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1 Introduction

Social, risk, and time preferences are the three principal types of preference variation in economic

models. In this paper we provide a general analysis of the importance of time preferences in

predicting individual di¤erences in behavior. We measure time preferences by asking subjects to

make 27 binary choices between an immediate monetary reward and a delayed monetary reward of

larger size (using potentially real rewards and a computerized implementation of a questionnaire

devised by Kirby et al., 1999). We use these choices to estimate an intertemporal discount function

for each subject. We then calculate the correlation between subjects�discount rates and subjects�

�eld behaviors. We focus on behaviors that involve an intertemporal tradeo¤ and therefore should

be associated with intertemporal preferences. These include various measures of smoking, drinking,

exercise, nutrition, saving, borrowing, wealth, and gambling.

We �nd that the discounting glass is half full. On the one hand, �eld behaviors and discount

rates are only weakly correlated� no correlation is greater than 0.28 and many correlations are close

to zero. By this metric, discount rates do not appear to have a large degree of predictive power �

a correlation coe¢ cient of 0.10 implies an R2 of only 1%.

However, such low R2 statistics are only the beginning of the story. We �nd that each of several

other individual-level variables, such as sex, age, depression symptoms, education, and cognitive

ability, typically has less predictive power than our measure of time discounting.1 In many of

the statistical horse races that we conduct among these potential predictors, the discount rate is

the runaway winner. Moreover, the relative success of the discount rate rises even further when

we aggregate the �eld behaviors into an index. The correlation between the estimated discount

rate and the sum of the normed �eld behaviors ranges from 0.09 to 0.38 (implying R2 values that

range from roughly 1% to 15%). We conclude that the discount rate, even when measured with

a brief laboratory task, is one of the most important variables that we have to explain individual

di¤erences.
1Such small in�uences of speci�c personality traits is consistent with �ndings in both the psychological and

economic literatures on individual di¤erences, even for well-measured traits such as intelligence (e.g., Ross & Nisbett,
1991; Richard et al., 2003; Swann & Selye, 2005; Chabris et al., 1998; Barsky et al., 1997; see also Cutler & Glaeser,
2005).
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We present a model that uni�es these �ndings. Our model assumes that behavior derives from

three sources: traits that predict behavioral impatience (e.g., the discount rate), traits that predict

other broad classes of behavior (e.g., the coe¢ cient of relative risk aversion), and idiosyncratic

factors (e.g., residence in a state with low cigarette taxes). Using this framework, we explain why it

is unlikely that any single trait would have substantial predictive power for any particular behavior.

However, the framework predicts that an aggregated index of behavior should be relatively highly

correlated with particular traits. For example, an index of behaviors that involve intertemporal

tradeo¤s should in principle be highly correlated with a laboratory measure of a discount rate. Our

empirical results con�rm this property.

This paper contributes to the literature on intertemporal choice in several ways. We base our

analysis on three new databases that have not been previously studied. To our knowledge, our

empirical analysis has one of the largest sample sizes (555) of any study of time preferences and

�eld behaviors yet published.2 Our data have two other desirable features. First, our subject pool,

though composed of convenience samples, is reasonably diverse on all demographic characteristics

except geography. Second, we measure 15 �eld behaviors. Almost all previous studies have focused

on a single �eld behavior, including those in which subjects were selected for substance abuse or

impulse-control disorders (reviewed by Reynolds, 2006; Chabris et al., 2008). We do not engage

in empirical cherry-picking. We report results for every �eld behavior in our dataset that was

hypothesized to re�ect impatience or impulsivity� warts and all. This provides a balanced view of

the successes and the failures of the time preference paradigm. Finally, we argue that it is important

to compare predictive power across explanatory variables (instead of relying on the absolute level

of an R2 statistic) and that it is important to study indices of behaviors rather than individual

behaviors. When judged this way, discount rates turn out to be a key variable in explaining

individual di¤erences in choices involving intertemporal tradeo¤s.

The paper is divided into four sections. Following this introduction, in section II we describe

our three new databases. In section III we summarize our econometric methods and report our

empirical results. In section IV we present our theoretical framework. In section V we conclude by
2Other studies with similar-size samples (e.g., de Wit et al., 2007) have been concerned with correlating discount

rates with personality traits, intelligence, and other individual di¤erence measures, rather than with �eld behaviors.
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discussing the limitations of this study and directions for future research.

2 Data description

Dozens of studies have demonstrated a relationship between laboratory measures of discounting and

various behaviors and traits, including smoking (e.g., Bickel et al., 1999; Mitchell, 1999), gambling

(e.g., Dixon et al., 2003), cognitive ability (e.g., Benjamin et al., 2006; for a review see Shamosh

& Gray, 2008), heroin use (e.g., Kirby et al., 1999), age (e.g., Green et al., 1994), alcoholism

(e.g., Petry, 2001), and brain injury (e.g., Dixon et al., 2005).3 In general, this literature shows

that higher rates of discounting are associated with problematic and impulsive behaviors, drug

use being one particularly well-studied domain (e.g., Reynolds, 2006). Many discounting studies

target a clinical population (alcoholics, pathological gamblers) and infer discount rates from a series

of choices between a smaller, more immediate reward (usually real or hypothetical money) and a

larger, delayed reward, which are then compared to the discount rates of control subjects who do

not have the diagnosis in question. To our knowledge, no previous paper has used a wide range of

behaviors to estimate and compare the predictive strength of the discount rate and the predictive

strength of other demographic variables. The present study utilizes data from three independent,

relatively large, diverse samples, which feature numerous traits and �eld behaviors.

2.1 Three Datasets

Intertemporal choice data were collected as part of three independent studies. For all three samples,

we used the 27�choice delay-discounting task created by Kirby et al. (1999), and in all studies we

administered the task by computer. Choice trials were presented to subjects in a �xed order. On

each trial, subjects indicated their preference for either a smaller, immediate reward (SIR) or a

larger, delayed reward (LDR). The trial order and speci�c reward amounts and delays are shown

3There is also a nascent literature that relates di¤erent �eld measures of discounting. For example, Cutler and
Glaeser (2005) argue that such relationships are weak because �eld behaviors that have intertemporal consequences
have low intra-individual correlations. Schar¤ and Viscusi (2008) report evidence of �eld behaviors that have strong
relationships at the group level. Our model (Section 4) reconciles these perspectives.
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in Table 1. Table 2 shows summary descriptive statistics for the samples we use in our analysis.

Each of the three samples is described below.

2.2 Weight Study

2.2.1 Subjects

One hundred and forty-six individuals participated in the study.4 All subjects were recruited from

the greater Boston area via advertisements appearing in a free community newspaper and postings

in various public spaces. Because the study was primarily concerned with the relationship between

body mass index (BMI) and measures of impulsivity, separate advertising targeted normal-weight,

overweight, and obese subjects, o¤ering $20 and a chance at earning additional money in return for

one hour of participation in the laboratory and willingness to fast for 12 hours prior to the session.

All subjects were high school graduates, English speakers, and reported having no family history

of serious mental illness. BMIs of the subjects ranged from 18.7 to 60.5 (M = 29.0, SD = 7.1).

Current U.S. government standards specify that a BMI of 18-25 is labeled �normal weight,�a BMI

between 25 and 30 is labeled �overweight,�and a BMI 30 or greater is labeled �obese.�

We exclude subjects who always chose either the delayed or the immediate reward (N=5),

because for those subjects we cannot estimate a discount rate based on the data.

In addition, we do not include subjects whose discount rates were estimated to be in the top

5% (N=7) of the empirical distribution of the estimated discount rates. We exclude the top 5%

because our data are extremely right-skewed (before the exclusion): the minimum discount rate is

4:08 � 10�6, the 5th percentile is 3:48 � 10�4, the 10th percentile is 0:001, the 50th percentile is

0:007, the 90th percentile is 0:044, the 95th percentile is 0:102, and the maximum is 0:241. As a

consequence of this skewed distributional pattern, regressions are dominated by a few outliers in the

right tail of the data. To explore the robustness of our results, we have redone all of our analysis

using the percentile of the discount rate (instead of the raw discount rate) without excluding the top

4Eighteen additional subjects were tested but were immediately excluded from data analysis for one or more of
the following reasons: reported brain injury; reported mental illness; reported drug use; had di¢ culty understanding
directions; was unable to complete the protocol; was previously tested.
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5%. This nonlinear transformation of the discount rate data prevents the right tail observations

from dominating the analysis and none of the qualitative results of this study change.

