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I. Introduction 

Information about risk is provided in numerous areas of public health so individuals can 

adjust their behavior when confronted with risk.  Observational analyses that estimate health 

effects from exposure to these risks, however, typically assume no behavioral responses to risk.  

For example, several recent studies examining the effect of outdoor air pollution on health 

provide convincing empirical evidence of exogenous variation in ambient pollution, but do not 

account for actions individuals may take to reduce their exposure to pollution, such as decreasing 

the amount of time spent outside (for example, Friedman et al. 2001; Chay and Greenstone 

2003a,b; Currie and Neidell 2005).  Even if ambient pollution levels are as good as randomly 

assigned, exposure to pollution remains endogenous, so estimates of the biological effect of 

pollution on health are biased. 

This paper assesses whether behavioral responses to information about risk impact 

estimates of the relationship between ozone and asthma hospitalizations in Southern California.  

Avoidance behavior is especially pervasive in this context because information about pollution is 

so widespread.  The Los Angeles Times, the most widely circulated newspaper in the region, 

provides the pollutant standards index (PSI),2 a continuous index that converts forecasted daily 

pollution levels into an easily understandable format and, depending on the level of pollution, 

advises the public regarding health effects and precautionary actions to take (Environmental 

Protection Agency 1999).  Furthermore, various media channels, including television and radio, 

announce “smog alerts” when forecasted ambient ozone exceeds a particular threshold.  These 

alerts encourage susceptible individuals, such as children and the elderly, to avoid exposure to 

ozone by remaining indoors and all others to avoid rigorous outdoor activity.  Importantly, both 

                                                           
2 The Air Quality Index replaced the PSI in 1999, but data in this analysis goes through 1997. 
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sources of information are forecasted a day in advance to provide ample time for individuals to 

react.  

To assess the impact of responses to information about risk, this paper proceeds in two 

stages.  First, I estimate whether people respond to information about pollution by examining the 

effect of smog alerts on daily outdoor activities.  As a measure of outdoor activities, I use daily 

attendance from 1989 to 1997 at two major outdoor facilities in Southern California: the Los 

Angeles Zoo and Griffith Park Observatory.  To identify the effect of smog alerts, I employ a 

regression discontinuity design by exploiting the deterministic selection rule used for issuing 

alerts.  If days just above or below the smog alert threshold do not vary systematically with 

outdoor activity decisions, then I can obtain estimates of the causal effect of alerts on avoidance 

behavior.  In support of this approach, other observable characteristics, such as weather and 

observed pollution, move smoothly around this threshold, suggesting any change in outdoor 

activities at this threshold can be directly attributed to smog alerts. 

The second stage of this paper focuses on estimating the bias from incorporating these 

responses by examining the impact of ozone on asthma hospitalizations.  If individuals respond 

to information about ozone and ozone affects health, then accounting for responses should 

increase the estimated effect of ozone.  To identify the effect of ozone, I estimate daily time-

series regression models that include year-month fixed effects and finely defined geographic area 

fixed effects.  The year-month fixed effects non-parametrically absorb seasonal and temporal 

trends in ozone and health.  The area fixed effects capture observed and unobserved factors 

common to residents within that area, such as income, education, and access to health insurance, 

to the extent they do not vary over time.  I also include extensive controls for weather, other 

outdoor pollutants, and day of week dummy variables to capture time varying factors.  The 
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remaining variation in ozone is likely independent from the numerous behavioral and 

environmental factors that affect health. 

The first set of results indicates that people respond to smog alerts.  Attendance is 

significantly lower on days when smog alerts are announced, with declines in preferred 

specifications of 6 and 13 percent across the two facilities considered.  These results are 

generally insensitive to functional form assumptions of the regression discontinuity design and 

are robust to several specification checks.  For example, the estimates are remarkably unaffected 

by the inclusion of numerous controls for weather conditions and observed air quality, both 

significant predictors of outdoor activities.  Attendance for children and the elderly, two groups 

specifically targeted by air quality information, display greater responses to alerts.  These 

findings indicate that people value the provision of information contained in the warnings.  

The second set of results confirms that accounting for responses to information about risk 

drastically alters conclusions about the relationship between ozone and health, though only for 

susceptible populations.  Ignoring avoidance behavior suggests ozone has the smallest effect on 

children, while controlling for avoidance behavior indicates the biggest effect on children.  

Including smog alerts and the PSI increases estimates of the effect of ozone by roughly 160 

percent for children and 40 percent for the elderly, but has no effect on estimates for adults.  

These patterns by age are consistent with children and the elderly having greater response to 

alerts than adults.   

The coefficients on information about risk can also be directly interpreted for 

understanding the effect of ozone on health.  If providing information improves health ceteris 

paribus – importantly, holding observed ozone levels fixed – this implies evidence of both a 

response to information and an effect of ozone on health.  For example, if individuals respond to 
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an alert by reducing their exposure to ozone and, consequently, their health improves, then ozone 

must affect health.  I find that information has a significant, negative effect on hospitalizations 

for children and the elderly, further supporting that ozone effects health. 

Evidence that people respond to public information about risk is interesting in own right.  

First, studies consistently document that individuals adjust their behavior in response to 

information about permanent, long-standing risk.3  Information is often disseminated to shape 

individuals’ short-run behavior in response to imminent dangers, such as terrorism threats, 

environmental hazards, and disease outbreaks, and these findings indicate that people respond to 

rapidly changing information about risk.  Second, economic epidemiology models imply that 

diseases can be self-limiting through avoidance behavior, so there may be little role for 

government intervention (Philipson 2000).  Studies that examine behavioral responses to disease 

outbreaks, however, are unable to distinguish how information about risk is transmitted as a 

disease spreads, whether by private or public information.4  Because air quality information is 

publicly provided, these findings indicate the government has a potential role in affecting illness 

by disseminating information about risk.  

Most importantly, these results are consistent with the hypothesis that individuals take 

substantial actions to reduce exposure to ozone; estimates of the health effect of ozone that 

ignore these actions are severely biased.  Given the contentious debates surrounding air quality 

regulations,5 it is important to account for this behavior to correctly measure the costs of ozone 

to society.  Moreover, given the widespread prevalence of information about risk, these findings 

suggest the importance of accounting for protective behavior in a wide range of statistical 

analyses that rely on observational data to understand biological relationships.  

                                                           
3 For example, see Ippolito and Mathios (1990), Jin and Leslie (2003), and Smith and Johnson (1988). 
4 For example, see Ahituv, Hotz, and Philipson (1996), Mullahy (1999), and Philipson (1996). 
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II. Background  

A. Air Quality and Health 

One of the most influential studies on air pollution and health comes from the London 

“killer” fog, a severe air pollution episode in London, England, in December, 1952 (Wilson and 

Spengler 1996).  The unexpected – and arguably exogenous – change in air quality stemming 

from a temperature inversion has been linked with thousands of premature deaths (Logan and 

Glasg 1953).  Since air quality was not regularly monitored and its health effects were poorly 

understood (and fog was common in London), people were largely uninformed of the harm they 

faced from exposure, so there was limited, if any, avoidance behavior. 

More recent studies have focused on determining effects from air pollution at the lower 

levels commonly found in developed countries.  Countless observational analyses have estimated 

statistical associations between pollution and various health outcomes, mostly focusing on 

mortality and respiratory related morbidity, such as asthma, with summaries provided in Levy et 

al. (2001), Brunekreef and Holgate (2002), Wilson and Spengler (1996), and Environmental 

Protection Agency (2006).  A common statistical approach is the use of daily time-series data on 

health outcomes, such as hospitalizations, linked with contemporaneous and lagged levels of 

pollution and potential confounding variables, such as weather (for example, Katsouyanni et al. 

1996, Thurston et al. 1992, Schwartz 1995, Bell et al. 2004).  An alternative approach is cohort 

studies that follow individuals over time and compare pollution measures aggregated over time 

with health outcomes (for example, Dockery et al. 1993, Pope et al. 1995, Kinney, Thurston, and 

Raizenne 1996).   

