that 
t
x  possesses a rational spectral density (see note 5). 

We will work with the z −transform of the moving average coefficients of this system 

 

 ( ) ( ) ( ) ( )( )( ) ( )
1

0
CD z A A z B z U z z W z

−

= − + . (8) 

 

Associated with ( )CD z  is  

  

 ( ) ( ) ( )1
2

C C
wxC

f z D z D z
π

′= Σ , (9) 

 

where wΣ  is the variance covariance matrix of w .  Note that for any matrix function 

( )N z , ( )N z ′  is its conjugate transpose.  If iz e ω−= , then ( ) ( )xC xC
f z f ω≡  is a spectral 

density. The superscript C  is used because of the dependence of the moving average 

representation on the choice of control.  Each choice of the polynomial ( )U L  will 

produce a different spectral density matrix for the state variable vector. 

Before we continue we need to discuss technical issues of existence of the 

mathematical objects under scrutiny.  First, all the design limit expressions we discuss are 

integrals of the logarithm of the modulus of a finite degree polynomial over the unit circle 

in the complex plane.  Sufficient conditions for the existence of these integrals are 

extremely modest.  In particular, we do not need the existence of spectral density matrices 

in order to ensure existence of these integrals.  Second, in order for a spectral density 

matrix to exist it is necessary that the state variables under scrutiny are jointly weakly 

stationary.  Assume ( )0
det 0A ≠ .  Following Priestley (1982, p. 798, eq. (10.4.51)), given 

our assumption that 
t
ε  is second order stationary, existence of a spectral density for the no 
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control case requires that ( )( )1
0

det I A A z z−−  has no zeroes inside or on the unit circle in 

the complex plane.  The requirement for the control case is that 

( ) ( ) ( )( )( )1
0

det I A A z B z U z z−− +  has no zeroes inside or on the unit circle in the 

complex plane.  We shall always choose controls so this latter requirement holds.    

One way to understand the effects of a control role is via by considering the way 

that ( )xC
f z  depends on the z − transform of the feedback rule, ( )U z .  The feasible set of 

control rules determines the feasible set of moving average coefficients in the controlled 

system.  Our goal is to use the feasible set for ( )xC
f z  to understand the opportunity set 

faced by a policymaker.   

 In the case of restrictions on the moving average polynomial ( )CD z , we will need 

to focus on the properties of  ( )W z , specifically 

 

 ( )( )
( )

( )
1

1

1
det

1

MA

AR

w

i
i
w

i
i

w z
W z w

zρ

=

=

−
=

−

∏

∏
. (10) 

 

where MAw  is the degree of the polynomial  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),11 ,22 ,12 ,21 ,12 ,21 ,11 ,22n n d d n n d d
w L w L w L w L w L w L w L w L− , 

 

ARw  is the degree of the polynomial 

 

( ) ( ) ( ) ( ),11 ,22 ,12 ,21d d d d
w L w L w L w L  
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and w  is the ratio of the zero degree coefficients on the two polynomials.  Since tε  is 

second-order stationary, the roots iρ  all lie inside the unit circle.  However, the roots iw  

may lie outside the unit circle as we have not assumed the shocks are fundamental. 

 Our first result characterizes the feasible values of ( )CD z . 

 

Theorem 1. Design limits on the MA polynomial in a backwards-looking MIMO model 

 

For the system described by eq. (2), if the control rule produces stable state variables, the 

Fourier transform of the associated controlled system matrix of moving average 

coefficients, ( )CD z , must fulfill 

 

 ( )
2

,
log det C i

w B
D e d K

π
ω

π
ω−

−

⎛ ⎞⎟⎜ =⎟⎜ ⎟⎜⎝ ⎠∫  (11) 

 

where  

 

 ( ), 0
4 log log log ,  { } if 1,  det

i

i

w B u i i
u

K w a w i u w a Aπ
⎛ ⎞⎟⎜ ⎟⎜= − + ∈ > =⎟⎜ ⎟⎜ ⎟⎝ ⎠

∑ . (12) 

 
Pf.  See Appendix 1. 
 
 

The idea that any set of moving average coefficients must fulfill an integral equation of the 

form described by (11) and (12) is a key idea in the study of design limits as it means that 

the feasible representations of the state vector are identified by the set of moving average 

representations defined by the integral constraint. 

 The policy implications of restrictions on possible moving average representations 

for a controlled system may be elucidated by comparing the properties of the law of 

motion for the state vector when a control is present with the law of motion when there is 

no control, i.e. 0tu =  t∀ .  The uncontrolled system is therefore 
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 ( )0 1t t tA x A L x ε−= + . (13) 

 

In parallel to the controlled system case, define (assuming the system (13) is stable)  

 

 ( ) ( )( ) ( )
1

0
NCD z A A z z W z

−
= − . (14) 

 

and  

 ( ) ( ) ( )1
2

NC NC
wx NC

f z D z D z
π

′= Σ . (15) 

 

Notice that while one would typically expect a policymaker to choose a control rule that 

ensures that the state vector x  is stable, it is possible that the uncontrolled system is not.  

Hence it may not be the case that ( )NCD z  exists.    Our analysis will cover the case where 

the no control system is unstable, but for intuition we assume stability for the moment. 

A stabilization policy may be interpreted as the transformation of  ( )x NC
f z  into 

( )xC
f z .  To understand this transformation, we follow the control theory literature and 

define a sensitivity matrix ( )S z  via the way in which the control transforms ( )NCD z  into 

( )CD z , i.e.  

 

 ( ) ( ) ( ) 1C NCS z D z D z
−

= . (16) 

 

if ( )NCD z  exists, which in turn means that  

 

 ( ) ( ) ( ) ( )xC x NC
f z S z f z S z ′= . (17) 
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This formulation makes clear why, in the control literature, the sensitivity function is said to 

shape the behavior of the state vector.  

As each ( )CD z  corresponds to some ( )S z , one can think of the choice of control 

as the choice of a sensitivity function; any constraints on ( )CD z  in turn may be translated 

into constraints on ( )S z .  If one considers (16), it is evident the constraints on the 

sensitivity function can be derived if it is the case that 

 

 
( )

( ) ( )

2

2 2

log det

log det log det

i

C i NC i

S e d

D e d D e d

π
ω

π

π π
ω ω

π π

ω

ω ω

−

−

− −

− −

⎛ ⎞⎟⎜ =⎟⎜ ⎟⎜⎝ ⎠
⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜−⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

∫

∫ ∫
. (18) 

 

If (18) holds, then one can simply apply Theorem 1 to the terms 

( )
2

log det C iD e d
π

ω

π
ω−

−

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠∫  and ( )
2

log det NC iD e d
π

ω

π
ω−

−

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠∫  and deduce constraints on 

( )S z .  The difficulty in doing this, as noted above, is that ( )NCD z  may not exist because 

the no control system may be unstable.  In fact, (18) holds even if the no control case is 

unstable, given the following argument, which is similar to that used in Wu and Jonckheere 

(1992, pg. 1801).  Recall that by the fundamental theorem of algebra  

 

 ( )( ) ( )1
0

1

det 1
NCm

NC
i

i

I A A z z zλ−

=

− = −∏  (19) 

 

where 
NC
m  is the degree of the characteristic polynomial of the uncontrolled system and 

NC
i

λ  are the eigenvalues of the uncontrolled system.  Lemma 5 of Wu and Jonckheere 

(1992) shows that the integral of the log of ( ) ( )1

1 1

1 1
NC NCm m

NC NC
i i

i i

z zλ λ −

= =

− −∏ ∏  on the unit 

circle, i.e. for iz e ω−= , is well defined even if some of the eigenvalues NC
i

λ  are on or 
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outside the unit circle, i.e. 1NC
i

λ ≥ .  Therefore, in order to handle the no control system 

in the presence of instability, one simply defines   

 

 
( )

( )( )( ) ( )

2

2 2
1

0 0

log det

log det log det

NC i

i i i

D e d

A I A A e e d W e d

π
ω

π

π π
ω ω ω

π π

ω

ω ω

−

−

− − − −

− −

⎛ ⎞⎟⎜ =⎟⎜ ⎟⎜⎝ ⎠
⎛ ⎞ ⎛ ⎞⎟⎜ ⎟⎜⎟− − +⎜ ⎟⎜⎟ ⎟⎜ ⎜⎟⎜ ⎝ ⎠⎝ ⎠

∫

∫ ∫
 (20) 

 

We will use this convention throughout. 

Applying this argument to Theorem 1, the RHS of (20) is  

 

 ( )
2

,
log det 4 log  { } if 1

i

i

NC i NC NC
w B i i

v

D e d K i v
π

ω
υπ

ω π λ λ−

−

⎛ ⎞⎟⎜ = − ∈ >⎟⎜ ⎟⎜⎝ ⎠ ∑∫ . (21) 

 

The combination of Theorem 1, (18) and (21) immediately leads to Theorem 2. 

 
 
Theorem 2. Design limits on the sensitivity matrix for a backwards-looking MIMO model 

 

For the system described by eq. (2), the associated sensitivity matrix ( )iS e ω−  must fulfill 

 

 ( )( )2
log det i

BS e d K
π

ω

π
ω−

−
=∫ , (22) 

 

where 

 

 4 log  { } if 1
i

i

NC NC
B v i i

v

K i vπ λ λ= ∈ >∑ . (23) 

 

This expression has several properties of interest.   

First, 0BK =  whenever the unconstrained system is stable.  This means that for a 

large class of models, the constraint on the sensitivity function is identical to the constraint 
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on the uncontrolled system.  More generally, different models may be sorted into 

equivalence classes with respect to BK  as its value is entirely determined by the unstable 

roots in the ( )A L  polynomial.  Notice as well that the value of the constraint does not 

depend on the control rule nor does it depend on ( )W L , i.e. the (second-order) time 

series structure of tε .   

Second, taken together, the facts that a nonzero constraint only occur when the 

uncontrolled system is unstable and that the magnitudes and number of the unstable roots 

determine the value of the constraint, indicate that the use of a control to eliminate 

unstable roots in a system does have a cost in terms of the ability of the policymaker to 

stabilize fluctuations after these roots have been eliminated.  This provides a new 

perspective on the idea that trends and cycles do not represent independent aspects of 

stabilization policy. 

Third, policymakers inevitably must trade off variance at different frequencies. 

Since 1NC
i

λ ≥ , it is immediate from (23) that 0BK ≥ .   This implies, given (22), that it is 

impossible for ( ) [ ]
2

det 1 ,iS e ω ω π π− < ∀ ∈ −  and therefore it is impossible to reduce the 

variance contributions at all frequencies when one moves from the uncontrolled system to 

a controlled one.  Further, the integral constraint implies that ( )
2

det 1iS e ω− >  for some 

interval of frequencies if ( )
2

det 1iS e ω− <  for another.  In order to reduce the variance 

contributions of one interval of frequencies, it is necessary to increase the variance 

contributions of some other interval.  This tradeoff is fundamental as it cannot be avoided 

by the choice of control.  By implication, minimizing a linear combination of the variances 

of the elements of tx  will involve trading off frequency specific variance contributions.  In 

other words, variance minimization implies that, even though overall variance is reduced 

when one integrates across frequencies, for some frequencies, a control that is optimal in 

this sense leads to greater variance.   

Fourth, the issue of whether the shocks are or are not fundamental is irrelevant to 

the constraints on the sensitivity function.  The reason for this is that the sensitivity function 

compares the effects of control to no control in such a way that this part of the constraint in 

Theorem 1 cancels out.  
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Theorems 1 and 2 are examples of the conservation laws of fragility or waterbed 

effects that we mentioned in the introduction.  As we have discussed, these types of 

tradeoffs have been studied in the control theory literature. The control theory literature 

naturally does not consider how expectations affect current state variables. We next 

consider how to understand design limits for forward-looking (e.g. hybrid) models.   As we 

will show, these are very different from those that exist for the backwards-looking case. 

 

ii. hybrid systems 

  

 How does the introduction of forward-looking elements affect design limits?   To 

understand these effects, we consider 

 

 ( ) ( )0 1 1t t t t t tA x E x A L x B L uβ ε+ −= + + + . (24) 

 

This system is identical to (2) except for the addition of the forward-looking term 1t tE xβ + .  

Expectations are assumed to be rational.  We are interested in characterizing the 

equilibrium moving average representation of the state vector given a control, 

 

 ( ) ( ) ( )
( ) ( )

11 12

21 22

C C
C

C Ct t t

f L f L
x F L w w

f L f L

⎛ ⎞⎟⎜ ⎟⎜= = ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
, (25) 

 

where tw  are fundamental innovations.   It is convenient to work with innovations that are 

contemporaneously uncorrelated.  Let t tv Vw=  denote any orthogonalization of the 

fundamental errors.  Then,  

 

 ( ) ( ) ( ) ( )
( ) ( )

1 11 12

21 22

C C
C C

C Ct t t t

g L g L
x F L V v G L v v

g L g L
−

⎛ ⎞⎟⎜ ⎟⎜= = = ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
. (26) 

 

None of our results depend on the choice of orthogonalization. 
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As is well known, systems with forward-looking elements can exhibit multiple 

solutions as well as fail to have any solution at all.  We will assume existence and 

uniqueness of solutions in our analysis since we have nothing to contribute to that well-

studied subject; Appendix 2 discusses a set of sufficient conditions for existence and 

uniqueness of solutions.  

