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Introduction

Understanding the connection between exchange rates and macroeconomic fundamentals has
been one of the central challenges in international macroeconomics since the start of the modern
�oating exchange rate era in the early 1970s. Although exchange rates are indeed an asset
price, and, therefore, highly volatile, they also re�ect basic macroeconomic fundamentals such
as interest rates, purchasing power, and trade balances. As such, international economists have
long held out hope they could explain exchange rates better than, say, �nance economists can
explain the absolute level of stock prices. If so, the results would be of enormous help to policy-
makers including, for example, central bankers who might worry about the effect of monetary
policy on exchange rates.

Unfortunately, in practice, the performance of structural exchange rate models has been
frustratingly disappointing. As �rst shown by Meese and Rogoff (1983a), models that perform
well in-sample seldom do so out-of-sample. Although one can �nd some forecasting power at
horizons of two to four years (e.g., Meese and Rogoff, 1983b, Mark, 1995 or Engel, Mark and
West, 2007), attempts to forecast at more policy-relevant horizons of one month to one year
have been far less successful.1

Indeed, until recently, there had been surprisingly little progress despite hundreds of studies
using a plethora of techniques (see Cheung, Chinn and Pascual, 2003, for a survey). Lately,
however, the literature has experienced a new life. A growing number of papers have been
reporting somewhat more positive short-term forecasting results by implementing panel forecast
methods, innovative estimation procedures, more powerful out-of-sample test statistics and new
structural models. These include in�uential papers by Gourinchas and Rey (2007), Engel, Mark
andWest (2007) andMolodtsova and Papell (2008) along with many other notable studies.2 This
paper re-examines the new evidence and considers a number of variations and re�nements.

We conclude that despite notable methodological improvements, the euphoria has been ex-
aggerated by misinterpretation of some newer out-of-sample test statistics for nested models,
over-reliance on asymptotic out-of-sample test statistics and failure to check for robustness to
the time period sampled.

Our examination of the most popular exchange rate forecasting structural models and speci-
�cations leads us to conclude that one of the sources of the overly optimistic results is the failure
to check robustness with respect to alternative out-of-sample test statistics. In the presence of

1Further research is required to determine the robustness of the long-horizon forecastability results with respect
to using different sub-samples. For instance, Mark's (1995) results do not hold when one updates his sample (see
Kilian, 1999).

2See also Rapach and Wohar (2002), Rossi (2006), Groen (2005, 2007), Cerra and Saxena (2008), Ardic et al.
(2008), Molodtsova, Nikolsko-Rzhevskyy and Papell (2007, 2008) and Sellin (2006).
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forecast bias3, the new tests for nested models4 cannot be always interpreted as minimum mean
square forecast error tests.5 As we show, in certain cases, this is a �rst-order problem. Fur-
thermore, while new asymptotic out-of-sample tests such as the Clark-West are attractive due
to their simplicity, bootstrapped out-of-sample tests remain more powerful and better sized.6
Finally, even if the results remain statistically signi�cant if one considers alternative out-of-
sample test statistics, all of the structural models and speci�cations we review fail to produce
robust forecasts over different sample periods, implying that in one period the random walk is
a better forecaster and in another the structural model outperforms the random walk. In such
cases, even if a structural model performs well during the most recent period of time, there is
no guarantee that the relationship will be preserved in the future.

The paper is organized in the following way. Section 1 sets out our criteria for what consti-
tutes a "good" forecast � a forecast with a mean-square forecast error smaller than the mean-
square forecast error of the driftless random walk, and with robust out-of-sample test statistics
over different forecast windows.7 In section 2, we introduce the out-of-sample tests we consider
� the asymptotic Clark-West and the bootstrapped Diebold-Mariano/West, Theil's U, Clark-
West and Clark-McCracken test statistics. We discuss the differences between the alternative
test statistics, the most important of which is that in cases of forecast bias, the new nested
model tests should be interpreted as testing against the null hypothesis that the true model is a
random walk, rather than as asking whether a random walk has a lower mean-square forecast
error than the structural model (which is what the older Theil's U and Diebold-Mariano/West
statistics test). These turn out to be quite different questions, although we also show that the
newer nested model statistics can point to cases where it may be possible to improve on the ran-
dom walk forecast by using it in combination with the structural model forecast. Nevertheless,
�nding an endogenous optimal combination may be a signi�cant obstacle.

Section 3 tests the robustness of the apparent best results of the literature on short-horizon
forecasting with respect to using alternative out-of-sample test statistics. The main studies
reviewed are Gourinchas and Rey (2007) � an external balance model; Molodtsova and Papell
(2008) � a heterogeneous symmetric Taylor rule model with smoothing; and Engel, Mark and

3In this paper we are concerned only with "scale" bias as opposed to "location" bias. In other words, our result
refers only to the cases where the forecast systematically over or under-predicts the observed value by a certain
percent (see Holden and Peel (1989) for a distinction between the two types of bias). For a general de�nition of
forecast bias see Marcellino (2000), pp. 534.

4These tests include the Clark and West (2006, 2007) and the Clark and McCracken (2001, 2005).
5This is a problem with both the asymptotic and the bootstrapped Clark-West and Clark-McCracken
6The advance of the literature on time series bootstrapping and the increase of computational power have made

the bootstrap an increasingly attractive alternative to asymptotic inference (see Berkowitz and Kilian,1996, Kilian,
1999, Mark and Sul, 2001, MacKinnon, 2002, Brownstone and Valletta, 2001, and Politis and White, 2004). For
a detailed discussion of how the bootstrap can provide a signi�cant improvement over asymptotic inference see Li
and Maddala (1997).