These approaches have been criticized on the grounds that ambient pollution is not 

randomly assigned (Chay and Greenstone 2003a,b), leading to a surge in quasi-experimental 

                                                                                                                                                                                           
TP

5 For example, new air quality standards for ozone were proposed in 1997 and upheld in court until 2003. 
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techniques to isolate exogenous changes in pollution.  For example, several studies by Pope and 

others (Pope 1989, Pope, Schwartz, and Ransom 1992, Ransom and Pope 1995) used changes in 

pollution that resulted from the opening and closing of a steel mill in Utah because of a labor 

strike.  Heinrich, Hoelscher, and Wichmann (2000) exploited changes in total suspended 

particles (TSPs) in Eastern Germany from shifts in industrial activity and stricter air quality 

regulations as a result of German reunification in 1990.  Friedman et al. (2001) used the 

temporary change in air quality from short-term traffic rules intended to accommodate the 1996 

Olympic Games in Atlanta, GA.  Two studies by Chay and Greenstone (2003a,b) exploited the 

implementation of the Clean Air Act of 1970 and the recession of the early 1980s that induced 

considerable temporal and spatial variation in TSPs throughout the United States.  Lederman et 

al. (2004) compared birth outcomes of children born to women living or working within two 

miles of the World Trade Center who were pregnant on September 11, 2001, to children born to 

women more than two miles away.  Lleras-Muney (2005) used the plausibly random relocation 

of military personnel to new residential locations to estimate the effect of various pollutants on 

children's health.6   

Although these studies often go to great lengths to provide convincing empirical evidence 

that ambient pollution levels can be viewed as randomly assigned, they typically assume people 

do not respond to their assigned level of pollution.  Unlike the early killer fog episodes where 

people were largely unaware of the danger associated with pollution levels, the scope for 

avoidance behavior has increased considerably over time, though the extent to which it exists 

may vary depending on the specific context.  If people respond to higher pollution levels by 

increasing avoidance behavior, then the estimated effect of pollution on health is biased down. 

                                                           
6 For examples of other studies, see Currie and Neidell (2005), Neidell (2004), Jayachandran (2005), and Sneeringer 
(2006). 
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B. Ozone, Asthma, and Information 

Ground-level ozone is a criteria pollutant7 regulated under the Clean Air Acts that affects 

respiratory morbidity by irritating lung airways, decreasing lung function, and increasing 

respiratory symptoms, with effects exacerbated for susceptible individuals, such as children, the 

elderly, and particularly asthmatics.  Because it takes some time for a disease such as asthma to 

progress, symptoms can arise from contemporaneous exposure (in as quickly as one hour of 

exposure), from cumulative exposure over several days, or several days after exposure.  For 

example, “an asthmatic may be impacted by ozone on the first day of exposure, have further 

effects triggered on the second day, and then report to the emergency room for an asthmatic 

attack three days after exposure” (Environmental Protection Agency 2006). 

Numerous studies have documented associations between ozone and hospital admissions 

for asthma using daily time series data – the approach taken in this paper – with the most 

comprehensive review provided in Environmental Protection Agency (2006).  Evidence 

generally supports significant increases in asthma hospitalizations as ozone increases, though it 

is not uncommon to find no association (for example, Norris et al. 1999, Lierl and Hornung 

2003, Garty et al. 1998).  Cumulative effects are supported by the data, with the largest effect on 

hospital admissions from one lag of ozone, followed by two lags, then zero, three, and four lags 

in a virtual tie, with no effect established beyond four lags (Environmental Protection Agency 

2006). 

The process leading to ozone formation makes it highly predictable and straightforward 

to avoid.  Ozone is not directly emitted into the atmosphere, but is formed from interactions of 

nitrogen oxides (NOx) and volatile organic compounds (VOCs) (both of which are directly 

                                                           
7 Criteria pollutants are six common air pollutants with established health-based air quality standards.  They include 
ozone, carbon monoxide, particulate matter, nitrogen dioxide, lead, and sulfur dioxide. 
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emitted) in the presence of heat, sunlight, and solar radiation.  Because of this process, ozone 

levels vary considerably both across and within days, peaking in the summer and middle of the 

day when heat, sunlight, and solar radiation are highest (Environmental Protection Agency 

2006).  Therefore, ozone levels can be predicted using weather forecasts, and ozone rapidly 

breaks down indoors because there is less heat and sunlight (Chang et al. 2000).  Since 

symptoms from ozone exposure can arise over a short period of time, altering short-run exposure 

by going indoors can reduce the onset of symptoms. 

Because of the potential effectiveness of avoidance behavior, the pollutant standards 

index (PSI) was developed to inform the public of expected air quality conditions.  The PSI, 

which is forecasted on a daily basis, ranges from 0-500 and is indexed so that a value of 100 

corresponds to the National Ambient Air Quality Standards set forth in the Clean Air Acts.  The 

PSI is computed for five of the criteria pollutants, and the maximum PSI across pollutants is 

required by federal law to be reported in major newspapers (Environmental Protection Agency 

1999).  It also contains a brief legend summarizing the air quality: 0-50 good; 51-100 moderate; 

101-200 unhealthful; 201-275 very unhealthful; and 275+ hazardous.   

In addition to providing the PSI, California state law requires the announcement of a 

stage I air quality episode when the PSI is at least 200, which corresponds to 0.20 parts per 

million (ppm) for ozone.8  These episodes, which also occur on a daily basis, are more widely 

publicized than the PSI; they are announced on both television and radio.  Although air quality 

episodes can potentially be issued for any criteria pollutant, they have only been issued for 

ozone.  Compatible with seasonal patterns of ozone, alerts are issued from March 1 to October 

31.  Because ozone is a major component of urban smog, this has given rise to the term “smog 

                                                           
8 Additionally, a stage II air quality episode is issued when the PSI exceeds 250 or ozone forecast exceeds 0.30 ppm, 
but this only occurred once over the time period studied. 
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alerts.”   

 The agency that provides air quality forecasts and issues smog alerts for Southern 

California is the South Coast Air Quality Management District (SCAQMD).  They produce the 

following day’s air quality forecast by noon the day before to provide enough time to 

disseminate the information.  Because SCAQMD covers all of Orange County and the most 

populated parts of Los Angeles, Riverside, and San Bernardino counties – an area with 

considerable spatial variation in ozone – they provide the forecast for each of the 38 source 

receptor areas (SRAs) within SCAQMD.  When an alert is issued, the staff at SCAQMD contacts 

a set list of recipients, including local schools and newspapers.  The media then further circulate 

the information to the public, but greatly condense it.  For example, the Los Angeles Times, 

although it receives air quality forecasts for all 38 SRAs in SCAQMD, only reports air quality 

forecasts for ten air monitoring areas (AMAs) in SCAQMD by taking the maximum forecasted 

value of the SRAs within an AMA.   

Given the reporting process and the factors believed to affect ozone formation, the model 

used for issuing an alert can be summarized as: 

(1) alertat = 1{maxat(ozonef
st = f(weatherf

st,ozonest-1,solradt))≥0.20} 

where the subscripts a, s and t indicate AMA, SRA, and date, respectively, ozonef is the 

forecasted 1-hour level of ozone, weatherf is the weather forecast, ozone is observed 1-hour 

ozone, solrad is solar radiation, and 1{•} is an indicator function equal to one when the 

forecasted ozone exceeds 0.20 ppm and 0 otherwise.   

III. Data 

A. Outdoor attendance 

For a measure of time spent outdoors, accurately recorded individual level time diaries 
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would be an ideal source of data, but such data are generally unavailable at a daily level over a 

sufficient period of time.  I instead use daily aggregate measures of attendance at two outdoor 

facilities within the boundaries of the SCAQMD: the Los Angeles Zoo and Botanical Gardens 

(“Zoo”) and Griffith Park Observatory (“Observatory”).9  The Zoo is open everyday from 10 

a.m. to 5 p.m., with the closing time extended to 6 p.m. from July 1 to Labor Day.  The 

Observatory is open from 2 p.m. to 10 p.m. Tuesday through Friday and 12:30 p.m. to 10 p.m. on 

Saturday and Sunday, but is open from 12:30 p.m. to 10 p.m. everyday during the summer.  Both 

are located a short distance from downtown Los Angeles and attract sizeable crowds, averaging 

over 4500 attendees per day.  These data are available from 1989-1997, with descriptive statistics 

for each shown in Table 1.   

