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In this paper, we demonstrate that currency risk premia are a robust feature of the data, even

after accounting for transaction costs. We show that currency risk premia are determined by their

exposure to a single, global risk factor, and that interest rates measure currency exposure to this

factor. This global risk factor explains most of the cross-sectional variation in average excess

returns between high and low interest rate currencies. We show that by investing in high interest

rate currencies and borrowing in low interest rate currencies, US investors load up on global risk,

especially during “bad times”. After accounting for the covariance with this risk factor, there are no

significant anomalous or unexplained excess returns in currency markets. In addition, we show that

most of the time-series variation in currency risk premia is explained by the average interest rate

difference between the US and foreign currencies, not the currency-specific interest rate difference.

The average interest rate difference is highly counter-cyclical, and so are currency risk premia.

We can replicate our main findings in a no-arbitrage model of exchange rates with two factors, a

country-specific factor and a global factor, but only if low interest rate currencies are more exposed

to global risk in bad times. Heterogeneity in exposure to country-specific risk cannot explain the

carry trade returns.

We identify the common risk factor in the data by building portfolios of currencies. As in

Lustig and Verdelhan (2007), we sort currencies on their forward discounts and allocate them to six

portfolios. Forward discounts are the difference between forward rates and spot rates. Since covered

interest rate parity typically holds, forward discounts equal the interest rate difference between the

two currencies. As a result, the first portfolio contains the lowest interest rate currencies while the

last portfolio contains the highest interest rate currencies. Unlike Lustig and Verdelhan (2007),

we only use spot and forward exchange rates to compute returns. These contracts are easily

tradable, and subject to minimal counterparty risk. As a consequence, our main sample comprises

37 currencies. We account for bid-ask spreads that investors incur when they trade these spot and

forward contracts.

Risk premia in currency markets are large and time-varying. For each portfolio, we compute the

monthly foreign currency excess returns realized by buying or selling one-month forward contracts for

all currencies in the portfolio, net of transaction costs. Between the end of 1983 and the beginning

of 2008, US investors earn an annualized log excess return of 4.8 percent by buying one-month

forward contracts for currencies in the last portfolio and by selling forward contracts for currencies

in the first portfolio. The annualized Sharpe ratio on such a strategy is .54. These findings are

robust. We find similar results when we limit the sample to developed currencies, and when we take

the perspective of investors in other countries. In this paper, we investigate the cross-sectional and

time-series properties of these currency excess returns.

There is far more predictability in currency portfolio returns than in the returns on individual
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currencies. We show that the average forward discount rate is a better predictor than the forward

discounts for individual currency portfolios. This result echoes the finding of Cochrane and Piazzesi

(2005) that a linear combination of forward rates across maturities is a powerful predictor of excess

returns on bonds. Expected excess returns on portfolios with medium to high interest rates co-move

negatively with the US business cycle as measured by industrial production or payroll help wanted

indices, and they co-move positively with the term and default premia as well as the option-implied

volatility index VIX. Since forecasted excess returns on high interest rate portfolios are strongly

counter-cyclical and increase in times of crisis, this evidence supports the risk premium view. In

fact, we find that US industrial production growth has predictive power for currency excess returns

even when controlling for forward discounts. In recent work, Duffee (2008) and Ludvigson and Ng

(2005) report a similar finding for the bond market, and Piazzesi and Swanson (2008) document

that payroll growth predicts excess returns on interest rate futures. Currency risk premia are very

similar to bond risk premia.

In the data, the first two principal components of the currency portfolio returns account for most

of the time series variation in returns. The first principal component is the average excess return

on all foreign currency portfolios. We call this average excess return the dollar risk factor RX. The

second principal component is very close to the return on a zero-cost strategy that goes long in

the last portfolio and short in the first portfolio. We label this excess return the carry trade risk

factor HMLFX , for high interest rate minus low interest rate currencies. The carry trade risk factor

HMLFX explains about 70 percent of the variation in average excess returns on our 6 currency

portfolios. The risk price of this carry trade factor that we estimate from the cross-section of

currency portfolio returns is roughly equal to its sample mean, consistent with a linear factor pricing

model. Low interest rate currencies provide US investors with insurance against HMLFX risk, while

high interest rate currencies expose investors to more HMLFX risk. By ranking currencies into

portfolios based on their forward discounts, we find that forward discounts determine currencies’

exposure to HMLFX , and hence their risk premia. As a check, we also rank currencies based on

their HMLFX-betas, and we find that portfolios with high HMLFX-exposure do yield higher average

returns and have higher forward discounts.

We use a standard no-arbitrage exponentially-affine asset pricing framework to explain why we

build these currency portfolios. Our model features a large number of countries. The stochastic

discount factor (SDF) that prices assets in the units of a given country’s currency is composed of

two risk factors: one is country-specific, the other is common for all countries. We show analytically

that two conditions need to be satisfied in order to match the data. First, we need a common risk

factor because it is the only source of cross-sectional variation in currency risk premia. Second,

we need low interest rate currencies to be more exposed to the common risk factor in times when
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the price of common risk is high, i.e. in bad times. Using the model, we show analytically that by

ranking currencies into portfolios and constructing HMLFX , we measure the common innovation

to the SDF. Similarly, we show that the dollar risk factor RX measures the home-country-specific

innovation to the SDF. Thus, we provide a theoretical foundation for building currency portfolios.

By building currency portfolios, we recover the two factors that drive the pricing kernel.

In the model, currency risk premia are determined by a dollar risk premium and a carry trade risk

premium. The size of the carry trade risk premium depends on the spread in the loadings on the

common component between high and low interest rate currencies, and on the global risk price. As

the global risk price increases, the spread increases endogenously and the carry trade risk premium

goes up. If there is no spread, i.e. if low and high interest rate currencies share the same loadings on

the common risk factor, then HMLFX cannot be a risk factor, because the global component does

not affect exchange rates. The larger the spread, the riskier high interest rate currencies become

relative to low interest rate currencies, because the latter appreciate relative to the former in case

of a negative global shock and hence offer insurance. In a version of the model that is calibrated

to match moments of exchange rates and interest rates in the data, we replicate the carry trade

risk premium as well as the failure of the CAPM to explain average currency returns in the data.

The literature on currency excess returns that derive from the failure of the uncovered interest

parity can broadly be divided into two different segments. The first strand of the literature aims to

understand exchange rate predictability within a standard asset pricing framework based on system-

atic risk.1 The second strand looks for non-risk-based explanations.2 The risk-based literature offers

three types of fully-specified, risk-based models of forward premium puzzle: Verdelhan (2005) uses

habit preferences in the vein of Campbell and Cochrane (1999), Bansal and Shaliastovich (2007)

build on the long run risk literature pioneered by Bansal and Yaron (2004), and Farhi and Gabaix

(2007) augment the standard consumption-based model with disaster risk following Barro (2006).

These three models have two elements in common: a persistent variable drives the volatility of

the log stochastic discount factor, and this variable comoves negatively with the country’s risk-free

interest rate. Backus et al. (2001) show that the latter is a necessary condition for models with

log-normals shocks to reproduce the forward premium puzzle. Our paper adds to this list of require-

ments. To explain our finding that a single global risk factor explains the cross-section of currency

1This segment includes recent papers by Backus, Foresi and Telmer (2001), Harvey, Solnik and Zhou (2002), Alvarez,

Atkeson and Kehoe (2005), Verdelhan (2005), Campbell, de Medeiros and Viceira (2006), Lustig and Verdelhan (2007),

Graveline (2006), Bansal and Shaliastovich (2007), Brennan and Xia (2006), Farhi and Gabaix (2007) and Hau and

Rey (2007), Colacito (2008) and Brunnermeier, Nagel and Pedersen (2008). Earlier work includes Hansen and Hodrick

(1980), Fama (1984), Bekaert and Hodrick (1992), Bekaert (1995) and Bekaert (1996).
2This segment includes papers by Froot and Thaler (1990), Lyons (2001), Gourinchas and Tornell (2004), Bac-

chetta and van Wincoop (2006), Frankel and Poonawala (2007), Sarno, Leon and Valente (2006), Plantin and Shin

(2007), Burnside, Eichenbaum, Kleshchelski and Rebelo (2006), Burnside, Eichenbaum and Rebelo (2007a), Burnside,

Eichenbaum and Rebelo (2007b) and Burnside, Eichenbaum, Kleshchelski and Rebelo (2008).
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returns, the SDF in these models needs to have a global heteroskedastic component, and the SDF

in low interest rate currencies needs to load more on the global component. This heterogeneity

is critical for replicating our empirical findings; we show that heterogeneity in the loadings on the

country-specific factor cannot explain the cross-sectional variation in currency returns, even though

it can generate negative UIP slope coefficients. Finally, we also show that HMLFX is strongly

related to macroeconomic risk; it has a US consumption growth beta between 1 and 1.5, consistent

with the findings of Lustig and Verdelhan (2007). In recent related work, DeSantis and Fornari

(2008) provide more evidence that currency returns compensate investors for systematic, business

cycle risk.

Our paper is organized as follows. We start by describing the data, how we build currency

portfolios and the main characteristics of these portfolios in section 1. Section 2 shows that a

single factor, HMLFX , explains most of the cross-sectional variation in foreign currency excess

returns. In section 3, we use a no-arbitrage model of exchange rates to interpret these findings.

Section 4 describes the time variation in excess returns that investors demand on these currency

portfolios. Finally, section 5 considers a calibrated version of the model that replicates the key

moments of the data. Section 6 concludes. All the tables and figures are in the appendix.

1 Currency Portfolios and Risk Factors

We focus on investments in forward and spot currency markets. Compared to Treasury Bill markets,

forward currency markets only exist for a limited set of currencies and shorter time-periods. However,

forward currency markets offer two distinct advantages. First, the carry trade is easy to implement

in these markets, and the data on bid-ask spreads for forward currency markets are readily available.

This is not the case for most foreign fixed income markets. Second, these forward contracts

are subject to minimal default and counterparty risks. This section describes the properties of

monthly foreign currency excess returns from the perspective of a US investor. We consider currency

portfolios that include developed and emerging market countries for which forward contracts are

traded. We find that currency markets offer Sharpe ratios comparable to the ones measured in

equity markets, even after controlling for bid-ask spreads. In a separate appendix available on

our web sites, we report several robustness checks considering only developed countries, non-US

investors, and longer investment horizons.

1.1 Building Currency Portfolios

We start by setting up some notation. Then, we describe our portfolio building methodology, and

we conclude by giving a summary of the currency portfolio returns.
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Currency Excess Returns We use s to denote the log of the spot exchange rate in units of

foreign currency per US dollar, and f for the log of the forward exchange rate, also in units of

foreign currency per US dollar. An increase in s means an appreciation of the home currency. The

log excess return rx on buying a foreign currency in the forward market and then selling it in the

spot market after one month is simply:

rxt+1 = ft − st+1.

This excess return can also be stated as the log forward discount minus the change in the spot

rate: rxt+1 = ft − st − ∆st+1. In normal conditions, forward rates satisfy the covered interest rate
parity condition3; the forward discount is equal to the interest rate differential: ft − st ≈ i⋆t − it ,
where i⋆ and i denote the foreign and domestic nominal risk-free rates over the maturity of the

contract. Hence, the log currency excess return approximately equals the interest rate differential

less the rate of depreciation:

rxt+1 ≈ i⋆t − it − ∆st+1.

Transaction Costs Since we have bid-ask quotes for spot and forward contracts, we can compute

the investor’s actual realized excess return net of transaction costs. The net log currency excess

return for an investor who goes long in foreign currency is:

rx lt+1 = f
b
t − sat+1.

The investor buys the foreign currency or equivalently sells the dollar forward at the bid price (f b)

in period t, and sells the foreign currency or equivalently buys dollars at the ask price (sat+1) in the

spot market in period t + 1. Similarly, for an investor who is long in the dollar (and thus short the

foreign currency), the net log currency excess return is given by:

rx st+1 = −f at + sbt+1.

Data We start from daily spot and forward exchange rates in US dollars. We build end-of-month

series from November 1983 to March 2008.4 These data are collected by Barclays and Reuters

and available on Datastream.5 Our main data set contains 37 currencies: Australia, Austria,

3? study high frequency deviations from covered interest rate parity (CIP). They conclude that CIP holds at daily

and lower frequencies.
4When the last day of the month is Saturday or Sunday, we use the next business day.
5Lyons (2001) reports that bid-ask spreads from Reuters are roughly twice the size of inter-dealer spreads (page

115). As a result, our estimates of the transaction costs are conservative. Lyons (2001) also notes that these indicative

quotes track inter-dealer quotes closely, only lagging the inter-dealer market slightly at very high intra-day frequency.
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Belgium, Canada, Hong Kong, Czech Republic, Denmark, Euro area, Finland, France, Germany,

Greece, Hungary, India, Indonesia, Ireland, Italy, Japan, Kuwait, Malaysia, Mexico, Netherlands,

New Zealand, Norway, Philippines, Poland, Portugal, Saudi Arabia, Singapore, South Africa, South

Korea, Spain, Sweden, Switzerland, Taiwan, Thailand, United Kingdom. Some of these currencies

have pegged their exchange rate partly or completely to the US dollar over the course of the

sample. We keep them in our sample because forward contracts were easily accessible to investors.

We leave out Turkey and United Arab Emirates, even if we have data for these countries, because

their forward rates appear disconnected from their spot rates. As a robustness check, we also a

study a smaller data set that contains only 15 developed countries: Australia, Belgium, Canada,

Denmark, Euro area, France, Germany, Italy, Japan, Netherlands, New Zealand, Norway, Sweden,

Switzerland and United Kingdom. We present all of our results on these two samples. In a separate

appendix, we present additional evidence on shorter and longer sub-samples.

Currency Portfolios At the end of each period t, we allocate all currencies in the sample to six

portfolios on the basis of their forward discounts f −s observed at the end of period t. Portfolios are
re-balanced at the end of every month. They are ranked from low to high interests rates; portfolio

1 contains the currencies with the lowest interest rate or smallest forward discounts, and portfolio

6 contains the currencies with the highest interest rates or largest forward discounts. We compute

the log currency excess return rx jt+1 for portfolio j by taking the average of the log currency excess

returns in each portfolio j . For the purpose of computing returns net of bid-ask spreads we assume

that investors short all the foreign currencies in the first portfolio and go long in all the other foreign

currencies.

