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1 Introduction

Incomplete product availability is a common and important feature of markets where prod-
ucts are perishable, seasonal, or have storage costs. For example, retail markets, sporting
and concert events, and airlines face important capacity constraints that often lead to stock
outs. Not surprisingly, firms in such industries identify inventory management as a critical
strategic decision, and consumers cite product availability as a major concernE] In these
settings, the failure to account for product availability not only ignores a useful source of
variation for identifying demand parameters, but can also lead to biased estimates of de-
mand. The first source of bias is the censoring of demand estimates. If a product sells out,
the actual demand for a product (at given prices) may be greater than the observed sales,
leading to a negative bias in demand estimates. At the same time, during periods of reduced
availability of other products, sales of available products may increase. This forced substi-
tution overstates demand for these goods conditional on the full choice set being available.
As a result, failing to account for product availability leads to biased estimates of demand
substitution patterns, typically making products look more substitutable than they really
are. This bias can potentially undermine the reliability of many important applications of
demand estimates for markets with incomplete product availability, such as simulating the
welfare implications of mergers or new product introductions, or applying antitrust policy.
Identifying unbiased demand estimates in these markets is also a critical step in evaluating
optimal capacity choices of firms.

In this paper, we provide evidence that failing to appropriately account for periods of
product unavailability can result in a substantial bias in demand estimates, and we develop
a method for correcting this bias. To accomplish this, we collected a new and extensive
dataset with detailed inventory and sales information. The dataset covers one of the first
technological investments for wirelessly managing inventory: a wireless network installed on
a set of 54 vending machines, providing updates on elapsed sales and inventory status every
four hours. The data from the vending network provide extremely granular information
on sales and inventory levels over a period of a year. Using this dataset, we develop and
implement estimation methods to provide corrected estimates even when some choice sets
are latent, and analyze the impact of stockouts for firm profitability in the short run. We find
evidence of important biases on demand parameters and predicted sales in models that do not
account correctly for stock-out events in this market. For example, under some specifications
of the uncorrected model, we estimate demand parameters that are not consistent with utility
maximization. In terms of the short-run impacts of stock-outs on profitability, the corrected
model estimates that the negative profit impacts of stock-outs are 12 - 16 percent larger than
the uncorrected model predicts.

Although not estimated here, the model we develop is also necessary for any examina-
tion of supply-side decisions over the long run. For example, estimation of optimal capacity
choices, restocking decisions or inventory policies in markets where stock-outs matter re-

!Relatedly, firms throughout the economy are currently making large investments in technologies for
tracking inventory and capacity information. For example, Walmart now requires many suppliers to use
Radio Frequency Identification (RFID) technology, and many other firms have recently adopted related
technology, such as wireless communication and networked data centers.



lies on a static demand model that accounts correctly for stock-out events as our model
does.E| Demand estimates that correctly account for product availability are also important
for understanding the macroeconomic implications of inventories. Indeed, firms’ abilities
to manage inventories have been proposed as an agent for dampening recessions, a factor
affecting vertical relationships, and a strategic variable affecting price competitionﬁ

As a result of the enhanced data collection abilities that the wireless vending network
provides, we observe a new source of variation in consumer choice sets. Namely, we ob-
serve actual stock-out events, which randomly change the set of products available at some
locations for a period of time. This variation provides a new and attractive source of identifi-
cation for estimating demand models, because although the probability of a stock-out event
can be targeted with different inventory choices, the occurrence of any particular event is
not chosen by the firm. Thus, stock outs generate exogenous “short-run” variation in choice
sets, in addition to the long-run variation that is more typically the source of identification
for structural models of demand.

When discussing inventory systems we use the standard language established by Hadley
and Whitman (1963). The first of two types of inventory systems is called a ‘perpetual’ data
system. In this system, product availability is known and recorded when each purchase is
made. Thus for every purchase, the retailer knows exactly how many units of each product
are availableﬁ The other type of inventory system is known as a ‘periodic’ inventory system.
In this system, inventory is measured only at the beginning of each period. After the initial
measurement, sales take place, but inventory is not measured again until the next period.
Periodic inventory systems are problematic in analyses of stock-outs because inventory (and
thus the consumer’s choice set) is not recorded with each transaction. While perpetual
inventory systems are becoming more common in retailing environments, most retailers still
do not have access to such systems. Sampling inventory more frequently helps to mitigate
limitations of the periodic inventory system. However, an additional goal of this paper is
to provide consistent estimates of demand not only for perpetual inventory systems but for
periodic ones as well.

In fact, despite the extremely detailed information from this dataset, we observe stock-
out events only periodically (every four hours). Some stock-out events occur in the middle
of an observed four-hour time period, meaning that for these observations, the choice set
of an individual consumer is latent. Discarding data from these periods would select on
sales levels and lead to biased estimates. Thus, we develop a method for incorporating these
observations that uses the well-known EM algorithm from the statistics literature (Dempster,

2Such supply-side problems require an additional focus on firm costs and dynamic inventory decisions,
and we analyze such a model in a companion paper with Uli Doraszelski (in progress).

3McCarthy and Zakrajsek (forthcoming) reviews the literature on the effect of inventory management
technology on business cycles, and provides empirical evidence on the theory. Narayanan and Raman (2004)
examines the assignment of stocking rights in vertical settings theoretically, and Mortimer (2008) provides
empirical evidence on the effect of inventory monitoring technology for vertical contracting in the video
rental industry. Balachander and Farquhar (1994), Carlton (1978), Dana (2001), and Deneckere and Peck
(1995), among others, address the impact of product availability on price or service competition.

4Note that if sales are recorded in the order they happen, this would be sufficient to construct an almost
perpetual inventory system (assuming consumers do not hold goods for long before purchasing an item).
This system is also known as ‘real-time’ inventory.



Laird, and Rubin 1977) to estimate the allocation of sales across the unobserved choice set
regimes.

Relationship to Literature

The differentiated products literature in Industrial Organization (I0) has been primarily
focused on two methodological problems. The first is the endogeneity of prices (Berry 1994),
and the second is the determination of accurate substitution patterns. Berry, Levinsohn, and
Pakes (1995) use unobserved product quality and unobserved tastes for product characteris-
tics to more flexibly and accurately predict substitution patterns. The fundamental source
of identification in these models comes through variation in choice sets across markets, typ-
ically through the price. Nevo (2001) uses a similar model to study a retail environment in
his analysis of the market for Ready to Eat (RTE) Cereal. Further work (Petrin 2002, Berry,
Levinsohn, and Pakes 2004) has focused on using interactions of consumer observables and
product characteristics to better estimate substitution patterns. Berry, Levinsohn, and Pakes
(2004) extend this idea even further and use second choice data from surveys in which con-
sumers are asked which product they would have purchased if their original choice was
unavailable. This paper’s approach is a bit different because consumer-level stated second-
choice data are unobserved, and substitution patterns are instead inferred from revealed
substitution by exploiting short-run variations in the set of available choices. Recently, there
have been several attempts made to present a fully Bayesian model of discrete choice con-
sumer demand, among them Athey and Imbens (2007). While our paper uses a common
Bayesian technique to address missing data, it is not a fully Bayesian model.

Stock-outs are frequently analyzed in the context of optimal inventory policies in oper-
ations research. In fact, an empirical analysis of stock-out based substitution has been ad-
dressed using vending data before by Anupindi, Dada, and Gupta (1998) (henceforth ADG).
ADG use an eight-product soft-drink machine and observe the inventory at the beginning
of each day. The authors assume that products are sold at a constant Poisson distributed
rate (cans per hour). The sales rates of the products are treated as independent from one
another, and eight Poisson parameters are estimated. When a stock-out occurs, a new set
of parameters is estimated with the restriction that the new set of parameters are at least
as great as the original parameters. This means that each choice set requires its own set
of parameters (and observed sales). If a Poisson rate was not fitted for a particular choice
set, then only bounds can be inferred from the model. Estimating too many parameters
is avoided by assuming that consumers leave the machine if their first two choices are un-
available. ADG did not observe the stock-out time and used EM techniques to estimate the
Poisson model in the presence of missing choice-set data. However, because of the lack of
a utility-based framework for demand, the ADG method cannot be used to make out-of-
sample predictions about alternative policies or their welfare impacts. This paper aims to
connect these literatures, by using modern differentiated product estimation techniques to
obtain accurate estimates of substitution patterns while reducing the parameter space and
applying missing-data techniques to correct these estimates for stockout-based substitution.

As technologies like the one we study continue to become more prevalent, firms and
researchers can expect to gain access to better data (i.e., more detailed information on sales
and inventory/capacities) with which to analyze markets. As these data become available,
researchers gain valuable information on short-run choice set variation. Our results in this



paper indicate that accounting for that choice set variation can substantially reduce potential
biases in standard estimates for some markets, and that researchers should take on the
responsibility to adjust for the effects of product availability in demand estimation when
possible.

The paper proceeds as follows. Section [2| provides the model of demand for finely ob-
served data, and section |3| adjusts for changes in product availability in the data under both
perpetual and periodic inventory systems. In section [4] we provide estimation details and
discuss identification of the model. Section 5| describes the data from the wireless vending
route and provides correlations and regression results from the data. Section [6] reports re-
sults from estimating the model using the vending data, section [7] provides counterfactual
experiments on the effect of stockouts on firm profitability, and section [8| concludes.

2 Model

In this section, we develop a model of consumer sales. Often, such models start by deriving
consumer choice probabilities from a random utility maximization (RUM) framework in
a discrete choice setting (i.e., each consumer purchases exactly one unit of one product).
Typically, the RUM problem is specified so that consumer choice probabilities take a logit
form, and these choice probabilities are then used as inputs into a multinomial distribution
that is estimated via GMM or maximum likelihood. Here, we start with a multinomial
distribution for any general set of consumer choice probabilities (denoted p;; for consumer ¢
and product j) and derive a model of consumer sales. We use this focus in order to present
the impact of stockouts on the estimator in a clear way. Once we describe this model and the
method for incorporating information on stockout events, we adopt the usual logit/random-
coefficient logit specification of consumer choice probabilities in the estimation section.

Let y; denote the purchase of consumer ¢, and let z; denote the relevant observables.
Typically we think of y; as a categorical variable taking one of several discrete values 7 =
(0,1,...,J). In an abuse of notation we also let y;; = 1 for the chosen product and y;;; =0
for products that are not chosen. Thus y is both an index for which product was chosen as
well as an indicator for the chosen product. This leads to the first assumption:

Assumption 1. (Discrete Choice) Each consumer chooses some product j € a; or the

outside good j = 0.

For simplicity, we denote the set of possible choices as J, the powerset of {0,1 ..., J} as
A, and a; € A as the set of products available to consumer ¢, always including the outside
good. Continuing the standard abuse of notation, we’ll also consider a to be a J x 1 vector
that takes on value 1 in the jth position if the product is available and zero otherwise.

Without making any parametric assumptions we can write down a multinomial likelihood
of seeing an individual choose product j as:ﬂ

5While this seems like a parametric assumption, it should be clear it is without any loss of generality
that individual categorical choices follow a multinomial distribution. It’s not until we attempt to combine
observations across individuals that additional assumptions need to be made.



L(yl0) o [[pl =pi

Jj€a;
where the second equation comes because y; = 1 for the observed choice and zero elsewhere.

We can consider the joint likelihood of observing vy, ...,,, which is the product of the
probabilities of the observed choices of 7 = 1,...,n consumers.

=1

i=1vjeJ
(s, ynlf) o< DY yislnpy =Y Inpy
i=1 VjeJ i=1

Typically, researchers specify choice probabilities as p; (:'z;i,e)E] Thus, an individual’s
probability of choosing product j depends on some observable Z; as well as the unknown
parameters. The Z; might include observed information about the individual consumer,
information about the set of available products (a;), and perhaps information about the
situation under which the choice took place, such as time of day or location (z;). In the 10
literature, researchers often parameterize p(-) as a logit form in order to build flexibility into
substitution patterns while avoiding estimation of an unrestricted covariance matrix.

2.1 Exchangeability

When combining data from multiple individual observations in a dataset we typically assume
that y; are IID. However, this is a stronger condition than is necessary to construct the joint
likelihood function of the whole dataset. Exchangeability is a weaker condition than IID, in
which the outcomes of y, can influence other outcomes y;, so long as all of the information
®; relevant to the likelihood contribution of y; is conditioned onﬂ

Assumption 2. (Ezchangeability of Consumers) Conditional on the information set ®;,

individual consumers can be re-ordered.

6This is the probability of choosing j conditional on , 6.

"This is a trivial result when we consider the space of the (latent) utilities. Even in a relatively complicated
random coefficients utility maximization framework such as Berry, Levinsohn, and Pakes (1995), consumers
each have an IID draw of vy, as their random taste for some characteristic and €;; as their horizontal
preference for a particular product. All of these models assume that (4, ;) are jointly IID. It is easy to
show that IID in latent utilities implies our exchangeability assumption on the choice probabilities, since all
of that randomness is integrated out when choice probabilities are computed.



We say that the sequence ((y1, ®1), (y2, P2), ..., (Yn, Pn)) is exchangeable IFF:

L((y1, @1), (g2, P2), - (U, Pa)I0) = L(p ((y1, @1)s (Y2, P2), - - -, (Y, Pn)|0))

holds for any arbitrary permutation operator p where [(-) is the likelihood function.

This tells us that once we condition on the relevant ®; the likelihood is invariant to the
ordering of the observations. The precise form of ®; will depend on the particular choice
for the likelihood. In the case of a multinomial likelihood and a logit form for p(-), as
long as ®; = (a;,x;) are observed for each individual observation y;, then individuals are
exchangeable. (That is, the ordering of the i does not affect the likelihood).

It is important to understand the difference between the IID assumption and the ex-
changeability assumption. For example, in the model we consider, choice probabilities de-
pend on which products are available, a;, but this is correlated with previous sales when
stockouts are considered. This clearly violates the assumption of y; being IID, since it is
now distributed differently after the stockout in a way that clearly depends on the previous
y; realizations. However, this sequence is exchangeable in the logit model since choice prob-
abilities depend only on previous sales through ®; = (a;, z;). Hence if we know ®; and can
condition on it, then the ordering of the y;’s no longer affects the likelihood. An example
that violates the exchangeability assumption is the presence of pent-up demand following a
stockout. In this case a consumer’s choice probability for a good would be higher in periods
following a stockout. Unless this was captured in the x;, then the likelihood function would
depend on the order in which the y; were observed.

There are many ways to specify ®: the entire purchase history of previous individuals
prior to a consumer’s decision, the full inventory levels of products, etc. The relevant ® is
the set of information for which the likelihood is still exchangeable. For the logit family,
this is ®; = (a;, ;). Thus even if we observed the full inventory of a vending machine, it
would contain no information in terms of the likelihood that was not already captured by a;
because consumers only purchase one unit under the discrete choice assumption.