Although focusing on two specific facilities limits generalizability, these data provide 

several advantages over time use surveys.  One, because they are administrative data, they are 

likely to be free of recall errors that often arise in survey data.  Two, these data are available over 

a long period of time in which there is substantial variation in ozone levels, forecasts, and smog 

alerts.  Three, the exact dates are available in the attendance data, allowing me to merge several 

files at the daily levels and use the regression discontinuity design.  Therefore, this approach 

improves upon measurement, precision, and causality at the expense of generalizability. 

The Zoo charges varying admission fees, so it also offers some breakdown of attendance 

by demographics to assess heterogeneity in responses to alerts.   Separate daily attendance is 

available for adults, children under 2, children aged 2-12, and seniors aged 62 and up, with 

means for each presented in Table 1.  Children and the elderly are two groups considered 

susceptible to the effects of ozone, so their responses may differ from adults.10  Although this 

                                                           
9 The Zoo and Observatory are owned and operated by the City of Los Angeles.   
10 Children’s responses to alerts could reflect state rules requiring schools to reschedule outdoor activities, but the 
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definition of susceptibility is not exhaustive, both groups are specifically targeted by air quality 

information.  The Zoo also offers attendance for Greater Los Angeles Zoo Association (GLAZA) 

members.  While the Zoo is both a tourist and local attraction, GLAZA members are typically 

local residents who may be more aware of alerts and find it easier to switch activities.11  

Therefore, they are more likely to respond to alerts, providing one robustness check of the 

model. 

I also collect data on attendance at baseball games (available in the ‘game logs’ at 

www.retrosheet.org) for two major league baseball teams in SCAQMD: the Los Angeles 

Dodgers, who play a short distance form downtown Los Angeles, and the California Angels12, 

who play in Anaheim, approximately 30 miles southeast of downtown Los Angeles.  Attending a 

baseball game is a more sedentary activity than attending the Zoo or Observatory and most 

baseball games are played at night when ozone levels decrease, so I use attendance at games as a 

specification check.  Average attendance from 1989-1997, which includes advance ticket sales 

and purchases the day of the game, is over 37,000 for the Dodgers and 26,000 for the Angels.  

The sample size for both teams is considerably smaller than the Zoo and Observatory because 

the baseball season is shorter than the smog alert season and because games are not played every 

day in Southern California.   

B. Health Outcomes 

Data on health outcomes comes from a non-public version of the California Hospital 

Discharge Data (CHDD), which contains records for all individuals discharged from a hospital in 

the state.  The non-public version contains the exact date of admission and the patients’ 

                                                                                                                                                                                           
analysis focuses almost exclusively on summer months when children are not in school and also includes a dummy 
variable for summer schedule. 
11 GLAZA members pay an annual fee and do not pay an admission fee per visit. 
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residential ZIP code, which are used to assign individuals to information, pollution, and weather.  

The principal diagnosis of the patient is used to identify asthma admissions based on the 

International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) codes.  

Since the effects of pollution and responses to information may vary by age, I use the age of the 

patient to separate admissions by age.  Although an imperfect measure of health, asthma hospital 

admissions from the CHDD provide a large sample of data at a high frequency with detailed 

geographic residence.   

For the dependent variable, I compute the daily number of hospital admissions for asthma 

in each SRA, also shown in Table 1.  I compute asthma admissions for three age groups: 5-19, 

20-64, and 65 and over.13  The value of 0.369 for ages 5-19 in the first column indicates there are 

0.369 hospital admissions per day for asthma per SRA, which translates into nine admits per day 

for all of SCAQMD, shown in the second column.   

C. Air quality information

I collected forecasted ozone directly from the Los Angeles Times for the years 1989-1997.  

Since the Times only reports air quality forecasts for each AMA (although it receives forecasts 

for each SRA), the AMA is the finest geographic resolution for pollution information.  For data 

on smog alerts, I obtained an administrative file from SCAQMD that contained dates when alerts 

were issued anywhere in the district but not the area it was issued for.  Because there is 

considerable spatial variation in ozone levels throughout SCAQMD, I instead assign an alert to 

each AMA if the ozone forecast in that AMA (from the Times) equals or exceeds 0.20 ppm, 

according to equation (1).14  To verify the appropriateness of assigning alerts, I created an 

                                                                                                                                                                                           
12 The California Angels were renamed the Anaheim Angels in 1997, and then the Los Angeles Angels of Anaheim 
in 2005. 
13 I omit children less than five because of difficulties in correctly diagnosing asthma at this age. 
14 The ozone forecast is reported in PSI units, rather than ppm that observed ozone levels are recorded.  Because the 
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indicator for whether an alert was issued anywhere in SCAQMD and compare it to the 

SCAQMD administrative file.  The selection rule in equation (1) is strictly followed: there are 

only seven inconsistencies of the 2138 data points available over the period studied.   

Since alerts are forecasted, I assess their accuracy by using data on observed ozone for 

each AMA, also shown in Table 1.  Of the 104 alerts issued in the AMA for the Zoo, less than 20 

percent were correctly issued; conversely, there were 35 days where ozone surpassed 0.20 ppm 

but no alert was issued.  Accuracy for the rest of SCAQMD is comparable to the AMA of the 

Zoo.  If people track alert accuracy, the inaccuracy of alerts may be problematic for encouraging 

people to respond.15  It is, however, useful for the regression discontinuity design: if scientists 

and meteorologists cannot distinguish between days above and below the threshold, then it is 

unlikely that individuals can. 

D. Pollution and weather  

Daily pollution data is from the California Air Resources Board.  There is approximately 

one pollution monitor for ozone in each of the 38 SRAs, and roughly 20 for carbon monoxide 

(CO) and nitrogen dioxide (NO2), two other pollutants necessary to control for because of their 

correlation with ozone and potential health effects.16  I assign pollution levels to the SRA based 

on the values for the monitor in that SRA and drop SRAs if no monitor is present for ozone.  If 

an SRA does not have a monitor for CO or NO2, I assign pollution values from the nearest SRA 

with a monitor to preserve sample size.  I use measures of these pollutants that correspond with 

air quality standards for the dates of the analysis. 

Because weather is correlated with ozone levels and may directly affect time spent 

                                                                                                                                                                                           
PSI is a nonlinear function of ppm, I convert the ozone forecast to ppm.   
15 I estimated models that also included an indicator for whether alerts are issued correctly, and found no significant 
differences in the estimates.   
16 Particulate matter (PM10) is unfortunately unavailable on a daily basis, but the high collinearity between PM10, 
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outside and health, I control for numerous weather variables obtained from the Surface Summary 

of the Day (TD3200) from the National Climatic Data Center.  Using the 30 weather stations 

available in SCAQMD, I assign daily maximum and minimum temperature and precipitation to 

each SRA in an analogous manner to pollution. For maximum relative humidity, sun cover, and 

resultant wind speed, there is only one weather station in SCAQMD with a complete history of 

this variable (Los Angeles International Airport), so I assign it to all SRAs within SCAQMD.  

These variables are also frequently missing, so to preserve sample size I impute the missing 

values using a best-subset regression with all other weather variables and ozone as covariates.   

To assign information, pollution, and weather to individuals in the CHDD, I assign SRAs 

and AMAs to each individual using their ZIP code of residence, and merge the data by SRA or 

AMA and date.  There are considerable disagreements over how to assign pollution from 

monitors to individuals.  Using SRAs is justified on the grounds that SRAs were specifically 

designed to represent an area with common geography and pollution concerns, so there is a high 

degree of uniformity in ozone levels within an SRA.  Each outdoor venue is linked to the 

pollution and weather station within its SRA by date as well. 

IV. Conceptual Framework 

A. Health Effects of Ozone 

To fix ideas on measuring and interpreting the effect of pollution on health, assume the 

following relationship between asthma and ozone:  

(2) asthma = f (ozone*avoidance, S) 

where avoidance is a measure of avoidance behavior, such as time spent outdoors, and S are all 

other factors that affect health, such as medical services, exercise, existing health capital, and 

weather.  Interacting ozone with avoidance behavior reflects exposure to pollution: ozone affects 

                                                                                                                                                                                           
CO, and NO2 should not bias estimates for ozone. 
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people only if they are exposed to it.  For example, if ozone is 0.20 ppm and people spend no 

time outside (possibly because an alert is issued), then exposure to ozone is considerably less 

than if they spend time outside. 

