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Introduction 
 

The standard assumption that equilibrium prices of financial assets reveal all the relevant 

information about the profitability of these assets raises a puzzle at the micro level: It leaves no 

incentive for individuals to collect any private information (cf., Grossman and Stiglitz, 1980). 

But how, then, do prices become “fully revealing”?  Indeed, as recent stock market scandals 

indicate, information gleaned from security prices is often inaccurate, if not misleading, and 

certainly incomplete. To resolve the puzzle, it is necessary to augment the equilibrium theory of 

efficient markets by pertinent micro foundations. This is what we aim to do in this paper.  

The idea is that individuals’ demand for risky assets are partly influenced by effort and 

ability to gather and assess information about likely realizations of future returns. For centrally 

traded homogeneous assets, the hypothesis is that the public information revealed by market 

prices is incomplete or imperfect, leaving room for “asset, or risk, management”. 1   

This hypothesis is a natural extension of the costly-information, or “noisy-prices”, 

rational expectations literature.  Early contributions include Darby (1976), Grossman and Stiglitz 

(1980), Hellwig (1980), Verrecchia (1982), Admati and Ross (1985), and Kim and Verrecchia 

(1991a, b).  More recent studies, e.g., Wang (1994), de Fontnouvelle (2000), Allen, Morris and 

Shin (2006), and Veldkamp (2006) apply a similar methodology to multi-period models. Existing 

studies allow for noisy prices which justify private information collection, but assign such 

activity to a distinct group of homogeneous agents, or allow agents with diverse risk preferences 

to collect information at identical costs of unspecified origin. This literature has not led so far, 

however, to the development of discriminating propositions involving the role of asset 

management at the micro or market levels. We attempt to do so by specifying the information 

cost function and linking its major determinants – human capital endowments, opportunity costs, 

and information-collection technology – with endogenous asset management, risky asset 



  

 
 2 
  
 
 

demand, portfolio returns, asset-price volatility, and equity premiums.2  

As in earlier costly information papers, the market for risky assets in this paper retains its 

efficiency under a competitive equilibrium.  But since prices are subject to exogenous “supply” 

shocks which convey no information, an incentive remains to collect private information. The 

incentive is a reduction in conditional risk bearing.  Investors who are more productive at asset 

management wind up bearing lower subjective risk. They thus tend to hold objectively riskier 

portfolios and reap higher expected portfolio returns. To sharpen the empirical relevance of our 

model we identify the relevant human capital endowments with education and specific 

knowledge. We then implement the model quantitatively at both the micro and macro levels and 

test some of its distinct implications empirically, and against alternative hypotheses as well. 

We expect education and specific knowledge to raise the demand for risky assets and thus 

portfolio income. We expect the opportunity costs of asset management to have the converse 

effects. At the market level we expect higher average human capital to raise the relative price of 

risky assets and lower the equilibrium “equity premium” as perceived by the average investor, 

but the volatility of risky assets’ prices may rise or fall as a result, depending on the relative 

magnitudes of information precision and assets’ supply and return variances. Our analysis offers 

new insights about the “equity-risk-premium puzzle”. It also enables us to assess the rate of 

return to education from asset management. Our empirical findings suggest that educational 

attainments play a direct role in explaining the distribution of total income as well as earnings. 

The rationale for individual asset management applies even when potential economies in 

information-collection generate specialized agents, or “analysts”, who sell their services to less 

specialized investors.  But heterogeneous analysts offer information signals of varying precision. 

Learning about their reliability and precision thus becomes part of individual asset management.  

Furthermore, successful asset managers have an incentive to internalize potential externalities 
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from information-sharing by selling equity in their enterprises, rather than the information itself 

(cf. Leland and Pyle, 1977).  Investors then need to assess the information value of such equities. 

Our model builds on the basic analysis of asset pricing under costly information offered 

by Hellwig (1980), Verrecchia (1982), and Kim and Verrecchia (1991a). In sections I and II we 

extend their framework by specifying the production and cost functions governing asset 

management and the role of human capital. In Sections III and IV we derive our novel behavioral 

propositions and simulate the extended model at the individual and market levels. In section V 

we test some of these propositions using nine independent micro-level data sets. The conclusion 

summarizes our results and assesses the value added of this paper. 

I.  The Economy, Opportunities, and Preferences 

     Like Hellwig (1980) and Verrechia and Kim (1991a), we model a competitive exchange 

economy with a continuum of heterogeneous investors-traders (i = 1,…,n), but unlike them we 

ascribe the basic individual heterogeneity mainly to different endowments of human capital, Hi, 

related market wages, wi, and initial wealth endowments, W0i, rather than risk tolerance.3 We do 

so in order to ascribe differences in personal risk-taking behavior to objective indicators of 

personal human capital and labor market returns, rather than subjective risk preferences.  

          There are two assets in the economy: a risky asset and a safe bond. Both the returns on, 

and the endowed supply of, the risky asset are stochastic. The existence of random supply 

fluctuations or “noise” implies that the equilibrium risky asset price – the public information 

channel - is not fully revealing of information collected by investors, which leaves investors an 

incentive to devote resources to acquire private information. Specifically, investors are assumed 

to be operating in two sectors − a market sector, where they obtain labor earnings, and a 

household sector, where they “manage” their risky assets by seeking information signals to better 

forecast related future returns − over two periods of time.  In the first, they make all resource 
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allocation decisions, including portfolio choices, and in the second, market realizations of 

portfolio returns dictate the outcomes of these choices.  

The varying human capital, or educational attainments Hi, across investors are elements 

of the compact set [ ]HH ,  and their distribution is characterized by the density function 

[ ] +→ RHHf ,:  such that for all [ ] ∫ =≥∈
H

H iiii dHHfHfHHH 1)( and 0)(,, . The assumed 

distinct attribute of human capital in our model is that it enhances the productivity of working 

time devoted to information collection, or “asset management”, as well as to earning generation.4   

Each trader possesses an endowment of an independently and normally distributed risky 

asset, ix~ . The average supply is commonly known to be normally distributed,  

(1) x~  ∼ N ),( 1−tx ,  

with mean x  and inverse variance t.5 Its realized market return is likewise normally distributed,  

(2)   μ~ ∼ N )h,( 1−μ ,  

with mean μ  and inverse variance h. While the realized return μ~  (price plus dividend) is not 

observable at the time of purchase, investors can devote asset management time to identify a 

private information signal ( iz~ ), which will help forecast it:   

(3) ii
~~z~ ε+μ=  , 

where i
~ε ∼ N )s,0( 1

i
−  denotes a normally distributed random forecast error with mean zero and 

inverse variance or "precision", si, assumed to be independent of both μ~  and ix~ . 

Initial wealth, W0i, consists of the risky-asset endowment, ix~ , valued at the initial market 

price P~ , a riskless bond, B0i, and a safe level of wage income, wi(T-qi). Total productive time, T, 

can be used as an input into asset management, qi, or earning generation (T-qi) at a non-

stochastic wage rate, wi. For simplicity, we abstract from leisure.6 The return on, and price of, 
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bonds, viewed as a numeraire, are normalized as 1. The investor chooses implicitly between 

risky assets and bonds, as well as between asset management and work. The budget constraint is: 

(4) iiiiiii BDPCqTwBxPW 1000
~~)(~~~ +=−−++≡ ,  

where iD~  is investor i’s demand for risky assets, and [wi(T-qi) – C0] is the investor’s labor 

income net of the fixed cost of asset management (see equation 7 below). Since this is a single-

generation, two-period model we assume that realized wealth is consumed in the second period. 