Exchangeability requires that the population of consumer preferences we sample from
cannot change within a level of aggregation, denoted as t. Without this assumption, we can-
not tell apart stock-out events from atypical consumers. If this were the case, we could only
make inferences about the overall mixture, not its components. For example, if we observed
data on sales between 4pm and 8pm, and at 5pm the population of consumers changes,
we can’t necessarily draw conclusions about the different preferences of the two consumer
groups, but we can estimate the overall distribution of preferences in the population.ﬂ This
sort of heterogeneity can be addressed in our approach across periods of observation, but not
within a single period of observation. Such latent types can create problems if we believe an
x is an important determinant of choice probabilities, but it is partially or fully unobserved.lﬂ

8Previous studies have relied on annual or quarterly data, for which short-term heterogeneity in the
population also gets “averaged out” in the overall distribution of consumer preferences.

90ne method for accommodating latent types is to write down a mixture form for choice probabilities
which integrates out the latent variable (this is how we deal with random coefficients in our typical estima-
tors). We describe this approach in the technical appendix.



2.2 Aggregation

We often observe only aggregate data for some period ¢, denoted (y;, ) = (3_,c; Yits Tir =
:Tct)m If we believe that within a period ¢, consumers are exchangeable then we can consider
aggregate data without loss. In order to do this we require that Z;; are fully observed and
Ty = T3 for ¢ € t, or that within our level of aggregation the observables are fixed. There
is nothing thus far that requires our periods be contiguous in geography or time, only that
they have the same itﬂ In the case of the logit, this is the same as assuming that for all
consumers i € t, &; = &, or (a;, x;) = (ay, ;). This allows us to consider aggregate data is
if it were individual purchase data without loss and write the log-likelihood as:

Uyl 0, ap, 20) = Zyjtlogpj Ty, at, 0 Zzyztlogp] Ty, a, 0)

JjE€at JjE€at 1€t

For simplicity, let yv = [yot, Y1es Y21, - - -, yse]. Then for each market, the data provide
information on (yg, at, z;). By using Assumptions 1 and 2 we can consider the probability
that a consumer in market ¢ purchases product j as a function of the set of available products,
the exogenous variables, and some unknown parameters 6. This probability is given by

pjt = pi(0, as, ) (1)

The key implication of assumptions 1 and 2 is that pj;; is constant within a period and
does not depend on the realizations of other consumers’ choices y;;;. Another immediate
implication is that we can reorder the unobserved purchase decisions of individual consumers
within a period . Now, we apply assumption 2 again to write the likelihood function as a
multinomial with parameters n = Z}]:o yjt, and p = [p1s, pars - - .|

J
(el anze) = ( Ooava) )pgﬁtpa’;t- P

Yot 'y1!yar!
= Cly ooty - P’
o popit L DY) (2)

Thus f(-) defines a relative measure of how likely it is that we saw the observed data y given
the parameter #. An important simplification arises from the fact that the combinatorial
term C'(y¢) depends only on the data, and does not vary with the parameter . We add a
third assumption that is also quite standard in this literature (and generally follows from
assuming a utility model).

10More formally Yjt = D et Yijt - €5 where e; is the unit vector with 1 in the jth position
11We may want geographic or temporal features to enter the Z; though we need to be explicit about it.



Assumption 3. (Identification) Each period t is exchangeable with respect to other peri-
ods, such that for all t, p;(0,a,x;) is a function of the set of available products and some

exogenous variables (ay, ;) and is known up to a finite dimensional parameter .

Theorem 1. Tuking assumptions 1, 2 and 3, we can define a function S, which takes the
vector of observed periods (yi, Xy, &) and converts them into their minimal sufficient statistic

representation (yy, Xy, ag ), such that:

S ((ye,x¢e,at)) = (Yo, Xer, ayr) (3)

Proof.

l(yl0,a,x) =U(y1,...,yr|0,a,x) = ZZyjtlogpj(xt,at,H)
t jEat

= Z Z Z Yijelog pj(zi, a;, 0)

t jE(lt i€t

= Z Z Z Yije log p; (w3, ai,0)

t! jelltl 1 (1'2 ,ai):(wt/ [lt/)

= Z Z Zyijt log pj (s, ay,0)

t' jEay i€t

= Z Z Yjer log pj(xy, ay, 0)

t' je€ay

]

In words, we observe data (y;, z;, a;) aggregated to some level. As long as (z, a;) are fixed
in our level of aggregation, we could act as if we had data on independent consumers. Then
we can reconstruct a new level of aggregation ¢’ where we aggregate over all observations with
the same (x¢, a;) pairs without changing the value of the likelihood. This gives us some new
“pseudo-(period) observations”. Typically we say that y;» (which is just the sum over all
yj¢ with the same (a, z) values) is a sufficient statistic for the likelihood since it contains all
of the information about y; that we need to evaluate the likelihood function. From now on,
we assume that any dataset (y;, X;) can be reconstructed in this minimal sufficient statistic
way, and that those groupings (not the original aggregation in the data) are subscripted by
t rather than t'.

This leads to the following corollary:

Corollary to Theorem 1. Since the likelithood is additively separable in the sufficient statis-

tics S((ys, ¢, ar)), the sums S((ye, z¢, ar)) can be broken up in an arbitrary way, including

8



one sale at a time, as it will not affect the likelihood so long as S(-) assigns sales to the same
(a,x) regime.

Thus, Theorem 1 allows us to reduce the effective number of periods ¢ that we consider.
This might help reduce the effective size of our dataset and simplify computation. Conversely,
even if we consider the dataset individual by individual, the likelihood function is exactly the
same as if we had aggregated over the relevant (a, z) periods. Thus, if we do not observe any
variation across (a,x) we essentially only have one multinomial observation. We discuss this
in more detail in the section on identification, but the “pseudo-observations” in the sufficient
statistic representation and the variation in (a, x) will be what determines identification of 6.
If there is not sufficient observable heterogeneity in (a, ) identification becomes a problem
(one which cannot be fixed by adding unobservable heterogeneity).

3 Adjusting for Choice Set Heterogeneity

3.1 Perpetual Inventory/Observed Choice Set Heterogeneity

We now consider the case where availability is observed for all sales (the case of perpetual
inventory) and relax the assumption that a; (the set of available products) is constant across a
time period. Instead suppose a stockout occurs in the middle of a period ¢. Since inventory
is observed, the “period” can be divided into two smaller periods of constant availability
(before and after the stockout) which we denote (as, a;).

We now know which sales to assign to the pre-stockout regime and which sales to assign
to the post-stockout regime (since we observe inventory always). Recalling the likelihood,
we see that it remains unchanged when we consider single consumers instead of time periods
(Corollary 1).

l(y|0,M,a,x) Z Z Inp;(0, as, 1) Z Yji + Z Inp;(6,ar, z¢) Z

vt Vj€as Vi:(ait,zit)=(as,xt) Vjcar Vi:(as @it )=(at,xt)
l(yl0,M,a,x) Z Z Zlnpj(ﬁ,a,x) Z Yji

vt V(a,z) Vi€a Vi:(a;i,xi)=(a,z)

= Z Z Zyj,(a,x)lnpj(aayx)

vt V(a,z) Vi€a

3.2 Periodic Inventory/ Latent Choice Set Heterogeneity

In many market settings, firms only observe inventories periodically. This presents additional
challenges when investigating stock-out events, because availability is known only at the
beginning and the end of the period in which a stockout takes place. As in the case of
perpetual inventory, we could denote the set of available choices at the beginning of period

Yji



t by as, and the set remaining at the end of ¢ by a;. One would like to assign the sales in
period t to each (as, a;) regime, but because inventory is observed only periodically, this is
not possible. A standard approach for dealing with unobservable heterogeneity is to integrate
out the heterogeneity and to work with the expectation instead. In other words, we cannot
solve:

n

é:afgmé’fml(ﬂaaxa@) = Zzyijlnpj(aiaxiae)

=1 j€a;

because a is not fully observable, so instead we work with the expectation and solve:

é:argméianl(y,ahobs,x, 0) = Zl(y]a,x,&)g(a’|aob5,y,x, g). (5)
va’

We define g(a’|aons, ¥, X, 0) as the probability of the sequence of choice sets denoted by a, so
that Pr(a = a’) = Pr([ay = df,a2,= d,...]). The expectation in (5] is a summation over
all possible availability sets a;.

The standard thing to do is to partition a into fully observable and partially observable
pieces, so that for each individual sale i, a; is either known or it isn’t. We can then divide
the entire dataset into two subsets T,,;s and T,,, and either ¢ € T, or ¢ € T,,;.. The
convention is to define (Yobs, Xobs, @obs) as the vector of fully observed data (ie: Vi € Tpps)
and (Ymis; Xmis, @mis) as its complement (ie: Vi € T,,;s). It should be clear that we’re using
Tys and T,,;s because we can easily do the same thing for aggregate data ¢ instead of just
individual data without any additional difﬁculty.m

The problem is that evaluating this expectation is difficult. For one, it involves the joint
distribution of the a;’s, g(alaeps,y, X, #), which we haven’t specified. The other is that this
is the expectation of a J-vector and support of a is potentially large.

[(Y]aos, x,0) = Y _l(yla,x,0)g(2|acbs, y, %, 0) (6)
va’
= 38 Uyilal, 1, 0)g:(al]acks, v, x, 0) (7)
=1 Va,
= Z Uyilai, i, 0) + Z Zl(yi|ai,$i,Q)Qi(aﬂaobs,yaxﬁ) (8)
iETobs 7leTmis VCL;

- Z(YObs|aob57 Xobs) 0) + Z Z(Ymis|ainis7 Xmis 9>g(ai-nis|aob5a Y. X, 9) (9)
Val,

By splitting the likelihood into fully observed and partially observed components we can
see that we need only evaluate a single dimensional expectation n,,;s = dim(7,,;s) times.

12The other technical point here that should be made clear is that the only thing that is ever unobserved
is the value of a;. We assume we still perfectly observe (y;, ) just like we did before.

10



However, this expectation depends on the distribution g(-), which is, at this point, not yet
specified.

3.3 The Case of Stockouts

Stockouts represent an important special case of unobservable choice set heterogeneity, in
which the demand model specifies the distribution of g(-) for us. Recall that g(-) specifies
the proportion of consumers that faced choice set a; out of possible choice sets A; in a given
aggregate observation.

In the stockout case, the change in choice set is endogenous. That is, a stockout occurs
only when yy, exceeds its capacity wy;. If we limit ourselves to a single stockout for the sake
of exposition, and there are M; consumers in a particular aggregate observation, then we
can ask, how many of the M; consumers saw choice set a and how many saw choice set a’.
Alternatively, we can ask “How many consumers were required in order to sell wy; units of
product k& under availability set a?”

This is exactly the definition of the negative binomial distribution, which describes the
number of trials m until wy; successes are observed. Alternatively, it may be formulated
as the number of failures r until wy; successes are observed, where r + wy; = m. In the
case of a stockout with periodic data, we also know that the stockout happened before M,
consumers arrived. In other words, we have a negative binomial, conditional on the fact that
7+ wr < MtE

The definition of the negative binomial is{]

P'I"(Z — m) ~ NegB’ln(wktap)

f(m,wie,p) = ﬁpkt(l—p)T

And the conditional negative binomial:

NegBin(wy, p)
NegBinCDF (M, wy, p)
f(m' wie, p)
Eﬂm/lzl f(m, wke, p)

Pr(z=m|z< M) ~

h(mlawkhp) =

For the stockout case where product k stocks out we have that:

13This negative binomial is a derived distribution from a multinomial or binomial for waiting times. It
should not be confused with negative binomial regression (often used for count data), which is just an
overdispersed Poisson model.

14This definition is presented in terms of the more familiar factorial. It is often useful to consider the
non-integer generalization, the gamma function I'(x + 1) = z!.

11



r+wgr  m
M, M,
NegBin(m, yx:, pi(a, o+, 0))
NegBinCDF (M, yx, pe(a, x4, 0))

a(m) =

Pr(a(m) =d|a <1)

In other words, a; is the fraction of consumers in market ¢ arriving before the stockout,
and 1 — a4 is the fraction of consumers facing a stockout. Therefore o takes on a discrete set
of values from 0 to 1 and has a probability mass function (p.m.f) given by the conditional
negative binomial distribution g(-) = Pr (a]a < 1). In the case of multiple stockouts, g(-)
has a conditional negative multinomial distribution. We show this result in sections and
of the appendix.

Now we can evaluate the mixture likelihood (with availability a before the stockout and
a’ after):

Le(ye, Av, e, 0) = Z Yjt Z In (ay - pj (w1, 0,0) + (1 — o) - (4, @', 0)) glawlys, me, My)

jeAt Oét:mSMt

The distribution g(-) depends only on data from its own observation ¢, and doesn’t depend
on realizations of a; from other observations. This is an implication of the model for demand
under stockouts, not an assumption. Therefore, we can evaluate expectations by evaluating
the density g(-) over the finite support of o(m), which should not prove too difficult, since it is
just two sums over J x M; elements (rather than some high dimensional expectation). When
M, gets particularly large (or a large number of stockouts happen at once) this could still
present some computational challenges. One might consider approximating the expectation
with Monte Carlo or quadrature techniques as detailed in section of the appendix.

Additionally, the likelihood @D must still be evaluated at each guess of 6, which can be
time-consuming in practice. Furthermore, the dependence of the integral on g(-) also affects
the analytic gradients since they depend on g(-) too. Thus, instead of directly evaluating
this expectation, we specify an augmented model and use the E-M algorithm to facilitate
estimation.

3.4 Augmented Model

If we suppose that we had perpetual inventory then we could denote the set of availability
regimes potentially observed in period t as A; and define an augmented model as:

lt(ytalvAtaxtye) = Z Zyjtal lnpj(xbalv&)

a €A JEO
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In the augmented model, we know the set A;, since we observe the availability at the begin-
ning and end of a period. In this case the observed sales for observation t are distributed
multinomially (across J x dim(A;) cells)[F] Note that with periodic data collection, in the
augmented model, y;;,,’s are not observed, so we cannot evaluate l;(ytq,, At, 1, 0) directly.
But, we replace it with a consistent estimator (its expectation). Then the likelihood becomes:

Z(Y7X7Aa 6)) = Z lt(yt7at7xt79)+ Z Ea(@’)[lt(yta“At?xtag)]

teTobs teTmis

This is now a likelihood function of only the observables (for a fixed value of ¢'). By
iterating back and forth between computing this expectation at some value of 8, plugging
this in and then maximizing the complete-data likelihood over 6, and updating 6’ we can
obtain consistent parameter estimates for #. This is the well known E-M Algorithm of
Dempster, Laird, and Rubin (1977). It should be clear that this approach is no different
from integrating out a above, except that evaluating this expectation is much easier.