Imagine two experiments, both of which hold fixed S but differ in how they treat outdoor 

time.  In the first experiment, which is analogous to controlled-human exposure experiments, 

individuals are randomly assigned into one of two rooms, each containing different levels of 

ambient ozone.  Individuals can not respond to the amount of ambient ozone in the room 

(δavoidance/δozone = 0), so their exposure to ozone is identical to the ambient level of ozone.  

Because of random assignment, the difference in outcomes across the two groups 

(δasthma/δozone) is a causal estimate of the biological effect of ozone on asthma. 

In the second experiment, which is analogous to quasi-experimental studies, individuals 

are randomly assigned to one of two locations, each containing different levels of ambient ozone.  

In contrast to the first experiment, people can respond to the amount of ambient ozone in their 

location, so their exposure to ozone is not necessarily identical to the ambient level of ozone.  

Since these responses are not held fixed, the measured effect of ozone on asthma 

(dasthma/dozone = δasthma/δozone + δasthma/δavoidance·δavoidance/δozone) does not 

represent the biological effect.  Because of random assignment, this is a causal estimate of the 

“behavioral” effect of ozone on asthma.  If outdoor time is negatively correlated with ambient 

ozone levels, then the behavioral effect will represent a lower bound of the biological effect. 

If any responses to ambient ozone in the second experiment can be properly accounted 

for, the direct health effect from responding (δasthma/δavoidance·δavoidance/δozone) represents 

the “avoidance” effect.  That is, it represents the effect from limiting exposure to ozone on 

asthma for a given level of ozone.  Importantly, it can be used as an alternative way of examining 
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whether ozone affects asthma – if people reduce their exposure to a pollutant and this causes an 

improvement in health, then the pollutant must affect health.  Furthermore, accounting for 

avoidance behavior enables one to uncover the biological effect of ozone on asthma. 

B. Avoidance behavior17

Individuals may substitute between indoor and outdoor activities because they believe 

exposure to outdoor pollution affects health and because of the direct utility they receive from 

spending time outside.  People spend less time outside (increase avoidance behavior) when 

forecasted ozone increases if more time outside is worse for health when ozone is high, a 

reasonable condition because it is precisely what air quality information conveys.18  Susceptible 

people are more likely to respond to information if avoidance behavior is more productive for 

them, also a reasonable condition.  If responses to information vary by susceptibility, then the 

bias in estimates of the health effect of ozone from omitting avoidance behavior will vary by 

susceptibility as well.   

Although susceptible individuals are more likely to respond to air quality information in 

general, they may be less likely to respond to smog alerts per se.  Smog alerts are widely 

disseminated, so the cost of acquiring this information is nearly zero.  All individuals – 

regardless of susceptibility – are encouraged to respond to alerts, so some unsusceptible 

individuals will respond to alerts if the expected benefits from responding outweigh the costs.  

Obtaining the ozone forecast, however, involves greater effort, so only those who benefit from 

avoiding ozone – the susceptible population – are likely to acquire that information.  Since smog 

alerts are determined by the ozone forecast, then smog alerts offer no additional information 

once the ozone forecast is obtained.  Therefore, susceptible individuals are less likely to respond 

                                                           
17 Contact the author for a full derivation of the predictions described in this section. 
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to an alert than unsusceptible individuals. 

V. Estimation Strategy 

There are two primary empirical objectives: to assess whether people respond to air 

quality information and, if they respond, to assess the bias from incorporating these responses.   

Although the empirical models are nested theoretically, I separately elaborate on empirical 

strategies for each equation because: 1) the data do not fully overlap since I only observe outdoor 

behavior for two locations in SCAQMD but hospital admissions for all of SCAQMD and 2) 

empirical concerns unique to each model require different identification strategies. 

A. Avoidance behavior 

To estimate the effect of air quality information on attendance at each outdoor location, I 

focus on estimating the impact of smog alerts only and use the ozone forecast to identify the 

effect of smog alerts.  Since alerts are a deterministic function of the forecasted ozone, as 

indicated in equation (1), forecasted ozone fully governs the alert selection rule and makes it 

possible to leverage a regression discontinuity (RD) design.  If days just below forecast ozone 

levels of 0.20 ppm are otherwise identical to days just at or above 0.20, then the discontinuity in 

attendance that occurs at 0.20 ppm represents the causal effect of alerts.  If people directly 

respond to the ozone forecast, this does not invalidate the empirical strategy – it will simply 

reduce the effect of alerts on attendance.  Therefore, this design assesses whether people respond 

to the more simplistic and readily available information contained in alerts conditional on the 

continuous index being available. 

To implement the RD, I estimate the following equation: 

(3) log(attendancet) = alertt α1+ g(ozonef
t, α2) + Xt α3 + Mt α4 + f(t) + εt

                                                                                                                                                                                           
18  A necessary condition for this to arise is that indoor ozone levels are considerably lower than outdoor levels, 
which evidence generally supports (Chang et al. 2000). 
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where alertt is a dummy variable indicating whether a smog alert is issued in the AMA of the 

outdoor facility at day t, g is a function that relates the ozone forecast (ozonef) to attendance, and 

εt is an error term.  Xt are meteorological and pollution variables that affect quality of the day.  Mt 

are holiday, summer schedule, and day of week dummies to account for changes in leisure time.  

f(t) is a set of year-month dummy variables to account for both seasonal and temporal patterns in 

solar radiation, pollution, and weather.  If α1 < 0, this indicates outdoor attendance decreases 

when alerts are announced.  Because the Observatory is open during the evening when ozone 

levels are lower and responses may be smaller there than at the Zoo, I estimate this model 

separately for both places.19   

To allow for a flexible specification of g, I begin by estimating a specification linear in 

ozone forecast, as graphical evidence below suggests is plausible.  Additionally, I control for g 

non-parametrically by specifying a dummy variable for each value of the ozone forecast, but 

omit the smog alert variable.  To infer the impact of alerts, I use the change in coefficients 

around the alert threshold by comparing the dummy variable on ozonef = 0.19 to ozonef = 0.20 

ppm.  If the dummy variable(s) above the alert threshold is lower than the one below the alert 

threshold, this implies a decrease in attendance in response to alerts.20

While it is impossible to know whether the unobservables are identical across alert status, 

I examine how well the observable covariates balance across alert status.  Figure 1 shows a plot 

of three likely influential covariates (temperature, humidity, and CO) against ozone forecast 

levels.  All three covariates evolve smoothly throughout this plot, suggesting they are unaffected 

by smog alerts.  Given the observed factors balance, then it is more reasonable to believe the 

                                                           
19 Since the covariate (ozone forecast) that determines the treatment (smog alert) is discrete, I compute standard 
errors clustered on each value of forecasted ozone (Card and Lee 2006). 
20 Results are robust to alternative specifications of g, such as restricting the sample to observations centered on the 
alert threshold (.15-.24 ppm). 
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unobserved factors do as well.   

As preliminary evidence that people respond to alerts, average attendance at the Zoo is 

also plotted in Figure 1.  Focusing on the observations near 0.20 ppm, attendance is generally 

increasing in forecasted ozone prior to 0.20 ppm.  At 0.20 ppm, the point at which an alert is 

issued, attendance sharply drops. After that, attendance remains increasing in forecasted ozone, 

but is generally lower than attendance below 0.20 ppm.  This jump in attendance at the alert 

threshold, which is larger than any other jump in attendance, provides the first piece of evidence 

that people respond to smog alerts. 

Two additional assumptions necessary to obtain unbiased estimates of α1 is that 1) alert 

status is not updated once actual levels of ozone are realized and 2) there are no supply-side 

effects.  Despite the temptation to continuously update alert status, officials at SCAQMD 

indicate this is highly unlikely because of flaws inherent in detecting and disseminating an alert 

as it occurs.21  In terms of supply side effects, facilities do not lower their price to entice 

customers or keep animals inside to protect their health on alert days, suggesting this assumption 

is likely to be satisfied.  It is possible, however, that a more crowded atmosphere provides less 

enjoyment because of longer waiting times, for example.  If an alert reduces crowding so that 

unsusceptible people increase demand for these outdoor attractions, this will result in a 

downward bias in α1. 