The rational expectations assumption of course places structure on the individual 

( )C
ij
g L  elements.  For our purposes, what matters is that each ( )C

ij
g L  may be written as a 

ratio of finite polynomials with common denominator up to the denominator polynomials 

of ( )1V W L−  denoted by ( ),d ij
v z  , that are exogenous and do not depend on the control 

applied to the system; see the Appendix 1 for a proof that the z −transform of ( )CG L  in 

(26) may be written as  

 

 
( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

,11 ,12

,11 ,21 ,12 ,22

,21 ,22

,11 ,21 ,12 ,22

1
( )

C C
n n

C d d d d
C CC
n nd

d d d d

g z g z

v z v z v z v z
G z

g z g zg z

v z v z v z v z

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

. (27) 

 

Here, the subscripts n  and d  refer to numerator and denominator.  The denominator 

polynomial ( )C
dg L  is the characteristic polynomial of the system; define dg  as its zero 

degree coefficient; this will prove useful.  Similarly, define ng  as the coefficient on the zero 

degree of the polynomial ( ) ( ) ( ) ( ),11 ,22 ,12 ,21
C C C C
n n n n
g L g L g L g L− .  The form (27) together with 

the above definitions is useful because it allows us to prove  

 

Theorem 3. Design limits on the MA polynomial in a forwards-looking MIMO model 

 

 The orthogonalized moving average coefficients of a controlled system (26) must 

obey 
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 ( )
2

,
log det C i

w H
G e d K

π
ω

π
ω−

−

⎛ ⎞⎟⎜ =⎟⎜ ⎟⎜⎝ ⎠∫ , (28) 

 

where  

 

 
, , ,

4 log 2 log log ,  { } if 1
ij

ij

C C
w H n d n u ij n ij

u

K g g g ij u gπ
⎛ ⎞⎟⎜ ⎟⎜= − + ∈ >⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

∑ . (29) 

 
Pf. See Appendix 1. 

 

 In identifying restrictions on the sensitivity function for this system, we once again 

define a system with no control, i.e. 

 

 ( )0 1 1t t t t tA x E x A L xβ ε+ −= + +  (30) 

 

and model the associated law of motion as  

 

 ( ) ( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

,11 ,12

,11 ,21 ,12 ,22

,21 ,22

,11 ,21 ,12 ,22

1

NC NC
n n

NC d d d d
NC NCt t tNC
n nd

d d d d

g L g L

v L v L v L v L
x G L v v

g L g Lg L

v L v L v L v L

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= = ⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

. (31) 

 

In writing (31) it is assumed that a unique solution to (24) exists and that the solution can 

be expressed in MA form.  This is excessively restrictive, in light of our earlier argument 

that no control systems may be unstable.  However, in parallel to the backwards case, one 

can relax this requirement when formulating design function limits; details may be found in 

Appendix 3.  In the subsequent discussion, we will work with ( )NCG z . 

In parallel to the backwards-looking model, the sensitivity function for the hybrid 

model is 
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 ( ) ( ) ( ) 1C NCS z G z G z
−

=  (32) 

 

In turn, ( )detS z  may be expressed as  

 
 

 

( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )

( ) ( ) ( ) ( )

( )
( )

( ) ( ) ( ) ( )
( )

1

2

,11 ,22 ,12 ,21

2
,11 ,22 ,12 ,21

2

,11 ,22 ,12 ,21

2
,11

det det detC NC

C C C C NC
n n n n d

NC NC NC NCC
n n n nd

NC C C C C
d n n n n

NCC
n nd

S z G z G z

g z g z g z g z g z

g z g z g z g zg z

g z g z g z g z g z

g z gg z

−
= =

⎛ ⎞⎛ ⎞⎟ ⎟⎜ ⎜− ⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜ =⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟−⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠⎝ ⎠
⎛ ⎞⎟⎜ −⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠ ( ) ( ) ( )

( )( )
( )( )

( )
( )

,22 ,12 ,21

2
2

1 , 1 ,

2
2

1 ,
1 ,

1 1

11

NC C

NC
C

NC NC NC
n n

d NC C n C
d i d i n i n i

NC n NC
d C

n i n i
d i d i

z g z g z

g g z g g z

g g zg g z

= =

=
=

⎛ ⎞⎟⎜ ⎟⎜ =⎟⎜ ⎟⎜ ⎟− ⎟⎜⎝ ⎠
⎛ ⎞⎟⎛ ⎞⎜ Π − ⎟ Π − ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎟⎜ ⎟Π − ⎟⎜⎜ ⎟Π − ⎝ ⎠⎟⎜⎝ ⎠

 (33) 

 

To understand the final equality in (35), observe that 
( )( )
( )( )

2
2

1 ,

2
2

1 ,

1

1

NC

C

d NC
d i d i

d C
d i d i

g g z

g g z

=

=

Π −

Π −
 also appears in 

the calculation of the constraints for the sensitivity function of the backwards system as it is 

a ratio of simple polynomials based on the poles of the controlled and the uncontrolled 

system.  In contrast, the second ratio 
( )
( )

1 ,

1 ,

1

1

C

NC

C n C
n i n i

NC n NC
n i n i

g g z

g g z

=

=

Π −

Π −
 incorporates elements of the law 

of motion that did not affect the sensitivity function for the backwards-looking case.  The 

application of a control can affect the value of C
ng  as well as the location of the zeros 

,
C
n i
g so 

that the second ratio does not collapse to 1. Notice that the eigenvalues 
,
C
n i
g  and 

,
NC
n i
g  are 

not restricted to be inside the unit circle.  If they are, the corresponding system is said to be 

fundamental, as the innovations to the vector of expectational errors are the same as the 

innovations to the vector of disturbances 
t
w . If at least one of the eigenvalues is outside the 

unit circle, the corresponding system is said to be non-fundamental; in this case the 
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variance of the vector of expectational errors is higher than the variance of the vector of 

disturbances 
t
w . Theorem 4 reveals that the latter case imposes design limits to the control 

of the system.   

Some general differences exist in optimal policy between the hybrid and backwards 

cases when a policymaker seeks to minimize variances of the state variables.  Variance 

minimization for backwards-looking systems is achieved by choosing controls that reduce 

the system dynamics to white noise; see Brock and Durlauf (2005) for general analysis.  

The case 0β ≠  is more complicated.  In the scalar case Brock, Durlauf, and Rondina 

(2008) demonstrate that, when the shocks { }
t
ε  are second order white noise and 0β = , 

then the best control reduces { }
t
x  to second-order white noise.  They find that when 

0β >  and not too large (so that a solution to (24) exists) an AR(1) process for 
t
x , i.e. 

1 1 1
( )

t t
A L x Ax− −= , yields a solution for (24) that is more (less) persistent for 

1 1
0 1,  ( 1 0)A A< < − < < .  These results are reversed when 0β <  (absolute value not 

too large so that we have existence of a solution to (24)).  Brock, Durlauf, and Rondina 

(2008) show that a positively persistent AR(1) process is turned into an AR(1) with negative 

persistence by variance minimizing optimal control when 0β > .  Intuitively optimal 

control cancels the magnification effect on volatility of 0β >  by going “beyond reduction 

to white noise” by exploiting the ability of 0β >  to shrink the effect of 
1

1 0A− < <  on 

volatility.  This same intuition applies to diagonal matrix versions of (24) although matters 

are more complicated for general matrix versions.  We shall see that new and interesting 

differences emerge when one considers frequency-specific effects.  

In parallel to the derivation of Theorem 2 from Theorem 1, Theorem 3 leads 

immediately to Theorem 4. 

 

Theorem 4. Design limits on the sensitivity function in a forwards-looking MIMO model 

 

The sensitivity function of a controlled system (24) must obey 
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 ( )
2

log det i
H

S e d K
π

ω

π
ω−

−

⎛ ⎞⎟⎜ =⎟⎜ ⎟⎜⎝ ⎠∫ , (34) 

 

where 

 

 , , ,

, , ,

4 log log log  log log ,  

{ } if 1,  { } if 1 and { } if 1.

i i i
C NC

i i i

C NC NC C NC
H n n d v n u n u

v u u

NC C C NC NC
i d i i n i i n i

K g g g g g

i v g i u g i u g

π
⎛ ⎞⎟⎜ ⎟⎜= − + + − ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

∈ > ∈ > ∈ >

∑ ∑ ∑
 (35) 

 

 From the perspective of design limits, there are several important differences 

between this case and the backwards-looking case. 

First, in the presence of an expectations-based component, the sensitivity function 

constraint 
H
K  can be negative.  This means that it is possible for a control rule to reduce 

variance contributions at all frequencies relative to an uncontrolled system.  Brock, Durlauf 

and Rondina (2008) provide a univariate example of this property.  Their example 

illustrates the fact that distinct variance minimizing and uniform variance reduction controls 

can exist for a given system, which matters if a policymaker is concerned about loss 

function uncertainty, i.e. the policymaker is not sure whether or not all frequency-specific 

variances should be weighted equally. 

Second, expectations also affect the nature of the constraint value 
H
K  as the terms 

associated with log logC NC
n n
g g−  do not have an analog in the backwards-looking case.  

Recall from the Wiener-Kolmogorov prediction formula that if ( )
t t
x G L v=  then 

1
1 0

( ( ) )
t t t
E x L G L G v−

+ = − .  Thus when the term 
1t t

E xβ +  is added to the dynamics as in 

(24) above then “extra” terms should be expected to appear in the constraint value.  These 

terms vanish when 0β = .  More important, the value of the “constant” 
0
G  changes as the 

control choice changes.  Metaphorically, for the forwards-looking case, the “budget 

constraint” defined by 
H
K  shifts across feedback rules, so that a purchase of lower variance 

at one frequency band does not have to be paid for by an increase in variance at another 

band.  
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Finally, the term , ,log log
i i

C NC
i i

C NC
n u n u

u u

g g−∑ ∑  captures the possibility that both the 

controlled and the uncontrolled systems may exhibit a nonfundamental moving average 

representation (at least one of the eigenvalues of the numerator polynomial bigger than 

one). Theorem 4 shows, for instance, that a control ( )U z  that turns a fundamental 

representation (
,

1  NC
n i
g i< ∀ ) into a nonfundamental one (

,
1C

n i
g >  for at least one i ) is 

subject to stronger design limits. Intuitively, when a stabilization policy depends on past 

states, the policymaker under the new policy will be responding to fundamental innovations 

that do not correspond to the underlying orthogonal innovations 
t
v , thereby reducing the 

performance of the policy in terms of frequency-specific tradeoffs. 

 

 

3. Unpacking frequency-specific tradeoffs: the design transformation matrix 
 

i. general ideas 

 

In most macroeconomic applications the object of interest in control problems is a 

function of the variances for the state variables.  It follows that, when comparing a system 

with no control and a system with control, the relationship between the two can be 

described by those functions that transform an underlying set of orthogonal components v  

of the uncontrolled process into the associated components of the controlled process. In 

order to identify frequency bands where robustness is increased by the control (a good 

thing) and to identify frequency bands where fragility is increased (a bad thing) we 

introduce the concept of a design transformation matrix, denoted as  

 

 ( )

( )
( )

( )
( )

( )
( )

( )
( )

1 1 1 2

1 1 1 2

2 1 2 2

2 1 2 2

, | , |

, | , |

, | , |

, | , |

x v C x v C

x v NC x v NC

x v C x v C

x v NC x v NC

f z f z

f z f z
M z

f z f z

f z f z

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

 (36) 
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It is immediate that 

 

 ( ) ( ) ( ) ( ) ( )
1 1 1 1 2| 11 , | 12 , |x C x v NC x v NC
f z M z f z M z f z= +  (37)  

 

and 

 

 ( ) ( ) ( ) ( ) ( )
2 2 1 2 2| 21 , | 22 , |

.
x C x v NC x v NC
f z M z f z M z f z= +  (38) 

 

These imply that the elements of the design matrix ( )M z  are functions of the elements of 

the sensitivity matrix since 

 

 
( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )
|

|

C C NC NC
xC w w

x NC

f z D z D z S z D z S z D z

S z f z S z

′′= Σ = Σ =

′
 (39) 

  

 When spectral densities exist, the design transformation matrix provides a characterization 

of the frequency by frequency changes in the effects of shocks on the spectral density 

matrix of the state variables as one moves from an uncontrolled to a controlled system.   

Regardless of whether spectral densities exist, the design matrix describes how the 

frequency-specific effects of the innovations v  on the state variable are affected by the 

choice of control.  Note that for univariate systems the sensitivity matrix and the design 

matrix coincide.  

The design transformation matrix is useful because it gives us a way of displaying 

the relative allocation of power between an uncontrolled system and a controlled system.  

This will be illustrated in graphical displays in Section 4 on Taylor Rules below (see 

especially Figures 3, 4, 5.B, 5.C, 6.B, and 6.C below).  It is also useful in terms of 

understanding how design limits change when the number of states exceeds the number of 

controls. 

 

ii. design transformation matrix for backwards-looking systems 
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 For our backwards-looking system, the properties of the design transformation 

matrix can be derived from 

 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )
1 1 1 1 2

1 2

, ,

1 2 1 2
,11 ,11 ,12 ,121

1

C C C
x x v x v

C C C C
n n v n n vC C

d d

f z f z f z

d z d z d z d z
d z d z

σ σ− −

−

= + =

+  (40) 

 

and 

 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )
2 2 1 2 2

1 2

, ,

1 2 1 2
,21 ,21 ,22 ,221

1

C C C
x x v x v

C C C C
n n v n n vC C

d d

f z f z f z

d z d z d z d z
d z d z

σ σ− −

−

= + =

+  (41) 

 

where the terms ( ),
C
n ij
d z  are the numerator polynomials of the matrix ( )CD z  introduced 

in eq. (8) while ( )C
d
d z  is the common denominator polynomial.   For this system ( )M z  

can be written as 

 

 ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1
,11 ,11 ,12 ,12

1 1 1
,11 ,11 ,12 ,12

1 11
,21 ,21 ,22 ,22

1 1
,21 ,21 ,22 ,22

C C C C
n n n n

NC NC NC NC NC NC
d d n n n n

C C C CC C
n n n nd d

NC NC NC NC
n n n n

d z d z d z d z

d z d z d z d z d z d z
M z

d z d z d z d zd z d z

d z d z d z d z

− −

− − −

− −−

− −

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

 (42) 

 

How do constraints on ( )S z  impinge on the freedom to design the elements in 

( )M z ?  Eq. (16) implies that 

 

              ( ) ( ) ( )
( )

( )
( )

( ) ( )
( ) ( )

1 1

1 1

detdet
det

det det

C NC NCC
d d

NC NC C C
d d

D z d z d zD z
S z S z

D z D z d z d z

− −

− −

′ = = .          (43) 
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Combining (42) and (43) it is immediate that each term of the design transformation matrix 

is related to the sensitivity matrix according to 

 

                        ( ) ( ) ( )
( ) ( )
( ) ( )

1
, ,

1
, ,

log log det log
C C
n ij n ij

ij NC NC
n ij n ij

d z d z
M z S z S z

d z d z

−

−

′= + .                    (44) 

 

Theorem 2 describes how each term of the design matrix is restricted by the Bode 

constraint’s effect on ( ) ( )log detS z S z ′ .  However, each term in the design matrix also 

contains an additional component 
( ) ( )
( ) ( )

1
, ,

1
, ,

log
C C
n ij n ij

NC NC
n ij n ij

d z d z

d z d z

−

−
 that depends on the control.    