We want to evaluate:

Ea[lt(yta”Ataxtae)] = E[Z Zyjtal lnpj(xtvalae)]

aj€A: jEQ;

= Z Z E, [yjtaz] lnpj ('xb ar, ‘9)]

a €A jJEQ;

We only need to find E,[yjta,.], because no other quantities are random (the function p(-)
is fixed once we know a;). Furthermore, the likelihood is linear in the unobservable y;,,, SO
we can evaluate the expectation separately for each ¢, and this expectation is a univariate
integral so long as g(a|y:, x4, 0) does not depend on data from other observations/periods.
We already know that this is true for the case of stockouts.

Our objective is then to evaluate E, [y, |y, X, A¢, 0], but recall that we already know the
distribution of (yji, |y;:). For the case of a single stockout:

(yjtal|yjt; Oét) ~ Bin(n = yjb’th)
pj(xtaalve)a/t

Pj (x4, ag, 0) o + pj (e, ag, 0)(1 — o)
pj(%» ag, 9)0%

P (T, ag, 0)ow + pj(ze, ag, 0)(1 — )

Vit =

El(Yjtalyje, ar)] = s

15Recall that when we exactly observe the timing of stockouts, we can simple break up the data into
dim A; observations each with J cells, and estimate the likelihood directly because we observe the sales in
each regime (the y;14,’s). (Restatement of Theorem 1). This avoids the need to calculate the expectation in
equation |§| that depends on g(-).
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We can evaluate this expectation over «, whose distribution is known for the case of
stockouts:

pj(xbal;e)at
El(iva Vs — . § i Ty, 0 10
[(Yjta [Y¢)] Yt 2 pj(l’t, ar. ) —i—pj(.%’t, o 0)(1 = &t>g(at]y]t xy, 0) (10)

We can now treat our expected cell counts E(yji,] = Ujta, as if they were observed data,
and can evaluate the complete data likelihood as if there were no missing data problem. It
should be made clear that technically the imputed values of y depend on #, in other words,
gjtal(e)‘

This gives us a procedure for computing the ML estimate of # in the presence of un-
observable choice sets. We simply iterate over the following steps until we reach a fixed
point:

. p;(xe, ar, 0oy
G (0 = y; E J . ot
y]t l( ) y]t pj<l't7 a/k, Qt)ozt + pj(xt’ ak, et)(l . at)g(at|yjt7 It? )

g+l — arg max Z Zyjtlnp] Ty, ag,0) + Z Z Zygml )Inp;(xy, ar,0)

t€Tops jJEQW tETmis ajEAL jEay

These are known as the (E-Step) and (M-Step) respectively. When we iterate over these
we monotonically increase the likelihood until we obtain the ML estimate of 6 that is the
same as if we had evaluated the integral from the previous section. There are two advantages
of this procedure: computational ease, and the fact that the missing data have a sensible
interpretation in this context (which sales occurred before and after the stockout event).

The major computational advantage is that we can use an off-the-shelf procedure for
ML multinomial logits once we’ve imputed the missing data, since the likelihood is exactly
the same as the complete data case. In other words, any gradient-based procedures for
optimization of the likelihood will still work for the M-Step if they worked for the complete
data problem. Furthermore, we only evaluate the expectation after we fully maximize the
likelihood over 6. In practice, this means the difference between integrating fewer than 100
times versus integrating several million times. The exact number of E-M iterations depends
on how much information is “missing”.

3.5 An Alternative Approach

One potential disadvantage of the approach just described is that it relies on an assumption
of exchangeability. Stockouts imply a distribution on ¢(-) only when consumer preferences
are the same before and after the stockout. As noted, this is actually a weaker requirement
than the IID assumption used in most models of demand. However, either assumption may
attract fresh scrutiny when applied to highly granular data like those used here. It is unclear
whether exchangeability makes more sense over short periods of time (where we might expect
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to sample from different subgroups of the population at different times of day) or over longer
periods of time (where we might expect to observe changes in the pool of consumers or of
their tastes). Our estimator leverages the exchangeability assumption more heavily before,
in that we use the fact that the distribution of tastes is fixed before and after the stockout
to assign sales to regimes. This in turn helps to define the g(-) distribution separately from
the 6 vector.

One might wonder whether alternative approaches exist that do not lean so heavily on the
exchangeability of consumers. For example, one could consider a fully simulated approach,
where, for a guess of 6, we record the initial inventory and number of consumers M, for
each interval, and then simulate individual consumer choices, repeating for each of the M,
consumers in the market.m We would repeat this process some large number of times for
each t and compute the average purchase probability for each product, denoting it as ﬁjt(ﬁ)ﬂ

If each consumer’s utilities were determined by IID draws of random tastes and idiosyn-
cratic preferences (v, ¢€;;)) then this would be a far less efficient version of our estimator
presented in the previous section. However, if we felt it were an important feature of the
market in question, the simulated approach affords us the flexibility to allow the distribution
of tastes to vary over time, even in a way that allowed for correlation with stockoutsﬁ In
fact, this indirect-inference type approach could be utilized for any scenario where we could
write down a series of functions that allowed us to simulated consumer purchases. Once we
are able to compute the choice probabilities pj; from a more complicated simulated proce-
dure, our best bet is probably to do simply evaluate the likelihood (MSL) just as in the
previous case. [

In the case of latent stockouts, one could match the aggregate sales for each time period
conditional on the starting inventory. In contrast, our method breaks up time periods when
there are changes in product availability and matches imputed sales to predicted sales. Even
considering an infinite number of trials, the alternative approach is not fully efficient like the
EM procedure, where the major discrepancy arises because the procedure is not restricted
to availability regimes that occurred in the data. In other words, it does not condition on
the full set of available data, and instead will average over all possible availability regimes
encountered by simulation. Augmenting the procedure to condition on this information
would require conditioning on the outcome, which would ruin its simplicity (and introduce
additional integrals).

Taking this together with the fact that the exchangeability assumption does not seem too
far-fetched in our application, we do not report results from such a method here. However,

16Simulating the product choice for one consumer requires 4 steps: (1) draw a consumer type given 6, (2)
compute choice probabilities given the type, (3) simulate a consumer from those choice probabilities and
record a purchase, and then (4) update the inventory and number of consumers remaining in the market.

1"Leslie (2004) employs a similar strategy for handling seat capacities in an analysis of theater demand.

18We could imagine adapting our EM type procedure to these scenarios. Doing so would likely imply a
more complicated functional form for g(-) and .

19We use some MSM procedure, such as the GMM procedure from Berry, Levinsohn, and Pakes (1995)
which deals with endogenous prices, or allows us to incorporate additional restrictions. In general, ML type
approaches are efficient and easy to implement. Once we use the starting inventories to simulate “mixed”
choice probabilities, we may no longer need to worry so much about the extremely granular nature of high-
frequency data, and large-sample method of moments procedures may become feasible.
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we provide further details on this type of approach in the appendix (section [A.4)), and refer
other researchers with different applications to that information.

4 Estimation

4.1 Parametrizations

All that remains is to specify a functional form for p;(6,a;,x;). In this section we present
several familiar choices and how they can be adapted into our framework. In any discrete
model, when n is large and p is small, the Poisson model becomes a good approximation for
the sales process of any individual product. The simplest approach would be to parameterize
p;(-) in an semi-nonparametric way:

pj(ey Gy, xt) = >\j,at

Then, the maximum likelihood (ML) estimate is essentially the mean conditional on
(ag, x¢). This is more or less the approach that Anupindi, Dada, and Gupta (1998) take.
The advantage is that it avoids placing strong parametric restrictions on substitution pat-
terns, and the M-Step is easy. The disadvantage is that it requires estimating J additional
parameters for each choice set a, that is observed. It also means that forecasting is difficult
for a;’s that are not observed in the data or are rarely observed, which highlights issues of
identification that we will address later. Furthermore, the lack of a utility-based framework
means that out-of-sample predictions about alternative policies cannot be made.

A typical solution in the differentiated products literature to handling these sorts of prob-
lems is to write down a nested logit or random coefficients logit form for choice probabilities.
This still has considerable flexibility for representing substitution patterns, but avoids es-
timating an unrestricted covariance matrix. This family of models is also consistent with
random utility maximization (RUM). If we assume that consumer i has the following utility
for product j in market ¢t and they choose a product to solve:

dijy = arg m.axuijt(@)
J

uijt(0) = 850(6h) + pije(02) + €45t

Where 9, is the mean utility for product j in market ¢, j;; is the individual specific
taste, and g, is the idiosyncratic logit error. It is standard to partition the parameter space
0 = [01, 05] between the linear (mean utility) and non-linear (random taste) parameters. This
specification produces the individual choice probability, and the aggregate choice probability

exp|0x(01) + ik (02)]

Pr(k|0 =
r(klf, o z) = oo 2 jea, €XPIG; (1) + p1i; (02)]
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This is exactly the differentiated products structure found in many 10 models (Berry
1994, Berry, Levinsohn, and Pakes 1995, Goldberg 1995). These models have some very nice
properties. The first is that any RUM can be approximated arbitrarily well by this “logit”
form (McFadden and Train 2000). This also means that the logit (4, = 0) and (error-
components) nested logit models can be nested in the above framework. For the nested
logit, 15+ = zg 04CjgVig, Where (j, = 1 if product j is in category g and 0 otherwise, and v,
is standard normal. For the random coefficients logit of Berry, Levinsohn, and Pakes (1995),
Wijt = Y, 01TV, where xj; represents the [th characteristic of product j and v is standard
normal. In both models, the unknown parameters are the o’s. This representation makes it
clear that the nested logit is a special case of the random coefficients logit.

The second advantage of these parametrizations is that it is easy to predict choice prob-
abilities as the set of available products changes. If a product stocks out, we simply adjust
the a; in the denominator and recompute. A similar technique was used by Berry, Levin-
sohn, and Pakes (1995) to predict the effects of closing the Oldsmobile division and by Petrin
(2002) to predict the effects of introducing the minivan. The parsimonious way of addressing
changing choice sets is one of the primary advantages of these sorts of parameterizations,
particularly in the investigation of stockouts.

When using a random coefficients logit form, we estimate via Maximum Simulated Like-
lihood (MSL) rather than ML. For the multinomial choice model the MSL estimator is easy
to define. Begin with some random or quasi-random normal draws vy, for each ¢ in the
dataset. For a given 6 we can compute the average choice probability across draws and then
plug this in to our likelihood function.

W) = Zzyjt In ;¢ (6)

t J€at
1 d. T
pal) = - expld; + >, orvaz )] where vy ~ N(0, 1)
ns 1+ szat eXp[dj + Zl Ule'll'jl]

ns

4.2 Heterogeneity

Thus far, we've done everything conditional on z;. In one sense, this is useful to show that
our result holds for the case of conditional likelihood, but it is also of practical significance
to our applied problem. Since periods in retail datasets may be short, it is likely that choice
probabilities may vary substantially over periods. Over long periods of time (such as annual
aggregate data) these variations get averaged out. The distribution of tastes over a long
period is essentially the combination of many short-term taste distributions, and this is
often the basis of estimation (ie., in the case of limited data we would estimate the long run
distribution). With high frequency data we are no longer so limited and can address this
additional heterogeneity by conditioning on z;, which could include information such as the
time of day, day of the week, or local market identifiers. Depending on how finely data are
observed, not accounting for this additional heterogeneity may place a priori unreasonable
restrictions on the data.

We can model dependence on z; in several ways. One is to treat p(-|x;) as a different
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function for each z;. Another is to require that all markets face the same distribution
of consumers, but allow that distribution to vary with z;. Another option is to fix some
parameters across x;, and allow others to vary with x;. For example, allow mean tastes
to differ across markets but assume that the correlation of tastes is constant. In addition,
one can parameterize market size, M, as a function of z; (i.e., allow market size to vary
across periods without affecting the choice probabilities). Parameterizing M with auxiliary
data has a long history in the literature (Berry 1992), and is done offline prior to parameter
estimation.

4.3 Identification of Discrete Choice Models

In this section we address non-parametric and parametric identification of the choice proba-
bilities p; (6, a;, x;), when the underlying data generating process is multinomial. The goal is
not to provide formal identification results, but rather to provide a clear exposition so that
the applied researcher can better understand the practical aspects of identification in the
discrete choice context X

Recall that we express our sufficient statistics as the vector S((yt, X¢, a¢)). Denote ¢;(a, z)
as the sufficient statistic corresponding to product j when (a; = a,2; = x), and M(, ) as the
corresponding market size. Since sales are distributed multinomially, the semi-nonparametric
estimator for p; is just the conditional mean, or the fraction of consumers facing (a, x) who
chose product j. This is:

The variance of p;(a,z) can be written as:

Var(p;(a,z)) = Var (ﬁqj(a, x)) = ( Ml)2 M, pi(az)(l - pla,z))

_ (ma,x)(L— m(a,x») N (1%))

Thus, the variance of nonparametric estimators for p;(a, z) will go to zero as M, , — oo.
This variance is typically referred to as “measurement error in the choice probabilities,”
as we could think about a two-stage procedure where we nonparametrically recover choice
probabilities from observed marketshares and then fit a parametric p(-) function to these
choice probabilities.@ It also tells us that the variance as a percentage of the shares de-

20Athey and Imbens (2007) provide some related identification results for the fully Bayesian MCMC
estimator for these sorts of models. As already discussed, our approach could be computed using such an
MCMUC approach as well.

21For ML estimators, “measurement error” is an efficiency issue. However, for GMM approaches, this
can create problems with consistency as well, so we typically assume that M, , — oo. While this might be
reasonable for annual data at a national level, it becomes more problematic in the analysis of high-frequency
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clines almost uniformly across share sizesH At the same time, unless every (a,x) pair in
the domain is observed (and with a substantial number of consumers) the conditional mean
(semi-nonparametric) representation of our p;(0, a;, x;)’s will not be nonparametrically iden-
tified.

The problem of nonparametric identification in these models is well known, and the
standard starting point is to write down a functional form for either the probabilities or
the underlying utility function. The first question a researcher might ask is “What sort of
variation do I need to see in the data to identify this function?” Most of the approaches
follow the econometric literature beginning with Matzkin (1992). For example, Ackerberg
and Rysman (2005) use continuous variation in product characteristics (such as price) to
obtain some derivative-based identification arguments for choice probabilities in the nested
logit. More recent work by Berry and Haile (2008) provides formal identification results for
the latent utilities using continuous full-support variation in product characteristics similar
to the special regressor econometric literature.

Our approach is different, because it is not motivated by continuous full support x vari-
ation. Instead our approach is motivated by an experimental or quasi-experimental setting
in which we look at variation among available choice sets. We ask the question, “If what we
are trying to measure are tastes and substitution across products, what sort of choice-set
experiments would we need in order to identify the distribution of tastes?”. The underlying
intuition is quite simple, if what we're trying to identify is product specific effects, the eas-
iest way to identify these effects should be to conduct an experiment where we remove the
product from the choice set, and record the sales.