Terminal wealth or consumption is given by iii BDW 11
~~~~ += μ , which can be re-written: 

(4a) 001 )(~~)~~(~~ CqTwDDxPBW iiiiiii −−++−+= μ . 

Bond holdings are thus given by 001 )()~~(~~ CqTwDxPBB iiiiii −−+−+= , where iB1
~  is stochastic, 

since both the endowment of, and demand for, the risky asset are stochastic.  

Consistent with human capital theory, we specify the wage rate, wi, as an exponential 

function of an investor’s attained level of education, Hi, and a vector of idiosyncratic factors, 

δ=(δ1 ,δ2), such as health, labor market experience or idiosyncratic labor market conditions:  

(5)  wi = wi(Hi, δ) = w0(δ1) exp{η(δ2) [ Hi – H(0)]}, 

where H(0) is a minimal level of knowledge and η is the labor-income rate of return on Hi.  

We think of asset management as a quest for information signals that can improve one’s 

forecast of the risky asset’s future returns. The idea is that while all investors know the 

probability distribution ofμ~ , private information can help forecast its realization with greater 

precision, si, thus reducing its conditional risk.  The signal could vary from a specific, publicly 

available data composite, a sharp financial analyst, or "inside information" about corporate 

performance.  By "inside information", however, we do not mean information available to 

technical insiders who are legally proscribed from disseminating it.  We take private information 

acquisition to result, more generally, from tracking relevant information sources, including 
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reliable analysts. Educational attainments, Hi, including ability and specialized knowledge, and 

an external search technology (A(τ) below) augment the productivity of search time, qi.   

The information-precision production function is of the Cobb-Douglas variety:  

(6)  si =  F(qi, Hi) =  A(τ)qi
αHi

β,   where A > 0,  0 < α, β ≤1,  

and τ is a vector comprising all factors affecting asset management’s external technology.  The 

actually employed asset management time technically becomes: 

(6a)  qi  =  si
1/αA(τ)-(1/α)Hi

-(β/α).  

Using (5) and (6a), the total cost of asset management is thus given by the convex function 

(7) )( isC  =  wiqi + C0 = wi(Hi, δ) [si
1/αA(τ)-(1/α) Hi

-(β/α)] + C0 , 

where C0 includes possible fixed monetary costs or fees associated with asset management. 

With this opportunity set, the investor determines both optimal asset management and risky-

asset demand by maximizing the expected utility of terminal consumption or wealth, i1W~  in (4a).  

In line with earlier literature, utility is specified as an exponential function of terminal wealth, 

)/exp()()8( 11 rWWU ii −−= , 

where W1i is a realized value of i1W~ , and r denotes risk tolerance, or the inverse value of one’s 

absolute risk aversion. As indicated earlier, to keep the analysis focused on the main theme of the 

paper, we assume that risk tolerance r does not vary across investors (see footnote 3).  

II. Asset Demand and Management under Rational Expectations 

In the context of the preceding basic framework, investors’ optimizing behavior can be 

viewed heuristically as a two-step process.  In the second step, the investor choose the demand 

for the risky asset, Di
*, conditional on optimal asset management intensity qi and the information 

precision it yields, si, as well as the observed market price, P. Each investor forms rational 

expectations about the stochastic properties of P~  as both market-clearing price and public 
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information signal. In the first step the investor chooses optimal asset management, qi*, 

conditional on the second-step solutions for the asset demand.  These choices are shown to be 

consistent with the existence of rational-expectations equilibrium.  

A. Conditional Individual Demand and the Equilibrium Price for the Risky Asset 

 In step 2 of the optimization process, the investor makes use of the realized public price 

signal P and (optimal) private information signal zi to derive the posterior probability distribution 

of future returns and the conditional expected utility function.  The investor then determines the 

conditional demand for the risky asset by solving the objective function: 

(9) )],~([ 1 PzWUEMax iiDi

. 

To solve equation (9) investors must know the joint probability distribution of the stochastic 

variables )P~,z~,~( iμ .  A simplifying assumption is that under a rational-expectations-equilibrium 

(REE), investors conjecture that the competitive market-clearing price, P~ , is linearly related to 

the asset’s future return,μ~ , their acquired private information signals, iz~  (or iε
~ ), and the supply 

shock, x~ . Since by equations (1)-(3), iz~,~μ , and x~ are normally distributed, the triplet 

)P~,z~,~( iμ would be normally distributed as well. The conjecture can be further simplified to show 

that the REE price would converge in probability to7: 

(10) xP ~~~ νμλθ −+= , 

where ∑
=

≡
n

i
ixnx

1

~)/1(~ . By this conjecture, investor i’s posterior distribution of the return, 

conditional on the observed price and private signal, is also normally distributed with mean 

(11a) )P,z|~(E ii μ=μ = [ μh + sizi + t(λ/ν)2 )])(/1( xP νθλ +− /[h + si + (λ/ν)2t],  and variance  

(11b) ),|~( PzVarV ii μ≡ = 1/[h + si + (λ/ν)2t].  

Investor i’s conditional demand for the risky asset can then be derived using (11a) and (11b): 
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(12) 
i

i
ii V

P
rPzD

−
=

μ
),(  = }])/([)])(/1][()/([{ 22 PtshxPvtzshr iii νλνθλλμ ++−+−++ .  

To arrive at the equilibrium solution for equations (12), however, we must also solve for 

the conjectured coefficients θ, λ, and ν, in equation (10). The assumption underlying the REE 

analysis is that the conjectured asset prices are consistent in probability with the market-clearing 

prices. The coefficients θ, λ, and ν must then satisfy the equilibrium condition: 

(12a)  ( ) xx
n

PzD
n i

i

n

ii
i

n ~~1~,~1
11

≡=
==
∑∑ . 

This is indeed the case. The parameter (λ/ν) in equations (11a)-(12) can be shown equal to (rs).8 

The stochastic market clearing price and individuals’ risky-asset demands thus become:   

(13) },tsrsh{/}x~]tsr)r/1[(~)tsrs(xrsth{P~ 2222 +++−μ+++μ=  

(14) )],tsrsh(P~x~tsr~tsrz~sxrsth[rD~ 22
i

22
iii ++−−μ+++μ=  

where ∫=
H

H iii dH)H(fss is the weighted average of all investors’ information precision.9 Note 

that by equation (12) or (14) a higher precision si may either increase or lower optimal risky-

asset holding in period 1, depending on )~~( Pzs ii − , i.e., whether one’s realized private signal 

exceeds or falls short of the realized price, and such periodic adjustments in risky-asset holdings 

would be larger the higher is one’s information precision. 10 In section II.A we show, however, 

that the expected demand level for the risky asset will unambiguously rise with si.  

B.  Derived-Demand for Asset Management 

Having thus determined the demand for the risky asset, iD~ , conditional on given values 

of asset management time, qi, we can solve for the latter by maximizing the expected utility of 

terminal wealth, iW1
~  conditional on iD~  , with respect to qi.  Since by equation (6) information 

precision is a monotonically increasing function of asset management, si=si(qi), we proceed for 
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convenience to maximize the expected utility of final wealth with respect to si(qi), (as in 

Verrecchia, 1982, and Kim and Verrecchia, 1991a), and then extricate our model’s solution for 

qi. We rewrite first the terminal wealth in equation (4a) as )()~~(~~~~
01 iiiii sCPDxPWW −−++= μ , 

where W0i ≡ B0i + wiT. The expected utility to be maximized can then be derived from equations 

(8) and (9), using the properties of the log-normally distributed mean returnμ~ ,   

(15) Max E{– exp [– (1/ r) (W0i – C(si) ixP~~− ) – (1/2)( 2)~( Pi −μ / Vi)]}, 

with the expected utility operator defined over the bivariate normal distribution of the iz~ and P~ . 

We can now state our solutions for information precision and asset management as follows: 

(16) 
( )( )

( )
⎭
⎬
⎫

⎩
⎨
⎧

=−
++

= 0'
2

1,0max 2|
r
sC

trssh
ss i

i
ii . 

An interior optimum requires equalizing the relevant marginal cost and revenue 

(16a) C'(si) = (1/α) wi(Hi,δ) si
(1-

 
α)/α A(τ)-1/α Hi

-β/α =  .5r (h + si + r2s2t)-1.   

The marginal cost, C'(si), is derived from equation (7). The corresponding marginal revenue is 

inversely related to the variance of investor i’s posterior distribution of the risky return, Vi (see 

equation 11b and footnote 8).11  Rearranging terms, we obtain an implicit, non-linear solution: 

(17) MR(si) ≡ si
(1-α)/α (h + si + r2s2t) = MC(si) ≡ .5rA(τ)1/α  Hi

β/α α wi(Hi,δ)-1. 

An interior solution for si necessarily exists if 0 < α < 1 in equation (6) and there are no fixed 

asset management costs, or C0=0 in (7).  If α = .5, e.g., (17) becomes quadratic in si: 

(18)   si
*

  =  .5{[(h + r2s2t)2 + (rA(τ)2 Hi
2β wi(Hi,δ)-1)].5

  - (h + r2s2t)} > 0, and 

(19)   qi
* = .25{[(h + r2s2t)2 + (rA(τi)2 Hi

2β wi(Hi,δ)-1)].5
 - (h + r2s2t)}2 A(τ)-2Hi

-2β  > 0. 

Alternatively, if we let α = 1, the cost function in equation (7) becomes linear. Here, if a positive 

solution for optimal asset management time exists, it is given by 12 

(20)  qi
*  =  .5rwi

-1 - (h + r2s2t)A(τ)-1Hi
-β. 
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III.   Behavioral Implications at the Micro Level 

  A. Expected demand for the risky asset 

Equations (13) and (14) identify the basic determinants of demand for risky assets and 

derived demand for asset management at any point in time.  To derive testable propositions 

concerning these determinants, which are new to the literature, we first insert equation (13) into 

(14) to derive the expected individual demand for the risky asset and its market price: 

(21)   E( iD~ ) = r [(si - s)( ])/1())~( xrPE +−μ  ,  where  

(22)   E( P~ )  = μ - [(1/r) x  / (h + s + r2s2t)] .  

Alternatively, by inserting equation (22) into (21) the latter can be rewritten: 

(21a) E( iD~ ) = x [(h + si + r2s2t)/ (h + s + r2s2t)] > 0. 

By equation (21a) all investors have some positive expected demand for the risky asset which 

rises monotonically with the precision of the investor’s private information (si) relative to the 

collected public information embedded in the market price (r2s2t). The ratio [si/r2s2t] is inversely 

related to the variance of the posterior distribution of the return as perceived by investor i relative 

to the average investor, {[1/ (h + si + r2s2t)]/[1/(h + s + r2s2t)]} (see equation 11b and footnote 8). 

Clearly, the lower the perceived riskiness of the asset, the greater is the tendency to hold it. 

By equation (22), the expected future return or price, μ , is always greater than the expected 

equilibrium purchase price of the asset due to risk aversion.  Equation (21) also implies that, 

abstracting from any systematic differences in risk tolerance, investors who are better informed 

relative to the average (si>s) can be expected to have relatively greater demand for the risky 

asset. So while at any point in time, those with superior knowledge may use it to either buy or 

sell the risky asset, as equation (14) indicates, over many periods or independent groups of 

informed investors, risky asset demand would average out to be relatively larger for the better 

informed, as their conditional risk from holding risky assets, given private information, is lower.  
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B. Participation in asset management  

If the elasticity of information production with respect to search time were unitary, or α = 1, 

then equation (17) would allow for a corner solution whereby the marginal benefit from asset 

management is below its marginal cost, and investor i would eschew asset management i.e., qi = 

si = 0, even if there were no fixed entry costs in information collection. Here, by equation (21a)  

(23)  E(Di)0 →  x [(h+ r2s2t )/(h+s+r2s2t)],  as qi , hence si → 0. 

A fraction of investors with expected demand at or below the threshold level E(Di)0 would then 

eschew asset management and rely just on the market price as information signal. Our numerical 

simulation of this case, using equation (5) and the baseline parameters in Table 1, sets this 

fraction at 30% of all investors.  

In the more general case where 0 < α < 1, the marginal cost is increasing and convex 

from the origin, absent any fixed costs, which implies that investors allocate at least some 

nonzero time to manage assets. In this case, we can estimate numerically the fraction of 

“minimally informed investors” whose private information si is at least one standard deviation 

below the average, s. Using our baseline parameters, this fraction is 19.48%. The fraction could 

be much higher if fixed costs were nonzero. (A related survey estimate is given in section V.B.) 

C. Comparative-statics and testable implications at the micro level 

 For interior solutions for asset management, we can derive analytically or via numerical 

simulations testable propositions about the impact of basic parameter shifts on the demand for 

information, si
*, the derived-demand for asset management, qi*, the expected demand for risky 

assets, E( iD~ ) , and the rate of return to human capital in wage and financial income at different 

education levels. Table 1 illustrates the results using a specified parameter set and an assumed 

truncated log-normal distribution of educational attainments Hi.13 

a. Shifts in human capital endowments, (Hi): 
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We take educational attainments – our proxy for human capital – to be of the “general” 

type - raising the productivity of time in both the labor market and asset management. Assuming 

that shifts in idiosyncratic individual parameters do not affect equilibrium market prices or 

average information precision, the impact of shifts in Hi can be determined by differentiating 

equation (17) with respect to Hi, using equations (5) and (7) (see Appendix 1 for proofs): 

(24a)  sgn dsi
*/dHi  = sgn ]/)~([ *

ii dHDEd = sgn [(β/α) - ], ii Hwε ;
ii Hw ,ε ≡ (dwi

*/dHi )(Hi/wi*) > 0; 

(24b)  sgn dqi
*/dHi = sgn (

ii Hs ,ε - β); 
ii Hs ,ε ≡  (dsi

*/dHi )(Hi/si*); 

(24c)  sgn constwii i
Hs =∂∂ |)/( *  =  sgn 

iconstwii HDE =∂∂ |]/)~([ *  > 0; 

(24d)  sgn constwii i
Hq =∂∂ |)/( *  = sgn (

ii HsE , - β); 
ii HsE , ≡  constwiiii i

sHHs =∂∂ |)]/)(/[(  >0. 

Proposition 1: An “unconditional” increase in individual human capital which allows wages to 

rise with Hi, would increase private information precision, si
*, thus expected demand for the risky 

asset, E( iD~ )*,  if the elasticity of the wage rate with respect to Hi, 
ii Hw ,ε , is lower than (β/α) - the 

ratio of the elasticities of si with respect to Hi and qi in production (see equation 6). It would 

increase asset management time qi
*, however, only if an unconditional increase in Hi had a larger 

percentage impact on the demand for si
* than on its production, or 

ii Hs ,ε > β in elasticity terms. 

Proposition 2: A “conditional” increase in Hi, that left the wage rate wi(Hi, δ) intact would 

unambiguously raise si*, and E( iD~ )*. A conditional increase in Hi thus generates a larger 

increase in si* and E( iD~ )* than an unconditional one, but the derived demand for asset 

management time would again rise only if the conditional elasticity of si* with respect to Hi in 

demand is larger than that in production, or 
ii HsE , > β. 

The ambiguity regarding the impact of an unconditional increase in individual 

educational endowment stems from its opposing effects on the marginal benefit from information 
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precision and the opportunity cost of management time, wi. The latter effect is absent when wi is 

held constant. Therefore, a conditional increase in Hi leads to an unambiguous increase in 

desired information precision and the demand for the risky asset (by 21a). The impact on the 

derived-demand for asset management time, qi*, however, is still ambiguous because a higher Hi 

also raises the productivity of any unit of time already spent managing assets. In our simulations, 

ii Hw ,ε  and 
ii HsE , are found to be sufficiently low and high, respectively. Indeed, optimal 

information precision si
* is found to be a monotonically increasing function of Hi, while time 

devoted to asset management ultimately falls at higher levels of Hi (see Figure 1). 

b. Idiosyncratic shifts in the opportunity cost wi(δi) and “technology” A(τ)i of asset management: 

The vector δ represents individual attributes or labor market conditions for specific 

occupations or locations that affect individual wages and thus the opportunity cost of asset 

management time at any given level of educational attainments. Likewise, the vector τ represents 

various external or internal cost-saving “technologies” that augment the productivity of 

education and time inputs in acquiring information. These include indicators of “specific” human 

capital, such as experience in financial transactions, as opposed to “general” human capital 

(schooling), and technological innovations that affect the efficiency of information acquisition.  

Although our equilibrium solutions in equations (13) and (14) assumed a uniform A(τ) 

and δ across investors, we can here allow for idiosyncratic shifts in w(δ)i  and A(τ)i which do not 

alter the average private information level, s. Differentiating equation (17) with respect to A(τ)i 

or w(δ)i  and using equations (7) and (21), we prove in Appendix 1 that: 

Proposition 3: A higher opportunity cost of time w(δ)i will lower asset management and demand 

for risky assets. The converse holds for improved efficiency in information production, A(τ)i. 

(25a) sgn (dsi
*/dwi) = sgn ]/)~([ ii dwDEd  = sgn (dqi

*/dwi) < 0, as long as si
* > 0.  

(25b)  sgn (dsi
*/dAi) = sgn ]/)~([ ii dADEd  = sgn (dqi

*/dAi) > 0, as long as si
* > 0.14 
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c. “Initial Wealth” effects:  

The exponential utility function (8) exhibiting constant absolute risk aversion inherently 

precludes any initial “wealth effects” on the demand for risky assets. Also, the formal model 

does not recognize any borrowing constraints or bankruptcy costs that impose lump-sum costs on 