B. Health Effects of Ozone 

To estimate the effect of ozone on health, one would ideally focus on a more detailed 

version of equation (2) that includes lagged values of ozone, outdoor time, and other appropriate 

                                                           
21 For example, ozone typically peaks in the late afternoon, around 3:00 pm.  The data is not received until an hour 
later, and if a violation is detected, it must be double-checked to ensure accuracy.  At this point, which can be up to 
two hours after the violation first occurred, the media are first made aware.  By the time this information is 

 20



 

variables.  This is not feasible because the data with health outcomes covers all of SCAQMD 

while the data for outdoor time is not at the individual level and only covers two particular 

places.  Instead, I substitute the factors that affect outdoor time into equation (2) to estimate the 

following reduced form relationship:  
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where s, a, and t indexes SRA, AMA, and time, respectively, and vsat is the error term.22  h is the 

number of hospital admissions per day in each SRA.  To remain consistent with previous ozone 

time-series studies that often found effects up to four days after exposure (Environmental 

Protection Agency 2006), I include four lags of ozone, information, and weather, but also assess 

sensitivity to alternative amounts of lags.  X, M, and f(t) are the same as equation (3) except I 

also include smog alerts and the ozone forecast in levels in X to capture nuance effects associated 

with alerts being issued, such as individual over-reactions to alerts or hospitals increased 

willingness to admit patients because of an alert.  σs is an SRA fixed effect that accounts for 

observed and unobserved time invariant determinants of health within an SRA.  Therefore, I 

compare changes in ozone levels and information with changes in hospitalizations within each 

month of the year and within an SRA. 

The primary test of this analysis focuses on whether accounting for avoidance behavior 

affects estimates the biological effect of ozone on health.  Instead of comparing the effect of each 

lag separately, I focus on the overall effect of ozone by computing the sum of the effect of ozone 

                                                                                                                                                                                           
disseminated and received by the public, sunlight has decreased and ozone levels have typically fallen to safer 
levels.   
22 Smog alerts and the air quality forecast are included in levels in the vector X, described below. Although this 
equation should also contain ozone interacted with the other covariates (X and M), I omit the additional interactions 
to simplify exposition. Results with complete interactions, however, are nearly identical to results from this 
specification. 
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respond to information about pollution and ozone affects health, then including smog alerts and 

the ozone forecast should increase estimates of the effect of ozone.  To formally test this 

hypothesis, I estimate equation (4) both with and without controls for information about risk, and 

compare estimates via a Hausman test (Hausman 1978).23  

The identification of ozone comes from daily variation in ozone levels within each year 

and month and within an SRA.  To highlight this variation in ozone, Figure 2 plots the mean 

level of ozone for each day of the year.  Immediately evident is the strong daily variation in 

ozone, which is likely to be orthogonal to diet, exercise, health care choices, pre-existing health 

stock, and numerous other factors that affect asthma hospital admissions.  This figure also 

demonstrates the strong seasonal patterns in ozone that are necessary to account for because 

behavior and environmental conditions change throughout the year as well 

In order to obtain precise estimates of the parameters of interest, it is essential that there 

is enough variation in ozone levels independent of seasonality, weather, co-pollutants, and all 

other variables included in these regressions.  Figure 3 plots the mean residual variation in ozone 

for each day of the year after adjusting for X, M, year-month dummies and SRA fixed effects.  

This figure demonstrates substantial residual variation in ozone that is constant throughout the 

year, indicating seasonality is accounted for and ample variation for obtaining precise estimates. 

A concern with using daily variation in ozone is the factors that drive this variation – 

weather and ozone precursors – may directly affect health and not be observed in X.24  With 

respect to weather, I control for temperature and sun cover – the two meteorological factors that 

                                                           
23 The Hausman test statistic is given by (γs - γl)’* [var(γl) – var(γs)]-1 * (γs - γl) ~ χ2(q) where γs is the estimated 
effect of ozone when excluding information from equation (4), γl is the estimated effect of ozone when including 
information, and q is the number of lags of ozone. 
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affect ozone formation – directly in these regressions (as well as several other weather variables).  

Furthermore, I demonstrate below that estimates of the effect of ozone are insensitive to 

excluding all weather variables, suggesting confounding from weather is not a major concern.   

With respect to ozone precursors (NOx and VOCs), I can not directly include them in 

regression models because they are generally unavailable at the same level of detail, but it is 

unclear whether to control for them even if they are available.  On one hand, these pollutants are 

not believed to be directly related to asthma, so any effect they might have on asthma is through 

their effect on ozone, which would dampen the estimated effect of ozone on health.  On the other 

hand, the sources of NOx and VOC emissions may emit other pollutants that affect health.  For 

example, automobiles emit benzene, which has been linked with asthma, in addition to NOx.  

Although I can not include all co-pollutants in the empirical models, I include CO and NO2 – two 

criteria pollutants linked with short-term respiratory health effects – and also demonstrate results 

are insensitive to excluding these co-pollutants. 

As described in the conceptual framework, assessing the direct effect on information on 

asthma in equation (4) can be used as another test for understanding the health effects of ozone.  

If people respond to information and information has a negative effect on asthma 

hospitalizations, this implies ozone must affect health.  For example, if individuals respond to 

alerts by reducing their exposure to ozone and their health improves, then ozone must affect 

health.  Rather than focus on specific lags, I also use the sum across all lags: 

( ) ( ) ( ) ( )∑ ∑∑ ∑ −−−− =∂∂=∂∂ j
jt

f
jsatsat

j
jtjsatsat ozoneozoneasthmaozonealertasthma 1312 /,/ ππ  and 

jointly test whether the two parameters are different from zero.  Smog alerts are identified by 

including the ozone forecast, akin to the RD design linear in forecasted ozone, which evidence 

                                                                                                                                                                                           
24 This concern is also present in other epidemiological analyses that use daily time series. 
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below indicates is a reasonable approximation for g.  The ozone forecast is only identified if all 

factors that affect the ozone forecast, as specified in equation (1), are observed in equation (4).  

Although more tenuous than the assumption for the effect of smog alerts, it is a plausible 

assumption given the extensive controls for weather, solar radiation, and lagged ozone. 

VI. Do People Respond to Smog Alerts? 

The first set of regression results, shown in Table 2, provides further evidence that people 

respond to smog alerts by decreasing outdoor activities.  There is a separate panel for each 

outdoor facility, and each panel includes results from four specifications to gauge the sensitivity 

of estimates to both potential confounding and functional form assumptions of the RD.  The odd 

numbered columns omit several variables likely to affect the demand for outdoor activities 

(precipitation, wind, humidity, observed ozone, carbon monoxide, and nitrogen dioxide), while 

the even numbered columns include them.25  Columns (1) and (2) use a linear specification for 

the RD and columns (3) and (4) are non-parametric estimates that specify a dummy variable for 

each forecasted ozone value.   

Results for the Zoo are shown in Panel A.  Columns (1) and (2) show a statistically 

significant drop in attendance of 15 percent both with and without the additional weather and air 

quality covariates.  The non-parametric results in columns (3) and (4) indicate that smog alerts 

reduce attendance between 12 and 13 percent, quite similar to the parametric estimates.  

Moreover, the results are almost completely unaffected by excluding several important 

covariates, which is notable given that weather and observed ozone are important predictors of 

outdoor activities.  This suggests that these variables evolve smoothly around the discontinuity, 

so the change in attendance at the discontinuity represents the causal effect of smog alerts. 

Results for the Observatory, shown in Panel B, also show a decline in attendance from 
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smog alerts.  Attendance declines by roughly 3 percent in the parametric model, though 

statistically insignificant.  In the non-parametric specification, there is a statistically significant 

drop in attendance of 6 percent, which is larger than the parametric estimates.  Both estimates are 

also insensitive to including the weather and pollution variables.  These results suggest a 

response to alerts, with the smaller magnitude than the Zoo consistent with the Observatory 

including night hours when ozone levels typically decrease.  

 I provide several sensitivity analyses to assess the robustness of these results.  If the costs 

of avoiding these outdoor activities are lower for local residents, either because they are more 

aware of information or have lower costs of substitution, then they should display larger 

responses to alerts.  Using the attendance breakdown at the Zoo, I explore how GLAZA 

members respond to alerts. Shown in column (1) of Table 3, GLAZA members reduce 

attendance by 19 percent, which is larger than the total attendance response.  Given that GLAZA 

members are more likely to be local residents, this conforms to expectations that locals show a 

greater response to alerts than other attendees. 

More susceptible people are more likely to display avoidance behavior, but they may be 

less likely to respond to alerts if they obtain the continuous ozone forecast.  To assess this, I 

estimate equation (3) for the Zoo separately for children and the elderly, two susceptible groups.  