Our sufficient statistic representation makes this really easy to see, because we can con-
sider a linearized world. Recall our S(-) operator takes a set of data and returns to us the
minimal sufficient statistic representation in terms of (a, z) “pseudo-observations”. If we ob-
serve only a single choice set throughout our sample, then we have only a single observation
in our data. However, for the logit form, it is easy to see that from this single observation
we could identify the d; product dummies for every product that was available. In the ab-
sence of any random coefficients, all we need is a single observation in which all products are
available in order to identify the linear parameters d; (by matching the average choice prob-
abilities). Identification of nonlinear parameters in a random-coefficients specification comes
from the fact that the sales of two products 7, k will be differentially affected by a stockout
of product | depending on how similar x;, z;, are to x;. Specifically, for each consumer type
1 we inflate the probability of buying good j by a factor proportional to the probability that
type ¢ bought the stocked out good [. Thus, we can think about a stockout as providing
information not only about the level of p;;, but rather the ratio of the choice probabilities
before and after a stockout ]

Intuitively, one can think of the periods of observation in high-frequency datasets as
being of three types. In type 1, no products stock out. This is the usual scenario. In type
2, a product stocks out at the very beginning of the period. This creates good variation in

data.

22Thus we don’t need more observations to correctly estimate smaller shares than we need to estimate
larger shares.

23We provide this ratio and its derivation in section of the appendix.
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the data—we have exogenous short-run variation in choice sets, which is not chosen by the
firm. We need only adjust the set of available products accordingly in estimation. Having
perpetual data collection will guarantee that we always observe either type 1 or type 2
observations. Type 3 markets are periods in which a product stocks out sometime during ¢.
Periodic data collection will generate these types of observations in addition to types 1 and
2. Ignoring these observations selects on sales levels, so we need to incorporate them, which
is exactly what our missing data procedure does.

Stockout events are useful, particularly when trying to identify product dummies and
nonlinear parameters, because they provide linearly independent observations of ¢,,. For
example, if we only ever observed a change from choice set a — a’ (suppose the only product
that ever stocks out is Snickers), then we would have two effective ‘observations’. If we
observe lots of stockouts and different choice sets, then we have the potential to observe 27
‘observations’.

In the typical approach (e.g., Berry, Levinsohn, and Pakes (1995) and related literature),
the choice set a; is often not a collection of products, but rather a collection of bundles
of characteristics. Thus a,; is not the set of available products j = 1,...,.J as it is in our
model, but rather the set of available characteristic bundles, including price and product
characteristics. Our sufficient statistic representation provides an alternative explanation: if
characteristics vary “continuously” and at random, then after applying our sufficient statistic
data reduction operator S(-), we still have the effective number of pseudo-observations going
to infinity. Even with an infinite number of pseudo-observations, it is not guaranteed that the
observations are linearly independent and all linear and nonlinear parameters are identified.
&

In practice, much empirical work uses a characteristics-based approach, and relies on
changes in stocking decisions, possibly changes in non-price product characteristics, and a
finite amount of (possibly small) price variation. As Ackerberg and Rysman (2005) point out,
it’s important to observe variation in price, and not just discrete or non-price characteristics,
in order to identify price sensitivity. And, furthermore, small price variation across a tight
range will generally provide less information than well-spaced price variation. In our case,
we don’t observe price variation, and we do not attempt to identify a price coefficient. If we
wanted to pin down a price coefficient, we would want variation across prices in addition to
changes in the choice set |

In summary, our model presents a different way to interpret variation in choice sets. In

240nce again the g, ., representation makes it clear that additional draws from the same choice set do
not provide additional observations, but rather get added into g4, which may improve efficiency of the
non-parametric step, but does not allow us to identify additional parameters.

251f instrumenting for price, one would need to either add additional distributional assumptions to the ML
problem, or use a GMM procedure. Draganska and Jain (2004) develops a method for including IVs and
supply-side restrictions into an ML estimator, assuming a normal distribution on the unobservable product
attributes. For a GMM procedure, Berry (1994) and Berry, Levinsohn, and Pakes (1995) can be used in the
M step, because these estimators improve the likelihood at each step. However, these methods rely on an
assumption that individual markets are large (M; — o0), which might be problematic in granular datasets
such as ours. For the most ‘extreme case’ of granularity, Chintagunta, Dube, and Goh (2005) provide a
method to extend the Berry (1994) method with price IVs to cases where we have individual-level data.
Finally, Allenby, Chen, and Yang (2003) provide a Bayesian estimator when IVs are required.
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our context a; doesn’t vary with long-term product mix, or potentially endogenous pricing
decisions, but rather as products stock out. Additionally, we don’t need to worry about this
sort of variation being endogenous, because firms take changes in consumer’s choice sets as
given, and so do consumers. This might not seem obvious at first, but because choice sets
are realizations of stochastic choices of consumers, and consumers’ choices depend only on
the set of available products, stockouts are random eventsP% In fact they are fully described
by our g(a;|-) distribution. While firms can restock the machine (or even change the product
mix to prevent future stockouts) and these actions might change the probability that a
particular consumer faces a stockout, once we condition on that probability, the occurrence
of any particular stockout is a random occurrence and thus exogenous to the model. Finally,
one of the most common applications of these models is to predict substitution probabilities.
Perhaps the best way to predict substitution probabilities is to observe them. Stockouts
provide not only a chance to observe substitution probabilities, but also an opportunity to
observe them repeatedly and across different dimensions than previous approaches have been
able to observe ]

59 Industry Description, Data, and Reduced-form Results

5.1 The Vending Industry

The vending industry is well suited to studying the effects of product availability in many
respects. Product availability is well defined: goods are either in-stock or not (there are
no extra candy bars in the back, on the wrong shelf, or in some other customer’s hands).
Likewise, products are on a mostly equal footing (no special displays, promotions, etc.). The
product mix, and layout of machines is relatively uniform across the machines in our sample,
and for the most part remains constant over time. Thus most of the variation in the choice
set comes from stockouts, which are a result of stochastic consumer demand rather than the
possibly endogenous firm decisions to set prices and introduce new brands.@

Typically, a location seeking vending service requests sealed bids from several vending
companies for contracts that apply for several years. The bids often take the form of a two-
part tariff, which is comprised of a lump-sum transfer and a commission paid to the owner
of the property on which the vending machine is located. A typical commission ranges
from 10 — 25% of gross sales. Delivery, installation, and refilling of the machines are the
responsibility of the vending company. The vending company chooses the interval at which
to service and restock the machine, and collects cash at that interval. The vending company
is also responsible for any repairs or damage to the machines. The vending client will often
specify the number and location of machines.

Vending operators may own several “routes” each administered by a driver. Drivers

26Recall that the primitive is preferences, not choices, and so as long as preferences do not depend on
choice sets, choice set variation is exogenous to the model because it depends on stochastic outcomes of
consumer arrivals.

2TFor a discussion of the benefit of choice subsets, see Zeithammer and Lenk (2006).

28In this sense, our setup is substantially simpler than that of Nevo (2001), Goldberg (1995), or Berry,
Levinsohn, and Pakes (1995) where new brands and prices are substantial sources of identification.
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are often paid partly on commission so that they maintain, clean, and repair machines as
necessary. Drivers often have a thousand dollars worth of product on their truck, and a few
thousand dollars in coins and small bills by the end of the day. These issues have motivated
advances in data collection, which enable operators to not only monitor their employees,
but also to transparently provide commissions to their clients and make better restocking
decisions.

Machines typically collect internal data on sales. The vending industry standard data
format (called Digital Exchange or DEX) was originally developed for handheld devices in
the early 1990’s. In a DEX dataset, the machine records the number and price of all of
the products vended; these data are typically transferred to a hand-held device by the route
driver while he services and restocks the machine. The hand-held device is then synchronized
with a computer at the end of each day.

5.2 Data Description

In order to measure the effects of stock-outs, we use data from 54 vending machines on
the campus of Arizona State University (ASU). This is a proprietary dataset acquired from
North County Vending with the help of Audit Systems Corp (later InOne Technologies, now
Streamware Inc.). The data were collected from the spring semester of 2003 and the spring
semester of 2004. The ASU route was one of the first vending routes to be fully wireless
enabled and monitored through Audit System’s (now Streamware’s) software. The wireless
technology provides additional inventory observations between service visits, when the DEX
data are wirelessly transmitted several times each day (approximately every four hours).

The dataset covers snack and coffee machines; we focus on the snack machines in this
study. Throughout the period of observation, the machines stock chips, crackers, candy bars,
baked goods, gum/mints, and a few additional products. Some products are present only
for a few weeks, or only in a few machines. Of these products, some of them are non-food
itemﬂ or have insubstantial sales (usually less than a dozen total over all machines)m In
our analysis, we exclude these items in addition to gum/mints, based on an assumption
that these products are substantially different from more typical snack foods (and rarely
experience stockouts). For a few brands of chips, we observe rotation over time in the same
slot of the machine, and for these goods, we create two composite chip products (Misc Chips
1 and Misc Chips 2)@ Finally, we combined two different versions of three products.ﬁ The
44 products in the final dataset are listed in Table [T

29While often sold alongside of snacks in vending machines, condoms are poor substitutes for potato chips.

30Products dropped for insubstantial sales are: Grandma’s Lemon Cheese, Grandma’s Chocolate Croissant,
and Nestle 100 Grand.

31Misc Chips 1 rotates: Cool Ranch, Lays Kettle Jalapeno, Ruffles Baked Cheddar, and Salsa Dorito.
Misc Chips 2 rotates: Frito Jalapeno, KC Masterpiece BBQ, Lays Baked Potato, Lays Wisconsin Cheese,
Rubbles Hearty Chili, and Frito Chili Cheese. Product characteristics for the goods that are combined are
very similar; for the composite good, we use the average of the characteristics of the individual products.

32These were: combine Gardetto’s with Gardettos Snackems, combine Nestle Crunch with Caramel Nestle
Crunch, and combine Nutter Butter with Nutter Butter Bites. Product characteristics in the first two
combinations are identical. In the last combination, the product characteristics differ slightly, and in that
case, we use the characteristics from Nutter Butter Bites.
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Retail prices are constant over time, machines, and across broad groups of products as
shown in Table[l] Baked goods typically vend for $1.00, chips for $0.90, cookies for $0.75, and
candy bars for $0.65. As compared to typical studies of retail demand and inventories (which
often utilize supermarket scanner data), there are no promotions or dynamic price changes
as in Nevo and Hendel (2007) or Aguirregabiria (1999). This means that once most product
characteristics (and certainly product or category dummies) are included, price effects are
not identified. The method we present will work fine in cases where a price coefficient is
identified, but in our particular empirical example, we have no variation for identifying a
price effect.

In addition to the sales, prices, and inventory of each product, we also observe product
names, which we link to the nutritional information for each product in the dataset. For
products with more than one serving per bag, the characteristics correspond to the entire
contents of the bag.

The dataset also contains stockout information and marginal cost data (the wholesale
price paid by the firm) for each product. The stockout percentage is the percentage of time
in which a product is observed to have stocked-out. We report both an upper and a lower
bound for this estimate. The lower bound assumes that the product stocked out at the
very end of the 4-hour period we observe, and the upper bound assumes that it stocked
out at the very beginning of the 4-hour period of observation. For most categories and
products, this ranges from two to three percent, with larger rates of stockouts for pastry
items. The marginal cost data are consistent with available wholesale prices for the region.
There is slight variation in the marginal costs of certain products, which may correspond to
infrequent re-pricing by the wholesaler. The median wholesale prices for each product are
listed in Table [ Table [I] also allows one to calculate markups of the products. Markups
tend to be lowest on branded candy bars (about 50%), and high on chips (about 70%). The
product with the highest markup is Oreo cookies, which has a markup of 84%.

Other costs of holding inventory are also observed in the data, including spoilage /expiration
and removal from machines for other reasons (e.g., ripped packaging, contamination, etc.).
Spoilage does not constitute more than 3% of most products sold. The notable exceptions
are the Hostess products, which are baked goods and have a shorter shelf life than most
products (approximately 2 weeks vs. several months). For our static analysis of demand, we
assume that the costs associated with such events are negligible.

5.3 Reduced-form Results

Before applying the estimation procedure described above to the dataset, we first describe
the results of two simple reduced-form analyses of stockouts. In table [2, we compute the
profits for each four-hour wireless time period and regress this on the number of products
stocked out. The first specification (Column 1) estimates the four-hour profit loss to be about
$0.90 per product stocked out. Column 2 allows the effect of a stockout to differ based on
the number of stockouts in the category with the most stockouts, in order to capture the fact
that substitution to the outside good may increase when multiple products are unavailable
in the same category (ie., missing one candy bar and one brand of chips is different from
missing two brands of chips). We estimate the effect of a stockout in the category with
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the most products missing to be about $1.90 per four-hour period, and the base effect of a
product stocking out to be $0.44. In column 3, we include the number of stockouts in each
separate category. These results estimate the costs per stockout at around $1.45 for chips
to $3.85 for candy on top of a base effect of $0.41. The results are robust to the inclusion
of machine fixed effects, which explain an additional 20 percent of the variation in profits.
All of these regressions are clearly endogenous, and may be picking up many other factors,
but they suggest some empirical trends that can be explained by the full model. Namely,
stockouts decrease hourly profits as consumers substitute to the outside good, and multiple
stockouts among similar products causes consumers to substitute to the outside good at an
increasing rate.

Table |3| reports the results of a regression of stockout rates on starting inventory levels.
We report results for Probit and OLS (Linear Probability Model) with and without product
and machine fixed effects. We find that an additional unit of inventory at the beginning of a
service period reduces the chance of a stockout in that product by about 1%. A full column
of candy bars usually contains 20 units. This means that the OLS (fixed effects) probability
of witnessing a stockout from a full machine in a 3-day period is .238 — .0101 * 20 = 3.6%.
For a machine with a starting inventory of five units, the predicted chance of a stockout is
about one in five.

6 Empirical Results

We estimate nested logit and random-coefficients logit demand specifications using three
different treatments for stock-out events. In the first treatment we assume full availability in
all periods, including those periods in which a stockout was observed. Choice set variation
in this specification is generated by the introduction or removal of products over time, and,
to a lesser extent, from selective stocking of products in different machines. We refer to this
as the ‘Full Availability’ model, and it is the standard method of estimation in the literature.
In the second treatment we account for stock-outs that were fully observed, but ignore data
that were generated during periods in which the timing of a stockout was ambiguous. We
call this the ‘Ignore’” model. In the third treatment, we account for fully-observed stock-
out events, and use the EM algorithm to estimate which sales occurred under the various
stock-out regimes within any ambiguous period.ﬁ This is the ‘EM-corrected” model.
Overall sales levels in the data vary across vending machines and time periods (such
as time-of-day or day-of-week indicators), but relative choice probabilities are remarkably
similar, and so we accommodate heterogeneity through M E We divide machines into three

33The data contain a small number of observations (less than one percent) in which three or more products
stock out. Based on conversations with the vendor, we assume such events occur at the very end of any
ambiguous period for the estimates of demand reported here. The results are robust to omitting these
observations, which the vendor believed may contain coding errors, or indicate removal or replacement of
a machine. While inclusion of these observations—were we to believe the data from them fully—-is possible
for estimation, the simpler treatment of them here eases the computational burden in our application. For
settings in which large numbers of products stock out within a period of observation, refer again to the
methods in section of the appendix on alternative computational methods, which avoid integration of
the exact distribution.