risky-asset holdings. Consequently, the model also precludes any impact on the demand for risky 

assets stemming from higher (safe) earnings or the value of human capital as a safe asset in a 

larger portfolio that includes both human and nonhuman wealth (but see our analysis of this issue 

in section V.B.a). However, the size of one’s financial wealth, or financial portfolio can act as a 

distinct idiosyncratic “efficiency” factor, A(τ)i, since larger portfolios, accumulated or inherited, 

signal greater past experience or scale economies in portfolio management.15 By equation (25b), 

a larger portfolio size is therefore expected to enhance the expected demands for asset 

management, private information, and risky assets, qi*, si*, and, E( iD~ )* respectively. 

d. Returns to human capital in generating wage and non-wage income:  

Proposition 4: Propositions 1-3 concerning the impact of human capital on the demand for risky 

assets hold for its impact on overall portfolio returns as well.  

The rationale is that any returns to human capital from asset management may occur in our 

model strictly via shifts in portfolio composition from “bonds” to “stocks”, i.e., from higher 

E( iD~ )* induced by information precision. Thus our DEMAND and RETURN regression results 

in section V should be qualitatively similar if estimated using the same regression specification. 

We can also simulate our model numerically to estimate expected premiums on unconditional 

increments in human capital from, which generate both higher wage earnings and added portfolio 

returns. In Table 1 the impact of Hi on log earnings is assessed by simulating equation (5), and 

its impact on the expected net return on financial investments is assessed by simulating 

iii dHsCPDEd /)]}()~~(~[ln{ −−μ  at different levels human capital endowments.16  
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IV. Market-Level Implications 

A.  Private information, Price level, and Price Volatility 

Under our competitive setting, changes in idiosyncratic individual parameters do not alter 

average private information, s, or the risky asset’s expected market price and volatility.  Changes 

in investors’ common parameter levels would affect all of these variables.  

From equation (13), price realization is linearly related to “supply” and “return” shocks:  

xP ~~~ νμλθ −+= ,  where θ = ])][/(1[ 22 xrsthtsrsh +++ μ ; λ =  [(s+r2s2t)/(h+s+r2s2t)]; and  

ν = [(1/r)+rst]/(h+s+r2s2t).  From (22), expected price is E[ P~ ]  = μ - [(1/r) x  / (h + s + r2s2t)]. It 

follows that under a fixed supply of the risky asset, changes in average parameter levels that 

affect exclusively average information precision (s) will increase the expected price level by 

virtue of enhanced demand. The price variance, in turn, is given by  

(26) )x~,~(Cov2)x~(Var)~(Var)P~(Var 22 μλν−ν+μλ= , 

where Var(μ~ ) ≡ (1/h), and Var( x~ ) ≡ (1/t). Since “return shocks” (μ~ ), are not linked to 

unpredictable “supply” shocks ( x~ ), )~(PVar simplifies to  

(26a) )/1()/1()~( 22 thPVar νλ +=  = )]}/(1[)/1{( 222 tsrh +λ ,  

and price volatility, defined as the ratio of variance to expected price, becomes  

(27) ]./[)]/1()/1([)~(/)~()~( 22 xthPEPVarPv νμλθνλ −++=≡  

Movements in all three price-related measures are thus seen to be controlled by our model’s 

basic parameters either directly or through their influence on private information collection.  

Our simulations in Table 2 offer comparative static implications about the effects of 

common parameters shifts on three sets of market-level outcomes: average asset management 

intensity and information precision, q and s; the risky asset’s expected price, price variance and 

volatility, E( P~ ), )~(PVar and )~(Pv ; and the expected risk premium Re (discussed in section B).  
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a. The impact of improvements in the efficiency of asset management: H and A(τ) 

Consider first “unconditional” shifts in average human capital and information 

production “technology”, H  and A(τ), which shift )~(PVar and )~(Pv  just through their impact 

on average information precision, s (see equation 26a).  Increases in H  stemming from a 

uniform increase in schooling would monotonically raise average private information, s 

(provided that Hwε < β/α in equation 24b) and thus the risky asset’s expected price, E( P~ ).  They 

also lower average asset management intensity q  in our simulations, partly because of a 

feedback effect owing to higher average private information, s, which lowers the derived-

demand for qi by the relatively more informed investors. Increments in the external technology 

of information production, A(τ), have similar effects: they raise s and E( P~ ), and lower q  

(contrary to outcomes for qi at the individual level), because of the feedback effect of s on qi. 

How do shifts in H or A, affect the risky asset’s price variance and volatility, )~(PVar  

and )~(Pv ?  The answer depends on basic-parameter levels and the magnitude of s. Three cases 

are relevant: a. If r2ht<1, as would be the case if the variances of supply and unconditional return 

are sufficiently high, Var( P~ ) would be a U-shaped function of s as it rises from zero; b. If 1< 

r2ht<(5/4), as would be the case if )~(xVar and )~(μVar are lower, )~(PVar will assume a humped 

shape: first rising, then falling, then rising again as s increases; c. If r2ht>5/4, which would be the 

case if )~(xVar and )~(μVar  were sufficiently low, )~(PVar would be continuously rising. 17 The 

common feature in all cases is that as higher H or A increases, at least beyond some positive 

level, )~(PVar would begin rising monotonically. Since an increasing s also raises the expected 

price, )~(PE , the behavior of price volatility )~(/)~()~( PEPVarPv =  is in principle uncertain. 

However, in all our experiments with alternative parameter sets, )~(Pv , mimics the shape of 
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)~(PVar , essentially because expected price rises at a lower rate than price variance. 

The rationale is that increasing average precision, s, has two competing effects: on the 

one hand it lowers the incentive to trade on price fluctuations which convey no information; on 

the other hand, it raises the incentive to take advantage of acquired information signals by 

trading on the strength of these signals (by adjusting up or down the risky assets’ portfolio 

shares). The second effect becomes more pronounced as s rises sufficiently. If )~(xVar , or 

)~(μVar  in equation (26a) are high, such that r2ht<1, optimal s would be quite low at low levels 

of H or A (see Table 2). The first effect may thus dominate initially, but the second takes over as 

H or A, hence s, continue to rise (See Figure 2.A). The inference is that higher levels of human 

capital and private information can ultimately increase observed market volatility, especially in 

more developed financial markets, while the average subjective risk to individuals actually falls.  

b. The Impact of increments in the means and variances of supply and return distributions:  

Fiscal and policy changes that affect firms’ incentives to float stocks or the price of bonds 

could alter the distributions of the risky asset’s supply and returns, x~ andμ~ , respectively. 

Upward shifts in just their mean levels, x , μ , have no impact on mean asset-management 

time, q , but they respectively lower and raise the asset’s market expected price [E( P~ )].  

Lower variances of x~ andμ~  , i.e., higher t and h, in contrast, have more complex effects 

on )~(PE and )~(PVar . On the one hand they lower average asset management and information 

precision, q  and s, but raise the expected price E( P~ ): From equation (17) we can prove that 

higher t or h lower the marginal benefits from information collection, so optimal q  and s fall. 

Expected demand rises, however, because the higher t and h, which lead to a lower variance of 

the posterior distribution of returns in equation (11b), raise the willingness to hold stocks. 

Expected price must then rise to ration expected demand to the given mean supply level, x 18. On 



  

 
 18 
  
 
 

the other hand, higher t and h directly contribute to a lower variance of the market price in 

equation (26a). In our simulations, the latter effect dominates that of the decline in information 

precision, s, when h continuously rises, causing the variance and volatility to fall. A rising t, in 

contrast, causes the price variance to first fall but then rise as t increases, essentially because of 

the decline in s (see Figure 2.B). Price volatility, however, tends to fall as variances of supply 

and demand shocks (1/t and 1/h) fall. By implication, asset prices are expected to fall and their 

volatility to rise as a result of adverse supply shocks and recessions. 

B. Asset management, equity premium, and the equity-risk-premium puzzle 

Since we assume for convenience that the return on bonds is zero, the expected equity 

premium as conventionally defined is given by:  

(28) ρe = E{ }~/]~~[ PP−μ , which can be rewritten, 

(28a) ρe = ρ – Cov {Re, [ )~(/~ PEP ]},  

where  ρ ≡ [E( )]~()~ PE−μ / )~(PE . The value of ρ has a precise interpretation in our model:  it is 

the relative gap between the expected value of the posterior distribution of returns, conditional 

on average private information and expected market price, or alternatively from equation (22): 

(28b) ρ = { ])/1()/[(])/1[( 22 xrtsrshxr −++ μ } > 0. 

The covariance term in equation (28a) is generally ambiguous in sign. Our numerical 

simulations using the parameters of Table 1 find it to be negative but small in magnitude, and 

little affected by changes in average information precision s. By equation (28b), however, there 

is an inverse relationship between ρ and s.  By our numerical simulations this relationship applies 

to ρe as well. Higher H or A are thus expected to lower the equilibrium equity premium for 

investors because the variance of the posterior distribution of returns to the average investor is 

monotonically decreasing with the greater information precision they generate.   
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 This analysis also offers new insights concerning the “equity-risk-premium puzzle”. The 

conventional literature interprets ρe in equation (28) as equilibrium compensation for pure risk 

bearing. By our model, however, ρe overstates that compensation, since a component of the 

equity risk premium must account for the cost of asset management rather than pure risk bearing. 

The analysis below offers a way to pin down this component using our model. 

 A representative investor faces two competing options: a. cashing out her endowed 

average supply of the risky asset ( x ) and converting it to safe bonds at the going market price P~ ; 

or b. purchasing an optimal amount of the risky equity consistent with optimal asset management 

(qi*). Since her information precision is the same as the average precision, si=s, by equation (21) 

her expected demand for the risky asset indeed equals her endowed average supply, E xDi =)~( .  

Second-period wealth associated with option A would then be: 

xPwTBW A
~~

01 ++= , while option B’s would be xPxPqTwBW iB )~~(~*)(~
01 −++−+= μ .  

The compensating differential N* required to compensate this investor for selecting the 

inherently riskier option B over A can be determined from 

(28c) EU( *)~
1 NW A +  = EU( )~

1BW .  

As computed in equation (28c), however, N* understates the full compensation required for 

bearing the added risk from holding the endowed risky asset over bonds, as option B also entails 

bearing the opportunity cost of asset management C*=wqi*. Absent any fixed management costs 

(C0 =0), the required full compensation would therefore be G*= N* + C*.   

By this analysis, a fraction c*=C*/G* of the equilibrium compensation for holding stocks 

over safe bonds must be ascribed to asset management rather than pure risk bearing, and exactly 

the same inference applies to equation (28) defining the equilibrium compensation per dollar 

invested in the risky asset. This inference can resolve at least part of the “equity risk-premium 

puzzle” discussed in the literature (see Mehra and Prescott, 2003). 
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To illustrate the quantitative value of c*, we have assessed N*, C* and c* = C*/G* 

numerically by simulating equation (28c). Based on the model parameters used to derive Table 1, 

we estimate the portion of Re due to information costs, c*, to be 10.44%.  This result is just 

illustrative; it ignores fixed information costs and is sensitive to the model’s parameter values.19  

V. Empirical Evidence 

Some of our key predictions are testable empirically.  At the individual level we expect that:   

1. Consistent with our comparative-static propositions, “conditional” increases in personal 

educational attainments (EDU), with personal wage rate held constant, will raise the expected 

demand for risky assets, and hence the overall portfolio return on financial assets.  

2. Indicators of “technological efficiency”, such as a management-related occupation or 

accumulated portfolio size which decreases the marginal cost of asset management, will also 

raise risky-assets demand and management time, and hence overall portfolio returns. 

3. In contrast, higher “conditional” wage rates, given education, will unambiguously lower asset 

management time and expected demand for risky assets, thus overall portfolio returns. 

4. “Unconditional” increases in educational attainments will have weaker effects on risky- assets 

demand and management, as they also raise the opportunity cost of asset management. 

We test the preceding implications using two data sets, the first of which includes 8 samples.  

A.  First Data Set: Risky Asset Demand and Portfolio Returns 

The first set consists of data from eight surveys of individual asset holdings and realized 

returns for the years, 1963-64, 1983, 1989, 1992, 1995, 1998, 2001, and 2004 that are reported in 

the Survey of Consumer Finances of corresponding years based on separate national probability 

samples.  These data sets, spanning four decades, contain data critical to testing our specific 

hypotheses.  All data sets contain information about household initial portfolio composition by 

asset categories, realized portfolio returns in the same year (for 1963-1964 the returns are on the 
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previous year’s holdings), household wage income, and personal characteristics of household 

heads and their spouses. The national probability samples from the early years (through 1989) 

represent relatively affluent and older investors, as these are more likely to own marketable 

assets, but in the later years attempts were made to sample the entire population. Since there are 

also differences in the personal characteristics included in different samples, we analyze them 

separately.  We report the results in a single table, however, to facilitate qualitative comparisons.  

A number of empirical studies sought to identify factors that explain household decisions 

to hold risky assets.  Several of these rely on data sets similar to ours, and although they use 

different specifications, some of their results are similar to ours (see especially Bertaut (1998)).20 

Also, like other studies we define as risky assets corporate and international stocks and bonds. 

Where we differ is in our model specification, which is designed to test specific 

implications of our comparative static analysis concerning the effects education, experience in 

managing assets and, especially the opportunity cost of time on risky-assets demand.  While 

some studies also include disposable income as a regressor, they do not ascribe a theoretical 

justification for it. They also treat this variable as exogenous, although earnings are a product of 

the wage rate and time allocated to labor-market activities, which are endogenous to our model.  

In this section we restrict our sample to include only investors who have positive risky 

asset holdings and positive total assets (net worth). This is in conformity with our theoretical 

analysis requiring that all investors have positive expected demands for the risky asset as well as 

initial financial wealth (see equation 21a).  Moreover, it is only under these conditions where all 

our key propositions (1-4) are expected to hold. We thus estimate risky-assets demand and total 

portfolio returns functions conditional on non-zero values, and in log format for most variables 

after testing for the efficient regression format. In the following section, however, we relax this 

assumption and include investors with zero holdings of risky assets as well.   



  

 
 22 
  
 
 

We base our specification of the risky assets demand (“DEMAND”) regression on our 

theoretical analysis. The dependent variable is the log value of risky assets holdings, defined as 

all publicly tradable stocks and corporate and foreign bonds, lnRASST. We choose this 

definition since our model applies to a centrally-traded security (portfolio subset) subject to 

unambiguous risk. The remainder of the total portfolio (TASST) is thus treated as a “safe” 

asset.21 The explanatory variables account for determinants of productivity at, and opportunity 

cost of, asset management by household heads, as implied by our model. They include, the 

household head’s number of years of schooling EDU (average schooling of husbands and wives 

yields similar results), the log value of the investor’s portfolio size, lnTASST, as an indicator of 

experience in managing assets, or lower fixed costs of asset management, and the log value of 

the predicted wage rate of the household’s head (see below), lnWAGE*. They also include an 

indicator of “managerial and professional-specialty occupations” lumping together managers of 

all types, and specialty occupations varying from speech therapists to nuclear engineers, some of 

which might be conducive to asset management (PROF), and self-employment vs. salaried status 

which may need to be examined separately for reasons we explain later in this section. Investors 

also provide self-assessments of their relative risk aversion intensity (RAV) in 7 of our annual 