7"Forecast window" refers to the part of the sample for which forecasts are calculated. For example, if we have
a sample of 120 quarters and the �rst forecast is based on 30 quarters, then the forecast window is 90 quarters.
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West (2007) � the monetary model. We conclude that in certain cases the popular Clark-West
and Clark-McCracken test statistics are highly signi�cant while the bootstrapped Theil's U and
Diebold-Mariano/West are not which we attribute to the presence of forecast bias. Furthermore,
in a couple of cases, the asymptotic Clark-West incorrectly chooses the structural model forecast
over the random walk forecast for a different reason � the asymptotic Clark-West test seems
to be oversized. In section 4, we explore the robustness of the results of these same studies
with respect to different forecast windows using a graphic approach which illustrates how the
signi�cance of the results is affected by perturbing the sample. We �nd that even those results
that are robust to alternative out-of-sample test statistics are not robust when the forecaster
considers alternative samples, with the external balance model of Gourinchas and Rey (2007)
performing somewhat better than the rest of the speci�cations considered. This point strongly
reinforces our conclusion from section 3 that the results of the new models and speci�cations
are not very robust.

Therefore, we attempt to improve upon existing panel speci�cations in section 5 by taking
into account persistent cross-country shocks using purchasing power parity as a fundamental.
Similarly to the results in section 3, our results point to a discrepancy between the old out-
of-sample test statistics and the new out-of-sample tests for nested models. In section 6 we
present empirical evidence of how one can improve upon our results from section 5 by correctly
interpreting the new nested model tests and combining the structural model forecast and the
random walk forecast. At �rst look, our results are not worse than the most prominent results
of other existing short-horizon forecasting studies. Nevertheless, the fact that so much of the
forecasting power comes from simply using a different time dummy effect forecast gives us
pause in attributing too much of the success to macroeconomic models. Finally, we subject our
pooled forecast speci�cation to a robustness check with respect to alternative forecast windows
and conclude that even our preferred forecasting procedure cannot consistently outperform the
driftless random walk over different forecast windows.

1. De�nition of a "Good" Exchange Rate Forecast

There are various criteria for identifying a "good" forecast.8 One of the most widely used
measures, popularized in the exchange rate literature by Meese and Rogoff (1983a), is the

8We use the terms "forecast" and "out-of-sample forecast" interchangeably. In order for a forecast to be an
out-of-sample forecast, a forecast in period t needs to be a function only of information available in period t � k
where the k is the forecast horizon. (For example, if k = 1 then we are forecasting one period ahead.)
When evaluating the performance of a structural model out-of-sample, we need to be able to compare the forecast

produced by the model to the actual realized value of the series we want to forecast. As a result, we split the
sample in two � in-sample portion and out-of-sample portion. We run a regression using the in-sample portion and
calculate a forecast using the parameters from this regression. We can calculate the forecasts using a recursive or a
rolling speci�cation.
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minimum mean-square forecast error (MSFE) approach, also known as the MSFE � dominance
approach.9 The goal of this approach is to obtain a model whose MSFE is signi�cantly smaller
than that of the random walk model. As Clements and Hendry (1999) suggest, minimumMSFE
has become the standard measure of forecast accuracy due to its intuitive interpretation and
broad applicability (pp. 9). Another more stringent criterion, introduced by Chong and Hendry
(1986), Clements and Hendry (1993), and Harvey et al. (1998) is MSFE encompassing for
nested models, which tests whether the structural model encompasses the random walk model.
If it does not, then the information provided by the additional explanatory variables does not
improve the forecast. MSFE encompassing is more stringent than MSFE dominance, since
the latter is a necessary but not suf�cient condition for the former. MSFE encompassing also
ensures that pooling the competing forecasts cannot produce a forecast with a smaller MSFE
than the two nested models considered. A third criterion, robustness over different forecast
windows, measures how consistently the structural model outperforms the random walk during
different periods of time.

In what follows, we focus �rst on the minimum MSFE criterion, and afterwards look at
robustness over different forecast windows.10

2. Minimum Mean-Square Forecast Error Tests: Theil's U (TU),
Diebold�Mariano/West (DMW), Clark � West (CW), Clark � McCracken
(ENC-NEW)

Before we address the performance of the structural models, we need to revisit the most widely
used test statistics in the literature. Until Clark and McCracken (2001, 2005) and Clark and

The recursive method adds one more observation to the in-sample portion for each additional period forecast.
For example, if the �rst forecast is based on the �rst R observations, then the second forecast is based on the �rst
R+1 observations, etc. In contrast, the rolling speci�cation method preserves the original sample size throughout;
hence, the �rst forecast is based on observations from 1 to R, the second on observations from 2 to R+1, and so on.

9Another less popular technique, which our paper does not address, uses the "direction of change" criterion.
This criterion, of course, can end up selecting a model which performs well in predicting small changes but poorly
at predicting major ones.
10We choose not to consider the encompassing criterion for a number of reasons. First, forecast encompassing,

de�ned as the structural model encompassing the random walk, is not widely used in the exchange rate forecasting
literature. Second, it is considered a more stringent criterion than MSFE dominance. Third, as Marcellino (2000)
points out, the standard encompassing tests may not imply MSFE dominance in the presence of forecast bias. This
point is somewhat related to our theoretical argument that the Clark-West and Clark-McCracken out-of-sample
tests cannot be always interpreted as minimum MSFE tests in the presence of forecast bias (See Appendix and
Section 2 for details).
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West (2006, 2007) introduced their tests for nested models, the Theil's U and the Diebold-
Mariano/West test statistics were the preferred minimum MSFE out-of-sample test statistics
used in the exchange rate forecasting literature. In this paper, we consider the bootstrapped11
version of both the new and old out-of-sample test statistics (DMW, TU, CW and ENC-NEW)
and the asymptotic version of the CW. (For a detailed description of how we calculate each test
statistic and how we test statistical signi�cance see Appendix.)

Among the asymptotic test statistics, we focus only on the CW because it has become one
of the most popular out-of-sample test statistics for nested models.12 Furthermore, as we point
in the Appendix, the asymptotic versions of the DMW, TU and ENC-NEW have signi�cant
shortcomings or are non-tractable. One of the main reasons for the popularity of the asymptotic
CW is that the alternative � the use of a bootstrap � is still considered by some researchers
computationally cumbersome and dif�cult to implement.