34Thus, it is assumed that the choice probabilities (the p;(-) functions) are stable across markets as
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tiers based on overall sales levels, and multiply a base rate of 360 people per day per machine
by one-third and 3 for the smallest and largest tiers respectively. In addition, the rate of
arrivals is reduced by a factor of one-third at night and one-fifth on weekends. Thus in a
weekday we have 250 consumers, and on weekend days, about 75 consumers, for a total of
1400 consumers per week on average for at a machine in the middle tier. For machines in
the lowest tier, this is roughly 467 consumers per week on average, and for a machine in the
highest tier, this is about 4200 consumers per week on averageﬂ Due to data limitations,
we do not allow choice probabilities to vary across locations or time periods. The most
important limitation for the data is that we want to be sure there are enough potential
consumers in any particular availability set. The more conditioning we do—for example, say
we allowed choice probabilities to differ freely for each machine—the fewer consumers we have
for any given availability set, because now we can only use the observations generated by
one machine.

In addition to the results reported here, which use the complete dataset, we also estimated
the model after aggregating the data to the daily level. We did this to insure that the EM
correction does not perform poorly when ‘ambiguous’ periods comprise a larger portion of
our dataset. At the four-hourly level, approximately 17 percent of the data come from
periods during which a stock-out occurred, versus 35 percent when the data are aggregated
at the daily level. We estimate very similar results for both the disaggregated and aggregated
datalY

Table 4| reports the number of choice sets, log likelihood, market size, and nonlinear
parameters from estimation of nested-logit and random-coefficients specifications under each
of the three treatments of stock-out events.ﬁ The first two panels report estimates from
two nested-logit specifications, the first using a single nesting parameter, and the second
using five category-specific nesting parameters. Both nested-logit models are estimated by
full information maximum likelihood methods. We report the nesting parameter A from
McFadden (1978) rather than the o correlation parameter from Cardell (1997) or Berry
(1994) P Roughly speaking, A ~ (1 — o) such that A = 1 is the simple logit and A\ = 0
is perfect correlation within group. In general a A > 1 is allowed, but is not necessarily
consistent with random utility maximization (McFadden and Train 2000).

In the first column of the first panel (under the ‘Full Availability’ model), 238 choice sets
contribute to the estimation of the ML problem, and total market size is about 5.7 million
consumers over the two semesters. The correlation within nest is approximately (1 — ), or

discussed in the estimation section.

35We use some additional conditions to prevent sales from exceeding the marketsize, particularly in very
short periods, but in general these are not binding.

36 A1l daily-level results are available upon request from the authors.

37All results were obtained by using the KNITRO optimization package. All reported values satisfy first
and second order conditions for valid optima. A number of different starting values were used in estimation,
and the best optimum value was reported in each case. These results have also been checked against standard
MATLAB packages (fminsearch, fminunc).

38We should reiterate the reason we use FIML rather than the simpler least squares estimator for the
nested logit is that we worry not only about the endogeneity of In(s;|,) the within group share, and the lack
of potential instruments, but for many small markets the only within-group sales are the sales of product j
— the case of extreme measurement error.
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0.48 under an assumption of full availability. The second column (the ‘Ignore’ model) uses
2649 unique choice sets. The estimate of A in this specification, 1.08, is not consistent with
utility maximization, highlighting the extent of the bias from ignoring periods in which stock-
outs occurred. The likelihood improves, but is not directly comparable to the likelihood in
the other columns because it applies only to a subset of the data. The fit of the model (as
measured by the log-likelihood divided by market size) improves dramatically-but much of
this improved fit comes from the fact that we have eliminated many of the observations that
are the most difficult to fit. The last column (‘EM’) reports the results after using the EM
correction to assign sales to different availability regimes in the ambiguous periods. The
number of choice sets in this model is 3966, which incorporates probabilistic choice sets, as
well as those that were only encountered as an intermediary between the beginning-of-period
and end-of-period availability. The EM-corrected estimate of A, 0.77, implies a within-nest
correlation of 0.23. The EM-corrected model has a superior log-likelihood and fit statistic to
the Full Availability model, although due to the biased estimates of 8 in the Full Availability
model, the likelihoods of the two models are not directly comparableﬁ

The second panel of table [4] reports similar patterns in the nested-logit model with five
nesting parameters. In this specification, the estimated correlation between products in the
same nest is negative for some nests in both the Full Availability and Ignore models, again
highlighting the bias from ignoring stock-outs or dropping periods in which they occur. The
EM-corrected model shows sensible correlation patterns, with within-nest correlation highest
for candy (1 — A) = 0.54, and lowest for pastry (1 — ) = 0.09.

The third panel of table [] reports the same set of estimates using a random-coefficients
logit model for demand in which random coefficients are estimated for each of three observ-
able product characteristics: fat, sodium, and sugarm The random-coefficients specification
has a higher likelihood than either of the nested-logit specifications under an assumption of
full availability. However, the likelihood under both of the nested-logit specifications exceed
the random-coefficients specification under the Ignore and EM-corrected models, indicat-

390ne could also imagine estimating a model in which sales during periods of unknown availability are
arbitrarily assigned—for example, by assuming that all stocked-out products stock out either at the very end
or the very beginning of any ambiguous period. One might expect that the likelihood from such an exercise
would be improved by the application of the EM algorithm, and in that sense, provide a further check of the
EM-corrected method used here. While this is true for cases in which the unobserved data do not depend
on y (see Tanner and Wong (1987)), it need not hold in the case of stock-outs, where the missing data
include sales. Put another way, consistent estimation of demand implies a distribution for g() in equation
@ as detailed in section [3] Substituting arbitrary distributions for g(-) will not give consistent estimates of
0, because the demand model implies a specific g(-) as a function of observed sales. A similar argument
applies for comparing the likelihood from the Full Availability case with the likelihood from the EM-corrected
estimator, as these are not comparable for the same reason. Essentially, any such exercise injects data that
are known to be false into the estimate of #, making the resulting likelihood incomparable to the likelihood
for the true model. We provide additional detail on this point in section @ of the appendix.

40We have one additional product characteristic that is continuous: calories. We found no effect on
correlation in tastes from this variable, so it was excluded from the set of non-linear parameters. We
observe two additional discrete product characteristics: cheese and chocolate dummies. These are excluded
from estimation because they were not identified after the inclusion of product dummies. We believe the
non-identification of these parameters in our particular setting is due to the lack of additional product
characteristics that vary continuously, such as price. Such a characteristic is a key assumption more generally
for identification (see Berry and Haile (2008)).
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ing that the observable product characteristics may be less useful than product categories
for organizing correlation structures in this market. In the case of Ignore, the random-
coefficients specification favors no correlation in taste for the three observable characteristics
(i.e., estimation reduces to a ‘plain vanilla’ logit model)ﬂ

Using the EM-corrected estimates from table [4] table [5] lists the best substitute for the
35 most commonly-held products according to the category-specific nested-logit and the
random-coefficients specifications. In both cases, we get sensible substitution patterns, with
the two specifications predicting the same best substitute in most cases. When the predicted
best substitutes differ, we can see the trade-offs between the two demand specifications.
For products that are harder to categorize, such as Oreos (in the candy category), the
random-coefficients model gives more intuitive results, whereas for products with less helpful
characteristics, such as PopTarts, the nested-logit model seems more sensible.

7  Estimated Sales and the Impact of Stockouts

In this section, we use the results from the three estimated models to predict sales and the
impact of stock-out events on firm profitability. These predictions give an indication of how
important the corrections to the demand system are likely to be. They also lie at the heart
of supply-side decisions about capacity and restocking efforts, and play a fundamental role
in determining welfare calculations on the impacts of mergers, the value of new products,
or the application of antitrust policy. Table [6] shows predicted weekly sales for a fully-
stocked ‘typical’ machine under the category-specific nested-logit and random-coefficients
specifications. A typical machine is defined as one carrying the 35 most widely-carried
products (measured across machines and over time) out of the full set of 44 products in
the data, for which we simulate the arrival of 4500 consumers[”?] Comparing Ignore to
Full Availability for this typical machine shows that predicted sales levels under Ignore
are substantially lower for all products except three (Chocolate Donuts, Ding Dong, and
PopTart—under random coefficients). This highlights the bias that results from excluding
data on periods in which sales exceed inventory. The most interesting comparison is between
the Full Availability and EM-corrected models, and we report the difference between these
models in the fourth and eighth columns of the table. Looking across categories, pastry and
chip products generally have higher sales under the EM-corrected model. These are the two
categories with the lowest capacities and highest average rates of stock-outs in the data (see
table . Within category, we also see some sensible patterns. For example, among chocolate
bars, three products have higher estimated sales under the EM-corrected model: Snickers,
M&M Peanut, and M&M’s. These three products have the highest rate of stock-out events
in the chocolate category in the data (not including Babyruth, which was not carried by
the ‘typical’ machine, and so was excluded from the simulation). Overall, the EM-corrected
model predicts more people purchasing an inside good (total sales of 250, compared to 243

41'We report estimates of the linear parameters (i.e., the product dummies) and the results of second-stage
regressions of product dummies on characteristics in section of the appendix.

42We chose 35 products because this is the number of product facings in a single machine. The market
size of 4500 consumers is the number of consumers assumed to pass by a relatively high-volume machine
over the course of one week in our demand model.
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or 227 under Full Availability or Ignore).

In order to demonstrate how the different demand estimates affect the impact of stock
outs on profitability, we conduct an experiment in which we consider weekly sales at the same
typical machine, and compare them to a machine where the two best-selling products in each
category are unavailable[P] We report the results of these stockout experiments in Table [7
For each of the products stocked out, we report the number of forgone sales predicted by the
two demand specifications. This ranges from roughly 10 in the pastry and chips categories,
6 or 7 in the cookie and candy categories, and 20 in the chocolate category.@

The different treatments of stock-out events give substantially different predictions for
sales as the set of available products changes. For both demand specifications, the Ignore
model predicts much lower sales of available products across the board than either the Full
Availability or the EM-corrected models (with one exception of chocolate bars under the
nested-logit model). Within any given category, this reflects lower estimated correlation in
tastes (the exception being the chocolate category in the nested-logit specification). However,
this effect also highlights the bias that results from dropping periods of high demand from
estimation.

In the case of the category-specific nested logit, the \’s that are greater than one for the
Full Availability and Ignore models (i.e., the pastry category in both models and the chips
category in the Ignore model) lead to the prediction that fewer consumers buy other products
in the category when the top-selling products are stocked out. Thus, for example, a PopTart
appears to be a complement to Ding Dongs and other pastry items in these specifications.
For the remaining categories, the EM-corrected model generally predicts lower correlation in
tastes (higher \’s), and thus fewer additional sales for the available substitutes (e.g., Nutter
Butter Bites sell 2.42 additional units according to the Full Availability model, but only 1.41
additional units under the EM-corrected model). The exception is the chocolate category, in
which the EM-corrected model predicts higher within-nest correlation of tastes (a lower \),
and correspondingly higher rates of substitution to the available substitutes within the nest
(e.g., 4.89 units of M&M Peanut are sold according to the EM-corrected model, compared
to 1.05 units under the Full Availability model).

In the random-coefficients specification, the EM-corrected estimates predict less substi-
tution to available products than the Full Availability model across the board. This demon-
strates the censoring and forced-substitution effects, since the products that were stocked-
out are the best-selling products in each category, and they also stock-out more frequently
than other products. (One exception to this rule is Twix, which suffers fewer stock-outs in
the data.) The EM-corrected model, under both demand specifications, generally predicts
demand that is stronger for the best-selling, frequently stocked-out products (giving larger
negative numbers of forgone sales for those products), and weaker for the remaining available
products.

43We simulate the removal of the following products: Chocolate Donuts, Strawberry Frosted PopTarts,
Grandma’s Oatmeal Raisin Cookie, Chips Ahoy Cookies, Rold Gold Pretzels, Sunchips Harvest Cheddar,
Snickers, Twix, Starburst, and Kar Nut’s Sweet & Salty Mix.

44 A5 an interesting supply-side comparison, the forgone sales of these products match up in a sensible way
against the capacity of the machine, which is visited once a week or slightly more often. Capacities in the
various categories are: 9 to 11 for pastry and most chips, 15 for cookie and candy, and 20 for most chocolate
bars.
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In the lower panel of table [7| we report the overall impact of the stockouts. The Full
Availability and Ignore models predict lower levels of forgone sales compared to the EM-
corrected model under both demand specifications. The Full Availability model predicts
higher increased sales of substitutes than the EM-corrected results, while the Ignore model
predicts ridiculously low levels of substitution to the available products. Correspondingly,
the Ignore model predicts a much lower percentage of consumers staying inside (between 3
and 9 percent), while the Full Availability and EM-corrected models are closer to each other,
with the EM-corrected model predicting fewer consumers staying inside (25 - 32 percent vs.
30 - 37 percent for Full Availability). Gross profit is thus lower under the EM-corrected
model, with a loss from the stockouts of roughly $37 to $40 compared to $31 to $36 for
the Full Availability model. In percentage terms, this difference is 16.6% in the nested-logit
specification, and 11.6% in the random-coefficients specification. Thus, profit losses from
stockouts are roughly 12 - 16 percent larger than the standard Full Availability model would
have us believe. For an industry with profit margins of less than 4%, this is a significant
difference [

As a final exercise, we quantify the expected change in sales for substitute products, given
that a focal product stocks out. Doing this for each of the products stocked in a typical
machine produces 35 graphs with 35 sales effects in each one. The first bar in these graphs
is the closest substitute, the second bar is the next closest substitute, and so on. Figure
shows the median change in the sales of substitutes by rank across all 35 productsEG] The
median effect shows that the closest substitute experiences about a three percent increase
in its sales when the focal product stocks out. The second closest substitute has a median
sales increase of two percent.

8 Conclusion

Incomplete product availability is a common and important feature of many markets. This
paper demonstrates that failing to account for product availability correctly can lead to
biased estimates of demand, which can give misleading estimates of sales and the welfare
impacts of stock outs. We show that the welfare impact of stockouts in vending machines has
a substantial effect on firm profits, indicating that product availability may be an important
strategic and operational concern facing firms and driving investment decisions. Further-
more, biases that result from the incorrect treatment of stock-out events can potentially
undermine the reliability of many important applications of demand estimates for markets
with incomplete product availability, such as simulating the welfare implications of mergers
or new product introductions, applying antitrust policy, or evaluating the optimal capacity
choices of firms.