samples (the only exception is 1963-64) using 4 categories (1-4) in ascending order of risk 

aversion. We therefore introduce this categorical variable as a robustness check on the validity of 

our hypotheses, which do not rely on differences in attitudes toward risk in explaining risky 

assets demand and management. However, it is difficult to ascertain whether RAV measures 

genuine risk preferences, or just mimics the risk-taking behavior of individual investors. And 

although our model abstracts from life-cycle dynamics, we add the investor’s age (AGE) as a 

regressor to account for the “vintage” effect of schooling or see if one’s life-cycle position has an 

independent effect on risky asset demand. The basic regression model is thus:  
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(29)  lnRASST =  a0 + a1lnEDU + a2lnTASST+ |a3lnWAGE*| + a4AGE + a5 PROF + a6RAV + 

|a7 SELF|. 

Equation (29) allows for two basic specifications: one that excludes WAGE in the 

regression, to allow for estimation of the theoretical “unconditional” effect of EDU on 

DEMAND, and one that includes WAGE to allow for conditional effects of both education and 

wage effects. It also allows for regressions based on just wage and salary workers or for all 

investors, by including the dummy variable SELF as a separate regressor. While the exact 

functional form of equation (29) cannot be pinned down theoretically, our theoretical simulations 

indicate that the effect of education on the demand for information-precision, and hence the 

demand for risky assets, may be subject to diminishing returns, which is why we enter EDU in 

log form. Variables defined in continuous dollar values are also introduced in log form, while 

those defined as discrete-step variables are entered in natural form. Extensive Box-Cox tests 

support the log transformation of the dependent variables and other dollar variables in both 

equations (29) and (30) below. As for the education variable, the Box-Cox tests support a 

logarithmic, or other non-linear transformations of EDU in most sample years. We have thus 

chosen lnEDU as the regressor in our benchmark specification. 

We employ a similar specification to test if the realized overall portfolio returns 

(“RETURN”) likewise responds to the theoretical determinants of asset management.22 This 

reported measure misses, of course, unrealized capital gains, which our two-period model 

abstracts from, so our implicit assumption is that the realized gains are monotonically related to 

the unrealized gain:  

(30)  lnRETURN = b0 + b1lnEDU + b2lnTASST + |b3lnWAGE*| + b4AGE + b5 PROF + b8RAV 

+ |b7lnSHARE | + |b6SELF|.  

Equation (30) includes another distinct regression variant where SHARE, denoting the 
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share of risky assets in the portfolio (RASST/TASST), is introduced as a proxy for portfolio 

composition.  Recall that by our model, more effective asset management is expected to raise 

overall portfolio returns only through its impact on the demand for a single risky asset, which 

yields a higher return than the safe assets (our theoretical “bonds”) in the overall portfolio (see 

equation 28). The empirical counterpart we use, however, is an aggregate portfolio of risky 

financial assets. If we could actually control for precise portfolio composition in terms of all 

specific risky assets, the impact of our determinants of asset management might vanish. But 

since lnSHARE distinguishes between broad composites of risky and non-risky assets, asset 

management could still raise the overall portfolio returns, but to a lesser degree than when 

lnSHARE is accounted for.  

There are important reasons to separate self-employed from all investors in both our 

DEMAND and RETURN regressions for two main reasons: first, wage and non-wage income 

reported by members of this group may be arbitrary, as they are determined largely by the 

person’s decision to declare business income as either wages or business profits. This difficulty 

can be alleviated by projecting the expected wage of self-employed persons based on the 

conventional human-capital earnings function (see below). Another difficulty, however, is that 

the self-employed are also heavily invested in their own business assets, which represent non-

financial manageable risky assets in which salaried workers have comparatively trivial shares. 

We therefore pursue two types of regressions: for all investors, and just for salary workers.  

Measuring the opportunity cost of asset management presents a special challenge.  The 

conventional proxy we seek is the person's wage rate, but no consistent “wage rate” data are 

reported.  The surveys report consistently annual wage and salary income, WAS, for all 

investors.  This measure is, in principle, the product of the wage rate and hours worked. Our 

challenge thus is to produce an effective measure of the individual’s wage rate that would 
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eliminate measurement and simultaneity errors. This would be especially important in the case of 

retired persons who report zero earnings, workers in high managerial positions, whose wage 

earnings may contain bonuses based on company profits, and self-employed persons who make 

arbitrary decision how to divide their total compensation between profits and wage income. 

Also, since asset management time is an endogenous variable, hours worked is in principle also 

an endogenous variable, and the estimated coefficient of WAS (or the earnings rate) may thus be 

subject to biases stemming from simultaneity and measurement errors.  

We provide two alternative estimation methods to overcome these potential biases: 2SLS 

and a “projected wage rate” [PW] method.  In the 2SLS method we derive a predicted wage rate 

(lnWAGE*) from first-stage regressions incorporating as instruments EXP (job experience = 

AGE – EDU – 6), EXP2, GENDER (of household head), RACE (of household head), MARRIED 

(marital status of household head), and HEALTH status (available in all samples other than 

1963-4). In the PW method we estimate an “extended Mincer model” (regressing lnWAS on 

EDU, EXP, EXP2, GENDER, RACE, MARRIED, and HEALTH) just for active salaried 

workers, i.e., excluding self-employed, retirees and people not in the work force.  We then use 

the estimated coefficients of this model to project lnWAGE* for all investors.23 The advantage 

of this projected wage method is that it helps overcome both the simultaneity of wage and 

DEMAND or RETURN variables and potentially distorted wage data for the self-employed. The 

estimated regression equations (29) and (30) are summarized for the three basic variables of 

interest: EDU, lnWAGE* and lnTASST (portfolio size) in Tables 3 – 5 for each of our 8 sample 

years as well as in a pooled (“all) regression model using all 8 samples. In these “all” 

regressions, we restrict the coefficients of EDU, lnWAGE*, and lnTASST to be identical while 

estimating all other coefficients freely. The full regression results are illustrated for our annual 

samples in Tables A.1-A.6 of Appendix 2.   
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These results support our theoretical predictions. We rely on the regressions for wage and 

salary workers as our benchmark case because both our definition of risky assets and our 

expected wage projections, lnWAGE* are more accurate for salaried workers than the self-

employed. The qualitative results, however, are similar for salaried, as well as all, investors. 

Education effects:  In all DEMAND regressions for salaried workers, all lnEDU coefficients are 

positive and significant in the regressions estimated via the 2SLS and the PW methods and the 

same holds in virtually all the OLS regressions. The estimates derived via OLS are typically 

smaller in magnitude than those based on 2SLS and the PW method, which are often similar.  

The unconditional estimates (not controlling for lnWAGE*) are generally smaller in magnitude 

than the conditional estimates. This supports our propositions 1 and 2, since an increase in 

education is expected to raise the wage rate, which produces an offsetting (opportunity cost) 

effect on asset management and the demand for risky assets. The same qualitative effects are 

obtained in the “all investors” regressions in all years, where the OLS estimates are insignificant. 

The estimates derived from the 2SLS and the PW method, however, are significant everywhere. 

The results imply that investors with more education hold higher shares of risky financial assets 

in their portfolios. From the estimated coefficients for lnEDU and lnWage* of equation (29) in 

the pooled 2SLS regression in Table 3, e.g., we estimate that salaried investors with 16 years of 

schooling hold about 20% more risky financial assets than those with 12 years. 

In the RETURN regressions, where we do not control for SHARE, the “unconditional” as 

well as “conditional” effects of EDU (i.e., controlling for lnWAGE*) are significant, as 

predicted, for both salaried workers and all investors. Note that our predicted effects of EDU on 

the overall portfolio returns are not conditional on our definition of “risky manageable assets”, 

which are likely to be different in practice for self-employed v. salaried workers. In the case of 

the self-employed, the returns are thus coming from both the realized returns on stocks and 
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bonds, as well as business assets. Again, the “conditional” education effects are larger in 

absolute magnitudes than the “unconditional” effects in all the RETURN regressions. 

As expected by our theoretical analysis, adding lnSHARE to the RETURN equation 

lowers the estimated coefficient of EDU, significantly in the case of salaried workers (in the 

1963/64 regression EDU becomes insignificant), essentially because controlling (perfectly) for 

portfolio composition can eliminate the mechanism – a change in portfolio composition – 

through which superior private information can yield larger portfolio returns. Since SHARE is a 

crude proxy for the exact share of risky manageable assets in the portfolio (especially for the 

self-employed), however, education can still induce larger portfolio returns for investors. 

Wage effects: Our theoretical proposition that an increase in the wage rate, education held 

constant, would lower the demand for, hence the returns on, risky assets, is our most 

discriminating hypothesis stemming from the asset management hypothesis. As Tables 3 and 4 

show, this prediction is confirmed in all of our 16 DEMAND and RETURN samples with no 

exception for salaried workers as well as for all investors (except for the 2001 RETURN results). 

Specifically, the predicted wage rate affects the demand and return equations in an opposite 

direction to that of a compensated increase in EDU.  

Portfolio size effect: Portfolio size as defined by ln(TASST), unambiguously and significantly 

enhances both the demand and returns on risky assets. Note that although TASST includes 

RASST, since both variables are entered in logs, our regressions implicitly estimate the impact of 

TASST on the fraction of the total portfolio held in stocks, which minimizes spurious effects. 

We have also obtained similar regression results, however, using (TASST-RASST) as portfolio-

size measure. The results are consistent with our conjecture that accumulated portfolio size 

captures size economies or is a proxy for “on the job” experience in asset management, both of 

which are expected to enhance the demand for and returns on risky assets. 
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The complete regression results for the other regressors entering equations (29) and (30) 

are reported in Tables A.1-A.6 in the appendix. We here provide a summary for each. 

Risk aversion: This self-assessed variable has somewhat inconsistent effects across different 

annual samples, albeit a positive one in the pooled regression combining all years. However, its 

introduction or exclusion from the regression model (29) and (30) has virtually zero effects on 

the estimated effects of education. The results are compatible with the role assigned to education 

by our asset management hypothesis, and are inconsistent with the competing hypothesis that 

education increases the demand for stocks essentially because of a positive correlation between 

education and risk preference. The inconsistent effects of RAV in different years, however, may 

also indicate that the self-reported measure of risk aversion does not capture a “pure” attitude 

toward risk, partly mimicking risk-taking behavior, not preferences.  

Age: Although mostly negative, the AGE coefficients fluctuate in sign across pre-1990s samples, 

and even in the same sample year based on different estimation techniques. In contrast, in most 

of the 1992-2001 samples, AGE has a consistently negative and significant coefficient in the 

DEMAND equations.  A similar, though not identical, pattern is seen in the RETURN equations. 

Our model does not offer testable implications for AGE, which we control for essentially as a 

robustness check. The inconsistent pattern of results for AGE may be due to changes in the 

composition of investors in the post-1989 samples when SCF surveys attempted to target an 

increasingly representative sample of the entire population, as opposed to the tendency in earlier 

years to sample wealthy individuals, who tend to be older in age.  Also, AGE in the RETURN 

equations may account for age differences in the incentive to realize capital gains.  

Professional status: The effect of PROF is generally insignificant and inconsistent in the 

DEMAND regressions.  In the RETURN regressions, its coefficients are positive and significant 

in 1995 and 2001, but negative and significant in 1989, 1992, 1998, and 2004. The reason is that 



  

 
 29 
  
 
 

this variable does not offer a sharp and consistent distinction between occupational and 

professional status which represents experience in asset management.  

Self-employment: The coefficients associated with SELF in the full sample do not exhibit a 

consistent pattern as well in the DEMAND and RETURN equations. Our explanation is that 

since the self-employed invest heavily in own business assets, identifying financial assets with 

variable returns as the relevant measure of “risky assets” is not suitable for the self-employed. It 

is largely for this reason that wage and salary workers serve as our benchmark group.  

The impact of education on added portfolio returns: In Table 6, we report estimated “education 

premiums” measured alternatively as proportional or absolute increments in the rates of return on 

investments in financial assets due to an annual, unconditional increase in schooling.  These 

education premiums are computed by using an interval estimation approach – 12 to 16 years of 

schooling – since average schooling in our annual sample tends to fall within this interval.  

Accordingly, we first estimate the rates of return on financial investments, R*(EDUj), for 

the two levels of schooling framing this interval, EDU1 = 12 and EDU2 =16, relative to the 

observed rate of return on financial assets realized by the sample’s average investor, R(ref), 

serving as a reference point. The estimates are based on the coefficients of lnEDU and 

lnWAGE* in equation (30), as reported in our pooled regressions of Tables 3 and 4, as well as an 

estimate of the conventional internal rate of return to education in generating wage income, η̂  = 

0.086, which we obtain from an extended “Mincer Model” used to estimate our projected wage 

rate variable [PW]. 24 The ratio of the estimated {[R*(EDU16)/ R*(EDU12)]– 1} indicates the 

proportional increment in the financial rate of return on 4 years of schooling over the range 12-

14; dividing this figure by 4 yields the “proportional education premium” per schooling year. 

The absolute education premium, in turn, is estimated as the absolute difference between the 

estimated rates of return to investors with 16 versus 12 years of schooling divided by 4.  
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To indicate the robustness of the results, Table 6 presents alternative estimates of relative 

or absolute education premiums, based on our three estimation methods and the two investor 

groups included in Tables 3 and 4. We have also computed Table 6 based on the regression 

results for each of the 8 sample years. While the estimated education premiums fluctuate from 

year to year, as is to be expected, the variations are consistent across the alternative regression 

methods. The relative education premium we estimate for all salary workers in Table 6 varies 

from 9.98% to 13.83% implying an absolute education premium of .54 to .71 percentage points 

per school year above the average portfolio return to salary workers of 6.63%. For all investors 

the corresponding education premium varies from .59 to .68 above a portfolio return of 7.72%. 

These estimated premiums are illustrative since the return data available in our SCF samples is 

limited to just realized gross returns, and they are not adjusted for the cost of asset management 

as are our estimated net premiums in table 1.  

B. Alternative Hypotheses and Robustness Checks 

a. Human capital as a non-tradable asset 

 Our model views human capital as a store of knowledge which raises the wage flow and 

asset management efficiency (hypothesis 1), but it can also be viewed as a non-tradable 

component of one’s total portfolio.  If its implicit value – discounted future earnings – is treated 

as a safe asset, like the wage income entering initial wealth in equation (4), then our model 

implies that it would have no impact on the demand for risky assets. The result follows, however, 

from the assumed CARA utility function, which is needed to solve the model analytically. If the 

utility exhibited CRRA, e.g., it is plausible to expect that initial wealth, and thus human capital 

as a safe (albeit non-tradable) asset would increase the willingness to allocate a larger portion of 

the financial portfolio to risky assets (hypothesis 2). Since this is also the implication of optimal 