The total number of currencies in our portfolios varies over time. We have a total of 9 countries

at the beginning of the sample in 1983 and 26 at the end in 2008. We only include currencies for

which we have forward and spot rates in the current and subsequent period. The maximum number

of currencies attained during the sample is 34; the launch of the euro accounts for the subsequent

decrease in the number of currencies. The average number of portfolio switches per month is 6.01

for portfolios sorted on one-month forward rates. We define the average frequency as the time-

average of the following ratio: the number of portfolio switches divided by the total number of

currencies at each date. The average frequency is 29.32 percent, implying that currencies switch

portfolios roughly every three months. When we break it down by portfolio, we get the following

frequency of portfolio switches (in percentage points): 19.9 for the 1st, 33.8 for the 2nd, 40.7

for the 3rd, 43.4 for the 4th, 42.0 for the 5th, and 13.4 for the 6th. Overall, there is quite some

variation in the composition of these portfolios, but there is more persistence in the composition

This is clearly not an issue here at monthly horizons.
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of the corner portfolios. As an example, we consider the Japanese yen (U). The yen starts off in

the fourth portfolio early on in the sample, then gradually ends up in the first portfolio as Japanese

interest rates fall in the late eighties and it briefly climbs back up to the sixth portfolio in the early

nineties. The yen stays in the first portfolio for the remainder of the sample.

1.2 Returns to Currency Speculation for a US investor

Table 1 provides an overview of the properties of the six currency portfolios from the perspective

of a US investor. For each portfolio j , we report average changes in the spot rate ∆s j , the forward

discounts f j − s j , the log currency excess returns rx j = −∆s j + f j − s j , and the log currency excess
returns net of bid-ask spreads rx jnet . Finally, we also report log currency excess returns on carry

trades or high-minus-low investment strategies that go long in portfolio j = 2, 3 . . . , 6, and short

in the first portfolio: rx jnet − rx1net . All exchange rates and returns are reported in US dollars and
the moments of returns are annualized: we multiply the mean of the monthly data by 12 and the

standard deviation by
√
12. The Sharpe ratio is the ratio of the annualized mean to the annualized

standard deviation.

The first panel reports the average rate of depreciation for all currencies in portfolio j . According

to the standard uncovered interest rate parity (UIP) condition, the average rate of depreciation

ET
(
∆s j

)
of currencies in portfolio j should equal the average forward discount on these currencies

ET
(
f j − s j

)
, reported in the second panel. Instead, currencies in the first portfolio trade at an

average forward discount of -390 basis points, but they appreciate on average only by almost 100

basis points over this sample. This adds up to a log currency excess return of minus 290 basis

points on average, which is reported in the third panel. Currencies in the last portfolio trade at

an average discount of 778 basis points but they depreciate only by 188 basis points on average.

This adds up to a log currency excess return of 590 basis points on average. These results are

not surprising. A large body of empirical work starting with Hansen and Hodrick (1980) and Fama

(1984) reports violations of UIP.

The fourth panel reports average log currency excess returns net of transaction costs. Since

we rebalance portfolios monthly, and transaction costs are incurred each month, these estimates of

net returns to currency speculation are conservative. After taking into account bid-ask spreads, the

average return on the first portfolio drops to minus 170 basis points. Note that the first column

reports minus the actual log excess return for the first portfolio, because the investor is short in

these currencies. The corresponding Sharpe ratio on this first portfolio is minus 0.21. The return on

the sixth portfolio drops to 314 basis points. The corresponding Sharpe ratio on the last portfolio

is 0.34.

The fifth panel reports returns on zero-cost strategies that go long in the high interest rate
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portfolios and short in the low interest rate portfolio. The spread between the net returns on the

first and the last portfolio is 483 basis points. This high-minus-low strategy delivers a Sharpe ratio of

0.54, after taking into account bid-ask spreads. Equity returns provide a natural benchmark. Over

the same sample, the (annualized) Fama-French monthly excess return on the US stock market is

7.11 percent, and the equity Sharpe ratio is 0.48. Note that this equity return does not reflect any

transaction cost.

We have documented that a US investor with access to forward currency markets can realize

large excess returns with annualized Sharpe ratios that are comparable to those in the US stock

market. Table 1 also reports results obtained on a smaller sample of developed countries. The

Sharpe ratio on a long-short strategy is 0.39. There is no evidence that time-varying bid-ask

spreads can account for the failure of UIP in these data or that currency excess returns are small in

developed countries, as suggested by Burnside et al. (2006). We turn now to cross-sectional asset

pricing tests on these currency portfolios.

2 Common Factors in Currency Returns

We show that the sizeable currency excess returns described in the previous section are matched

by covariances with risk factors. The riskiness of different currencies can be fully understood in

terms of two currency factors that are essentially the first two principal components of the portfolio

returns. All portfolios load equally on the first factor, which is the average currency excess return.

We label it the dollar risk factor. The second principal component, which is very close to the

difference in returns between the low and high interest rate currencies, explains a large share of

the cross-section. We refer to this component as the carry risk factor. The risk premium on

any currency is determined by the dollar risk premium and the carry risk premium. The carry risk

premium depends on which portfolio a currency belongs to, i.e. whether the currency has high or

low interest rates, but the dollar risk premium does not. To show that a currency’s interest rate

relative to that of other currencies truly measures its exposure to carry risk, we also sort all the

currencies into portfolios based on their carry-betas, and we recover a similar pattern in the forward

discounts and in the excess returns. These results also hold for sub-samples of developed countries,

foreign investors and longer investment horizons as reported in a separate appendix.

2.1 Methodology

Linear factor models of asset pricing predict that average returns on a cross-section of assets can

be attributed to risk premia associated with their exposure to a small number of risk factors. In the

arbitrage pricing theory of Ross (1976) these factors capture common variation in individual asset
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returns. A principal component analysis on our currency portfolios reveals that two factors explain

more than 80 percent of the variation in returns on these six portfolios. The top panel in table

2 reports the loadings of our currency portfolios on each of the principal components as well as

the fraction of the total variance of portfolio returns attributed to each principal component. The

first principal component explains 70 percent of common variation in portfolio returns, and can be

interpreted as a level factor, since all portfolios load equally on it. The second principal component,

which is responsible for over 12 percent of common variation, can be interpreted as a slope factor,

since portfolio loadings increase monotonically across portfolios. The first principal component is

indistinguishable from the average portfolio return. The second principal component is essentially

the difference between the return on the sixth portfolio and the return on the first portfolio. As a

consequence, we consider two risk factors: the average currency excess return, denoted RX, and

the difference between the return on the last portfolio and the one on the first portfolio, denoted

HMLFX . The correlation of the first principal component with RX is .99. The correlation of the

second principal component with HMLFX is .94. Both factors are computed from net returns, after

taking into account bid-ask spreads. The bottom panel confirms that we obtain similar results even

when we exclude developing countries from the sample.

These currency risk factors have a natural interpretation. HMLFX is the return in dollars on

a zero-cost strategy that goes long in the highest interest rate currencies and short in the lowest

interest rate currencies. This is the portfolio return of a US investor engaged in the usual currency

carry trade. Hence, this is a natural candidate currency risk factor, and, as we are about to show, it

explains much of the cross-sectional variation in average excess returns. RX is the average portfolio

return of a US investor who buys all foreign currencies available in the forward market. This second

factor is essentially the currency “market” return in dollars available to an US investor.

Before turning to our main asset pricing estimates, we report here a simple experiment to build

intuition on our results. Following Cochrane and Piazzesi (2008), for each principal component,

we compute its covariance with the currency portfolio returns, and we compare these covariances

(indicated by triangles) to the average currency excess returns (indicated by squares). Figure 1

illustrates that the second principal component plays a key role. Its covariance with currency excess

returns increases monotonically as we go from portfolio 1 to 6.6 This is not the case for any of the

other principal components.

As a result, in the space of portfolio returns, the second principal component is crucial. A

natural question is whether we discard lots of other interesting variations in currency returns by

building these portfolios? This concern has been raised for equity portfolios. Daniel and Titman

6We thank John Cochrane for suggesting this figure. Figure 1 is the equivalent of figure 6 page 25 of Cochrane

and Piazzesi (2008).
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(2005) note that the 25 Fama and French (1993) equity portfolios lie in a subspace spanned by

HML and SMB. Likewise, our currency portfolio excess returns lie in a two-dimensional subspace

of all currency excess returns spanned by the first two principal components, which explain more

than 80 percent of their time series variation. Since stock returns can be predicted by many other

macro-economic variables, Daniel and Titman (2005) emphasize the importance of examining other

sources of variation in stock returns to test asset pricing models. This criticism does not carry

over to currencies, simply because very few macro-economic variables (other than interest rate

differences) forecast changes in exchange rates and hence currency returns. This was first pointed

out by Meese and Rogoff (1983) and confirmed in subsequent work. So it is not clear that there

are other sources of variation in currency returns to explored. In fact, in the next section, we set up

a standard no-arbitrage model of currencies and we show that the first two principal components

explain 100 percent of the time series variation in portfolio returns. There are no other sources of

cross-sectional variation in currency risk premia in this model than the ones we identify. By building

these portfolios, we average out idiosyncratic shocks and we extract risk factors.

Cross-Sectional Asset Pricing We use Rx jt+1 to denote the average excess return on portfolio j

in period t + 1.7 In the absence of arbitrage opportunities, this excess return has a zero price and

satisfies the following Euler equation:

Et [Mt+1Rx
j
t+1] = 0.

We assume that the stochastic discount factor M is linear in the pricing factors f :

Mt+1 = 1− b(ft+1 − µ),

where b is the vector of factor loadings and µ denotes the factor means. This linear factor model

implies a beta pricing model: the expected excess return is equal to the factor price λ times the

beta of each portfolio β j :

E[Rx j ] = λ′β j ,

where λ = Σf f b, Σf f = E(ft −µf )(ft −µf )′ is the variance-covariance matrix of the factor, and β j

denotes the regression coefficients of the return Rx j on the factors. To estimate the factor prices

λ and the portfolio betas β, we use two different procedures: a Generalized Method of Moments

estimation (GMM) applied to linear factor models, following Hansen (1982), and a two-stage OLS

estimation following Fama and MacBeth (1973), henceforth FMB. We briefly describe these two

techniques, starting with GMM, in Appendix A.

7All asset pricing tests are run on excess returns and not log excess returns.
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2.2 Results

Table 3 reports the asset pricing results obtained using GMM and FMB on currency portfolios sorted

on forward discounts. The left hand side of the table corresponds to our large sample of developed

and emerging countries, while the right hand side focuses on developed countries. We describe first

results obtained on our large sample.

Market Prices of Risk The top panel of the table reports estimates of the market prices of risk

λ and the SDF factor loadings b, the adjusted R2, the square-root of mean-squared errors RMSE

and the p-values of χ2 tests (in percentage points). The market price of HMLFX risk is 546 basis

points per annum. This means that an asset with a beta of one earns a risk premium of 5.46

percent per annum. Since the factors are returns, no arbitrage implies that the risk prices of these

factors should equal their average excess returns. This condition stems from the fact that the

Euler equation applies to the risk factor itself, which clearly has a regression coefficient β of one

on itself. In our estimation, this no-arbitrage condition is satisfied. The average excess return on

the high-minus-low strategy (last row in Table 3) is 537 basis points.8 So the estimated risk price

is only 9 basis points removed from the point estimate implied by linear factor pricing. The GMM

standard error of the risk price is 234 basis points. The FMB standard error is 183 basis points. In

both cases, the risk price is more than two standard errors from zero, and thus highly statistically

significant.

The second risk factor RX, the average currency excess return, has an estimated risk price

of 135 basis points, compared to a sample mean for the factor of 136 basis points. This is not

surprising, because all the portfolios have a beta close to one with respect to this second factor. As

a result, the second factor explains none of the cross-sectional variation in portfolio returns, and the

standard errors on the risk price estimates are large: for example, the GMM standard error is 168

basis points. Overall, asset pricing errors are small. The RMSE is around 95 basis points and the

adjusted R2 is 69 percent. The null that the pricing errors are zero cannot be rejected, regardless

of the estimation procedure.

Figure 2 plots predicted against realized excess returns for all six currency portfolios. Clearly,

the model’s predicted excess returns are consistent with the average excess returns. Note that the

predicted excess return is here simply the OLS estimate of the betas times the sample mean of the

factors, not the estimated prices of risk. The latter would imply an even better fit by construction.

These results are robust. They hold true in a smaller sample of developed countries, as shown

8Note that this value differs slightly from the previously reported mean excess return because we use excess returns

in levels in the asset pricing exercise, but table 1 reports log excess returns to illustrate their link to changes in exchange

rates and interest rate differentials.
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in the right-hand side of Table 3.

Alphas in the Carry Trade? The bottom panel of Table 3 reports the constants (denoted αj) and

the slope coefficients (denoted β j) obtained by running time-series regressions of each portfolio’s

currency excess returns Rx j on a constant and risk factors. The returns and α’s are in percentage

points per annum. The first column reports α’s estimates. The fourth portfolio has a large α of

162 basis points per annum, significant at the 10 percent level but not statistically significant at

the 5 percent level. The other α estimates are much smaller and not significantly different from

zero. The null that the α’s are jointly zero cannot be rejected at the 5 or 10 % significance level.

The second column of the same panel reports the estimated βs for the HMLFX factor. These

βs increase monotonically from -.39 for the first portfolio to .61 for the last currency portfolio,

and they are estimated very precisely. The first three portfolios have betas that are negative and

significantly different from zero. The last two have betas that are positive and significantly different

from zero. The third column shows that betas for the second factor are essentially all equal to one.

Obviously, this second factor does not explain any of the variation in average excess returns across

portfolios, but it helps to explain the average level of excess returns. These results are robust and

comparable to the ones obtained on a sample of developed countries (reported on the right hand

side of the table).

2.3 Sorting on HMLFX exposure

To show that the ranking of forward discounts really does measure a currency’s exposure to the risk

factor, we build portfolios based on each currency’s exposure to aggregate currency risk as measured

by HMLFX . For each date t, we first regress each currency i log excess return rx
i on a constant

and HMLFX using a 36-month rolling window that ends in period t − 1. This gives us currency i ’s
exposure to HMLFX , and we denote it β

i ,HML
t . Note that it only uses information available at date t.

We then sort currencies into six groups at time t based on these slope coefficients β i ,HMLt . Portfolio

1 contains currencies with the lowest βs. Portfolio 6 contains currencies with the highest βs. Table

4 reports summary statistics on these portfolios. We do not take into account bid-ask spreads

here, because it is not obvious a priori when the investor wants to go long or short. The first panel

reports average changes in exchange rates. The second panel shows that average forward discounts

increase monotonically in our portfolios. Thus, sorts based on forward discounts and sorts based

on betas are clearly related, which implies that the forward discounts convey information about

riskiness of individual currencies. The third panel reports the average log excess returns. They are

monotonically increasing from the first to the last portfolio. Clearly, currencies that covary more

with our risk factor - and are thus riskier - provide higher excess returns. The last panel reports

13



the post-formation betas. They vary monotonically from −.31 to .38. This finding is quite robust.
When we estimate betas using a 12-month rolling window, we also obtain a 300 basis point spread

between the first and the last portfolio.