A failure to account for product availability also ignores a useful source of variation
for identifying demand parameters. Rather than examining the effect of changing market
structure (entry, exit, new goods, mergers, etc.) on market equilibrium outcomes, stock outs

45Companies with over $1 million in revenue have a 4.3% profit margin on average, while companies with
less than $1 million in revenue (75% of all vending operators, by count) have an average profit margin of
-2.5% (www.vending.org 2008).

46The set of 35 individual graphs are available upon request from the authors.
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allow us to examine the effect that temporary changes to the consumer’s choice set have
on producer profits and our estimators. Standard demand estimation techniques have used
long-term variations in the choice set as an important source of identification for substitution
patterns, and this paper demonstrates that it is also possible to incorporate data from short-
term variations in the choice set to identify substitution patterns, even when the changes to
the choice set are not fully observed.

As technologies like the one we study continue to become more prevalent, firms and
researchers can expect to gain access to better data (i.e., more detailed information on sales
and inventory/capacities) with which to analyze markets. As these data become available,
researchers gain valuable information on short-run choice set variation. Our results in this
paper indicate that accounting for that choice set variation can substantially reduce potential
biases in standard estimates for some markets, and that researchers should take on the
responsibility to adjust for the effects of product availability in demand estimation when
possible.
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Product Category % SO % SO p ¢ Share AvgD No.

(Lower) (Upper) Sales  Mach.
PopTart Pastry 4.81 587 1.00 0.35 3.71 0.90 54
Choc Donuts Pastry 15.09 1751 1.00 046 2.95 0.81 53
Ding Dong Pastry 12.93 14.99 1.00 046  2.79 0.73 54
Banana Nut Muffin Pastry 6.85 798 1.00 046  2.73 0.66 54
Rice Krispies Pastry 1.14 1.38 1.00 0.31 1.99 0.50 54
Pastry Pastry 8.80 10.48 1.00 0.46  0.90 1.03 23
Gma Oatmeal Raisin Cookie 1.20 1.49 0.75 0.23 274 0.69 52
Chips Ahoy Cookie 0.70 0.92 0.75 0.25 246 0.60 53
Nutter Butter Bites Cookie 0.16 0.20 0.75 026 1.75 0.45 51
Knotts Raspberry Cookie Cookie 0.35 0.45 0.75 019 1.72 0.43 52
Gma Choc Chip Cookie 0.31 0.36 0.75 0.22  1.53 0.78 52
Gma Mini Cookie Cookie 1.41 1.73 0.75 0.21  0.80 0.64 52
Gma Caramel Choc Chip Cookie 2.52 293 0.75 023 0.52 0.68 52
Rold Gold Chips 6.83 818 0.90 0.27 4.02 0.97 54
Sunchip Harvest Chips 5.36 6.44 0.90 0.27 3.84 0.93 54
Dorito Nacho Chips 1.58 1.89 0.90 0.27  3.36 0.81 54
Cheeto Crunchy Chips 3.91 4.64 0.90 0.27  3.35 0.81 54
Gardetto Snackens Chips 0.72 0.78 0.75 026  3.20 1.20 54
Ruffles Cheddar Chips 1.59 1.87 0.90 0.27 2.81 0.68 54
Fritos Chips 2.14 241 090 0.27 1.86 0.45 54
Lays Potato Chip Chips 2.50 2.85 0.90 0.27 1.69 0.41 54
Munchies Hot Chips 0.89 1.00 0.75 0.25 142 0.84 51
Misc Chips 2 Chips 1.93 2.17 090 0.28 1.30 0.34 54
Munchies Chips 2.91 3.25 090 025 1.24 0.53 53
Misc Chips 1 Chips 2.46 269 090 026 1.13 0.57 53
Dorito Guacamole Chips 0.54 0.63 0.90 028 0.94 0.47 53
Snickers Chocolate 0.65 0.87 0.75 0.33 8.35 2.01 54
Twix Chocolate 0.52 0.67 0.75 0.33 6.21 1.49 54
M&M Peanut Chocolate 1.40 1.75 075 033  4.69 1.13 54
Reese’s Cup Chocolate 0.62 0.73 0.75 0.33  2.37 0.57 54
Kit Kat Chocolate 0.48 0.60 0.75 033 2.16 0.52 54
Caramel Crunch Chocolate 0.40 049 0.75 033 2.14 0.52 54
M&M Chocolate 1.02 1.12 0.75 0.33  1.69 0.60 54
Hershey Almond Chocolate 0.30 0.36 0.75 0.33 1.65 0.40 54
Babyruth Chocolate 3.44 3.81 0.75 0.28  0.47 0.35 53
Starburst Candy 0.70 0.90 0.75 0.33 3.18 0.96 54
Kar Nut Sweet /Salt Candy 1.21 144 0.75 022 285 0.69 54
Snackwell Candy 0.39 0.44 0.75 028  1.66 0.41 54
Skittles Candy 0.39 0.53 0.75 034 1.62 0.82 54
Payday Candy 0.00 0.00 0.75 0.33 1.15 0.53 54
Oreo Candy 0.10 0.12 0.75 0.22 1.01 0.25 54
Peanuts Candy 0.37 0.42 0.75 026  0.86 0.45 51
Peter Pan (Crck) Candy 0.13 0.14 0.75 0.12 0.81 0.42 49
Hot Tamales Candy 338 3.98 0.75 0.27 0.40 0.49 54

Table 1: Summary of Products and Markups



(1) (2) (3)
# Products -0.895%H*F  _0.437F*F  _(0.408%**
Stocked Out (0.017) (0.021) (0.023)
(max) SO’s, category -1.896*+*
(0.053)
# SO, Pastry -2. 273Kk
(0.062)
# SO, Cookie -2.637HH*
(0.21)
# SO, Chips -1.450*#*
(0.069)
# SO, Chocolate -1.61 1%
(0.15)
# SO, Candy -3.84TH**
(0.24)
Constant T.AQ5XHK T QTR T TAFHHH
(0.049) (0.050) (0.050)
Observations 111195 111195 111195
R? 0.0238  0.0349  0.0367

Table 2: Regression of Profit on Stock-Out Variables

OLS (1) OLS (2) OLS (3) Probit (1)  Probit (2) Probit (3)
Starting Inven -0.0168***  -0.00872***  -0.0101*** -0.0142*%*%*  -0.00681***  -0.00893***
(0.00025) (0.00042) (0.00055) (0.00022) (0.00036)
Hours 0.00203***  (0.00217*** 0.00278***  0.00169***  (0.00174*** 0.00212%**
(0.00011) (0.00010) (0.00011) (0.000092) (0.000084)
Constant 0.339*** 0.225%** 0.238***
FE - Product Prod x Mach - Prod 4+ Mach
Observations 98900 98900 98900 98900 98900
R? 0.0486 0.1326 0.2092 0.0585 0.1788

Table 3: Regression of Stockout Rates on Starting Inventory
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Full Ignore EM
Single Nesting Parameter (\)
Category 0.525  1.075 0.768
Neg LL (millions) 2280 1907 2.226
LL/M 0.394 0.358 0.385
Category Specific Nesting Parameter (\)
Pastry 1.550 1.131 0.912
Cookie 0.172  0.677 0.521
Chips 0.168 1.465 0.826
Chocolate 0.889  0.767 0.487
Candy 0.184 0.492 0.467
Neg LL (millions) 2279 1.907 2.226
LL/M 0.394  0.358 0.385
Random Coefficients
Fat 0.566  0.000 0.306
Salt 2.851  0.000 2.523
Sugar 5.638  0.000 4.822
Neg LL (millions) 2280 1907 2.267
LL/M 0.394  0.358 0.392
Choice Sets 238 2649 3966
Marketsize (millions) 5.787  5.320 5.787

Table 4: Non-linear Parameter Estimates
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Product Nested Random Coefficients
PopTart Choc Donuts Snickers
Choc Donuts PopTart Snickers
Ding Dong Choc Donuts Snickers
Banana Nut Muffin Choc Donuts PopTart
Rice Krispies Choc Donuts Snickers
Gma Oatmeal Raisin Gma Choc Chip PopTart
Chips Ahoy Gma Choc Chip Snickers
Nutter Butter Bites Gma Choc Chip Snickers

Knotts Raspberry Cookies
Gma Choc Chip

Gma Choc Chip
Gma Oatmeal Raisin

Banana Nut Muffin

Snickers

Rold Gold

Sunchip Harvest

Cheeto Crunchy

Sunchip Harvest Rold Gold Rold Gold
Dorito Nacho Rold Gold Rold Gold
Cheeto Crunchy Rold Gold Rold Gold
Ruffles Cheddar Rold Gold Rold Gold
Fritos Rold Gold Rold Gold
Lays Potato Chip Rold Gold Rold Gold
Munchies Hot Rold Gold Rold Gold
Misc Chips 2 Rold Gold Rold Gold
Munchies Rold Gold Rold Gold
Dorito Guacamole Rold Gold Rold Gold
Snickers Twix Twix
Twix Snickers Snickers
M&M Peanut Snickers Snickers
Reeses M&M Banana Nut Muffin
Kit Kat Snickers Snickers
Caramel Crunch Snickers Snickers
M&M Snickers Snickers
Hershey Almond Snickers Snickers
Starburst Skittles Skittles
Kar Nut Sweet /Salt Starburst Snickers
Snackwell Starburst Snickers
Skittles Starburst Starburst
Oreo Starburst Snickers
Peanuts Starburst Rold Gold

Table 5: Best Substitutes, Top 35 Products
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Category Specific Nested Logit Random Coeflicients Logit

Full TIgnore EM (EM-Full) Full Ignore EM (EM-Full)
PopTart 9.02 8.86 9.51 0.49 9.72 9.78 10.24 0.52
Choc Donuts 8.69 9.78  10.54 1.85 944 10.85 11.63 2.18
Ding Dong 7.67 8.05 8.81 1.14 8.20 8.90 9.55 1.35
Banana Nut Muffin 6.63 6.52 7.06 0.44 7.27 7.19 7.68 0.41
Rice Krispies 4.95 4.54 4.93 -0.02 5.52 4.99 5.56 0.04
Gma Oatmeal Raisin 6.40 6.16 6.79 0.40 7.61 7.01 7.59 -0.03
Chips Ahoy 5.57 5.25 5.85 0.28 6.70 6.02 6.73 0.03
Nutter Butter Bites 4.08 3.85 4.24 0.16 4.88 4.39 4.86 -0.02
Knott’s Raspberry Cookie 3.99 3.81 4.15 0.17 4.73 4.33 4.71 -0.02
Gma Choc Chip 8.48 7.19 8.15 -0.33 8.60 7.70 8.53 -0.08
Rold Gold 9.83 9.53  10.60 0.77| 11.18 10.61 12.08 0.90
Sunchip Harvest 9.37 8.86 9.88 0.51 | 10.41 9.85 11.10 0.69
Dorito Nacho 8.17 7.38 8.14 -0.03 9.08 8.18 9.16 0.08
Cheeto Crunchy 8.16 7.55 8.35 0.19 9.15 8.38 9.42 0.26
Ruffles Cheddar 6.87 6.21 6.84 -0.03 7.66 6.88 7.71 0.05
Fritos 4.53 4.03 4.52 -0.01 5.04 4.47 5.09 0.05
Lays Potato Chip 4.13 3.77 4.14 0.02 4.59 4.16 4.67 0.08
Munchies Hot 7.76 7.37 7.84 0.08 8.79 8.02 8.84 0.05
Misc Chips 2 3.40 3.13 3.48 0.08 3.81 3.46 3.92 0.12
Munchies 5.33 4.78 5.40 0.07 5.86 5.33 6.06 0.20
Dorito Guacamole 4.68 4.07 4.57 -0.11 5.12 4.55 5.13 0.01
Snickers 20.04 1837  20.07 0.03 | 21.91 20.63 21.92 0.02
Twix 1492 13.39 14.87 -0.05 | 16.33 15.04 16.30 -0.03
M&M Peanut 11.29 10.36  11.41 0.12| 1236 11.63 12.55 0.19
Reese’s Cup 5.69 5.14 5.66 -0.03 6.30 5.77 6.29 -0.01
Kit Kat 5.20 4.68 5.17 -0.03 5.62 5.26 5.61 -0.01
Caramel Crunch 5.17 4.71 5.13 -0.04 5.69 5.30 5.68 -0.02
M&M 5.69 5.25 5.78 0.09 6.27 5.84 6.29 0.01
Hershey Almond 3.97 3.61 3.94 -0.03 4.40 4.06 4.39 -0.01
Starburst 8.47 7.92 8.78 0.31 9.57 9.19 9.65 0.07
Kar Nut Sweet/Salt 6.29 591 6.57 0.27 7.60 6.98 7.64 0.04
Snackwell 3.71 3.51 3.90 0.19 4.52 4.16 4.57 0.05
Skittles 7.97 7.26 8.06 0.10 9.01 8.01 8.91 -0.09
Oreo 2.27 2.12 2.37 0.10 2.77 2.52 2.77 0.00
Peanuts 4.45 4.08 4.47 0.02 4.88 4.46 4.90 0.02
Total 242.83 226.97 250.00 7.17 \ 243.59 228.55 250.00 6.41

Table 6: Predicted Weekly Sales
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Category Specific Nested Logit

Random Coefficients Logit

Full Ignore EM Full Ignore EM
PopTart -9.02 -8.86 -9.51 | -875 -8.80 -9.21
Choc Donuts -8.69 -9.78 -10.54 | -850 -9.77 -10.47
Ding Dong -2.23  -0.54 0.69 3.11 0.17 2.97
Banana Nut Muffin -1.93 -0.44 0.55 4.02 0.14 3.60
Rice Krispies -1.44  -0.30 0.39 0.56 0.10 0.49
Gma Oatmeal Raisin -6.40  -6.16 -6.79 | -6.85  -6.31 -6.83
Chips Ahoy -5.57  -5.25 -5.85 | -6.03  -5.42 -6.06
Nutter Butter Bites 2.42 0.87 1.41 0.56 0.09 0.48
Knott’s Raspberry Cookie 2.36 0.86 1.39 0.94 0.08 0.77
Gma Choc Chip 5.02 1.63 2.72 1.83 0.15 1.49
Rold Gold -9.83  -9.53 -10.60 | -10.06  -9.55 -10.88
Sunchip Harvest -9.37  -8.86 -9.88 | -9.37 -8.86 -9.99
Dorito Nacho 2.55  -0.90 0.61 0.44 0.16 0.41
Cheeto Crunchy 2.5 -0.92 0.63 0.83 0.16 0.72
Ruffles Cheddar 2.15  -0.76 0.52 0.44 0.13 0.39
Fritos 1.41  -0.49 0.34 0.20 0.09 0.19
Lays Potato Chip 1.29  -0.46 0.31 0.19 0.08 0.18
Munchies Hot 242  -0.90 0.59 0.47 0.16 0.42
Misc Chips 2 1.06  -0.38 0.26 0.15 0.07 0.15
Munchies 1.66  -0.58 0.41 0.42 0.10 0.38
Dorito Guacamole 1.46  -0.50 0.35 0.16 0.09 0.15
Snickers -20.04 -18.37  -20.07 | -19.72 -18.57 -19.73
Twix -14.92  -13.39  -14.87 | -14.70 -13.54 -14.68
M&M Peanut 1.05 1.98 4.89 2.77 0.23 2.32
Reese’s Cup 0.53 0.98 2.42 1.21 0.11 0.99
Kit Kat 0.48 0.89 2.22 1.67 0.10 1.38
Caramel Crunch 0.48 0.90 2.20 1.18 0.10 0.97
M&M 0.53 1.00 2.48 1.94 0.11 1.61
Hershey Almond 0.37 0.69 1.69 0.66 0.08 0.54
Starburst -8.47  -7.92 -8.78 | -8.62  -8.28 -8.68
Kar Nut Sweet/Salt -6.29  -5.91 -6.57 | -6.84 -6.28 -6.88
Snackwell 2.38 1.33 1.55 0.76 0.08 0.63
Skittles 5.11 2.76 3.20 4.51 0.16 3.91
Oreo 1.46 0.81 0.94 0.69 0.05 0.56
Peanuts 2.85 1.55 1.78 0.12 0.09 0.12
Forgone Sales of Stockouts -98.60 -94.02 -101.82 | -99.45 -95.39 -103.40
Increased Sales of Substitutes  35.99 9.08 32.90 | 29.81 2.88 25.81
Change in Total Sales -62.61 -84.94 -68.92 | -69.64 -92.50 -77.59
Percent Staying Inside 36.50 9.66 32.31 | 2997 3.02 24.96
Change in Gross Profit -31.43 -45.15  -36.66 | -36.19 -47.36 -40.40

Table 7: Weekly Sales Impact of Simulated Stockout
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Median change in sales of substitutes by rank
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Figure 1: Median Change in Sales of Substitutes by Rank
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A Multiple Stockouts, Alternative Methods, and Additional Results

A.1 Multiple Unobserved Stockouts

Addressing the case of multiple unobserved stockouts is quite similar to the single stockout
case. The rest of the estimation procedure proceeds just as it did in the case of a single
unobserved stockout, with the exception of the E-step (where the missing data is imputed).
Conditional on the imputed values for the missing data, the M-step remains unchanged.