asset management (hypothesis 1), can one distinguish between the two hypotheses? 
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 One distinction is implicit in the discriminating propositions developed in section III. 

While both hypotheses imply that more schooling would raise the expected demand for risky 

assets and portfolio returns, they offer conflicting wage effects. By the alternative hypothesis 2, a 

higher wage level should enhance the demand for risky assets and portfolio returns, while our 

hypothesis 1 implies just the opposite, since a higher wage rate raises the opportunity cost of 

asset management time (proposition 3). Indeed, this is what we find empirically. We also find 

that the conditional effect of education (with the wage rate held constant) is larger in elasticity 

terms than its unconditional effect, consistent just with hypothesis 1 (proposition 4).  

Another way to distinguish between the two hypotheses empirically is via a direct test of 

proposition 2. Since the discounted value of human capital must ultimately fall at older ages, 

hypothesis 2 implies that the demand for risky assets would taper off at older ages. To test this 

implication we have introduced in our DEMAND and RETURN regressions an interaction term 

of education and a discrete-step variable distinguishing ages higher than 55 (EDU-55) from 

younger ages to see whether the estimated coefficient becomes weaker or negative. The results 

are inconsistent with this hypothesis: The interaction effect assumes a positive and significant 

value (but not the converse) in some annual samples and is insignificant statistically in other 

years. All other estimated coefficients remain largely unaffected. While this test is not 

conclusive, it is nevertheless consistent with our asset management hypothesis.25 

b. Including investors with zero “risky-asset holdings” in Demand and Return regressions 

Our model does not allow for zero risky-asset holding essentially because we do not 

allow for borrowing constraints or fixed “entry costs” to investing in risky asset (such as 

minimum investments, or employer-subsidized 401K plans). More important, we have selected 

stocks and tradable corporate and foreign bonds as an efficient proxy for “risky assets” that 

involve asset management, implicitly treating all other assets as “safe”, since our model applies 
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to centrally-traded risky securities. But business and real estate assets, including homes, could be 

“risky” as well. Indeed, in a large fraction of cases of zero security holdings, investors specialize 

in the holding of these other assets – this is especially true for self-employed investors who hold 

a significant fraction of the portfolio in business assets, but even for wage earners whose major 

investments may be homes. In these cases our portfolio-size variable (TASST) may also be zero 

or negative because of large debt. Moreover, our discriminating proposition 3 - the “opportunity 

cost of time (wage)” effect - applies only if investors actually engage in asset management. At 

low levels of risky asset holding, or when asset management entails large fixed entry costs, our 

model predicts that investors may do no asset management. For these reasons we have focused 

on the estimation of demand functions conditional on positive values of RASST and TASST.  

 Nevertheless, we have also run our regressions by including all those with zero risky 

securities in the sample (assuming that lnRASST= -10), provided they have positive “total 

assets” (at least $ 1,000 or $10,000) to avoid spurious correlation between TASST and RASST 

and to enable a meaningful test of our discriminating hypotheses.  In these “full-sample” 

regressions, the estimated effects of our key variables: EDU, lnWage*, and lnASSTS exhibit the 

same hypothesized signs and statistical significance as our reported results for the conditional 

DEMAND and RETUEN regressions in section A. In fact, the positive education in the full 

sample for all years is significantly larger than the one estimated in section A, while the wage 

effect is lower in magnitude. As expected, the results are more pronounced for investors with at 

least $10,000 in total net assets and for salaried workers relative to all investors and. 

            C. Second Data Set: Time Spent at Asset Management 

This data set contains the results of a national survey conducted by Barlow et al. in 1966. 

The survey of 1051 households of high income and wealth contains mostly qualitative 

information about individual portfolio holdings by different types of assets as well as a set of 
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personal characteristics. In this regard, the survey is similar to data set 1. It also contains, 

however, a unique datum: a proxy measure of a key variable in our theoretical analysis which 

data set 1 lacks. Individuals were asked to respond to the question: "how frequently do you 

review where your savings are invested to determine if you would like to make any changes?"  

The response options range from never (1) to daily (7), which comprise a polychotomous, 

ordered-response variable we name AMT.  Since monitoring portfolio holdings is time 

consuming and may lead to portfolio adjustments, especially higher categorical values of AMT 

may be a meaningful proxy for our theoretical “time spent at asset management”, q. Establishing 

direct links between this variable and the household head’s education, business-related 

occupation, or portfolio size, would provide direct support to the asset management hypothesis.  

The survey gives the overall value of individual portfolios as a categorical variable (by 5 

classes), and the reported portfolios generally contain the same range of assets included in the 

FRB data, but excluding own homes. We thus refer to the portfolio size measure as TASST’. The 

survey also reports the schooling level attained by the family head (EDH), and the head’s 

"proximity" to a business-related occupation.  We define the latter by distinguishing distinctly 

business-related occupational categories (businessmen, corporate officials, traders, stock brokers, 

auditors and financial consultants) (BUS=1) from all other occupations.  We also have 

information on whether they are self-employed (SELF=1) or salaried, and the household head’s 

age (AGE).  Insufficient information is provided in the survey, however, about wage income, 

personal risk aversion or portfolio returns to duplicate those available in data set 1. 

In Table 7 we have implemented the basic comparative-static predictions of our model 

concerning the derived demand for asset management time (AMT), by running ordered-probit 

regressions of AMT on a set of covariates including the net worth proxy TASST’, and indicators 

of human capital, experience, age and occupational status:  
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(31) AMT = a0j + a1TASST’+ a2EDH+ a3AGE + |a4BUS| + |a5SELF|, 

where a0j denotes a categorical constant term associated with the different AMT categories. 

Note that our model predicts that education may increase the demand for asset-

management time only if the elasticity of information acquisition with respect to human capital 

is larger than β.  Thus it is not necessary to find that EDU would unambiguously or significantly 

increase AMT for all investors, especially those with the highest education levels, as our 

simulations indicate. However, evidence that EDH significantly increases asset management 

time, would certainly be consistent with the asset management hypothesis, as our numerical 

simulations are consistent with such effect for most education levels. Also, indicators of skills 

conducive to information production or economies of scale in asset management (as indicated by 

BUS and TASST’) should, by proposition 3, unambiguously increase AMT. This is generally 

what we find using our ordered-probit regressions. 

In column 1 of Table 7 we report the full-sample results for all individuals, including “all 

salaried” and self-employed workers. The estimated coefficients of TASST’, EDH and BUS all 

have positive and significant signs. Self-employment status also raises asset management 

intensity, and AGE generally reduces it, although neither effect is significant at the 5 % level.  

In column 2, the reported results are for strictly self-employed investors and in column 3 

they cover all salaried workers.  For the self-employed, portfolio size is statistically significant, 

although education and professional status are not significant, in enhancing time spent at asset 

management.  For the salaried employees, however, portfolio size, education, and managerial 

status are all significant. These different results are to be expected, since the self-employed own 

their businesses, and are more likely to acquire business-management skills through learning-by-

doing rather than formal education, or via training for a specific occupation. This weakens the 

importance of “general” schooling (EDH) as a determinant of asset management efficiency by 
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the self-employed. However, business-related training does have a significant effect (at the 10% 

level) on the desired AMT even for the self-employed.   

Column 4 reports the results for salaried workers in business-related occupations, while 

column 5 shows the results for all other salaried workers.   For the small sample of workers in 

business-related occupations, schooling has a favorable but insignificant effect on asset 

management time, AMT.  These results are due partly to the small variability in the categorical 

regressor in this sub-sample, especially in schooling attainments among the business-related 

salaried workers, which all have relatively high levels of education.  (The average categorical 

value of EDH for the BUS workers is 5.39 while it is 4.53 for non-BUS workers, where 4 stands 

for 12 graders with non-college training, 5 stands for college training with no degree, and 6 

stands for college degree). Indeed, even portfolio size is significant only at the 10% level. For 

non-managerial salaried workers, in contrast, EDH has a favorable and significant impact on 

asset management intensity, along with portfolio size (TASST’). As is the pattern in Tables 3 

and 4, the AGE effect is generally insignificant and inconsistent in Table 7. 

Data set 2 allows us also to directly estimate the proportion of investors with negligible 

levels of AMT i.e., those reporting that they never engage in monitoring their savings, or seldom 

do it. The combined percentage of these investors is 21.25%. This fraction is surprisingly close 

to the fractions of those with zero or trivial amounts of asset management in our simulations (see 

section III.A.) In contrast, those reporting active monitoring (daily or weekly) constitute 60% of 

the sample. The average educational attainments and business-oriented occupational status of the 

latter group are substantially higher than those of the former group.  

Conclusion  

 The role of information collection and information channels in financial markets has 

received little attention in the financial economics literature partly because existing models of 
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“noisy prices” and costly information have not offered well-defined empirically testable 

hypotheses. We attempt to fill this void by basing the analysis of equilibrium in financial markets 

on richer micro foundations forming the “asset management hypothesis”. By offering explicit 

specifications of the technology and cost functions of information acquisition, where human 

capital endowments play a critical role, we are able to derive an array of testable implications 

concerning portfolio composition and returns, asset management intensity, level and volatility of 

market prices, equity premiums, and the return to education from asset management. 

Our model suggests that more informed investors obtain added expected returns on their 

overall portfolios of financial assets essentially because over time, they tend to allocate a larger 

portion of these portfolios to risky assets. They do so not necessarily because of greater tolerance 

for risk – our hypothesized education effects hold in our regression analyses even when we 

control for a risk tolerance measure – but because private information precision acquired through 

asset management reduces relative personal risk by lowering the perceived variance of the 

posterior distribution of returns on risky assets. Human capital augments, however, both one’s 

productivity at asset management and its opportunity costs – a higher wage rate. Therefore, more 

schooling does not necessarily lead to greater time allocation to asset management. But if 

schooling is a dominant input in producing information precision, as suggested by the constraints 

specified in equation (24a), more schooling would produce more precise information. Indeed, 

numerical simulations of our model produce a strict monotonic relation between unconditional 

increases in educational attainments and private information precision (see figure 1).   

There is an alternative channel through which education might enhance demand for risky 

assets. If human capital is perceived as a safe asset in a grand portfolio encompassing both 

human and nonhuman portfolios, then people with more human capital may be inclined to hold 

more risky financial portfolios in their grand portfolio to achieve optimal diversification. While 
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our formal model specification rules out this alternative hypothesis, a more general specification 

could support it. In section V.B.a we attempt to test the diversifying role of human capital 

empirically by allowing the education effect to diminish at old age. The results, although 

inconclusive, do not support this hypothesis. In contrast, our findings based on nine independent 

samples are consistent with discriminating implications of the asset management hypothesis.  

To wit: the prediction that expected demand for risky assets and total portfolio returns 

will rise especially with a conditional increase in educational attainments (lnEDU), holding 

constant the predicted wage and portfolio size, is overwhelmingly supported in regressions based 

on 8 independent annual Surveys of Consumer Finances (data set 1), as is the corollary 

prediction that an unconditional increase in educational attainments, allowing the wage rate to 

rise with EDU, would yield a comparatively smaller increment in the demand for risky assets 

and total portfolio returns because of the role of wage rates as measures of the opportunity cost 

of asset management (propositions 1 and 2). Indeed, the most discriminating hypothesis of the 

model, that a rise in the predicted wage rate of individual investors would lower the demand for 

risky assets and total portfolio returns (proposition 3), is confirmed in all our regressions without 

exception (see section V.A). In contrast, the “diversifying role of human capital”, suggests that 

higher wages should produce the opposite effects. The wage effect we estimate is robust not just 

to use of alternative methods of deriving predicted individual wage rates, but also to use of 

alternative raw wage and salary data: annual, monthly, or hourly wage data.  

Similarly the prediction that higher educational attainments may also raise the derived-

demand for asset-management time for most workers is confirmed for wage and salary workers 

using data set 2 (section V.C). Proposition 3 predicting the effects of portfolio size and indicators 

of “specific human capital”, such as occupational status conducive to asset management, on the 

expected demand and returns for risky assets are supported by regression results based on both 
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data sets 1 and 2. Moreover, the pattern of the regressions results linking total portfolio returns to 

educational attainments and initial wealth as well as the opportunity cost of time measure, are 

remarkably symmetrical to the pattern of regressions linking demand for risky assets to these 

same variables using identical specifications, confirming proposition 4.  

At the market level we offer some new insights concerning the impact of human capital 

and private information on the level and volatility of risky asset prices. We show that at given 

risky-asset supplies, increments in education and information-producing “technology”, which 

increase average information precision (s), are likely to exert upward pressure on market prices 

and ultimately on price volatility as well because of greater willingness of investors to trade on 

the power of superior information. At the same time, the individually-perceived risk from 

holding stocks falls. Indeed, this result accounts for the related inference that higher levels of 

education and private information are likely to lower the representative investor’s required equity 

premium, and thus its equilibrium magnitude. More intriguing, perhaps, is the new insight we 

propose concerning the “equity-risk-premium puzzle” by which the large observed magnitudes 

of equity premium cannot be reconciled by reasonable magnitudes of personal risk aversion. By 

our analysis, observed equity premiums cannot be ascribed solely to risk aversion. A portion 

must be ascribed to asset management costs, which may account for 10.44% of the premium.  

Perhaps the most intriguing results of our analysis are our estimates of the rate of return 

to education in generating financial income. To our knowledge, this may be the first attempt in 

the literature to come up with estimated rates of return to education in generating non-wage 

income or other benefits – the topic of a recent study published in this journal (see Becker and 

Murphy, 2008). We find that the premium per school year in terms of financial income is not 

trivial. Using the projected wage [PW] estimation procedure in Table 6, the absolute premium 

we estimate for all salary workers in all years is .54 percentage points per school year above the 
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average overall portfolio return for salary workers of 6.63%. For all investors the corresponding 