The results, shown in columns (2) through (4) of Table 3, indicate responses between 19 and 24 

percent for children and seniors, also larger than the overall response.  Although this basic 

classification of susceptibility is not sufficient for capturing those with a history of respiratory 

illness, it captures two major groups targeted by air quality information.  In general, these results 

suggest the more simplified information contained in the alerts is valued by potentially 

susceptible populations. 

                                                                                                                                                                                           
TP

25 I do not omit temperature and sun cover because they are part of the ozone prediction model. 
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I also provide several specification tests for this model, shown in Table 4.  As a first test, 

I estimate regressions with the dependent variable in levels rather than logs, which holds 

constant the number of attendees, rather than percent of attendees, affected by alerts.  Shown in 

column (1), the implied percentage drop in attendance is comparable in magnitude to the main 

results: Zoo attendance drops by 10 percent and Observatory attendance by 3 percent. 

Second, I provide a falsification test by testing for a discontinuity where one should not 

exist.26  Following Imbens and Lemiuex (2007), I use the sub-sample with no smog alerts (ozone 

forecasts less than 0.20 ppm), which avoids estimating a regression where a known discontinuity 

exists, and create an artificial discontinuity at the median ozone forecast, which maximizes the 

power of the test to find jumps.27  The results, shown in column (2), are not statistically 

significant, providing support for the model. 

As a third check, I include future alerts in equation (3).  People cannot respond to a 

forecasted alert before it occurs, so finding an effect would suggest misspecification.  If people 

use a naïve version of equation (1) to forecast ozone on their own, however, then they may 

anticipate future smog alerts by increasing current outdoor activities, suggesting a positive 

coefficient on future alerts.  Therefore, only a negative coefficient on future alerts would 

necessarily suggest misspecification.  The results, shown in column (3) of Table 4, indicate a 

positive but statistically insignificant effect from future alerts for both facilities, hinting people 

may anticipate future smog alerts.  Furthermore, the effects from contemporaneous alerts are 

unaffected by the inclusion of future alerts. 

For a final specification check, I estimate the regression using an outcome that should not 

be affected by smog alerts.  One concern with the evidence presented thus far is that people may 

                                                           
26 Figure 2 also provides informal evidence that the largest jump in attendance occurs at 0.2 ppm. 
27 The median ozone forecast for this subsample is 0.11 ppm. 
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respond to alerts out of altruistic rather than health concerns by driving less so as to not further 

contribute to pollution on days already considered highly polluted.  Therefore, people may 

reduce visits to specific outdoor attractions but not limit total time outside, implying a decrease 

in outdoor attendance is not evidence of avoidance behavior.  Since attending baseball games is a 

sedentary activity and typically at night when ozone levels are lower, attendance at Dodgers and 

Angels games should not be affected by alert status.  Shown in column (4) of Table 4, smog 

alerts are not statistically significant for both teams, and the large point estimate for the Angels 

suggests, if anything, an increase in attendance, which is consistent with lower ozone levels at 

night.28  This finding helps to substantiate the overall evidence that people are displaying 

avoidance behavior in response to information about pollution. 

Overall, these estimates suggest a significant drop in attendance from an alert.  The 

results are extremely insensitive to functional form assumptions and potential confounding, and 

are of the same order of magnitude despite coming from distinct sources, making it unlikely 

these results are due to sampling variability or general misspecification.  The results suggest 

people respond to smog alerts by reducing time spent outdoors. 

VII. The Health Effects of Ozone 

 Given the evidence that people respond to these alerts, I now turn to whether this impacts 

estimates of the effect of ozone on health by presenting both graphical and regression analyses. 

A. Graphical analysis 

The main finding of this analysis is depicted in Figure 4.  This figure is a non-

parametrically smoothed scatter plot of regression-adjusted asthma hospitalizations against once 

                                                           
28 Results are nearly identical when using only night games.  As an additional test, if people drive less in response to 
alerts, then CO levels -- a proxy for traffic because it primarily comes from automobiles -- should fall at the alert 
threshold.  As shown in Figure 2, however, CO evolves smoothly through the alert threshold, rejecting the altruism 
effect.   

 27



 

lagged observed ozone levels.29  I focus on one lag here because previous studies have found the 

1-day lag to have the largest effect on hospital admissions (Environmental Protection Agency 

2006), though regressions below include several lags simultaneously.  To assess the impact of 

avoidance behavior, I plot two separate lines.  The first line ignores avoidance behavior by 

plotting asthma and observed ozone levels for all days regardless of whether a smog alert is 

issued.  The second line accounts for avoidance behavior by limiting the plot to days where no 

smog alerts occur – so people could not have displayed avoidance behavior in response to an 

alert.  If people respond to alerts and ozone affects health, then the second line should be higher 

than the first line.   

The results for children (Figure 4A) confirm the importance of avoidance behavior.  For 

lower levels of ozone, the two lines mirror each other, which is as expected because alerts, and 

therefore avoidance behavior, are unlikely at such low levels of realized ozone.  Once ozone 

crosses 0.1 ppm and smog alerts become more common, however, the two lines diverge.30  The 

relationship between ozone and hospitalizations flattens out considerably when ignoring smog 

alerts, which is consistent with avoidance behavior: as pollution levels rise, individuals protect 

themselves by reducing exposure, so increases in ambient ozone do not lead to increases in 

illness.  Accounting for smog alert status, however, paints an entirely different picture; it shows a 

positive and linear relationship between ozone and asthma throughout the entire range of ozone.  

As ozone increases and alerts become more common, the line accounting for avoidance behavior 

is considerably higher than the one ignoring it.  Although both lines support an effect of ozone 

on health, the line ignoring behavior substantially understates the effect. 

                                                           
29 Asthma is regression-adjusted using all covariates in the regression analysis except for observed ozone and 
information about ozone.  The smoothing is performed using locally weighted regression (LOWESS) procedures 
with a bandwidth of 0.4 and running-line least squares smoothing. 
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The results for adults (Figure 4B) suggest avoidance behavior does not bias estimates for 

this age group.  The two lines are nearly indistinguishable from each other, showing a positive, 

linear relationship between ozone and asthma throughout the entire range of ozone.  This 

suggests adults do not engage in avoidance behavior in response to an alert, which is consistent 

with results from Table 3 indicating that children and elderly Zoo attendees show greater 

responses to alerts than adults. 

B. Regression results 

Regression estimates (shown in Table 5), which extend the graphical analysis by 

allowing for contemporaneous and several lags of ozone and other environmental confounders, 

support the graphical relationship from Figure 4.  For children, estimates of the effect of ozone 

that omit air quality information in column (1) indicate that a 0.01 ppm increase in the 5-day 

average ozone leads to a statistically significant 1.09 percent increase in hospital admissions.  

When controlling for smog alerts and the ozone forecast, estimates in column (2) indicate a 0.01 

ppm increase in the 5-day average ozone leads to a statistically significant 2.88 percent increase 

in hospital admissions, which is 2.6 times larger than estimates that ignore information, a 

statistically significantly difference according to the Hausman test.  Furthermore, alerts have a 

statistically significant and negative effect on hospitalizations, suggesting a reduction in 

exposure to ozone via smog alerts improves health.   These results are consistent with the 

hypothesis that families protect this vulnerable segment of the population, and this behavior 

affects the estimated relationship between ozone and health. 

Also consistent with the graphical results, estimates for adults ages 20-64 are unaffected 

by controls for information about pollution, shown in columns (3) and (4).  Estimates of the 

                                                                                                                                                                                           
30 The two lines diverge below 0.2 ppm because smog alerts are based on forecasted ozone while this plot is based 
on observed ozone. 
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effect of ozone are statistically significant in both specifications, and controlling for information 

does not affect these estimates according to the Hausman test.  Estimates with controls for 

information indicate a 0.01 ppm increase in the 5-day average ozone leads to a 2.08 percent 

increase in hospital admissions, which is slightly smaller than the effect on children.  Consistent 

with information not impacting the estimates for ozone, information has no direct effect on 

health.  This suggests adults do not respond to this information in sufficient volume to affect the 

estimated relationship between ozone and health. 