2.4 Robustness

Finally, as a robustness exercise, we now check the Euler equation of foreign investors in the UK,

Japan and Switzerland. We construct the new asset pricing factors (HMLFX and RX) in local

currencies, and we use the local currency returns as test assets. Note that HMLFX is essentially

the same risk factor in all currencies, if we abstract from bid-ask spreads. Our initial spot and

forward rates are quoted in US dollars. In order to convert these quotes into pounds, yen and Swiss

francs, we use the corresponding midpoint quotes of these currencies against the US dollar.9 The

first panel in Table 5 reports results for the UK, the second panel for Japan and the third panel for

Switzerland.

For all countries, the estimated market price of HMLFX risk is less than 70 basis points removed

from the sample mean of the factor. The HMLFX risk price is estimated at 5.54 percent in the UK,

5.50 percent in Japan and 5.79 percent in Switzerland. These estimates are statistically different

from zero in all three cases. The two currency factors explain between 47 and 71 percent of the

variation (after adjusting for degrees of freedom). The mean squared pricing error is 95 basis points

for the UK, 116 basis points for Japan and 81 basis points for Switzerland. The null that the

underlying pricing errors are zero cannot be rejected except for Japan, for which the p-values are

smaller than 10 percent.

We conduct several other robustness checks. To save space, we report these results in a

separate appendix, available on our websites. First, we consider the sample proposed by Burnside

et al. (2008). Following the methodology of Lustig and Verdelhan (2007), Burnside et al. (2008)

build 5 currency portfolios and argue that these currency excess returns bear no relation to their

riskiness. In their data, we show that the average excess returns on these portfolios are explained by

the carry trade and aggregate currency market risk factors. The α’s are smaller than 60 basis points

per annum, but the high-minus-low return yields 6.3 percent per annum in their sample (without

bid-ask spreads). Second, we report additional results on portfolio returns from the perspective of

foreign investors. Third, we divide our main sample into two sub-samples, starting in 1983 and in

1995. Fourth, we consider the longer sample of currency excess returns built using Treasury bills in

Lustig and Verdelhan (2007). All these results confirm that currency excess returns are large and

that they are well explained by the portfolios’ covariances with these risk factors.

9Table 18 in the appendix reports summary statistics on these portfolios.
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3 A No-Arbitrage Model of Exchange Rates

In order to interpret the empirical properties of the currency portfolios documented above, we con-

sider a no-arbitrage model of exchange rates. Such models are characterized by a set of stochastic

discount discount factors (intertemporal marginal rates of substitution) that price assets from the

viewpoint of each country’s investors. In this setting, we show that the HMLFX factor that we

construct by building currency portfolios measures the common innovation to the SDFs. Similarly,

RX measures the dollar-specific innovation to the SDF of U.S. investors. In addition, we show

how ranking currencies based on interest rates is equivalent to ranking these currencies on their

exposure to the global risk factor. We derive conditions on stochastic discount factors at home and

abroad that need to be satisfied in order to produce a carry trade risk premium that is explained by

HMLFX .

Our model falls in the essentially-affine class and therefore shares some features with the models

proposed by Frachot (1996) and Brennan and Xia (2006), as well as Backus et al. (2001). Like

these authors, we do not specify a full economy complete with preferences and technologies; instead

we posit a law of motion for the SDFs directly. We consider a world with N countries and currencies.

Following Backus et al. (2001), we assume that in each country i , the logarithm of the SDF mi

follows a two-factor Cox, Ingersoll and Ross (1985)-type process:

−mit+1 = λiz it +
√
γ iz itu

i
t+1 + τ

izwt +
√
δizwt u

w
t+1.

There is a common global factor zwt and a country-specific factor z
i
t . The currency-specific inno-

vations uit+1 and global innovations u
w
t+1 are i .i .d gaussian, with zero mean and unit variance; u

w
t+1

is a world shock, common across countries, while uit+1 is country-specific. The country-specific

volatility component is governed by a square root process:

z it+1 = (1− φi)θi + φiz it + σi
√
z itv

i
t+1,

where the innovations v it+1 are uncorrelated across countries, i .i .d gaussian, with zero mean and

unit variance. The world volatility component is also governed by a square root process:

zwt+1 = (1− φw)θw + φwzwt + σw
√
zwt v

w
t+1,

where the innovations vwt+1 are also i .i .d gaussian, with zero mean and unit variance. In this model,

the conditional market price of risk has a domestic component
√
γ iz it and a global component
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√
δizwt .

10 A major difference between our model and that proposed by Backus et al. (2001) is that

we allow the loadings δi on the common component to differ across currencies. This will turn out

to be critically important.

Complete Markets We assume that financial markets are complete, but that some frictions in

the goods markets prevent perfect risk-sharing across countries. As a result, the change in the real

exchange rate ∆qi between the home country and country i is:

∆qit+1 = mt+1 −mit+1,

where qi is measured in country i goods per home country good. An increase in qi means a real

appreciation of the home currency. For the home country (the US), we drop the superscript. The

expected excess return in levels (i.e. corrected for the Jensen term) consists of two components:

Et [rx
i
t+1] +

1

2
V art [rx

i
t+1] =

√
δi

(√
δ −
√
δi

)
zwt + γzt.

The risk premium has a global and a dollar component.
(√
δ −
√
δi

)
is the beta of the return on

currency i w.r.t. the common shock, and zwt is the risk price. The beta w.r.t. the dollar shock is

one for all currencies, and zt is the risk price for dollar shocks. So, the expected return on currency

i has a simple beta representation: Et [rx
i
t+1] +

1
2
V art [rx

i
t+1] = β

iλt with β
i =

[
(
√
δ −
√
δi), 1

]

and λt = [z
w
t , zt]

′
. The risk premium is independent of the foreign country-specific factor z it and

the foreign country-specific loading γ i .11 Hence, we need asymmetric loadings on the common

component as a source of variation across currencies. While asymmetric loadings on the country-

specific component can explain the negative UIP slope coefficients in time series regression (as

Backus et al. (2001) show), these asymmetries cannot account for any variation in risk premia

across different currencies. As a consequence, and in order to simplify the analysis, we impose more

symmetry on the model with the following assumption:

10The real interest rate investors earn on currency i is given by:

r it =

(
λ− 1
2
γ

)
z it +

(
τ − 1
2
δi

)
zwt .

11The expected log currency excess return does depend on the foreign factor; it equals the interest rate difference

plus the expected rate of appreciation:

Et [r x
i
t+1] = −Et [∆qit+1] + r it − rt ,

=
1

2
[γzt − γ iz it +

(
δ − δi

)
zwt ].
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Assumption. All countries share the same loading on the domestic component γ. The home

country has the average loading on the global component δ:
√
δ =
√
δ.

3.1 Building Currency Portfolios to Extract Factors

As in the data, we sort currencies into portfolios based on their forward discounts. We use H to

denote the set of currencies in the last portfolio and L to denote the currencies in the first portfolio.

The carry trade risk factor HMLFX and the dollar risk factor rx are defined as follows:

hmlt+1 =
1

NH

∑

i∈H

rx it+1 −
1

NL

∑

i∈L

rx it+1,

rx t+1 =
1

N

∑

i

rx it+1,

where lower letters denote logs. We let

√
δjt denote the average

√
δi of all currencies (indexed by i)

in portfolio j . Note that the portfolio composition changes over time, and in particular, it depends

on the global risk price zwt .

In this setting, the carry trade and dollar risk factors have a very natural interpretation. The

first one measures the common innovation, while the second one measures the country-specific

innovation. In order to show this result, we appeal to the law of large numbers, and we assume

that the country-specific shocks average out within each portfolio.

Proposition. The innovation to the HMLFX risk factor only measures exposure to the common

factor uwt+1, and the innovation to the dollar risk factor only measures exposure to the country-

specific factor ut+1:

hmlt+1 − Et [hmlt+1] =
(√
δLt −

√
δHt

) √
zwt u

w
t+1,

rx t+1 − Et [rx t+1] =
√
γ
√
ztut+1.

When currencies share the same loading on the common component, there is no HMLFX risk

factor. This is the case considered by Backus et al. (2001). However, if lower interest rate currencies

have different exposure to the common volatility factor -
√
δL 6=

√
δH - then the innovation to

HMLFX measures the common innovation to the SDF. As a result, the return on the zero-cost

strategy HMLFX measures the stochastic discount factors’ exposure to the common shock u
w
t+1.
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Proposition. The HMLFX betas and the RXFX betas of the returns in currency portfolio j :

β jhml,t =

√
δ −

√
δjt

√
δLt −

√
δHt

,

β jrx,t = 1.

The betas for the dollar factor are all one. Not so for the carry trade risk factor. If the ranking of

currencies on interest rate produces a monotonic ranking of δ , then the HMLFX betas will increase

monotonically as we go from low to high interest rate portfolios. As it turns out the model with

asymmetric loadings automatically delivers this if interest rates decrease when global risk decreases.

This case is summarized in the following condition:

Condition.

0 < τ <
1

2
δi .

The real short rate depends both on country-specific factors and on a global factor. The only

sources of cross-sectional variation in interest rates are the shocks to the country-specific factor z it ,

and the heterogeneity in the SDF loadings δi on the world factor zw . As a result, as zw increases,

on average, the currencies with the high loadings δ will tend to end up in the lowest interest rate

portfolios, and the gap
(√
δLt −

√
δHt

)
increases. This implies that in bad times the spread in the

loadings increases. In section 5, we provide a calibrated version of the model that illustrates these

effects.

As shown above, in our model economy, the currency portfolios recover the two factors that drive

innovations in the pricing kernel. Therefore, these two factors together do span the mean-variance

efficient portfolio, and it comes as no surprise that these two factors can explain the cross-sectional

variation in average currency returns.

3.2 Risk Premia in No-Arbitrage Currency Model

In our model, the risk premium on individual currencies consists of two parts: a dollar risk premium

component and a carry trade risk premium component. Our no-arbitrage model also delivers simple

closed-form expression for these risk premia.
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Proposition. The carry trade risk premium and the dollar risk premium are:

Et [hmlt+1] =
1

2

(
δLt − δHt

)
zwt ,

Et [rx t+1] =
1

2
γ (zt − zt) . (3.1)

The carry trade risk premium is driven by the global risk factor. The size of the carry trade

risk premium is governed by the spread in the loadings (δ) on the common factor between low and

high interest rate currencies, and by the global price of risk. When this spread doubles, the carry

trade risk premium doubles. However, the spread itself also increases when the global Sharpe ratio

is high. As a result, the carry trade risk premium increases non-linearly when global risk increases.

The dollar risk premium is driven only by the US risk factor, if the home country’s exposure to

global risk factor equals to the average δ12. When the home country’s δ is lower than average, then

the dollar risk premium also loads on the global factor:

rprxt =
1

2
γ (zt − zt) +

1

2

(
δ − δ

)
zwt .

The risk premia on the currency portfolios have a dollar risk premium and a carry trade compo-

nent:

rpjt =
1

2
γ

(
zt − z jt

)
+
1

2

(
δ − δj

)
zwt . (3.2)

The first component is the dollar risk premium part. The second component is the carry trade part.

The highest interest rate portfolios load more on the carry trade component, because their loadings

are smaller than the home country’s δ, while the lowest interest rate currencies have a negative

loading on the carry trade premium, because their loadings exceed the home country’s δ.

If business cycle fluctuations drive SDF volatility in a way that bad times are associated with

high prices of risk, then the US-specific component of the risk price, zt , should be counter-cyclical

with respect to the US-specific component of the business cycle, and the global component zwt

should be counter-cyclical with respect to the global business cycle. Below, we show that the

predicted excess returns on medium to high interest rate currencies are highly counter-cyclical, and

that business cycle indices (like US industrial production growth) predict these excess returns, even

after controlling for interest rate differences. We also show that the predicted excess returns on

a long position in the sixth portfolio and a short position in the first portfolio are highly correlated

with the VIX volatility index, one proxy of higher frequency variation in the global risk factor zwt .

12Note that z is constant in the limit N →∞ by the law of large numbers.
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4 Return Predictability in Currency Markets

The vast literature on UIP considers country-by-country regressions of changes in exchange rates on

forward discounts. Because UIP fails in the data, forward discounts predict currency excess returns.

In this section, we investigate return predictability using our currency portfolios. We first consider

each portfolio separately. We show that the average forward discount across portfolios does a

better job of describing the time variation in expected currency excess returns than the individual

portfolio forward discounts. We build expected excess returns using either portfolio-specific or

average forward discounts. These expected excess returns are closely tied to the US business cycle:

expected currency returns increase in downturns and decrease in expansions, as is the case in stock

and bond markets. We then turn to portfolio spreads - portfolios long in high interest rate currencies

and short in the lowest interest rate currencies. We show that these spreads are predictable, and

the corresponding expected excess returns are linked to higher frequency variation in global credit

spreads and global market volatility.

4.1 Predictability in Portfolio Excess Returns

We first investigate the predictive power of the portfolio-specific forward discount, and then turn

to the predictive power of the average forward discount.

Individual Forward Discounts For each portfolio j , we run a regression of each portfolio’s average

log currency excess returns on each portfolio’s average log forward discounts:

rx jt+1 = κ
j
0 + κ

j
f (f

j
t − s jt) + ηjt.

If UIP were an accurate description of the data, there would be no predictability in currency excess

returns, and the slope coefficient κf would be zero. Table 6 reports regression results. We use

net excess returns that take into account bid-ask spreads. Bid-ask spreads vary with time. For

example, the average spread in the last portfolio increases with the volatility index VIX, but this

time-variation is very small compared to the mean bid-ask spread and the mean excess return.

Portfolio forward discounts account for between 1.8 percent and 6.4 percent of the monthly

variation in excess returns on these currency portfolios. There is strong evidence against UIP in

these portfolio returns, more so than in individual currency returns. Looking across portfolios, from

low to high interest rates, the slope coefficient κjf (column 3) varies a lot: it increases from 108 basis

points for currencies in the first portfolio to 357 basis points for currencies in the fourth portfolio.