premium is .59 percentage points on an overall portfolio return of 7.72%. These estimates are 

largely illustrative, however, since our empirical financial returns include only realized gains. 

Clearly, the results of this paper are subject to important caveats. Theoretically, we 

pursue a partial-equilibrium, two-period model where the supply of assets, initial portfolio sizes, 

and human capital endowments are exogenous variables. We also explore the role of human 

capital in a pure exchange economy, although the information value of asset management 

extends to the real economy as well, and we abstract from multiple risky assets, leisure, and the 

separate role of specialized agents who offer asset management services for sale. These 

limitations also apply, however, to the standard finance models which do not recognize any 

private information collection. Empirically, the limitation of the Surveys of Consumer Finances 

is that they report asset holdings only for broad asset categories, including non-centrally traded 

assets, at market values assessed by the investors, and the reported portfolio returns include only 

realized returns. More detailed information on individual assets and unrealized returns would 

certainly make our tests of the asset-management hypothesis more compelling.  

Yet the overall consistency of our analysis with empirical evidence derived from nine 

independent samples indicates that the line of thought we pursue in this paper can produce new 

insights about both specific features of investors’ choices, such as “home-bias” or “own 

company bias” in investment decisions, the volatility of asset prices in different financial 

markets, and the rate of return to human capital in generating non-wage income – a heretofore 

largely neglected topic in the human capital literature. This work suggests that the monetary 

return to education may have been understated, and that educational attainments may play a 

direct role in explaining not just the distribution of earnings, but that of income as well. 
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ENDNOTES 
                                                           
1  The term is borrowed from Ehrlich and Ben-Zion (1976). Ehrlich and Hamlen (1995) invoke costly 
asset management to justify portfolio-consumption choices under pre-commitments. 
  
2   Some recent studies using a "behavioral finance" approach to portfolio choices have also relied on 
"partially revealing" asset prices – see e.g., Shleifer (2000). We offer an alternative approach that does not 
rely on assumed variations in unobserved risk preferences and is thus testable empirically. We eschew a 
full review of the preceding literature to focus on the value added of our extended model, especially our 
analysis in sections III –V. 
 
3  Our analysis can be generalized, however, to allow for heterogeneity in both human capital and risk 
preferences. In principle, Hi can stand for both knowledge and ability, but to sharpen the empirical 
content of our model, we identify it with schooling and general training. The distribution of the initial 
endowments of stocks xi, or bonds B0i and hence initial wealth is treated as uniform across investors, but 
this assumption plays no role in our simulations or comparative static analysis since the assumed utility 
function does not allow for any pure wealth effects. 
 
4  For analytical simplicity, we treat human capital as a single-type asset, although empirically it is 
reasonable to distinguish “general”, from “asset-management-specific” human capital, such as training in 
the interpretation of financial statements, which would have a differentially higher effect on productivity 
at asset management, relative to alternative labor market activities. 
 
5  The assumption that x~ is normally distributed, which is common to the literature we follow, is an 
approximation intended to allow for closed-form solutions of the model, as it allows for potentially 
negative average supply values. In our simulations, however, we set x =1 and variance (1/t) = 1/40, 
yielding a 99% confidence interval ranging from .52 to 1.48. As 0 is not in that range (let alone a negative 
number) the assumed normal distribution is an acceptable approximation by the “three sigma” rule. 
 
6  Since our objective function in equation (8) involves the maximization of terminal wealth, or terminal 
consumption (see equation 8), it is not warranted to specify current leisure as a separate commodity in this 
model.  Indeed, the wealth concept we model - both initial and terminal – can be interpreted as "full 
wealth", incorporating the full value of time. Thus, T in equations (4) and (4a) becomes total time 
available, and terminal wealth represents both consumption and the value of leisure time, or time devoted 
to producing all household commodities. 
 
7  Following Hellwig’s derivation of the REE competitive price, we can write the conjecture as: (9a) 
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are the weighted averages of traders’ perceptions of the public information on returns, and the private 
information signals they pursue, respectively.  As the number of traders, n approaches infinity, the term 
involving the random private signals vanishes and equation (9a) converges in probability to: 
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8 The variance of the posterior distribution of the risky-asset returns, conditional on the observed price 
and private signal in equation (11b) thus becomes ),|~( PzVarV ii μ≡ = 1/[h + si + r2s2 t]. In equilibrium, 
this conditional variance is thus inversely related to the investor’s own private information, si, and the 
collected public information embedded in the market price, r2s2 t.   
 
9 These solutions do not precisely match those of KV (1991a), since in our analysis, the mean supply of 
the risky asset is assumed to be positive, 0>x , while KV assumed 0=x . Note that by equations (13), 
P~  is determined partly by the specific (non-stochastic) distributions of Hi and wi(Hi, δ) across investors, 
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which determine the distribution of private precision levels, si. 
  
10  As si approaches an infinite value for a single investor (measure zero), optimal demand would 
approach holding or short selling the entire market supply of the risky asset. 
 
11  The second-order conditions are thus assured by virtue of the concavity of the objective function and 
the convexity of the cost function with 0< α ≤1. 
 
12 Note that our solutions for optimal si and qi are deterministic, since the production and earnings 
functions in equations (5) and (6) are non-stochastic.    
 
13 These simulations are calibrated to approximately produce the overall portfolio return (7.81%) and 
average ratio of non-wage to wage income for all investors, as documented in the Surveys of Consumer 
Finances used in our empirical analysis (18.24%). In Tables 1 and 2 we assume that Hi has a truncated 
lognormal distribution over the interval [1, 5], with parameters M and σ, and a. The probability density 
function is:  
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14  The proof is illustrated for a change in Ai but the same analysis applies to a shift in wi(δi). We can also 
allow for idiosyncratic shifts in the risk-tolerance parameter, r, across investors. From equations (14) or 
(15) we can see that an upward shift in r for a specific individual or group i that does not affect s would 
result in unambiguous upward shifts in si

*, qi
*, and E( iD~ )*. 

   
15  This would be the case if we allow the fixed cost component of the cost function in equation (8), C0 to 
be a decreasing function of one’s total portfolio size because of economies of scale in obtaining financial 
services, although for convenience we do not consider this formally. In either interpretation, portfolio size 
affects the demand for risky assets through its impact on the cost of asset management. 
  
16 While dln(wi)/dHi = η, based on equation (5), represents the conventional “internal rate of return to 
human capital” in terms of wage income, the proportional net education premium over R, 

iii dHsCPDEd /)]}()~~(~[ln{ −−μ , is not the rate of return on financial investment in risky assets but the 
proportional net addition to it (after netting asset management’s opportunity costs, C(si)) owing to an 
unconditional rise in Hi.  
 
17 In all cases, as H (thus s) → ∞, Var( P~ ) → 1/h and v( P~ ) → 1/(hμ ), while as H → 0, Var( P~ ) → 

(1/r2h2t) and v( P~ ) → 1/(r2h2tμ -rht x ). Thus, if r2ht <1, e.g., both Var( P~ ) and v( P~ ) are higher when 

H =0 than as H → ∞. In this case, Var( P~ ) is a U-shaped function of s, and v( P~ ) likewise first falls 
with H and ultimately rises toward 1/(hμ ) as s → ∞. Since E( P~ ) is continuously rising with H , the 

shape of v( P~ ) is indeterminate whenever Var( P~ ) is also rising with H , but in our simulations it 
mimicked the shape of Var ( P~ ) at all values of H >0. The parameter values used in the simulations 
shown in Figure 2A with r2ht<1 are: h=0.033, r=1, t=30, A(τ) = 0.04, μ =160, and x =1. 
 
18   From equation (17) a higher t or h initially raises MR(si) but leaves MC(si) unchanged. It can easily be 
shown that in equilibrium, desired private information precision, si, must then necessarily fall for all 
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investors, hence s falls as well. Technically, this is because the component of MR reflecting public 
information precision (h + r2s2t) must necessarily rise. Consequently, both s and q fall. In contrast, from 

equation (22), since (h + r2s2t) rises, E( P~ ) must go up. 
 
19   The estimated value of c* fluctuates between 8.94% and 12.05% when the base wage income, w0=1 
changes from 0.5 to 2.  It increases from 10.44% to 14.56% when A rises from 0.2 to 0.4, and from 
10.44% to 22.55% when r rises from 2 to 4.  
 
20   These include studies by Uhler and Cragg (1971), Friend and Blume (1975), Feldstein (1976), Agell 
et. al., (1990), Ioannides (1992), Haliassos and Bertaut (1995),  Bertaut (1998), King and Leape (1998) 
and Perraudin and Sorensen (2000). The last study also reported an adverse wage effect on risky portfolio 
shares, but did not offer a systematic explanation. 
  
21  The total portfolio measure (net worth), TASST, incorporates six major categories of tradable (net) 
assets: liquid assets (checking and savings accounts and savings bonds), investment assets (all marketable 
securities, investment real-estate, and mortgages), business/professional assets, assets held in personal 
trusts, homes, and automobiles.  
  
22 RETURN is defined as the sum of taxable and non-taxable interests, dividend income, gains from sale 
of stocks/bond or real estate, and rent, trust income, royalties from other investment. 
 
23 In estimating and projecting the wage rate of workers by this method, we cap the job experience 
variable EXP=AGE-EDU-6 at age 65 because of likely retirement.   
 
24 To derive estimated rates of return for the two education levels, we transform equation (30) to: 
(30a) ln[R*(EDU)j] ≡ ln(Y/TASST)j = b0+b1ln(EDUj)+(b2-1)ln(TASST)+b3ln[WAGE(EDUj)]+ + …, 
where Y denotes earnings. Viewing the observed rate of return on financial assets by the reference group, 
ln[R(ref)], as a special case of (30a), we can compute ln[R*(EDU)]- ln[R(ref)] as ln[R*(EDUj)/R(ref)] = 
b1ln(EDUj/EDUref) + b3η(EDUj-EDUref), which enables us to derive  
(30b) R*(EDUj) = R(ref) exp{ b1ln(EDUj/EDUref) + b3η(EDUj-EDUref)}, where η is estimated from an 
extended Mincer model. We can thus estimate R*(EDUj) for j=1 and j=2 from (30b). The proportional 
education premium over the range EDU=12-16 can now be computed as 
{[R*(COL)/R*(HS)]-1}/4 percent, and the absolute premium as [R*(COL)-R*(HS)]/4 percent (see Table 
6). The reason we measure the reference rate of return R(ref) as a return on just financial investments is 
that the bulk of the realized returns in our sample stems from financial assets, while other assets are much 
less frequently traded or their gains realized. We thus use the rate of return on financial assets (excluding 
homes, business assets, and vehicles) as a proxy for that on all portfolio assets. 
 
25 It is also arguable that the wage flow, hence human capital, is stochastic. In this case, we can show that 
risky asset demand becomes a function of two additive effects: Human capital’s impact on information 
precision, and the correlation between the wage flow and risky-asset returns.  Hypothesis 2 then becomes 
more ambiguous: Zero correlation would be consistent with hypothesis 2. If the correlation were positive 
(negative) in specific occupations, however, unconditionally larger human capital would lower (increase) 
risky-asset demand.  



Table 1: Effects of Individual Parameter Shifts on Asset Management Outcomes at 
the Micro level 

 
Educational Attainment Value (Hi)2  AM outcomes 

at the micro level1 1 (NHS) 2.159 (HS) 2.895 (CND) 5 (CWD) 
si  0.0266 0.0726 0.1025 0.1781 
qi  0.0064 0.0140 0.0172 0.0200 

)D~(E i  0.9576 0.9842 1.0016 1.0454 
Wage income (level) 0.9936 1.2007 1.3564 1.9344 

Financial income (level) 0.0957 0.1541 0.1920 0.2879 
dsi/dHi  0.0365 0.0410 0.0399 0.0312 

ii Hwε  0.17 0.367 0.492 0.85 

constwii i
|)H/s( =∂∂  0.0394 0.0490 0.0511 0.0501 

dqi/dHi  0.0076 0.0052 0.0034 -0.0002 
ii H,sE  1.3719 1.2205 1.1273 0.8756 

constwii i
|)H/q( =∂∂  0.0094 0.0091 0.0081 0.0051 

dsi/dA(τ)i 0.2373 0.6322 0.8793 1.4764 
dqi/dA(τ)i 0.0850 0.1738 0.2046 0.2169 

Rate of return on total 
financial investments (R)3 

4.59% 5.71% 6.53% 9.37% 

Proportional net education 
premium over R4 

19.06% 18.44% 17.86% 16.60% 

Absolute net education 
premium over R 5 

0.87% 1.05% 1.17% 1.56% 

ROR on education in  
wage income, η 6 

16.24% 16.47% 16.66% 17.02% 

Notes: 1. The outcomes are computed using a truncated log-normal distribution of Hi 
over the range 1-5 (see footnote 8) and the following set of underlying model parameters: 
h = 0.033, t = 40, μ  = 4, x  = 1, B  = 20, r= 2, A(τ) = 0.2, α = 0.4, β = 0.9, a = 1, σ = 1, 
M = 1, w0 = 1, and η = 0.17.  2. The educational attainment values were picked to match 
the percentage of people with no high school (NHS) (1), HS (2), college without a degree 
(CND) (3), and College with degree (CWD) (4) among salaried workers with positive 
risky assets holdings in the 2004 SCF sample. 3. R ≡ ratio of net financial returns on total 
financial assets for different education levels, net of asset management costs. 4. 
Proportional increment in the net rate of return (R) on all financial investments due to an 
unconditional increase in education (%). See footnote 16 in the text for its measurement.  
5. Absolute increment in the rate of return (R) due to an unconditional increase in 
education. These proportional and absolute educational premiums are illustrative, as they 
are conditional on the parameters used in our numerical simulation. 6. Conventional 
internal rate of return on education in terms of wage income, η, as defined in equation (5). 
 

 
 
 
 



Table 2: Effects of Common Parameter Shifts on Asset Management Outcomes at 
the Market Level 

 
Outcomes* Upward Parameter  

Shifts q S E(P) Var(P) v R 
t - - + -/+ -/+ - 
h - - + - - - 
r - - + + - - 
α + - - - + + 

A(τ) - + + -/+ -/+ - 
μ  0 0 + 0 - - 
x  0 0 - 0 + + 

w0  - - - - + + 
η  - - - - + + 

H  (unconditional)# - + + -/+ -/+ - 
See note 1 in Table 1. Comparative statics are illustrated for the case where the variances 
of supply noise and unconditional return are sufficiently large so r2ht < 1.  
* Negative (positive) signs indicate that increments in parameter values consistently 
lower (raise) the endogenous outcomes. Negative/positive signs indicate that increments 
in parameters first lower and then raise the endogenous outcomes. 
# Outcomes are evaluated for “unconditional” increments in H  (allowing wages to 
increase with education) as a result of uniform increments in all Hi  



Table 3: Regressions Results for Three Key Variables in Regression Equations (29) 
and (30) for Salaried Workers, Eight Independent SCF Samples 

 
 log(EDU) log(WAGE) log(TASST) 
 Conditional1 Conditional1 Conditional1 

Year 
Uncon- 
ditional1 2SLS PW2 2SLS PW2 

Uncon- 
ditional1 2SLS PW2 

DEMAND for Risky Assets Regressions3 
1963 0.641 

(3.34) 
1.342 
(5.64) 

1.121 
(4.96) 

-0.312 
(-5.43) 

-0.705 
(-3.87) 

1.101 
(17.1) 

1.132 
(16.8) 

1.121 
(17.6) 

1983 1.304 
(4.63) 

1.286 
(4.32) 

1.845 
(6.12) 

-0.207 
(-4.98) 

-0.523 
(-4.66) 

0.613 
(13.6) 

0.712 
(13.8) 

0.693 
(14.6) 

1989 0.812 
(4.57) 

0.980 
(5.41) 

1.912 
(9.63) 

-0.239 
(-11.6) 

-0.775 
(-11.5) 

0.701 
(23.8) 

0.837 
(26.0) 

0.811 
(26.7) 

1992 1.580 
(8.47) 

1.880 
(9.74) 

2.096 
(10.5) 

-0.128 
(-6.82) 

-0.297 
(-6.81) 

0.746 
(29.5) 

0.800 
(30.0) 

0.795 
(30.4) 

1995 0.434 
(2.66) 

0.527 
(3.21) 

1.327 
(7.14) 

-0.166 
(-9.68) 

-0.565 
(-9.58) 

0.941 
(39.2) 

1.028 
(39.8) 

1.016 
(40.6) 

1998 0.162 
(1.31) 

0.375 
(2.97) 

0.732 
(5.39) 

-0.169 
(-10.1) 

-0.449 
(-9.57) 

0.934 
(46.9) 

0.998 
(47.3) 

0.992 
(48.1) 

2001 0.532 
(4.35) 

0.902 
(7.04) 

1.040 
(8.02) 

-0.236 
(-14.1) 

-0.544 
(-10.7) 

0.945 
(45.7) 

1.054 
(46.7) 

1.023 
(47.2) 

2004 1.026 
(6.52) 

1.237 
(7.53) 

1.995 
(10.6) 

-0.134 
(-8.56) 

-0.465 
(-9.11) 

0.787 
(38.7) 

0.828 
(38.4) 

0.835 
(40.1) 

All* 0.764 
(12.5) 

1.138 
(17.6) 

1.286 
(19.7) 

-0.237 
(-21.9) 

-0.583 
(-20.8) 

0.804 
(74.4) 

0.874 
(75.8) 

0.875 
(78.0) 

RETURN on Total Portfolio of Assets Regressions3 

1963 0.523 
(1.65) 

1.572 
(3.71) 

1.397 
(3.75) 

-0.467 
(-4.56) 

-1.283 
(-4.28) 

1.081 
(10.1) 

1.127 
(9.36) 

1.117 
(10.6) 

1983 1.764 
(4.05) 

1.736 
(3.86) 

2.790 
(6.02) 

-0.323 
(-5.15) 

-0.991 
(-5.74) 

0.860 
(12.4) 

1.014 
(13.0) 

1.011 
(13.8) 

1989 1.641 
(6.03) 

1.925 
(6.85) 

3.583 
(11.9) 

-0.405 
(-12.7) 

-1.368 
(-13.3) 

1.128 
(25.0) 

1.359 
(27.3) 

1.323 
(28.6) 

1992 4.421 
(13.2) 

5.202 
(14.9) 

5.848 
(16.4) 

-0.334 
(-9.77) 

-0.819 
(-10.6) 

1.117 
(24.6) 

1.258 
(26.0) 

1.252 
(26.8) 

1995 2.160 
(7.84) 

2.303 
(8.19) 

3.221 
(10.2) 

-0.254 
(-8.66) 

-0.671 
(-6.67) 

1.315 
(32.4) 

1.448 
(32.8) 

1.405 
(33.0) 

1998 1.214 
(4.47) 

1.721 
(6.20) 

2.176 
(7.24) 

-0.402 
(-11.0) 

-0.757 
(-7.29) 

1.210 
(27.6) 