In this paper we argue that while using the asymptotic CW might seem appealing due to its
straightforward application, it is important that one checks the robustness of the results using
either the bootstrapped DMW or the bootstrapped TU. The rationale follows.

11All of the empirical results presented in the following sections are based on a bootstrap similar to the one
used by Mark and Sul (2001). The main difference between our bootstrap and Mark and Sul's (2001) bootstrap
is that we use a "semi-parametric" while they use a "parametric" bootstrap and we estimate the error-correction
equations using country-speci�c OLS-regressions rather than seemingly unrelated regressions (SURs) (Note that
the "semi-parametric" bootstrap we use is closer in its nature to the "parametric" rather than the "non-parametric"
bootstrap. For details on the bootstrap see Appendix).
We choose to use a "semi-parametric" rather than "non-parametric" bootstrap as our preferred bootstrap for

a number of reasons. First, based on simulations, Berkowitz and Kilian (1996) argue in their paper "Recent
Developments in Bootstrapping Time Series" that when bootstrapping time series, the "parametric" and "semi-
parametric" bootstrap outperforms "non-parametric" bootstrap procedures.
Second, the exchange rate forecasting literature provides proli�c evidence of the importance of preserving the

cointegration between the fundamental and the exchange rate when estimating the exchange rate forecast equation
(for example see Kilian, 1999, and Mark and Sul, 2001). And as Berkowitz and Kilian (1996) point out
"While nonparametric bootstrap methods can easily deal with I(1) processes, there are no theoretical results to

show that nonparametric resampling preserves cointegration relationships in the data. In fact, cointegration itself
may be viewed as a parametric notion. Thus, if the data are known to be cointegrated, parametric methods are
preferable (pp. 28)."
For further discussion of cointegration and bootstrapping see Li and Maddala (1997) and Maddala and Kim

(1998, pp. 333-336). For completeness sake, we try a number of non-parametric bootstraps such as the wild boot-
strap and the block bootstrap but, not surprisingly, their performance is fairly weak and obvious mis-speci�cation
problems are present.
12The list of studies which test statistical signi�cance using the asymptotic CW includes Engel, Mark and West

(2007), Gourinchas and Rey (2007), Molodtsova and Papell (2008), Molodtsova, Nikolsko-Rzhevskyy and Papell
(2007, 2008), Rapach, Strauss and Wohar (2007), Sellin (2006), Alquist and Chinn (2006), Cerra and Saxena
(2008), Alessi et al. (2007), Groen (2007), Giacomini and Rossi (2008), Ardic et al. (2008), Matheson (2006).
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I.) CW/ENC-NEW � Not Always MinimumMSFE Tests One of the main problems related
to using the new tests for nested models (CW and ENC-NEW) as the main and only out-of-
sample test statistics relates to the fact that they cannot be always interpreted as minimumMSFE
tests such as the TU and the DMW. In the Appendix we prove that in the presence of forecast
bias13 the CW/ENC-NEW and the DMW do not necessarily test the same null hypothesis;
the CW and ENC-NEW test whether the exchange rate is a random walk, whereas TU and
DMW test whether the random walk model and the structural model have equal MSFEs. These
questions are not equivalent; if the true model is something other than a random walk, one
can still perfectly well ask if the random walk model produces a lower mean-square forecast
error.14 However, a signi�cant CW/ENC-NEW and an insigni�cant bootstrapped TU/DMW
can still provide potentially useful information as we show in sections 5 and 6. It implies that,
in theory, one can pool the forecasts of the structural model and the random walk to produce
a combined forecast that outperforms the random walk in terms of MSFE (See Appendix for
proof). However, �nding an endogenous way of determining this optimal weight has proven to
be a challenge (See section 6 for further discussion).

II.) The Asymptotics of CW Are Well De�ned Only in the Rolling Case Another problem
related to the popular Clark-West out-of-sample test statistic is that the asymptotics of CW are
well-de�ned only when we use the test statistic in a rolling framework, where the size of the in-
sample portion of the series is kept �xed. For the recursive case (which comprises the majority
of exchange rate forecast speci�cations in the literature), where the in-sample size varies15, one
has to use simulated critical values based on Brownian motion approximation of the limiting
distribution of the CW test statistic.16 Throughout the paper, the term "asymptotic CW" refers to
both the rolling and the recursive case. However, one should keep in mind that in the recursive
case the asymptotic distribution of CW is approximated.

III.) Bootstrapped Tests Are Relatively Better Sized and More Powerful Finally, assum-
ing that the bootstrap has been speci�ed correctly, in most speci�cations, the bootstrapped
13Note that by forecast bias we imply only "scale" bias (see footnote 3 for details).
14If one tests the explanatory power of the structural model in-sample using an ordinary least square (OLS)

regression, testing whether the exchange rate is a random walk (testing whether the coef�cient in front of the
structural model fundamental, b, equals zero) is equivalent to testing whether the random walk has mean square
error (MSE) smaller than the MSE of the structural model because OLS minimizes the MSE. However, as the proof
of Proposition 1 in the Appendix shows, in the out-of-sample case, due to potential forecast bias resulting from
forecast uncertainty, testing whether b equals zero is not the same as testing whether the MSFE of the random walk
is smaller than the MSFE of the structural model.
15See footnote 8 for more details on the distinction between the recursive and rolling speci�cation.
16As the authors emphasize, no formal proof is presented that the critical values suggested are appropriate for

all forecast speci�cations (Clark and West, 2007, pp. 298).
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DMW and TU out-of-sample tests are more powerful and better sized than the asymptotic CW.17
Moreover, new research on time series bootstrapping (see for example Li and Maddala, 1997,
Berkowitz and Kilian,1996, Kilian, 1999, and Mark and Sul, 2001) and signi�cant improve-
ments in computational power have made the bootstrap an attractive alternative to asymptotic
inference.18

As a result, we treat the bootstrapped DMW and TU in this paper as our preferred out-of-
sample test statistics. In what follows, �rst we test the robustness of the results of the most
popular exchange rate forecasting models and speci�cations with respect to alternative out-of-
sample tests. Second, we concentrate on the robustness of these same speci�cations with respect
to using different sub-samples.