Finally, we exclude subjects who have missing data in any of the variables we study (N=8).

The three types of exclusions leave us with a �nal sample for the Weight Study of 126 subjects.

2.2.2 Measures

Delay-discounting. The Kirby et al. (1999) 27-item delay-discounting task was administered using

Psyscope 1.2.5 software (Cohen et al., 1993) on Apple Macintosh computers running OS 9. To make

the task incentive compatible, each participant had a 1-in-6 chance of receiving an additional $11

to $85 monetary reward (in addition to the promised $20 show-up fee), re�ecting their indicated

preference on one randomly selected trial. At the end of the laboratory session, the participant rolled

a six-sided die; if a 6 was rolled, the participant blindly selected one card from a box containing

cards numbered 1�27 to determine the trial that would be paid o¤. If, on that trial, an immediate

reward was selected, the amount was added to the $20 and a check request for the total was

submitted on the same day (or the next business day) to the research administration o¢ ce. If a

delayed reward was selected, a $20 check request was made immediately, and a second request for

the reward amount was submitted after the speci�ed number of days had elapsed. Checks were

mailed to subjects approximately two weeks after requests were submitted.

Demographic variables. Subjects reported their age (in years), sex (male or female), and highest

level of education (which was used to estimate a total number of years of education; e.g., high school

= 12 years, college degree = 16 years, law school = 19 years, etc.).

Health-related variables. Subjects reported on a variety of health-related behaviors, including

smoking, dieting status, and physical exercise (see Appendix 2a for exact item wording). BMI

was used to assess each participant�s body weight adjusted for height. Heights and weights were

measured in the laboratory using measuring tape and a Taylor 300 portable scale. Each participant�s

BMI was calculated using the standard formula: weight (kg)/[height (m)]2.

In addition, the Beck Depression Inventory-II was used to measure depression symptoms. The

BDI-II (Beck et al., 1996) is a 21-item self-report questionnaire that assesses the presence and
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severity of depression symptoms during the previous two weeks. Questions correspond to the criteria

for major depressive disorder outlined in the fourth edition of the Diagnostic and Statistical Manual

of Mental Disorders. Each question is multiple-choice and each response is scored on a 4-point (0-

3) scale. Responses are summed into a total score that ranges from 0 to 63, with higher scores

suggesting more severe depression: A total score between 0 and 13 indicates minimal depression,

14-19 indicates mild depression, 20-28 indicates moderate depression, and 29-63 indicates severe

depression.5

2.2.3 Procedure

Subjects were tested individually in private rooms around mid-day.6 After giving informed consent,

each participant completed the BDI-II and then was measured for height and weight (in each case

with shoes removed).

Each participant was next administered a questionnaire that contained some of the health-

related measures and the demographic measures mentioned above, as well as additional questions

not analyzed here. Subjects then completed the delay-discounting task. The task�s instructions

were closely adapted from Kirby et al. (1999) and explained that each participant would be asked

to choose between receiving a SIR or a LDR on 27 choice trials. The instructions emphasized that

subjects should take the task seriously, because at the end of the study, there would be a 1-in-6

chance that one of their choices would be randomly chosen and implemented. Each participant

verbally summarized the instructions to the investigator and any misunderstandings were corrected

before the task began.

Subjects then completed a task that involved making decisions about pictures of food (not

reported here), and a second questionnaire that included the remaining health measures, includ-

ing dieting and alcohol consumption. At the end of the session, subjects followed the procedure

mentioned above to determine what (if any) additional payment they would receive based on their

5The BDI-II has high internal consistency among college students (0.93) and clinical populations (0.92) and
adequate validity (Beck et al., 1996).

6Each subject brought a lunch, and was randomly assigned to eat that lunch either before or after completing
the study (50% chance of being assiged to each condition). This variable was not considered in any of the analyses
reported in this paper.
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discounting task choices.

2.3 Cognition study

The Cognition study examined individual di¤erences in various cognitive and decision making

abilities. Some results from this study are reported elsewhere (e.g., Chabris, 2007).

2.3.1 Subjects

One hundred and thirty-six individuals participated in this study.7 All subjects were recruited from

the greater Boston area via advertisements appearing in a free community newspaper, postings in

various public spaces, and lists of volunteers for studies in the Harvard University psychology

department. They were o¤ered $50, as well as a 1-in-6 chance of winning up to $85 more, for

their participation. Approximately two thirds were university students and one third were local

community residents. All subjects reported no use of drugs or psychoactive medications, no history

of psychiatric or neurological illness, �uency in English, and having completed high school.

We exclude subjects who always chose either the delayed or the immediate reward (N=3),

because for those subjects we cannot estimate a discount rate based on the data.

As in the Weight Study, we do not include subjects whose discount rates were estimated to be

in the top 5% (N=6) of the empirical distribution of the estimated discount rates. We exclude the

top 5% because our data are extremely right-skewed (before the exclusion): the minimum discount

rate is 2:87�10�4, the 5th percentile is 7:83�10�4, the 10th percentile is 0:001, the 50th percentile

is 0:006, the 90th percentile is 0:036, the 95th percentile is 0:084, and the maximum is 0:281. As a

consequence of this skewed distributional pattern, regressions are dominated by a few outliers in the

right tail of the data. To explore the robustness of our results, we have redone all of our analysis

using the percentile of the discount rate (instead of the raw discount rate) without excluding the top

5%. This nonlinear transformation of the discount rate data prevents the right tail observations

7Sixteen additional subjects were tested but were immediately excluded from data analysis for one or more of
the following reasons: reporting brain injury, mental illness, or drug use; having di¢ culty understanding or following
directions; not meeting eligibility criteria (such as not being a native English speaker); failing to complete the entire
testing session; having data missing for one or more of the cognitive tasks (usually due to equipment failure or
experimenter error).
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from dominating the analysis and none of the qualitative results of this study change.

Finally, we exclude subjects who were missing data in any of the variables we study (N=24).

The three types of exclusions leave us with a �nal sample for the Cognition Study of 103 subjects.

2.3.2 Measures

Delay-discounting. The task and procedure were the same as in the Weight study.

Demographics. A self-report questionnaire was used to measure age, sex, height and weight

(from which BMI was calculated as in the Weight Study), and highest level of education completed

(which was converted into years of education as in the Weight Study).

Cognitive ability composite. Subjects completed a series of eight tests described in Appendix 1a.

2.3.3 Procedure

Subjects were tested individually in private rooms. After giving informed consent, each participant

completed the self-report demographic questionnaire, followed by a series of computerized and

paper-and-pencil tasks that took approximately 3.5 hours. Included in this series were the delay-

discounting task (which was administered as in the Weight Study) and the cognition measures

mentioned above, as well as several other personality and decision-making tests not reported here.

At the end of the session, subjects followed the procedure used in the Weight Study to determine

what (if any) additional payment they would receive based on their discounting task choices. All

payments were made by check following the procedure described for the Weight Study.

2.4 Web study

The Web study examined individual di¤erences in various cognitive abilities in relation to personal

background characteristics (especially educational and occupational specialization) and behaviors.

No laboratory visits were involved; subjects completed all components of this study via the Internet.

Other results from these data are reported elsewhere (e.g., Chabris et al., 2007; Liebert et al., 2007).
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2.4.1 Subjects

Four hundred and twenty-two individuals participated in the study.8 Subjects were recruited

through advertisements posted on community web sites (e.g., Craigslist) and direct emails to special

membership lists (e.g., science graduate students). Because these data were collected as a part of

a study primarily concerned with investigating di¤erences in cognitive ability among individuals

with di¤erent types of post-secondary training and occupations, recruitment materials speci�ed

that prospective subjects should hold a college degree (however, approximately 8% of the total

sample reported having fewer than than four years of post-secondary education). Advertisements

o¤ered a $10 gift certi�cate to Amazon.com and, similar to the Weight and Cognition studies, a

1-in-6 chance of winning an additional gift certi�cate worth up to $85 in exchange for completing

a series of cognitive tasks and questionnaires online lasting approximately 45 minutes. All subjects

reported being English speakers and U.S. citizens or residents.