For the elderly, shown in columns (5) and (6), the effect of ozone is statistically 

significant in both specifications.  Estimates are 40 percent larger with controls for both alerts 

and the ozone forecasts (column (6)) than estimates without controls for information (column 

(5)), which is significantly different at the 10 percent level according to the Hausman test.  A 

0.01 ppm increase in the 5-day average increases asthma admissions by 2.66 percent, which is 

close to the effect for children.  Although neither source of information is statistically significant 

at conventional levels, the ozone forecast is statistically significant at 15 percent, suggesting the 

ozone forecast is the more important piece of information for the elderly.  Overall, these results 

imply the elderly display avoidance behavior, though its impact on estimates is smaller than the 

impact for children.   

To gauge the magnitude of these effects, I calculate the savings in asthma hospital costs 

for children only from a uniform 0.01 ppm decrease in the 5-day average ozone in all SRAs in 

SCAQMD using estimates from columns (1) and (2) in Table 4.  Using estimates from column 

(1) and valuing an asthma admission at the mean hospital bill for asthma ($7301), a 0.01 ppm 

decrease yields savings of roughly $157,727 per smog alert season.31  Controlling for 

                                                           
31 157,727 = 22 * (0.4008/100) * 245 * 7301, where 22 is the number of SRAs used in the analysis, 0.4008 is the 
effect from a one ppm decrease in ozone, and 245 is the number of days per smog alert season. 
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information about pollution increases this estimate considerably to $417,717.32  The difference 

of roughly $260,000 between these estimates for children suggest the importance of accounting 

for avoidance behavior, though it represents a lower bound of this difference because it ignores 

any direct effects on well-being not included in hospital costs and it ignores health episodes other 

than asthma hospitalizations.  Therefore, the estimated difference in costs understates the full 

difference in social benefits associated with reductions in ozone levels. 

C. Sensitivity Analyses 

In Table 6, I assess the sensitivity of estimates to the number of lags included in the 

regression.  I begin with a model containing only contemporaneous ozone, information, and 

weather, and then consecutively add one lag at a time, with the final specification including six 

lags.  For children, in the model without controls for avoidance behavior, the effect of ozone is 

monotonically increasing from zero to three lags, and levels out after that, generally consistent 

with prior evidence.  With controls for avoidance behavior, the effect of ozone is monotonically 

increasing even through lag 6, suggesting more lags than is typically used may be necessary for 

capturing the full health effects of ozone on children.  For adults and the elderly, three and four 

lags appear to sufficiently capture all of the health effects, respectively, regardless of whether 

avoidance behavior is controlled for. 

In table 7, I present a series of specification checks to assess the likelihood of time-

varying unobserved heterogeneity.  As previously mentioned, ozone is correlated with weather 

and other pollutants that may affect health but not be fully captured in these models.  As a crude 

test, I estimate models that do not control for weather and other pollutants.  If estimates are 

insensitive to excluding these variables, this increases confidence that there is no remaining 

confounding.  These estimates, shown in Panel A (excluding weather) and B (excluding co-

                                                           
TP

32 Comparable calculations for the elderly are $219,781 and $305,392, respectively. 

 31



 

pollutants) of Table 7, confirm that the effects of ozone are generally unaffected by these 

variables, lending support to the empirical methodology.  

I also estimate models using only emergency room (ER) admissions as the dependent 

variable.  Hospital admissions for asthma can be pre-arranged and may not reflect the effect of 

exposure to ozone, while ER admits, which are roughly 60 percent of all hospital admits for 

asthma,  are unplanned episodes that are more likely to be an immediate reaction to ozone.  The 

results, shown in Panel C of Table 7, indicate estimates are insensitive to this alternative measure 

– although coefficients are smaller, it has a comparable percentage effect on ER admissions as 

hospital admissions. 

As a general specification check, I add future pollution levels, information, and weather 

to the model.  Ozone and information in the future cannot affect health today, so any effect 

would suggest misspecification of the model.  To maintain balance with the lagged structure of 

the model, I add five leads of ozone and information along with the appropriate interaction 

terms, and separately test the joint significance of the biological and avoidance effect.  The 

results, shown in Panel D of Table 7, reveal quite comparable effects of ozone and information 

as in Table 5 for all ages and no statistically significant effect from future alerts and ozone, 

providing general validation to the specification.   

VIII. Conclusion 

This paper finds that individuals in Southern California respond to information about 

pollution by reducing time spent outside, and this significantly impacts estimates of the 

relationship between ozone and health for susceptible populations.  If people change their 

behavior in response to this information, this action must have some costs to them.  Given that 
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providing information about pollution is a growing part of environmental policy,33 measuring 

these costs is essential for designing optimal policy and should be a focus of future research. 

There are two important caveats to this study.  First, Southern California has a unique 

history of smog and ozone, so the results may not necessarily generalize to other contexts.  

Although numerous cities provide various types of air quality forecasts, they are typically less 

publicized than in Southern California.  Furthermore, forecasting pollutants other than ozone is 

inherently more difficult, so information is less prevalent and reliable for other pollutants.  In 

both cases, less information leads to less avoidance behavior, and less potential bias in estimates. 

The second caveat is there may be additional sources of private information about 

pollution.  Although ozone is not directly visible, it is a major component of smog, which is 

visible.  There is no evidence to indicate whether people respond to this information, but if the 

bias from omitting this information is in the same direction as the bias from omitting public 

information, then current estimates of the biological effect would remain underestimates of the 

true effect. 
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Figure 1. Zoo Attendance and Covariates by Ozone Forecast 

 

0
1
2
3
4
5
6
7
8
9

10
0.

05

0.
06

0.
07

0.
08

0.
09 0.
1

0.
11

0.
12

0.
13

0.
14

0.
15

0.
16

0.
17

0.
18

0.
19 0.
2

0.
21

0.
22

0.
23

attendance/1000 humidity CO max. temp.
 

 
 

 36



 

Figure 2. Variation in 1-hour Ozone by Day of Year 
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Figure 3. Residual Variation in 1-hour Ozone by Day of Year 
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Figure 4. Adjusted Asthma Hospital Admissions by Age on Lagged Ozone by Alert Status 
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B. Age 20-64 
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Table 1. Summary statistics

A. Daily attendance
mean std. dev.

Zoo (n=1949) 4766 3160
  children <2 299 362
  children 2-12 766 774
  seniors 81 51
  adult 1530 1655
  GLAZA members 718 538
Observatory (n=1770) 5629 2368
Dodgers (n=574) 37886 8012
Angels (n=655) 26679 9042

B. Daily asthma hospital admissions
age group per SRA per SCAQMD
5-19 0.369 9.007
20-64 0.737 17.995
65+ 0.292 7.165

C. Alert accuracy
year Zoo SCAQMD
1989 16 / 6 / 9 169 / 56 / 89
1990 12 / 2 / 5 118 / 28 / 54
1991 20 / 4 / 8 142 / 34 / 50
1992 24 / 2 / 8 140 / 39 / 42
1993 10 / 2 / 1 84 / 23 / 20
1994 15 / 3 / 2 107 / 14 / 20
1995 7 / 0 / 1 32 / 3 / 5
1996 0 / 0 / 1 16 / 0 / 6
1997 0 / 0 / 0 3 / 0 / 1
Total 104 / 19 / 35 811 / 197 / 287
number of alerts issued / number of alerts correct / number of alerts missed

D. Independent variables

variable mean std. dev. mean std. dev.
alert 0.053 0.225 0.071 0.257
ozone 1-hour (ppm) 0.078 0.038 0.082 0.043
ozone 1-hour if alert = 1 0.129 0.037 0.149 0.046
ozone 1-hour forecast (ppm) 0.115 0.046 0.108 0.050
maximum temperature (°F) 82.15 9.70 81.91 10.84
precipitation (inches) 0.218 1.617 0.200 1.546
relative humidity (%) 89.75 7.11 89.76 7.30
average cloud cover sunrise to sunset (%) 0.450 0.298 0.443 0.297
resultant wind speed (mph) 5.66 2.37 5.70 2.37
carbon monoxide 8-hour (ppm) 2.310 1.237 1.762 1.067
nitrogen dioxide 1-hour (ppm) 0.073 0.032 0.062 0.029

Zoo SCAQMD
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Table 2. Regression estimates of smog alerts on attendance

1 2 3 4
A. Dependent variable = log(daily attendandance) at Los Angeles Zoo
alert -0.148** -0.150** -0.122** -0.129**

[0.036] [0.040] [0.013] [0.014]
Controls for weather N Y N Y
Observations 1949 1949 1949 1949

B. Dependent variable = log(daily attendandance) at Griffith Park Observatory
alert -0.032 -0.031 -0.061** -0.059**

[0.023] [0.022] [0.013] [0.014]
Controls for weather N Y N Y
Observations 1770 1770 1770 1770
* significant at 5%; ** significant at 1%. Standard errors clustered on ozone forecast in 
brackets. Columns 1 and 2 include a linear term for ozone forecast and columns 3 
and 4 include a separate dummy variable for each ozone forecast using the entire 
sample.  In columns 1 and 2, alert is a dummy variable equal to 1 if the ozone 
forecast is at least 0.2 ppm.  In columns 3 and 4, alert is the coefficient on ozone 
forecast = 0.2 ppm minus the coefficient on ozone forecast = 0.19 ppm. All 
regressions include a quadratic in maximum temperature, percent of sun cover, an 
indicator for holiday, an indicator for summer schedule, day of week dummies and 
year-month dummies. Controls for weather include observed ozone, precipitation, 
resultant wind speed, maximum relative humidity, carbon monoxide, and nitrogren 
dioxide.  