3. Robustness With Respect to Alternative Test Statistics

In this section, we evaluate the robustness of the best results of Gourinchas and Rey (2007),
Molodtsova and Papell (2008) and Engel, Mark and West (2007) with respect to alternative test
17See the "Not for Publication Appendices" of Clark andWest (2006, 2007) that can be found on KennethWest's

website. (Note that in the 2006 Appendix both DGP 1 and 2 are relevant for exchange rate forecasting while in the
2007 Appendix only DGP 1 is of interest.) Regarding comparison between the bootstrapped TU and DMW, see
Clark and McCracken (2005).
The concepts of size and power are key to understanding the differences between the alternative out-of-sample

test statistics. They are properties of both the asymptotic and bootstrapped tests. The size of a test statistic is
de�ned as the test's probability of rejecting the null hypothesis if the null is true. If the researcher chooses to
use a signi�cance level of 10%, an under-sized(over-sized) test statistic would tend to reject the null hypothesis in
less(more) than 10% of the cases. If a test statistic is over-sized, it might incorrectly detect statistical signi�cance
if such does not exist and if it is under-sized � incorrectly reject the alternative. The power of a test statistic is
de�ned as the test's probability of correctly rejecting the null hypothesis for a given level of statistical signi�cance.
The size and power of a test statistic are inversely related.
In the Appendix of Clark andWest (2006), it is not immediately obvious why the bootstrapped DMW has greater

power than the asymptotic CW because the authors report size-adjusted power rather than raw power. The main
difference between the two is that only raw power is of any practical importance since in order to adjust for size
distortions, the size-adjusted power is based on a CW test statistic which uses data speci�c critical values obtained
via Monte Carlo simulation. Since few, if any, researchers would choose this alternative, the raw power is what
one is mainly interested in. Given that the size-adjusted power of CW is similar to that of the bootstrapped DMW,
the raw power of CW will be smaller than the raw power of the bootstrapped DMW. This is the case because the
CW is somewhat undersized while the bootstrapped DMW seems adequately sized and as we already explained
the size and power of a test statistic are inversely related.
Finally, according to the simulation evidence in Clark and McCracken (2005), we would expect the bootstrapped

TU to be more powerful than the bootstrapped DMW. (Note that in their paper the authors discuss the power of the
MSE-F rather than the TU but the two tests are very similar). Since the bootstrapped DWM is more powerful than
the asymptotic CW, we would expect that the bootstrapped TU is more powerful than the asymptotic CW as well.
18See footnotes 6 and 11 and Appendix for further discussion on time series bootstrapping.
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statistics (bootstrapped CW, ENC-NEW, DMW and TU). These studies all feature the asymp-
totic CW as their main out-of-sample test statistic and conclude that for a number of countries,
structural models outperform the driftless random walk for forecasts one period ahead. While
Engel, Mark and West (2007) attribute their success to the power of panel models, Molodtsova
and Papell (2008) and Gourinchas and Rey (2007) �nd success using new structural models.
While we concentrate our attention on these three prominent studies with fairly positive results,
we believe that the implications of our �ndings are generalizable to the rest of the new literature
on short-horizon exchange rate forecasting.

We conclude that forecast bias is a serious problem which in certain speci�cations leads to
a signi�cant discrepancy between the CW/ENC-NEW and DMW/TU. Furthermore, in a couple
of cases, the asymptotic CW is oversized. As a result of both of these issues, some of the results
of the literature are overly optimistic and potentially misleading.

Engel, Mark and West (2007) - The Monetary Model

The implementation of a panel forecast speci�cation is one of the key additions to the exchange
rate forecasting literature which allows Engel, Mark and West (2007) to �nd limited forecasta-
bility of the exchange rate change one quarter ahead.19 The study �nds that for 5 out of 18
currencies, the monetary model outperforms the driftless random walk. While recognizing this
success as modest, the authors note that their results appear notably more positive than the norm
in the literature.20

The forecasting speci�cation Engel, Mark and West (2007) apply is straightforward. The
forecast variable is the nominal exchange rate change, where st is the natural log of the exchange
rate measured in foreign currency per one unit of the base currency (in this case US dollars).
De�ne �si;t+1 = si;t+1 � si;t and the forecast is one period ahead. Then the panel forecast
equation can be expressed as

�si;t+1 = �i + �t + �zi;t + "i;t+1: (1)

where, in this case, zi;t stands for the deviation of the exchange rate from an equilibrium value.
zi;t is determined by the monetary model fundamental
19The study of Engel, Mark and West (2007) builds on Engel and West (2005).
20The majority of the recent panel speci�cation papers �nd strong support for the forecasting power of the mon-

etary model in both long and short horizons (see Mark and Sul, 2001, Rapach and Wohar, 2002, Engel, Mark and
West, 2007, and Groen, 2005). However, at the same time, the theoretical validity of the monetary speci�cation
has been widely criticized. The criticism of the monetary model centers around its assumptions that both purchas-
ing power parity and uncovered interest parity hold. However, these assumptions are not unequivocally supported
by empirical evidence (Engel, 1996). Furthermore, there is a debate on how one de�nes the money supply, the
stability of the money equation (Friedman and Kuttner, 1992) and whether money has any relevance for economic
decision making such as monetary policy.
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zi;t = mi;t �m�
t � '(yi;t � y�t )� si;t: (2)

Above, i is a country-speci�c index, �i stands for country-speci�c effects, �t - for time speci�c
effects and "i;t+1 is the innovation term. The (�) represents the base country ( the US), (mi;t �
m�
t ) is the relative money supply, (yi;t � y�t ) is the relative income level and ' is assumed to be

one. Note that all the variables are in natural logs. We use the driftless random walk, expressed
as �si;t+1 = �i;t+1 (where �i;t+1 is the innovation term of the driftless random walk model)
as a benchmark which would ensure that the structural model is compared to the best known
alternative.21

Engel, Mark and West (2007) estimate equation (1) using recursive OLS regressions. They
calculate the exchange rate change forecast using the following equations.