Of the 422 original subjects we do not include subjects who had three or more responses below

200 ms on the discounting task (N=5), because such rapid responses may indicate rote responding.9

We exclude subjects who always chose either the delayed or immediate reward (N=8), because for

those subjects we cannot estimate a discount rate based on their data.

As in the Weight and Cognition Studies, we do not include subjects whose discount rates were

estimated to be in the top 5% (N=19) of the empirical distribution of the estimated discount rates.

We exclude the top 5% because our data are extremely right-skewed (before the exclusion): the

minimum discount rate is 2:39 � 10�6, the 5th percentile is 4:83 � 10�4, the 10th percentile is

8:63 � 10�4, the 50th percentile is 0:006, the 90th percentile is 0:025, the 95th percentile is 0:041,

and the maximum is 0:230. As a consequence of this skewed distributional pattern, regressions

are dominated by a few outliers in the right tail of the data. To explore the robustness of our

results, we have redone all of our analysis using the percentile of the discount rate (instead of the

raw discount rate) without excluding the top 5%.

This nonlinear transformation of the discount rate data prevents the right tail observations from

8The Web study used a di¤erent screening questionnaire than the Weight and Cognition Studies. The Web screen
did not ask about several of the exclusion criteria (e.g., mental illness) that were used in those studies.

9This criterion was also applied to the other two datasets, but no subjects in those studies were excluded.
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dominating the analysis and none of the qualitative results of this study change.

Finally, we exclude subjects who have any missing data in the variables that we study (N=64).

The three types of exclusions leave us with a �nal sample for of 326 subjects for the Web Study.

2.4.2 Measures

Cognitive ability composite. Subjects completed a series of 10 tests to measure individual di¤erences

in cognitive ability, nine of which were based on the �MRAB�(Minicog Rapid Assessment Battery)

developed by Shephard and Kosslyn (2005) (see Appendix 1b for a complete listing of the cognitive

tests). Performance on each test was measured as the percentage of trials answered correctly,

except for Verbal Fluency, which was scored as the total number of di¤erent words generated in

three one-minute trials.

Delay-discounting. Kirby and colleagues�(1999) delay-discounting task was administered using

Psyscope-FL, a tool for Macintosh OS X that compiles PsyScope experiments into Flash movies

that run on the participant�s personal computer and transmit the response data back to a server. As

in the Weight and Cognition studies, subjects were given a 1-in-6 chance of receiving their preferred

reward on one randomly selected trial to encourage truthful revelation of preferences.

Health-related variables. Subjects self-reported a variety of personal heath-related behaviors,

including smoking, physical exercise, healthy food choices, dental health (frequency of dentist visits,

�ossing frequency), and prescription drug compliance (see Appendix 2b for exact item wording).

Finance-related variables. Subjects self-reported a variety of personal �nance-related behaviors,

including percentage of income saved, gambling, late credit card payments, and wealth accumulation

relative to friends and siblings (see Appendix 2c for exact item wording).

2.4.3 Procedure

Individuals who responded to advertisements were sent an e-mail message containing a link to the

Web-based battery of cognitive tests and questionnaires. After providing informed consent, sub-

jects completed the 10 cognitive tests in order, followed by a series of questionnaires that included

the delay-discounting task and a �lifestyle questionnaire�containing the health- and �nance-related
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questions. All subjects received their $10 gift certi�cate to Amazon.com by email soon after com-

pleting the study, and approximately one-sixth of subjects were emailed an additional gift certi�cate

in an amount determined by their choice on one (randomly selected) delay-discounting trial, after

the speci�ed delay. These rewards were normally emailed on the same or next business day that

they were due to be paid.

3 Results

3.1 Estimation of Discount Functions

We use a generalized hyperbola to model time preferences. Speci�cally, we assume that for each

subject i, the discounted value of a one unit reward in � days is

D(�) =
1

1 + �i�
:

A plot of D(�) is given in Figure 1. Previous studies linking discount rates to behavior have adopted

this function as well (e.g., Mazur, 1987; Kirby & Marakovic, 1996; Kirby et al., 1999; de Wit et al.,

2007; Myerson & Green, 1995; Rachlin et al., 1991).10

This discount function D(�) is a special case in the family of hyperbolic discount functions

derived by Loewenstein and Prelec (1992):

D(�) = (1 + ��)�
=�:

In this family of discount functions, the discount rate� the rate of decline of the discount function�

is given by
�@D(�)

@�

D(�)
=




1 + ��
:

Hence, the discount rate is decreasing with delay time � . The declining discount rate generates

10We do not use multi-parameter discount functions (e.g., Laibson, 1997), because we want to study a discount
function with only one free parameter; thereby simplifying the comparison between a person�s unique �discount rate�
and their �eld behavior.
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Figure 1: Plot of D(�) when � = :05

dynamically inconsistent time preferences (Strotz, 1957; Ainslie, 1992).

Our speci�cation imposes the common restriction 
 = �. Hence, the discount rate at horizon

� is given by
�@D(�)

@�

D(�)
=

�

1 + ��
:

At horizon � = 0, the discount rate is �: To simplify notation, we refer to parameter � as the

�discount rate,�though it is actually only the instantaneous discount rate at horizon � = 0:

Taken literally, these time preferences imply that a subject i chooses Y in � days over an

immediate reward of X if and only if the net present value of Y exceeds X :

Y

1 + �i�
�X � 0:

We assume that subjects�preferences experience shocks distributed according to the logistic distrib-

ution with mean 0 and unit variance11 so that subject i chooses the delayed reward with probability

FLogit

�
Y

1 + �i�
�X

�
=

e
Y

1+�i�

eX + e
Y

1+�i�

:

11We �x the variance to 1 so that our likelihood function is maximized at a unique value. Over half of the subjects
in our dataset had consistent responses that could be rationalized by any � 2 [�m; �M ], for some �m < �M 2 R.
For these subjects, the model would not be identi�ed with a free variance parameter.
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Estimates of each subject�s discounting parameter, �̂i, are obtained by maximizing the likelihood

function

Li(�; di) =
27Y
t=1

�
FLogit

�
Yt

1 + �� t
�Xt

��dit �
1� FLogit

�
Yt

1 + �� t
�Xt

��1�dit

where di = (di1; : : : ; di27) is the vector of the 27 binary decisions of subject i. In trial t; dummy

variable dit = 1 if subject i chose the delayed reward Yt in � t days over the immediate reward Xt

(otherwise dit = 0).

In our �nal, post-exclusion datasets, the mean estimated discounting parameter �̂i is 0:015 (sd

0:020) for the Weight sample, 0:009 (sd 0:009) for the Cognition sample, and 0:008 (sd 0:009) for

the Web sample.

3.2 Weight study

The Weight study asks respondents about four health-related variables that are associated with

intertemporal tradeo¤s and thus should be partially predicted by the discount function. These

variables are body mass index (BMI), exercise frequency, whether subjects were on a diet or not

(binary measure), and number of packs of cigarettes typically consumed per week.

Exercise frequency is normalized to 0 for subjects who do not exercise. Similarly, the packs of

cigarettes variable is normalized to 0 for subjects who do not smoke. (For these two variables we

run both OLS and tobit regressions.) These normalizations are used in all three studies: Weight,

Cognition, and Web.

Before running our statistical tests, we multiplicatively transform the behavioral variables so

that in all cases, a greater (transformed) behavioral value is hypothesized to correlate with a higher

discount rate. Speci�cally, exercise frequency is negatively transformed because (untransformed)

exercise is an investment activity and should therefore correlate negatively with the discount rate.

The negative transformation of exercise should therefore correlate positively with the discount rate.

Diet status is likewise negatively transformed� being on a diet is also an investment activity. These

normalizations are used in all three studies: Weight, Cognition, and Web.
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The explanatory variables we use are the estimated discount rates, age, age squared, sex, years

of education, and BDI. Table 3 shows regression results. We run both OLS and tobit regressions

for exercise frequency, and cigarette consumption. For the binary diet variable we use both a linear

probability model and a probit model. For the nonlinear models, we compute a pseudo-R2 statistic

called Efron�s R2, equal to the square of the correlation between the predicted probabilities or

values and the actual values.12

The e¤ects of time preferences are statistically signi�cant at p < 0:01 for exercise frequency and

BMI and statistically signi�cant at p < 0:05 for cigarette consumption.13 For the diet variable,

discounting is not signi�cant.14 Overall, discounting and the other explanatory variables account

for about 14:5%�19:0% of the variance in BMI, smoking, and exercise. The R2 for dieting behavior

is less than 5%.