 

 

 

Table 3. Regression estimates of smog alerts on Zoo attendance by demographic

1 2 3
GLAZA members Children <2 Children 2-12

4
Seniors

alert -0.193** -0.222** -0.236** -0.194**
[0.054] [0.061] [0.061] [0.042]

See notes to Table 2. There are 1949 observations in all models. The specification in each 
column is comparable to the linear RD model from column 2 in Table 2.  
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Table 4. Specification checks of estimates of smog alerts on attendance

1 2 3 4

Dep. Var. in Levels False Alert Future Alert Unaffected Activity
Attendance at: Zoo Zoo Zoo Dodgers
alert -476.194* -0.017 -0.147** 0.014

[201.902] [0.035] [0.040] [0.089]
 {0.100}

future alert 0.031
[0.045]

Observations 1949 1845 1898 574

Attendance at: Observatory Observatory Observatory Angels
alert -146.114 -0.016 -0.034 0.105

[90.748] [0.032] [0.023] [0.149]
 {0.026}

future alert 0.032
[0.031]

Observations 1770 1671 1723 655
See notes to Table 2. The specification in each column is comparable to the linear RD model from 
column 2 in Table 2.  The value in braces in column 1 represents the percentage change in attendance. 
False alert is assigned at the median ozone forecast (.11 ppm) for the subsample with ozone forecast < 
0.20 ppm.
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Table 5. Regression estimates of ozone and avoidance behavior on asthma hospitalizations by age

1 2 3 4 5 6

ozone (sum of lags) 0.401* 1.061** 1.356** 1.532** 0.558** 0.776**
[0.185] [0.245] [0.254] [0.335] [0.158] [0.208]
{1.09} {2.88} {1.84} {2.08} {1.91} {2.66}

Hausman test (χ2) 20.45 0.74 2.92
Prob > χ2 0.00 0.39 0.09
alerts (sum of lags) -0.162** -0.039 -0.014

[0.057] [0.078] [0.049]
PSI (sum of lags) 0.013 -0.019 -0.037

[0.031] [0.042] [0.026]
F(alerts, PSI)=0 5.41 0.59 2.16
Prob > F 0.00 0.55 0.12

Age 5-19 Age 20-64 Age 65+

Notes: The number of observations is 38,482 in all regressions.  * significant at 5%; ** significant at 1%. Numbers in brackets 
are standard errors. 'sum of lags' is the sum of the contemporaneous and 4 lags of the coefficients (see text for more details). 
Numbers in braces are percent change in hospitalizations from .01 ppm increase in ozone.  χ2 is the test statistic from a 
Hausman test comparing estimates in the even column with the preceeding odd column.  Columns 2, 4, and 6 include controls 
for avoidance behavior (contemporaneous and 4 lags of smog alerts and PSI). All regressions include day of week dummies, 
year-month dummies, SRA fixed effects, and contemporaneous and 4 lags of maximum & minimum temperature, percipitation, 
humidity, sun cover, wind speed, carbon monoxide, and nitrogen dioxide.  
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Table 6. Lag sensitivity of regression estimates of ozone on asthma hospitalizations by age

1 2 3 4 5 6

ozone (0 lags) 0.177 0.176 0.536** 0.433* 0.203* 0.307*
[0.121] [0.144] [0.166] [0.198] [0.103] [0.123]

ozone (1 lag) 0.308* 0.420* 0.870** 0.843** 0.266* 0.380*
[0.142] [0.177] [0.195] [0.243] [0.121] [0.151]

ozone (2 lags) 0.340* 0.625** 1.223** 1.354** 0.358** 0.498**
[0.159] [0.205] [0.218] [0.281] [0.136] [0.175]

ozone (3 lags) 0.468** 0.976** 1.237** 1.325** 0.419** 0.518**
[0.173] [0.228] [0.237] [0.313] [0.148] [0.194]

ozone (4 lags) 0.401* 1.061** 1.356** 1.532** 0.558** 0.776**
[0.185] [0.245] [0.254] [0.335] [0.158] [0.208]

ozone (5 lags) 0.425* 1.255** 1.371** 1.521** 0.543** 0.718**
[0.196] [0.262] [0.270] [0.360] [0.168] [0.224]

ozone (6 lags) 0.462* 1.411** 1.203** 1.235** 0.571** 0.729**
[0.208] [0.280] [0.285] [0.384] [0.177] [0.238]

Age 5-19 Age 20-64 Age 65+

See notes to Table 5.  The specification in each column is comparable to the corresponding column in 
Table 5. Each row contains results including the specified number of lags.  

 43



 

Table 7. Specification checks of estimates of ozone and avoidance behavior on asthma hospitalizations by age

1 2 3 4 5 6
Age: 5-19 20-64 65+ 5-19 20-64 65+

ozone (sum of lags) 1.116** 1.524** 0.742** 1.298** 1.582** 0.780**
[0.237] [0.325] [0.202] [0.240] [0.329] [0.204]
{3.03} {2.07} {2.55} {3.52} {2.15} {2.68}

alerts (sum of lags) -0.166** -0.038 -0.012 -0.180** -0.045 -0.014
[0.057] [0.078] [0.048] [0.057] [0.078] [0.049]

PSI (sum of lags) 0.013 -0.021 -0.038 0.023 -0.012 -0.035
[0.030] [0.041] [0.025] [0.030] [0.042] [0.026]

F(alerts, PSI)=0 5.76 0.63 2.24 6.03 0.51 1.96
Prob > F 0.00 0.53 0.11 0.00 0.60 0.14

ozone (sum of lags) 0.787** 1.052** 0.500** 1.020** 1.719** 0.831**
[0.178] [0.273] [0.158] [0.277] [0.384] [0.238]
{2.14} {1.43} {1.71} {2.77} {2.33} {2.85}

alerts (sum of lags) -0.073 -0.003 0.012 -0.105 -0.038 -0.049
[0.042] [0.064] [0.037] [0.062] [0.086] [0.054]

PSI (sum of lags) -0.013 -0.010 -0.022 -0.018 -0.020 -0.025
[0.022] [0.034] [0.020] [0.036] [0.049] [0.031]

F(alerts, PSI)=0 3.79 0.09 0.71 3.29 0.46 1.92
Prob > F 0.02 0.91 0.49 0.04 0.63 0.15
future ozone (sum of lags) 0.414 -0.496 -0.124

[0.276] [0.383] [0.238]
future alerts (sum of lags) -0.003 0.054 -0.018

[0.062] [0.086] [0.053]
future PSI (sum of lags) -0.014 -0.030 0.026

[0.035] [0.049] [0.030]
F(future alerts, future PSI)=0 0.15 0.24 0.39
Prob > F 0.86 0.79 0.67

C. ER Admissions D. Future Ozone and Information

B. No Co-PollutantsA. No Weather

See notes to Table 5.  All specifications include controls for avoidance behavior (contemporaneous and 4 lags of smog alerts and PSI). 'No 
Weather' excludes weather as independent variables. 'No Co-Pollutants' excludes co-pollutants as independent variables. 'ER Admissions' 
limits the dependent variable to emergency room admissions. 'Future' include 5 leads of ozone, information, and their interaction, weather, and 
co-pollutants.  
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