The slope coefficient decreases to 72 basis points for the sixth portfolio. Deviations from UIP are
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highest for currencies with medium to high forward discounts. However, forward rates are strongly

autocorrelated. This complicates statistical inference about these slope coefficients. To deal with

this issue, we use two asymptotically-valid corrections. The Newey-West standard errors (NW)

are computed with the optimal number of lags following Andrews (1991). The Hansen-Hodrick

standard errors (HH) are computed with one lag. Both of these methods correct for arbitrary

error correlation and conditional heteroscedasticity. Bekaert, Hodrick and Marshall (1997) note

that the small sample performance of these test statistics is also a source of concern. To address

this problem, we also report small sample standard errors. These were generated by bootstrapping

10,000 samples of returns and forward discounts from a bivariate VAR with one lag. The null of no

predictability is rejected at the 1 percent significance level for all of these portfolios except for the

third. At the one-month horizon, the R2 on these predictability regressions varies between 1.61 and

5.98 percent. In other words, when considering currency portfolios, up to 6 percent of the variation

in spot rates is predictable at a one-month horizon.

Average Forward Discount There is even more predictability in these excess returns than the

standard UIP regressions reveal, because forward discounts on the other currency portfolios also

help to forecast returns. We found that a single return forecasting variable describes time variation

in the dollar risk premium even better than the forward discount rates on the individual currency

portfolios. This variable is the average of all the forward discounts across portfolios. 13 We use ι

to denote the 6×1 vector with all elements equal to 1/6. For each portfolio j , we run the following
regression of log excess returns after bid-ask spreads on the average forward rates:

rx jnet,t+1 = κ
j
0 + κ

j
fι
′(ft − st) + ηjt,

where ft − st bunches together all forward discounts. A summary of the results is reported in
columns 3 and 4 of Table 6. This single factor explains between 2.68 and 7.85 percent of the

variation in returns at the one-month horizon. The average forward discount outperforms the

portfolio-specific forward discounts, except in portfolios 4 and 5. In this case, the slope coefficients

vary much less across the different portfolios. Portfolio-specific time variation in expected exchange

rate movements driven by the sorting variable (relative interest rates) does not appear to be the

main driver of return predictability in currency markets. The average interest rate difference is the

main driver.

The right panel of Table 6 focuses on the predictability of carry trade returns: the returns on a

high-minus-low strategy that goes long in high interest rate currencies and short in low interest rate

13We also examined the optimal linear combination of forward discounts along the lines of Cochrane and Piazzesi

(2005). However, it does not outperform the average forward discount as a predictor.
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currencies. We run the following predictability regression of the one-month high-minus-low return

rx j − rx1 on the spread in the one-month forward discount between the j-th and the first portfolio:

rx jt+1 − rx1t+1 = κsp,0 + κsp,f
[
(f jt − s jt)− (f 1t − s1t )

]
+ ηjt.

There is some evidence that the high-minus-low returns are forecastable by the forward spreads,

but the evidence is less strong than on individual portfolio returns. Since the spread in forward

discounts is much less persistent than the forward discount and there is no overlap in returns, there

is less cause for concern about persistent regressor bias.

Longer Horizons At longer horizons, the fraction of changes in log spot rates explained by the

forward discount is even greater than at short horizons. We use k-month maturity forward contracts

to compute k-period horizon returns (where k = 1, 2, 3, 6, 12). The log excess return on the

k-month contract is:

rx kt+k = −∆st→t+k + f kt − st .

Then we sort the currencies into portfolios based on forward rates with the corresponding maturity,

and we compute the average excess return for each portfolio. Table 7 provides a summary of the

results: it lists the R2s we obtained for each portfolio (rows) and for each forecasting horizon

(columns). We only consider the corner portfolios.

At longer horizons, the returns on the first portfolio are most predictable; the returns on the

last portfolio are least predictable. On the first portfolio, more than a quarter of the variation in

excess returns is accounted for by the forward rate at the 12-month horizon. On the last portfolio,

10 percent is accounted for by the forward rate. One concern is that these measures of fit may

be biased because we use overlapping returns and because the predictors are highly autocorrelated.

In the bottom panel of Table 7 we also provide the same R2 measures that we obtained for each

forecasting horizon with non-overlapping data. To produce these measures, we simply used the

first month of every period (quarter, year) to run the same regressions. Though there are some

differences, these R2s are not systematically lower. Even at longer horizons, the average forward

discount seems to do a better job in describing the variation in expected excess returns. This single

factor explains between 18 and 32 percent of the variation at the one-year horizon. This single

factor mostly does as well and sometimes better than the forward discount of the specific portfolio

in forecasting excess returns over the entire period.

Some developing countries like Saudi Arabia and Hong Kong have pegged their exchange rate

to the dollar. This naturally inflates the predictability of currency returns. In the bottom panel of

Table 7, we report the predictability results that we obtained on our smaller sample of developed
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countries. The R2s are lower than those we reported in the top panel of Table 7, but that is mainly

because there is more idiosyncratic variation in these returns, because the portfolios are composed

of fewer currencies.

In a separate appendix, we take a closer look at these forecasting regressions and study the

significance of each predictor at longer horizons. We use Newey-West, Hansen-Hodrick, non-

overlapping data and bootstrapping techniques to compute standard errors. When we use the largest

standard errors, the average forward discount remains a significant predictor, but the portfolio-

specific forward discount does not. As a result, we conclude that the average forward discount

contains information that is useful for forecasting excess returns on all currency portfolios, while

little information is lost by aggregating all these forward discounts into a single predictor. The

fact that the average forward discount is a better predictor of future excess returns on foreign

currency than individual forward discount rates is consistent with the risk premium view: by using

the average forward discount, we throw away all information related to country-specific inflation,

and we do better in predicting future changes in exchange rates. In fact, if we take the residuals of

the average forward discount forecasting regression and we project these on the individual portfolio

forward discounts, there is no predictability left. In the right panel of Table 7, we also report the

R2s of these regressions. There is no information in the individual forward discounts left that helps

to forecast currency returns. This finding is similar to results of Stambaugh (1988) and Cochrane

and Piazzesi (2005) for the predictability of Treasury bill and bond returns. These studies show that

linear combinations of forward rates across maturities outperform the forward rate of a particular

maturity in forecasting returns. In particular, Cochrane and Piazzesi (2005) report R2s of up to 40

percent on one-year holding period returns for zero coupon bonds using a single forecasting factor.

Currency returns are more predictable than stock returns, and almost as predictable as bond returns.

Counter-Cyclical Dollar Risk Premium Our predictability results imply that expected excess

returns on currency portfolios vary over time. We now show that this time variation has a large

US business cycle component: expected excess returns go up in US recessions and go down in US

expansions. The same counter-cyclical behavior has been documented for bond and stock excess

returns.

We use Êtrx
j
t+1 to denote the forecast of the one-month-ahead excess return based on the

forward discount:

Êtrx
j
t+1 = κ

j
0 + κ

j
f (f

j
t − s jt).

At high frequencies, forecasted returns on high interest rate currency portfolios – especially for

the sixth portfolio – increase very strongly in response to events like the Asian crisis in 1997 and the

LTCM crisis in 1998, but at lower frequencies, a big fraction of the variation in forecasted excess
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returns is driven by the US business cycle, especially for the third, fourth and fifth portfolios. To

assess the cyclicality of these forecasted excess returns, we use three standard business cycle indica-

tors and three financial variables: (i) the 12-month percentage change in US industrial production

index, (ii) the 12-month percentage change in total US non-farm payroll index, (iii) the 12-month

percentage change in the Help Wanted index, (iv) the default spread – the difference between the

20-Year Government Bond Yield and the S&P 15-year BBB Utility Bond Yield – (v) the slope of

the yield curve – the difference between the 5-year and the 1-year zero coupon yield, and (vi) the

S&P 500 VIX volatility index.14 Macroeconomic variables are often revised. To check that our

results are robust to real-time data, we use vintage series of the payroll and industrial production

indices from the Federal Reserve Bank of Saint Louis. The results are very similar to the ones

reported in this paper.

Table 8 reports the contemporaneous correlation of the month-ahead forecasted excess returns

with these macroeconomic and financial variables. As expected, forecasted excess returns for high

interest rate portfolios are strongly counter-cyclical.

On the one hand, the monthly contemporaneous correlation between predicted excess returns

and percentage changes in industrial production (first column), the non-farm payroll (second col-

umn) and the help wanted index (third column) are negative for all portfolios except the first one.

For payroll changes, the correlations range from -.70 for the second portfolio to -.09. for the sixth.

Figure 3 plots the forecasted excess return on portfolio 2 against the 12-month change in US in-

dustrial production. Forecasted excess returns on the other portfolios have similar low frequency

dynamics, but in the case of portfolios 5 and 6, they also respond to other events, like the Russian

default and LTCM crisis, the Asian currency crisis and the Argentine default.

On the other hand, monthly correlations of the high interest rate currency portfolio with the

default spread (fourth column) and the term spread (fifth column) are, as expected, positive. Finally,

the last column reports correlations with the implied volatility index (VIX). The VIX seems like a

good proxy for the global risk factor. The VIX is highly correlated with similar volatility indices

abroad.15 The correlations in the last column reveal a clear difference between the low interest rate

currencies with negative correlations, and the high interest rate currencies, with positive correlations.

This is consistent with the predictions of our no-arbitrage model. Recall that the model predicts

14Industrial production data are from the IMF International Financial Statistics. The payroll index is from the

BEA. The Help Wanted Index is from the Conference Board. Zero coupon yields are computed from the Fama-Bliss

series available from CRSP. These can be downloaded from http://wrds.wharton.upenn.edu. Payroll data can be

downloaded from http://www.bea.gov. The VIX index, the corporate bond yield and the 20-year government bond

yield are from http://www.globalfinancialdata.com.
15The VIX starts in February 1990. The DAX equivalent starts in February 1992; the SMI in February 1999; the

CAC, BEL and AEX indices start in January 2000. Using the longest sample available for each index, the correlation

coefficients with the VIX are very high, respectively 0.85, 0.82, 0.88, 0.83 and 0.82 using monthly time-series.
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negative loadings on the common risk factor for the risk premia on low interest rate currencies and

positive loadings for the risk premia on high interest rate currencies (see equation 3.2). In times of

global market uncertainty, there is a flight to quality: investors demand a much higher risk premium

for investing in high interest rate currencies, and they accept lower (or more negative) risk premia

on low interest rate currencies.

Longer Horizons We find the same business cycle variation in expected returns over longer holding

periods. The predictability is partly due to the countercyclical nature of the forward discount, but

not entirely. Controlling for the forward discount reduces the IP slope coefficient by 50 basis

points on portfolios 1-4, 20-30 basis points for portfolios 5-6, but the forward discount does not

drive out the macroeconomic variable. Table 9 reports forecasting results for currency portfolios

obtained using the 12-month change in industrial production and either the portfolio-specific forward

discount or the average forward discount. The currency risk premium increase in response to a one

percentage point drop in the growth rate of industrial production varies between 90 (portfolio 1)

and 170 basis points (portfolio 5). The IP slope coefficients are still significantly different from zero

for the high interest rate portfolios, but the slope coefficients on the (average) forward discounts

are not. In recent work, Duffee (2008) and Ludvigson and Ng (2005) report a similar finding for the

bond market, while Piazzesi and Swanson (2008) find that the annual growth rate of the non-farm

payroll predicts excess returns on interest rate futures.

4.2 Connecting Predictability to the Cross-section of Returns

Our model implies that the price of carry trade risk increases when the global market price of risk

rises. To test this implication of the model, we consider the conditional Euler equation of a US

investor. As explained by Hansen and Richard (1987), a simple conditional factor model can be

turned into an unconditional factor model using all the variables zt in the information set of the

investor. The conditional Euler equation for portfolio j , Et
[
Mt+1R

j
t+1

]
= 1, is then equivalent to

the following unconditional condition:

E
[
Mt+1ztR

j
t+1

]
= 1.

We can interpret this condition as an Euler equation applied to a managed portfolio ztR
j
t+1. This

managed portfolio corresponds to an investment strategy that goes long portfolio j when zt is

positive and short otherwise. We can also interpret it as an Euler equation on portfolio j when the

risk factor is Mt+1zt. In our estimation, we assume that one scaling variable zt summarizes all the

information set of the investor. We scale both returns and risk factors as described in Cochrane
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(1996). As a result, we obtain twelve test assets: the original six portfolios and the same portfolios

multiplied by the scaling variable. For the risk factors, we use the average currency return RX and

HMLFX , and we add HMLFX,t+1zt . Our conditioning variable z is the CBOE volatility index VIX.

Table 10 reports the results. We find that the implied market prices of risk associated with the

carry trade factor vary significantly through time. They tend to increase in bad times, when the

implied stock market volatility is high.

We have documented in this section that returns in currency markets are highly predictable. The

average forward discount rate accurately predicts up to 33 percent of the variation in annual excess

returns. The time variation in expected returns has a clear business cycle pattern: US macroeco-

nomic variables are powerful predictors of these returns, especially at longer holding periods, and

expected currency returns are strongly counter-cyclical. We now turn to the behavior of the second

moments of currency returns over time.

4.3 Flight-to-Quality

In this section, we show that the average beta of HMLFX with the US stock market return is too

small to explain carry trade risk premia, but this beta varies a lot through time, and is particularly

high during episodes of global financial crises.

We run the same asset pricing experiment on the cross-section of currency excess returns using

the US stock market excess return as the pricing factor, instead of the slope risk factor HMLFX . To

measure the return on the market, we use the CRSP value-weighted return on the NYSE, AMEX

and NASDAQ markets in excess of the one-month average Fama risk-free rate. Panel A in table

11 reports the results. The US stock market excess return and the level factor RX can explain 52

percent of the variation in returns. However, the estimated price of US market risk is 37 percent,

while the actual annualized excess return on the market is only 7.1 percent over this sample. The

risk price is 5 times too large. The CAPM betas are also reported in Table 11. They vary from

-.05 for the first portfolio to .08 for the last one. Low interest rate currencies provide a hedge,

while high interest rate currencies expose US investors to more stock market risk. These betas

increase almost monotonically from low to high interest rates, but they are too small to explain

these excess returns. Therefore, the cross-sectional regression of currency returns on market betas

implies market price of risk that are far too high. Panel B in table 11 reports the α’s and the β’s.

The null that that the α’s are zero is rejected at the 5 % significance level.

The failure of the CAPM could be due to time-variation in market betas and/or in the market

price of risk. As shown by Lewellen and Nagel (2006), if the covariance between the market price

of risk and the market betas is positive for the high interest rate portfolios, this can account for

the large and positive CAPM pricing error α on the high-minus-low strategy. We show evidence of
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both time-variation effects.