1.361 
(29.4) 

1.308 
(28.7) 

2001 0.869 
(3.58) 

1.258 
(5.07) 

1.209 
(4.64) 

-0.248 
(-7.63) 

-0.365 
(-3.57) 

1.288 
(31.4) 

1.403 
(32.1) 

1.340 
(30.8) 

2004 1.096 
(3.15) 

1.472 
(4.18) 

3.447 
(8.29) 

-0.238 
(-7.10) 

-1.127 
(-10.0) 

1.447 
(32.2) 

1.520 
(32.9) 

1.564 
(34.1) 

All* 1.388 
(12.6) 

1.946 
(16.7) 

2.092 
(17.6) 

-0.353 
(-18.2) 

-0.786 
(-15.4) 

1.125 
(57.4) 

1.230 
(59.2) 

1.221 
(59.8) 

Notes: 1. “Unconditional” (OLS) regressions exclude lnWAGE as regressor. 
“Conditional” ones include it. 2. PW denotes the projected-wage method. 3. Numbers in 
parentheses are z-values. 4. See corresponding tables in Appendix for full results. *All = 
pooled regression restricting just coefficients of the 3 reported regressors to be identical.   



Table 4: Regressions Results for Three Key Variables in Regression Equations (29) 
and (30) for All Investors, Eight Independent SCF Samples 

 
 log(EDU) log(WAGE) log(TASST) 
 Conditional Conditional Conditional 

Year 
Uncon- 
ditional 2SLS PW 2SLS PW 

Uncon- 
Ditional 2SLS PW 

DEMAND for Risky Assets Regressions 
1963 0.752 

(4.84) 
1.298 
(6.75) 

1.248 
(6.73) 

-0.312 
(-6.07)

-0.722 
(-4.74) 

1.059 
(20.4) 

1.089 
(19.1) 

1.080 
(21.1) 

1983 1.574 
(5.93) 

1.607 
(5.66) 

2.135 
(7.46) 

-0.203 
(-4.95)

-0.528 
(-4.90) 

0.629 
(14.8) 

0.718 
(14.7) 

0.706 
(15.7) 

1989 0.793 
(5.72) 

0.997 
(6.88) 

1.775 
(11.4) 

-0.222 
(-12.9)

-0.673 
(-13.0) 

0.726 
(33.0) 

0.830 
(34.2) 

0.814 
(35.9) 

1992 0.762 
(5.17) 

1.180 
(7.11) 

1.116 
(7.14) 

-0.294 
(-7.37)

-0.324 
(-6.60) 

0.791 
(36.5) 

0.825 
(35.3) 

0.832 
(37.0) 

1995 0.143 
(0.91) 

0.134 
(0.80) 

0.575 
(3.38) 

-0.256 
(-6.37)

-0.380 
(-6.45) 

0.870 
(42.6) 

0.918 
(39.8) 

0.915 
(42.5) 

1998 0.468 
(2.71) 

0.966 
(4.82) 

1.270 
(7.04) 

-0.411 
(-11.0)

-0.641 
(-13.4) 

0.847 
(47.0) 

0.914 
(43.0) 

0.929 
(49.5) 

2001 0.554 
(4.81) 

0.921 
(6.56) 

1.070 
(8.87) 

-0.564 
(-11.1)

-0.619 
(-12.7) 

0.888 
(50.3) 

0.967 
(43.8) 

0.972 
(52.1) 

2004 0.894 
(6.51) 

0.987 
(6.80) 

1.372 
(9.11) 

-0.195 
(-7.18)

-0.319 
(-7.54) 

0.797 
(49.3) 

0.831 
(47.0) 

0.834 
(49.6) 

All 0.831 
(19.2) 

1.076 
(22.7) 

1.338 
(28.6) 

-0.256 
(-27.9)

-0.542 
(-26.8) 

0.819 
(107) 

0.883 
(104) 

0.882 
(112) 

RETURNS on Total Portfolio of Assets Regressions 
1963 0.521 

(1.98) 
1.263 
(3.79) 

1.347 
(4.28) 

-0.424 
(-4.76)

-1.202 
(-4.64) 

0.970 
(11.0) 

1.011 
(10.2) 

1.004 
(11.5) 

1983 1.574 
(3.88) 

1.629 
(3.76) 

2.623 
(6.03) 

-0.331 
(-5.29)

-0.987 
(-6.03) 

0.907 
(13.9) 

1.053 
(14.1) 

1.051 
(15.4) 

1989 1.709 
(7.71) 

2.057 
(8.74) 

3.546 
(14.3) 

-0.380 
(-13.6)

-1.259 
(-15.4) 

1.113 
(31.6) 

1.291 
(32.8) 

1.277 
(35.5) 

1992 1.908 
(7.17) 

2.751 
(9.15) 

2.651 
(9.42) 

-0.593 
(-8.21)

-0.680 
(-7.70) 

1.241 
(31.7) 

1.309 
(30.9) 

1.327 
(32.8) 

1995 2.148 
(8.16) 

2.146 
(8.16) 

2.307 
(8.06) 

-0.067 
(-1.07)

-0.140 
(-1.41) 

1.478 
(43.2) 

1.490 
(41.3) 

1.494 
(41.3) 

1998 2.883 
(7.55) 

3.617 
(8.75) 

4.016 
(9.99) 

-0.606 
(-7.86)

-0.907 
(-8.50) 

1.157 
(29.1) 

1.257 
(28.7) 

1.273 
(30.5) 

2001 1.877 
(7.96) 

1.918 
(7.90) 

1.854 
(7.40) 

-0.064 
(-0.73)

0.028 
(0.28) 

1.152 
(31.8) 

1.161 
(30.4) 

1.149 
(29.6) 

2004 2.787 
(8.81) 

2.986 
(9.11) 

3.801 
(10.9) 

-0.413 
(-6.76)

-0.676 
(-6.94) 

1.243 
(33.4) 

1.316 
(33.0) 

1.322 
(34.1) 

All 1.275 
(16.0) 

1.636 
(19.2) 

1.948 
(22.4) 

-0.378 
(-22.9)

-0.720 
(-19.2) 

1.155 
(82.1) 

1.249 
(81.6) 

1.239 
(84.5) 

See notes to Table 3  



Table 5: Regressions Results for Three Key Variables in Regression Equation (30) 
with lnSHARE included as a regressor. Eight Independent SCF Samples 

 
 log(EDU) log(WAGE) log(TASST) 
 Conditional Conditional Conditional 

Year 
Uncon- 
ditional 2SLS PW 2SLS PW 

Uncon- 
ditional 2SLS PW 

SALARIED WORKERS 
1963 -0.033 

(-0.12) 
0.478 
(1.33) 

0.463 
(1.40) 

-0.213 
(-2.46)

-0.696 
(-2.64) 

0.994 
(10.9) 

1.020 
(10.4) 

1.016 
(11.1) 

1983 1.177 
(2.79) 

1.203 
(2.81) 

2.025 
(4.44) 

-0.238 
(-3.97)

-0.774 
(-4.60) 

1.034 
(14.9) 

1.133 
(15.2) 

1.139 
(15.8) 

1989 1.386 
(5.19) 

1.681 
(6.11) 

3.100 
(10.3) 

-0.345 
(-10.9)

-1.172 
(-11.3) 

1.222 
(27.2) 

1.400 
(28.7) 

1.371 
(29.9) 

1992 3.735 
(11.4) 

4.439 
(12.9) 

5.000 
(14.2) 

-0.282 
(-8.47)

-0.699 
(-9.19) 

1.227 
(27.4) 

1.339 
(28.4) 

1.335 
(29.2) 

1995 1.989 
(7.42) 

2.111 
(7.74) 

2.723 
(8.76) 

-0.194 
(-6.72)

-0.459 
(-4.62) 

1.339 
(33.8) 

1.438 
(33.6) 

1.399 
(33.7) 

1998 1.164 
(4.33) 

1.624 
(5.91) 

1.970 
(6.59) 

-0.358 
(-9.76)

-0.631 
(-6.05) 

1.231 
(28.3) 

1.362 
(29.8) 

1.311 
(29.0) 

2001 0.714 
(2.97) 

1.029 
(4.17) 

0.917 
(3.53) 

-0.188 
(-5.72)

-0.211 
(-2.06) 

1.304 
(32.1) 

1.389 
(32.1) 

1.334 
(30.9) 

2004 0.657 
(1.92) 

0.974 
(2.81) 

2.670 
(6.44) 

-0.184 
(-5.57)

-0.946 
(-8.46) 

1.539 
(34.5) 

1.590 
(34.9) 

1.628 
(35.8) 

All 1.072 
(9.93) 

1.513 
(13.3) 

1.590 
(13.6) 

-0.263 
(-13.8)

-0.559 
(-11.1) 

1.206 
(62.6) 

1.278 
(63.4) 

1.270 
(63.4) 

ALL INVESTORS 
1963 -0.135 

(-0.59) 
0.175 
(0.63) 

0.291 
(1.03) 

-0.162 
(-2.19)

-0.591 
(-2.58) 

0.918 
(12.1) 

0.936 
(11.8) 

0.936 
(12.4) 

1983 0.860 
(2.18) 

0.951 
(2.32) 

1.723 
(4.02) 

-0.245 
(-4.16)

-0.765 
(-4.80) 

1.076 
(16.7) 

1.172 
(16.6) 

1.175 
(17.5) 

1989 1.448 
(6.66) 

1.781 
(7.78) 

3.056 
(12.4) 

-0.318 
(-11.5)

-1.073 
(-13.7) 

1.203 
(34.4) 

1.338 
(34.9) 

1.329 
(37.2) 

1992 1.522 
(5.95) 

2.177 
(7.68) 

2.103 
(7.73) 

-0.450 
(-6.61)

-0.521 
(-6.11) 

1.347 
(35.5) 

1.394 
(34.8) 

1.409 
(36.0) 

1995 2.111 
(8.12) 

2.111 
(8.12) 

2.158 
(7.62) 

-0.001 
(-0.01)

-0.041 
(-0.42) 

1.511 
(44.6) 

1.512 
(42.3) 

1.516 
(42.4) 

1998 2.767 
(7.29) 

3.412 
(8.40) 

3.751 
(9.33) 

-0.519 
(-6.76)

-0.773 
(-7.15) 

1.195 
(30.0) 

1.275 
(29.6) 

1.288 
(30.9) 

2001 1.749 
(7.45) 

1.703 
(7.01) 

1.599 
(6.38) 

0.068 
(0.77) 

0.118 
(1.72) 

1.178 
(32.6) 

1.169 
(30.7) 

1.155 
(30.0) 

2004 2.404 
(7.70) 

2.579 
(8.07) 

3.236 
(9.40) 

-0.333 
(-5.58)

-0.545 
(-5.65) 

1.330 
(35.9) 

1.385 
(35.5) 

1.391 
(36.1) 

All 0.936 
(12.0) 

1.069 
(14.8) 

1.430 
(16.6) 

-0.250 
(-22.2)

-0.510 
(-13.8) 

1.229 
(88.8) 

1.354 
(104) 

1.285 
(89.3) 

See notes to Table 3. 



Table 6: Education Premiums over Realized Average Rates of Return on Financial 
Investments based on the pooled regression results for all years in Tables 3 and 4 

 
Estimated realized rates of return 
(ROR*) & Education premiums  

OLS 2SLS PW 

 SALARIED WORKERS 
ROR* on financial investments 

R*(HS)  
5.32 5.15 5.44 

ROR* on financial investments 
R*(COL) 

7.85 8.00 7.61 

Average ROR on total financial 
investments, R(ref) 

6.63 6.63 6.63 

Proportional education premium 
{[R*(COL)/R*(HS)]-1}/4 

11.93 13.83 9.98 

Absolute education premium 
[R*(COL)-R*(HS)]/4 

0.63 0.71 0.54 

 ALL INVESTORS 
ROR* on financial investments, 

R*(HS) 
6.24 6.28 6.35 

ROR* on financial investments, 
R*(COL) 

8.94 8.84 8.72 

Average ROR* on total financial 
investments R(ref) 

7.72 7.72 7.72 

Proportional education premium 
{[R*(COL)/R*(HS)]-1}/4 

10.81 10.22 9.31 

Absolute education premium 
[R*(COL)-R*(HS)]/4 

0.68 0.64 0.59 

 
Notes:  All reported rates of returns are in percentage terms. Our method of estimating 
realized rates of return and education premiums is based on estimates of the coefficients 
of EDU and lnWage* in equation (30), which we obtain from the pooled (“All”) 
regression model in Tables 3 and 4, as well as on an estimate of the conventional rate of 
return on education in generating wage income, η̂  = 0.086, which we obtain from a 
pooled regression specification of the extended Mincer’s model used to estimate our 
projected wage [PW] variable. See footnote 24.  
 
 

 
 
 
 
 
 

 



Table 7: Ordered-Probit Regressions with Management Time as dependent variable 
 

 Full Sample  Salaried Workers 
 All Investors Self-employed 

Investors 
All BUS-

related 
Non-BUS 

related 
TASST’ 0.2764 

(0.0506) 
0.2554 

(0.0621) 
0.2867 

(0.0880) 
0.1779 

(0.1195) 
0.4447 

(0.1314) 
EDH 0.0594 

(0.0222) 
0.0289 

(0.0278) 
0.0852 

(0.0402) 
0.0269 

(0.0830) 
0.0795 

(0.0469) 
AGE -0.0011 

(0.0037) 
-0.0010 
(0.0044) 

-0.0020 
(0.0067) 

0.0157 
(0.0107) 

-0.0140 
(0.0088) 

BUS 0.3440 
(0.0830) 

0.1912 
(0.1056) 

0.5297 
(0.1443) 

  

SELF 0.0221 
(0.0861) 

    

N 804 513 291 113 178 
Notes: standard errors in parentheses 
 
 



Figure 1: Optimal Information Precision and Asset Management Time as Functions of 
Alternative Schooling Attainments 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: For variable definitions and parameter values, see Table 1. 
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Figure 2: Private Information and Price Volatility: Effects of Unconditional  
Shifts in Determinants of Efficiency in Asset Management* 
 
A. Increments in Average Educational Attainments ( )H  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The v(P) values are magnified 150 times their actual values to fit the scale.  
Parameter values used: h = 0.033, t = 40, μ  = 160, x  = 1, r= 1, α = 0.4, β = 0.9, a = 1, σ = 1, M = 1, w0 = 1, and η 
= 0.17  * Illustrations conditional on r2ht < 1. 
 
B. Reductions in the variance of supply shocks (increments in t) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The v(P) values are reduced to 0.4 of their original values.  For parameter values used see Table 1. 
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Appendix 1: Comparative Statics at the Individual Level 
 
1. The impact of shifts in individual human capital endowments Hi on si

* and qi
*. 

a. We first differentiate equation (15) with respect to Hi, using equations (5) and (6), to derive its 
“uncompensated” effect on si*. By collecting terms we obtain: 
(A.1) (1/α) si

(1-α)/α [(1-α) (h + r2s2t) si
-1 + 1] (dsi

*/dHi)  
 = .5r A(τ)1/α Hi

β/α wi(Hi)-1[β Hi
-1 –  αwi(Hi,δ)-1] )H/w( ii ∂∂ .   

Since (1–α) > 0, 
(A.2) ]}H/w[)H(wH{sgn)dH/ds(sgn ii

1
ii

1
ii

*
i ∂∂α−β= −− . 

The RHS of (A.2) would have a positive sign if 
)/()](/][/[ αβ<≡∂∂

iiHwiiiii EHwHHw . Thus, 
(A.3) (ds*

i/dHi ) > 0  if )/( αβ<
iiHwE . 

b. To derive the impact of an “uncompensated” shift in Hi on the optimal value of qi
*, we 

substituting equation (7) into (15) and differentiate the latter with respect Hi: 
(A.3) (dqi

*/dHi) = (1 ) / 1/ ( ) /(1/ ) ( ) [ ( / ) )]i i i i i is A H H ds dH sα α α β α αα τ β− − − − −  ; thus, 
(A.4)  (dqi

*/dHi) > 0 if (dlnsi /dln Hi)≡  
ii H,sE  > β. 

c. The “compensated” effects of Hi, on si
* and qi

*, with wi(Hi, δ) held constant, are 
(A.5) constwii i

Hs =∂∂ |/*  > 0,   
as can be seen directly from equation (A.2); while from (A.3) and (A.4): 
(A.6) (∂ qi

*/∂ Hi) constwi =
|  > 0  if (∂ lnsi /∂ ln Hi ) constwi =

| ≡  
ii H,sε  > β. 

 
2.  The impact of shifts in idiosyncratic “technology” factors A(τ)i on si

* and qi
* 

a. Note that the first-order condition (15) can be expressed in terms of qi as 
(A.7) ( ) ( )1 / 1 /1 2 2 1/ / 1/ / 1

i i i i i iA( ) q H (h+ r s ) + A( ) q H .5rA( ) H w = 0tα α β α αα α β α α β ατ τ τ α− −− −− . 
Differentiating equation (A.7) with respect to Ai  and collecting terms, we obtain: 

( ) ( )

( ) [ ] [ ] ( ) ( )

1 / 1 / 2 2 1/ /
i i i i

(1 )/ 11 / 1 / 1 // 1 1 2 2 /
i i i i i i

(A.8)  [A( ) (1 )q H (h+r s t)+A( ) H ](dq /dA)

=.5rA( ) H w (1 α)/α A( ) q H (h+r s t) (1/ )A( ) q H

α α β α αα α β α

α αα α β α α α αβ α α β α

τ α τ

τ τ α τ

− −−

− −− − −− −

−

− − −
 

Using (A.7), the RHS of (A.8) can be rewritten as ( )1 / / 1
i i iA( ) H [.5 rw q ]α α β ατ α− − −  

The RHS of (A.8) would be positive in sign if 05. 1 >−−
ii qrwα . Since coefficient of (dqi/dAi) on 

the LHS of (A.8) is positive in sign, it follows that (dqi
*/dAi) > 0, if 

 (A.9) 15. −< ii rwq α .  
We now prove that this condition is always satisfied at optimal values of si

*. From equation (15) 
in the text si

* must satisfy: 
(15)   si

(1-α)/α (h + r2s2t) + si
1/α  .5r A1/α  Hi

β/α α wi
-1 =  0,  

Multiplying (A.9) through by A1/α  Hi
β/α we obtain: 

(A.10) qi A1/α  Hi
β/α < .5r A1/α  Hi

β/α α wi
-1 

Inserting the value of qi from equation (7) in the text into (A.10), the condition becomes: 
(A.11)  si

1/α < .5r A1/α  Hi
β/α α wi

-1, 
This equation necessarily holds for an optimal value of si

* since by equation (15),   
si

1/α < si
(1-α)/α (h + r2s2t) + si

1/α = .5r A1/α  Hi
β/α α wi

-1.  Thus, using (A.9) and (6):  
(A.12) sgn (dsi

*/dAi) =  sgn (dqi
*/dAi)  > 0. 



APPENDIX 2: Full regression results 
Table A.1. DEMAND for risky Assets: SALARIED WORKERS, Independent SCF Samples 
 

Year 1963 1983 1989 1992 

Model1 Original No-wage 2SLS PW Original no-wage 2SLS PW Original no-wage 2SLS PW Original no-wage 2SLS PW 

Constant -4.731 -5.709 -3.339 -0.652 -2.064 -2.634 -0.214 0.676 -0.084 -1.415 0.788 3.150 -3.792 -4.331 -3.384 -2.606 
 (-6.55) (-7.84) (-3.81) (-0.44) (-2.32) (-3.04) (-0.21) (0.61) (-0.16) (-2.72) (1.4) (4.87) (-6.97) (-8.05) (-6.05) (-4.40) 

log(EDU) 0.941 0.641 1.342 1.121 1.277 1.304 1.286 1.845 0.676 0.812 0.980 1.912 1.620 1.580 1.880 2.096 
 (4.89) (3.34) (5.64) (4.96) (4.55) (4.63) (4.32) (6.12) (3.86) (4.57) (5.41) (9.63) (8.71) (8.47) (9.74) (10.46) 

log(TA) 1.114 1.101 1.132 1.121 0.632 0.613 0.712 0.693 0.761 0.701 0.837 0.811 0.767 0.746 0.800 0.7952 
 (17.86) (17.05) (16.75) (17.58) (13.95) (13.64) (13.82) (14.55) (25.72) (23.81) (26.04) (26.70) (30.12) (29.48) (29.98) (30.39) 

log(WAGE) -0.127  -0.312 -0.705 -0.043  -0.207 -0.523 -0.105  -0.239 -0.775 -0.051  -0.128 -0.297 
 (-5.72)  (-5.43) (-3.87) (-2.76)  (-4.98) (-4.66) (-10)  (-11.62) (-11.49) (-5.7)  (-6.82) (-6.81) 

AGE 0.001 0.020 -0.026 0.014 0.025 0.033 -0.005 0.026 0.006 0.027 -0.024 0.014 0.012 0.022 -0.004 0.0117 
 (0.11) (3.07) (-2.39) (2.20) (5.15) (8.23) (-0.59) (6.22) (1.73) (10.44) (-4.71) (5.36) (4.26) (9.82) (-0.96) (4.29) 

RAV * * * * -0.319 -0.319 -0.314 -0.326 -0.478 -0.513 -0.461 -0.543 -0.322 -0.319 -0.329 -0.350 
     (-4.65) (-4.62) (-4.3) (-4.77) (-10.35) (-10.97) (-9.64) (-11.82) (-8.46) (-8.35) (-8.54) (-9.14) 

PROF -0.379 -0.338 -0.192 -0.233 0.397 0.351 0.416 0.421 0.110 -0.183 -0.026 -0.091 0.036 -0.058 -0.023 -0.055 
 (-2.26) (-1.94) (-1.05) (-1.34) (2.76) (2.45) (2.73) (2.95) (1.34) (-2.36) (-0.33) (-1.19) (0.52) (-0.85) (-0.33) (-0.82) 

 
Year 1995 1998 2001 2004 

Model1 Original no-wage 2SLS PW Original no-wage 2SLS PW Original no-wage 2SLS PW Original no-wage 2SLS PW 

Constant -2.853 -3.874 -1.963 -0.539 -1.651 -2.632 -0.806 0.579 -2.804 -3.855 -1.824 0.329 -3.209 -3.483 -2.020 -1.088 
 (-5.77) (-8.01) (-3.74) (-0.91) (-4.33) (-7.1) (-1.94) (1.17) (-7.3) (-10.18) (-4.4) (0.61) (-6.88) (-7.72) (-4.07) (-2.10) 

log(EDU) 0.387 0.434 0.527 1.327 0.201 0.162 0.375 0.732 0.537 0.532 0.902 1.040 1.009 1.026 1.237 1.995 
 (2.4) (2.66) (3.21) (7.14) (1.65) (1.31) (2.97) (5.39) (4.46) (4.35) (7.04) (8.02) (6.41) (6.52) (7.53) (10.58) 

log(TA) 0.977 0.941 1.028 1.016 0.947 0.934 0.998 0.992 0.986 0.945 1.054 1.023 0.792 0.787 0.828 0.835 
 (40.4) (39.19) (39.83) (40.64) (47.95) (46.93) (47.31) (48.14) (47.67) (45.71) (46.66) (47.20) (38.72) (38.69) (38.42) (40.09) 

log(WAGE) -0.073  -0.166 -0.565 -0.072  -0.169 -0.449 -0.092  -0.236 -0.544 -0.017  -0.134 -0.465 
 (-8.39)  (-9.68) (-9.58) (-9.5)  (-10.14) (-9.57) (-11.52)  (-14.08) (-10.70) (-2.32)  (-8.56) (-9.11) 

AGE -0.005 0.010 -0.025 -0.001 -0.005 0.007 -0.026 -0.005 -0.009 0.007 -0.038 -0.004 0.015 0.018 -0.010 0.008 
 (-1.76) (4.88) (-6.07) (-0.35) (-2.21) (3.77) (-6.78) (-2.08) (-3.65) (3.67) (-9.92) (-1.79) (6.16) (9.07) (-2.53) (3.78) 

RAV -0.037 -0.034 -0.042 -0.052 -0.044 -0.035 -0.044 -0.054 -0.031 -0.023 -0.042 -0.036 -0.226 -0.223 -0.219 -0.234 
 (-0.95) (-0.88) (-1.05) (-1.33) (-1.34) (-1.07) (-1.33) (-1.66) (-0.87) (-0.62) (-1.12) (-0.99) (-6.11) (-6.03) (-5.74) (-6.38) 

PROF -0.124 -0.244 -0.240 -0.265 0.103 -0.014 -0.008 -0.022 0.035 -0.156 -0.085 -0.097 0.061 0.010 0.059 0.034 
 (-1.8) (-3.59) (-3.51) (-3.69) (1.75) (-0.23) (-0.13) (-0.38) (0.56) (-2.55) (-1.34) (-1.60) (1.00) (0.17) (1.02) (0.61) 

1 Model refers to the way the log(WAGE) measure is treated in the regression (see text). * RAV is absent in the 1963-64 sample. 
 



Table A.2. DEMAND for risky Assets: ALL INVESTORS, Independent SCF Samples 
 

Year 1963 1983 1989 1992 

Model1 OLS no-wage 2SLS PW OLS no-wage 2SLS PW OLS no-wage 2SLS PW OLS no-wage 2SLS PW 

Constant -3.571 -1.353 -0.236 -0.991 -1.852 0.207 2.204 -2.543 -2.579 -0.440 -0.154 
 

-5.083 
(-8.75) 

-5.772 
(-9.93) 

-3.013 
(-3.86) 

-0.623 
(-0.51) 

-3.184 
(-3.81) (-4.35) (-1.37) (-0.22) (-2.35) (-4.47) (0.45) (4.30) (-5.55) (-5.69) (-0.79) (-0.26) 

log(EDU) 0.927 0.752 1.298 1.248 1.573 1.574 1.607 2.135 0.740 0.793 0.997 1.775 0.775 0.762 1.180 1.116 
 (5.99) (4.84) (6.75) (6.73) (5.94) (5.93) (5.66) (7.46) (5.37) (5.72) (6.88) (11.39) (5.2) (5.17) (7.11) (7.14) 

log(TA) 1.086 1.059 1.089 1.080 0.640 0.629 0.718 0.706 0.755 0.726 0.830 0.814 0.792 0.791 0.825 0.832 
 (21.34) (20.43) (19.13) (21.08) (14.97) (14.77) (14.65) (15.7) (34.15) (32.96) (34.2) (35.87) (36.35) (36.46) (35.25) (37.03) 

log(WAGE) -0.095  -0.312 -0.722 -0.032  -0.203 -0.528 -0.067  -0.222 -0.673 -0.007  -0.294 -0.324 
 (-5.70)  (-6.07) (-4.74) (-2.32)  (-4.95) (-4.90) (-8.81)  (-12.88) (-13.02) (-0.56)  (-7.37) (-6.60) 

AGE 0.009 0.024 -0.021 0.019 0.028 0.033 -0.002 0.027 0.015 0.028 -0.016 0.016 0.017 0.017 0.006 0.009 
 (1.65) (4.56) (-2.26) (3.53) (6.25) (8.69) (-0.25) (6.62) (6.44) (14.22) (-4) (7.64) (6.62) (6.86) (2.04) (3.41) 

RAV * * * * -0.296 -0.294 -0.291 -0.299 -0.472 -0.483 -0.447 -0.509 -0.341 -0.342 -0.358 -0.363 
     (-4.64) (-4.59) (-4.25) (-4.73) (-13.19) (-13.42) (-11.91) (-14.35) (-10.12) (-10.13) (-10.03) (-10.77) 

PROF -0.346 -0.375 -0.243 -0.272 0.234 0.215 0.273 0.277 0.085 -0.077 0.032 -0.026 0.114 0.113 0.118 0.126 
 (-2.6) (-2.76) (-1.62) (-2.00) (1.82) (1.67) (1.97) (2.16) (1.39) (-1.31) (0.52) (-0.46) (2.02) (2.01) (1.99) (2.24) 

SELF -0.983 -0.652 -1.680 -0.615 -0.710 -0.603 -1.293 -0.563 -0.424 -0.461 -0.311 -0.467 -0.438 -0.427 -0.865 -0.430 
 (-5.49) (-3.76) (-6.61) (-3.60) (-4.34) (-3.84) (-5.92) (-3.62) (-5.79) (-6.26) (-4.02) (-6.45) (-6.35) (-6.44) (-9.41) (-6.52) 

 
Year 1995 1998 2001 2004 

Model1 OLS no-wage 2SLS PW OLS no-wage 2SLS PW OLS no-wage 2SLS PW OLS no-wage 2SLS PW 

Constant -2.240 0.728 2.339 -2.482 -2.810 2.179 2.099 -3.301 -3.226 -1.442 -1.181 
 

-2.215 
(-4.68) 

-2.076 
(-4.49) 

0.409 
(0.65) 

0.541 
(0.88) 

-2.174 
(-4.53) (-4.72) (1.21) (4.04) (-6.75) (-7.96) (3.55) (4.03) (-8.4) (-8.43) (-3.05) (-2.53) 

log(EDU) 0.155 0.143 0.134 0.575 0.474 0.468 0.966 1.270 0.555 0.554 0.921 1.070 0.899 0.894 0.987 1.372 
 (0.98) (0.91) (0.8) (3.38) (2.74) (2.71) (4.82) (7.04) (4.83) (4.81) (6.56) (8.87) (6.54) (6.51) (6.8) (9.11) 

log(TA) 0.863 0.870 0.918 0.915 0.851 0.847 0.914 0.929 0.896 0.888 0.967 0.972 0.795 0.797 0.831 0.834 
 (41.34) (42.6) (39.75) (42.54) (46.02) (47) (43.01) (49.53) (50.25) (50.26) (43.75) (52.13) (48.76) (49.32) (47) (49.58) 

log(WAGE) 0.014  -0.256 -0.380 -0.010  -0.411 -0.641 -0.034  -0.564 -0.619 0.007  -0.195 -0.319 
 (1.37)  (-6.37) (-6.45) (-0.96)  (-10.98) (-13.40) (-3.17)  (-11.12) (-12.71) (0.83)  (-7.18) (-7.54) 

AGE 0.002 0.001 -0.005 -0.003 -0.003 -0.002 -0.016 -0.017 -0.010 -0.009 -0.024 -0.019 0.002 0.001 -0.006 -0.005 
 (0.68) (0.47) (-1.71) (-1.07) (-1.21) (-1.03) (-5.84) (-7.30) (-4.39) (-3.95) (-8.09) (-8.32) (0.9) (0.76) (-2.73) (-2.39) 

RAV -0.028 -0.028 -0.020 -0.028 -0.009 -0.009 -0.025 -0.039 -0.018 -0.016 -0.018 -0.018 -0.014 -0.014 0.002 0.002 
 (-0.8) (-0.82) (-0.54) (-0.81) (-0.33) (-0.31) (-0.77) (-1.37) (-0.6) (-0.53) (-0.5) (-0.60) (-0.46) (-0.45) (0.07) (0.07) 

PROF 0.034 0.036 -0.004 0.010 0.142 0.142 0.123 0.119 0.155 0.142 0.138 0.150 0.193 0.197 0.194 0.210 
 (0.62) (0.66) (-0.07) (0.19) (2.83) (2.84) (2.17) (2.41) (3.05) (2.81) (2.31) (3.01) (4.04) (4.16) (3.89) (4.48) 

SELF -0.033 -0.080 -0.878 -0.131 0.109 0.127 -0.522 0.141 -0.151 -0.091 -0.982 -0.153 0.073 0.058 -0.339 0.019 
 (-0.44) (-1.19) (-6.07) (-1.94) (1.75) (2.15) (-5.85) (2.42) (-2.42) (-1.53) (-9.22) (-2.61) (1.34) (1.13) (-4.39) (0.37) 

1 Model refers to the way the log(WAGE) measure is treated in the regression (see text). * RAV is absent in the 1963-64 sample. 



Table A.3. RETURNS-on-Total-Portfolio-of-Assets: SALARIED WORKERS, Independent SCF Samples 
 

Year 1963 1983 1989 1992 

Model1 Original no-wage 2SLS PW Original no-wage 2SLS PW Original no-wage 2SLS PW Original no-wage 2SLS PW 

Constant -8.678 -9.185 -5.638 0026 -7.969 -9.446 -5.666 -3.173 -11.245 -13.263 -9.530 -5.203 -19.182 -20.481 -18.020 -15.72 
 (-7.02) (-7.63) (-3.61) (0.01) (-5.84) (-7.04) (-3.61) (-1.85) (-13.83) (-16.6) (-10.91) (-5.28) (-19.7) (-21.19) (-17.74) (-14.9) 

log(EDU) 0.678 0.523 1.572 1.397 1.696 1.764 1.736 2.790 1.436 1.641 1.925 3.583 4.518 4.421 5.202 5.848 
 (2.06) (1.65) (3.71) (3.75) (3.94) (4.05) (3.86) (6.02) (5.34) (6.03) (6.85) (11.9) (13.58) (13.19) (14.85) (16.4) 

log(TA) 1.088 1.081 1.127 1.117 0.909 0.860 1.014 1.011 1.220 1.128 1.359 1.323 1.167 1.117 1.258 1.252 
 (10.2) (10.12) (9.36) (10.62) (13.06) (12.36) (13.03) (13.8) (26.88) (25.02) (27.25) (28.6) (25.62) (24.57) (25.95) (26.9) 

log(WAGE) -0.066  -0.467 -1.283 -0.111  -0.323 -0.991 -0.159  -0.405 -1.368 -0.123  -0.334 -0.819 
 (-1.73)  (-4.56) (-4.28) (-4.66)  (-5.15) (-5.74) (-9.88)  (-12.68) (-13.3) (-7.67)  (-9.77) (-10.6) 

AGE 0.012 0.022 -0.045 0.012 0.025 0.046 -0.014 0.033 0.006 0.037 -0.048 0.016 0.016 0.039 -0.028 0.011 
 (1.03) (2.09) (-2.39) (1.16) (3.34) (7.31) (-1.08) (5.02) (1.12) (9.57) (-6.12) (3.90) (3.12) (9.89) (-3.52) (2.30) 

RAV * * * * -0.204 -0.203 -0.195 -0.216 0.219 0.166 0.254 0.114 -0.049 -0.042 -0.067 -0.126 
     (-1.93) (-1.9) (-1.76) (-2.06) (3.09) (2.31) (3.43) (1.63) (-0.71) (-0.61) (-0.96) (-1.85) 

PROF -0.475 -0.454 -0.236 -0.262 0.375 0.256 0.357 0.389 -0.100 -0.545 -0.279 -0.382 -0.580 -0.806 -0.715 -0.799 
 (-1.65) (-1.57) (-0.72) (-0.92) (1.7) (1.15) (1.55) (1.77) (-0.8) (-4.57) (-2.24) (-3.28) (-4.65) (-6.6) (-5.74) (-6.64) 

 
Year 1995 1998 2001 2004 

Model1 Original no-wage 2SLS PW Original no-wage 2SLS PW Original no-wage 2SLS PW Original no-wage 2SLS PW 

Constant -16.995 -17.945 -15.021 -13.99 -10.946 -13.483 -9.150 -8.071 -13.026 -14.517 -12.384 -11.71 -14.530 -16.470 -13.866 -10.66 
 (-20.19) (-21.93) (-16.69) (-13.9) (-13.1) (-16.53) (-10.03) (-7.34) (-16.93) (-19.28) (-15.42) (-10.8) (-14.18) (-16.51) (-13.01) (-9.32) 

log(EDU) 2.117 2.160 2.303 3.221 1.317 1.214 1.721 2.177 0.876 0.869 1.258 1.209 0.977 1.096 1.472 2.447 
 (7.7) (7.84) (8.19) (10.2) (4.92) (4.47) (6.20) (7.24) (3.63) (3.58) (5.07) (4.64) (2.83) (3.15) (4.18) (8.29) 

log(TA) 1.349 1.315 1.448 1.405 1.242 1.210 1.361 1.308 1.347 1.288 1.403 1.340 1.486 1.447 1.520 1.564 
 (32.75) (32.36) (32.78) (33.0) (28.71) (27.62) (29.42) (28.7) (32.52) (31.35) (32.06) (30.8) (33.06) (32.2) (32.89) (34.1) 

log(WAGE) -0.068  -0.254 -0.671 -0.187  -0.402 -0.757 -0.130  -0.248 -0.365 -0.121  -0.238 -1.127 
 (-4.58)  (-8.66) (-6.67) (-11.21)  (-10.96) (-7.29) (-8.16)  (-7.63) (-3.57) (-7.49)  (-7.1) (-10.0) 

AGE 0.038 0.051 -0.002 0.039 0.011 0.043 -0.035 0.023 0.023 0.046 -0.001 0.038 -0.014 0.008 -0.040 -0.014 
 (8.4) (15.04) (-0.33) (9.96) (2.17) (10.14) (-4.24) (4.51) (4.73) (11.54) (-0.2) (8.49) (-2.62) (1.96) (-4.95) (-2.98) 

RAV -0.308 -0.306 -0.317 -0.326 -0.381 -0.359 -0.380 -0.391 -0.325 -0.313 -0.334 -0.322 -0.058 -0.036 -0.030 -0.062 
 (-4.66) (-4.61) (-4.69) (-4.94) (-5.36) (-4.98) (-5.23) (-5.45) (-4.51) (-4.31) (-4.59) (-4.44) (-0.71) (-0.44) (-0.36) (-0.77) 

PROF 0.771 0.659 0.665 0.634 0.098 -0.203 -0.189 -0.217 0.986 0.715 0.790 0.755 0.037 -0.324 -0.235 -0.265 
 (6.58) (5.74) (5.68) (5.55) (0.76) (-1.59) (-1.47) (-1.71) (7.87) (5.87) (6.47) (6.18) (0.28) (-2.6) (-1.88) (-2.15) 

1 Model refers to the way the log(WAGE) measure is treated in the regression (see text). * RAV is absent in the 1963-64 sample. 
 



Table A.4. RETURNS on Total Portfolio of Assets: ALL INVESTORS, Independent SCF Samples 
 

Year 1963 1983 1989 1992 

Model1 OLS no-wage 2SLS PW OLS no-wage 2SLS PW Original no-wage 2SLS PW Original no-wage 2SLS PW 

Constant -8.301 -8.650 -4.901 -0.080 -8.240 -9.104 -5.492 -2.865 -12.104 -13.278 -9.758 -5.690 -13.821 -14.097 -9.779 -9.002 
 (-8.23) (-8.76) (-3.61) (-0.04) (-6.47) (-7.26) (-3.66) (-1.78) (-17.91) (-20.09) (-13.11) (-7.00) (-16.74) (-17.23) (-9.63) (-8.59) 

log(EDU) 0.610 0.521 1.263 1.347 1.572 1.574 1.629 2.623 1.636 1.709 2.057 3.546 2.006 1.908 2.751 2.651 
 (2.27) (1.98) (3.79) (4.28) (3.9) (3.88) (3.76) (6.03) (7.42) (7.71) (8.74) (14.34) (7.46) (7.17) (9.15) (9.42) 

log(TA) 0.983 0.970 1.011 1.004 0.933 0.907 1.053 1.051 1.153 1.113 1.291 1.277 1.250 1.241 1.309 1.323 
 (11.13) (11.01) (10.23) (11.53) (14.31) (13.94) (14.09) (15.38) (32.58) (31.64) (32.78) (35.48) (31.81) (31.7) (30.88) (32.79) 

log(WAGE) -0.048  -0.424 -1.202 -0.070  -0.331 -0.987 -0.091  -0.380 -1.259 -0.053  -0.593 -0.680 
 (-1.67)  (-4.76) (-4.64) (-3.38)  (-5.29) (-6.03) (-7.50)  (-13.57) (-15.35) (-2.41)  (-8.21) (-7.70) 

AGE 0.025 0.033 -0.029 0.024 0.029 0.041 -0.017 0.029 0.029 0.046 -0.028 0.024 -0.007 -0.005 -0.027 -0.021 
 (2.54) (3.65) (-1.77) (2.65) (4.27) (7.01) (-1.31) (4.68) (7.68) (14.82) (-4.41) (7.30) (-1.5) (-1.05) (-4.88) (-4.24) 

RAV * * * * -0.257 -0.252 -0.247 -0.262 0.007 -0.008 0.054 -0.057 0.070 0.068 0.033 0.022 
     (-2.64) (-2.57) (-2.37) (-2.73) (0.13) (-0.15) (0.89) (-1.01) (1.16) (1.11) (0.52) (0.36) 

PROF -0.246 -0.261 -0.082 -0.089 0.189 0.146 0.241 0.263 -0.014 -0.234 -0.048 -0.139 -0.013 -0.018 -0.007 0.009 
 (-1.07) (-1.13) (-0.31) (-0.39) (0.96) (0.74) (1.14) (1.35) (-0.14) (-2.5) (-0.48) (-1.51) (-0.13) (-0.18) (-0.07) (0.09) 

SELF -0.861 -0.693 -2.090 -0.631 -0.607 -0.370 -1.492 -0.295 -0.252 -0.303 -0.046 -0.314 0.420 0.502 -0.382 0.495 
 (-2.77) (-2.35) (-4.74) (-2.17) (-2.44) (-1.54) (-4.48) (-1.24) (-2.16) (-2.58) (-0.37) (-2.73) (3.38) (4.20) (-2.30) (4.16) 

 
Year 1995 1998 2001 2004 

Model1 Original no-wage 2SLS PW Original no-wage 2SLS PW Original no-wage 2SLS PW Original no-wage 2SLS PW 

Constant -18.673 -19.364 -18.709 -18.40 -16.056 -16.319 -11.942 -9.844 -14.599 -14.745 -14.180 -14.965 -18.291 -18.934 -15.147 -14.594 
 (-23.59) (-25.01) (-19) (-17.83) (-15.17) (-15.58) (-9.65) (-7.63) (-19.34) (-20.36) (-13.35) (-13.84) (-20.2) (-21.47) (-14.18) (-13.53) 

log(EDU) 2.092 2.148 2.146 2.307 2.906 2.883 3.617 4.016 1.878 1.877 1.918 1.854 2.743 2.787 2.986 3.801 
 (7.95) (8.16) (8.16) (8.06) (7.61) (7.55) (8.75) (9.99) (7.96) (7.96) (7.9) (7.40) (8.67) (8.81) (9.11) (10.94) 

log(TA) 1.507 1.477 1.490 1.494 1.173 1.157 1.257 1.273 1.156 1.152 1.161 1.149 1.258 1.243 1.316 1.322 
 (43.18) (43.24) (41.28) (41.33) (28.74) (29.09) (28.67) (30.45) (31.58) (31.79) (30.35) (29.63) (33.51) (33.37) (32.97) (34.06) 

log(WAGE) -0.071  -0.067 -0.140 -0.040  -0.606 -0.907 -0.015  -0.064 0.028 -0.057  -0.413 -0.676 
 (-4.05)  (-1.07) (-1.41) (-1.72)  (-7.86) (-8.50) (-0.69)  (-0.73) (0.28) (-3.11)  (-6.76) (-6.94) 

AGE 0.006 0.009 0.007 0.007 0.011 0.012 -0.008 -0.009 0.028 0.028 0.027 0.029 0.005 0.008 -0.009 -0.006 
 (1.34) (2.01) (1.54) (1.62) (2.23) (2.65) (-1.36) (-1.70) (6.18) (6.36) (5.3) (6.03) (1.17) (1.77) (-1.65) (-1.22) 

RAV 0.135 0.138 0.141 0.138 -0.361 -0.360 -0.384 -0.402 -0.395 -0.394 -0.395 -0.394 0.059 0.056 0.089 0.089 
 (2.32) (2.38) (2.41) (2.38) (-5.69) (-5.67) (-5.73) (-6.35) (-6.23) (-6.21) (-6.22) (-6.21) (0.85) (0.81) (1.24) (1.28) 

PROF 0.750 0.738 0.727 0.728 0.073 0.075 0.046 0.042 0.700 0.694 0.694 0.694 -0.005 -0.042 -0.048 -0.012 
 (8.28) (8.14) (7.99) (8.01) (0.67) (0.68) (0.4) (0.38) (6.73) (6.70) (6.69) (6.70) (-0.05) (-0.38) (-0.43) (-0.11) 

SELF -0.089 0.143 -0.067 0.124 0.107 0.180 -0.778 0.200 0.087 0.113 0.013 0.116 0.396 0.523 -0.319 0.440 
 (-0.71) (1.26) (-0.3) (1.09) (0.78) (1.37) (-4.23) (1.54) (0.68) (0.93) (0.07) (0.95) (3.18) (4.43) (-1.83) (3.73) 

1 Model refers to the way the log(WAGE) measure is treated in the regression (see text). * RAV is absent in the 1963-64 sample. 



Table A.5. RETURNS on Total Portfolio of Assets Conditional on log(SHARE): SALARIED WORKERS, Independent SCF Samples  
 

Year 1963 1983 1989 1992 

Model1 Original no-wage 2SLS PW Original no-wage 2SLS PW Original no-wage 2SLS PW Original no-wage 2SLS PW 

Constant -4.448 -4.235 -2.915 0.569 -7.077 -8.260 -5.577 -3.453 -11.221 -12.818 -9.727 -5.998 -17.602 -18.600 -16.646 -14.66 
 (-4.01) (-3.85) (-2.26) (0.27) (-5.39) (-6.4) (-3.78) (-2.09) (-14.03) (-16.37) (-11.42) (-6.15) (-18.46) (-19.65) (-16.86) (-14.25) 

log(EDU) -0.163 -0.033 0.478 0.463 1.144 1.177 1.203 2.025 1.249 1.386 1.681 3.100 3.843 3.735 4.439 5.000 
 (-0.56) (-0.12) (1.33) (1.4) (2.73) (2.79) (2.81) (4.44) (4.72) (5.19) (6.11) (10.3) (11.75) (11.37) (12.93) (14.2) 

log(TA) 0.986 0.994 1.020 1.016 1.068 1.034 1.133 1.139 1.286 1.222 1.400 1.371 1.265 1.227 1.339 1.335 
 (10.78) (10.87) (10.38) (11.1) (15.42) (14.92) (15.19) (15.8) (28.5) (27.24) (28.68) (29.9) (28.2) (27.44) (28.35) (29.2) 

log(WAGE) 0.048  -0.213 -0.696 -0.092  -0.238 -0.774 -0.130  -0.345 -1.172 -0.102  -0.282 -0.699 
 (1.42)  (-2.46) (-2.64) (-4.02)  (-3.97) (-4.60) (-8.09)  (-10.85) (-11.3) (-6.49)  (-8.47) (-9.19) 

AGE 0.012 0.005 -0.025 0.0004 0.014 0.031 -0.012 0.022 0.004 0.029 -0.042 0.012 0.011 0.030 -0.026 0.006 
 (1.14) (0.56) (-1.58) (0.05) (1.95) (4.95) (-0.98) (3.39) (0.83) (7.46) (-5.49) (3.03) (2.19) (7.64) (-3.41) (1.36) 

RAV * * * * -0.066 -0.059 -0.065 -0.080 0.351 0.327 0.369 0.251 0.086 0.097 0.067 0.016 
     (-0.64) (-0.57) (-0.62) (-0.79) (4.95) (4.57) (5.03) (3.56) (1.28) (1.44) (0.97) (0.23) 

PROF -0.136 -0.161 -0.079 -0.068 0.203 0.098 0.184 0.214 -0.131 -0.487 -0.272 -0.359 -0.595 -0.781 -0.706 -0.776 
 (-0.55) (-0.65) (-0.3) (-0.28) (0.95) (0.46) (0.85) (1.01) (-1.06) (-4.17) (-2.24) (-3.12) (-4.9) (-6.59) (-5.86) (-6.63) 

log(SHARE) 0.894 0.867 0.816 0.833 0.432 0.450 0.414 0.415 0.276 0.314 0.249 0.253 0.417 0.434 0.406 0.405 
 (12.59) (12.65) (10.71) (12.0) (8.74) (9.07) (8.1) (8.35) (10.19) (11.69) (8.85) (9.39) (14.43) (15.03) (13.76) (14.07) 

 
Year 1995 1998 2001 2004 

Model1 Original no-wage 2SLS PW Original no-wage 2SLS PW Original no-wage 2SLS PW Original no-wage 2SLS PW 

Constant -15.900 -16.420 -14.304 -13.79 -10.511 -12.662 -8.942 -8.234 -12.305 -13.395 -11.922 -11.81 -13.183 -14.979 -13.053 -10.24 
 (-19.3) (-20.46) (-16.39) (-14.04) (-12.64) (-15.58) (-9.91) (-7.55) (-16.03) (-17.78) (-14.99) (-11.0) (-13.04) (-15.2) (-12.51) (-9.08) 

log(EDU) 1.968 1.989 2.111 2.723 1.264 1.164 1.624 1.970 0.738 0.714 1.029 0.917 0.554 0.657 0.974 2.670 
 (7.34) (7.42) (7.74) (8.76) (4.75) (4.33) (5.91) (6.59) (3.08) (2.97) (4.17) (3.53) (1.62) (1.92) (2.81) (6.44) 

log(TA) 1.358 1.339 1.438 1.399 1.256 1.231 1.362 1.311 1.350 1.304 1.389 1.334 1.573 1.539 1.590 1.628 
 (33.83) (33.83) (33.61) (33.7) (29.21) (28.33) (29.78) (29.0) (32.87) (32.06) (32.11) (30.9) (35.22) (34.45) (34.92) (35.8) 

log(WAGE) -0.040  -0.194 -0.459 -0.168  -0.358 -0.631 -0.107  -0.188 -0.211 -0.114  -0.184 -0.946 
 (-2.74)  (-6.72) (-4.62) (-10.03)  (-9.76) (-6.05) (-6.63)  (-5.72) (-2.06) (-7.17)  (-5.57) (-8.46) 

AGE 0.040 0.047 0.007 0.039 0.012 0.041 -0.028 0.024 0.025 0.044 0.008 0.039 -0.020 0.001 -0.036 0-0.018 
 (9.03) (14.25) (0.99) (10.3) (2.45) (9.69) (-3.46) (4.81) (5.23) (11.1) (1.1) (8.82) (-3.85) (0.21) (-4.58) (-3.69) 

RAV -0.294 -0.292 -0.302 -0.307 -0.370 -0.348 -0.369 -0.376 -0.317 -0.307 -0.323 -0.312 0.037 0.059 0.059 0.029 
 (-4.56) (-4.53) (-4.61) (-4.76) (-5.23) (-4.88) (-5.13) (-5.28) (-4.43) (-4.27) (-4.49) (-4.34) (0.46) (0.74) (0.73) (0.36) 

PROF 0.818 0.755 0.752 0.733 0.071 -0.199 -0.187 -0.211 0.977 0.761 0.811 0.782 0.011 -0.328 -0.259 -0.278 
 (7.17) (6.75) (6.62) (6.56) (0.56) (-1.57) (-1.47) (-1.67) (7.86) (6.31) (6.72) (6.47) (0.09) (-2.69) (-2.12) (-2.30) 

log(SHARE) 0.384 0.394 0.365 0.375 0.263 0.312 0.259 0.282 0.257 0.291 0.254 0.281 0.420 0.428 0.403 0.389 
 (14.35) (14.83) (13.38) (13.99) (7.82) (9.27) (7.55) (8.32) (8.64) (9.87) (8.4) (9.42) (12.71) (12.9) (12.05) (11.7) 

1 Model refers to the way the log(WAGE) measure is treated in the regression (see text). * RAV is absent in the 1963-64 sample. 



 Table A.6. RETURNS-on-Total-Portfolio-of-Assets: ALL INVESTORS, Independent Samples from Eight Years 
Year 1963 1983 1989 1992 

Model1 Original no-wage 2SLS PW Original no-wage 2SLS PW Original no-wage 2SLS PW Original no-wage 2SLS PW 

Constant -3.773 -3.611 -2.374 0.448 -6.825 -7.484 -4.922 -2.766 -11.794 -12.668 -9.815 -6.298 -12.536 -12.792 -9.565 -8.927 
 (-4.13) (-3.98) (-2.15) (0.25) (-5.56) (-6.19) (-3.52) (-1.79) (-17.78) (-19.54) (-13.63) (-7.85) (-15.77) (-16.24) (-10.05) (-8.85) 

log(EDU) -0.216 -0.135 0.175 0.291 0.873 0.860 0.951 1.723 1.405 1.448 1.781 3.056 1.614 1.522 2.177 2.103 
 (-0.91) (-0.59) (0.63) (1.03) (2.22) (2.18) (2.32) (4.02) (6.48) (6.66) (7.78) (12.38) (6.24) (5.95) (7.68) (7.73) 

log(TA) 0.907 0.918 0.936 0.936 1.093 1.076 1.172 1.175 1.229 1.203 1.338 1.329 1.355 1.347 1.394 1.409 
 (11.93) (12.13) (11.78) (12.37) (16.95) (16.71) (16.56) (17.54) (34.99) (34.41) (34.93) (37.22) (35.58) (35.49) (34.84) (35.99) 

log(WAGE) 0.037  -0.162 -0.591 -0.056  -0.245 -0.765 -0.070  -0.318 -1.073 -0.049  -0.450 -0.521 
 (1.43)  (-2.19) (-2.58) (-2.82)  (-4.16) (-4.80) (-5.85)  (-11.54) (-13.07) (-2.34)  (-6.61) (-6.11) 

AGE 0.017 0.012 -0.011 0.008 0.017 0.026 -0.016 0.017 0.024 0.037 -0.024 0.020 -0.015 -0.013 -0.030 -0.026 
 (1.96) (1.5) (-0.84) (1.02) (2.51) (4.48) (-1.34) (2.90) (6.52) (11.91) (-3.84) (6.03) (-3.47) (-3.08) (-5.79) (-5.37) 

RAV * * * * -0.126 -0.119 -0.125 -0.136 0.155 0.151 0.178 0.084 0.243 0.240 0.208 0.200 
     (-1.33) (-1.26) (-1.27) (-1.46) (2.71) (2.63) (2.98) (1.49) (4.12) (4.07) (3.38) (3.39) 

PROF 0.062 0.066 0.122 0.141 0.085 0.049 0.126 0.146 -0.040 -0.209 -0.057 -0.132 -0.070 -0.075 -0.065 -0.053 
 (0.31) (0.33) (0.58) (0.70) (0.45) (0.26) (0.64) (0.78) (-0.42) (-2.27) (-0.58) (-1.46) (-0.72) (-0.77) (-0.64) (-0.54) 

SELF 0.015 -0.124 -0.681 -0.111 -0.291 -0.096 -0.947 -0.057 -0.120 -0.152 0.040 -0.185 0.642 0.718 0.039 0.706 
 (0.05) (-0.48) (-1.85) (-0.44) (-1.21) (-0.41) (-3) (-0.25) (-1.04) (-1.31) (0.33) (-1.63) (5.36) (6.23) (0.25) (6.15) 

log(SHARE) 0.891 0.873 0.839 0.846 0.445 0.454 0.422 0.421 0.313 0.329 0.277 0.276 0.506 0.506 0.487 0.491 
 (15.45) (15.49) (13.78) (14.84) (9.9) (10.1) (8.92) (9.37) (14.02) (14.82) (11.75) (12.44) (20.19) (20.2) (18.6) (19.6) 

 
Year 1995 1998 2001 2004 

Model1 Original no-wage 2SLS PW Original no-wage 2SLS PW Original no-wage 2SLS PW Original no-wage 2SLS PW 

Constant -18.092 -18.823 -18.815 -18.542 -15.519 -15.764 -12.096 -10.334 -14.027 -14.096 -14.691 -15.47 -16.873 -17.552 -14.553 -14.11 
 (-23.08) (-24.55) (-19.3) (-18.18) (-14.73) (-15.11) (-9.97) (-8.03) (-18.63) (-19.48) (-13.89) (-14.4) (-18.86) (-20.13) (-14.02) (-13.3) 

log(EDU) 2.051 2.111 2.111 2.158 2.789 2.767 3.412 3.751 1.750 1.749 1.703 1.599 2.357 2.404 2.579 3.236 
 (7.89) (8.12) (8.12) (7.62) (7.34) (7.29) (8.4) (9.33) (7.45) (7.45) (7.01) (6.38) (7.55) (7.7) (8.07) (940) 

log(TA) 1.543 1.511 1.512 1.516 1.210 1.195 1.275 1.288 1.180 1.178 1.169 1.155 1.347 1.330 1.385 1.391 
 (44.56) (44.58) (42.25) (42.37) (29.65) (30.03) (29.61) (30.9) (32.34) (32.6) (30.72) (29.98) (36.01) (35.86) (35.46) (36.1) 

log(WAGE) -0.075  -0.001 -0.041 -0.037  -0.519 -0.773 -0.007  0.068 0.175 -0.060  -0.333 -0.545 
 (-4.32)  (-0.01) (-0.42) (-1.63)  (-6.76) (-7.15) (-0.33)  (0.77) (1.72) (-3.32)  (-5.58) (-5.65) 

AGE 0.005 0.008 0.008 0.008 0.011 0.013 -0.004 -0.005 0.030 0.030 0.032 0.033 0.005 0.007 -0.006 -0.004 
 (1.24) (1.96) (1.85) (1.81) (2.38) (2.79) (-0.77) (-1.01) (6.7) (6.84) (6.38) (6.99) (1.02) (1.66) (-1.19) (-0.80) 

RAV 0.142 0.146 0.146 0.146 -0.359 -0.358 -0.379 -0.394 -0.391 -0.391 -0.390 -0.390 0.065 0.062 0.088 0.088 
 (2.48) (2.53) (2.53) (2.53) (-5.69) (-5.67) (-5.76) (-6.25) (-6.2) (-6.19) (-6.18) (-6.18) (0.95) (0.91) (1.27) (1.29) 

PROF 0.741 0.728 0.728 0.726 0.038 0.040 0.020 0.017 0.664 0.661 0.661 0.658 -0.088 -0.126 -0.128 -0.099 
 (8.29) (8.13) (8.09) (8.08) (0.35) (0.36) (0.18) (0.16) (6.43) (6.42) (6.41) (6.39) (-0.82) (-1.18) (-1.17) (-0.92) 

SELF -0.081 0.164 0.161 0.158 0.080 0.148 -0.668 0.170 0.122 0.134 0.243 0.153 0.365 0.498 -0.179 0.432 
 (-0.64) (1.47) (0.72) (1.41) (0.59) (1.14) (-3.68) (1.31) (0.96) (1.11) (1.31) (1.26) (2.98) (4.3) (-1.06) (3.72) 

log(SHARE) 0.263 0.261 0.261 0.260 0.247 0.248 0.212 0.209 0.231 0.231 0.234 0.238 0.430 0.429 0.412 0.412 
 (10.97) (10.86) (10.81) (10.77) (8.3) (8.32) (6.74) (6.94) (8.72) (8.74) (8.73) (8.90) (14.57) (14.52) (13.63) (13.94) 

1 Model refers to the way the log(WAGE) measure is treated in the regression (see text). * RAV is absent in the 1963-64 sample. 
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