Structural Model : �ŝi;t+1 = �̂i + �̂t+1 + �̂zi;t+1
Driftless Random Walk Model : �ŝi;t+1 = 0

where the time dummy for period t + 1 is calculated as �̂t+1 = 1
t

Pt
j=1 �̂j . Engel, Mark and

West's (2007) sample extends Mark and Sul's (2001) data set up to 2005Q4. The exchange rates
of the Eurozone countries post 1999 are normalized in a way that they differ from each other
only by a constant.22 This implies that post 1999, Engel, Mark and West's (2007) speci�cation
is essentially forecasting the same exchange rate - the Euro - using different country speci�c
monetary fundamentals. For further details on the speci�cation and for data set sources refer to
Engel, Mark and West (2007).23

We test the robustness of their results with respect to different test statistics. In Table 1,
we reproduce the monetary model results but rather than just report the asymptotic CW test
statistic, we also report the bootstrapped p-values of the DMW, TU, CW and ENC-NEW. If
we test statistical signi�cance via the bootstrapped DMW and TU test statistics, the p-value is
less than 10% for only 4 out of 18 cases.24 These results are con�rmed by the bootstrapped
21Engel, Mark and West (2007) compare the forecasts of the monetary model to both the random walk with

drift and without drift. However, they note that the driftless random walk outperforms the random walk with drift.
All of the studies we are aware of that compare the driftless random walk to the random walk with drift, �nd the
driftless random walk to be a better forecaster (see Engel and Hamilton, 1990, and Engel, Mark and West, 2007).
22For example, the normalization for France post 1999 will be simply franc/euro times euro/dollar where the

franc/euro is the peg used to �x the French franc to the euro in 1999.
23We use Engel, Mark and West's (2007) data except for exchange rates which are from the IFS data set. The

bootstrap procedure is similar to Mark and Sul (2001) and assume no unit root of the monetary fundamental. (For
details on the bootstrap used see Appendix.)
24Another way of testing for robustness, which we do not pursue in this paper, is by estimating to what extent

the positive results could be attributed to the large number of speci�cations tested. For instance, the test statistic
introduced byMcCracken and Sapp (2005) tests whether the number of successful forecasts can be attributed solely
to the large number of speci�cations and models estimated by the researcher. If we were to calculate McCracken
and Sapp's (2005) test statistic, the results might have been even less favorable for the structural models.
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CW. However, Greece stands out as an example where the asymptotic CW is statistically
signi�cant while the bootstrapped CW is not, suggesting that the asymptotic CW is over-
sized.25

CW^ CW  P­value TU P­value DMW P­value
ENC­
NEW P­value

UK 0.684 0.624 0.25 1.001 0.262 ­0.063 0.254 0.739 0.251
Austria 1.966 1.854 0.04 0.984 0.040 1.315 0.015 2.164 0.110
Belgium 1.199 0.972 0.13 1.001 0.327 ­0.041 0.292 1.653 0.034
Denmark 0.259 0.178 0.372 1.009 0.657 ­0.553 0.459 0.257 0.340
France 0.706 0.545 0.23 1.001 0.228 ­0.050 0.225 0.543 0.237
Germany 1.855 1.711 0.056 0.986 0.048 0.924 0.065 2.408 0.080
Netherlands 1.651 1.400 0.084 0.990 0.071 0.922 0.060 1.375 0.144
Canada ­0.942 ­0.936 0.881 1.161 0.970 ­2.348 0.906 ­4.240 0.988
Japan 1.094 0.671 0.439 0.999 0.366 0.038 0.364 0.873 0.425
Finland 0.648 0.696 0.262 1.004 0.420 ­0.156 0.339 1.463 0.154
Greece 2.509 2.501 0.704 1.004 0.906 ­0.085 0.899 11.211 0.450
Spain 0.711 0.699 0.592 1.027 0.916 ­0.806 0.799 2.091 0.343
Australia 0.787 0.727 0.343 1.026 0.555 ­0.914 0.479 1.869 0.303
Italy 0.733 0.557 0.519 1.015 0.764 ­0.487 0.575 1.525 0.401
Switzerland 1.965 1.985 0.06 0.986 0.082 1.409 0.019 1.912 0.197
Korea 0.853 0.847 0.385 0.997 0.252 0.118 0.306 1.972 0.188
Norway 0.645 0.271 0.327 1.005 0.426 ­0.402 0.358 0.296 0.317
Sweden 1.100 1.030 0.225 0.993 0.163 0.466 0.174 1.372 0.212

The benchmark is a random walk without drift; Quarterly data ranging from 1973Q1 to 2005Q4; First Forecast: 1983Q1; The p­
value is the bootstrapped version of the respective test statistic. Bootstrap based on 1000 iterations; Bold p­values imply statistical
significance of 10% or less; Bold Theil's U values represent Theil's U <= 1; Bold CW values represent statistical significance of
10% (above 1.282) using Clark and West's (2007) simulated critical values.