Time Varying Risk Price First, we run the same asset pricing experiment using a conditioning

variable as we did in the previous section. The bottom panel of table 10 reports results obtained on

12 test assets (the original 6 currency portfolios and the same ones multiplied by the lagged VIX

index). Risk factors are the average return on the currency market RX, the value-weighted stock

market excess return RM and RMz , which is RM multiplied by the lagged value of the VIX index

(scaled by its standard deviation). We find that the market price of risk increases significantly in bad

times (when the stock market volatility index VIX is high). Taking into account such time-variation

improves notably the fit of the CAPM, with an adjusted R2 increasing from 95 percent on this set

of 12 portfolios.

Time Varying Correlation Our carry risk factor HMLFX is much more correlated with the stock

market when there is a lot of global risk. The recent subprime mortgage crisis offers a good example.

A typical currency carry trade at the start of July 2007 was to borrow in yen - a low interest rate

currency - and invest in Australian and New Zealand dollars - high interest rate currencies. Over the

course of the summer, each large drop in the S&P 500 was accompanied by a large appreciation of

the yen of up to 1.7 percent and a large depreciation of the New Zealand and Australian dollar of up

to 2.3 percent .16 Figure 4 plots the monthly returns on HMLFX at daily frequencies against the

US stock market return. Clearly, a US investor who was long in these high interest rate currencies

and short in low interest rate currencies, was heavily exposed to US aggregate stock market risk

during the subprime mortgage crisis, and thus should have been compensated by a risk premium ex

ante.

In the two-factor model, the conditional correlation of HMLFX and the SDF in the home country

is:

corrt (hmlt+1, mt+1) =

√
δzwt√

δzwt +
√
γzt
.

As the global component of the conditional market price of risk increases, the conditional correlation

between the stochastic discount factor at home and the carry trade returns HMLFX increases. We

find strong evidence for this type of time-varying correlation in the data.

In a first pass, we use the US stock market return as a proxy for the domestic SDF. We

compute the correlation between one-month currency returns and the return on the value-weighted

US stock market return using 12-month rolling windows on daily data. Figure 5 plots the difference

16The 2.3 percent depreciation of the New Zealand dollar on July 26 is 3 times the size of the daily standard deviation

in 2007. The 2 percent drop in the Australian dollar is 3.5 times the size of the daily standard deviation in 2007 –the

steepest one-day drop since it was allowed to trade freely in 1983.
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between the correlation of the 6th and the 1st portfolio with the US stock market excess return.

We denote it [Corrτ [R
m
t , rx

6
t ] − Corrτ [Rmt , rx1t ], where Corrτ is the sample correlation over the

previous 12 months [τ − 12, τ ] and Rm the stock market excess return. We also plot the stock
market beta of HMLFX . These market correlations exhibit enormous variation. In times of crisis

and during US recessions, the difference in market correlation between high and low currencies

increases significantly. During the Mexican, Asian, Russian and Argentinean crisis, the correlation

difference jumps up by 50 to 90 basis points.

We now explore time-variation in market betas. There is some evidence that, in times of

financial crisis, the CAPM market beta of the high-minus-low strategy in currency markets increases

dramatically. We start by examining the recent sub-prime mortgage crisis, and we then consider

other crisis episodes. The last 4 columns of Table 12 reports the market betas of all the currency

portfolios that we obtain on a 6-month window before 08/31/2007. To estimate the market betas,

we use daily observations on monthly currency and stock market returns.17 The NW standard error

correction is computed with 20 lags. We estimate a market beta of HMLFX of up to 62 basis

points. The estimated market betas increase monotonically as we move from low to high interest

rate currency portfolios, as we would expect. We report the αs in the bottom panel of Table 12.

Over this period, the estimated pricing errors α on the high-minus-low strategy dropped to 30 basis

points over 6 months or 60 basis points per annum compared to an unconditional pricing error αHML

of more than 500 basis points per annum.

This is not an isolated event, as these results extend to other crises. In Table 12, we document

similar increases in the US market beta of HMLFX during the LTCM-crisis (column 1-4), the

Tequila crisis (column 5-8) and the Brazilian/Argentine crisis (column 9-12). Again, the market

betas increase monotonically in the forward discount rates. For example, βmτ,HML increases to 1.14

in the run-up to the Russian default in 1998, implying that high interest rate currencies depreciate

on average by 1.14 percent relative to low interest rate currencies when the stock market goes down

by one percent. Low interest rate currencies provide a hedge against market risk while high interest

rate currencies expose US investors to more market risk in times of crisis. For the Tequila crisis, the

market betas of all the currency portfolios are negative. This is consistent with our model, as the

dollar risk premium component is counter-cyclical with respect to the US business cycle, and hence

the expected returns on all portfolios can be negative (see equation 3.2). In two of these crisis,

the α on the high-minus-low strategy is negative: minus 271 basis over the 6 months preceding

17For example, we compute market betas βmτ,HML of HMLFX over rolling 6-month windows with the following

regressions on daily data:

HMLt = ατ + β
m
τ,HMLR

m
t + ηt ,

where t ∈ [τ, τ − 128].
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the Russian default and minus 382 basis points during the Tequila crisis.18 In the two other crisis,

the αs are positive (96 and 29 basis points over 6 months respectively) but small, well below the

average α of 4.46 percent per annum that we obtained over the entire sample. As we have shown,

the market beta of the high-minus-low strategy increases dramatically in times when the price of

global risk is high.

5 Calibrated Model

We conclude by showing that a reasonably calibrated version of the model can match the key

moments of currency returns in the data. We calibrate our model at annual frequencies. We use

annual end-of-year series from our set of developed countries over the 1983-2007 sample. To make

contact with the data, we complete our model by adding a nominal component. The calibration

proceeds in two stages. First, we present our calibration of the real SDFs and then we turn to the

nominal SDFs.

5.1 Calibration

We start with a version of the model that is completely symmetrical. In this simple case, we

need to pin down 7 parameters: 4 parameters govern the countries’ SDFs (λ, γ, τ and δ), and 3

parameters describe the country and the world risk factor (θ = θw , φ = φw and σ = σw). We target

7 moments in the data: the mean, standard deviation and autocorrelation of real risk-free rates, the

average conditional variance of changes in real exchange rates, the mean and standard deviation

of the maximal (squared) conditional Sharpe ratio and the UIP slope coefficient. We target a real

risk-free rate with a mean of 1.5 percent, a standard deviation of 2 percent and an autocorrelation

of 0.8. We target a real exchange rate with a standard deviation of 12 percent and a Sharpe ratio

with a mean of 0.5 and a standard deviation of 0.5. Finally, we target a UIP coefficient of -1.

To find our initial set of parameters, we minimize the squared errors on the moments subject to

some additional technical constraints.19 The maximization attains all moments except the mean

(0.65) and standard deviation of the Sharpe ratio (0.13). The top panel of Table 13 lists all of

the moments that we target. Next, we introduce heterogeneity in the loadings on the common risk

factor. We determine the range of parameters δi to match the mean of the carry trade risk factor.

The other parameters are unchanged. The bottom panel of Table 13 lists all the parameters of the

calibration.

18These numbers need to be multiplied by 2 to be annualized
19We list those additional constraints in Appendix B.
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We add a nominal component to the model, because we want to match moments of nominal

interest rates and exchange rates. The log of the nominal pricing kernel in country i is simply given

by the real pricing kernel less the rate of inflation πi :

mi ,$t+1 = m
i
t+1 − πit+1.

We assume that inflation is composed of a country-specific component and a global component.

Both components follow AR(1) processes:

πwt+1 = (1− ρw )πw + ρwπwt + σw$ǫwt+1,
πcit+1 = (1− ρi)πi + ρiπit + σi$ǫit+1,

where the innovations ǫwt and ǫ
i
t are also i .i .d gaussian, with zero mean and unit variance. Inflation

in country i is a weighted average of these two components:

πit+1 = µ
iπcit+1 + (1− µi)πwt+1.

We define world inflation as the cross-sectional, unweighted average of all annual inflation rates,

denoted πw , and we measure the moments of the average world inflation rate for the countries

in our sample. The autocorrelation ρw is equal to 0.88, the standard deviation θw is 3.2 percent.

The relative weight µ on domestic versus world inflation set equal to 0.16; it is determined by

the share of the total variance explained by the first principal component. We subtract the world

component from each country inflation rate to obtain the autocorrelation and the shocks’ standard

deviation in each country. We use the average of these moments. This yields an average for the

country-specific component π equal to 3 percent, an autocorrelation ρ to 0.58 and a volatility σ$

equal to 8.15 percent.

Finally, we define country i ’s total stock market portfolio as a claim to the aggregate dividend

stream of that country, Dit . We model each country’s dividend process as a random walk with a

drift for the logarithm d it = logD
i
t :

∆d it+1 = d
i
t+1 − d it = gDi + σDiwDit+1.

In order to command a risk premium, the dividend growth innovations must be correlated with the

SDF. In particular, we specify the conditional correlations of the dividend growth process with both

the world and country-specific innovations to the SDF:

ρDw = corr
(
wDi , uw

)
and ρDi = corr

(
wDi , ui

)
.
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We compute the price-dividend ratios that correspond to the simulated values of the state

vector using Monte Carlo simulations and interpolate them using a kernel regression. Details of

the solution procedure are described in the appendix. This enables us to compute the stock market

returns. We calibrate the dividend growth process as follows: we set the standard deviation of log

dividend growth σDi to be 10 percent per annum, and the correlations with the two SDF shocks

ρDw = ρDi = 0.7. The equity premium is 5 percent per annum and the standard deviation of excess

returns on stocks is 14 percent per annum.

5.2 Currency Portfolios

We simulate a version of the model with N = 180 countries over 10,000 periods. Figure 6 displays

the distribution of average nominal interest rates, of the volatility of nominal interest rates, of the

volatility of real and nominal exchange rates and UIP slope coefficients in our calibrated model.

These variables are well-behaved. The average real one-period yields are mostly between 0 and 10

percent, with a few negative values. The standard deviations of the real risk-free rates are between

1.5 and 2.7 percent. The standard deviations of changes in the real and nominal exchanges rates

lie between 11 and 15 percent. The average UIP slope coefficient is -0.3 on nominal data (-0.98 on

real data). As a consequence, the calibrated version of our multi-country model delivers reasonable

interest rates and exchange rates.

Portfolios We build currency portfolios on simulated data in the same way as with the actual

data. Table 14 reports summary statistics on these portfolios and estimates of the market prices

of risk. The model delivers a sizable cross-section of currency excess returns. The spread between

the first and last portfolio is 6.9 percent per annum, implying a Sharpe ratio of 0.7. In the asset

pricing experiment, the market price of the carry trade factor HMLFX is 6.8 percent per annum,

very close to the sample mean. The price of the aggregate market return RX is not significant.

This is not surprising; with a large number of periods, the mean of RX should be zero according

to equation (3.1). Thanks to its heterogeneity in the loadings on the world risk factor, our model

reproduces our previous cross-sectional asset pricing results.

We note that the simulated market price of carry risk varies for two reasons: it is high when

the world risk factor zw is high, and this effect is amplified by a portfolio composition effect. As

previously noted, in bad times, when zw is high, the spread between the average δs in the first and

last portfolio increases. Figure 7 illustrates these two effects.

Finally, the unconditional CAPM fails to explain currency return generated by our model, as in

the data. In a sample of 1000 simulated periods, we run a time-series regression of HMLFX on the

stock market return. We find that the CAPM α of HMLFX is large and statistically significantly
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different from zero: the CAPM understates the average return by over 5.15 percent per annum and

the corresponding standard error is 0.26. This large α represents the bulk of the average HMLFX

return of 6.9 percent. As a result, the unconditional CAPM cannot explain currency returns in this

no-arbitrage model of exchange rates.

6 Conclusion

In this paper, we show that currency markets offer large and time-varying risk premia. Currency ex-

cess returns are highly predictable. In addition, these predicted returns are strongly counter-cyclical.

The average excess returns on low interest rate currencies are about 5 percent per annum smaller

than those on high interest rate currencies after accounting for transaction costs. We show that

a single return-based factor explains the cross-section of average currency excess returns. These

findings are consistent with the notion that carry trade profits are compensation for systematic risk.

Using a no-arbitrage model of exchange rates, we show that a single risk factor, obtained as

the return on the highest minus the return on the lowest currency portfolio, measures exposure

to common or global SDF shocks. We can replicate our main empirical findings in a reasonably

calibrated version of this model, provided that low interest rate currencies are more exposed to

global risk in bad times, when the price of global risk is high. This heterogeneity in the loadings on

the global risk factor is critical.
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Table 1: Currency Portfolios - US Investor

Portfolio 1 2 3 4 5 6 1 2 3 4 5

Panel I: All Countries Panel II: Developed Countries

Spot change: ∆s j ∆s j

Mean −0.97 −1.33 −1.55 −2.73 −0.99 1.88 −1.86 −2.54 −4.05 −2.11 −1.11
Std 8.04 7.29 7.41 7.42 7.74 9.16 10.12 9.71 9.24 8.92 9.20

Forward Discount: f j − s j f j − s j

Mean −3.90 −1.30 −0.15 0.94 2.55 7.78 −3.09 −1.02 0.07 1.13 3.94
Std 1.57 0.49 0.48 0.53 0.59 2.09 0.78 0.63 0.65 0.67 0.76

Excess Return: r x j (without b-a) r x j (without b-a)

Mean −2.92 0.02 1.40 3.66 3.54 5.90 −1.24 1.52 4.11 3.24 5.06
Std 8.22 7.36 7.46 7.53 7.85 9.26 10.20 9.75 9.35 9.01 9.30
SR −0.36 0.00 0.19 0.49 0.45 0.64 −0.12 0.16 0.44 0.36 0.54

Net Excess Return: r x jnet (with b-a) r x jnet (with b-a)

Mean −1.70 −0.95 0.12 2.31 2.04 3.14 −0.11 0.46 2.71 1.98 3.35
Std 8.21 7.35 7.43 7.48 7.85 9.25 10.20 9.75 9.32 9.02 9.30
SR −0.21 −0.13 0.02 0.31 0.26 0.34 −0.01 0.05 0.29 0.22 0.36

High-minus-Low: r x j − r x1 (without b-a) r x j − r x1 (without b-a)
Mean 2.95 4.33 6.59 6.46 8.83 2.75 5.35 4.47 6.29
Std 5.36 5.54 6.65 6.34 8.95 6.42 6.44 7.38 8.70
SR 0.55 0.78 0.99 1.02 0.99 0.43 0.83 0.61 0.72