We also �nd that, on average, the discount rate explains the most variation in each of the

individual variables we study. Table 4 reports the R2 values. The �rst 4 rows of the table correspond

to the four health variables we study and the 5th row is an average of the �rst 4 rows, reporting the

average variance explained by the independent variables. The �rst column reports R2 values for

OLS regressions when the health variables are regressed on all of the explanatory variables. The

subsequent columns report R2 values when the health behaviors are regressed on only one of the

explanatory variables. Because all regressions are OLS regressions, the entries in columns 2-7, with

the exception of column 4, are simply the squares of the correlation between the health variables

and the explanatory variables.15

As Table 4 shows, no variables, including a square function of age, explain as much variance

as discounting. The table also shows that while some variables are good at explaining a particular

behavior (for example, BDI explains a large portion of the variance of consumption of cigarettes),

12For a probit model, for example, Efron�s R2 is simply R2 = 1�
PN
i=1(yi��̂i)

2Pn
i=1(yi��y)2

, where yi are the observed values,

�y is their average, and �̂i is the predicted probability.
13Schar¤ and Viscusi (2008) analyze data on workers�wage-fatality risk tradeo¤s and �nd that smokers�discount

rates are almost twice as big as those of non-smokers.
14While dieting is generally considered a health investment, one potential problem with this variable is that a

person is more likely to go on a diet if he/she is overweight, which could be due to a high degree of impatience.
15We use OLS regressions because the R2�s of the OLS regressions have a simple interpretation as the square of

the correlation and fraction of variance explained. It is not clear what the probit or tobit counterpart should be.
However, as Table 3 suggests, nonlinear regression models do not change the results signi�cantly.

16



discounting is the only variable that consistently explains at least 2% of the variance in each of the

four health behaviors.

We also create two indices for aggregate investment in health activities. Index 1 is the sum

of the four health investment variables we study in this dataset (each separately standardized to

have mean 0 and unit variance). Index 2 is the �rst principal component of these four standardized

variables.16 Table 5 shows the coe¢ cient vector of each component. The �rst principal component

accounts for 35.5% of the common variance. The �rst principal component is constructed with

positive weights on each of the four health variables in Table 5, implying that this component

represents a mechanism that is generally associated with health investment (like patience). The

other components do not have weights with a common sign, suggesting that these components do

not account for domain-general variation in health investments.

Table 6 and Table 7 report regressions of the two indices on each on the explanatory variables.

The �rst columns of both tables report the coe¢ cients, standard errors, and R2 values from OLS

regressions when all explanatory variables are used in the regression. The second columns report

these statistics when only the discounting variable is used as an independent variable, the third

columns report statistics when only the age and age-squared variables are used, and so forth.

Overall, Table 6 and Table 7 look similar. The explanatory variables account for about 25% of

the variance of each index. On its own, the discount rate accounts for approximately 14% of the

variance. Speci�cally, Table 6 shows that the discount rate explains 14:6% of the variance and Table

7 shows that the discount rate explains 14:1% of the variance. No other variable explains such a

large fraction of the variance. The depression measure, BDI, comes in second place, explaining

8:8% and 10:0% of the variance of indices 1 and 2, respectively.

3.3 Cognition study

The cognition study has data on two health behaviors� BMI and exercise frequency. The explana-

tory variables we use are the subjects� estimated discount rates, age, age squared, sex, years of

16Thus the coe¢ cient vectors of the components are extracted as eigenvectors of the correlation (rather than
covariance) matrix of the non-standardized variables.
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education, and a composite score for general cognitive ability. This composite is computed by

extracting the �rst principal component from eight tests designed to measure di¤erent cognitive

abilities. The principal components analysis is done using standardized variables, so that the coef-

�cient vectors of the principal components are the eigenvectors of the correlation matrix of the test

scores. The �rst principal component accounts for 35% of the variance of the eight mental ability

tests (a typical proportion; Chabris, 2007).

Table 8 shows the regressions relating our explanatory variables to the two health behaviors

in this dataset: BMI and exercise frequency. The discounting variable is associated signi�cantly

with BMI (p < 0:05) but it is not associated signi�cantly with exercise frequency (p > 0:10). The

cognitive ability composite is also highly signi�cant in the BMI regression (p < 0:01).

Table 9 shows that on average, the estimated discount rates explain the most variance. The

cognitive ability index comes in a close second (0.4% di¤erence), and explains far more variation

than any of the remaining variables. Previous studies (e.g., Burks et al. 2008; Benjamin et al., 2006)

have shown that cognitive skills are associated signi�cantly with preferences in choice domains such

as risk-taking and saving, so it is no surprise that our cognitive ability index explains a relatively

large portion of the variance in BMI and exercise frequency. That the estimated discount rates have

more predictive power is especially impressive when one considers that the discount rate has the

disadvantage that it is inferred from a brief 27-question task, whereas our cognitive ability index is

extracted from eight di¤erent multi-trial tests, representing a total of 682 questions.

In addition, discounting is the only variable that explains any of the variation of the sum of

the standardized BMI and exercise variables (analogous to index 1 in the Weight study). Table 10

shows that discounting is signi�cant at p < 0:01 and explains 6:9% of the variance. Each of the

other variables explain less than 1% of the variance, and combined they explain only an additional

3% of the variance.

3.4 Web study

The Web study has data for eight relevant health behaviors� BMI, cigarette consumption, exercise

frequency, dental check-ups, overeating, �ossing, selection of healthy food, and following doctors�
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prescriptions. In addition, this data set measures six �nancial behaviors� gambling, paying late

fees on a credit card, paying a credit card bill in full, savings, and wealth.17

The explanatory variables we use are the same as the ones in the Cognition study. The cognitive

ability index is again extracted as the �rst principal component from a set of cognitive tests, but

the ten cognitive tests in the Web study di¤er from the eight cognitive tests in the Cognition study.

The �rst principal component now explains 39% of the common variance.

Table 11 shows OLS regression results for the eight health behaviors. In the BMI regression,

all variables, including discounting but excluding education, are highly signi�cant (p < 0:01) and

explain 15:6% of the variance. The exercise regression has an R2 of 9:6% and the six other regres-

sions have an R2 less than 5:5%. The e¤ect of discounting is positive and signi�cant only in the

BMI regression. Unexpectedly, the coe¢ cient on the discount rate has a negative point estimate

in four out of the eight regressions� exercise, dental check-ups, �ossing, and following doctors�

prescriptions� and the negative estimate is signi�cant in the prescriptions regression.

Table 12 shows OLS regression results for the six �nancial behaviors. The regressions for gam-

bling and paying the credit card bill in full have an R2 of about 11:5%, and 9:1%, respectively. The

four other regressions have an R2 below 4%. Discounting has a highly signi�cant e¤ect in the credit

card bill regression (p < 0:01) but is insigni�cant in all other regressions. In the wealth relative to

siblings regression, the e¤ect of discounting has a negative (though insigni�cant) point estimate.

The Web study is a relatively noisy dataset, obscuring the e¤ects of discounting as well as the

e¤ects of other variables. This may be partly due to the fact that the Web study was not conducted

in a controlled lab environment. Table 13, which reports R2 values from OLS regressions, indicates

that no variable explains a substantial amount of variance in the behaviors we measure. The �rst

column of the table lists the behaviors, and the top row lists the right-hand-side variables. As

shown in the bottom row of the table, all the variables combined explain only about 5:5% of the

variance, on average. In the Weight and Cognition studies, the corresponding numbers are 13:5%

and 11:0%.

Table 13 shows that discounting explains very little variance in the behaviors we measure, even
17Wealth is measured in relative terms: �compared to friends�and �compared to other members of your family in

your generation.�
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when compared to the other explanatory variables like sex. The bottom row of Table 13 shows that

the cognitive ability index explains the most variance. This may occur for two reasons. First,

cognitive ability does interact signi�cantly with preferences (e.g., Burks et al., 2008). Second, the

cognitive ability index was extracted from ten di¤erent multi-trial tests (441 questions in total) and

is thus a relatively reliable measure. Age and sex are also probably measured precisely because of

the straightforward nature of those variables.

Nevertheless, Table 15 and Table 16 show that discounting has a signi�cant e¤ect when used to

predict an index of behaviors that involve intertemporal tradeo¤s (p < 0:10 and p < 0:05 for indices

1 and 2, respectively). We create the �rst index by standardizing the 14 behaviors we study in this

dataset and taking their sum. The second index is the �rst principal component extracted from the

14 (standardized) behaviors. Table 14 shows the coe¢ cients of the �rst principal component. The

OLS regressions in these tables show that a quadratic function of age explains the most variance,

with discounting and the cognitive ability index explaining approximately the same amount of

variance, and with sex, education, and a linear function of age explaining very little. The amount

of variance in these indices that is explained by discounting is much smaller than the corresponding

amounts in the Weight and Cognition studies.

4 Theoretical Framework

4.1 Model

Consider a set of n behaviors that are each associated with an intertemporal tradeo¤ (e.g., cigarette

smoking). Let B1; : : : ; Bn be the levels of behavior in these n domains. Norm these behaviors, so

a higher level Bi of behavior i is associated with a greater reward now and a lower reward in the

future. For example, one can overeat now at the cost of poorer health and appearance later; smoke

a pack of cigarettes now at the cost of reduced cardiovascular health later; or go on a shopping

spree now at the cost of having to cut expenditure later. To keep our analysis simple, we assume

that all behaviors are continuous choices over some convex subset of R.
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The reduced form equations for these behaviors are

Bi = aiX
0 + biY

0 +

tiX
j=1

�ij (1)

where ai = (ai1; : : : ; air) and bi = (bi1; : : : ; bis) are scalar vectors respectively in Rr and Rs, and

X = (X1; : : : ; Xr), Y = (Y1; : : : ; Ys), and �i = (�i1; : : : ; �iti) are random vectors respectively in Rr,

Rs, and Rti . All random variables � fXig; fYig; and f�ijg � are mutually independent, and the

variables fXig and fYig are normalized to have unit variance.

Assume that the random variables X1; : : : ; Xr correspond to domain-general traits that are

normalized so that they are positively correlated with all the elements of the behavior vector,

with X1 representing the discount rate. The random variables Y1; : : : ; Ys are the domain-general

traits that are positively correlated with some behaviors Bi but negatively correlated with others.

Finally, the random variables �ij correspond to behavior-speci�c idiosyncratic tastes. An extended

discussion of �ij is presented in the next subsection.
18

4.2 Motivating micro-foundation

Our reduced-form framework is motivated by the following two-period model. In period 1, agents

choose a level Bi of activity in each domain i. The bene�t they receive from this level of activity

is u(Bi), where u is concave, di¤erentiable, and increasing. In period 2, agents incur a linear

discounted cost of 1
1+�ai1Bi ' (1� �) ai1Bi for engaging in this activity in period 1.

Let Z = (X2; : : : ; Xr; Y1; : : : ; Ys) be the vector of all domain-general traits other than the dis-

count rate �, and let ci = (ai2; : : : ; air; bi1; : : : ; bis) represent the vector of coe¢ cients corresponding

to Z. De�ne 
i �
Pti

j=1 �ij and assume that

u(Bi) = (ciZ
0 + 
i)Bi �

B2i
2
;

18Cutler and Glaeser (2005) present a di¤erent but related framework. They make the identifying assumption that
each of the domain general traits predicts all (relevant) behaviors with a uniform sign. Our evidence is inconsistent
with their assumption. In the Weight study, for example, being female is associated positively with exercising less
(r = 0.10) but associated negatively with smoking (r = -0.18). Because of these considerations, the Cutler-Glaeser
approach of using the correlation of two behaviors to derive an upper bound for the correlation between a behavior
and a domain general trait (e.g. discounting) is not justi�ed. Therefore, we do not use their framework.
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Hence, an agent�s traits have a linear e¤ect on her bene�t from Bi. We think of this parametric

set-up as a �rst-order approximation to the true function.

If an agent discounts the future with approximate factor (1� �) and maximizes her total utility,

she must choose Bi to maximize

(ciZ
0 + �i)Bi �

B2i
2
� (1� �) ai1Bi:

This implies the relationship,

Bi = ai1(�� 1) + ciZ 0 + 
i;

which is an alternative representation of equation (1).

4.3 How much variance should discounting explain?

Consider again equation (1). Apart from discounting, other domain-general traits that may a¤ect

the level of activity in domain i are age, sex, years of education, cognitive abilities, or depression.

In addition to those, there are the domain-speci�c random variables, �ij . Taking smoking as an

example, here are some illustrations of �ij mechanisms:

� Living in a state with a low tax rate on cigarettes

� Family attitude toward smoking when growing up

� Having a partner who smokes or who hates smoking

� Having an older friend or sibling who could provide cigarettes at a young age

� Living near a store that (illegally) sells cigarettes to minors

� Wanting to use smoking as an instrument for weight loss

� Exposure to cigarette advertising (or anti-smoking advertising)

� Seeing celebrities smoke
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All of these variables should be expected to have some e¤ect on smoking behavior. Even the

seemingly super�cial ones, such as seeing a favorite movie star smoke, have been shown to have a

signi�cant statistical e¤ect (Distefan et al., 1999, 2004). In addition to this list, there are myriad

other variables that a¤ect a person�s demand for cigarettes, including genetic variables that in�uence

how one responds biologically to the taste of a cigarette or to the neural e¤ects of nicotine.

Letting i = 1 be the smoking domain, the fraction of the variance of smoking behavior (B1)

accounted for by discounting is

a211Pr
i=1 a

2
1i +

Ps
i=1 b

2
1i +

Pt1
i=1 �

2
1i

;

where �2ij = Var(�ij). As a simple numerical illustration, assume that there are 100 terms in the

denominator, coming from both domain-general variables and domain-speci�c variables. If the

discounting variable was measured perfectly and accounted for N times the variance accounted

for by each of the other 99 variables, then discounting would still account for only N% of the

total variance. By comparison, in the Weight study, our (noisy) estimates of subjects�discounting

parameters accounted for 5.9% of the variance in smoking behavior.

Even if discounting is by far the best predictor of the behaviors that we study, we should still not

expect discounting to explain a large fraction of the variance in these behaviors since the behaviors

are a¤ected by many di¤erent variables.

4.4 Discounting and aggregate investment

Predicting isolated intertemporal decisions is less important than predicting total health investment.

For example, Grossman�s (1972) model of health investment� Cutler and Glaeser (2005) call this

�the prevailing economic paradigm�� is not a model of speci�c behaviors such as dieting, smoking,

or exercising. Rather, it is a model of consumers�total investment in �health stock.�We argue that

discounting is a robust predictor of aggregate investment.

In the framework that we have developed here, discounting is predicted to be a much better

determinant of the aggregate of all intertemporal choices than it is of any particular intertemporal
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choice. Let B =
Pn

i=1Bi be the total of all intertemporal behaviors. Then the fraction of the

variance of B accounted for by discounting is

� � (
Pn

i=1 ai1)
2Pr

j=1 (
Pn

i=1 aij)
2
+
Ps

j=1 (
Pn

i=1 bij)
2
+
Pn

i=1

Pti
j=1 �

2
ij

(2)

Set �aj � 1
n

Pn
i=1 aij and �bj � 1

n

Pn
i=1 bij , so that �aj and �bj are the average e¤ects of a domain-

general variable Xj or Yj on behavior. Then equation (2) can be rewritten as

� =
�a21Pr

j=1 �a
2
j +

Ps
j=1

�b2j +
1
n2

Pn
i=1

Pti
j=1 �

2
ij

:

Note that

lim
n!1

1

n2

nX
i=1

tiX
j=1

�2ij = 0

as long as all variances are uniformly bounded. Thus for large n,

� � �a21Pr
j=1 �a

2
j +

Ps
j=1

�b2j
:

In other words, when the number of behaviors, n, is large, the fraction of the variance of the

aggregate of the behaviors that is explained by domain-speci�c idiosyncratic e¤ects will be small,

and actually converges to 0 as n ! 1. Thus the fraction of the variance that is explained by

discounting will (generally) rise with n; converging to the share of variance that discounting explains

relative to what is explained by all domain-general variables.

Additionally, if we make the natural assumption that �bj � 0 for all j, then

� � �a21Pr
j=1 �a

2
j

:

In words, if the domain-general variables that move the Bi in di¤erent directions have an average

e¤ect of approximately zero on aggregate behavior when we take enough di¤erent behaviors into

account, then the fraction of variance of aggregate behavior explained by discounting is simply the

24



share of variance that discounting explains relative to what is explained by all the domain-general

variables that move all the intertemporal behaviors in the same direction. In our Weight study, for

example, we �nd that when we aggregate just four health related behaviors, discounting explains

14:6% of the variance. When we regress just the standardized smoking variable on discounting the

R2 is 5:9%, but this statistic goes up by about 1% � 4% with each additional behavior that we

include in the aggregated index. Thus we expect that discounting would explain an even larger

fraction of the variance of aggregate behavior if we measured more than four types of investment

behavior. It would probably also rise if we measured the discount rate more precisely.

Our empirical analysis is actually somewhat di¤erent from the one in the theoretical framework.

Because we do not know what the comparable units are for each of the behaviors Bi, we �rst norm

the behaviors by dividing them by their standard deviation, Si, and then aggregate them to get B.

Thus instead of working with approximations for aij , bij and �ij we work with approximations for

ayij = aij=Si, b
y
ij = bij=Si, and (�

y
ij)

2 = �2ij=S
2
i , respectively, and the quantity we estimate is the

fraction of variance of the aggregate of standardized behaviors that is accounted for by discounting.

Now as long as the Si are bounded away from 0, it is still true that the �2ij=S
2
i will be bounded and

thus

lim
n!1

1

n2

nX
i=1

tiX
j=1

(�yij)
2 = 0:

In summary, the quantity we estimate is

�y =
�a21Pr

j=1 �a
2
j +

Ps
j=1

�b2j +
1
n2

Pn
i=1

Pti
j=1(�

y
ij)

2

where �aj � 1
n

Pn
i=1 a

y
ij , and �bj � 1

n

Pn
i=1 b

y
ij . For large enough n, �

y is approximately the share of

the variance of the aggregate of standardized behaviors that discounting accounts for, relative to

the share of the variance that is accounted for by all domain-general traits.

�y � �a21Pr
j=1 �a

2
j +

Ps
j=1

�b2j
:
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5 Conclusion

Our analysis leads us to two conclusions with seemingly opposite messages. First, we show that

discount rates are only weakly correlated with �eld behaviors (e.g., smoking, drinking, and BMI).

In our analysis, no correlation is greater than 0.28 and many correlations are close to zero. Viewed

through this statistical lens, discount rates do not have a large degree of predictive power.

However, there is an alternative viewpoint. We �nd that the other individual-level variables in

our datasets� sex, age, education, cognitive ability, and depression symptoms� typically have even

less predictive power than the discount rate, despite their almost certainly being measured with

less error than the discount rate. Moreover, the relative superiority of the discount rate over other

predictors is enhanced when we aggregate �eld behaviors into an index. The correlation between

the estimated discount rate and the index of �eld behaviors ranges from 0.09 to 0.38. We conclude

that the discount rate is, in fact, the most important variable that we have to explain individual

di¤erences in behaviors that generate intertemporal tradeo¤s.

These results are not paradoxical. Behavioral outcomes are in�uenced by hundreds of variables

and a near-in�nity of circumstances, happenstances, and coincidences. We should therefore not be

surprised to �nd that a single variable like the discount rate only has a modest absolute level of pre-

dictive power. It is also not surprising that the discount rate proves superior to other demographic

variables. These other variables are themselves only single contributors to behaviors that derive

from many sources. Finally, one should expect the discount rate to play an increasingly important

predictive role as we intensify the behavioral signal by forming an index of di¤erent behaviors that

all have intertemporal consequences.

Our analysis has several shortcomings that should be addressed by future research. First,

our survey method, including the battery of 27 intertemporal choice questions from Kirby et al.

(1999), is probably generating a noisy measure of the discount rate, which is biasing down the

predictive power of this measure. Future work should try to improve the measurement of the

discount rate. Di¤erent (potentially longer) batteries of questions and di¤erent discount functions

should be explored. Second, some of the behaviors that we study may be miscoded. Is exercise
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an investment in future appearance and health (our coding) or is exercise an activity that o¤ers

immediate grati�cation (e.g., the �runner�s high� that releases endogenous opioids in the brain;

Boecker et al., 2008)? The coding of dieting is also questionable. Is dieting a sign of patience (our

coding) or a covariate of impatience? Being overweight is a frequent precursor of going on a diet.

Third, our sample is diverse but it is not representative of the U.S. population.19 Our subjects

are geographically concentrated in Boston and relatively more educated than the U.S. population.

Fourth, one of our three surveys (Web) has very noisy observations. It is not clear what to make of

the results from this part of our analysis. With these caveats in mind, we consider our results to be

only suggestive. However, we believe that these methodological problems have primarily reduced

the statistical clarity of our �ndings rather than biasing our results towards the conclusions that

we have reported.

Finally, our results support two broad conclusions: (1) there exists a domain-general behav-

ioral disposition towards impatience/impulsivity, and (2) a discount rate estimated through a set

of intertemporal monetary choice questions constitutes a useful, though noisy, measure of this

disposition. This method of measuring an individual�s impatience has advantages over traditional

personality tests, which simply ask participants to introspectively evaluate and explicitly state their

own dispositions rather than to demonstrate them and implicitly disclose them through a sequence

of decisions with (potentially) real consequences. In addition to improving the measurement of this

trait, future research can use discount rates as phenotypes in genetic studies designed to identify

the molecular mechanisms of intertemporal choice.

19Note that because our studies used convenience samples rather than population samples, all of our variables
likely have lower variance than they do in the larger population. However, this observations applies to both sides of
our regressions and therefore may not bias our estimates. It is critical that more representative samples be studied
in the future.
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Appendix 1a: Cognitive tests in Cognition study

(1) A 12-item short form (constructed and validated by Bors & Stokes, 1998) of Raven�s Advanced

Progressive Matrices (RAPM), the generally accepted best measure of general �uid intelligence

(Jensen, 1998).

(2) A computerized version of the mental rotation test developed by Shepard and Metzler (1971),

in which, on each of 80 trials, subjects must compare two images and decide whether they depict

the same three-dimensional object.

(3) A six-minute 20-trial paper-and-pencil version of the same mental rotation task developed

by Vandenberg and Kuse (1978).

(4) A 3-back working memory task developed by Gray et al. (2003) in which subjects view a

series of words at a rate of approximately one every three seconds and must decide whether each

one is identical to the one presented three earlier in the sequence, which totals 128 trials.

(5) A 144-trial version of the Multi-Source Interference Task (MSIT) developed by Bush et al.

(2003), which is based on the classic Stroop inhibition test.

(6) A test of categorical spatial relations encoding in which subjects must decide on each trial

whether a brie�y-presented dot is above or below a horizontal bar.

(7) A test of coordinate spatial relations encoding, in which subjects see the same type of stimuli

as in the previous task, but must decide whether the dot is inside or outside a distance of 8mm

from the bar. This task and the categorical task described above each included 96 trials and was

based on similar tasks created by Hellige & Michimata (1989).

(8) The Verbal Fluency test from the Dellis-Kaplan Executive Function System, which provides a

measure of how many di¤erent words the participant can generate within certain speci�ed categories

in a �xed amount of time. Performance on each task was scored as the percentage of trials answered

correctly, except for Verbal Fluency, which was scored as the total number of words generated across

six one-minute trials.
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Appendix 1b: Cognitive tests in Web study

Tasks 1-9 are adapted from the MRAB (Shephard & Kosslyn, 2005) and implemented in PsyScope�

FL for online testing. Task 10 was designed speci�cally for this study, but is based on the �rst

three trials of the Dellis-Kaplan verbal �uency task used in the Cognition Study.

(1) Vigilance: measures ability to maintain attention over time. (90 trials)

(2) Three-Term Reasoning: measures verbal problem-solving ability in resolving standard three-

term relational arguments. (8 trials)

(3) Divided Attention: measures ability to �xate simultaneously on two distinct stimuli or

stimulus features. (40 trials)

(4) Mental Rotation: measures skill at spatial problem solving. (32 trials)

(5) Verbal Working Memory: measures ability to temporarily store and manipulate verbal

information. (60 trials)

(6) Spatial Working Memory: measures capacity to temporarily store and manipulate spatial

information. (60 trials)

(7) Filtering: measures capacity to focus on target information and ignore task-irrelevant infor-

mation. (84 trials)

(8) Perceptual Reaction Time: measures speed of recognition and response to visual material.

(40 trials)

(9) Cognitive Set-Switching: measures ability to sort stimuli according to speci�c criteria. (24

trials)

(10) Verbal Fluency: measures level of language skill and verbal processing. (3 trials)

Appendix 2a: Health�related variables from the Weight study

Exercise �Do you exercise regularly? Yes (1); No (0)��About how many hours per week? 1-3 (3);

3-5; (2) 5+ (1)��Overall intensity of workouts: Low (3); medium (2); high (1)�

Smoking �Do you smoke? Yes (1); No (0)?��About how many packs do you smoke per week?�

Dieting �Are you currently following a speci�c diet plan? Yes (1); No (0)?�
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Appendix 2b: Health�related variables from the Web study

Exercise �How many hours per week are you physically active (for example, walking, working

around the house, working out)?� �How many of those hours represent exercise primarily intended

to improve or maintain your health or �tness?� �If you do any exercise primarily for health or

�tness, how would you rate its intensity? Low (3); medium (2); high (1)�

Smoking �Do you smoke (including cigarettes, cigars, pipes, or anything else)? Yes (1); No (0)�

�If you smoke cigarettes, about how many packs do you smoke per week?�

Healthy food choices �In a typical week, how often do you choose your food (the type and/or

amount) with health and �tness concerns in mind? Every meal (1); most meals (2); some meals

(3); few meals (4); no meals (5)�

Dental check-ups �How often do you visit your dentist for a check-up? Two or more time a year

(1); once per year (2); less than once per year (3); never (4)�

Prescription drug completion �When your doctor gives you a prescription to �ll at the drugstore

(excluding birth control), do you follow it exactly (for example, by going to the drugstore, picking

up the medication, taking all of the medication on schedule, and �nishing the entire prescription)?

Always (1); usually (2); sometimes (3); rarely (4)�

Flossing �How often do you �oss your teeth? At least once per day (1); Most days each week

(2); Once or twice each week (3); Rarely or never (4)�

Overeating �In a typical week, how often do you eat more than you think you should eat? Every

meal (5); most meals (4); some meals (3); few meals (2); no meals( 1)�

Appendix 2c: Finance-related variables from the Web study

Late credit card payments �If you have any credit cards, over the past two years how many times

were you charged a late fee for making a credit card payment after the deadline? Never (1) ; 1-2

times (2); 3-4 times (3); 5 or more times (4)�

Credit card bill �If you have any credit cards, over the past two years, how often have you paid

your credit card bill in full, as opposed to paying less than the full amount? (Paying in full means

35



carrying no debt to the next month�s bill.) Never pay in full (5); rarely pay in full (4); pay in full

about half of the time (3); usually pay in full (2); always pay in full (1)�

Percent saved �Over the past three years, what percentage of your income have you saved?

(Please include savings into retirement plans and any other form of savings that you do.)�

Gambling �On average, how many days per month do you gamble money, including visiting

casinos, buying lottery tickets, betting on sports, playing poker, etc? Never (1); sometimes but

rarely (2); 2-5 days per month (3); 6-10 days per month (4); more than 10 days per month (5)�

Wealth accumulation (relative) �Compared to your friends who are close to you in age, how

much wealth have you accumulated? (Wealth includes retirement savings, stocks, bonds, and

mutual funds you own, money in bank accounts, the value of your home minus the mortgage, etc.)

More than all of my friends (1); more than most (2); about average (3); less than most (4); less

than all (5)��Compared to the other members of your family in your generation-brothers, sisters,

and cousins close to your age-how much wealth have you accumulated? More than all (1); more

than most (2); about average (3); less than most (4); less than all (5)�
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Table 1: Time discounting trials
Order SIR LDR Delay (days)
1 $54 $55 117
2 $55 $75 61
3 $19 $25 53
4 $31 $85 7
5 $14 $25 19
6 $47 $50 160
7 $15 $35 13
8 $25 $60 14
9 $78 $80 162
10 $40 $55 62
11 $11 $30 7
12 $67 $75 119
13 $34 $35 186
14 $27 $50 21
15 $69 $85 91
16 $49 $60 89
17 $80 $85 157
18 $24 $35 29
19 $33 $80 14
20 $28 $30 179
21 $34 $50 30
22 $25 $30 80
23 $41 $75 20
24 $54 $60 111
25 $54 $80 30
26 $22 $25 136
27 $20 $55 7
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Table 2: Summary statistics
Study Variable Mean Median Std. Dev. Min Max
Weight Age 30.4 27.0 10.3 18.0 59.0

Female 50.8% � � � �
Education 15.1 16.0 2.5 12.0 22.0
BMI 28.9 27.2 7.3 18.7 60.5

Cognition Age 26.1 22.0 10.1 18.0 60.0
Female 52.4% � � � �
Education 14.2 12.0 2.7 12.0 22.0
BMI 24.5 23.6 4.9 17.6 46.0

Web Age 31.4 28.0 9.0 18.0 61.0
Female 66.9% � � � �
Education 18.5 18.0 2.9 13.0 34.0
BMI 25.1 23.5 5.6 16.5 51.5

Table 3: Regressions for Weight study; standard errors in parentheses; * signi�cant at 10%; **
signi�cant at 5%; *** signi�cant at 1%
Indep Var BMI Smoking Smoking Exercise Exercise Diet Diet

(tobit) (tobit) (probit)
Discounting 87.552 11.531 11.599 14.089 28.321 2.607 11.229

(30.723)*** (5.183)** (5.077)** (5.032)*** (9.364)*** (1.930) (7.485)
Age 0.222 0.019 0.016 -0.068 -0.130 -0.036 -0.151

(0.433) (0.073) (0.072) (0.071) (0.119) (0.027) (0.103)
Age2/100 -0.086 -0.012 -0.008 0.090 0.180 0.050 0.216

(0.600) (0.101) (0.099) (0.098) (0.166) (0.038) (0.148)
Female 0.197 -0.317 -0.319 0.495 0.907 -0.061 -0.206

(1.265) (0.213) (0.209) (0.207)** (0.345)*** (0.079) (0.262)
BDI 0.187 0.066 0.066 0.022 0.050 0.000 0.001

(0.108)* (0.018)*** (0.018)*** (0.018) (0.030)* (0.007) (0.022)
Education -0.204 -0.017 -0.017 -0.086 -0.144 -0.001 0.005

(0.272) (0.046) (0.045) (0.045)* (0.073)* (0.017) (0.056)
Observations 126 126 126 126 126 126 126
R-squared 0.159 0.190 0.190 0.147 0.145 0.044 0.049

Table 4: Summary of R2 (Weight study)
Combined Discounting Age, Age2 Age Sex BDI Education

BMI 0.159 0.079 0.062 0.061 0.004 0.036 0.006
Smoking 0.190 0.059 0.014 0.014 0.035 0.117 0.016
Exercise 0.147 0.052 0.020 0.002 0.015 0.024 0.040
Diet 0.044 0.021 0.021 0.000 0.011 0.000 0.004
Average over behaviors 0.135 0.053 0.029 0.019 0.016 0.044 0.017
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Table 5: Principal component coe¢ cients (Weight study)
Variable Comp1 Comp2 Comp3 Comp4
BMI 0.430 -0.635 0.442 0.466
Smoking 0.565 0.018 -0.786 0.249
Exercise 0.628 0.028 0.216 -0.747
Diet 0.318 0.772 0.374 0.404

Table 6: Sum of standardized variables regressed on the discounting variable and other explanatory
variables (Weight study)

Index 1
Discounting 39.338 44.132

(9.391)*** (9.601)***
Age -0.095 -0.180 0.032

(0.132) (0.140) (0.020)
Age2/100 0.171 0.298

(0.183) (0.195)
Female 0.050 -0.466

(0.387) (0.419)
BDI 0.097 0.119

(0.033)*** (0.034)***
Education -0.117 -0.188

(0.083) (0.083)**
Observations 126 126 126 126 126 126 126
R-squared 0.252 0.146 0.038 0.020 0.010 0.088 0.040

Table 7: First Principal component regressed on the discounting variable and other explanatory
variables (Weight study)

Index 2
Discounting 19.845 21.993

(4.744)*** (4.877)***
Age -0.041 -0.085 0.014

(0.067) (0.071) (0.010)
Age2/100 0.074 0.140

(0.093) (0.099)
Female 0.086 -0.179

(0.195) (0.213)
BDI 0.053 0.064

(0.017)*** (0.017)***
Education -0.067 -0.101

(0.042) (0.042)**
Observations 126 126 126 126 126 126 126
R-squared 0.256 0.141 0.031 0.015 0.006 0.100 0.044
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Table 8: Regressions for Cognition study; standard errors in parentheses; * signi�cant at 10%; **
signi�cant at 5%; *** signi�cant at 1%

BMI Exercise Exercise
(tobit)

Discounting 114.302 18.287 22.672
(52.467)** (11.631) (14.042)

Age -0.336 -0.102 -0.114
(0.357) (0.079) (0.095)

Age2/100 0.004 0.001 0.001
(0.005) (0.001) (0.001)

Female -0.960 0.002 0.038
(0.990) (0.220) (0.263)

Cognitive -0.916 0.107 0.135
(0.334)*** (0.074) (0.090)

Education -0.218 0.103 0.115
(0.261) (0.058)* (0.069)

Observations 103 103 103
R-squared 0.148 0.072 0.072

Table 9: Summary of R2 for Cognition study
Combined Discounting Age, Age2 Age Sex Cognitive Education

BMI 0.148 0.059 0.005 0.001 0.003 0.045 0.018
Exercise Frequency 0.072 0.012 0.004 0.000 0.000 0.017 0.008
Average 0.110 0.035 0.004 0.001 0.002 0.031 0.013

Table 10: Sum of standardized health variables regressed on discounting and other explanatory
variables (Cognition)

Index
Discounting 40.674 38.380

(14.658)*** (14.043)***
Age -0.166 -0.078 -0.003

(0.100) (0.084) (0.013)
Age2/100 0.002 0.001

(0.001) (0.001)
Female -0.193 -0.135

(0.277) (0.265)
Cognitive -0.084 -0.050

(0.093) (0.080)
Education 0.054 -0.015

(0.073) (0.049)
Observations 103 103 103 103 103 103 103
R-squared 0.099 0.069 0.009 0.001 0.003 0.004 0.001
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Table 11: Health behavior regressions (Web study)
BMI Smoking Exercise Dentist Overeat Floss Healthy Food Follow Prescription

Discounting 94.321 2.907 -46.477 -1.553 1.698 -2.481 3.583 -8.332
(31.704)*** (9.208) (33.828) (5.663) (5.455) (6.712) (5.519) (4.060)**

Age 0.789 0.041 -0.565 0.029 0.027 0.011 0.016 0.031
(0.244)*** (0.071) (0.260)** (0.044) (0.042) (0.052) (0.042) (0.031)

Age2/100 -0.884 -0.028 0.731 -0.063 -0.036 -0.028 -0.028 -0.047
(0.324)*** (0.094) (0.346)** (0.058) (0.056) (0.069) (0.056) (0.042)

Female -1.917 0.207 0.680 -0.270 -0.001 -0.186 -0.405 0.086
(0.614)*** (0.178) (0.655) (0.110)** (0.106) (0.130) (0.107)*** (0.079)

Cognitive -1.227 -0.154 2.159 0.067 -0.278 -0.008 0.050 -0.076
(0.444)*** (0.129) (0.474)*** (0.079) (0.076)*** (0.094) (0.077) (0.057)

Education -0.031 -0.049 0.184 0.017 0.015 0.025 -0.008 -0.013
(0.105) (0.031) (0.112) (0.019) (0.018) (0.022) (0.018) (0.013)

Observations 326 326 326 326 326 326 326 326
R-squared 0.156 0.029 0.096 0.054 0.045 0.016 0.049 0.030

Table 12: Financial behavior regressions (Web study)
Gamble Late fee Bill payed in full % Saved Wealth to friends Wealth to siblings

Discounting 1.604 1.980 33.064 147.103 6.016 -1.041
(4.907) (4.833) (8.013)*** (115.762) (6.114) (6.704)

Age 0.029 0.091 0.123 1.269 0.045 -0.018
(0.038) (0.037)** (0.062)** (0.891) (0.047) (0.052)

Age2/100 -0.025 -0.122 -0.158 -1.691 -0.059 0.026
(0.050) (0.049)** (0.082)* (1.185) (0.063) (0.069)

Female -0.218 -0.032 0.341 4.289 0.094 0.000
(0.095)** (0.094) (0.155)** (2.240)* (0.118) (0.130)

Cognitive -0.331 -0.088 -0.262 -0.034 0.093 -0.058
(0.069)*** (0.068) (0.112)** (1.621) (0.086) (0.094)

Education -0.015 0.025 -0.010 -0.015 0.016 -0.025
(0.016) (0.016) (0.027) (0.385) (0.020) (0.022)

Observations 326 326 326 326 326 326
R-squared 0.115 0.037 0.091 0.023 0.016 0.007
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Table 13: Summary of R2 (Web study)
Combined Discounting Age,Age2 Age Sex Cognitve Education

BMI 0.156 0.031 0.079 0.062 0.031 0.037 0.001
Packs 0.029 0.001 0.012 0.012 0.003 0.007 0.004
Exercise frequency 0.096 0.006 0.012 0.003 0.008 0.069 0.007
Dentist 0.054 0.001 0.032 0.028 0.016 0.003 0.001
Eat more than you should 0.045 0.000 0.004 0.002 0.001 0.040 0.002
Floss 0.016 0.001 0.005 0.004 0.006 0.000 0.003
Healthy Food 0.049 0.001 0.004 0.003 0.042 0.000 0.001
Follow Prescription 0.031 0.014 0.007 0.004 0.003 0.004 0.002
Gamble 0.115 0.001 0.021 0.020 0.024 0.086 0.002
Credit card late fee 0.037 0.000 0.025 0.002 0.001 0.005 0.012
Credit card bill paid in full 0.091 0.051 0.016 0.006 0.011 0.013 0.000
Percent Saved 0.023 0.005 0.007 0.000 0.012 0.000 0.000
Wealth compared to friends 0.016 0.003 0.005 0.001 0.003 0.005 0.004
Wealth compared to siblings 0.007 0.000 0.001 0.000 0.000 0.002 0.005
Average across behaviors 0.055 0.008 0.016 0.011 0.011 0.019 0.003

Table 14: Coe¢ cients of First Principal Component (Web study)
Variable First Principal Component
BMI 0.258
Overeat 0.205
Healthy Food 0.150
Exercise 0.017
Dentist 0.222
Floss 0.195
Smoking 0.160
Savings 0.311
Late Fee 0.281
Gamble 0.149
Wealth (to friends) 0.438
Wealth (to siblings) 0.423
Bill Paid in Full 0.417
Prescription 0.118
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Table 15: Index 1 regressions; sum of standardized behaviors (Web study)
Index 1

Discounting 54.282 54.579
(32.567)* (32.451)*

Age 0.495 0.512 0.041
(0.251)** (0.246)** (0.033)

Age2/100 -0.637 -0.636
(0.333)* (0.329)*

Female -0.718 -0.822
(0.630) (0.630)

Cognitive -0.796 -0.864
(0.456)* (0.448)*

Education 0.042 0.069
(0.108) (0.104)

Observations 326 326 326 326 326 326 326
R-squared 0.039 0.009 0.016 0.005 0.005 0.011 0.001

Table 16: Index 2 regressions; �rst principal component of standardized behaviors (Web study)
Index 2

Discounting 19.026 19.184
(9.504)** (9.483)**

Age 0.171 0.173 0.012
(0.073)** (0.072)** (0.010)

Age2/100 -0.222 -0.218
(0.097)** (0.096)**

Female -0.046 -0.084
(0.184) (0.185)

Cognitive -0.273 -0.278
(0.133)** (0.131)**

Education 0.003 0.012
(0.032) (0.030)

Observations 326 326 326 326 326 326 326
R-squared 0.045 0.012 0.020 0.005 0.001 0.014 0.000
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