Reproduced Results

Monetary Model Vs Random Walk with No Drift; One Quarter Ahead
Table 1: Mark, Engel and West (2007)

^Results provided by Charles Engel using a corrected data set

25In the case of Greece, the asymptotic CW performs so poorly because the DMW is largely oversized and, as a
result, the asymptotic CW is even more over-sized (see Appendix for clari�cation on the difference between CW
and DMW). The mean of the bootstrapped DMW histogram is 1.3 (and it should have been 0 if no size problem
was present). As is apparent from the results in Table 1, in outlier cases like Greece, the asymptotics fail while the
bootstrap, if properly speci�ed, seems to be still reliable.
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Molodtsova and Papell (2008) -Heterogeneous Symmetric Taylor Rule with
Smoothing

In addition to the improvements produced by the panel speci�cation, the introduction of the
Taylor rule as a structural fundamental has also seemed to yield improved forecasts. The speci-
�cation which produces best forecasting results estimates country speci�c coef�cients on both
in�ation and the output gap. Furthermore, Molodtsova and Papell (2008) assume that inter-
est rates adjust only partially to its target and, as a result, lagged interest rates are included
in the speci�cation which represent the so-called smoothing effect. Using only single-country
equations and the asymptotic CW test statistic, Molodtsova and Papell (2008) conclude that the
Taylor rule outperforms the driftless random walk for 10 out of 12 currencies for forecasts one
period ahead. Molodtsova and Papell (2008) specify the fundamental, zt, as

zt = �1�t + �2�
�
t + �3y

gap
t + �4y

gap�
t + �5it�1 + �6i

�
t�1 (3)

where � is the in�ation rate, i is the interest rate and ygap is the output gap de�ned as the de-
viation of an industrial production index from a linear trend. We substitute equation (3) in
equation (1) and estimate equation (1) in a single equation framework using monthly data.26
Molodtsova and Papell (2008) refer to speci�cation (3) as the heterogeneous symmetric Tay-
lor rule with smoothing.27 More information regarding the speci�cation and data sources is
provided in Molodtsova and Papell (2008).

Similarly to the monetary model speci�cation of Mark, Engel and West (2007), we replicate
Molodtsova and Papell's (2008) results and compute not only the asymptotic CW, but also the
bootstrapped TU, DMW, CW and ENC-NEW.28 Table 2 reports Molodtsova and Papell's (2008)
results as presented in their paper and our attempt to replicate them using their methodology
and data set.

There is a striking difference between both the bootstrapped and asymptotic CW and the
bootstrapped ENC-NEW, on the one hand, and the bootstrapped TU and DMW on the other
hand. While CW and ENC-NEW are signi�cant in as many as 10 out of 12 cases, the TU is not
signi�cant for any of the countries and DMW is signi�cant only for Canada. We explain this
discrepancy with the presence of severe forecast bias in which case the CW and ENC-NEW
cannot be interpreted as minimum MSFE tests and they do not test the same null hypothesis
26Single-equation framework implies that there are no time dummy effects.
27The estimation method is a rolling regression speci�cation with a rolling window of 120 months.
28The data set was provided to us by the authors and it is also available on David Papell's website. For the

bootstrap, similarly to the bootstrap used to replicate the results of Engel, Mark and West's (2007) study, we use
similar to Mark and Sul's (2001) procedure. We assume that the in�ation rates, the interest rates and the output
gaps do not have unit roots. (For details on the bootstrap used see Appendix.)
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as TU and DMW.29 In the case of Switzerland, the bootstrapped CW is insigni�cant while the
asymptotic CW is signi�cant, again, suggesting that the asymptotic CW might be oversized in
certain cases.

Table 2: Molodtsova and Papell (2008)
Heterogeneous Symmetric Taylor Rule with Smoothing Vs Random Walk with No Drift; One

Month Ahead

CW P­value
asymptotic^

CW P­
value

asymptotic

CW P­
value

bootstrap TU
P­

value DMW
P­

value
ENC­
NEW

P­
value

UK 0.020 0.027 0.027 1.051 1.000 ­1.740 0.678 14.662 0.001
Denmark 0.069 0.067 0.045 1.025 0.992 ­1.231 0.397 8.067 0.013
France 0.024 0.019 0.007 1.040 0.998 ­1.260 0.557 11.312 0.001
Germany 0.066 0.066 0.077 1.036 0.997 ­1.130 0.548 8.458 0.016
Netherlands 0.036 0.035 0.040 1.040 1.000 ­1.304 0.613 9.604 0.012
Canada 0.008 0.008 0.008 1.006 0.174 ­0.261 0.078 15.025 0.003
Japan 0.019 0.019 0.071 1.018 0.912 ­0.723 0.367 14.152 0.008
Australia 0.015 0.013 0.039 1.024 0.972 ­0.895 0.360 15.130 0.004
Italy 0.002 0.002 0.039 0.995 0.264 0.168 0.327 18.240 0.003
Switzerland 0.094 0.094 0.153 1.068 1.000 ­2.198 0.910 9.151 0.021
Sweden 0.678 0.674 0.667 1.098 1.000 ­1.261 0.494 ­5.897 1.000
Portugal 0.985 0.985 0.985 1.127 1.000 ­3.329 0.999 ­4.464 1.000
^ Results as reported in Molodtsova and Papell (2008)

Single equation, monthly data. Since Molodtsova and Papell (2008)  use rolling regressions,  the asymptotic CW p­values are
calculated under the assuming of normality; The TU, ENC­NEW and DMW p­values and the CW  bootstrap p­value are based on a
bootstrap (1000 iterations); Bold Theil's U values represent Theil's U <= 1;

Gourinchas and Rey (2007) - External Balance Model

Another important study that claims to successfully forecast exchange rates one period ahead is
Gourinchas and Rey (2007). The authors introduce a new external balance model which isolates
long- term effects by de�ning an external balance variable as a function of de-trended foreign
assets and liabilities, exports and imports. Gourinchas and Rey (2007) �nd that their external
balance measure is superior to those previously used in the literature on external balance spec-
i�cations since it takes into account capital gains and losses on the net foreign asset position,
29A regression of the observed exchange rate change on the forecast series and no constant produces a coef�cient

less than or close to 0.5 for all 10 countries where CW and ENC-NEW are signi�cant. (If no "scale" forecast bias
was present, the coef�cient should have been close to 1.) This is what we would expect in cases of severe "scale"
forecast bias which can lead to CW and ENC-NEW not testing the same null as TU and DMW.
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in addition to the trade balance. Gourinchas and Rey (2007) argue that their external balance
variable successfully forecasts both the trade and FDI-weighted dollar one quarter ahead.