High-minus-Low: r x jnet − r x1net (with b-a) r x jnet − r x1net (with b-a)
Mean 0.75 1.82 4.00 3.73 4.83 0.57 2.82 2.09 3.46
Std 5.36 5.56 6.63 6.35 8.98 6.45 6.44 7.41 8.73
SR 0.14 0.33 0.60 0.59 0.54 0.09 0.44 0.28 0.40

Notes: This table reports, for each portfolio j , the average change in log spot exchange rates ∆s j , the average log forward discount f j − s j , the average
log excess return r x j without bid-ask spreads, the average log excess return r x jnet with bid-ask spreads, and the average return on the long short strategy

r x jnet − r x1net and r x j − r x1 (with and without bid-ask spreads). Log currency excess returns are computed as r x jt+1 = −∆s
j
t+1 + f

j
t − s jt . All moments are

annualized and reported in percentage points. For excess returns, the table also reports Sharpe ratios, computed as ratios of annualized means to annualized

standard deviations. The portfolios are constructed by sorting currencies into six groups at time t based on the one-month forward discount (i.e nominal

interest rate differential) at the end of period t − 1. Portfolio 1 contains currencies with the lowest interest rates. Portfolio 6 contains currencies with the
highest interest rates. Panel I uses all countries, panel II focuses on developed countries. Data are monthly, from Barclays and Reuters (Datastream). The

sample period is 11/1983 - 03/2008.
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Table 2: Principal Components

Panel I: Developed and Emerging Countries

Portfolio 1 2 3 4 5 6

1 0.43 0.41 −0.18 0.31 0.72 0.03

2 0.39 0.26 −0.14 −0.02 −0.44 0.75

3 0.39 0.26 −0.46 −0.38 −0.31 −0.57
4 0.38 0.05 0.72 −0.56 0.16 −0.01
5 0.42 −0.11 0.38 0.66 −0.37 −0.31
6 0.43 −0.82 −0.28 −0.10 0.18 0.11

% Var. 70.07 12.25 6.18 4.51 3.76 3.23

Panel II: Developed Countries

Portfolio 1 2 3 4 5

1 0.48 0.56 0.60 0.23 0.20

2 0.47 0.29 −0.66 −0.32 0.40

3 0.46 0.05 −0.30 0.36 −0.76
4 0.42 −0.34 0.34 −0.72 −0.25
5 0.41 −0.69 0.02 0.44 0.40

% Var 79.06 9.33 4.73 3.58 3.30

Notes: This table reports the principal component coefficients of the currency portfolios. In each panel, the last row reports (in %) the

share of the total variance explained by each common factor. Data are monthly, from Barclays and Reuters (Datastream). The sample

period is 11/1983 - 03/2008.
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Table 3: Asset Pricing - US Investor

Panel I: Factor Prices and Loadings

All Countries Developed Countries

λHMLFX λRX bHMLFX bRX R2 RMSE χ2 λHMLFX λRX bHMLFX bRX R2 RMSE χ2

GMM1 5.46 1.35 0.59 0.26 69.28 0.95 3.56 2.24 0.43 0.32 71.06 0.61
[2.34] [1.68] [0.25] [0.32] 13.83 [2.19] [2.02] [0.24] [0.24] 41.06

GMM2 4.88 0.58 0.52 0.12 47.89 1.24 3.78 3.03 0.46 0.42 20.41 1.00
[2.23] [1.63] [0.24] [0.31] 15.42 [2.14] [1.95] [0.23] [0.23] 44.36

FMB 5.46 1.35 0.58 0.26 69.28 0.95 3.56 2.24 0.42 0.32 71.06 0.61
[1.82] [1.34] [0.19] [0.25] 13.02 [1.80] [1.71] [0.20] [0.20] 41.34
(1.83) (1.34) (0.20) (0.25) 14.32 (1.80) (1.71) (0.20) (0.20) 42.35

Mean 5.37 1.36 3.44 2.24

Panel II: Factor Betas

All Countries Developed Countries

Portf ol io αj0(%) β
j
HMLFX

βjRX R2(%) χ2(α) p − value αj0(%) β
j
HMLFX

βjRX R2(%) χ2(α) p − value
1 −0.56 −0.39 1.06 91.36 0.00 −0.50 1.00 94.95

[0.52] [0.02] [0.03] [0.48] [0.02] [0.02]

2 −1.21 −0.13 0.97 78.54 −0.90 −0.11 1.02 82.38
[0.76] [0.03] [0.05] [0.81] [0.04] [0.04]

3 −0.13 −0.12 0.95 73.73 1.01 −0.02 1.02 85.22
[0.82] [0.03] [0.04] [0.83] [0.03] [0.03]

4 1.62 −0.02 0.93 68.86 −0.12 0.13 0.97 81.43
[0.86] [0.04] [0.06] [0.85] [0.04] [0.04]

5 0.84 0.05 1.03 76.37 0.00 0.50 1.00 93.87
[0.80] [0.04] [0.05] [0.48] [0.02] [0.02]

6 −0.56 0.61 1.06 93.03
[0.52] [0.02] [0.03]

All 10.11 0.12 2.61 0.76

Notes: The panel on the left reports results for all countries. The panel on the right reports results for the developed countries. Panel I reports results

from GMM and Fama-McBeth asset pricing procedures. Market prices of risk λ, the adjusted R2, the square-root of mean-squared errors RMSE and the

p-values of χ2 tests on pricing errors are reported in percentage points. b denotes the vector of factor loadings. Excess returns used as test assets and

risk factors take into account bid-ask spreads. All excess returns are multiplied by 12 (annualized). The standard errors in brackets are Newey and West

(1987) standard errors computed with the optimal number of lags according to Andrews (1991). Shanken (1992)-corrected standard errors are reported in

parentheses. We do not include a constant in the second step of the FMB procedure. Panel II reports OLS estimates of the factor betas. R2s and p-values

are reported in percentage points. The χ2 test statistic α′V −1α α tests the null that all intercepts are jointly zero. This statistic is constructed from the

Newey-West variance-covariance matrix (1 lag) for the system of equations (see Cochrane (2001), p. 234). Data are monthly, from Barclays and Reuters

in Datastream. The sample period is 11/1983 - 03/2008. The alphas are annualized and in percentage points.
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Table 4: Beta-Sorted Currency Portfolios - US Investor

Portfolio 1 2 3 4 5 6 1 2 3 4 5

Panel I: Developed and Emerging Countries Panel II: Developed Countries

Spot change: ∆s j Spot change: ∆s j

Mean −2.11 −1.80 −1.25 −1.97 −1.80 −0.14 −1.95 −2.33 −1.88 −2.20 0.28

Std 8.74 7.86 7.28 6.75 8.06 7.45 8.79 8.20 8.15 7.83 7.58

Discount: f j − s j Discount: f j − s j

Mean −1.45 −0.38 0.75 0.93 1.48 3.18 −1.46 −0.51 0.98 1.28 4.15

Std 0.77 0.56 1.23 0.64 0.80 1.26 0.69 0.60 0.71 0.82 1.65

Excess Return: r x j (without b-a) Excess Return: r x j (without b-a)

Mean 0.66 1.42 2.00 2.90 3.29 3.32 0.48 1.82 2.86 3.48 3.87

Std 8.88 7.87 7.33 6.71 8.07 7.48 8.87 8.24 8.20 7.79 7.97

SR 0.07 0.18 0.27 0.43 0.41 0.44 0.05 0.22 0.35 0.45 0.49

High-minus-Low: r x j − r x1 (without b-a) Excess Return: r x j (without b-a)

Mean 0.76 1.34 2.24 2.63 2.66 1.34 2.38 2.99 3.38

Std 5.24 6.34 7.43 8.88 9.23 5.34 5.96 7.96 9.02

SR 0.15 0.21 0.30 0.30 0.29 0.25 0.40 0.38 0.38

Pre-formation β’s Pre-formation β’s

Mean −0.40 −0.24 −0.15 0.01 0.21 0.57 −0.39 −0.23 −0.04 0.15 0.46
Std 0.29 0.23 0.24 0.26 0.43 0.41 0.26 0.25 0.35 0.45 0.41

Post-formation β’s Post-formation β’s

Estimate −0.31 −0.20 −0.14 0.01 0.13 0.28 −0.26 −0.15 0.04 0.08 0.30
s.e [0.04] [0.05] [0.05] [0.05] [0.06] [0.06] [0.05] [0.05] [0.05] [0.05] [0.04]

Notes: This table reports, for each portfolio j , the average change in the log spot exchange rate ∆s j , the average log

forward discount f j − s j , the average log excess return r x j without bid-ask spreads and the average returns on the long
short strategy r x j − r x1. The left panel uses our sample of developed and emerging countries. The right panel uses our
sample of developed countries. Log currency excess returns are computed as r x jt+1 = −∆s

j
t+1 + f

j
t − s jt . All moments

are annualized and reported in percentage points. For excess returns, the table also reports Sharpe ratios, computed

as ratios of annualized means to annualized standard deviations. Portfolios are constructed by sorting currencies into

six groups at time t based on slope coefficients βit . Each β
i
t is obtained by regressing currency i log excess return r x

i

on HMLFX on a 36-period moving window that ends in period t − 1. The first portfolio contains currencies with the
lowest βs. The last portfolio contains currencies with the highest βs. We report the average pre-formation beta for

each portfolio. The last panel reports the post-formation betas obtained by regressing realized log excess returns on

portfolio j on HMLFX and RXFX . We only report the HMLFX betas. The standard errors are reported in brackets.

Data are monthly, from Barclays and Reuters (Datastream). The sample period is 11/1983 - 03/2008.
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Table 5: Asset Pricing - Foreign Investors

λHML λRX R2 RMSE χ2 λHML λRX R2 RMSE χ2 λHMLFX λRX R2 RMSE χ2

UK Japan Switzerland

GMM1 5.54 −2.13 70.12 0.95 5.50 1.18 60.16 1.16 5.79 0.41 78.57 0.81
[2.34] [1.87] 24.83 [2.21] [2.13] 9.35 [2.25] [1.69] 27.81

GMM2 5.47 −2.25 69.66 0.96 4.73 1.92 41.85 1.40 6.23 0.62 76.55 0.85
[2.17] [1.70] 24.89 [2.12] [2.10] 10.76 [2.11] [1.61] 28.30

FMB 5.54 −2.13 70.12 0.95 5.50 1.18 60.16 1.16 5.79 0.41 78.57 0.81
[1.83] [1.46] 20.57 [1.77] [1.87] 6.00 [1.78] [1.46] 28.04
(1.83) (1.46) 22.28 (1.77) (1.87) 6.80 (1.78) (1.46) 30.03

Mean 5.44 -2.13 4.85 1.18 5.92 0.42

Portf ol io αi0 βiHML βiRX R2 αi0 βiHML βiRX R2 αi0 βiHML βiRX R2

UK Japan Switzerland

1 −0.48 −0.39 0.98 91.40 −0.11 −0.37 0.96 93.83 −0.75 −0.38 0.99 89.05
[0.56] [0.02] [0.03] [0.47] [0.02] [0.02] [0.53] [0.02] [0.02]

2 −0.90 −0.15 1.00 81.97 −1.94 −0.17 1.05 86.61 −0.44 −0.13 1.00 77.39
[0.84] [0.03] [0.04] [0.79] [0.03] [0.03] [0.95] [0.04] [0.05]

3 −0.78 −0.08 1.02 79.06 −0.67 −0.11 1.02 86.47 −0.31 −0.12 1.09 79.23
[0.85] [0.03] [0.04] [0.71] [0.03] [0.03] [0.82] [0.03] [0.04]

4 1.57 −0.08 0.99 73.07 1.53 −0.07 1.05 84.58 1.10 −0.07 1.00 72.33
[0.91] [0.04] [0.04] [0.88] [0.04] [0.05] [0.97] [0.04] [0.05]

5 1.06 0.09 1.02 77.77 1.31 0.09 0.96 84.47 1.15 0.08 0.94 76.23
[0.79] [0.04] [0.04] [0.84] [0.04] [0.03] [0.84] [0.04] [0.05]

6 −0.48 0.61 0.98 92.14 −0.11 0.63 0.96 96.05 −0.75 0.62 0.99 93.76
[0.56] [0.02] [0.03] [0.47] [0.02] [0.02] [0.53] [0.02] [0.02]

χ2(α) χ2(α) χ2(α)

7.30 0.29 14.28 0.03 4.48 0.61

Notes: Panel I reports results from GMM and Fama-McBeth asset pricing procedures. Market prices of risk λ, R2, square-root of mean-squared errors RMSE and p-values of χ2 tests

are reported in percentage points. b1 represents the factor loading. The portfolios are constructed by sorting currencies into six groups at time t based on the interest rate differential

at the end of period t − 1. Portfolio 1 contains currencies with the lowest interest rate. Portfolio 6 contains currencies with the highest interest rate. Data are monthly, from Barclays

and Reuters in Datastream. The sample period is 11/1983 - 03/2008. Excess returns used as test assets take into account bid-ask spreads. All excess returns are multiplied by 12.