 

iii. design matrix for hybrid systems 

 

For a hybrid system,  

 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
1 1 1 1 2, ,

1 1
,11 ,11 ,1 ,12 ,12 ,21

1
x x v x v

C C C C
n n v n n vC C

d d

f z f z f z

g z g z f z g z g z f z
g z g z

− −

−

= + =

+  (45) 

 

and 

 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
2 2 1 2 2, ,

1 1
,21 ,21 ,1 ,22 ,22 ,21

1
x x v x v

C C C C
n n v n n vC C

d d

f z f z f z

g z g z f z g z g z f z
g z g z

− −

−

= + =

+  (46) 

 

where 
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( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 2

2 2

,1 ,21 1 1 1
,11 ,21 ,11 ,21 ,21 ,22 ,21 ,22

,     
v v

v v

d d d d d d d d

f z f z
v z v z v z v z v z v z v z v z

σ σ
− − − −

= =

 

and ( )C
d
g z

 
and the ( ),

C
n ij
g z  polynomials are the elements of the matrix polynomial 

( )CG L  in (27). The design transformation matrix ( )M z  for this system can be written as 

 

 ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1
,11 ,11 ,12 ,12

1 1 1
,11 ,11 ,12 ,12

1 11
,21 ,21 ,22 ,22

1 1
,21 ,21 ,22 ,22

C C C C
n n n n

NC NC NC NC NC NC
d d n n n n

C C C CC C
n n n nd d

NC NC NC NC
n n n n

g z g z g z g z

g z g z g z g z g z g z
M z

g z g z g z g zg z g z

g z g z g z g z

− −

− − −

− −−

− −

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

 (47) 

 

The relationship between ( )S z  and ( )M z  is given by  

 

 ( ) ( ) ( ) ( )
( )

( )
( )

( ) ( )
( ) ( )

1 1
, ,

1 1
, ,

log log det log log
C C CC
n n ij n ijn

ij NC NC NC NC
n n n ij n ij

g z g z g zg z
M z S z S z

g z g z g z g z

− −

− −

′= − +  (48) 

 

where ( ) ( ) ( ) ( ) ( ),11 ,22 ,21 ,12
C C C C C
n n n n n
g z g z g z g z g z= − ; corresponding terms may be defined 

for the uncontrolled system.  Notice the similarity in structure between (48) for hybrids and 

(44) for backwards-looking models even though the values of the elements are different. 

 

iv. MIMO versus SIMO 

 

Recall that a 2 2×  MIMO system is a system where there is a single control 

instrument for each state variable whereas a  SIMO system is one where there is only one 

control instrument.  2 2×  SIMO systems are common in macroeconomics; a leading 

example is the use of the interest rate to simultaneously affect output and inflation.  A main 

way of discriminating between MIMO and SIMO systems is the difference in their 

controllability subspaces and their stabilizability.  See Kwakernaak and Sivan (1972, 
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Chapter 1) and Zhou, Doyle, and Glover (1996, Chapter 3) for a treatment of 

controllability and stabilizability of linear control systems.  Formally, a 2 2×  SIMO system 

is defined as a 2 2×  MIMO in which either row 1 or row 2 of the matrix ( )B z  introduced 

in Section 2 is restricted to be zero.  If row 1 is restricted to be zero we say that the control 

can be applied only to equation 2, and vice versa. In this section we develop a 2 2×  

MIMO and 2 2×  SIMO comparison in terms of differences of the integral constraints that 

characterize their design limitations.   

We first state a basic result. 

 

Theorem 5. Tradeoffs in MIMO and SIMO Systems 

 

i.  For a MIMO system, if the design matrix is given by (36) then  

 ( ) ( ) ( )
2 2

, ,
log log logC i NC i

ij B n ij n ij
M d K d e d d e d

π π π
ω ω

π π π
ω ω ω ω− −

− − −
= + −∫ ∫ ∫  (49) 

 

for the backwards-looking case and  

 

 ( ) ( ) ( )
2 2

, , ,
log log log log

i

i

NC C i NC i
ij d v n ij n ij

v

M d g g e d g e d
π π π

ω ω

π π π
ω ω ω ω− −

− − −
= + −∑∫ ∫ ∫ (50) 

 

where 
,

{ } if 1NC
i d i

i v g∈ > , for the hybrid case. 

 

ii. For a SIMO system, suppose that the matrix ( )W z  is diagonal and suppose that the 

control can be applied only to equation j  .  Then, for the backwards-looking system 

 

 ( )log    
ij B
M d K i

π

π
ω ω

−
= ∀∫  (51) 
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where { }, 1,2i j ∈ . For the hybrid case the constraint is still (50). 

 

Pf:  See Appendix 1. 

 

Part (i) of Theorem 5 formalizes the idea that, when considering each element of 

the design transformation matrix, the design limits that apply are generally different from 

the design limits on the sensitivity function described in Theorems 2 and 4. Notice that 

(50) can be also written in terms of 
H
K ; we do not do this because the associated 

expression is too cumbersome to be useful.  In principle, a control can achieve reduction 

of volatility at all frequencies for a given design transformation matrix element for both the 

backwards and the hybrid cases.  This is obviously not possible for all the elements of the 

matrix, but the policymaker in the MIMO case has the flexibility of choosing any element 

on which to impose an overall variance reduction at all frequencies.  Part (ii) of the 

Theorem shows that such flexibility is lost in the backwards-looking case for the SIMO 

case. Interestingly, the integral constraints for the MIMO and SIMO cases are the same for 

the hybrid model.  

In order to illustrate Theorem 5 we consider simple backwards-looking ( )1AR  

system.  The comparable hybrid system provides less clean results without additional 

insight and is therefore omitted. The system is  

 

 1 11 12 1 1 1 1 1

2 21 22 2 1 2 2 2

t t t t

t t t t

x a a x b u v

x a a x b u v
−

−

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜= +⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟+⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 (52) 

. 

For the MIMO model both 
1
b  and 

2
b  are nonzero whereas, according to our definition,  

for the SIMO model 
1

0b =  and 
2
b  is nonzero.   Control rules are restricted to 

 

 
1 11 1, 1 12 2, 1 2 21 1, 1 22 2, 1

,   
t t t t t t
u g x g x u g x g x− − − −= + = +  (53) 

 

The form of the polynomial matrix for the uncontrolled system, ( )NCD z , is 
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 ( ) ( )( ) ( )( )

22 12

21 11

11 22 12 21

1

1

1 1
NC

a z a z

a z a z
D z

a z a z a z a z

⎛ ⎞− − ⎟⎜ ⎟⎜ ⎟⎜ ⎟− −⎜ ⎟⎜⎝ ⎠
=

− − −
 (54) 

 

The controlled system ( )CD z  takes the same form and we denote the controlled 

coefficients by *
ij
a .  These coefficients equal  

 

 * * * *
11 11 1 11 12 12 1 11 21 21 2 21 22 22 2 22

,  ,  ,  a a b g a a b g a a b g a a b g= + = + = + = +  (55) 

 

Using Theorem 5 we can express the restrictions on the elements of the design matrix as 

 

 
( )

2 2
*

11 22 22
log log 1 log 1i i

B
M d K a e d a e d

π π π
ω ω

π π π
ω ω ω ω− −

− − −
= + − − −∫ ∫ ∫ , (56) 

 
( ) ( )*

12 12 12
log 4 log log

B
M d K a a

π

π
ω ω π

−
= + −∫  (57) 

 
( ) ( )*

21 21 21
log 4 log log

B
M d K a a

π

π
ω ω π

−
= + −∫ , (58) 

 
( )

2 2
*

22 11 11
log log 1 log 1i i

B
M d K a e d a e d

π π π
ω ω

π π π
ω ω ω ω− −

− − −
= + − − −∫ ∫ ∫ , (59) 

 

and the overall integral constraint is 

 

 ( ) ( )
2 2

*log det log deti i
B
K I A e d I Ae d

π π
ω ω

π π
ω ω− −

− −

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= − − + −⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠∫ ∫  (60) 

 

In the SIMO case, 
1

0b =  so that, for this example, * *
1 1 21 21 2 21

, 1,2,  ,
j j
a a j a a b g= = = +  

and *
22 22 2 22

 a a b g= + . 



 27

One can use this simple example to elucidate how the difference between MIMO 

and SIMO is reflected in the integral constraints (56)-(59).  To do this, we employ some 

basic elements of linear control theory specialized to our 2 2×  system.  A 2 2×  system 

t t t
x Ax Bu= +  is completely controllable if and only if the column vectors of the matrix 

( , )B AB  span 2-dimensional space (Kwakernaak and Sivan (1972, Theorem 6.6)).  The set 

of MIMO systems we consider are all completely controllable except for nongeneric 7cases.  

It is easy to check (by checking the spanning condition for ( , )B AB ) that complete 

controllability for the class of SIMO systems we consider holds if and only if 2
2 12

0b a ≠ .  

By Kwakernaak and Sivan (1972, page 462)), if a system is completely controllable, then 

controls may be found that stabilize it.  We shall always assume that controls are picked to 

stabilize the system if it is possible to do so.  We are now in the position to exposit the 

main difference between 2 2×  MIMO systems and 2 2×  SIMO systems for this example.  

We shall take the main difference to be the lack of potential controllability (stabilizability) 

for a generic class of SIMO systems. 

Since our class of 2 2×  MIMO systems are stabilizable (Kwakernaak and Sivan 

(1972, page 462, Definition 6.5)) except for nongeneric cases, we shall assume all 

eigenvalues are inside the unit circle for the 2 2×  matrix *A  for our controlled MIMO 

systems.  Thus an essential difference between MIMO and SIMO that is reflected in the 

set of integral constraints (56)-(59) above lies in the difference 

 

 ( ) ( )
, ,

2 2
* *log det log det

B MIMO B SIMO

i i
MIMO SIMO

K K

I A e d I A e d
π π

ω ω

π π
ω ω− −

− −

− =
⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜− − + −⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠∫ ∫

 (61) 

 

If both MIMO and SIMO were controllable we assume control choices are made to 

stabilize both.  Thus the difference above would be zero.  However, unless 2
2 12

0b a ≠ , our 

class of SIMO systems is not completely controllable.  Hence the difference above is 

always nonnegative and may be positive. The inequality faced by a planner which always 

                                                 
7By nongeneric, we mean that the set of parameters under which controllability fails has 
measure zero in the set of possible parameter values. 
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does the best it can to stabilize the system it faces i.e. 
, ,

0
B MIMO B SIMO
K K− ≥  thus 

represents an additional fundamental limitation faced in SIMO environments. 

This inequality finding also holds for more general environments.  Since 
2
b  is 

assumed to be nonzero, lack of controllability for the example arises only when 
12

0a = .  

If 
12

0a = , since 
1

0b =  it follows that 
1 11 1, 1t t
x a x −=  which is obviously not stabilizable by 

any choice of control.  However, if 
1
A , 

1
b and 

2
b  in the example are replaced by ( )A L  

1
( )b L  and 

2
( )b L  where all lag operators are finite degree polynomials, then for MIMO 

systems one must obtain the transfer function and obtain the state space realization in order 

to evaluate the controllability matrix for it (Zhou, Doyle, and Glover (1996, Section 3.7)) 

for ( )A L , 
1
( )b L  and 

2
( )b L ; a similar calculation is needed for SIMO systems under the 

restriction 
1
( ) 0b L = .  Since the lag polynomials can be of any finite degree the state space 

realization can have very high dimension.  Thus the four numerical restrictions in (56)-(59) 

above can not characterize the difference between MIMO and SIMO.  But the result 

, ,
0

B MIMO B SIMO
K K− ≥  still holds for planners who do the best they can to choose 

controls to stabilize the system they face. 

 
 

  
4. Application: monetary policy rules 

 

In this section we explore the limits encountered by a policymaker trying to design 

the response of output and inflation at different frequencies conditional on the now 

standard two-equation new Keynesian class of inflation/output models.  The monetary 

policy rule literature contains both backwards-looking and hybrid models of the type we 

have analyzed and so is a natural environment for considering design limits.  The system 

consists first of a Phillips curve equation 

 

 ( )
4

1
1

1
t t t i t i t t

i

E yπ µ π µ α π γ ε+ −
=

= + − + +∑ . (62) 
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The error term is assumed to be AR(1), 
1 1t t t
vεε ρ ε

−
= + . The second equation is a IS 

curve, 

 

 ( )
4

1
1

1
t f t t f i t i t t

i

y E y y rδ δ δ σ η+ −
=

= + − − +∑ . (63) 

 

The error term is also assumed to be AR(1),
1 2

  
t t t

vηη ρ η −= + .  

 We focus on two forms of this model.  The first specification we consider is the 

backwards-looking model elaborated by Rudebusch and Svensson (1999) which sets 

0µ = , imposes 
4

1

1
i

i

α
=

=∑  to ensure a long run vertical Phillips curve, and measures the 

real interest rate as ( )
4

1

.25B
t t i t i

i

r i π− −
=

= −∑ . We employ their parameter estimates.  The 

second specification, comprehensively studied in Woodford (2003), assumes 0µ > , 

0 
i

iα = ∀  (which essentially rules out any exogenous persistence to the inflation rate), and 

1
H
t t t t
r i E π

+
= − .  For this model specification, we take parameter estimates for the 

Phillips curve from Gali, Gertler and Lopez-Salido (2005. Table 1) and parameter 

estimates of the IS equation from Linde (2005, Table 5).  Table 1 reports the parameter 

values for the two cases.   

We consider policies that are simple variants of linear feedback rules of the form. 

 

 ( ) ( ) ( )1 1 1t t y t i t
i g L g L y g L iπ π

− − −
= + + . (64) 

 

All polynomials are of course one-sided, following the restrictions on (5).  Rules in this 

class have of course been extensively studied.   We focus on simple variants given their 

importance in current monetary policy debates. 