We can write Gourinchas and Rey's (2007) external balance fundamental as

zt = j�at j�at � j�ltj�lt + j�xt j�xt � j�mt j�mt (4)

where �at ; �lt; �xt and �mt are time-varying weights � a function of the Hodrick-Prescott-�ltered
trends of assets, liabilities, exports and imports � while �at ; �lt; �xt and �mt represent the log devi-
ation of assets, liabilities, exports and imports from Hodrick-Prescott-�ltered trends. Equation
(4) is substituted into equation (1) and the authors estimate equation (1) for the trade-weighted
and the FDI-weighted exchange rate separately in a single equation framework.30 Gourinchas
and Rey (2007) assume that the time-varying weights converge asymptotically and use �xed
weights for the calculation of their forecasts. Further details on the speci�cation and the data
set used are provided in Gourinchas and Rey (2007). In Table 3, we reproduce their results using
their data set and similar methodology.31 One can observe highly signi�cant asymptotic CW,
bootstrapped TU, DMW, CW and ENC-NEW test statistics. However, the seemingly strong
result is overturned, to an extent, when checking for robustness with respect to alternative time
periods in the following section.
30Note that the authors claim to be using a 105 quarter rolling window. However, a closer look at their code

shows that they use 105 quarter rolling window for the forecasts of the FDI-traded dollar and a recursive speci�-
cation for the trade-weighted dollar. We calculate the forecast both ways � in a recursive and rolling framework �
and the results do not change substantially.
31We are grateful to the authors for providing us with their code and data set. Note that in Table 3 we report

the CW test statistic which is calculated as CW = P 0:5d̂p

d̂
where d̂ is de�ned in equation (6) in Appendix, while

Gorinchas and Rey (2007) report d̂ in their paper.
As before, we use a bootstrap procedure similar to Mark and Sul (2001) and assume no unit root of the external

balance variable. (For details on the bootstrap used see Appendix.)
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Reported
by G&R

CW CW P­value TU P­value DMW P­value
ENC­
NEW P­value

Trade
Weighted Exch

Rate 2.690 2.684 0.005 0.974 0.003 0.657 0.013 11.774 0.001

0.006 5.780 0.002
FDI ­ Weighted exch rate ­ rolling regression where the rolling window is 105 quarters; first forecast: 1978 Q3
Trade ­ Weighted exch rate ­ recursive regression; first forecast: 1978 Q2

0.019

The p­value is the bootstrapped version of the respective test statistic. Bootstrap based on 1000 iterations; Bold p­values imply
statistical significance of 10% or less; Bold Theil's U values represent Theil's U <= 1; Bold CW values represent statistical
significance of 10% (above 1.282) using Clark and West's (2007) simulated critical values.

External Balance Model Vs Random Walk with No Drift; One Quarter Ahead
Table 3: Gourinchas and Rey (2007)

FDI Weighted
Exch Rate 2.196 2.191 0.980 0.005 0.821

Reproduced Results

Summary of Test Statistic Robustness

We looked at each one of the three major studies which �nd forecastability one period ahead and
concluded that when one considers the robustness of the results with respect to alternative test
statistics, the results of Molodtsova and Papell (2008) �uctuate signi�cantly due to the presence
of forecast bias. The results of Mark, Engel and West (2007) are somewhat less spectacular as a
result of one outlier where the asymptotic CW is severely oversized. Finally, we conclude that
the results of Gourinchas and Rey (2008) remain robust to the test statistic considered. Now we
turn to our second main issue � which of the results are robust over different periods of time.

4. Robustness with Respect to Different Forecast Windows

In addition to testing the robustness of the results with respect to different out-of-sample test
statistics, we also test the robustness of the results of Molodtsova and Papell (2008), Engel,
Mark and West (2007) and Gourinchas and Rey (2007) via varying the forecast window. This
is another important test of how consistently reliable the forecast is.32

We �nd that the structural models do not produce consistently better forecasts than the
driftless random walk over different sample periods for the three studies reviewed. However, it
seems that the monetary model and the Taylor rule model forecast the exchange rate better than
32Giacomini and Rossi (2008) is one of the few studies which attempts to formalize the issue of robustness over

different forecast windows by developing appropriate test statistics.
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the random walk during the 1980s while Gourinchas and Rey's (2007) external balance model
consistently outperforms the driftless random walk in the 1990s and the 2000s.

Engel, Mark and West (2007)

Figure 1 illustrates an approach to testing robustness to different sample periods in the context
of Engel, Mark and West's (2007) monetary model. Figure 1 plots the bootstrapped TU (Theil's
U) p-value on the y-axis and the starting date of the recursion on the x-axis (the �rst date for
which a forecast is calculated). We plot only the bilateral exchange rates for which we �nd
forecastability for a large number of forecast windows in order to make the graph legible. For
similar reasons, we report only the results for Germany as a proxy for the Eurozone countries.

The way Figure 1 should be interpreted is the following. For example, the TU p-value
associated with 1984Q4 for a given country implies that the TU p-value is calculated using
the forecast window from 1984Q4 to 2005Q4 (the end of the sample). If the TU p-value is
below 0.1, we consider the result statistically signi�cant at 10 percent. In order for a result to be
considered robust, we would expect that the TU p-value is below 0.1 for almost all of the plotted
forecast windows. The graph shows that the monetary model is a relatively good forecaster of
the Swiss franc and, to a lesser extent, of the Deutsche mark/euro.33 It is interesting to note that
overall (when one considers the other current Eurozone countries as well), the monetary model
performs relatively well in the 1980s and its performance deteriorates in the 1990s.
33Keeping in mind that post-1999 the Deutsche mark transitions into the Euro, the fact that the TU test statistic

for Germany becomes insigni�cant when we restrict the forecast window post year 2000 implies that while the
monetary model was a relatively good forecaster of the Deutsche mark, this might not be the case for the Euro.
However, with more euro data the result could change.
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In conclusion, while at �rst look (considering one forecast window only), Engel, Mark and
West's (2007) results seem encouraging, if one considers the robustness of the results over
different forecast windows, they are less so.34

Molodtsova and Papell (2008)