Standard errors are reported in brackets. Shanken-corrected standard errors are reported in parenthesis. Panel II reports results OLS estimates of the factor betas. The intercept α0
β, and the R2 are reported in percentage points. The standard errors in brackets are Newey-West standard errors computed with the optimal number of lags. The χ2 test statistic

α′V −1α α tests the null that all intercepts are jointly zero. This statistic is constructed from the Newey-West variance-covariance matrix (1 lag) for the system of equations (Cochrane

(2001), p. 234). The portfolios are constructed by sorting currencies into six groups at time t based on the the currency excess return at the end of period t − 1. Portfolio 1 contains

currencies with the lowest previous excess return. Portfolio 5 contains currencies with the highest previous excess return. Data are monthly, from Barclays. The sample period is

11/1983 - 03/2008. Excess returns used as test assets take into account bid-ask spreads. All excess returns are multiplied by 12.
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Table 6: One-Month Ahead Return Predictability

Portfolio κf W R2 κf W R2 Portfolio κsp,f W R2 κsp,f W R2

Panel A: Returns Panel B: Spreads

1 3.65 7.85 1.08 4.30

NW [0.64] 32.10 [0.33] 11.03
HH [0.57] 40.36 [0.23] 21.92
VAR [0.73] 37.57 [0.36] 17.28

2 2.29 3.86 2.44 2.65 2 minus 1 8.31 3.05 9.08 4.81

NW [0.70] 10.76 [0.97] 6.28 NW [3.02] 7.57 [2.66] 11.64
HH [0.69] 11.13 [0.92] 6.98 HH [0.43] 368.58 [2.44] 13.86
VAR [0.72] 16.49 [1.02] 8.79 VAR [3.58] 8.51 [3.43] 12.66

3 1.93 2.68 1.96 1.61 3 minus 1 7.10 2.09 7.28 2.89

NW [0.65] 8.92 [1.04] 3.56 NW [3.01] 5.58 [2.27] 10.26
HH [0.63] 9.48 [1.02] 3.67 HH [3.03] 5.49 [2.40] 9.23
VAR [0.66] 12.88 [0.97] 5.94 VAR [4.01] 5.74 [3.72] 7.75

4 2.22 3.47 3.47 5.98 4 minus 1 8.33 1.99 9.27 3.28

NW [0.65] 11.61 [0.87] 16.03 NW [2.99] 7.75 [2.38] 15.22
HH [0.64] 12.16 [0.82] 18.02 HH [2.85] 8.53 [2.38] 15.22
VAR [0.72] 14.28 [0.92] 18.32 VAR [4.34] 6.69 [4.03] 10.97

5 2.68 4.63 3.02 5.10 5 minus 1 7.13 1.61 6.83 2.15

NW [0.74] 13.01 [0.91] 11.11 NW [3.49] 4.17 [2.82] 5.86
HH [0.76] 12.44 [0.93] 10.61 HH [1.68] 17.94 [0.96] 50.74
VAR [0.77] 19.80 [0.83] 16.33 VAR [4.00] 6.18 [3.32] 8.31

6 3.09 4.44 0.71 2.56 6 minus 1 9.93 1.57 3.73 0.80

NW [0.84] 13.61 [0.21] 11.40 NW [4.20] 5.59 [3.10] 1.45
HH [0.85] 13.27 [0.21] 11.48 HH [3.73] 7.09 [3.08] 1.47
VAR [0.94] 16.80 [0.32] 12.78 VAR [5.30] 7.36 [2.99] 3.60

Notes: Panel A reports summary statistics for return predictability regressions at a one-month horizon. For each portfolio j , we report the R2, and the slope

coefficient in the time-series regression of the log currency excess return on the average log forward discount (κf) in the left panel and the portfolio-specific

log forward discount (κf ) in the right panel. Panel B reports summary statistics for return predictability regressions of the spread at a one-month horizon.

The left panel reports the statistics in the regression of one-month excess returns on the average one-month forward discount spread (κsp,f). The right

panel reports the statistics in the regression of one-month excess returns on that portfolio’s one-month forward discount spread (κsp,f ). W is the Wald-test

χ2 statistic for the slope coefficient. The Newey and West (1987) NW standard errors are computed with the optimal number of lags following Andrews

(1991). The Hansen and Hodrick (1980) HH standard error are computed with one lag. The bootstrapped standard errors V AR are computed by drawing

from the residuals of a VAR with one lag. All the returns are annualized and reported in percentage points. Data are monthly, from Barclays and Reuters

(Datastream). The returns take into account bid-ask spreads. The sample period is 11/1983 - 03/2008.
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Table 7: Return Predictability: Longer Horizons

Horizon 1 2 3 6 12 1 2 3 6 12

Panel I: All Countries

Overlapping Data

Portf ol io Forward Discount Residual Predictability

1 4.30 4.64 8.03 25.30 25.93 0.23 0.00 0.01 1.18 0.20
6 2.56 3.07 3.82 5.72 10.03 0.01 0.03 0.06 0.03 0.05

Average Forward Discount

1 7.85 12.58 17.16 28.32 32.57
6 4.44 6.13 8.46 12.70 17.54

No Overlapping Data

Portf ol io Forward Discount Residual Predictability

1 4.30 2.52 8.84 24.62 28.18 0.23 0.23 0.05 0.54 0.61
6 2.56 3.59 4.19 4.67 14.50 0.01 0.01 0.00 0.01 0.04

Average Forward Discount

1 7.85 13.41 17.87 31.74 30.22
6 4.44 6.49 7.58 12.58 25.55

Panel II: Developed Countries

Overlapping Data

Portf ol io Forward Discount Residual Predictability

1 1.95 3.51 6.86 14.41 17.23 0.01 0.25 0.17 0.12 0.06
5 3.29 5.74 7.67 12.26 13.55 0.24 0.24 0.21 0.42 1.22

Average Forward Discount

1 3.02 6.31 10.08 18.39 20.51
5 2.85 5.34 7.80 12.27 10.43

No Overlapping Data

Portf ol io Forward Discount Residual Predictability

1 1.95 1.90 7.54 16.67 17.17 0.01 1.04 0.12 0.33 0.04
5 3.29 6.21 8.29 19.22 19.14 0.34 0.83 0.36 1.95 1.87

Portf ol io Average Forward Discount

1 3.02 6.37 10.56 22.74 20.12
5 2.85 4.19 7.79 15.81 14.19

Notes: In the left panel, we report the R2 in the time-series regressions of the log k-period currency excess return on

the log forward discount for each portfolio j : r x j,knet,t+k = κ
j
0+κ

j
1(f
j,k
t − s jt)+ηjt. In the left panel, we also report the R2

in the time-series regression the log k-period currency excess return on the linear combination of log forward discounts

for each portfolio j : r x j,knet,t+k = κ
j
0 + κ

j
1ι
′(fkt − skt ) + ηjt for each portfolio j . In the right panel, we report the residual

predictability: In a first step, we regress the log k-period currency excess return on the average log forward discount

for each portfolio j : r x j,knet,t+k = κ
j
0+κ

j
1ι
′(fkt − skt )+ ηjt . We report the R2 in the time-series regression of the residuals

ηjt from the first step on the log forward discounts for each portfolio j : r x
j,k
net,t+k = κ

j
0 + κ

j
1(f
k
t − skt ) + ǫjt for each

portfolio j . Data are monthly, from Barclays and Reuters (Datastream). The sample period is 11/1983 - 03/2008.

Panel I uses developed and emerging countries. Panel II focuses on developed countries. In both cases, the top panel

uses overlapping data and the bottom panel does not.
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Table 8: Contemporaneous Correlations Between Expected Excess Returns or Forward Discounts

and Macroeconomic and Financial Variables

IP Pay Help spread slope vol

Portfolio Panel I: Expected Excess Returns

1 0.18 0.02 0.19 −0.21 0.04 −0.17
[0.04] [0.02] [0.11] [0.03] [0.04] [0.02]

2 −0.57 −0.70 −0.41 0.34 0.42 −0.14
[0.04] [0.04] [0.05] [0.02] [0.04] [0.02]

3 −0.61 −0.64 −0.37 0.33 0.47 −0.04
[0.05] [0.05] [0.06] [0.02] [0.04] [0.02]

4 −0.57 −0.51 −0.30 0.26 0.42 0.09
[0.06] [0.05] [0.06] [0.02] [0.04] [0.02]

5 −0.51 −0.39 −0.24 0.28 0.38 0.28
[0.05] [0.05] [0.05] [0.02] [0.03] [0.02]

6 −0.14 −0.09 −0.05 0.17 0.15 0.52
[0.05] [0.05] [0.05] [0.02] [0.05] [0.02]

Maturity Panel II: Average Forward Discount

1 −0.31 −0.34 −0.13 0.17 0.33 0.18
[0.12] [0.04] [0.14] [0.04] [0.08] [0.05]

2 −0.46 −0.47 −0.24 0.26 0.40 0.24
[0.15] [0.05] [0.15] [0.04] [0.09] [0.05]

3 −0.51 −0.52 −0.30 0.30 0.41 0.27
[0.16] [0.05] [0.15] [0.04] [0.09] [0.05]

6 −0.54 −0.57 −0.38 0.35 0.40 0.32
[0.18] [0.05] [0.15] [0.05] [0.10] [0.07]

12 −0.50 −0.60 −0.37 0.29 0.41 0.24
[0.18] [0.05] [0.17] [0.06] [0.12] [0.08]

Notes: Panel I reports the contemporaneous correlation Cor r
[
Êt r x

j
t+1, xt

]
of forecasted excess returns using the port-

folio forward discount with different variables xt : the 12-month percentage change in industrial production (∆ log IPt),

the 12-month percentage change in the total US non-farm payroll (∆ logPayt), and the 12-month percentage change

of the Help-Wanted index (∆ logHelpt), the default spread (spreadt), the slope of the yield curve (slopet) and the

CBOE S&P 500 volatility index (volt). Panel II reports the contemporaneous correlation of the average forward

discount with these variables. Data are monthly, from Datastream and Global Financial Data. The sample period is

11/1983 - 03/2008.

45



Table 9: Forecasting 12-month ahead Excess Returns with Industrial Production and Forward Discounts

κIP κf W R2 κIP κf W R2 κIP κf W R2 κIP κf W R2

All Countries Developed Countries

1 −0.92 2.23 30.20 −0.89 3.09 37.37 −1.30 1.27 23.45 −1.13 1.79 25.03

NW [0.60] [1.21] 37.13 [0.28] [0.80] 41.77 [0.72] [1.16] 19.66 [0.55] [0.93] 21.24
HH [0.67] [1.38] 38.95 [0.29] [0.83] 47.75 [0.78] [1.31] 17.37 [0.59] [1.02] 19.39
VAR [0.71] [1.31] 38.13 [0.61] [1.10] 41.20 [0.91] [1.55] 33.55 [0.89] [1.49] 33.92
No overlap [0.78] [1.60] 22.31 [0.51] [1.37] 24.37 [0.91] [1.48] 12.23 [0.78] [1.38] 13.71

2 −0.98 0.69 18.68 −0.94 0.98 20.13 −1.91 −0.21 21.25 −1.42 1.03 22.58

NW [0.52] [1.00] 15.30 [0.36] [0.70] 15.11 [0.83] [1.41] 16.63 [0.60] [1.25] 17.89
HH [0.58] [1.11] 16.11 [0.40] [0.71] 16.36 [0.92] [1.59] 14.45 [0.66] [1.40] 15.64
VAR [0.54] [1.08] 21.93 [0.51] [0.92] 41.20 [0.88] [1.56] 44.24 [0.89] [1.49] 33.92
No overlap [0.68] [1.61] 8.12 [0.48] [1.25] 9.65 [0.96] [1.94] 11.50 [0.79] [1.98] 12.55

3 −1.18 1.18 29.42 −1.15 1.51 31.75 −1.71 0.61 29.92 −1.68 0.71 30.02

NW [0.36] [0.92] 26.76 [0.30] [0.82] 28.02 [0.43] [0.86] 39.90 [0.46] [0.99] 40.18
HH [0.40] [0.99] 23.17 [0.33] [0.90] 24.16 [0.46] [0.93] 35.58 [0.48] [1.09] 36.04
VAR [0.54] [0.93] 62.73 [0.49] [0.89] 56.88 [0.66] [0.92] 52.70 [0.69] [1.09] 48.97
No overlap [0.71] [1.50] 14.59 [0.56] [1.42] 16.13 [0.61] [1.48] 92.52 [0.58] [1.43] 92.46

4 −1.19 1.02 31.66 −1.19 1.20 32.38 −1.48 0.84 32.46 −1.42 1.08 33.01

NW [0.28] [0.69] 32.51 [0.27] [0.74] 31.14 [0.46] [0.97] 51.55 [0.49] [1.18] 49.47
HH [0.30] [0.72] 29.88 [0.29] [0.79] 28.37 [0.50] [1.05] 49.98 [0.54] [1.30] 47.69
VAR [0.46] [0.64] 61.11 [0.44] [0.77] 63.26 [0.57] [0.85] 50.78 [0.58] [1.02] 61.71
No overlap [0.39] [1.44] 24.95 [0.31] [1.48] 21.21 [0.62] [1.54] 45.16 [0.57] [1.82] 69.50

5 −1.71 1.20 39.97 −1.72 0.97 37.90 −1.76 0.64 32.75 −2.14 −0.45 32.03

NW [0.31] [0.66] 43.03 [0.35] [0.79] 38.81 [0.39] [1.22] 41.94 [0.52] [1.43] 48.03
HH [0.32] [0.69] 47.98 [0.38] [0.79] 43.60 [0.41] [1.37] 38.25 [0.56] [1.60] 44.46
VAR [0.41] [0.71] 68.34 [0.46] [0.81] 53.27 [0.68] [1.10] 48.86 [0.73] [1.25] 51.50
No overlap [0.54] [0.98] 33.12 [0.70] [1.51] 22.11 [0.45] [1.46] 37.95 [0.67] [1.86] 40.11

6 −1.50 1.08 26.64 −1.08 1.95 24.09

NW [0.42] [0.45] 23.97 [0.50] [1.38] 17.97
HH [0.45] [0.46] 20.20 [0.53] [1.51] 15.68
VAR [0.52] [0.57] 53.36 [0.65] [1.13] 33.36
No overlap [0.45] [0.50] 20.01 [0.50] [1.40] 14.78

Notes: This table reports forecasting results obtained on currency portfolios using the 12-month change in Industrial Production and either the portfolio

12-month forward discount or the average 12-month forward discount. We report the R2 in the time-series regressions of the log 12-month currency excess

return on the log forward discount for each portfolio j : r x j,12net,t+12 = κ
j
0 + κ

j
1(f
j,12
t − s jt) + κj1∆IPt−12,t + η

j
t . The left panel uses our sample of developed

and emerging countries. The right panel uses our sample of developed countries. The Newey and West (1987) (NW ) standard errors are computed with

the optimal number of lags. W is the Wald-test χ2 statistic for the slope coefficients. The Hansen and Hodrick (1980) (HH) standard errors are computed

with 12 lags for the 12-month returns. For the bootstrapped standard errors, the V AR uses 12 lags for the 12-month returns. All the returns are annualized

and reported in percentage points. Data are monthly, from Datastream and Global Financial Data. The sample period is 11/1983 - 03/2008.
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Table 10: Conditional Asset Pricing

Panel I: Conditional HMLFX

λRX λHMLFX λHMLFXV IX bRX bHMLFX bHMLFXV IX R2 RMSE χ2

GMM1 1.92 8.12 20.58 0.05 2.57 −0.52 90.09 1.47

[3.69] [3.39] [9.70] [0.21] [2.67] [0.78] 30.83

GMM2 1.62 7.80 23.99 0.02 1.07 −0.05 82.07 1.98

[3.24] [2.43] [8.10] [0.18] [0.97] [0.29] 56.48

FMB 1.92 8.12 20.58 0.05 2.56 −0.52 90.09 1.47

[2.80] [2.52] [6.76] [0.17] [2.01] [0.59] 27.71

[2.80] [2.57] [6.78] [0.17] [2.10] [0.61] 35.35

Mean 1.99 5.86 21.04

Panel II: Conditional CAPM

λRX λRm λRmz bRX bRm bRmz R2 RMSE χ2

GMM1 2.05 48.45 150.33 0.16 5.64 −1.00 95.77 0.96

[4.95] [23.18] [70.12] [0.34] [4.48] [1.06] 54.47

GMM2 1.12 26.54 89.50 0.02 2.01 −0.24 70.04 2.56

[4.42] [15.60] [50.23] [0.27] [2.16] [0.48] 85.02

FMB 2.05 48.45 150.33 0.16 5.62 −0.99 95.26 0.96

[2.80] [13.55] [42.87] [0.20] [2.32] [0.55] 11.73

(2.81) (19.91) (62.56) (0.24) (3.42) (0.80) 70.55

Mean 1.99 6.93 23.51

Notes: This table reports results from GMM and Fama-McBeth asset pricing procedures. Market prices of risk λ, the

adjusted R2, the square-root of mean-squared errors RMSE and the p-values of χ2 tests are reported in percentage

points. In the top panel, the risk factors are the average return on the currency market RX, HMLFX and HMLFXV IX,

which is HMLFX multiplied by the lagged value of the VIX index (scaled by its standard deviation). bRX , bHMLFX and

bHMLFXV IX represent the corresponding factor loadings. In the bottom panel, the risk factors are the average return

on the currency market RX, the value-weighted stock market excess return Rm and Rmz , which is Rm multiplied by

the lagged value of the VIX index (scaled by its standard deviation). bRX , bRmV IX and bRm represent the corresponding

factor loadings. The portfolios are constructed by sorting currencies into six groups at time t based on the interest

rate differential at the end of period t − 1. Portfolio 1 contains currencies with the lowest interest rates. Portfolio 6
contains currencies with the highest interest rates. In both panels, we use 12 test assets: the original 6 portfolios and

6 additional portfolios obtained by multiplying the original set by the conditioning variable (VIX). Data are monthly,

from Barclays and Reuters (Datastream). The sample is 02/1990-03/2008. Standard errors are reported in brackets.