Let’s suppose that we have K products which stockout in period t. We take the same
approach as before and look to integrate out the a’s, which tell us the fraction of consumers
facing a particular availability regime. In the single stockout case there were two availability
regimes which we parameterized as a and 1 — «. Now if the are K unobserved stockouts,
then there are 2 possible availability regimes, and 2% — 1 parameters (since we require the
weights sum to one).

O'/ipj(ea a’ivxt)
J Vailzzal ’ ZVZ alp](07 ag, xt) J

Where o = [ap, a4, ap,...,048,...] is a vector of the appropriate 2 values where
subscripts denote stocked out products. Once again we can evaluate the summation exactly,
by evaluating at every a in the domain, but this is now computationally much more difficult.
If we think about the dimension of the problem, the order of the stockouts now matters
(since different orders imply different choice probabilities). There are K! ways to order K
stockouts. Once we assume an ordering we must divide up M; consumers among the K
availability regimes. This means that the summation would require (AI/?) elements for each
possible ordering of stockouts or K! x (]\f{’f) = Mi\{th! elements overall. For M, large and K
small this is (roughly) approximated as M, a week worth of data might be M; = 1000 and
K = 5 which implies 10* elements. In this case, approximate methods must be used to
compute the expectation.

Suppose we try to compute g(a|-) for a single value of a. An important property to
notice is that each a vector implies a unique sequence of stockouts. If we had K = 2
products then ae = [y, s, g, aeag|, then we know that [0.2,0.3,0,0.5] implies that product
A stocked out first, and then product B. Likewise [0.5,0,0.1,0.4] tells us that product B
stocked out first and then product A. We might think about a a where [0.3,0.2,0.2,0.3], but
this is impossible since we could not have observed a sequence where A was available when
B was not AND also observed B available when A was not. The probability of a such a
sequence is zero. It is helpful to define & = f(a) which represents the nonzero components
of ax arranged in the order in which the stockouts occurred.

Likewise, we define w = [wy,ws, ..., wk]| as the beginning of period inventory for the K
products which stocked out, where w is arranged in the order of the stockouts (just like &). It
is also helpful to write a(a®) = a; which denotes the availability set corresponding to the k"
component of a. It is also helpful to define p(, a(«), x;) as the vector of choice probabilities
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with K + 1 elements where the first K elements are py (6, a(«), z;) for the K products which
stockout, and pri1 = 3 ey Pi(0: a(a), z;) or the sum of the choice probabilities of all other
goods (including the outside good). Finally we define an operator h(-) which takes a K
dimensional vector and returns the vector of the last K — 1 elements.

What’s nice is that we can define a finite recursive relationship for g(a, w, 0, M;), for the

case where K > 1:

g(a,w,0,M;) = Z N Mult (a(l)Mt,w(l), h(q),p(a(a(l)),ﬂ)) -g(h(a), h(w —q), 0, My)
Vh(q):h(q<w)
w?—1 wi-1 w1

- Y Y Y Ny (a(l)Mt,w(l),h(q),p(a(a(l)),O))-g(h(a),h(w—q),Q,Mt)

q(2):0 q(3):O q(K) =0

And for the base case K = 1 (all arguments scalar), it is identical to the single stockout
case:

NegBin(aM; — w,w, p;(a(a), x4, 0))
M pr—
9l M) = o BinCDF (M, w, ps (a(a), 20,0))

In words, to evaluate the density at a vector of weights for different availability regimes,
we “pop” the first element of the availability regime and inventory off of our stack, and com-
pute the negative multinomial probability times the function g(-) applied to the remaining
stack. Each time we call g(-) we must evaluate the sum over all possible sales configurations
for the products which did not stock out during that particular availability regime, but even-
tually stocked out. This can still be computationally burdensome (and for some problems
infeasible). This represents a dramatic savings because we need not worry about the ordering
of products which did not stock out, thus there are only K < J sums to evaluate.

A.2 Negative Multinomial

The negative multinomial is simply the multinomial generalization of the negative binomial.
This entire family of distributions (binomial, multinomial, geometric, negative binomial,
negative multinomial, etc.) are all just derived distributions for the Bernoulli process. We
have results for multinomials, and geometrics, etc. because they frequently occur in applied
problems, and these standard results are often incorporated in textbooks, statistical packages
and the like. The negative multinomial is a bit less common, and results are not as well
known.

The negative multinomial is similar to the negative binomial in that it describes the
probability of the number of trials m before w successes of the first cell are observed. What
makes it different from the negative binomial is that it also accounts for ¢s, ..., qx successes
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of the next K — 1 cells. The p.m.f. can be written:

(1) _ (m - 1)' W go Qe M= 10 di
NMUH (muw » 4, p<a’7 9)) - (m 1= Zk Qk)!w(l) o QK!q0!p1 p2 c pk pU

A.3 Alternative Computational Methods

In the case where integrating over the exact distribution g(e|-) at all values of the domain
is prohibitive, there are some alternatives. Since we’re using the distribution to compute
an expectation, we can compute the E-step numerically without a problem. Recall that
the likelihood is linear in the sufficient statistics, so any approach to numeric integration
where the approximation error is mean zero should be acceptable. Also recall the form of
the E-step.

a/ipj<0aai7$t)
Elgu] = Yit g(alf, ;)
’ Vailzza—l Y a0, a, ) J

This can be easily approximated by linear functions since it is of the form Zf- (szl_), and

many stockouts do not induce large changes in p,(-) (a stockout of Doritos often has very
little effect on sales of Snickers). This means that quadrature, Monte Carlo integration, and
Quasi-Monte Carlo integration should work fine even with small number of points at which
the function is evaluated.

A Monte Carlo approach could involve sampling from g(+) in a random or quasi random
way, evaluating the density at those points, and then evaluating the integral numerically at a
finite number of points. Such an approach should yield consistent estimates for the expected
sufficient statistics so long as the draws are held fixed across products within a stockout
interval. One way to generate random draws from g(-) is to pick an ordering for stockouts
and then successively draw from the negative multinomial distribution. This requires that
we know the probability of different stockout patterns (A then B then C, etc.) in order
to weight our draws appropriately. When computing the probability of different stockout
orders becomes difficult, continuous approximations generally become more reasonable. Most
of these results are well described in the literature on queuing theory and operations research.

For extremely high dimensional problems we might find that even drawing from g(-)
becomes too burdensome. In this case we could consider simulating consumer purchases
(since we know the sales are distributed as a multinomial for a given set of parameters 6). It
is important that we only track those products stocked out and an “all other goods” option.
In this case simulate consumers until all of the products that stocked out in the data have
stocked out during that period, and we can count the fraction of all other good consumers
facing each availability set and compute « directly. The key trick is that we can use the “all
other goods” option rather than having to keep track of other sales for each product, this
means we do not have to use an accept-reject method for simulation, but rather can keep
every draw. It also means that we can expect consistent results even for a finite number
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of simulated chains of consumers. One of the key benefits of our method is that it allows
us to compute the expectation of the missing data by only evaluating over distributions of
the stocked out products, without resorting to computing the likelihood for every possible
permutation of sales. ﬂ

A.4 Latent Types

As discussed in section [3.5] one might worry that our method relies too heavily on the
assumption of exchangeability in some settings. For example, suppose we had daily data
and we knew that there were very different consumer segments making purchases in the
morning and the afternoon. If we then knew a stockout happened sometime during the day,
we might not expect the same distribution of consumer types before and after the stockout.
This would generate latent consumer types, which are not addressed in our baseline model.

In this section, we discuss a method for using finite mixtures to incorporate latent types.
We then show that when we add latent types into a model with latent stockout events, we
require information on the joint distribution of the two sets of mixing parameters: those that
apply to the latent types, and those that apply to the latent stockout events. We discuss
the implication of this for alternative approaches that use simulation.

First consider how one might incorporate latent types in the absence of stock-out events.
Suppose there are two consumer segments, type A and type B, with different tastes for a
characteristic . Each type has its own mean and standard deviation for its taste for =,
denoted 0 = [ua,p,04,05]. In addition, a mixing parameter, 7 indicates the share of
segment A in the population.ﬁ If we consider two products with different prices, and two
consumer segments varying in their distaste for price, then the following choice probabilities
apply for each type (assume non-subscripted elements are the full vector).

exp(d; — ;1)
. 5 -
Diealt:0: 12, 04) / L+ hea, POk — Qittry

/ exp(0; — ;i)

1+ Zk exp((Sk — QG

) ¢<ai‘luA7 UA)

Pth(ﬂC,(;, MB,UB) )¢(ai|ﬂBaUB)

The resulting population shares would then be a mixture of the two:

4TThe reason the “all other goods” formulation is acceptable follows from the so-called “Law of Small
Numbers” which describes how locally all sales behave as independent poissons over short intervals when
the p;’s are fixed.

48Tn many datasets, one observes aggregate annual sales, and uses changes in average annual prices as
the primary source of variation in choice sets. Standard models assume that all consumers face the same
choice set in a particular year, and that they are exchangeable (or 1ID). It is easy to generate exceptions
to this. For example, imagine an iPhone that costs $600 for the first six months, and $400 for the next six
months. Annual sales are reported with an average annual price of $500, and we cannot recover the relevant
structural parameters for the early vs. late purchasers.
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pjt(x7 9) =7 Sth(.ZU, 57 MA?O-A> + (1 - /y) : SjB(x7 57 HUB, O-B)

We could estimate this model using a variety of techniques, including ML, where § =
[0, tea, B, 0a,08,7]. If sjix is computed via simulation, then we call the procedure MSL: @

0 = arg mgxxz yje Inpji(x,0)

jt

This example highlights the fact that likelihood-based approaches are always available for
describing multinomial data.m The challenge with any approach (likelihood or otherwise)
will be in representing the choice probabilities correctly. Furthermore, we require many
draws when p;; is simulated, because the log function is nonlinear. We usually require that
%% — oo and note that MSL is inconsistent for a fixed number of draws.

Another simple estimator would be a method of moments (or method of simulated mo-
ments) approach, in which we utilize the discrepancy between the predicted and actual sales,
and impose the condition that the prediction error is orthogonal to our set of instruments.

Fortunately, the prediction error is a linear function of p;;(6):

éMSM = arg mein (qje — My - pj(0)) * zj.

The optimal instruments minimize the variance of the MSM estimator, and are given by
the score, or z;; = 9p;i®) \When these 1nstruments are used 0 MSM = GML (Train forthcom-
ing) Simulating the score directly involves a p— term and requires using an Accept-Reject

simulator. A simpler (but less efficient) estimator would exploit the fact that prediction
error should be uncorrelated with the set of available products and their characteristics. In
order to pin down ¢ parameters, one could also include higher moments of characteristics.
It may also seem appealing to include moments regarding observed substitution after
stockouts and use this to improve our estimates. Recall the multinomial is a semi-parametric
form; once we fix a parameterization for p;;(#), our focus is on pinning down the mapping, not
fitting the cell counts. We are already using all of the stockout information in identification of
the choice probabilities, and ML estimation achieves the semi-parametric efficiency boundﬂ

49Tt turns out optimization for these problems is actually quite difficult, even though writing them down
is easy.

50The multinomial distribution is often considered a “non-parametric” distribution for this reason.

51Relatedly, random-coefficients demand estimators like that in Berry, Levinsohn, and Pakes (1995) use a
mapping between parameters and data to produce choice probabilities. Those estimators include an error
in the space of latent utilities rather than in the space of choice probabilities (i.e., the product-specific
unobservables, £;;’s), and require that the MSM condition on choice probabilities holds exactly. This is
essentially the same problem we face: under the “true” model, each consumer has her own f;, but the
data do not include information about this latent consumer type. Stockouts are another example where
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Now we add latent stockouts to the estimation. Suppose we observe a machine at 4pm
and at 8pm. There are still two types of customers: students and administrative staff,
with different distributions of preferences for snack foods. Each ; is drawn from either
Bi ~ (bs, Wg) or B; ~ (ba, W) for students and administrators respectively. We know that
the staff all leave at 5pm sharp, and the students are around until at least 8pm. This scenario
is a bit problematic, because we do not expect the same proportions of students and staff
before and after the stockout, and they are thus non-exchangeable.

In cases where such phenomena are important, We could specify the random coefficients
choice probabilities for students and staff before the stockout as p;(a,;),p;(a,,) respec-
tively, and after the stockout as p;(b, 6;), p;(b,8,). For a guess of § = [f,, 05] we know all four
choice probabilities. Now we have a four-element mixture with three mixing parameters; A
governs before and after the stockout and +’s indicate the share of each subpopulation before
and after the stockout. Market shares are now given by:

in‘tt = A [api(a,05) + (1 = 7)p;(a, 0,)] + (1= A) [wp; (b, 05) + (1 — )i (b, 6,)]

The same two approaches we used before are available. We can work with the “mixed”
probability or we can impute the sales (sufficient statistics) for each of the four cases and
use an EM-type procedure.