 

i. inflation-output volatility tradeoffs across frequencies 
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The original Phillips hypothesis of a long-run negative tradeoff between the level of 

inflation and the level of output has been fundamentally modified by theoretical and 

empirical advances since Phillips’ time.  Contemporary research focuses on the existence 

of a tradeoff between variance of inflation and the variance of output deviations from its 

natural level.  As policies are computed to minimize different linear combinations of 

variance for the output gap and inflation, a negatively sloped frontier emerges.  From the 

perspective of design limits, it is natural to ask how one can understand variance tradeoffs 

as they are manifested at different frequencies. 

In order to understand frequency-specific tradeoffs, we perform several exercises.  

First, we compute the frequency-specific losses that are implicit in the tradeoffs associated 

with the variance-based Phillips curve.  To do this, we compute variance tradeoff frontiers 

for inflation and output.  For each point on the frontier, parameters are chosen for the 

interest rate rule 

 

 
1 1 1t t y t i t

i g g y g iππ − − −= + +  (65) 

 

so that feedbacks are restricted to 1t −  levels of output, inflation, and the interest rate.  

Points on the frontier are chosen to minimize 

 

 ( ) ( ) ( ) ( )var 1 var var
t t t

J y iλ π λ φ= + − + ∆ . (66) 

 

By varying λ  between 0 and 1, one traces out the efficient frontier of inflation/output 

variance pairs from which a policymaker may choose.  The position of the frontier 

depends of course on the value of φ . For expositional purposes we report the frontiers for 

the case of free control 0φ =  and for the case of costly control 0.1φ = .   

For each point on the frontier we report an associated decomposition of the 

variance values into components corresponding to the same division between low 

frequencies (cycles of 8 years or more), business cycle frequencies (cycles of 2 to 8 years), 

and high frequencies (cycles of less than 2 years).  This division follows the NBER 

classifications of minor and major business cycles. The frequency-specific tradeoffs in these 
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Figures indicate how the unconditional variance frontier contains additional frontiers where 

optimality no longer applies.  The shape of the frontier is obviously related to the structural 

model acting as a constraint on the optimization problem of the policy maker.  The 

existence of design limits shapes the frontiers at different frequencies.   

Results of this exercise are reported for the backwards model in Figure 1.A for 

costless control and Figure 1.B for costly control.  The Figures are qualitatively very similar 

and each indicates how the tradeoffs associated with overall variance mask very different 

behaviors across frequencies. The general shape of the overall variance tradeoff found for 

the backwards model is replicated for the variance at the low frequency bands, but not for 

the others.   

The frequency interval tradeoffs indicate some unpleasant implied tradeoffs at the 

business cycle frequencies and high frequencies. Suppose that the policy rule is initially 

optimally set by a policymaker D (for dove) who possesses a relative distaste for output 

variance over inflation variance, so that 0.05λ = .  Suppose that a new policymaker H 

(hawk) replaces the first policymaker and that H possesses a relative distaste for inflation 

variance over output variance, so that 0.95λ = . As one would expect, the transition from 

D to H  moves along the frontier as indicated in the upper left panel of Figure 1.A or 1.B 

as lower inflation is substituted for higher output variance. This overall tradeoff masks 

interesting frequency-specific effects. For low frequencies, the qualitative finding of an 

inflation/output variance tradeoff is preserved, although a substantially larger reduction in 

inflation variance may be obtained from a given increase in output variance when the low 

frequencies are considered in isolation. Tradeoffs are very different for the business cycle 

frequencies, as shown in the lower left panels of Figures 1.A and 1.B.  Both the variance of 

inflation and output increase as the policy shifts from D to H.  While it is relatively cheap 

to reduce inflation variance at low frequencies (measured in terms of low frequency output 

variance), a price is paid at the business cycle frequencies, where the variance of inflation is 

increased. At high frequencies, on the other hand, both inflation and output variances 

decline when the policy shifts from D to H, although the magnitude is very small compared 

to the rest of the spectrum.  

Figures 2.A and 2.B report the same exercise when a policymaker faces a hybrid 

model. The qualitative messages of the Figures are similar, as occurred with Figures 1.A. 
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and 1.B, although the shape of the high frequency tradeoffs are quite different in 

magnitude.  With respect to overall variance, the qualitative difference between the 

backwards and hybrid models is that the marginal rate of substitution between output and 

inflation variance is considerably smaller than the backwards-looking case. In other words, 

moving along the variance frontier entails a smaller cost under the hybrid model. The 

upper right and lower left panels of Figures 2.A and 2.B show that this difference in costs is 

a consequence of differences in the tradeoffs associated with the business cycle frequencies. 

For this case, as the variance of inflation is reduced at low frequencies, a similar reduction 

happens at business cycle frequencies. The cost of reducing the variance for inflation is 

higher at high frequencies but the relative importance of those frequencies in terms of 

overall variance remains small. 

 

ii. original Taylor rule redux 

 

Our second exercise considers the frequency-specific effects of the original Taylor 

(1993) rule (OTR): 1.5, 0.5, 0.0
y i

g g gπ = = =  and draws comparisons with a class of 

modifications that has been proposed.  For a policymaker with the loss function (66) and 

associated parameters 
1
2

λ =  and 0.1φ = , the original Taylor rule produces losses of 

9.20 and 6.47 for the backwards and hybrid models respectively.  In terms of loss 

components, for the backwards model the volatility of inflation and output under OTR are 

12.2 and 5.7 respectively, while for the hybrid they are 3.1 and 9.4.  These are the sorts of 

calculations that are conventionally reported in the monetary policy rules literature.  In 

unpacking variance calculations of this type to understand frequency-specific losses, we first 

consider the spectral density components of inflation and output associated with the 

innovation to inflation 
1t
v  and the innovation to output 

2t
v , i.e. ( )

1,v
fπ ω , ( )

2,v
fπ ω , ( )

1,y v
f ω  

and ( )
2,y v

f ω . The values of these functions under the OTR are reported in the left hand 

side panels of Figure 3 for the backwards model and Figure 4 for the hybrid model.  For 

the backwards model, the volatility consequences of inflation innovations on inflation are 

concentrated at low frequencies, i.e. those associated with cycles of 8 years or longer.  The 
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volatility consequences on output of inflation innovations follow the same pattern.  On the 

other hand, the frequency-specific effects on output due to output shocks is associated with 

a peak around business cycles of 8-16 years whereas the frequency specific effects of output 

shocks on inflation are concentrated at very low frequencies. For the hybrid model, much 

of the variance of both inflation and output is concentrated at low frequencies with no 

peaks prior to the zero frequency.  That said, a substantial portion of the variance is also 

concentrated in the business cycle frequencies of 2-8 years, typically considered to be the 

primary business cycles; this is especially noticeable with respect to the spectral density 

effect of output shocks on output. 

How should a policymaker proceed who wishes to improve performance relative to 

the OTR?  We present two alternative rules to highlight the relevance of frequency-specific 

tradeoffs in the design of good policies. The first alternative we consider to the OTR is the 

optimal policy rule conditional on the model, OPR, defined as the choice of parameters in 

(65) that minimizes (66) with 
1
2

λ =  and 0.1φ = .  Second, we contrast the OTR (and the 

OPR) with a “modified Taylor rule” (MTR) in which 1) the reaction coefficients to 

inflation and output are increased by 1 unit, so that 2.5gπ =  and 1.5
y
g =  and 2) a non-

trivial degree of persistence is added to the OTR control rule by specifying 0.5
i
g = . 

These modifications capture some intuitions that have appeared in the monetary rules 

literature.  First, our reading of the monetary policy literature, specifically McCallum and 

Nelson (2004) is that an overall variance performance improvement should occur if the 

policymaker is slightly more aggressive in response to changes in either inflation or output 

than occurs in the OTR.  Second, persistence in the interest rate rule via a lagged term has 

been shown to be valuable in reducing the overall variance of macroeconomic aggregates 

because of the effect on expectations, see for example Woodford (1999) and Giannoni and 

Woodford (2003). These considerations lead us to propose the MTR as an example of an 

alternative “rule of thumb” to the OTR. 

Figure 3 reports the spectral densities and the design transformation matrix 

components of the backwards-looking model under the three rules, OTR, OPR and MTR. 

The optimal rule OPR in this case is 1.9, 1.2, 0.3
y i

g g gπ = = = . The overall loss under 
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OPR is reduced to 6.06 (as compared to 9.20 for OTR), while under MTR the overall loss 

is reduced to 8.37.  In terms of variable-specific volatility, the variances of inflation and 

output under OPR are 5.1 and 5.7 respectively, while under MTR they are 3.5 and 9.7, 

compared to 12.2 and 5.6 for OTR.  OPR reduces inflation variance while keeping output 

variance essentially unchanged while MTR strongly reduces inflation variance while 

increasing output variance. However, as Theorem 2 and 5 inform us, reductions in 

variance cannot happen across all frequency ranges, so that these overall performance 

improvements are masking a nontrivial set of gains and losses.  Both the OPR and the 

MTR reduce the contribution to the inflation variance at low frequencies (8 years and 

longer) from shocks to inflation and output8. This can be seen from the top right panels of 

Figure 3 where both ( )11
M ω  and ( )12

M ω  for each alterative rule to OTR are below 1 for 

cycles of 8 years or more. However, both rules increase the variance of inflation at cycles 

between 2 and 4 years, this is especially so under the MTR.  This is not the only tradeoff 

entailed when the MTR and the OPR reduce the overall variance. Both rules increase the 

variance of output from shocks to inflation at all frequencies, as the panels in the third row 

of Figure 3 show.  Finally, both the OTR and the MTR reduce the variance of output from 

output shocks at frequencies of 8-16 years, but, as a consequence, they increase the 

variance at cycles between 2 and 4 years.  Summarizing, even though both rules improve 

the performance of the policymaker with respect to the Taylor rule, such an improvement 

is paid for by increases in the variance of fluctuations at business cycle frequencies. 

Figure 4 reports the performance of the OPR and the MTR under the hybrid 

model. The optimal rule the OPR for this model is 0.1, 1.9, 0.4
y i

g g gπ = = = . The 

overall loss under the OPR is reduced to 2.44, while under the MTR is reduced to 5.26.  

In terms of specific variables, the variance of inflation and output under the OPR are 3.5 

and 0.8 respectively, while under the MTR they are 3.1 and 5.9, compared to 3.1 and 9.4 

for the OTR.  On the one hand, the OPR increases inflation variance while suppressing 

most of the output volatility. On the other hand, the MTR reduces both inflation variance 
                                                 
8Rondina (2008) shows generally that the first-order conditions for variance minimization 
in hybrid models instruct the policy maker to completely annihilate the contribution to 
the variance at low frequencies in order to correctly “manage” the expectations of 
forward-looking agents.  This is consistent with the effects we find for the OPR and MTR 
alternatives to the original Taylor rule. 
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and output variance, although the latter effect is far less dramatic than occurs under the 

OPR.  It is evident from the Figure that both rules perform virtually identically with respect 

to fluctuations in inflation and output that are due to shocks to output. This can be seen 

from rows 2 and 4 in Figure 4. In terms of the fluctuations in inflation and output coming 

from shocks to inflation, the two rules differ markedly. Under the MTR the component of 

the variance of inflation due to shocks to inflation is relatively unchanged when compared 

to the OTR baseline; there is a slight increase at low frequencies and a slight reduction of 

the same magnitude at business cycle frequencies whereas the OPR generates a large 

increase in variance at cycles of 2 years or greater. In contrast, the MTR increases the 

contribution of shocks to inflation to the variance of output for cycles between 1 and 4 

years. In this respect, the OPR does exceptionally well as it systematically compresses the 

component of the spectral density of output generated by shocks to inflation.  The cost of 

this outstanding performance is the increase at business cycle and lower frequencies of the 

effect of inflation shocks on inflation. 

Figures 3 and 4 offer a clear illustration of the powerful tradeoffs that operate in the 

frequency domain when a control rule is applied to a dynamic economic system.   

Interestingly, one can find cases where power is pushed towards the business cycle 

frequencies.  This is most evident for both the OPR and the MTR for the backwards-

looking model.  One also sees this in the effect of the OPR on inflation shocks for the 

hybrid model; although, consistent with our theoretical results, the tradeoffs are generally 

less stark for the hybrid case.  Whether or not such peaks are an acceptable price to pay 

for variance reduction obviously depends on the objective function of the policymaker, but 

the knowledge of the existence of such severe tradeoffs may be of value in the design of 

good policies and in understanding the implications of deviating from the Taylor rule 

towards more complicated monetary policy rules.   

 
iii. monetary policy regimes and design limits 

 

Our final illustration of the value of design limits analysis concerns the 

interpretation of changes in monetary policy.  The last 40 years of monetary policy can to 

some extent be understood as consisting of three periods: the pre-1979 or Burns period, 
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the 1979-1987 or Volcker period and the post-1987 or Greenspan period9.  In this 

exercise, we compare the performances of the three regimes at different frequency bands 

to expose the “hidden tradeoffs” forced by the conservation laws developed in Section 2. 

 In order to operationalize the comparison of the regimes, we employ estimates due 

to Judd and Rudebusch (1998) that describe these different monetary policy regimes in 

terms of changes in the parameters of interest rate rules. Judd and Rudebusch (1998) 

consider two specifications of the monetary policy rule for each regime. One is a 

generalized Taylor rule 

 

 *
1 1 1 2 2t t y t y t

i g g y g yππ − − −= + +  (67) 

 

which does not contain any persistence of the policy instrument. They interpret this as a 

“recommended rule” for interest rates.  They consider both the case where the Federal 

Reserve can implement its recommended rule as well as a second “measured” rule of the 

form 

 

 
1 1 1 2 2 1 1 2 2t t y t y t i t i t

i g g y g y g i g iππ − − − − −= + + + + . (68) 

  

The use of 2 lags in interest rates, following Judd and Rudebusch, is done to allow for the 

possibility that the observed interest rate does not coincide with the policymaker’s 

preferred interest rate, but rather adjusts towards this preferred interest rate via an error 

correction model.  (Of course, as previously discussed, interest rate inertia may have 

desirable stabilization properties.)  The values of the coefficients for (67) and (68) for the 

three regimes are reported in Table 2. We evaluate the regimes using the backwards and 

hybrid models parameterized as in Section 4.i.  We follow Judd and Rudebusch (1998, p. 
                                                 
9We follow Judd and Rudebusch (1998) and Sims and Zha (2006) in working with 
distinct Volcker and Greenspan regimes rather than Clarida, Gali and Gertler (2000) or 
Taylor (1999) who combine them into a common one. There is no consensus on the 
number of monetary policy regimes for the post-war US.  Sargent, Williams, and Zha 
(2006) provide evidence that changes in government beliefs about the nature of the 
Phillips curve explain changes in monetary policy; their evidence on time series of these 
beliefs suggests that it is sensible to distinguish between the Volcker and Greenspan 
years  
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4) and omit any discussion of the G William Miller’s time as FRB chairman (1978.Q2-

1979.Q2) because of his short tenure.   

Tables 3 and 4 report the behaviors of output, inflation and changes in interest 

rates under the three regimes.  Note that the variances under the Burns reaction function 

are infinite as the model evaluated at the Burns reaction function is nonstationary.  This 

finding is consistent with Judd and Rudebusch (1998, Table 2, page 12) where they observe 

that the model did not converge for their estimated Burns reaction function. Convergence 

does occur for the hybrid case in Table 4.  Contrasts are also drawn with the original 

Taylor rule. 

As indicated by Table 3, for the backwards model both Greenspan and Volcker 

perform better than OTR.  However, most of the difference in Volcker’s performance is 

due to lower inflation volatility – 9.6 against 12.2 – while output volatility is essentially the 

same as OTR – 5.4 against 5.6. On the other hand, Greenspan’s better performance is split 

between lower inflation volatility and lower output volatility, 11.3 against 12.2 and 4.6 

against 5.6, respectively. The recommended interest rate rule for each regime produces 

larger volatility in the backwards model than the measured version of each, especially for 

inflation; this indicates that the stabilization possibilities generated by interest rate inertia 

were not being exploited.  Turning to the hybrid model, for both the preferred and 

recommended cases, one finds that the Volcker regime performs slightly better in terms of 

inflation volatility but much worse in terms of output volatility than the Burns and 

Greenspan regimes.  The OTR performs very similarly to Volcker’s rules.  We note that 

that for the hybrid model the distinction between the preferred and measured rules is 

second-order, in particular in terms of inflation variance implications. 

How do the different monetary regimes compare when frequency-specific effects 

are considered?  To facilitate comparisons, we employ a modified design matrix defined as 

the ratio of the spectral density components for a variable/shock pair under a given rule 

(note that we omit Burns when spectral densities do not exist) to the corresponding spectral 

density components of the variable/shock pair under the original Taylor rule10.  This allows 

for visual representations of the different effects of each rule relative to the OTR for 

                                                 
10While it was natural, in developing our Theorems to compare controlled and 
uncontrolled systems, for applications, there is no need to choose a no control system as a 
baseline.   In particular we let the OTR play the role of the “uncontrolled” system here. 
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different types of shocks for each frequency.  Figure 5 reports spectral densities and design 

transformation matrix terms for the backwards model; the corresponding objects for the 

hybrid model appear in Figure 6.   

For the backwards model, Theorem 1 implies that the integral of the logarithm of 

the determinant of the spectral density matrix is a constant whose value is independent of 

the choice of control rule.11  This suggests that Volcker and Greenspan must move 

undesired power somewhere in the frequency domain relative to the OTR baseline.  This 

kind of conservation law should appear in the spectral density plots.  The left column plots 

in Figure 5.A reveal that (assuming the economy’s dynamics followed the estimated 

backwards model) Volcker, under the recommended rule specification, reduced spectral 

power for inflation at the lower frequencies relative to Greenspan and to the Taylor 

baseline at the cost of more variance at the higher ones.  Interestingly the Volcker rule does 

the opposite for output in the sense that it increases spectral power at lower frequencies 

relative to Greenspan and the Taylor standard.  Figure 5.A also suggests that the spectral 

density effects of the recommended and measured rules on output and inflation are 

relatively similar, although the effects on interest behavior are quite different.   

Figures 5.B and 5.C, illustrate how these overall effects are associated with distinct 

spectral density effects of inflation and output shocks.  Starting with Figure 5.B, compared 

with Greenspan, the Volcker regime reduced the effects of inflation shocks on inflation 

variance at the very lowest frequencies; in contrast the Volcker regime performs slightly less 

well than others in attenuating the variance effects of output shocks on inflation for cycles 

of 8 year or more.  Differences between the regimes with respect to the effects of output 

shocks on inflation are harder to summarize, as indicated by the multiple intersections of 

the modified design matrix elements.  However, one can say that, for cycles of 8 years or 

greater, variance is substantially higher under Volcker than for the OTR whereas 

Greenspan outperforms the OTR.  Similar conclusions hold for effects of output shocks 

on output.  As indicated by a comparison of Figures 5.B and 5.C, there do not appear to 

be interesting qualitative differences in comparative regime performance with respect to 

                                                 
11This claim follows from Theorem 1 if one integrates the logarithm of the determinant of 

( )|x Cf ω  in (17).   
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inflation and output as one moves from recommended to measured rules, which mirrors 

the results for overall spectral densities.  

Figures 6.A-6.C illustrate the behavior of the regimes under the hybrid model.  In 

interpreting these figures, recall that effects of conservation laws are not so sharp for the 

hybrid model because, as shown by Theorem 3, the sensitivity function constraint depends 

upon the rule.  But since the constraint is one-dimensional and rules are multidimensional, 

Theorem 3 does suggest a tendency for multidimensional rules to be somewhat 

constrained in their freedom to diminish spectral power at a frequency band without a 

tendency to cause spectral power to rise at some other frequency band.   

As indicated in Figure 6.A, under both the recommended and measured interest 

rate specifications, there is a clear ranking of the rules for spectral power of inflation.  It 

appears that Volcker is successful at reducing spectral power for inflation across all 

frequencies, when compared to the other rules.   The relatively superior performance of 

the Volcker rule is especially dramatic for cycles of 8 years or greater, which contrasts with 

the backwards case where the large performance improvements occur at cycles of 32 years 

or longer.  An examination of the spectral density plots for output suggests that the 

conservation law imposed costs along this dimension.  In fact, the spectral density of output 

under the Volcker regime exceeds others by a magnitude of 2 to 4 times, for cycles of 8 

years or longer. It is interesting to note that the Volcker recommended rule generates 

substantial high frequency variance in interest rate changes compared to the other rules, but 

performs relatively well when a measured version is considered.  

Figures 6.B and 6.C provide additional insights into the performance of the 

different regimes for the hybrid model.  As indicated by the Figures, the Volcker regime 

(for both the recommended and measured specifications) begins to outperform the other 

regimes with respect to the effects of inflation shocks on inflation once the cycle length 

equals or exceeds four years.  For cycles slightly shorter than 4 years, the Volcker regime is 

slightly outperformed by the OTR; this is most evident when one considers the design 

matrix.  When one considers the effects of output shocks on inflation, the recommended 

form of the Volcker rule, remarkably, is outperformed at all frequencies by Greenspan 

(with the exception of very high frequencies).  Similar tradeoffs are evident when one 

considers output.  Compared to the others, Volcker (under either rule specification) 
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amplifies the low frequency effects of both inflation and output shocks on output. 

Surprisingly, in terms of the effects of inflation shocks on output, Burns outperforms 

Volcker at all frequencies. This is a dramatic example of the tradeoffs with which we have 

been concerned. For higher frequencies, the various design functions intersect so there are 

no general comparisons to be drawn.    

How do the various monetary policy regimes perform relative to the 

inflation/output variance frontiers we have described in Section 4.i?  Figures 1 and 2 

include the locations of outcomes under the Burns (when Burns converges), Volcker and 

Greenspan rules relative to the inflation/output frontiers.  In terms of overall variance there 

are no surprises except possibly the domination of Burns by Greenspan in the hybrid 

model.  For the hybrid model the performance of all three regimes is about the same for 

the implied frontier at high frequencies.  But the “conservation law of the logarithm of 

spectral power” suggests that the volatility must end up somewhere at the business cycle 

frequencies and the lower frequencies.  For the hybrid model the important difference 

shows up at the low frequencies.  Burns squashes output volatility in return for a high price 

in terms of inflation volatility at low frequencies while Volcker does almost the exact 

opposite; from this perspective Greenspan may be regarded as a compromiser between the 

two.  Note that, at business cycle frequencies for the hybrid model, the three chairmen are 

much closer together.  These important contrasts and similarities are completely masked 

by the standard frontier.   

Let us sum up the conclusions we draw.  The conservation law/design limits 

perspective developed in this paper motivates a detailed analysis of relative performance of 

different rule regimes at low, business cycle, and high frequency bands.  This is so because 

our Theorems (even for hybrid models) show a tendency for some measure of volatility to 

be conserved across different frequencies.  This suggests several additions to the standard 

way in which analysts report the effects of alternative monetary policy rules.  In particular 

the standard efficiency frontier analysis of regimes should be supplemented by implied 

frontiers evaluated at the low, business cycle, and high frequencies.  Further, plots should 

be prepared that spotlight frequency bands where a rule is robust to shocks at those 

frequencies and to spotlight frequency bands where the rule is fragile to shocks at such 

frequencies.  These additional calculations are valuable because we know that increased 
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robustness at one set of frequencies must be offset by increased fragility at some other set 

of frequencies for backwards models.  There is still a tendency for this to be true for 

hybrids although the effect is more subtle.    

 

 

5. Summary and conclusions 

 

This paper has argued the case for introducing macroeconomics to the theory of 

design limits in control theory.  The general theory of design limits (e.g. Skogestad and 

Postlewaite (1996)) stresses limitations on the ability of control design to move variance 

across frequencies (expressed in the form of various “conservation laws”) as well as 

limitations on the ability of control design to cope with measurement error and 

robustification against various forms of model uncertainty.  We have only touched on one 

feature of the general theory of design limits in this paper in that we have focused all 

attention on the basic conservation laws which give precise content to the intuitive idea that 

attempts to reduce variance down at one frequency band can cause variance to increase at 

some other frequency band.  

 Many outstanding questions exist.  For example, we have said nothing about good 

designs to cope with measurement error.  While the sensitivity function, ( )S z , is the 

function from which one can design good policies to cope with outside shocks to the 

dynamics, the complementary sensitivity function, ( )T z , is relevant in coping with separate 

issues that arise in the presence of measurement error.  See Skogestad and Postlethwaite 

(1996, Section 2.2.2 and Section 6.2) for the definition of ( )T z  as well as the design limits 

constraint, ( ) ( )S z T z I+ = and its use in uncovering design limits constraints in the 

presence of measurement error.  The constraint ( ) ( )S z T z I+ = , plays a key role in 

showing that measurement error results in another type of conservation law that constrains 

placement of volatility across different frequency bands.  We are developing this line of 

research in a sequel to the current paper.  Further, there is a close connection between the 

robust control literature (e.g. Hansen and Sargent (2007)) and the theory of design limits.  
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Design limits theory focuses on control design to robustify against (i.e. moderate) outside 

shocks.  Robust control theory focuses on control design to robustify against a lack of 

confidence in analyst’s ability to specify the dynamics of the system under study.  Design 

limits theory should be useful to robust control theorists because it uncovers frequency 

bands where model uncertainty can do the most damage to the designer’s goal.  Thus, 

using this information, the designer can design a control to mitigate damage at the most 

vulnerable frequency bands; Brock and Durlauf (2004) provide an example. Similar 

considerations exist if one wants to consider model uncertainty for spaces comprised of 

distinct models as done in Brock, Durlauf, and West (2003, 2007) or Levin and Williams 

(2003).  Yet another important set of questions concern the generalization of design limits 

theory to nonlinear systems; Pataracchia (2008) provides an analysis of this type for 

switching regime models.  For these reasons we believe that design limits theory is an 

unusually rich area for future research.  
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Table 1. Model Parameter Values 

 

 Phillips Curve  Output Equation 

 Hybrid Backwards  Hybrid Backwards 

1

2

3

4

2
v

ε

µ
γ
α
α
α
α
ρ

σ

 

0.635
0.013
0
0
0
0
0.75
0.7957

 

0
0.14
0.70
0.10
0.28
0.12
0
1.009

−
 

1

2

3

4

2

f

η

υ

δ
δ
δ
δ
δ
σ
ρ

σ

 

0.430
1.275
0.253
0.012
0.012
0.087
0.35
0.4006

−

 

0
1.16
0.25
0
0
0.10
0
0.819

−
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Figure 1.A. Tradeoff Frontiers: Backwards Model, Costless Control 
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Note: The four panels report aspects of the inflation and output processes that correspond 
to the minimization of the loss function (66) as λ  is varied between 0 and 1, 0φ =  under 
the backwards-looking model. The upper left panel reports the frontier for the overall 
variance of inflation and output. The upper right panel reports the implied tradeoffs for the 
variance of inflation and output at frequency of 8 years or more for the different pairs in 
the variance frontier. The bottom panels report the implied tradeoffs for the variance of 
inflation and output at business cycle frequencies (2-8 years) and at higher frequencies (less 
than 2 years). Each panel also locates the variances of output and inflation for the relative 
frequency range that result under five policy rules: (i) the Original Taylor Rule (circle), (ii) 
the “Dove” Optimal Policy (diamond), (iii) the “Hawk” Optimal Policy (star), (iv) the 
Volcker regime, (v) the Greenspan Regime. The Burns regime results in a non-stationary 
system and therefore is not reported. The optimal policies correspond to rules of the form 
(66) with coefficients chosen to minimize (66) with 0.05λ = (D) and 0.95λ =   (H). The 
coefficients are derived using a grid search over the space [ ]0.0,10.0gπ ∈ , [ ]0.0,10.0yg ∈  and 

[ ]0.9,0.9ig ∈ − . The two policies are 4,  8.2,  0.9y ig g gπ = = = − (D) and 
10.0, 4.0, 0.3y ig g gπ = = = −  (H). 
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Figure 1B. Tradeoff Frontiers: Backwards Model, Costly Control 
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Note: The four panels report aspects of the inflation and output processes that correspond 
to the minimization of the loss function (66) as λ  is varied between 0 and 1, 0.1φ =  under 
backwards-looking model. The upper left panel reports the frontier for the overall variance 
of inflation and output. The upper right panel reports the implied tradeoffs for the variance 
of inflation and output at frequency of 8 years or more. The bottom panels report the 
implied for the variance of inflation and output at business cycle frequencies (2-8 years) and 
at higher frequencies (less than 2 years). Each panel also locates the variances of output and 
inflation for the relative frequency range that result under five policy rules: (i) the Original 
Taylor Rule (circle), (ii) the “Dove” Optimal Policy (diamond), (iii) the “Hawk” Optimal 
Policy (star), (iv) the Volcker regime, (v) the Greenspan Regime. The Burns regime results 
in a non-stationary system and therefore is not reported. The optimal policies correspond 
to rules of the form (66) with coefficients chosen to minimize (66) with 0.05λ = (D) and 

0.95λ =   (H). The coefficients are derived using a grid search over the space 
[ ]0.0,10.0gπ ∈ , [ ]0.0,10.0yg ∈  and [ ]0.9,0.9ig ∈ − . The optimal policies are  
1.4, 1.7, 0.1y ig g gπ = = =  (D) and 2.1, 0.9, 0.5y ig g gπ = = =  (H). 
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Figure 2.A. Tradeoff Frontiers: Hybrid Model, Costless Control 
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Note: The four panels report aspects of the inflation and output processes that correspond 
to the minimization of the loss function (66) as λ  is varied between 0 and 1, 0φ =  under 
the hybrids model. The upper left panel reports the frontier for the overall variance of 
inflation and output. The upper right panel reports the implied tradeoffs for the variance of 
inflation and output at frequency of 8 years or more. The bottom panels report the implied 
tradeoffs for the variance of inflation and output at business cycle frequencies (2-8 years) 
and at higher frequencies (less than 2 years). Each panel also locates the variances of output 
and inflation for the relative frequency range that result under five policy rules: (i) the 
Original Taylor Rule (circle), (ii) the “Dove” Optimal Policy (diamond), (iii) the “Hawk” 
Optimal Policy (star), (iv) the Volcker regime, (v) the Greenspan Regime. The Burns 
regime results in a non-stationary system and therefore is not reported. The optimal 
policies correspond to rules of the form (65) with coefficients chosen to minimize (66) with 

0.05λ = (D) and 0.95λ =   (H). The coefficients are derived using a grid search over the 
space [ ]0.0,10.0gπ ∈ , [ ]0.0,10.0yg ∈  and [ ]0.9,0.9ig ∈ − . The optimal policies are  

0.1, 10.0, 0.0y ig g gπ = = =  (D) and 1.6, 1.0, 0.5y ig g gπ = = =  (H). 
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 Figure 2.B. Tradeoff Frontiers: Hybrid Model, Costly Control 
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Note: The four panels  aspects of the inflation and output processes that correspond to the 
minimization of the loss function (66) as λ  is varied between 0 and 1, 0.1φ =  under the 
hybrid model. The upper left panel reports the frontier for the overall variance of inflation 
and output. The upper right panel reports the implied tradeoffs for the variance of inflation 
and output at frequency of 8 years or more. The bottom panels report the implied 
tradeoffs for the variance of inflation and output at business cycle frequencies (2-8 years) 
and at higher frequencies (less than 2 years). Each panel also locates the variances of output 
and inflation for the relative frequency range that result under five policy rules: (i) the 
Original Taylor Rule (circle), (ii) the “Dove” Optimal Policy (diamond), (iii) the “Hawk” 
Optimal Policy (star), (iv) the Volcker regime, (v) the Greenspan Regime. The Burns 
regime results in a non-stationary system and therefore is not reported. The optimal 
policies correspond to rules of the form (65) with coefficients chosen to minimize (66) with 

0.05λ = (D) and 0.95λ =   (H). The coefficients are derived using a grid search over the 
space [ ]0.0,10.0gπ ∈ , [ ]0.0,10.0yg ∈  and [ ]0.9,0.9ig ∈ − . The optimal policies are  

0.1, 2.4, 0.4y ig g gπ = = =  (D) and 0.5, 0.3, 0.8y ig g gπ = = =  (H). 
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Figure 3. Spectral Densities and Design Transformation Matrix 
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Figure 4. Spectral Densities and Design Transformation Matrix 

Hybrid Model 
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Table 2. Monetary Policy Regimes 

 

 RR MR 

 gπ  1y
g

 2y
g

 
gπ  

1y
g  

2y
g  

1i
g

 2i
g

 

Burns 0.85 0.16 0.72 0.16 0.09 0.40 0.69 -0.25 

Volcker 1.69 2.40 -2.04 2.40 0.86 -0.73 0.56 0.08 

Greenspan 1.57 1.10 -0.12 1.10 0.30 -0.03 1.16 -0.43 

 

Table 2 reports the measures of the Burns (1970Q1-1978Q1), Volcker (1979Q3-1987Q2) 

and Greenspan (1987Q3-1997Q4) regimes of Judd and Rudebush (1998). The left side 

panel reports the coefficients of the recommended rule (RR)  

*
1 1 1 2 2t t y t y t

i g g y g yππ − − −= + + . 

The right side panel reports the coefficients of the measured rule (MR) 

1 1 1 2 2 1 1 2 2t t y t y t i t i t
i g g y g y g i g iππ − − − − −= + + + + . 
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Table 3. Regime Performance: Backwards Model 

 

 ( )tv π  ( )tv y  ( )tv i∆  

Taylor 12.2 5.6 3.1 

 Recommended Rule (RR) 

Burns ∞  ∞  ∞  

Volcker 9.6 5.4 10.5 

Greenspan 11.3 4.6 4.2 

 Measured Rule (MR) 

Burns ∞  ∞  ∞  

Volcker 11.7 6. 8 1.8 

Greenspan 12.1 5.5 0.9 

 

Note: Table 3 reports the unconditional variances for inflation, output and the interest rate 
computed using the backwards model and 4 alternative policy rules.  The first row reports 
the results for the Original Taylor Rule. Rows 2-4 report the results for the 3 regimes - 
Burns, Volcker and Greenspan - under the specification RR for the policy rule (see Table 
2). Rows 5-7 report the results for the same 3 regimes now in the form of specification MR. 
The value ∞  signals that the unconditional variance of at least one of the variables of the 
system is unbounded. 
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Table 4. Regime Performance: Hybrid Model 

 

 ( )tv π  ( )tv y  ( )tv i∆  

Taylor 3.1 9.4 2.2 

 Recommended Rule (RR) 

Burns 3.4 4.1 1.4 

Volcker 2.8 10.9 6.1 

Greenspan 3.2 4.5 2.9 

 Measured Rule (MR) 

Burns 3.4 4.7 1.2 

Volcker 2.6 14.4 1.0 

Greenspan 3.1 6.6 1.1 

 

Note: Table 4 reports the unconditional variances for inflation, output and the interest rate 
computed using the hybrid model and 4 alternative policy rules.  The first row reports the 
results for the Original Taylor Rule. Rows 2-4 report the results for the 3 regimes - Burns, 
Volcker and Greenspan - under the specification RR for the policy rule (see Table 2). 
Rows 5-7 report the results for the same 3 regimes now in the form of specification MR.  
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Figure 5.A.  Spectral Densities for Inflation, Output, Interest Rates:  

Backwards-Looking Model 
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Note: Figure 5.A reports the spectral densities of inflation, output, and the interest rate in 
levels and in first differences under three different policy regimes: (i) Original Taylor Rule 
(dotted line); (ii) Volcker Regime (black line); (iii) Greenspan Regime (dashed line). The 
spectral densities under the Burns regime are not well defined. The backwards model is 
used to evaluate the performance of the three regimes. The upper four panels are 
generated using the Recommended Rule as a measure of the regimes, the lower four 
panels use the Measured Rule as a measure of the regime. The coefficients are those 
reported in Table 2.  When necessary for a better appreciation of the spectral densities, the 
frequency ranges reported in the plots are restricted to cycles of longer duration. 
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Figure 5.B.  Spectral Densities and Design Transformation Matrix for Inflation and 
Output: Backwards-Looking Model 
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Note: The left side panels of Figure 5.B report the spectral densities of inflation 
( ( ) ( )

1 2, ,
,

v v
f fπ πω ω ) and output ( ( ) ( )

1 2, ,
,

y v y v
f fω ω ) decomposed according to the nature of 

the disturbance that generates them (shock to inflation (
1
v ) and shock to output (

2
v )). 

The spectral densities are derived using the backwards-looking model under three 
different policy regimes: (i) Original Taylor Rule (dotted line); (ii) Volcker Regime 
(plain line); (iii) Greenspan Regime (dashed line). The spectral densities under the Burns 
regime are not well defined. The regimes are expressed in the form of the Recommended 
Rule, the coefficients are those reported in Table 2. For readability, the frequency ranges 
reported in the plots are restricted to cycles of longer duration. The right side panels 
report the Design Transformation Matrix under the Volcker (plain line) and Greenspan 
(dashed line) with the Taylor regime acting as the no-control specification. A value of a 
Design Transformation Matrix component above 1 signals that a given regime increases 
the contribution to the variance at that frequency with respect to the Taylor regime. A 
value below 1 signals a reduction of the contribution to the variance at that frequency. 
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Figure 5.C.  Spectral Densities and Design Transformation Matrix for Inflation and 
Output: Backwards Model 

Measured Rule 
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Note: The left side panels of Figure 5.C report the spectral densities of Inflation 
( ( ) ( )

1 2, ,
,

v v
f fπ πω ω ) and Output ( ( ) ( )

1 2, ,
,

y v y v
f fω ω ) decomposed according to the nature of 

the disturbance that generates them (shock to inflation (
1
v ) and shock to output (

2
v )). The 

spectral densities are derived using the backwards-looking model under three different 
policy regimes: (i) Original Taylor Rule (dotted line); (ii) Volcker Regime (plain line); (iii) 
Greenspan Regime (dashed line). The spectral densities under the Burns regime are not 
well defined. The regimes are expressed in the form of the Measured Rule, the coefficients 
are those reported in Table 2.  For readability, the frequency ranges reported in the plots 
are restricted to cycles of longer duration. The right side panels report the Design 
Transformation Matrix under the Volcker (plain line) and Greenspan (dashed line) with 
the Taylor regime acting as the no control specification. A value of a Design 
Transformation Matrix component above 1 signals that a given regime increases the 
contribution to the variance at that frequency with respect to the Taylor regime. A value 
below 1 signals a reduction of the contribution to the variance at that frequency. 
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Figure 6.A.  Spectral Densities for Inflation, Output, and Interest Rates:  

Hybrid Model 

Recommended Rule 
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Note: Figure 6.A reports the spectral densities of inflation, output, and the interest rate in 
levels and in first differences under four different policy regimes: (i) Original Taylor Rule 
(dotted line); (ii) Volcker Regime (plain line); (iii) Greenspan Regime (dashed line); (iv) 
Burns Regime (dotted-dashed line). The hybrid model is used to evaluate the performance 
of the three regimes. The upper four panels are generated using the Recommended Rule 
as a measure of the regimes; the lower four panels use the Measured Rule as a measure of 
the regime. The coefficients are those reported in Table 2.  For readability, the frequency 
ranges reported in the plots are restricted to cycles of longer duration. 
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Figure 6.B.  Spectral Densities and Design Transformation Matrix for Inflation and 
Output: Hybrid Model 
Recommended Rule 
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Note: The left side panels of Figure 6.B report the spectral densities of inflation 
( ( ) ( )

1 2, ,
,

v v
f fπ πω ω ) and output ( ( ) ( )

1 2, ,
,

y v y v
f fω ω ) decomposed according to the nature of 

the disturbance that generates them (shock to inflation (
1
v ) and shock to output (

2
v )). The 

spectral densities are derived using the hybrid model under four different policy regimes: 
(i) Original Taylor Rule (dotted line); (ii) Volcker Regime (plain line); (iii) Greenspan 
Regime (dashed line); (iv) Burns Regime (dotted-dashed line). The regimes are expressed 
in the form of the Recommended Rule, the coefficients are those reported in Table 2. For 
readability, the frequency ranges reported in the plots are restricted to cycles of longer 
duration. The right side panels report the Design Transformation Matrix under the 
Volcker (plain line), Greenspan (dashed line) and Burns (dotted-dashed line) with the 
Taylor regime acting as the no control specification. A value of a Design Transformation 
Matrix component above 1 signals that a given regime increases the contribution to the 
variance at that frequency with respect to the Taylor regime. A value below 1 signals a 
reduction of the contribution to the variance at that frequency. 
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Figure 6.C.  Spectral Densities and Design Transformation Matrix for Inflation and Output 
Shocks, Hybrid Model 

Measured Rule 
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Note: The left side panels of Figure 6.C report the spectral densities of inflation 
( ( ) ( )

1 2, ,
,

v v
f fπ πω ω ) and output ( ( ) ( )

1 2, ,
,

y v y v
f fω ω ) decomposed according to the nature of 

the disturbance that generates them (shock to inflation (
1
v ) and shock to output (

2
v )). The 

spectral densities are derived using the hybrid model under four different policy regimes: 
(i) Original Taylor Rule (dotted line); (ii) Volcker Regime (plain line); (iii) Greenspan 
Regime (dashed line); (iv) Burns Regime (dotted-dashed line). The regimes are expressed 
in the form of the Measured Rule, the coefficients are those reported in Table 2. For 
readability, the frequency ranges reported in the plots are restricted to cycles of longer 
duration. The right side panels report the Design Transformation Matrix under the 
Volcker (plain line), Greenspan (dashed line) and Burns (dotted-dashed line) with the 
Taylor regime acting as the no control specification. A value of a Design Transformation 
Matrix component above 1 signals that a given regime increases the contribution to the 
variance at that frequency with respect to the Taylor regime. A value below 1 implies a 
reduction of the contribution to the variance at that frequency. 
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Appendix 1. Proofs and Derivations 

 

Many of our derivations employ the following lemma, due to Wu and Jonckheere 

(1992), which we report for convenience.  

 

Lemma 1.  

  

 
2 2

0 if 1; 2 log  if 1ie r d r r r
π

ω

π
ω π

−
− = ≤ = >∫  (A.1) 

 

 

Proof of Theorem 1 

 

 From (8) and (10) we can write, 
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 (A.2) 

 

Therefore, 
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 (A.3) 

 

From Lemma 1, 
2

0ie r d
π

ω

π
ω

−
− =∫  if 1r < . We have assumed that the driving 

process is second-order stationary which means that 1.iρ <  Hence the last terms in (A.3) 

are 0. The terms of interest are 
2

1

log
m

i C
i

i

e d
π

ω

π
λ ω

−
=

−∑∫  and 
2

1

log
ARw

i
i

i

e w d
π

ω

π
ω

−=

−∑∫ . 

Concerning the former, the C
i

λ ’s are the eigenvalues of the controlled system. When a 

control is applied to a system it seems desirable to eliminate any unstable eigenvalues, 

which means that 1 C
i

iλ < ∀ . From Lemma 1 this means 
2

1

log 0
m

i C
i

i

e d
π

ω

π
λ ω

−
=

− =∑∫ .  

Consider the term. 
2

1

log
ARw

i
i

i

e w d
π

ω

π
ω

−=

−∑∫ . Since it is possible that 1iw > ,  
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1

log 4 log   { } if 1
AR

i

i

w
i

i u i i
i u

e w d w i u w
π

ω

π
ω π

−
=

− = ∈ >∑ ∑∫  (A.4) 

 

which verifies the Theorem.  

 

Proof of Theorem 2 

 

Using the definition in (20) and the expression (21) we can apply Lemma 1 and get 
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( ) ( )

2

0
log det 4 log det 4 log

4 log 4 log  , { } if 1, { } if 1
i j

i j

NC i

v u i i j j
v u

D e d A w

w i v j u w

π
ω

π
ω π π

π λ π λ

−

−

⎛ ⎞⎟⎜ = − +⎟⎜ ⎟⎜⎝ ⎠

+ + ∈ > ∈ >

∫
∑ ∑

 (A.5) 

 

Subtracting the result of Theorem 1 to (A.4), Theorem 2 immediately follows.  

 

 

Construction of Unique Solution for Hybrid System 

 

Assuming that the hybrid system has a unique solution, we use Whiteman (1983) to 

derive the solution in the space of z -transforms.  Let the moving average representation for 

the solution be ( )t t
x G L v= . Define ( ) ( )1V z V W z−= . Applying the Wiener-

Kolmogorov formula and letting ( ) ( ) ( ) ( )CA z A z B z U z= + , the equilibrium MA solution 

must follow,  

 

 ( ) ( ) ( )( ) ( ) ( ) ( )1
0

0 CAG z G z G z A z zG z V zβ −= − − + . (A.6) 

 

Multiplying both sides by z  and rearranging 

 

 ( )( ) ( ) ( ) ( )2
0

0CA z A z z G z G V z zβ β− − = − +  (A.7) 

 

Let ( ) ( )( )2
0

CJ z Adj A z A z zβ= − +  and ( ) ( )det
d
g z J z= ; these imply 

 

 ( ) ( ) ( ) ( ) ( )( )1
0

d

G z J z G V z z
g z

β= − . (A.8) 

 

Without any additional restrictions, (A.8) expresses a solution to (A.6) that holds for any 

( )J z  and ( )V z .   
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 Before we proceed further it is useful to make an observation about the structure of 

(A.8). First notice that if the ×2 2  matrix β  is the zero matrix, then analysis entirely centers 

around the roots of the modulus of the determinant of the ×2 2  polynomial matrix 

( ) 2
0

CA z A z z− .  Assume that the determinant of the ×2 2  matrix 
0
A  is nonzero so that 

we can multiply both sides of (A.7) by 1
0A− .  Analysis now centers around the roots of the 

polynomial equation ( , ) 0zϕ β = , where ( , )zϕ β  is defined as  

( )1 1 2
0 0

( , ) det( )Cz zI A A A z zϕ β β− −= − − . In the case of no control one defines the 

corresponding polynomial by replacing ( )CA z  with ( )A z .  

 As our general analysis of the construction of a solution to (A.7) is complicated, it is 

useful to first consider a simple special case in order to develop intuition.  Since any 

polynomial matrix may be reduced to diagonal Smith form by pre-multiplication (post-

multiplication) by an appropriate unimodular matrix ( ),( ( ))
L R
U z U z  (Zhou, Doyle, and 

Glover (1996, page 80, Lemma 3.25)) it is useful to examine diagonal cases.  Recall that 

unimodular polynomial matrices have nonzero determinants that are constant in z.  For 

example there exist unimodular polynomial matrices ( ), ( )
L R
U z U z  such that 

( ) 2
0

( ) ( )( ) ( )C
L R

Q z U z A z A z z U zβ= − − where ( )Q z  is diagonal.  Thus the set of roots to 

the polynomial equation det ( ) 0Q z =  is the same as for ( ) 2
0

det( ) 0CA z A z zβ− − = .  

In view of this result we use diagonal systems below in order to generate intuition about 

general systems. 

 Assume that ( )CA z  and ( )A z  are diagonal polynomial matrices and ( )V z I=  for 

all z .  Furthermore suppose that β  is a diagonal matrix with common diagonal element 

µ , i.e. Iβ µ= .  It is evident that a solution to the MA form is defined by 

 

 ( ) 2( ) ( ) (0),C
ii ii ii

z A z z G z z Gµ µ− − = − . (A.9) 

 

for   1,2i = .  Recall that ( )C
ii
A z  are polynomials of finite degree.  Factoring out µ−  from 

both sides of the above expression, 
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( )1 1 2

2 1
1 ,

(1 ) ( )

( (1 )) ( ) (0)(1 ( (0)) )i

C
ii ii

n C
k d k ii ii ii

z A z z G z

g z G z G bG z

µ µ− −

+ −
=

− + =

Π − = −
 (A.10) 

   

for 1,2i = .  Now let 
, 2i

C
d n
g +  be the root that will exist if µ  is small enough and which goes 

to infinity as µ  goes to zero.  Choose 1
, 2

( (0))
i

C
ii d n
G gµ −

+= , and cancel the term off both 

sides of the above expression for 1,2i = .  This operation is analogous to the procedure in 

Appendix 3.  If we now take the modulus of both sides, take the natural log and integrate 

for z  over the unit circle, i.e. for , [ , ]iz e ω ω π π−= ∈ − , we can use the formula of Wu and 

Jonckheere from (A.1), to obtain 

 

 
,

{ :| | 1}

ln ( ) 2 ln | | 2 ln (0)
k

i C
ii d k ii

k

G e d g G
π

ω

λπ

ω π π−

>−

= − +∑∫ . (A.11) 

 
Notice that this equation makes sense even if some of the roots are unstable.  We always 

maintain the assumption that when control is applied, that the controlled system is stable.  

In that case the first term on the RHS of is zero.   

We next consider a general ×2 2  matrix case.  For ( ) ( ) ( ) ( )CA z A z B z U z≡ +  and 

with ( ) 1V z =  we have  

 

( )1 1 2 1
0

( )[ ] ( ) ( (0))[ ( (0)) ]CI A z A z z G z G I G zβ β β β β− − −− − + = − −  

 

Taking determinants on both sides, det( )β  cancels off so that 

 

 1
1 ,
(1 )det ( ) det( (0))det( ( (0)) )k m C

k d k
g z G z G I G zβ= −

=Π − = −  (A.12) 

 
Notice that 1det( ( (0)) )I G zβ −−  can be written in the form  

 

 1
1 2

det( ( (0)) ) (1 )(1 )I G z z zβ η η−− = − − . (A.13) 
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Thus we perform a root cancelling exercise like that above for the diagonal case where we 

cancel the two roots that play the role of the twice repeated solution 0z = .  Label these 

two roots as , 1m m − .  Then we have  

 

 2
1 ,

(1 )det ( ) det( (0))k m C
k d k

g z G z G= −
=Π − = . (A.14) 

One may repeat the above analysis to compute ( )ln det iG e d
π

ω

π

ω−

−
∫ .  While this 

decomposition sheds light on the forces that determine Bode-like integral contraints for 

hybrid systems, it is important to note that the “constants” depend upon the choice of 

control ( )CA z  in the hybrid case.  In the backwards-looking case, 0β = , the constants 

are independent of the choice of control so long as control is chosen to stabilize the system. 

We next consider the fully general case.  The stability of ( )G z  depends on the 

location of the roots of the characteristic polynomial ( )d
g z . Notice that 

( ) 0,11 0,12

0,21 0,22

0
g g

G
g g

⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
 appears on the RHS of (A.8). In principle, we could specify any 

arbitrary ( )0G  and the solution (A.8) would still be valid.  Suppose, for example, that the 

determinant ( )d
g z  has no roots inside the unit circle. Since ( )0G  does not affect the 

characteristic roots of the system, (A.8) is a stationary solution for any bounded ( )0G .  In 

this case there exist multiple stationary solutions to (A.8).  To obtain uniqueness one needs 

additional conditions to restrict ( )0G . These conditions are provided by the requirement 

that ( )d
g z  contains unstable roots.  If this is the case, the elements in ( )0G  can be chosen 

in order to exactly cancel those unstable roots.  How is this condition related to the 

proposition on uniqueness we present in Appendix 2? The connection lies in the fact is 

that we are searching for a solution in the space of one-sided moving averages in 
t
v  that are 

square summable. For any solution ( )
0

i
i

i

G z g z
∞

=

= ∑  belonging to that space, equation 

(A.8) must hold.  In addition to consistency with (A.6), square-summability is the only 
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additional requirement for a solution.  The conditions for uniqueness that we assume 

ensure that the elements of this matrix are chosen in order to ensure that the system is 

stable.  Stability of the system is entirely determined by the roots of the polynomial ( )d
g z . 

The choice of the elements is made in order to ensure that any unstable root at the 

denominator (a pole inside the unit circle of ( )d
g z )  is cancelled with an unstable root at 

the numerator (a zero inside the unit circle of each element of ( ) ( ) ( )( )0J z G V z zβ − . 

The conditions for uniqueness of the rational expectations solution corresponds to each 

numerator term in this matrix to become zero at the unstable poles of the denominator. 

Let ip  denote an unstable pole, then each ip  provides the associated set of equations  

 

 ( ) ( ) ( )( )0 0
i i i

J p G V p pβ − =  (A.15) 

 

whose rank is zero, since ( )iJ p  is by construction not invertible. Generally, the condition 

for uniqueness in a 2-equation system corresponds to requiring two roots of the polynomial 

( )d
g z  being unstable. In that case, the system that solves for the constant is 
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( )( ) ( ) ( )( ),12 12 0,22 2 12 2 12 2 21 0,12 22 0,22 2 22 2
0g p v p J p g g p v pβ β β+ − + + − =

(A.16)  

 

To simply notation, define 
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 (A.17) 
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The explicit expressions for the constants are 

 

 ( ) ( ) ( ) ( ) ( )
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2 1 1 1 1 2
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1 2 2 1
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 ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 2 2 2 1

0,22 1 2

1 2 2 1

,
p p p p

g p p
p p p p

α κ α κ

α δ α δ

−
=

−
. (A.21) 

 

We can now derive (29) in the text. Recall that 

 
 

 ( ) ( ) ( ) ( )( )( )2
0

det
d
g z zA A z B z U z zβ≡ − − − . (A.22) 

 

We denote the determinant by ( )d
g z  to stress that the cancellation of unstable roots that 

allows the uniqueness of the solution has not yet been considered.  The solution matrix can 

thus be written as 

 

 

( )

( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

11 12 11 0,11 12 0,21 11 11 0,12 12 0,22 12

21 22 21 0,11 22 0,21 21 21 0,12 22 0,22 22

1

d

G z

J z J z g g zv z g g zv z

J z J z g g zv z g g zv zg z

β β β β

β β β β

=
⎛ ⎞⎛ ⎞+ − + −⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜ + − + −⎟ ⎟⎜ ⎜⎝ ⎠⎝ ⎠

(A.23) 

 
Once the constants in ( )0G  are properly specified it is possible to write each term of 

( )G L  as having a common denominator whose zeros are all outside the unit circle, we 

denote such a denominator by ( )d
g z ; as noticed, this denominator is common across 
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terms modulo additional terms that are functions of the denominator polynomials in 

( )1V W L− . This property is important since the last term does not depend on the control 

applied to the system. We make this statement formal in what follows.  

Recalling that ( )W L  has the form (4) in the text it must be the case that for ( )V L   
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, (A.24) 

 

where the numerator polynomials are defined so that: 
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1
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The terms in the second matrix of the solution matrix will take the form 

 

 
( )
( )

( )( ) ( )
( )

( )
( )

,11 11 0,11 12 0,21 ,11,11 ,11

11 0,11 12 0,21

,11 ,11 ,11

d nn n

d d d

v L g g zv Lv L v L
g g z

v L v L v L

β β
β β

+ −
+ − = ≡ .(A.26) 

 
It follows that the form of the solution matrix is 
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( ) ( )
( ) ( )
( ) ( )
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( )

( )
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( )
( )

( )
( )

( )

( ) ( )
( ) ( ) ( )
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d d
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d d
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d d d
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g z
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+ +

=
( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
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( )

( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )
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21 22 21 22
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⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟+ +⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
⎛⎜
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⎝

( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

,11 ,12

,11 ,21 ,12 ,22
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n n
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d d d d

g z g z

v z v z v z v z

g z g zg z
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⎞⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎠
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

(A.27) 

 

The first step in this expression is matrix multiplication, the second step defines the 

numerators of each term as ( ),n ij
g z  since the free parameters have not been pinned down, 

and the step applies the requirements for the uniqueness of a solution by choosing the free 

parameters so as to cancel the zeros of the common denominator ( )d
g z  inside the unit 

circle with the zeros of each numerator ( ),n ij
g z . Equation (A.27) shows that the solution of 

the hybrid model can be written in matrix moving average form where each element is a 

ratio of a denominator term and a numerator term. While the numerator terms are 

potentially different from one another, the numerator term has an endogenous component 

that is common across elements and an exogenous component that differs across elements 

and which cannot be affected by the control policy. This form is very convenient in the 

proof of Theorems 3 and 4. 

 
 
Proof of Theorem 3 
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We need to evaluate the integral of the expression ( )( )2log | det |C iD e ω− . 

According to our definitions, ( )( )CG z G z≡  for ( ) 0U z ≠ , therefore we can use (A.27), 

which implies  

 
( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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,11 ,21 ,12 ,22

,21 ,22

,11 ,21 ,12 ,22

,11 ,22 ,21 ,12

2
,11 ,21 ,12 ,22

1
det ( ) det

1

n n

C d d d d

n nd

d d d d

n n n n

d d d dd

g z g z
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G z

g z g zg z

v z v z v z v z

g z g z g z g z

v z v z v z v zg z

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥= ⎜ ⎟⎟⎜⎢ ⎥⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎟⎜⎢ ⎥⎝ ⎠⎣ ⎦
−

=

 (A.28) 

 

It therefore follows that 
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( ) ( ) ( ) ( )

( ) ( )

2

2

,11 ,22 ,21 ,12

2 2

,
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C i

i i i i
n n n n

i i
d d ij

i j

G e d

g e g e g e g e d
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π

π
ω ω ω ω

π

π π
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ω

ω
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−

−

− − − −

−

− −

− −
=

⎛ ⎞⎟⎜ =⎟⎜ ⎟⎜⎝ ⎠
⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜− −⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

∫

∫

∑∫ ∫

. (A.29) 

 

The interesting features of this expression derive from the first component, i.e.  

 

( ) ( ) ( ) ( )
2

,11 ,22 ,21 ,12
log i i i i

n n n n
g e g e g e g e d

π
ω ω ω ω

π
ω− − − −

−

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠∫ . 

 

Before dealing with this component, we evaluate the others. For the 

term ( )
2

log i
d
g e

π
ω

π

−

−

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠∫ , first write ( )d
g z  as ( ),

1

1
Cd

C
d d i
i

g g z
=

−∏ , where, because of the 

stability requirement, 
,

1C
d i
g <  for every 1,.., Ci d= . Notice that the zero degree 

coefficient in this polynomial does not depend on the control applied to the system; it can 
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be shown to equal the determinant of the matrix coefficients for the forward looking 

elements, β  , i.e. ( )11 22 12 21
det

d
g β β β β β= = − . As for the second term, the elements 

( ),d ij
v z  have been constructed so that 

 

 ( ) ( ) ( ) ( ) ( ),11 ,21 ,12 ,22 ,
1

1
h

d d d d d k
k

v z v z v z v z v L
=

= −∏  (A.30) 

 
where h is the sum of the degrees of each denominator term and the 

,d k
v ’s are the 

eigenvalues associated to the zeros of each denominator term, all of which are assumed to 

lie inside the unit circle, the contribution of ( )
2

,
, 1,2

log i
d ij

i j

v e d
π

ω

π
ω−

−
=

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠∑ ∫  in (A.29) is zero. 

With respect to the first term, first rewrite the polynomial expression as 

 

 ( ) ( ) ( ) ( ) ( ),11 ,22 ,21 ,12 ,
, 1,2

1
CN

C C
n n n n n n ij

i j

g z g z g z g z g g z
=

− = −∏  (A.31) 

 

Neither the zero degree coefficient C
n
g  nor the roots of the individual polynomials in 

(A.25) are bounded by any stability requirement; rather they depend on the interaction 

between the structural parameters of the model and the properties of the processes of the 

exogenous disturbances entering the system. This can be clearly see from the expressions 

above for the determination of the constant matrix ( )0G . Once this matrix is substituted 

into the solution and the desired roots canceled, both the common term and the zeros are 

reallocated in ways that are, loosely speaking, unrestricted. It follows that there are no basis 

upon which we can a priori rule out their contribution to the Bode constraint. It follows 

that  
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∫

∏∫
 (A.32) 

 

Using Lemma 1 as in the proof of Theorem 1 the result of Theorem 3 follows 

immediately. 

An essential distinction between a system containing forward looking expectations 

and a system that is purely backwards-looking lies in the fact that the coefficient on the zero 

degree term C
n
g  is always affected by the control through the commitment of the 

policymaker to a rule that forces agents to respond in a particular way to shocks in the time 

period they are realized and observed.   

 

  

Proof of Theorem 5 

 

Part i. The result for the backwards-looking case is a direct consequence of Lemma 

1 applied to eq. (46) in the text.  For the hybrid case the design transformation matrix 

obeys the sequences of equalities 
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where 
,

{ } if 1NC
i d i

i v g∈ > .  

 

Part ii. Write the backwards-looking system as 

 

 ( ) ( )0 1
C

t t t
A x A L x W L w

−
= +  (A.34) 

 

where ( ) ( ) ( ) ( )CA z A z B z U z= +  and let ( ) ( )NCA z A z= . Since we have assumed that 

( )W L  is diagonal, which results also in
t t
w v=  , the controlled system is 
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(A.35) 

 

which means that 
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(A.36) 

 

Notice that 

 

 ( ) ( )( ) ( )0
det det detC CD z A A L L W L= − . (A.37) 
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The uncontrolled case has a similar form. The design transformation matrix can be written 

as 
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( )( ) ( )( )
( )( ) ( )( )
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(A.38) 

 

For a SIMO model the control can be applied only to one equation.  Without loss of 

generality, we focus on 1j = , which corresponds to the control being applicable only to 

the first equation in (A.34). For this case, ( ) ( )1 1
21 21
C NCa z a z− −=  and ( ) ( )1 1

22 22
C NCa z a z− −= , 

which imply that  
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 (A.39) 

. 

 

so that 
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and the result follows from Lemma 1. When 2j = , ( ) ( )1 1
11 11
C NCa z a z− −=  and 

( ) ( )1 1
12 12
C NCa z a z− −=  one has 

 

 ( ) ( )
( )( ) ( )( )
( )( ) ( )( )

1 1
0 0

12 22 1 1
0 0
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− −
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− −
(A.41) 

 

which completes the proof for the backwards-looking case. 
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Appendix 2. Conditions for Unique Solution to Hybrid Model 

 

Several methods have been suggested to state the conditions for the existence and 

the uniqueness of a solution for linear rational expectations models with forward looking 

components. Despite a continuing ongoing effort, a truly general method encompassing 

any generic form of multivariate rational expectations models is still unavailable. Onatski 

(2006) appears to be, at the time of this writing, the most promising attempt for an 

analytical method that is both straightforward to interpret and is applicable to a large family 

of rational expectations models12.  Sims (2007) refers to computer programs available on 

his website that resolve the issue for models with a finite number of leads and lags.  For our 

purpose, as long as a unique equilibrium exists, the results presented in this paper hold.  

For completeness we report the conditions for uniqueness that apply to the models of this 

paper.  The hybrid model we employ takes the form 

 

( ) ( ) ( )( )0 1 1t t t t t
A x E x A L B L F L xβ ε+ −= + + +                        (A.42) 

 

where ( ) .
t t
W L wε =

 
We work under the assumption that ( )W L  is a rational function 

and is invertible inside the unit circle.  Invertibility is not a major issue as one can always 

rotate the space of disturbances to obtain an invertible representation. The assumption of 

rationality ensures that the process tε  has a rational spectral density matrix. We look for a 

solution in the space of the square-summable linear combinations of current and past 

realizations of the driving processes.  It is useful for us to work in the space of orthogonal 

innovations to the driving process, so we employ 
t
ν  with orthogonal elements such that 

( )t t
W L Vvε = . For the following results the scaling by a constant matrix is irrelevant 

therefore we abstract from the orthogonalization issue. 

The hybrid model of this paper belongs to a family of multivariate rational 

expectations models that can be represented as 

 

                                                 
12 Sims (2007) expresses some concerns about Onatski (2006). 
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,
0

r

j s t s t j t
j s

A E x Hf
∞

− −
=−∞ =

=∑ ∑                                                 (A.43) 

 

The mathematical expectations are taken conditional on the information available at time 

t s− , including the structure of the model and all the current and past realizations of 

exogenous and endogenous variables. The vector 
t
f  is a vector of current and possibly past 

realizations of the exogenous driving process 
t
w . The real matrix H  can take any form 

and it will absorb, for instance, the constant matrix  V . As an example, consider the simple 

case of ( )W L I= , then (A.42) may be represented by (A.43) if 

 

1,0 0,0 0 ,0 1 1 1
,   ,    for 0

j j j j
A A A A A B F jβ− − − −= = = + > . 

 

When ( )W L  takes more complicated forms, the mapping between the two 

representations is convoluted but it is always well defined.  

In order to state the conditions for a unique solution to (A.43) we define ( )A ω  as 

 

( ) ( )
,

0

r
i j r

j s
j s

A A e ωω
∞

− −

=−∞ =

≡ ∑ ∑
                                               (A.44)

 

 

This is essentially the evaluation of the z − transforms of the expectational equation along 

the unit circle. The key result in Onatski states that the behavior of the solution to the 

linear rational expectations model depends on the behavior of the graph of the function 

( )detA ω  for 0,2ω π⎡ ⎤∈ ⎢ ⎥⎣ ⎦ . Since ( )i j re ω− −  are periodic functions with period 
2
j r
π
−

 the 

graph of ( )detA ω  designs a closed contour in the complex plane. The number of times 

that the graph of rotates clockwise around zero is called the winding number of ( )A ω . The 

winding number is negative if the rotation around zero is counterclockwise. The following 

proposition is adapted from Onatski (2006). 
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Proposition A.2.1. Necessary and sufficient conditions for unique rational expectations 
equilibrium 
 

The rational expectations model of the type (A.43) has a unique solution if and only if the 

winding number of ( )detA ω  is equal to zero. 

 

The winding number of ( )detA ω  is equal to the sum of the partial indices of 

( )A ω . The partial indices are the exponents of the diagonal elements in the diagonal 

matrix of the Wiener-Hopf factorization of ( )A ω . As an example of the result in practice, 

for a simple hybrid model of the form 

 

 ( )0 1 1t t t t t
A x E x A BF x wβ

+ −
= + − +  (A.45) 

 

One has 

 

 ( ) ( )0
i iA e A A BF eω ωω β −= − + − −  (A.46) 

 

Applying the Wiener-Hopf factorization one can derive the partial indices and check 

whether the parameter values satisfy the condition for uniqueness. 

 

 

Appendix 3.  Justification of design limits for unstable no control proceses 

 

In order to understand how design limits may be computed in the presence of the 

nature of the argument, we explicitly solve for a scalar AR(1) case 

 

 
1 1t t t t t t

x E x ax buβ ε
+ −

= + + +  (A.47) 
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with associated scalar feedback rule 

 
1t t

u ux
−

= . (A.48) 

 

 The −z transform of the MA coefficients for controlled system equilibrium may be 

written 
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1
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1
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1 1

C C
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C

C C
d d
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= =

− − − −
 (A.49) 

 

where c a bu= + . Let 
,2
C
d
g  be the root with larger modulus and 

,1
C
d
g  be the root with 

smaller modulus.  It can be shown that 
0 ,1

lim C
d
g cβ⇒ =  and 

0 ,2
lim C

d
gβ⇒ = ∞ .  One can 

then choose 
0
Cg  so that ( ) 1

0 ,2
C C

d
g gβ

−
=  and thus cancel common terms from numerator 

and denominator of ( ),CG z β .  We refer to this operation as root cancelling to achieve 

analyticity in z.  It is straightforward to show that ( )0

1
lim ,

1
CD z

czβ β⇒ =
−

 (using 

L’Hospital’s rule).  Now write an analogous expression for the “pseudo solution” 

( ),NCG z β  and conduct root cancelling analogously to the above.  One can then consider 

the analog to the sensitivity function, 

 

 ( )
( )

( )

1

2 20 0
0

2 21
0

0 0

1
,

1

C C
C

NC
NC NC

g g z
z g z az z az

S z
z g z cz z czg g z

ββ β β
β

β β ββ

−

−

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜− − − − −⎝ ⎠
= =

⎛ ⎞− − − − −⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠

 (A.50) 

 

Write 

 

 
( )( )
( )( )

2 1 1 2
,1 ,2

2 1 1 2

,1 ,2

1 11

1 1 1

NC NC
d d

C C
d d

g z g zz az z az

z cz z cz g z g z

β β β
β β β

− −

− −

− −− − − +
= =

− − − + − −
 (A.51) 
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Cancelling roots for both the C  and the NC  part of the above expressions and collecting 

terms, 

  

 
( )
( )

,2 ,1

,2 ,1

1
( , )

1

C C
d d

NC NC
d d

g g z
S z

g g z
β

−
=

−
  (A.52) 

 

We define ( ),S z β  to be the sensitivity function for the hybrid model with 

parameter β .  Note that every mathematical operation that needs to be done to form 

( , )S z β  in the definition of sensitivity function above is valid independent of the stability of 

the underlying stochastic processes just as in the definition of the sensitivity function in Wu 

and Jonckheere (1992, page 1801).  One should think of the construction above as the 

analog to the open loop poles (the NC case) and the closed loop poles (the C case) of Wu 

and Jonckheere (1992, p. 1801).  The same kind of construction as that above applies to 

general scalar cases so long as the resulting polynomials are of finite degree.  Generalization 

of this argument to the general scalar case is straightforward.  For the backwards case, the 

analysis hinged upon equation (21) in the text.  Factoring the RHS polynomials in equation 

(21) in the text produces the closed loop poles (open loop poles) analogously to Wu and 

Jonckheere (1992, p. 1801).  For the hybrid matrix case one can follow in an analogous 

fashion by replacing (A.47) with its matrix analog, generalizing (A.48) to allow for more 

complicated feedback rules. The same kind of cancellation of appropriate roots we did for 

the scalar case can be done in with case in order to define the determinant of the sensitivity 

function ( )( )det ,S z β .  Note that 
0 0

,NC Cg g  are now 2 2×  matrices.  One might think at 

first blush that four unknowns cannot be “cancelled” by two roots.  But there are 

symmetries in the structure of this problem that induce dependencies in the matrices of 

unknowns 
0 0

,NC Cg g  so that there are effectively only two unknowns per each matrix.  

Appendix 2 discusses the construction of the equilibrium MA coefficients in more detail.   
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