Shanken-corrected standard errors are reported in parentheses. We do not include a constant in the second step of the

FMB procedure.
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Table 11: Asset Pricing - CAPM

Panel I: Factor Prices and Loadings

All Countries Developed Countries

λRX λRm bRX bRm R2 RMSE χ2 λRX λRm bRX bRm R2 RMSE χ2

GMM1 1.34 37.36 0.31 1.43 63.95 1.03 2.23 20.87 0.31 0.80 26.83 0.96

[1.93] [16.37] [0.37] [0.62] 18.33 [2.16] [14.11] [0.25] [0.54] 35.23

GMM2 0.53 26.34 0.14 1.01 33.60 1.40 2.94 19.65 0.39 0.76 −13.55 1.20

[1.88] [15.28] [0.35] [0.58] 25.18 [2.11] [13.55] [0.25] [0.52] 36.97

FMB 1.34 37.36 0.31 1.42 63.95 1.03 2.23 20.87 0.31 0.80 26.83 0.96

[1.34] [12.56] [0.26] [0.48] 9.91 [1.71] [11.72] [0.20] [0.45] 11.90

(1.34) (15.40) (0.26) (0.59) 27.90 (1.71) (12.64) (0.20) (0.48) 17.27

Mean 1.36 7.11 2.23 6.82

Panel II: Factor Betas

Portf ol io αi0(%) βiRX βim R2(%) χ2(α) p αi0(%) βiRX βim R2(%) χ2(α) p

1 −2.29 1.06 −0.05 74.66 −1.45 1.06 −0.06 77.86

[1.05] [0.05] [0.01] [0.96] [0.04] [0.02]

2 −1.71 0.97 −0.03 76.50 −1.06 1.04 −0.04 81.65

[0.77] [0.05] [0.01] [0.84] [0.04] [0.02]

3 −0.66 0.95 −0.01 71.89 1.10 1.02 −0.02 85.31

[0.84] [0.05] [0.02] [0.81] [0.03] [0.02]

4 1.63 0.93 −0.02 68.93 −0.13 0.95 0.07 81.14

[0.83] [0.06] [0.02] [0.88] [0.04] [0.02]

5 0.85 1.03 0.04 76.52 1.54 0.93 0.05 72.21

[0.83] [0.05] [0.02] [1.03] [0.04] [0.02]

6 2.17 1.06 0.08 59.88

[1.20] [0.06] [0.02]

20.25 0.00 6.47 0.26

Notes: The panel on the left reports results for all countries in the sample. The panel on the right reports results for developed countries. The top panel

reports results from GMM and Fama-McBeth asset pricing procedures. Market prices of risk λ, the adjusted R2, the square-root of mean-squared errors

RMSE and the p-values of χ2 tests are reported in percentage points. b1 represents the factor loading. The bottom panel reports results OLS estimates

of the factor betas. The intercept α0 β, and the R
2 are reported in percentage points. The standard errors in brackets are Newey-West standard errors

computed with the optimal number of lags. The χ2 test statistic α′V −1α α tests the null that all intercepts are jointly zero. This statistic is constructed from

the Newey-West variance-covariance matrix (1 lag) for the system of equations (Cochrane (2001), p. 234). Data are monthly, from Barclays and Reuters

in Datastream. Excess returns used as test assets take into account bid-ask spreads. All excess returns are multiplied by 12 (annualized). Standard errors

are reported in brackets. Shanken-corrected standard errors are reported in parentheses. We do not include a constant in the second step of the FMB

procedure. The sample period is 11/1983 - 03/2008.
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Table 12: CAPM in Crisis

Portf ol io αim βim p(%) R2 αim βim p(%) R2 αim βim p(%) R2 αim βim p(%) R2

Sample 26-May-1998 02-Aug-1995 10-Oct-1999 31-Aug-2007

1 −1.13 0.02 86.16 0.10 4.24 −1.22 0.09 18.20 −0.16 −0.13 16.91 7.33 0.15 −0.13 1.38 11.85
[0.62] [0.14] [1.57] [0.37] [0.57] [0.09] [0.38] [0.05]

2 −0.64 −0.05 75.70 0.59 3.48 −0.90 8.76 8.52 −0.45 −0.11 5.19 9.30 0.17 0.21 0.04 27.84
[0.92] [0.16] [1.90] [0.53] [0.35] [0.05] [0.37] [0.06]

3 −1.45 0.21 11.09 10.97 3.51 −0.89 7.88 11.97 0.85 −0.05 34.63 1.93 0.74 0.18 0.02 28.38
[0.71] [0.13] [1.80] [0.50] [0.34] [0.05] [0.27] [0.05]

4 −1.43 0.28 2.50 13.55 2.21 −0.48 5.52 11.88 −0.24 −0.23 3.95 29.24 0.31 0.21 0.00 40.08
[0.59] [0.12] [0.83] [0.25] [0.22] [0.11] [0.25] [0.03]

5 −1.81 0.50 0.00 23.41 2.14 −0.55 5.20 10.14 −0.40 0.06 22.28 4.82 0.51 0.25 0.00 45.52
[0.47] [0.11] [0.92] [0.28] [0.30] [0.05] [0.23] [0.04]

6 −3.84 1.14 0.00 23.41 0.42 −0.00 98.46 10.14 0.80 0.25 0.00 4.82 0.44 0.50 0.00 45.52
[1.53] [0.27] [0.43] [0.14] [0.48] [0.05] [0.43] [0.10]

HMLFX −2.71 1.11 0.00 20.15 −3.82 1.22 0.02 11.24 0.96 0.37 0.03 20.87 0.29 0.62 0.00 56.12
0.60 0.16 1.38 0.33 0.75 0.10 [0.38] [0.08]

Notes: This table reports results OLS estimates of the factor betas. The sample period is 129 days (6 months) before and including the mentioned date.

The intercept α0 β, and the R
2 are reported in percentage points. The standard errors in brackets are Newey-West standard errors computed with the

optimal number of lags. The p-value is for a t-test on the slope coefficient. The portfolios are constructed by sorting currencies into six groups at time

t based on the the currency excess return at the end of period t − 1. The returns are 1-month returns, and take into account bid-ask spreads. Portfolio
1 contains currencies with the lowest previous excess return. Portfolio 6 contains currencies with the highest previous excess return. Data are daily, from

Barclays and Reuters in Datastream. We use the value-weighted return on the US stock market (CRSP).
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Table 13: Calibration

Panel I: Moments

Moment Closed Form Expression Target

E[r ]
(
λ− 12γ

)
θ +

(
τ − 12δ

)
θ .015

V ar [r ]
(
λ− 12γ

)2
σ2z +

(
τ − 12δ

)2
σ2zw .022

ρ[r ]
φ(λ− 12 γ)

2
σ2z+φ(τ− 12 δ)

2
σ2
zw

V ar [r ] .8

E [V art [∆qt+1]] 2γθ .122

E[SR2] γθ + δθ .5

V ar
[
SR2

]
(γσz)

2 + (δσzw )
2 .52

βUIP
−λ

λ− 1
2
γ

−1

Panel II: Parameters

Real SDFs λ γ τ δ φ θ σ(%)

1.24 0.14 2.79 7.35 0.997 0.05 0.47

Inflation σw$(%) ρw πw (%) σ$(%) φ π(%) µ

0.66 0.88 3.20 8.15 0.58 3.00 0.16

This table reports moments used in the calibration and the chosen parameters. All countries share the same parameters

except for δ. The parameters δi are linearly distributed around the value reported in the table: δi ∈ [0.8δ, 1.2δ]. The
unconditional standard deviations of z and zw are respectively equal to σ

√
θ/[2(1− φ)] and σw

√
θw/[2(1− φw )].

50



Table 14: Currency Portfolios - Simulated data

Portfolio 1 2 3 4 5 6

Spot change: ∆s j

Mean −0.04 0.59 0.64 0.91 1.04 1.71
Std 9.55 8.83 8.28 8.35 8.81 9.45

Forward Discount: f j − s j

Mean −3.41 −1.33 0.22 1.79 3.28 5.23
Std 1.45 1.31 1.24 1.11 1.07 1.07

Excess Return: r x j

Mean −3.36 −1.92 −0.42 0.88 2.24 3.52
Std 9.55 8.82 8.29 8.39 8.87 9.54
SR −0.35 −0.22 −0.05 0.10 0.25 0.37

High-minus-Low: r x j − r x1

Mean 1.44 2.94 4.24 5.61 6.89
Std 2.80 4.22 6.23 8.13 9.57
SR 0.52 0.70 0.68 0.69 0.72

λRX λHMLFX bRX bHMLFX R2 RMSE χ2

GMM1 0.16 6.81 0.19 7.45 99.82 0.09
[0.32] [0.37] [0.47] [0.41] 1.12

GMM2 0.04 7.08 0.01 7.74 99.31 0.17
[0.31] [0.36] [0.47] [0.39] 1.50

FMB 0.16 6.81 0.19 7.44 99.76 0.09
[0.26] [0.31] [0.39] [0.33] 0.07
(0.26) (0.31) (0.39) (0.34) 1.19

Mean 0.15 6.89

Notes: This table reports, for each portfolio j , the average change in log spot exchange rates ∆s j , the average log

forward discount f j − s j , the average log excess return r x j and the average return on the long short strategy r x j − r x1.
Log currency excess returns are computed as r x jt+1 = −∆s

j
t+1 + f

j
t − s jt . All moments are annual and reported in

percentage points. For excess returns, the table also reports Sharpe ratios, computed as ratios of annual means to

annual standard deviations. The portfolios are constructed by sorting currencies into six groups at time t based on

the one-year forward discount (i.e nominal interest rate differential) at the end of period t − 1. Portfolio 1 contains
currencies with the lowest interest rates. Portfolio 6 contains currencies with the highest interest rates. All data are

simulated from our model.
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Figure 1: Mean Excess Returns and Covariances between Excess Returns and Principal Components

- Developed and Emerging Countries

Each panel corresponds to a principal component. The upper left panel uses the first principal component. The black squares represent the

average currency excess returns for the six portfolios. Each green triangle represents a covariance between a given principal component and

a given currency portfolio. The covariances are rescaled (multiplied by 15,000). The average excess returns are annualized (multiplied by

12) and reported in percentage points. The sample is 11/1983 - 03/2008.
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Figure 2: Predicted against Actual Excess Returns.

This figure plots realized average excess returns on the vertical axis against predicted average excess returns on the horizontal axis. We

regress each actual excess return on a constant and the risk factors RX and HMLFX to obtain the slope coefficient β
j . Each predicted

excess returns is obtained using the OLS estimate of βj times the sample mean of the factors. All returns are annualized. The date are

monthly. The sample is 11/1983 - 03/2008.
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Figure 3: Forecasted Excess Return in Currency Markets and US Business Cycle.

This figure plots the one-month ahead forecasted excess returns on portfolio 2 (Êtrx2t+1). All returns are annualized. The dashed line is the

year-on-year log change in US Industrial Production Index.

Jul Aug Sep Oct Nov Dec Jan Feb Mar
−0.15

−0.1

−0.05

0

0.05

0.1
Mortgage Crisis (July 2007 − February 2008, One−Month Returns)

 

 

corr(HML,MSCI) = 0.73

HML
MSCI

Figure 4: Carry Trade and US Stock Market Returns during the Mortgage Crisis - July 2007 to

February 2008.

This figure plots the one-month HMLFX return at daily frequency against the one-month return on the US MSCI stock market index at

daily frequency. The sample is 07/02/07-02/28/08.

53



87 90 92 95 97 00 02 05 07
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 

 

corr
6
 −corr

1

β
HML

Figure 5: Market Correlation Spread of Currency Returns

This figure plots Corrτ [Rmt , rx
6
t ] − Corrτ [R

m
t , rx

1
t ], where Corrτ is the sample correlation over the previous 12 months [τ − 253, τ ]. We

use monthly returns at daily frequency. We also plot the stock market beta of HMLFX , βHML . The stock market return is the return on

the value-weighted US index (CRSP).
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Figure 6: Exchange Rates, Interest Rates and UIP Slope Coefficients - Simulated Data.

This figure plots several histograms summarizing our simulated data. We report the distributions of the interest rates’ first two moments,

the volatility of real and nominal exchange rates and the UIP slope coefficients.
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Figure 7: Spreads in Portfolio Deltas and World Risk Factor - Simulated Data.

This figure plots the difference between the average delta in the first portfolio and the average delta in the last portfolio, along with the

world risk factor ZW . Both series are centered and scaled by their standard deviations.
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