In the baseline case without latent types, the model implies a distribution on A (condi-
tional negative binomial), which is easy to integrate out. We could use a similar technique
if we fixed:

ﬁj (a’ 0) = 'Vapj(av 95) + (1 - %)pj (CL, 0a)
ﬁj (bv 0) = prj(b7 (98) + (1 - 7b>pj (bv 011)'

While this procedure would work, we would lose smoothness in the choice probabilities,
which makes optimization difficult.

The alternative approach implies imputing sales for all four cases. However, the resulting
integrals are over the joint distribution of A\, y. While we knew the marginal distribution of A,
we do not know this joint distribution without more data or assumptions. One could assume
that all administrative staff leave at 5pm sharp, which would imply a joint distribution.
Alternatively, one could add free parameters to the model. However, doing this several

data relevant to the choice probability computation is unobserved, except now it is the a;’s. Thus, the two
types of estimators represent two ways to handle these sorts of problems. One possibility is to impute the
missing sufficient statistics throughout the dataset (this is how we handle stockouts). The other is to specify
a more complicated mixture form for choice probabilities, which integrates out the latent variable (this is
how BLP-style estimators deal with random coefficients). Just as we can (and do) formulate the stockout
problem as a mixture of choice probabilities across availability regimes, we could in fact write the random
coefficients model as a (finite-mixture) missing data problem if we discretized the type-space. An example
of a paper that does this (although not explicitly as such) is Bajari, Fox, and Ryan (2006).
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times for each stockout scenario would dramatically increase the parameter space. We would
probably want to enforce some additional conditions on v in this approach. It should also be
clear that simulating consumer utilities to generate probabilities is not going to solve this,
because we still need to specify the joint distribution of (A, 7).

A.5 Identification Details for Random Coefficients Specification

Identification of nonlinear parameters in a random-coefficients specification comes from the
fact that the sales of two products 7, £ will be differentially affected by a stockout of product [
depending on how similar x;, zj are to z;. In the case where we have only one continuous, real-
valued zj; characteristic with a random coefficient, we can consider the choice probabilities
for good j before and after the stockout of good I. That is a; = {a;} \ {{}.

ns

1 1 & exp|d; + ov;x;
pjt(e) - P Z [ J]

ns = 143 hca, exXPldi + ovizy]

_ expld; + ovz;]
(0) = —
Pit(6) ns Z 1+ 3 ea €xpldi + ovizy]

B Z expld; + ova;] 14 cq, XDldy + ov;g]
ns 143 cq, expldi + Jvzxk] 1+ ZkEa; expldy, + ov;xy)

1 it at,xda)
nszl— Py(ay,x,d, o)

Where the last equation follows because:

L+ eq explde +oviz] 1437, expldi + oviay] expld; + ov;z]
143 ca, €Xpldi + ovizy] 14+ > kca, DAy +ovizy] 1437, o expldy + oviay]
= 1- Blt(ataxadao—)

Specifically, for each consumer type ¢ we inflate the probability of buying good j by a
factor proportional to the probability that type ¢ bought the stocked-out good [ H Thus, we
can think about a stockout as providing information not only about the level of pj;, but also
about the ratio of the choice probabilities before and after a stockout.

~ Zns Piji(ar,x,d,o)
2 i=1 1—Py;(at,x,d,0)

Djt B Zz 1P2]t(at7X7d70)

52Tn the case of the plain logit model, Py is constant across all types ¢, and we recover the IIA property
so that all products are inflated by the same factor

1—
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Thus, identification comes from the fact that the correlation between choice probabilities
(pjt, pie) is determined by o(z; — ;).

A.6 Comparison of Likelihoods Under Alternative Choices for g(-)

In section [3.2] we show that the likelihood for the dataset can be written down as the
sum of the fully-observed and partially-observed observations, where the partially-observed
observations must be integrated over the unobservable stockouts. Recall equation @D:

L(y|a, X, 9) - l(y0b5|aObS7 Xobs; ‘9) + / l(ymis|amis; Xmis e)g(amis|aob57 Yy, X, Q)aamis

This is the true likelihood of the observed data (a,x,y) given the parameter 6. Therefore
any 0 that maximizes L(-) yields a consistent estimate of the true ;.

The integral in (@ is not easy to solve. Standard approaches do not solve @, but rather
solve some other problem by substituting in a different g(-). For example, in the case where
we ignore the missing data it would be as if we set g(-) = 0 everywhere (which is not a
proper density distribution). Or in the case of full availability it would be as if we set g(-)
to be a delta function that took on value 1 only at the full availability value of a. Assuming
stockouts happen at the beginning or the end of the period places similar structure on g(-)
(making it a delta function). The problem with this is that g(-) does not have any free
parameters, but is completely specified by the demand parameters as a conditional negative
binomial.

For example, let A denote the fraction of consumers arriving before the stockout and
1 — X denote the fraction of consumers arriving after the stockout. We could compute the
expected sales for each product before and after the stockout:

Ap; :
Bl = / — NI
[q;7 "] q /\pj+(1—A)pjf( JOA Vj

BlgT) = g - Bl

This is essentially what we do in the E-Step of our EM procedure. An alternative might
be to consider the marginal data augmentation framework of Tanner and Wong (1987), in
which we think of the stockout time A as the missing data and estimate it as an additional
parameter. In general this approach works when the integral is single dimensional because
the integrand is a convex combination of choice probabilities. That is, there might exist a A
such that:




If this were true we could treat A as an additional parameter to estimate. Unfortunately,
we don’t have a single equation, but rather a set of J equations, and only a single A. Thus
only in very special (degenerate) cases can a single A satisfy all J equations. P°| That is, any
A which gives a consistent expectation of some j will not give a consistent expectation for
some other 5’7

This highlights the importance of always letting the E-Step operate on the sufficient
statistics for estimation, rather than some other quantity. In our case, the sufficient statis-
tics are sales under each regime, rather than stockout times. Our approach does follow the
marginal data augmentation framework of Tanner and Wong (1987), but it works by con-
sidering a model where we know sales under all availability sets (even though these aren’t
directly observed), rather than integrating the likelihood at each guess of the parameters.

A.7 Additional Results

Table [§| reports the estimates of the product dummies from each of the models estimated on
the base dataset. Table [0 reports results of a second-stage regression of the fitted coefficients
on product dummies on observable product characteristics to provide the mean levels of
the tastes for these characteristics. The R? from these regressions is relatively low in the
case of the nested-logit models. This indicates that the size of the unobservable §; is large
in our application, and highlights the need for product dummies. The R? in the single A
case is about 0.25, but this doubles to about 0.50 when we use category-specific X’s. In a
second-stage regression that includes category dummies, the R? improves significantly. The
random-coefficients model allows for greater variation in the fitted product dummies, and
has a higher R? in the second-stage regression. (However, the likelihood from this model is
lower than that under the nested-logit specification.)

53The independent poisson model as used by Anupindi, Dada, and Gupta (1998) is such a degenerate case.
5 Notice that this is true for a generic f(6). As we’ve noted previously, stockouts imply a particular
distribution on f(-), which also prevents A from being a free parameter.
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Single Category Nested | Five Category Nested | Random Coefficients

Full Ignore EM | Full Ignore EM Full Ignore EM
PopTart -5.49  -6.29 577 1-693 -6.36 -5.97|-12.70 -6.18 -11.35
Choc Donuts -5.52  -6.18 -5.69 | -6.98 -6.25 -5.87 | -895 -6.08 -8.11
Ding Dong -5.58  -6.39 -5.83 | -7.18  -6.47 -6.04 | -11.12  -6.28  -9.96
Banana Nut Muffin -5.65  -6.62 -6.00 | -7.40  -6.71 -6.24 | -14.20 -6.49 -12.62
Rice Krispies -5.80  -7.01 -6.28 | -7.85 -7.12 -6.57| -7.76  -6.86 -7.51
Pastry -5.58  -6.45 -5.88 | -7.25  -6.54 -6.10 | -10.92 -6.33 -9.85
Gma Oatmeal Raisin 575 -6.62 -6.08 | -5.26  -6.07 -5.73 | -11.61  -6.52 -10.56
Chips Ahoy -5.83  -6.78 -6.19 | -5.28  -6.17 -581 | -837 -6.67 -7.94
Nutter Butter Bites -5.99 -7.13 -6.44 | -5.33 -6.38 -5.98 | -8.07 -6.99 -7.78
Knotts Raspberry Cookie -6.00  -7.14 -6.45 | -5.34  -6.39 -599| -9.21 -7.00 -8.68
Gma Choc Chip -5.65  -6.54 -5.98 | -5.21  -596 -5.64| -888 -6.42 -8.30
Gma Mini Cookie -5.84  -6.70 -6.17 | -5.29  -6.17 -5.82 | -7.55  -6.60 -7.28
Gma Caramel Choc Chip -5.81  -6.54 -6.07 | -5.28  -6.06 -5.75|-10.73 -6.45 -9.75
Rold Gold -5.12 -6.25 -5.54 | -4.40 -7.00 -5.65| -9.47 -6.10 -8.73
Sunchip Harvest -5.15  -6.33 -5.59 | 441 -7.11  -5.71| -6.67 -6.18 -6.48
Dorito Nacho -5.22 -6.53 -5.74 | -443 -738 -H87| -6.96 -6.36 -6.79
Cheeto Crunchy -5.22  -6.50 -5.72 | -443 -735 -58 | -8.04 -6.34 -7.63
Gardetto Snackens -4.96  -6.03 -5371-435 -6.71 -547| -7.80 -590 -7.38
Ruffles Cheddar -5.31  -6.71 587 -4.46 -7.63 -6.01| -7.59 -6.54 -7.32
Fritos -5.53  -7.18 -6.19 | -4.53 -826 -6.35| -7.50 -6.97 -7.33
Lays Potato Chip -5.58  -7.25 -6.26 | -4.55 -836 -6.43| -7.67 -7.04 -7.47
Munchies Hot -5.24  -6.55 -5.77 | -444 -738 -590| -7.15 -6.38 -6.95
Misc Chips 2 -5.68  -7.45 -6.39 | -4.58 -8.63 -6.57| -7.62 -7.23 -7.47
Munchies -5.45  -6.99 -6.05 | -4.51  -8.02 -6.21| -8.03 -6.79 -7.71
Misc Chips 1 -5.44  -6.93 -6.03 | -4.51 -790 -6.17| -7.37 -6.74 -7.15
Dorito Guacamole -5.51  -7.16 -6.18 | -4.53 825 -6.34| -7.20 -6.95 -7.11
Snickers -4.75  -5.53 -5.05 [ -5.21 -5.15 -4.69| -9.01 -544 -822
Twix -4.90  -5.87 -5.28 | -547 -539 484 | -9.08 -575 -833
M&M Peanut -5.05 -6.15 -5.48 | -5.72  -5bH8 497 | -891 -6.01 -8.23
Reeses Cup -5.41  -6.90 -6.02 | -6.33 -6.12 -531| -88 -6.71 -8.33
Kit Kat -5.46  -7.00 -6.09 | -6.41 -6.19 -5.35|-10.83 -6.80 -9.94
Caramel Crunch -5.46  -6.99 -6.09 | -6.41 -6.19 -5.36| -9.27 -6.80 -8.69
M&M -5.40  -6.89 -6.01 | -6.33 -6.11 -5.30 | -10.95 -6.70 -10.02
Hershey Almond -5.60  -7.28 -6.29 | -6.65 -6.39 -549| -8.78 -7.06 -8.35
Babyruth -5.63  -T7.27 -6.30 | -6.68  -6.41 -5.50 | -11.93  -7.07 -10.88
Starburst -5.53  -6.34 -5.83 | -5.10  -5.59  -5.45|-12.60 -6.25 -11.30
Kar Nut Sweet /Salt -5.69  -6.64 -6.05 | -5.15 -5.74 -5.59 | -842 -6.52 -7.95
Snackwell -5.96  -7.20 -6.45 | -5.25  -6.00 -5.83 | -882 -7.04 -838
Skittles -5.58  -6.50 -5.92 | -5.11  -5.64 -549|-15.04 -6.38 -13.35
Payday -5.84  -6.89 -6.26 | -5.21  -5.89 -5.73| -897 -6.77 -845
Oreo -6.22  -7.73 -6.83 | -5.34  -6.24 -6.06 | -10.38 -7.54 -9.74
Peanuts -5.89  -7.13 -6.38 | -5.22  -592 576 | -6.98 -6.97 -6.94
Peter Pan (Crck) -5.99  -7.20 -6.48 | -5.27 -6.04 -586| -8.10 -7.06 -7.85
Hot Tamales -5.81  -6.67 47-6.12 | -520 -5.81 -5.65 | -12.08  -6.57 -10.82

Table 8: d; Parameters



Single Parameter Nested

Category Specific Nested

Random Coeflicients

Full Ignore EM Full Ignore EM Full Ignore EM

Constant  -5.62  -7.25 -6.30 | -4.63 -6.81 -5.74 | -6.30 -7.04 -6.41
(0.19) (0.27) (0.21) | (0.46) (0.37) (0.21) | (0.37) (0.24) (0.32)

Calories 5.10 6.55 5.76 6.75 -3.04 2.17 7.84 6.35 7.71
(2.21) (3.05) (2.44) | (5.23) (4.26) (2.36) | (4.25) (2.70) (3.72)

Fat -2.59  -3.37 -2.93 | -4.71 0.37 -1.74 | -3.01 -3.26 -3.06
(1.09) (1.50) (1.20) | (2.57) (2.10) (1.16) | (2.09) (1.33) (1.83)

Sodium 0.09 0.07 0.10 | -1.14 0.38 0.08 | -3.73 0.08 -3.01
(0.41) (0.56) (0.45) | (0.97) (0.79) (0.44) | (0.79) (0.50) (0.69)

Carbs -247  -2.33 -2.40 | -0.76 0.54 -1.57 | -1.91 -2.35 -2.00
(1.23) (1.70) (1.36) | (2.92) (2.38) (1.31) | (2.37) (1.51) (2.07)

Sugar -0.14  -0.01 -0.09 | -3.30 2.29 0.66 | -8.88 -0.02 -7.17
(0.50)  (0.69) (0.55) | (1.18)  (0.96) (0.53) | (0.96) (0.61) (0.84)

Choc 0.17 0.21 0.19 | 0.14 0.44 0.41 0.84 0.20  0.75
(0.14)  (0.20) (0.16) | (0.33) (0.27) (0.15) | (0.27) (0.17) (0.24)

Cheese 0.18 0.17 0.18 | 041 0.01 0.18 | -0.19 0.17  -0.12
(0.16) (0.22) (0.18) | (0.38) (0.31) (0.17) | (0.31) (0.20) (0.27)

R? 0.218 0.253 0.219 | 0.525  0.608 0.480 | 0.917 0.244 0.900

Table 9: d;’s on Characteristics
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