In a similar fashion, we evaluate Molodtsova and Papell's (2008) heterogeneous symmetric
Taylor rule results with smoothing for consistency over different forecast windows. Figure 2
depicts the robustness of Molodtsova and Papell's (2008) results with respect to starting the
rolling regression at a different date. Only the countries for which the bootstrapped CW are sig-
ni�cant are reported (nine out of twelve). Figure 2 clearly shows that the results are somewhat
robust only for Canada � the only country for which the TU is below 0.1 for most of the forecast
windows.35

34The results remain non-robust when one reproduces Figure 1 plotting the bootstrapped ENC-NEW/CW test
statistic rather the bootstrapped TU p-value.
35While interesting, the result for Canada is perhaps not that surprising given that Reinhart and Rogoff (2002)

classify Canada as a limited �exibility exchange rate.
Even though, in Molodtsova and Papell's (2008) speci�cation, one cannot interpret the CW and ENC-NEW as

minimum MSFE tests due to the presence of severe forecast bias, for completeness, we reproduce Figure 2 using
the bootstrapped CW. The bootstrapped CW is signi�cant in the early 1980s for the majority of the countries but
not signi�cant for the rest of the period (the only exceptions are Australia, Canada, Italy and Japan for which the
bootstrapped CW is signi�cant for the majority of forecast windows).
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Gourinchas and Rey (2007)

Finally, in order to test to what extent the results of Gourinchas and Rey's (2007) external
balance model are robust to changing the forecast window, we report the p-value of the boot-
strapped TU test statistic for different forecast windows in Figure 3. The forecasts are estimated
using a recursive speci�cation.36 We report two approaches of estimating the external balance
variable. The solid lines in Graph 3 represent Gourinchas and Rey's (2007) approach which
estimates the external balance variable as a function of a discount constant, �, which is assumed
to be 0.95 (a long-term value obtained using the entire sample). In order to test the robustness
of Gourinchas and Rey's (2007) results to alternative values of �, we calculate a time-varying
discount rate (as a opposed to a long-run value) using only the in-sample portion of the data.
This approach is presented with dashed blue and red lines in Graph 3.

As before, we consider TU signi�cant at 10 percent when the bootstrapped p-value is
below the dashed black line. It is interesting to note that the FDI-weighted exchange rate
performs relatively well for most of the periods with the exception of the late 1980s. The
performance of the trade-weighted series is less impressive (especially when one considers
36If we calculate the forecasts using a rolling window of 105 quarters (the rolling window Gourinchas and Rey,

2007, state they use) rather than recursive regressions, the results do not change substantially. However, using
recursive regressions allows us to check the robustness of the trade-weighted dollar for different forecast windows
given the shorter range of the series. We also calculate time varying weights rather than impose constant weights
which also seems to affect the �nal results only negligibly.
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the time-varying � approach which calculates the discount rate using only in-sample infor-
mation). However, no matter whether one considers the trade-weighted or the FDI-weighted
series, the external balance variable outperforms the driftless random walk in the 1990s and
2000s.37

Summary of Robutness to Perturbation in Sample

After examining the performance of the monetary model, the external balance model and the
heterogenous Taylor rule with smoothing over different periods of time, we conclude that Engel,
Mark and West's (2007) monetary model speci�cation performs well in the 1980s but poorly
in the more recent period. Molodtsova and Papell's (2008) Taylor rule results, which were
not robust to the use of the bootstrapped TU and DMW in section 3, are also highly non-
signi�cant for all the periods considered. It seems that the performance of Gourinchas and Rey's
(2007) external balance variable is potentially more encouraging for the most recent period.
However, one should be cautious in comparing the performance of structural models which
forecast bilateral exchange rates with those which forecast weighted exchange rates, as the
latter tend to be signi�cantly less volatile.

37The results are similar if we consider the rest of the out-of-sample test statistics.
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5. Can One Do Better? The Importance of Common Cross-
Country Shocks

In this section we try to improve upon the panel forecast speci�cation applied by Mark and Sul
(2001) and Engel, Mark and West (2007) by incorporating persistent common cross-country
shocks in the forecasts. These might include technology shocks, commodity price shocks, or
factors related to the pace of globalization.

The basic forecast speci�cation we use is the same as the one de�ned in equation (1). How-
ever, we de�ne zi;t, the deviation of the exchange rate from an equilibrium value, using the
purchasing power parity model (PPP) rather than the monetary model.38

zi;t = pi;t � p�t � si;t (5)

Above, p is the natural log of the CPI and, as before, the (�) represents the US. We substitute
equation (5) into equation (1) and estimate equation (1) using recursive OLS panel regressions.
The way we take into account potential persistent cross-country shocks is by forecasting the
time dummy effect for period t+1 differently from previous panel studies. Rather than forecast
it simply as the average of the time-dummy coef�cients for all the previous periods, as Mark,
Engel and West (2007) did, we forecast it as a simple average of the last 4 estimated time-
dummy coef�cients. Mathematically, the time dummy forecast can be de�ned as

�t+1 =
1

q

tX
j=t�q+1

�j

where q = 4 when the data is quarterly.

Table 4 reports the results of the speci�cation de�ned above. 39

38The PPP speci�cation is known to perform well at long horizons, but has been much less explored in looking
at short-horizon nominal exchange rate forecasts. Engel, Mark and West (2007) is the only study, we are aware
of, which has explored the forecasting power of the PPP model at short horizons in a panel framework where the
benchmark is the driftless random walk. Engel, Mark and West (2007) �nd that for forecasts one period ahead, the
PPP forecast is signi�cantly better than the driftless random walk forecast only in 3 out of 18 cases.
We also perform the same type of forecasting exercise as in sections 5 and 6 using the monetary model, the

Taylor rule and a new structural model based on the Backus - Smith optimal risk sharing condition model. Out of
all the models we try, the PPP speci�cation performs the best.
39The data source is the International Financial Statistics (IMF) (Data available upon request). Our data set

consists of eleven countries: US, UK, Denmark, Germany, Canada, Japan, Australia, