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I. Introduction 

Research on the determinants of human capital accumulation has focused increasingly on the 

role of peers, but estimating peer effects is hindered by selective sorting across schools and 

potential omitted variable bias. Recent work has employed novel identification strategies based, 

in part, on quasi-randomization of high achieving peers to estimate peer effects.  But because 

peer achievement is a function of multiple factors, the estimates do not allow one to draw any 

conclusions about the mechanism(s) by which peer achievement affects student achievement.  

High achieving peers are on average more able and better behaved. Knowing whether ability, 

behavior or some combination of the two is responsible for observed peer effects is necessary for 

the development of an accurate model of education production and has important implications 

for how we organize schools and classrooms.  If ability, which is generally considered fixed or 

difficult to modify, is solely responsible for observed peer effects, then the appropriate policy 

response would be to re-organize classrooms.  However, if behavior which is more malleable 

than ability proves to be an important factor, then the optimal response may be to design policies 

that improve student behavior as they are likely easier to implement than policies that 

redistribute students based on ability - a poorly measured and often unobserved characteristic.  

 In this paper I provide strong evidence that peer behavior is an important input in 

education production, perhaps more so than peer ability.  To do so I estimate the impact of 

having classmates with ADD before and after diagnosis.  I show that before students are 

diagnosed with ADD they display greater externalizing behavior problems and worse self-
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control.  After diagnosis, their behavior improves but their cognitive achievement does not, 

consistent with a large body of work in the medical literature.
1
   

To address issues of selection into peer groups, I include individual fixed effects (which 

subsume school fixed effects) to control for sorting across schools.  To address the potential for 

any sorting within schools over time (eg, dynamic sorting or tracking) that might be correlated 

with a diagnosis of ADD, I pursue multiple strategies.  First I provide evidence that the timing of 

diagnosis is uncorrelated with peer characteristics including their past achievement, or observed 

teacher characteristics.  Second, I bypass altogether the issue of selective sorting within schools 

over time by redefining the peer groups as all students in the grade (not the classroom).  Finally, 

I instrument for the timing of diagnosis using expansions in public health insurance through 

Medicaid/SCHIP.  Medicaid/SCHIP expansions increase the probability of health insurance 

coverage and lower the cost of diagnosis and treatment of ADD but otherwise should have no 

effect on classroom composition, teacher quality or student test scores.
2
 

 There are two advantages to this identification strategy.  First, by using a diagnosis of 

ADD to identify peer effects one can identify the relative importance of peer behavior, holding 

achievement constant.  Second, the policy used to instrument is not an education policy and thus 

is more arguably exogenous in this context.   

There are four main findings.  First, children with undiagnosed (and therefore untreated) 

ADD generate negative externalities in the classroom, lowering the reading and math test scores 

of their classmates: if 8.5 percent of the class have undiagnosed ADD (the standard deviation in 

                                                 

1 Swanson et al (1991) provide evidence that higher than optimal doses prescribed to children when improvements 

in behavior (rather than cognitive achievement) are used to gauge success can explain this finding.  I return to this 

point later.  
2I discuss whether the exclusion restriction is met later.  
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these data), test scores will be between 1 and 2 points, 10-20 percent of a standard deviation, 

lower.  Once diagnosed, students with ADD generate no such negative externalities.  This 

represents a moderate impact given previous findings that a one standard deviation increase in 

peer test scores increases individual test scores by 35 percent of a standard deviation (Hanushek 

et al, 2003). Second, once diagnosed, children with ADD see significant improvements in their 

own behavior but no improvement in their achievement, consistent with medical evidence and 

suggesting that the students with undiagnosed ADD negatively affect peer achievement through 

their disruptive behavior.  Third, these effects are concentrated among boys.  This can potentially 

be explained by the fact that peer groups at early ages are largely gender-specific (Maccoby, 

1995) and ADD is a disorder that mostly affects boys.  However, it may also be that girls are 

simply less affected by disruptive behavior in the classroom. Finally, I show that institutions can 

play an important role in both affecting peer behavior and mitigating the impact of negative peer 

behavior.  Specifically, I find that expansions in public health insurance increase the number of 

children with health insurance, thereby increasing the probability of diagnosis and reducing 

problematic behavior. Moreover, I find that resources (most notably class size) can overcome the 

negative peer effects observed, consistent with the model of peer effects proposed by Lazear 

(2001). 

 These findings have a number of important implications.  First, they contribute to the 

existing literature on peer effects in the classroom, shedding light on one potential mechanism 

through which peer effects operate.  While these estimates of the impact of inattentive/impulsive 

behavior are derived from students with ADD, they likely generalize to other problematic or 

disruptive behavior in the classroom, suggesting that the total peer effect due to behavior exceeds 

these estimates.  Second, the finding that achievement of girls is less affected by disruptive 
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behavior in the classroom can potentially explain part of the widening gender gap in school 

achievement. Third, the results suggest that peer effects should be considered within their 

institutional framework: health and educational resources can affect peer behavior and mitigate 

the negative effects of peer behavior.  As such, policy discussions need not be limited to how 

best to compose classrooms to maximize peer effects.  Rather, policies that also consider the 

ways in which teacher, school, and community resources (health care in the case of ADD) 

influence or mitigate peer effects via student behavior may ultimately be easier to implement and 

just as effective.   

 Finally, the results of this paper contribute to our understanding of the relationship 

between health, productivity and growth.  Previous work has linked children’s physical and 

mental health with their own human capital accumulation (Grossman and Kaestner, 1997; Currie 

and Stabile, 2007; Fletcher and Wolf, forthcoming).  Other work (Weil, 2007; Shastry and Weil, 

2005) have estimated the effect of physical health on income per capita.  Results presented here 

suggest that mental health may also play an important role in explaining growth – not only 

through its impact on the human capital accumulation of those with a mental disorder, but also 

through externalities imposed on others.   

 The rest of the paper is organized as follows: section II contains background information 

on ADD and the peer effects literature; section III describes the data; section IV presents a model 

of student achievement that makes explicit what kind of education production function would 

yield these empirical results and also helps us to interpret the empirical estimates; section V 

presents estimates of the impact of diagnosis on one’s own achievement and behavior. Sections 

VI and VII contain the fixed effect and instrumental variable estimates of the externalities 
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associated with untreated ADD, respectively; section VIII includes a cost-benefit analysis of 

treatment; section IX includes two additional robustness checks and section X concludes.   

  

II.  Background 

A. ADD: Symptoms, Prevalence and Etiology 

ADD is characterized by inattention, impulsivity and hyperactivity.  For a medical diagnosis 

of ADD, the symptoms must be more frequent or severe than in other children the same age and 

at least some of the symptoms must have been present before age 7, according to the Diagnostic 

and Statistical Manual of Mental Disorders IV.  Data from the National Health Interview Survey 

(NHIS) show that the proportion of children diagnosed with ADD increased from five to six 

percent over the period 1997-2004.  ADD is much more common among boys and rates of 

diagnosis increase with age until age 11-12 when they plateau.  In 2003, prevalence among boys 

between the ages of four and six was five percent, increasing to 11 percent for those aged 11-12, 

and remaining steady at 12 percent for those age 13-17.  

 Children with ADD are characterized by worse behavior and lower cognitive 

achievement (see Mannuzza and Klein, 2000 for a review; Currie and Stabile, 2007).  The 

negative impact of ADD on behavior is significant. Barkley et al (1990) finds that almost half of 

students with ADD had been suspended from school. Greene et al (2002) find that students with 

ADD consume a significantly higher percentage of teacher attention and that teachers report 

significantly greater stress in their interactions with them.  

There is mounting evidence in the medical literature that ADD is biologically determined, 

with much of the evidence based on brain imaging studies (Swanson et al 2001; Castellanos, 

2001; Waldman et al, 1998; Rowe et al, 1998).  This is consistent with recent work that suggests 
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that children with ADD display many of the symptoms associated with the disorder in preschool 

(Campbell and Ewing, 1990) even though most children are not diagnosed with the disorder until 

later.   

 

B. Impact of Treatment on Behavior and Cognitive Achievement 

Of youths diagnosed with ADD, an estimated 78% are prescribed one or more stimulants 

(Guevara et al, 2002).
3
  Medical evidence suggests that diagnosis and treatment of ADD 

positively affects behavior in 70-80 percent of children but has little impact on cognitive 

achievement.  In a recent review of the literature, Spira and Fischel (2005) conclude that for 

children with ADD “stimulants may increase on-task behavior, decrease disruptive behavior, and 

even increase the amount of class work completed, but they do not appear to have a significant 

effect on the accuracy of that work.”  Recent work in the economics literature by Currie and 

Stabile (2007) and Fletcher and Wolf (forthcoming) based on large datasets of children followed 

over time for many years is consistent with these findings.  

Swanson et al (1991) shed light on why treatment has consistently been found to improve 

behavior but not achievement. In a review of the medical research on the topic, they conclude 

that when behavioral responses are used to gauge treatment effectiveness in children (as they 

nearly always are), it often leads to medication dosage which exceeds target levels for improved 

cognitive performance, a phenomenon they refer to as “cognitive toxicity.”
4
  I incorporate this 

concept of cognitive toxicity in the model of ADD treatment and peer effects presented in 

section IV to explain why we find no effect of treatment on a child’s own achievement, but we 

do find an effect on the achievement of his peers.  

                                                 

3 For those not prescribed stimulants, antidepressants, antipsychotics, and clonidine are often prescribed. 
4 In describing this phenomenon, Swanson et al (1991) refer to medical children as “zombie-like.” 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_Abstract&term=%22Guevara+J%22%5BAuthor%5D
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C. Peer Effects Literature 

 Most of the empirical literature on peer effects examines the impact of peer achievement 

on own achievement. The primary challenge to identifying peer effects lies in overcoming the 

endogeneity of one’s peer group.  Specifically, issues of self-selection, omitted variables and 

simultaneity may bias estimates of peer effects.  Selection refers to the fact that students select 

their peer groups largely through their choice of school.  Omitted variables might include 

unobserved aspects of teacher quality that affect both the student and his peers. Finally, 

simultaneity refers to the fact that while a student is influenced by his peers, he also influences 

his peers (Brock and Durlauf, 2001; Manski, 1993; Moffitt, 2001.)   

Many papers employ novel techniques to identify the causal impact of peers.  Hanushek 

et al (2003) identify peer effects by estimating the impact of differences in peer characteristics 

for cohorts of students within the same school.  They find that peer achievement does have a 

significant and positive impact on achievement.  Angrist and Lang (2004) study Metco, a 

desegregation program in Boston which dramatically increased the number of low-performing 

black students in predominantly white suburban schools, and find little effect.  By focusing on a 

policy of forced desegregation they too overcome issues of self-selection and other omitted 

variables.  Cooley (2006) estimates the impact on high achieving students of a change in policy 

that raises the bar for promotion for low achieving students.
5
 

                                                 

5 Other work on peer effects include Evans, Oates and Schwab (1992), Betts and Morell (1998), Epple and Romano 

(1998), Vigdor and Nechyba (2005).  Of these, Evans Oates and Schwab (1992) and Vigdor and Nechyba (1998) 

find that peer effects estimated via OLS are not robust under simultaneous equation estimations for the former or the 

inclusion of teacher fixed effects for the latter. Gavira and Raphael (2001) look at peer effects in the context of 

juvenile behavior. Sacerdote (2001) and Zimmerman (2003) find positive peer effects among college students.  
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 The above-mentioned natural experiments, however, do not lend themselves to 

identification of the mechanism(s) by which peers affect student achievement.  High achieving 

peers might matter because they are more able, or because they are less disruptive.  The latter 

would be consistent with the model proposed by Lazear (2001) in which the ability of a student 

to learn depends on the behavior of his classmates because it reduces effective teaching time or 

directly interferes with his work.  Distinguishing between the potential mechanisms has proven 

difficult.  In a recent empirical paper on peer effects, Hanushek et al (2003) write “In general 

there has been limited attention given to the mechanism through which peers affect 

outcomes…Most analyses have focused on the identification of the “reduced form” relationship 

between outcomes and specific measures of peer group quality, typically ignoring the precise 

structure of the underlying causal relationship.”  

Recent empirical work provides some evidence on the role of peer behavior in determining 

cognitive outcomes.  Three of these papers focus on the impact of having more girls in a 

classroom. Hoxby (2000) exploits variation in gender (racial) composition to estimate the impact 

of peer gender (race) on achievement.  Whitmore (2005) finds that even conditional on peer 

achievement, more girls in a classroom generates positive effects.  Though she does not 

speculate why – the evidence presented here suggests that this could be because girls are 

characterized by less disruptive behavior. This is consistent with more recent findings that more 

girls reduce classroom disruption and improve inter-student and student-teacher relationships 

(Lavy and Schlosser, 2007).  

Three other paper focus specifically on peer behavior. Figlio (2005) uses the presence of a 

boy with a feminine name to instrument for classroom disruption, arguing that such boys are 

more prone to fighting but are not characterized by lower cognitive ability.  He finds large 
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negative effects on achievement.  Lavy, Paserman and Schlosser (2007) find that low-achieving 

peers negatively affect student achievement, particularly those at the bottom of the distribution, 

and suggests that this due to the fact that they are more disruptive and negatively affect the 

ability of teachers to teach.
6
  Finally, Neidell and Waldfogel (2008) exploit variation in pre-

school attendance to identify the impact of kindergarten peer behavior on cognitive achievement. 

They find that having only a small number of disruptive children in the classroom can negatively 

affect the cognitive achievement of others.  

In this paper I estimate the relative importance of peer behavior in producing student 

achievement by exploiting a novel source of identification (described in detail in the next 

section.)  Moreover, I estimate the impact of resources (health insurance and classroom 

resources) on peer behavior. As a result, the policy implications of this work differ considerably 

from previous work.  While previous work sheds light on the positive impact of removing low 

performing, male, or disruptive students from the classroom it does not allow one to determine 

the optimal allocation of these students.  In contrast, my findings suggest that either improving 

the behavior of peers by, for example, increasing access to medical care for diagnosis and 

treatment of ADD or other mental health disorders (not necessarily removing them from the 

class), or mitigating the negative effects of peer behavior with an increase in classroom resources 

can have a positive impact on student achievement. 

 

D. Overview of Identification Strategy 

                                                 

6 In related work, Argys and Rees (2008) exploit exogenous differences in the age of peers due to kindergarten start 

dates to estimate the impact of relative youth on risky behavior.  They find that among girls, having older peers is 

associated with an increase in risky behavior.  They conclude that peer behavior is contagious and that the impact of 

peer behavior differs by gender. 
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To identify the importance of peer behavior relative to peer cognitive ability I estimate the 

impact of having classmates with ADD before and after diagnosis on student test scores. I argue 

and provide evidence that before students are diagnosed with ADD they display greater 

externalizing behavior problems.  After diagnosis, their behavior improves but their cognitive 

achievement does not. I assume that this is because of a concurrent decline in cognitive ability 

associated with over-medication (“cognitive toxicity”) which is well-documented in the medical 

literature.  Thus, in estimating the impact of changes in peer diagnosis on achievement one can 

estimate the impact of improvements in peer behavior relative to declines in cognitive ability 

holding other characteristics (including achievement) constant.  

For identification, ideally one would observe the same group of classmates over time and all 

variation would come from changes brought about by diagnosis of ADD.   However, the data do 

not allow this: classroom composition does not stay constant from Kindergarten through grade 

five in these data.  Rather, there is re-sorting of children among classrooms in a given cohort 

over time (Rothstein, forthcoming).  The inclusion of fixed effects which addresses non-random 

selection into schools as well as unobserved fixed characteristics of children would not address 

this.   

To address this threat to validity, I pursue three strategies.  First, I provide multiple pieces of 

evidence that the timing of diagnosis appears to be exogenous in this context, which I discuss in 

greater detail in section VI.  As a second strategy, I redefine the share of peers with undiagnosed 

ADD over all students in one’s grade in school.  In so doing, I drop altogether the assumption 

that re-sorting of students across classrooms over time is uncorrelated with the ADD status of 

one’s peers.   Implicitly, the source of identifying variation in the grade-level analysis comes 
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from different rates of diagnosis over time across schools and assumes that they are not 

correlated with growth in test scores for reasons independent of diagnosis of ADD.
7
   

As a third and final strategy, I drop the assumption of random timing of diagnosis altogether 

and instrument for diagnosis using expansions in publicly provided health insurance.  

Expansions in health insurance coverage reduce the cost of medical diagnosis and treatment but 

are uncorrelated with peer or teacher characteristics that might independently affect both 

diagnosis and treatment. An advantage of this identification strategy is that the policy used to 

instrument for diagnosis is not an education policy.  As such, we may be less concerned that the 

policy change coincides with other changes affecting students, teachers or schools. Instrumenting 

for the timing of diagnosis also addresses concerns regarding both mean reversion (Ashenfelter 

dip) and the potential for non-random timing of diagnosis that could bias the fixed effect 

estimates. The empirical methods are described in greater detail in sections VI and VII.  

 Before presenting the empirical results I develop a model of education production.  The 

model serves two purposes.  First, it makes explicit what assumptions regarding the form of the 

education production function and the impact of diagnosis/treatment of ADD on own cognition 

and behavior yield the prediction that diagnosis does not improve own achievement but does 

improve peer achievement. Second, it aids in interpretation of the estimates of the impact of 

diagnosis on peer achievement.  

 

III. A Model of Peer Effects in the Classroom 

In this section I present a model of peer effects in the classroom that is consistent with the 

empirical findings that even though treating a student with ADD will not improve his own 

                                                 

7 To support this empirically, I show that the rate of diagnosis within school is uncorrelated with female test score 

growth. 
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achievement it will increase the achievement of his peers.  Two main assumptions underlie this 

model.  The first regards the inputs into the production of student achievement.  In this model, a 

student’s achievement is a function of his own cognitive ability and his own behavior, (a 

straightforward assumption).  Achievement is also a function of the average cognitive ability and 

behavior of his classmates (peers).  In this model, a student’s achievement is not a function of 

peer achievement, but rather the inputs of peer achievement: peer ability and peer behavior.  

More able peers positively affect achievement because they require less teacher time (indirect 

effect) or because students learn from them (direct effect).  Better behaved peers positively affect 

achievement because they are less disruptive, thereby requiring less teacher time for discipline 

(an indirect effect) and interfering with the learning of their classmates less frequently (a direct 

effect).  Classroom resources do not enter into the education production function here because 

they are assumed to be uncorrelated with ADD diagnosis (an assumption for which I provide 

empirical support), and thus are not a factor in the comparative statics.  They may, however, 

serve to mitigate the negative effects of either poor ability or behavior, a point to which I return.  

 The second assumption regards the impact of diagnosis on a student’s own ability, 

behavior and achievement. This assumption is based on the empirical regularity that treatment of 

children with ADD improves behavior but does not improve achievement.  This has been well 

documented in the medical literature and the same pattern is also present in the ECLS-K data, as 

shown in the next section. Moreover, medical researchers have recently proposed an explanation: 

over-dosage of medication leading to “cognitive toxicity” which is essentially a reduction in 

cognitive ability (Swanson et al, 1991). Based on this, I assume that diagnosis/treatment of a 

student with ADD will lower his cognitive ability but improve his behavior and that these two 
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forces work in opposite directions such that on net there is no impact of treatment on 

achievement.   

 These two assumptions underlie the model presented below.  

 

The Model 

In this model of peer effects in the classroom, a student’s achievement (as measured by test 

scores) is a function of his own cognitive ability, his own behavior and the cognitive ability and 

behavior of his classmates, summarized as follows: 

 

Where i indexes focal child, j indexes his classmates and n is the number of students in the class.  

Si refers to his own cognitive achievement test scores in either reading or math, Ci refers to his 

own cognitive ability and Bi to his own behavior.  The two last terms in the equation above refer 

to the average cognitive ability and behavior of his classmates, respectively.  According to this 

model, it is not peer achievement that matters, but rather the two main inputs into peer 

achievement: peer ability and behavior.  

In this example, student i is diagnosed with ADD.  When diagnosed, his achievement changes as 

follows: 

 

We know from a large body of research in the medical sciences (and confirmed in analyses 

presented here) that after diagnosing and treating of students with ADD, achievement does not 

change ( 0), but that behavior does improve 0). If so, then   

          (1) 
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and the positive impact of an improvement in behavior on achievement is offset by a decline in 

cognitive ability ( i<0), referred to as “cognitive toxicity” resulting from over-medication of 

children with ADD. 

For peers of the student diagnosed with ADD, achievement is characterized by:  

 

We assume that diagnosing a student with ADD affects only his cognitive ability and behavior -  

it does not affect the cognitive ability or behavior of his classmates.  Thus the change in 

achievement for peer j of diagnosing student i can be written as 

 

Where and  are the changes in cognitive ability and behavior, respectively, of those in the 

classroom diagnosed and treated for ADD.  From equation (1) we can substitute  for  in 

the above equation. If we observe a positive impact of diagnosing a student on classmate 

testscores,    this implies that  

 

Which is equivalent to: 

 

Since the change in behavior  is positive, it must be the case that  

 

The interpretation of the above is that the impact of peer behavior on achievement (γ) exceeds 

the impact of peer cognitive ability (β) relative to the impact of own behavior (θ) and own ability 
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(φ).  This helps us to interpret our findings, presented in sections V-VII, that diagnosing students 

with ADD does not increase their own achievement but does increase peer achievement.  

 

IV. Data  

A. Data Description 

The data for the empirical analyses come from the restricted use Early Childhood 

Longitudinal Survey – Kindergarten Cohort (ECLS-K).
8
   The ECLS-K cohort consists of a 

nationally representative group of nearly 20,000 children who entered Kindergarten in the Fall of 

1998, drawn from roughly 1000 schools.  Data are collected for students in kindergarten, first, 

third, fifth and eighth grades.  Teachers, parents and school administrators are surveyed each 

year.  The data include information on family background, teacher characteristics, classroom 

composition, as well as behavioral and cognitive assessments.  The behavioral assessment 

consists of teacher scores on an externalizing behavioral problem scale (scale 1-4 with 4 

indicating worse behavior).  These scores are collected only through grade 5. Assessments of 

cognitive achievement consist of standardized reading and math scores on tests developed 

especially for the ECLS-K but based on existing instruments.
9
  All scores are normalized with a 

mean of 50 and standard deviation of 9 points.  

The data include both household survey data for multiple children per class (6 on average 

for this analysis sample) and teacher surveys so that one can characterize a student’s classmates 

and teacher.  Specifically, information on classroom composition, teacher qualifications, class 

                                                 

8 Users of the restricted ECLS-K are required to round all observations up to the nearest 10 in all publicly released 

documents.  
9 These include: the Children’s Cognitive Battery, Peabody Individual Achievement test –Revised, the Peabody 

Picture Vocabulary Test-3, Primary Test of Cognitive Skills and the Woodcock-Johnson Psycho-Educational 

Battery-Revised.   
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size, racial, gender and special education status of the class come from teacher reports while 

information on average income and evaluation and diagnosis of ADD come from parental 

reports.  The panel nature of the data allows one to follow the same child over time and 

determine when he was evaluated and diagnosed with ADD.  The data on classroom and teacher 

characteristics are more complete for reading classrooms than math classrooms. 

 I focus on diagnosis and not treatment because treatment is not reported before fifth grade 

and because diagnosis is arguably more exogenous than treatment in this context.  The focus on 

diagnosis, not treatment, likely results in downward bias of the estimates.  

 Though I use the eighth grade data to identify those diagnosed with ADD in the future 

(and therefore classified as undiagnosed currently), for the analysis sample I use only data on 

kindergarten through fifth grades.  I do so for two reasons.  First, data on behavior is not 

collected after fifth grade.  Second, by definition the share of classmates with undiagnosed is 

ADD is zero for all those in eighth grade.  As such, the measure of peers with undiagnosed ADD 

is collinear with the eighth grade fixed effect.   

 

B. Characteristics of Children with ADD 

Children with and without a diagnosis of ADD by eighth grade are similar in terms of racial 

composition, per capita household income, and school, teacher and classroom characteristics 

(Table 1). But those diagnosed by eighth grade are more likely to be male (74 percent) and more 

likely to have health insurance (.91 vs .84).  In terms of child outcomes, children with ADD 

suffer worse reading test scores and worse ratings in terms of externalizing behavior.  They are 

also less likely to be rated by their teachers as “always working to the best of their ability.”  
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C. Characterizing Peers   

Peer characteristics were measured from teacher and parent reports.  From teacher reports, I 

generate measures of the gender and racial composition of the class as well as class size. These 

measures are based on the whole class.  From parent surveys, I generate measures of the share of 

students in the class with diagnosed and undiagnosed ADD and the average income of the 

students in the class.   These measures are based on the subset of the class included in the ECLS-

K sample (6 on average).  I classify a child as having undiagnosed ADD if he or she is diagnosed 

with ADD in the future but is not currently diagnosed.  This classification assumes that children 

who are ultimately diagnosed with ADD display symptoms of the disorder prior to their 

diagnosis, which is consistent with the medical evidence.  Indeed, a diagnosis of ADD requires 

that the child displayed at least some symptoms before age 7.   

 This characterization of peers with undiagnosed ADD introduces three sources of 

measurement error which will lead to a downward bias of any estimated effect.  The first arises if 

those with undiagnosed ADD exhibit few symptoms prior to diagnosis.  Even though evidence 

based on the ECLS-K and elsewhere suggests that on average, those with undiagnosed ADD are 

characterized by greater inattention, this will not necessarily hold for all children. For example, 

in the ECLS-K, among those who are not yet diagnosed with ADD but will be in the future, 40 

percent reportedly “have trouble paying attention relative to other children their age” compared 

with 10 percent of those who are never diagnosed with ADD.  Second, because students in the 

ECLS-K are only followed through eighth grade, students diagnosed with ADD later would be 

incorrectly classified as not having ADD.  However, since data from NHIS suggests that most 

children with ADD are diagnosed by age 13 (corresponding to eighth grade), this should not 

introduce much error.  The third source of measurement error results from the fact that this 
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measure is derived from the parent surveys and thus are calculated over six children, on average, 

per class (average class size is 21).
10

   Ammermueller and Pischke (2006) show that when peer 

characteristics are measured over a sub-sample of students in the class, estimates of peer effects 

will be biased down by a factor of  (Nsample-1)/(Nactual -1) which is 1/4 in this sample.  This 

suggests that the instrumental variable estimates will be considerably larger than OLS estimates.  

 

D. Variation in Peer Characteristics 

 Six percent of the children surveyed in the ECLS-K are diagnosed with ADD by eighth 

grade, consist with data from the NHIS.  Diagnosis occurs roughly uniformly between 

kindergarten and fifth grades, dropping in eighth grade.  Of those ever diagnosed with ADD, 20 

percent are diagnosed by kindergarten, another 22 percent are diagnosed in first grade, 25 

percent between first and third grades, 21 percent between third and fifth grades and 12 percent 

between fifth and eighth grades. This generates variation in the share of classmates with 

diagnosed and undiagnosed ADD over time in this sample.  For the sample of students without 

ADD, 28 percent have peers with undiagnosed ADD in kindergarten, in first grade 20 percent 

have peers with undiagnosed ADD, dropping to 11 percent in third grade, 4 percent by fifth 

grade, and (by definition) no students have peers with undiagnosed ADD in eighth grade.  There 

are two sources of this variation: 1) undiagnosed peers are diagnosed, 2) undiagnosed peers 

change classrooms or attrit from the sample. While attrition is minimal up until third grade and 

the characteristics of the remaining sample remain stable, this changes in fifth grade: attrition 

increases and the characteristics of the remaining students change, they are less likely to be black 

and more likely to be upper income (Table 2).   

                                                 

10 The ECLS K users manual chapter 4 describes the sample design.  Within each school a self weighting sample of 

students was selected in Kindergarten.  The only subgroup that was oversampled was Asian Pacific Islanders.     
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In the analyses I address the potential bias arising from non-random resorting of students 

with undiagnosed ADD and attrition.   

 

 

V. Impact of Diagnosis on Own Cognitive and Behavioral Outcomes 

To estimate whether diagnosing a child with ADD affects his own behavior and achievement, 

I compare outcomes for the same child before and after a diagnosis.  To do so, I regress 

achievement and behavioral outcomes on an indicator for whether the child has been diagnosed 

with ADD, grade fixed effects, child fixed effects and time-variant family income, (Table 3, 

panel A).  It is important to note that students diagnosed with ADD may become eligible for 

special education services at the same time – either because ADD makes them eligible for 

special education or because they are diagnosed with additional learning disabilities at the same 

time.  If so, it may be the special education designation which affects outcomes, not diagnosis of 

ADD.  As a result I also control for special education designation in these regressions.  In panel 

B I include observed teacher and classroom characteristics (class size, masters degree, years of 

teaching experience, average income of classmates, share female, black and Hispanic) as 

controls.  Finally, in panel C, I test whether diagnosis affects future test scores and behavior.   

It may be, however, that any estimated impact of diagnosis and presumed treatment of ADD 

on outcomes simply reflects the fact that the child has been professionally evaluated.  The act of 

evaluation may signal the presence of a concerned care-giver or some positive change in family 

circumstances which could explain the results. To address this I also present results from a 

“placebo test” of sorts by estimating the impact of being evaluated for ADD but not diagnosed 

on outcomes. The lack of any impact on behavior associated with evaluation but not diagnosis 
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addresses the concern that underlying differences in care-seeking behavior of parents might bias 

the estimated impact of diagnosis.  This also addresses the concern that children are diagnosed 

with ADD shortly after an increase in disruptive behavior and as such, the behavior might 

improve afterward due to mean-reversion, not treatment.  If this were so, we would expect 

improvements in behavior among those evaluated but not diagnosed as well. 

The results presented in Table 3 suggest that diagnosing a child with ADD does not appear to 

improve reading or math test scores but does improve behavior, decreasing the child’s score on 

the “externalizing behavioral problem” scale by between 9 and 13 percent of a standard 

deviation, depending on the specification.   This is consistent with the large medical literature 

and small economics literature on the topic which has generally found that treatment for ADD 

results in improved behavioral outcomes but little or no change in achievement, presumably due 

to “cognitive toxicity” associated with high levels of medication prescribed to maximize 

behavioral outcomes at the expense of cognitive ones.  Evaluation but no diagnosis (columns 4-

6) has no significant impact on either test scores or behavior in any specifications, suggesting 

that neither care-seeking behavior nor mean reversion are driving these results.  In the next 

section I present the results of an analysis of the externalities associated with undiagnosed ADD.  

 

 

VI. Empirical Results: Externalities Associated with ADD 

Before turning to the main analysis of externalities, I present preliminary suggestive evidence 

of a negative externality associated with undiagnosed ADD. If children with undiagnosed ADD 

generate negative externalities, these externalities should decline over time as diagnosis and 

treatment increase.  In Table 4 column (1) I present results from a regression of reading test 
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scores on the share of classmates with ADD (that is, who are ever diagnosed with ADD), grade 

level and an interaction between the two.  For this analysis, the sample includes only those 

without ADD (those never diagnosed with ADD).  In addition to individual fixed effects, I also 

include controls for class size, share black, Hispanic and female, average income of classmates, 

and the share of special education students in class.   

The estimated effect of having classmates with ADD is negative, but it declines significantly 

with grade progression.  This is consistent with a hypothesis of peer behavior affecting cognitive 

achievement since children are increasingly diagnosed over time and diagnosis improves 

behavior.   In columns 2 and 3 I drop the fifth grade and classes with special education students, 

respectively, and the results remain or increase slightly.  In columns 4 and 5 I stratify by gender:  

the effects are larger for boys than girls, I point to which I return.  

   

A. Fixed Effects Estimation - Strategy 

To estimate the impact of peers who exhibit disruptive behavior on student achievement, I 

estimate the following equation for the sample of students in grades K-5.  

 

Yig= α + β1ADD-UNDIAG-icg + β2Xig + β3C -icg +  β4Gg + β5ui +εig      (2) 

  

Where i indexes individual students, g grade and c classroom. Yig in the above equation 

refers to reading or math test scores taken in the Spring of each year; ADD-UNDIAG-icg refers to 

the share of classmates with undiagnosed (and therefore untreated) ADD excluding the focal 

child.  Xig refers to time varying student characteristics such as age, family income, whether 

diagnosed with ADD, whether designated special education; C -icg is a vector of classroom 
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characteristics calculated over all students except the focal student and includes the share black, 

Hispanic and white, share female, share with special education, average income and class size as 

well as teacher characteristics (years of experience, having a master’s degree and license); Gg 

refers to a grade fixed effect (first, third and fifth grades – kindergarten omitted) and ui to 

individual fixed effects.  All regressions are weighted by the number of students sampled in the 

class and the standard errors are clustered on the classroom.  

The inclusion of individual fixed effects enables one to control for two important sources 

of omitted variables that could bias estimates of peer effects.  The first is non-random selection 

into schools.  The second is unobserved differences in family background of the child.  However, 

as previously noted there are two potential threats to identification that the fixed effect does not 

address.  In the next section I describe these threats and provide evidence that they likely do not 

bias the estimates.  

 

B. Endogenous Diagnosis and Dynamic Sorting of Students  

The two potential threats to identification are endogenous timing of diagnosis and 

dynamic sorting of students over time (see Rothstein, forthcoming). The former refers to the fact 

that the timing of diagnosis could be correlated with changes in teacher or peer characteristics 

that could affect reading test scores directly in which case the resulting estimates would be 

biased. For example, it could be that if the ability of one’s peers improves, the likelihood of 

diagnosis increases as the student is viewed as an outlier. To address this I estimate discrete time 

hazard models to time of diagnosis to determine whether observed characteristics are associated 

with timing of diagnosis for the sample of children diagnosed with ADD by eighth grade.  These 

characteristics include multiple measures of teacher quality (master, experience, licensure), 
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classroom characteristics (gender, racial and income composition, share of class with ADD), 

peer quality (average lagged reading scores) and one’s own lagged reading test scores.  The 

results are presented in Table 5.  Age is the only significant predictor of diagnosis.  None of the 

other included variables are statistically or economically significant.  Most notably, the past 

cognitive achievement of peers does not predict timing of diagnosis, nor does one’s own past 

reading scores (the latter of which, if predictive, could be indicative of an Ashenfelter dip). The 

three measures of teacher quality (years of experience, licensure or masters degree) also have no 

statistically significant effect.  The only other significant predictor of ADD diagnosis is special 

education designation, which is not surprising given that a diagnosis of ADD often qualifies a 

child for special education services (which is why it is important to control or special education 

status of the focal student and his peers in the regressions).  

Regarding the second threat to identification (dynamic sorting of students over time), the 

concern is that diagnosis of ADD and an improvement in behavior may result in assignment to 

another class and thus different peers. To address this I examine changes in peer characteristics 

(share of special education students in the class, share Hispanic, black and female, average 

externalizing behavior scores, average lagged reading scores, and log income) before and after a 

diagnosis of ADD (Table 6).  In all cases, changes in these characteristics are small and in all 

cases but one (share Black) insignificant.
11

  Most notably, the average quality (as measured by 

lagged reading test scores and prior externalizing behavior problems) of a student’s peers do not 

change after a diagnosis of ADD.  

Related to this, school administrators may non-randomly sort students across classrooms 

within grade based, in part, on cognitive ability or behavior.  School administrators might, for 

                                                 

11 Even for share Black, the difference (-.02) is relatively small (the average share black in the class in these data are 

.18) and we might expect that in testing 7 characteristics, one would be statistically significant by chance.  
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example, assign low ability students to classrooms characterized by more behavioral problems or 

to low quality teachers.  To address this, I estimate whether teacher quality or lagged peer 

reading test scores predict the share of students in one’s current class with undiagnosed ADD 

(Table 7).  There are two significant predictors of share of students with undiagnosed ADD.  The 

first is whether the teacher has a master’s degree (though the magnitude is very small, essentially 

zero) and the second is the share of females which is negatively related to share undiagnosed.  In 

columns 2 and 3 I include a student’s own lagged score and the lagged score of current peers, 

respectively, and neither is related to the share undiagnosed.  Finally in column 4 I control for 

share with ADD (that is, ever diagnosed with ADD) and the statistically significant coefficient 

on share female falls by two thirds and is no longer significant.  This suggests that the previously 

significant negative effect of share female simply reflected the fact that those with ADD (and 

therefore undiagnosed ADD) are predominantly male.  

 Together these estimates suggest that any non-random resorting of students over time 

based on past achievement, past behavior or teacher quality is not correlated with diagnosis of 

ADD.  While we can only test whether observable measures of teacher and peer quality are 

correlated with diagnosis, the fact that they do not suggests that observable measures are unlikely 

to be either.   

 

C. Fixed Effects Estimation – Classroom Level Results 

The results from estimating equation (2) are presented in Table 8A.  As the share of 

students in one’s class with undiagnosed ADD increases, the reading test scores of his classmates 

decline (column 1).  Because ADD is a condition that disproportionately affects boys and peer 

groups are largely gender specific at this age, one might expect the impact to be greater among 
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other boys in the class (results in Table 4 also suggest greater effects for boys).   In column (2) 

are results from a regression that also includes an interaction between share undiagnosed and 

male: the impact is much greater for boys than girls for whom there is no significant effect. In 

column 3 I control for the share of students with ADD (ever diagnosed with ADD) which 

appears to have no impact on reading test scores itself, nor does it change the impact of share 

with undiagnosed ADD (the point estimate for the main effect actually increases, though is still 

insignificant). This null effect for share with ADD is likely due to the inclusion of individual 

(and therefore school) fixed effects which greatly reduces variation in this measure.  

 To address the possibility that children may be sorted in classrooms according to past 

achievement and that this sorting may be correlated with the timing of diagnosis, I present results 

that include (in addition to the individual child fixed effects) the child’s reading score in the 

previous survey period in column 4 and the reading test scores of peers in column 5. These 

regressions must exclude all kindergarten students. The estimated coefficient on the term share 

undiagnosed*male is larger once I control for lagged reading scores, suggesting that if there is 

any sorting on past  achievement, it is not driving the results. Note that the estimated coefficient 

is larger only because the sample changes (excludes kindergarten).  

While the estimated coefficient on the interaction term share undiagnosed*male is 

negative and significant, the estimated impact is small.  Recall, that due to measurement error in 

the construction of the measure of classmates with undiagnosed ADD, the OLS results are 

attenuated by a factor of four (Ammermueller and Pischke, 2006).  Once we account for this, the 

estimates imply that if a boy moves from a classroom where 8.5 percent of the students have 

undiagnosed ADD to a class where all are diagnosed (the standard deviation in these data), his 

test scores will improve by 1 point, or 10 percent of a standard deviation, still a relatively small 
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effect.  However, in interpreting these estimates it is important to note that most education 

interventions yield very small test score gains (10-20 percent of a standard deviation) if any at all 

(see Hanushek, 2006). 

 One way to address the concern that the timing of diagnosis may be non random (eg, 

correlated with particularly good teachers or high achieving peers) is do drop observations from 

classrooms in which a child was diagnosed in that year.  The results (column 6) are unchanged 

when I do so.  In column 7 I present estimates of equation (2) for reading test scores weighted by 

the share of the class surveyed.  The results are not sensitive to this change in weighting. Finally, 

in column 8 I present results for math test scores.  As noted previously, fewer  children in the 

ECLS-K have complete information on the composition of their math classrooms, so the sample 

size declines.  However, the results are fairly similar for reading and math scores.     

In Table 8B I present estimates for equation (2) based on alternative samples as part of a 

series of robustness checks.  In column 1 I limit the samples to males and control for 

school*cohort-specific trends in female test scores and the results are unchanged, which is 

consistent with the finding, not presented, that the rate of diagnosis over tiem in a school is 

uncorrelated with growth in test scores among girls. In column 2 I drop the fifth grade from the 

sample to see whether the results are driven by non-random attritions starting in the fifth grade – 

they are not.  Finally, in column 3 of Table 8B I present results of a “placebo test.”  I regress 

reading test scores on the share of students in the class evaluated for ADD but not diagnosed, and 

its interaction with male.  Coefficients on the main term and the interaction term are small and 

imprecise, as expected.   
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D. Fixed Effect Estimation – Grade Level Results 

Finally, I redefine the measure of the share of peers with undiagnosed ADD to be taken over 

all students in the grade, not just the classroom. This specification addresses the potential issue 

of non-random classroom assignment of students with undiagnosed ADD.  Results presented in 

column 1 of Table 9 are based on the entire sample and in column 2 I limit the sample to males.  

In these two specifications I also exclude all classroom and teacher characteristics.  Because of 

this, the sample sizes increase slightly because I include children in classrooms with missing 

information on teacher or classroom characteristics.  In column 3 I control for all observable 

classroom and teacher characteristics as well as the average reading test scores of girls in the 

same school and grade.   

The estimated effect roughly doubles in size when the share of peers with undiagnosed ADD 

is measured over the entire grade, not just the classroom.  This difference in estimates based on 

the grade versus the classroom is likely attributable to two things: measurement error which 

decreases when I expand the sample over which to calculate a low probability event and 

endogenous sorting across classrooms within grades that biases downward the fixed effect 

estimates based on measures of the share undiagnosed in the classroom. If the latter, it would 

have to be the case that student quality is negatively correlated with the share of peers with 

undiagnosed ADD.  However, in previous results (Tables 6 and 7) I found no evidence of a 

correlation between past achievement and the current share of the class with undiagnosed ADD.  

Thus, the former explanation, measurement error, seems most likely.  

 

E. Why Peer Behavior Matters 
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Peer behavior may affect student cognitive achievement through three potential channels.  

First, there may be “contagion” effects whereby the disruptive behavior of a peer may induce 

negative behavior in others.  I find no evidence of “contagion” effects in the data: having peers 

with undiagnosed ADD does not increase students’ externalizing behavioral problems. Second, 

disruptive behavior of a peer may distract classmates (a direct effect). The fact that the effects 

are concentrated among boys might be construed as evidence that the impact is working through 

direct disruption of other boys (eg friends). Finally, disruptive students may take up more teacher 

time, leaving less time for instruction (an indirect effect).  In the next subsection I explore 

whether disruptive students affect their peers by diverting teacher resources. I do so by 

estimating whether the negative impact we observe declines with greater classroom resources.  I 

find suggestive evidence that it does.   

 

F. Undiagnosed ADD and Teacher/Classroom Characteristics 

  To explore whether resources can overcome negative peer effects, I re-estimate equation 

(2) including interactions between share undiagnosed and measures of classroom and teacher 

characteristics (Table 10).  In columns 1-5 I present estimates based on the full sample and in 

columns 6-10 I limit the sample to males.  Smaller class sizes can overcome the negative peer 

effects associated with untreated ADD.  If there are 30 students in a class and the share 

undiagnosed declines by 8.5 percent, reading test scores would increase by 1.5 points.
12

  But if 

there are only 20 students in the class, the impact drops to 0.4 points. This is consistent with both 

the model presented earlier and Lazear’s (2001) disruption model of education production which 

stipulates that small class size mitigates the impact of disruptive peers on a student’s ability to 

                                                 

12 This calculation accounts for measurement error, multiplying the estimated effect by 4.  
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learn.  There is little evidence that teacher human capital (specifically, possession of a graduate 

degree, years of experience or having an advanced license) can overcome negative peer effects, 

consistent with work by Hanushek and Rivkin (2004) showing that a master’s degree is a poor 

predictor of teacher quality.  

In the next section, I relax the assumption of the exogeneity of the timing diagnosis of 

ADD entirely, relying instead on instrumental variables for identification of the impact of 

classmates with undiagnosed ADD on reading test scores.  

 

VII. Instrumental Variable Estimates   

A. Instruments for Classmates with Undiagnosed ADD 

To instrument for the share of the class with undiagnosed ADD, I use recent expansions 

in eligibility for publicly provided child health insurance (SCHIP).
13

  In 1997 Congress 

authorized SCHIP, greatly expanding children’s eligibility for publicly provided health 

insurance.  Though SCHIP was federally authorized and subsidized, individual states were free 

to develop their own SCHIP programs, subject to federal approval.  As a result there was 

considerable heterogeneity in both the timing and scope of SCHIP programs across the states on 

which I rely to identify the impact of SCHIP on diagnosis.  Thirty-seven percent of the children 

in the analysis sample are eligible for SCHIP. 

The underlying assumption of using SCHIP eligibility expansions as an instrument for 

share undiagnosed is that by increasing health insurance coverage, SCHIP expansions lower the 

cost of medical care, thereby lowering the cost of a medical diagnosis of ADD.  In section IX of 

                                                 

13 I cannot instrument for externalizing behavioral problems of classmates because the first stage is too weak:  

SCHIP/Medicaid eligibility levels are not strong predictors of externalizing behavioral problems, which is not 

surprising given that behavioral problems likely have many causes, only some of which may be amenable to medical 

treatment (and thus greater insurance coverage).  
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the paper, I provide evidence supporting the use of SCHIP eligibility expansions as an 

instrument in this context.  I do so by establishing that SCHIP eligibility significantly increased 

the probability of ADD diagnosis via increases in health insurance coverage. 

  Another necessary assumption is that SCHIP has no direct or independent effect on 

student achievement (the exclusion restriction).  The concern is that the expansion in public 

health insurance could directly improve student health and cognitive achievement, though the 

evidence linking physical health and achievement is very limited.  Levine and Schanzenbach 

(2009) estimate the direct reduced form impact of SCHIP expansions on cognitive achievement 

and do not find any contemporaneous effects.  Rather, the only economic and statistically 

significant effects operate though improved health at birth, which is not an issue in this context 

as all children in the ECLS-K are born before the expansions.   

 

B. IV Estimates of the Impact of Undiagnosed ADD on Peer Reading  

The first stage results of the IV analysis are presented in Appendix Table 1. The 

instruments for the share of classmates with undiagnosed ADD are the Medicaid/SCHIP 

eligibility thresholds in the state and year and the threshold interacted with the child’s age.  The 

endogenous variable is measured two ways: share of classmates with undiagnosed add (column 1 

Appendix Table 1) and share of those with ADD who are undiagnosed (column 2 Appendix 

Table 1).  The latter is set to zero in classes that have no students with ADD. The IV regressions 

include all covariates included in the previous OLS regressions, including the individual fixed 

effects.
14

 The results of the first stage suggest that the increase in the eligibility threshold reduces 

the share of the class with undiagnosed ADD, with the impact increasing with age of the child.  

                                                 

14 The IV regressions are unweighted because weighting led to less precise first stage estimates (a weaker first stage)   
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For example, increasing the threshold from 100 to 300 percent of the federal poverty line will 

reduce the share of the class with undiagnosed ADD by 12 percent (column 1). The same 

increase in eligibility thresholds will reduce the share of those with ADD who are undiagnosed 

by 10 percent (column 2).  

The second stage estimates of the impact of peers with undiagnosed ADD on reading test 

scores are presented in Table 11. The results for math scores are large but imprecise and 

therefore not presented here.  I follow the method outlined in Newey, Powell and Vella (1999) 

for instrumenting for endogenous interactions (share undiagnosed*male).
15

 As with the OLS 

fixed effect estimates I define the sample multiple ways:  columns 1 and 5 contain estimates 

based on the full sample, columns 2 and 6 include the lagged reading test score (value added 

model), columns 3 and 7 exclude special education students and columns 4 and 8 exclude special 

education and 5
th

 grade.   

The results are generally consistent across the different specifications.  As with the OLS 

fixed effect estimates, the interaction term (share undiagnosed*male) is negative and significant 

in most specifications while the main effect is always insignificant, though it varies in 

magnitude.
16

  The one insignificant effect occurs when I exclude the fifth grade and the sample 

falls by almost a third in column 4 (though it remains significant in column 8.)  The results 

generally imply that if the share of peers with undiagnosed ADD falls by .085 (the standard 

deviation), test scores will increase by 1.3 points, or 15 percent of a standard deviation.  The 

                                                 

15 This method involves estimating a first stage (regressing the share of peers with undiagnosed ADD on the 

instruments and other exogenous variables), generating a predicted value and a residual, interacting the predicted 

value and residual with male, and regressing the outcome (reading test scores) on the predicted value, its interaction, 

the residual and its interaction in a second stage regression.  The standard errors are bootstrapped.  
16 For the full sample, the estimate of the interaction term is -14 and significant while the estimate of the main term 

is 10.8, large, positive and insignificant.  The positive estimate on the main term seems to be driven by the 1500 

special education students: when they are removed in column 3, the interaction term remains, but the main effect 

falls to 1.86.  
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results in column 5-8 based on the alternative measure of undiagnosed peers, suggest that going 

from a class in which all those with ADD are undiagnosed to one in which they are all diagnosed 

will increase test scores by 2 points, or 22 percent of a standard deviation. These estimates 

represent a moderate effect given previous work estimating that a one standard deviation 

increase in peer cognitive achievement increases student achievement by 35 percent of a 

standard deviation (Hanushek et al, 2003). 

 

VIII. Cost Benefit Analysis 

The benefits of treating children with ADD in terms of the reduced externalitites on 

peers’ cognitive achievement exceed the costs of treatment.  The costs of treating two children 

for one year are roughly $1100.  To assess the cost-effectiveness of treatment, I first compare the 

costs of treatment with the costs of directly increasing the reading test scores of a student by 0.2 

standard deviation (the upper bound of estimated peer effect associated with reducing classroom 

disruption via treatment of students with ADD).  Hedges et al (1994) estimate that it costs $500 

per student to raise scores by 0.7 of a standard deviation.  Assuming that the costs calculated by 

Hedges are linear, it would cost $1430 to directly increase the test scores of 10 boys by 0.2 of a 

standard deviation which exceeds the $1100 needed to treat two boys with ADD.  Alternatively, 

and perhaps preferably, one can calculate the benefits of improving test scores by examining the 

increase in wages associated with an increase in cognitive test scores at age 7.
17

 According to 

this calculation, increasing peer test scores by 0.2 of a standard deviation at age 7 leads to a 0.6 

                                                 

17 This calculation is based on Currie and Thomas (2001).  They find, based on data from UK, that a one standard 

deviation increase in reading test scores at age 7 lead s to .448 percent of an increase in reading test scores at age 16 

and that a one standard deviation increase in test scores at age 16 leads to a 6 percent increase in wages at age 33.  

Based on this I calculate that a .2 standard deviation increase in test scores at age 7 leads to a 0.6 percent increase in 

earnings at age 33.  Based on median annual wages of 40,000 (the 2007 average wage index calculated by the Social 

Security Administration) this represents roughly $215 annually.   
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percent increase in annual adult wages per peer, or roughly $215 annually. Assuming 10 male 

peers, this amounts to $2150 annually. Compared with a one-time cost of $1100 (or even $1100 

annually for 12 years of school), the lifetime benefits associated with improving the cognitive 

achievement of peers are substantial, even after discounting future benefits. Regardless of the 

methods of calculation, treating children for ADD and thereby improving their behavior is a cost 

effective method of reducing the negative externalities imposed on others in terms of human 

capital accumulation and, ultimately, worker productivity and earnings.
18

    

 

IX. SCHIP Eligibility, Insurance Coverage, and Diagnosis of ADD 

 In this section I provide evidence to support using SCHIP eligibility expansions to 

instrument for share with undiagnosed ADD.  The underlying assumption behind this instrument 

is that by increasing health insurance coverage, SCHIP expansions lower the cost of medical care 

thereby lowering the cost of a diagnosis of ADD.  I show that SCHIP eligibility increases the 

probability of health insurance coverage and increases the probability of a diagnosis of ADD in 

individual fixed effect regressions.  

I first show that eligibility for SCHIP is associated with health insurance coverage and 

diagnosis by estimating the following equation: 

 

Yit= α + β1Eligbleit + β2Eligibleit*age + β2ageit + β3ln(income) it+ β4gradet + ui + εit      (3) 

 

Where Y is an indicator for any health insurance or for being diagnosed with ADD, depending 

on the regression; eligible is an indicator equal to one if the child is eligible for SCHIP and is 

                                                 

18 This calculation ignores any positive benefit of treatment for the child with ADD and thus represents a lower 

bound.  
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interacted with age; income, age, and grade controls are included as well as individual fixed 

effects.   The instruments for eligible and eligible*age in the above equation are the state SCHIP 

eligibility level (as a percent of the federal poverty line for a child of that age in that state) and 

the SCHIP eligibility level interacted with age. The first stage of this regression is presented in 

columns 4 and 5 of Appendix Table 2: expanding eligibility thresholds significantly increases the 

probability that a child will be eligible for SCHIP.   

IV estimates suggest that becoming eligible for SCHIP does increase health insurance 

coverage and diagnosis (columns 1 and 2 of Appendix Table 2).  For diagnosis, the impact of 

SCHIP eligibility increases with age.  In column 3 I present reduced form estimates of the impact 

of SCHIP eligibility levels as a function of the FPL on the probability of diagnosis: increasing 

eligibility threshold from 100 to 200 percent of the federal poverty level increases the probability 

of diagnosis by .5 percentage points for five year olds and one percentage point for ten year olds. 

This represents a reasonable effect given an underlying rate of diagnosis of five percent for ten 

year olds.    

 

X. Conclusions 

After establishing that peer achievement affects student achievement, the literature is 

increasingly turning to understanding the mechanism(s) underlying the relationship.  Peer 

achievement may matter because high achieving peers are smarter (more able) or exert greater 

effort and concentration and are less disruptive in class (better behaved). In this paper I use a 

unique identification strategy to identify the impact of classmate behavior relative to classmate 

cognitive ability on achievement.  Children with ADD are more likely to have behavioral 

problems.  Once diagnosed, however, their behavior improves, but their achievement is 
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unchanged, presumably due to declines in cognitive ability.  In individual fixed effect 

regressions, I find that the classmates of those with undiagnosed ADD suffer worse scores on 

reading and math achievement tests, but the results are concentrated among boys.  I develop a 

simple theoretical model of peer effects that makes explicit what assumptions regarding the 

education production function would be consistent with the empirical finding that diagnosis does 

not improve one’s own achievement but does improve the achievement of one’s peers.  

These results are robust to a number of alternative specifications and instrumental 

variable estimation.  I also find that resources such as class size can overcome the negative peer 

effects observed, consistent with the “disruption” model of education production proposed by 

Lazear (2001).   Finally, a cost benefit analysis finds that the costs of treating children with ADD 

are outweighed by the benefit if one considers these externalities.  

These results have two important policy implications.  First, the findings that resources 

both affect peer behavior (via treatment) and mitigate the negative externalities associated with 

disruptive behavior (via greater classroom resources) suggest that peer effects should be 

considered within their institutional framework.  As such, policy discussions need not be limited 

to how best to compose classrooms to maximize peer effects.  Rather, policies that also consider 

the ways in which teacher, school, and community resources (health care in this case) influence 

or mitigate peer effects via student behavior may ultimately be easier to implement and just as 

effective.  A second implication regards the relationship between health, productivity and 

growth.  These results suggest that mental health may affect growth, through both its impact on 

the human capital accumulation of those with a mental disorder and the externalities imposed on 

others.   
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Never Diagnosed Diagnosed Never Diagnosed Diagnosed
Male 0.49 0.74

Black 0.13 0.12 0.13 0.11

Hispanic 0.17 0.10 0.17 0.1

Any Insurance 0.84 0.91 0.84 0.91

Medicaid 0.19 0.26 0.19 0.26

Family Income $75,903 $69,425 $76,621 $69,358

Public School 0.80 0.84 0.8 0.85

Catholic School 0.11 0.10 0.11 0.09

Class size 21.40 20.40 21.2 20.2

Teacher has masters 0.34 0.37 0.34 0.38

Share black in class 0.11 0.12 0.11 0.11

Share female in class 0.49 0.48 0.48 0.47

Reading test score 51.10 46.46 50.3 46.3

Math test score 50.97 46.45 51.52 47.13

Self control (scale 1‐4) 3.22 2.77 3.12 2.72

Externalizing behavior problelms (scale 1‐4) 1.63 2.16 1.75 2.24

Always works to best of Ability 0.25 0.06 0.192 0.05

Table 1 Summary Statistics Stratified by Whether Child Ever Diagnosed (by Eighth Grade) with ADD/ADHD

All Male



Last grade observed Observations Income Male Black diagnosed with ADD
Kindergarten 3940 $68,842 0.51 0.17 0.02
First 2310 $70,499 0.53 0.22 0.04
Third 2850 $70,137 0.53 0.21 0.07
Fifth 2230 $69,680 0.51 0.17 0.06
Eighth 8660 $80,364 0.50 0.11 0.08
Total 19990

Panel A Excluding Class Characteristics Read Extern BPI Math Read Extern BPI Math
ADD 0.103 ‐0.075 0.316 ‐0.303 0.026 ‐0.111

[0.326] [0.031] [0.273] [0.209] [0.019] [0.189]
Child age ‐1.249 0.03 ‐0.414 ‐1.249 0.029 ‐0.41

[0.297] [0.019] [0.233] [0.296] [0.019] [0.233]
Ln(family income) 0 ‐0.005 ‐0.034 ‐0.002 ‐0.005 ‐0.035

[0.071] [0.007] [0.068] [0.071] [0.007] [0.068]
First grade 2.376 ‐0.047 0.53 2.386 ‐0.048 0.532

[0.532] [0.035] [0.420] [0.532] [0.035] [0.419]
Third grade 4.866 ‐0.052 1.26 4.895 ‐0.054 1.267

[1.125] [0.074] [0.884] [1.124] [0.074] [0.883]
Fifth grade 7.584 ‐0.149 2.248 7.627 ‐0.152 2.259

[1.707] [0.112] [1.341] [1.706] [0.112] [1.338]
Observations 49410 46710 50090 49410 46710 50090
R‐squared 0.84 0.72 0.87 0.84 0.72 0.87

Panel B Including Class Characteristics
ADD ‐0.004 ‐0.061 0.13 ‐0.286 0.031 0.066

[0.354] [0.034] [0.357] [0.225] [0.020] [0.250]
Observations 44770 43930 37130 44770 43930 37130
R‐squared 0.84 0.73 0.88 0.84 0.73 0.88

Panel C Impact on Future Outcomes & Including Class Characteristics
ADD ‐1.341 ‐0.089 0.003 0.177 ‐0.021 ‐0.274

[0.490] [0.058] [0.478] [0.304] [0.034] [0.346]
Observations 38500 27760 25540 38500 27760 25540
R‐squared 0.84 0.77 0.92 0.84 0.77 0.92
Robust standard errors clustlered on child in brackets
All regressions include individual child fixed effects
Class characteristics included in panels B and C include share black, share hispanic, share female, whether teacher has masters, full license, teacher's
years of experience, share of class with special education services, class size, whether child designated special ed

Evaluated for ADD, Not DiagnosedDiagnosed with ADD

Table 3 Impact of Diagnosis on Own Outcomes

Table 2 Follow up of the 19,990 Students Interviewed in Kindergarten



All Drop 5th Drop Spec. Ed Female Male
Share of class ever diagnosed with ADD ‐2.347 ‐3.416 ‐2.669 ‐1.872 ‐2.846

[0.914] [1.300] [0.961] [1.105] [1.116]
Share ever diagnosed*grade 0.815 1.541 0.997 0.451 1.179

[0.324] [0.592] [0.348] [0.398] [0.394]
Grade 0.17 0.082 0.18 0.142 0.208

[0.064] [0.103] [0.065] [0.078] [0.074]
Teacher has masters degree 0.158 0.261 0.175 0.082 0.236

[0.123] [0.149] [0.128] [0.143] [0.148]
Teacher has license ‐0.021 0.045 ‐0.061 0.063 ‐0.109

[0.179] [0.207] [0.184] [0.215] [0.205]
Teacher years of experience 0.012 0.009 0.013 0.003 0.021

[0.008] [0.011] [0.009] [0.010] [0.010]
Class size ‐0.039 ‐0.051 ‐0.038 ‐0.032 ‐0.047

[0.016] [0.020] [0.016] [0.018] [0.020]
Share Hispanic students in class ‐0.181 0.027 ‐0.213 ‐0.234 ‐0.164

[0.424] [0.457] [0.434] [0.482] [0.557]
Share black students in class ‐1.686 ‐1.409 ‐1.66 ‐1.51 ‐1.871

[0.345] [0.383] [0.354] [0.414] [0.426]
Share female in class 0.56 0.468 0.528 0.549 0.585

[0.555] [0.695] [0.567] [0.687] [0.718]
Class avg. income (in $10000) ‐0.026 ‐0.037 ‐0.026 ‐0.05 ‐0.002

[0.019] [0.022] [0.020] [0.023] [0.025]
Classroom characteristics missing 0.15 0.24 0.161 0.151 0.157

[0.170] [0.208] [0.175] [0.204] [0.203]
Student in Special Ed ‐0.416 ‐0.264 0.479 ‐0.924

[0.245] [0.309] [0.382] [0.319]
Share Special Ed in class 0.691 0.847 0.68 0.655

[0.365] [0.514] [0.470] [0.477]
Observations 47830 39750 46090 23790 24040
R‐squared 0.84 0.87 0.84 0.84 0.85
Robust standard errors clustered on classroom in brackets
All regressions include individual child fixed effects

Table 4 Impact of Share Ever Diagnosed with ADD on Reading Test Scores of Peers Over Time



(1) (2) (3) (4) (5)
Child age 0.073 0.067 0.068 0.056 0.053

[0.026] [0.026] [0.027] [0.037] [0.037]
Ln(income) ‐0.051 ‐0.05 ‐0.051 ‐0.019 ‐0.019

[0.011] [0.011] [0.011] [0.020] [0.021]
Teacher has masters degree 0.029 0.027 0.027 0.048 0.044

[0.022] [0.022] [0.022] [0.030] [0.030]
Teacher has license 0.001 0 0.001 0.011 0.016

[0.031] [0.031] [0.031] [0.047] [0.048]
Teacher years of experience 0.002 0.002 0.002 0.002 0.002

[0.001] [0.002] [0.002] [0.002] [0.002]
Class size ‐0.002 ‐0.002 ‐0.002 ‐0.002 ‐0.001

[0.002] [0.002] [0.002] [0.003] [0.003]
Share Hispanic students in class ‐0.074 ‐0.079 ‐0.075 ‐0.091 ‐0.105

[0.047] [0.048] [0.050] [0.078] [0.080]
Share black students in class ‐0.009 ‐0.01 ‐0.007 0.019 0.025

[0.050] [0.050] [0.052] [0.075] [0.077]
Share female in class ‐0.095 ‐0.07 ‐0.057 ‐0.121 ‐0.13

[0.103] [0.103] [0.108] [0.152] [0.154]
Class avg. income in $10000 ‐0.002 ‐0.002 ‐0.002 ‐0.003 ‐0.003

[0.003] [0.003] [0.003] [0.004] [0.004]
Classroom characteristics missing 0.053 0.04 0.039 0.04 0.049

[0.033] [0.034] [0.039] [0.050] [0.051]
First grade ‐0.043 ‐0.043 ‐0.044

[0.054] [0.053] [0.054]
Third grade ‐0.032 ‐0.029 ‐0.03 0.053 0.058

[0.106] [0.105] [0.108] [0.083] [0.083]
Fifth grade 0.073 0.086 0.085 0.194 0.208

[0.160] [0.158] [0.161] [0.155] [0.156]
Eighth grade 0.139 0.179 0.181 0.331 0.347

[0.236] [0.234] [0.239] [0.262] [0.263]
Student designated Special Ed 0.097 0.101 0.065 0.076

[0.039] [0.041] [0.043] [0.045]
Share Special Ed in class ‐0.014 ‐0.031 ‐0.051 ‐0.069

[0.076] [0.080] [0.083] [0.088]
Share of class ever diagnosed with ADD 0.061 0.096 0.103

[0.061] [0.073] [0.075]
Lagged reading test score ‐0.003 ‐0.003

[0.002] [0.002]
Lagged Reading Scores of Current Classmates 0

[0.003]
Observations 2870 2780 2460 1560 1500
R‐squared 0.17 0.17 0.16 0.15 0.15
Robust standard errors clustered on classroom in brackets
All regressions include individual child fixed effects

Table 5: Preidctors of ADD Diagnosis: Hazard Models



difference t statistic
Share Special Education Students 0.0088 0.9
Share Hispanic 0.0032 0.56
Share Black ‐0.012 2.16
Share Female 0.0038 0.62
Average Log Income ‐0.003 0.02
Average Lagged Reading Test Scores of Classmates 0.192 0.37
Average Externalizing Behavioral Problems 0.011 0.42

(1) (2) (3) (4)
Own lagged reading test score 0 0 0

[0.000] [0.000] [0.000]
Lagged Reading Scores of Current Classmates 0 0

[0.000] [0.000]
Share of class ever diagnosed with ADD 0.401

[0.019]
Child age ‐0.002 ‐0.021 ‐0.021 ‐0.013

[0.004] [0.020] [0.020] [0.017]
Ln(family income) 0 0 0 ‐0.001

[0.001] [0.002] [0.002] [0.002]
First grade ‐0.007 0 0 ‐0.016

[0.007] [0.000] [0.000] [0.067]
Third grade ‐0.017 0.025 0.025 ‐0.007

[0.014] [0.040] [0.040] [0.033]
Fifth grade ‐0.033 0.046 0.045 0

[0.022] [0.079] [0.079] [0.000]
Teacher has masters degree ‐0.005 ‐0.007 ‐0.007 ‐0.006

[0.002] [0.003] [0.003] [0.003]
Teacher has license 0.004 0.003 0.003 0.002

[0.003] [0.004] [0.004] [0.004]
Teacher years of experience 0 0 0 0

[0.000] [0.000] [0.000] [0.000]
Class size 0 0 0 0

[0.000] [0.000] [0.000] [0.000]
% Hispanic students in class 0.018 0.033 0.034 0.02

[0.014] [0.019] [0.020] [0.016]
% black students in class 0.014 0.02 0.02 0.002

[0.013] [0.018] [0.019] [0.016]
% female in class ‐0.029 ‐0.029 ‐0.029 ‐0.009

[0.013] [0.017] [0.017] [0.015]
Class avg. income in $10000 0 0 0 0.001

[0.000] [0.001] [0.001] [0.001]
Classroom characteristics missing 0 0 0 0

[0.000] [0.000] [0.000] [0.000]
Student in Special Ed ‐0.001 ‐0.004 ‐0.003 ‐0.004

[0.004] [0.005] [0.005] [0.004]
Share Special Ed in class 0.007 0.023 0.023 ‐0.045

[0.011] [0.012] [0.012] [0.011]
Observations 37060 24640 23810 24540
R‐squared 0.59 0.61 0.62 0.74
Robust standard errors clustered on classroom in brackets

Table 7: Predictors of Share Undiagnosed in Classroom

Table 6 Change in Peer Characteristics After Diagnosis



Own Lagged  Class Lagged
All Interact Male Share w/ADD Read Score Read Score Drop Grade Dx Reweight Math

Share undiagnosed ‐1.49 ‐0.713 ‐1.218 0.264 0.395 0.246 ‐0.776 0.374
[0.576] [0.744] [0.884] [0.886] [0.908] [0.949] [0.752] [0.738]

Share unidagnosed*male ‐1.513 ‐1.498 ‐2.49 ‐2.843 ‐2.73 ‐1.609 ‐1.75
[0.889] [0.889] [1.111] [1.141] [1.244] [0.909] [0.986]

Child age 0.015 0.014 0.015 0.112 2.268 2.532 0.03 0.088
[0.082] [0.082] [0.082] [0.148] [1.249] [1.340] [0.082] [0.104]

Ln(family income) ‐0.971 ‐0.972 ‐0.972 2.253 0.118 0.092 ‐1.068 ‐1.032
[0.393] [0.394] [0.394] [1.241] [0.151] [0.158] [0.413] [0.304]

First grade 2.196 2.197 2.195 8.698 0 2.42 1.302
[0.713] [0.713] [0.714] [5.034] [0.000] [0.743] [0.561]

Third grade 4.252 4.255 4.247 ‐4.434 4.228 ‐5.07 4.61 2.748
[1.495] [1.496] [1.497] [2.528] [2.495] [2.731] [1.562] [1.170]

Fifth grade 6.457 6.463 6.449 ‐8.633 ‐9.807 6.968 0
[2.273] [2.275] [2.276] [4.999] [5.400] [2.374] [0.000]

Diagnosed with ADD/ADHD ‐0.071 ‐0.085 ‐0.092 ‐0.456 ‐0.44 ‐0.245 ‐0.155 0.188
[0.352] [0.352] [0.351] [0.427] [0.435] [0.813] [0.357] [0.459]

Teacher has masters degree 0.019 0.018 0.017 ‐0.101 ‐0.104 ‐0.128 0.022 0.102
[0.142] [0.142] [0.142] [0.174] [0.177] [0.194] [0.138] [0.152]

Teacher has license ‐0.157 ‐0.156 ‐0.156 ‐0.006 ‐0.027 ‐0.102 ‐0.11 ‐0.339
[0.213] [0.213] [0.214] [0.268] [0.268] [0.295] [0.199] [0.230]

Teacher years of experience 0.02 0.02 0.02 0.008 0.009 0.008 0.021
[0.009] [0.009] [0.009] [0.011] [0.011] [0.012] [0.010]

Class size ‐0.032 ‐0.032 ‐0.032 ‐0.012 ‐0.011 ‐0.018 ‐0.024 ‐0.037
[0.017] [0.017] [0.017] [0.017] [0.017] [0.019] [0.017] [0.021]

% Hispanic students in class ‐0.506 ‐0.509 ‐0.505 0.337 0.528 0.733 ‐0.471 3.042
[0.585] [0.585] [0.584] [1.074] [1.094] [1.150] [0.555] [0.486]

% black students in class ‐2.075 ‐2.077 ‐2.08 ‐0.034 0.088 0.026 ‐2.157 ‐0.863
[0.490] [0.490] [0.490] [1.079] [1.100] [1.169] [0.480] [0.506]

% female in class 0.805 0.806 0.822 1.456 1.4 1.143 0.874
[0.733] [0.733] [0.734] [0.892] [0.908] [0.917] [0.731]

Class avg. income in $10000 ‐0.021 ‐0.022 ‐0.021 ‐0.017 ‐0.019 ‐0.002 ‐0.024 0
[0.024] [0.024] [0.024] [0.034] [0.035] [0.036] [0.024] [0.000]

Student in Special Ed ‐0.056 ‐0.064 ‐0.063 ‐0.013 ‐0.048 ‐0.01 ‐0.185 0.603
[0.311] [0.310] [0.310] [0.390] [0.400] [0.430] [0.316] [0.375]

Share Special Ed in class 0.725 0.738 0.645 0.315 0.322 0.531 0.611 0.605
[0.468] [0.467] [0.476] [0.529] [0.553] [0.617] [0.493] [0.630]

Lagged Reading Scores of Current Classmates 0.047 0.054
[0.019] [0.020]

Lagged Reading Scores of Current Classmates* male ‐0.053 ‐0.036
[0.024] [0.024]

Own lagged reading score 0.006 0.007
[0.018] [0.019]

Share of class ever diagnosed with ADD 0.61
[0.524]

Observations 36050 36050 36050 24510 23700 22920 36050 29940
R‐squared 0.85 0.85 0.85 0.87 0.87 0.88 0.85 0.9
Robust standard errors clustered on classroom in brackets
All regressions include individual child fixed effects

Table 8A: Impact of Diagnosis on Classmate Reading Test Scores 



Males Drop 5th Grade Placebo
Share undiagnosed ‐1.812 ‐0.471

[0.687] [0.901]
share unidagnosed*male ‐1.447

[1.106]
Girls reading test scores in school‐grade 0.379

[0.026]
Share of kids in class evaluated but not diagnosed ‐0.19

[0.558]
Share of kids in class evaluated but not diagnosed*male ‐0.786

[0.663]
Observations 17800 28850 36050
R‐squared 0.86 0.88 0.85
Robust standard errors clustered on classroom in brackets
All regressions include individual child fixed effects and all controls included in Table 8A col 1

All Male Males
Share of grade with undiagnosed ADD ‐1.789 ‐4.825 ‐5.164

[1.663] [1.748] [0.000]
Share of grade with undiagnosed ADD*Male ‐3.452

[1.484]
Percent black in grade 4.357 3.897 4.315

[1.102] [1.315] [1.522]
Percent hispanic in grade 1.742 2.723 2.536

[1.025] [1.284] [1.563]
Average income in grade 0 0 0

[0.000] [0.000] [0.000]
Percent special ed in grade 1.275 1.433 1.989

[0.965] [1.174] [1.247]
Percent male in grade ‐1.154 ‐1.016 ‐1.426

[0.759] [0.921] [1.159]
Teacher has masters degree ‐0.171 ‐0.669 0.099

[0.158]
Teacher has license ‐0.247

[0.237]
Teacher years of experience 0.027

[0.011]
Class size ‐0.027

[0.022]
Percent Hispanic in class 0.803

[0.844]
Percent black in class ‐1.165

[0.621]
Percent female in class 0.295

[0.960]
Class avg. income in $10000 ‐0.005

[0.026]
Student in Special Ed ‐0.653

[0.397]
Share Special Ed in class ‐0.013

[0.584]
Girls reading test scores in school*grade 0.386

[0.028]
Observations 41630 20910 17470
R‐squared 0.84 0.85 0.86
Robust standard errors clustered on school*grade in brackets
All regressions include individual child fixed effects and grade fixed effect

Table 8B: Impact of Diagnosis on Classmate Reading Test Scores ‐ Alternative Specifications or Samples

Table 9: Impact of Share Undiagnosed in Grade on Reading Test Scores



Share undiagnosed ‐17.148 ‐1.983 ‐2.859 ‐15.04 ‐1.808 ‐21.352 ‐2.4 ‐4.013 ‐22.606 ‐2.29
[9.741] [0.779] [1.678] [9.654] [0.933] [12.458] [0.932] [2.240] [13.844] [1.089]

Share undiagnosed*Teacher has Masters 1.047 1.144 0.74 0.686
[1.132] [1.134] [1.344] [1.377]

Share undiagnosed*Teacher License 1.125 1.5 0.929 2.081
[1.885] [1.799] [2.315] [2.356]

Share undiagnosed*ln(40‐Classize) 4.753 4.596 6.29 6.937
[3.238] [3.255] [4.147] [4.664]

Share undiagnosed*Teacher Experience 0.015 0.022 0.008 0.012
[0.056] [0.054] [0.061] [0.062]

Teacher has masters degree ‐0.021 ‐0.034 0.007 0.019 0.006 0.124 0.052 0.076 0.088 0.076
[0.147] [0.148] [0.142] [0.141] [0.142] [0.181] [0.180] [0.172] [0.172] [0.172]

Teacher has license ‐0.187 ‐0.152 ‐0.203 ‐0.15 ‐0.154 ‐0.052 ‐0.25 ‐0.315 ‐0.242 ‐0.251
[0.235] [0.214] [0.234] [0.215] [0.214] [0.235] [0.250] [0.268] [0.251] [0.250]

Teacher years of experience 0.022 0.022 0.022 0.022 0.021 0.017 0.03 0.03 0.03 0.03
[0.009] [0.009] [0.009] [0.009] [0.010] [0.011] [0.011] [0.011] [0.011] [0.011]

Class size ‐0.024 ‐0.031 ‐0.031 ‐0.024 ‐0.031 ‐0.019 ‐0.034 ‐0.034 ‐0.02 ‐0.034
[0.015] [0.016] [0.016] [0.015] [0.016] [0.018] [0.022] [0.022] [0.020] [0.022]

% Hispanic students in class ‐0.393 ‐0.36 ‐0.369 ‐0.398 ‐0.364 ‐0.663 ‐0.092 ‐0.108 ‐0.142 ‐0.097
[0.579] [0.580] [0.579] [0.579] [0.580] [0.708] [0.790] [0.789] [0.786] [0.790]

% black students in class ‐2.154 ‐2.001 ‐1.986 ‐2.148 ‐1.984 ‐2.097 ‐1.869 ‐1.86 ‐1.905 ‐1.86
[0.485] [0.489] [0.488] [0.485] [0.489] [0.573] [0.632] [0.630] [0.630] [0.631]

% female in class 0.827 0.821 0.812 0.829 0.812 0.941 0.824 0.823 0.835 0.821
[0.733] [0.733] [0.734] [0.733] [0.734] [0.937] [0.987] [0.987] [0.982] [0.988]

Class avg. income in $10000 ‐0.022 ‐0.023 ‐0.023 ‐0.022 ‐0.023 0.004 ‐0.001 ‐0.001 0 ‐0.001
[0.024] [0.024] [0.024] [0.024] [0.024] [0.029] [0.031] [0.031] [0.031] [0.031]

Student in Special Ed ‐0.069 ‐0.067 ‐0.075 ‐0.08 ‐0.075 ‐1.254 ‐0.558 ‐0.561 ‐0.574 ‐0.562
[0.310] [0.312] [0.312] [0.310] [0.312] [0.443] [0.403] [0.403] [0.396] [0.403]

Share Special Ed in class 0.809 0.798 0.792 0.798 0.79 0.518 0.865 0.864 0.872 0.861
[0.468] [0.466] [0.466] [0.468] [0.466] [0.536] [0.601] [0.601] [0.603] [0.601]

Observations 36030 36050 36050 36030 36050 18010 18020 18020 18010 18020
R‐squared 0.85 0.85 0.85 0.85 0.85 0.83 0.85 0.85 0.85 0.85
Robust standard errors clusterd on classroom in brackets
Also included are grade dummies, age of student, income of student, whether student diagnosed with ADD
All regressions include individual child fixed effects

All Males

Table 10: Do Classroom Resources Moderate the Impact of Peer Behavior on Reading Test Scores? 



All Lagged Read No Spec Ed No Sped Ed/5th Grade All Lagged Read No Spec Ed Sped Ed/5th Gra
Share undiagnosed (predicted) 10.83 1.367 1.856 ‐9.873

[23.300] [36.289] [25.180] [40.237]
Share undiagnosed(predicted)*male ‐14.126 ‐11.457 ‐15.387 ‐11.994

[4.847] [6.110] [4.565] [8.352]
Share of those with ADD undiagnosed (predicted) 1.346 ‐2.917 0.236 ‐1.7

[2.897] [5.400] [3.189] [4.346]
Share of those with ADD undiagnosed(predicted)*male ‐2.236 ‐1.92 ‐2.468 ‐1.952

[0.682] [0.970] [0.694] [1.037]
first stage residual ‐0.066 1.165 ‐0.282 0.17 ‐0.043 0.323 ‐0.058 0.008

[0.858] [1.296] [0.943] [1.256] [0.186] [0.266] [0.193] [0.219]
first stage residual*male ‐1.453 ‐3.754 ‐0.993 ‐1.695 ‐0.191 ‐0.82 ‐0.11 ‐0.244

[1.497] [1.659] [1.406] [1.974] [0.267] [0.366] [0.288] [0.336]
age ‐0.967 2.933 ‐0.801 ‐1.147 ‐0.975 2.56 ‐0.811 ‐1.164

[0.348] [0.901] [0.288] [0.475] [0.388] [0.941] [0.366] [0.487]
ln(income) 0.028 0.161 0.001 ‐0.06 0.027 0.187 0.003 ‐0.052

[0.073] [0.127] [0.085] [0.123] [0.083] [0.147] [0.067] [0.108]
first grade 2.523 2.024 2.404 2.507 2.017 2.37

[0.719] [0.576] [0.777] [0.763] [0.654] [0.883]
third grade 4.384 ‐6.153 3.463 4.479 4.351 ‐5.679 3.472 4.467

[1.450] [6.431] [1.139] [1.642] [1.559] [6.018] [1.341] [1.790]
fifth grade 6.602 ‐11.773 5.229 6.554 ‐10.814 5.256

[2.189] [6.574] [1.709] [2.379] [6.004] [2.033]
Student in Special Ed ‐0.582 ‐0.496 ‐0.585 ‐0.566

[0.300] [0.481] [0.344] [0.413]
Teacher has masters degree 0.031 ‐0.054 0.037 0.106 0.032 ‐0.078 0.032 0.086

[0.089] [0.102] [0.084] [0.107] [0.094] [0.111] [0.116] [0.122]
class size ‐0.024 ‐0.02 ‐0.024 ‐0.031 ‐0.024 ‐0.009 ‐0.022 ‐0.02

[0.010] [0.014] [0.011] [0.017] [0.015] [0.021] [0.015] [0.027]
% Hispanic students in class ‐0.902 0.106 ‐0.749 ‐0.264 ‐0.884 0.095 ‐0.723 ‐0.168

[0.512] [0.469] [0.475] [0.612] [0.440] [0.589] [0.493] [0.631]
% black students in class ‐2.097 0.415 ‐1.906 ‐1.815 ‐2.077 0.375 ‐1.918 ‐1.882

[0.356] [0.720] [0.361] [0.456] [0.378] [0.676] [0.368] [0.460]
% female in class 0.476 0.147 0.3 0.165 0.443 ‐0.038 0.324 0.211

[0.651] [0.762] [0.614] [1.129] [0.593] [0.596] [0.569] [0.946]
Class avg. income in $10000 0.019 0.037 0.013 ‐0.015 0.018 0.037 0.014 ‐0.013

[0.021] [0.025] [0.023] [0.032] [0.018] [0.026] [0.017] [0.024]
Public School 0.66 0.926 0.876 0.495 0.709 0.961 0.825 0.289

[0.556] [0.910] [0.551] [0.762] [0.422] [0.577] [0.459] [0.656]
Catholic School 0.784 1.698 0.947 0.152 0.8 1.937 0.977 0.237

[0.581] [0.853] [0.613] [0.777] [0.548] [0.829] [0.593] [0.782]
Share Special Ed in class 0.385 0.989 1.381 1.678 0.393 1.29 1.412 1.797

[0.409] [0.824] [0.659] [1.401] [0.460] [0.646] [0.603] [1.250]
lagged reading score 0.004 0.002

[0.013] [0.011]
Observations 35000 26520 33560 25290 35000 26520 33560 25290
All regressions include individual fixed effects
Bootstrapped standard errors in brackets

Table 11: IV Impact of Undiagnosed ADD on Others' Reading Test Scores



Share of class with undiagnosed ADD Share of those with ADD Currently Undiagnosed
Medicaid/SCHIP Eligibility Level ‐0.00246 ‐0.01233

[0.00271] [0.01401]
Medicaid/SCHIP Eligibility Level*age ‐0.00063 ‐0.00515

[0.00026] [0.00136]
age ‐0.0021 ‐0.01499

[0.00290] [0.01616]
ln(income) ‐0.00007 0.00195

[0.00090] [0.00449]
first grade ‐0.00859 ‐0.06354

[0.00522] [0.02903]
third grade ‐0.01442 ‐0.08884

[0.01089] [0.06073]
fifth grade ‐0.02102 ‐0.11533

[0.01650] [0.09199]
Student in Special Ed ‐0.00332 ‐0.01329

[0.00328] [0.01569]
Teacher has masters degree ‐0.00013 ‐0.00714

[0.00091] [0.00433]
class size 0.00018 0.00344

[0.00009] [0.00048]
% Hispanic students in class 0.00869 0.07606

[0.00344] [0.01579]
% black students in class 0.0065 0.02338

[0.00306] [0.01619]
% female in class ‐0.01574 ‐0.07394

[0.00452] [0.02279]
Class avg. income in $10000 ‐0.00039 ‐0.00136

[0.00020] [0.00095]
Public School 0.00946 ‐0.00933

[0.00383] [0.02038]
Catholic School 0.00567 0.05773

[0.00434] [0.02437]
Share Special Ed in class 0.00734 0.08257

[0.00438] [0.01932]
Observations 35000 35000
R‐squared 0.48 0.52
All regressions include individual fixed effects
Robust standard errors in brackets
All regressions include individual fixed effects

Appendix Table 1: First Stage Regressions



FE-IV FE-IV Reduced Form First Stage First Stage
Any Health Insurance Diagnosed with ADD Diagnosed with ADD Eligible for Medicble for Medicaid*age

Eligible for Medicaid/SCHIP 0.115 ‐0.025
[0.051] [0.031]

Eligible for Medicaid*age ‐0.005 0.009
[0.006] [0.004]

Medicaid eligibility level ‐0.003 0.129 ‐0.027
[0.004] [0.008] [0.071]

Medicaid eligibility level*age 0.001 0 0.13
[0.000] [0.001] [0.008]

Age ‐0.002 0.005 0.004 ‐0.004 ‐0.089
[0.004] [0.003] [0.003] [0.006] [0.050]

First grade 0.012 0.002 0.003 0.018 0.126
[0.007] [0.005] [0.005] [0.010] [0.089]

Third grade 0.032 0.005 0.008 0.041 0.311
[0.013] [0.010] [0.010] [0.021] [0.182]

Fifth grade 0.048 0.009 0.013 0.054 0.445
[0.020] [0.015] [0.015] [0.031] [0.275]

Ln(income) 0.034 0.004 ‐0.002 ‐0.115 ‐0.959
[0.002] [0.002] [0.001] [0.002] [0.017]

Observations 43190 43190 43190 43190 43190
Number of childid 14593 14593 14593 14593 14593
Robust standard errors in brackets
All regressions include individual fixed effects

Appendix Table 2 Impact of Medicaid Eligibility Status on Insurance Coverage and Diagnosis- First Stage, Reduced Form and IV Estimates


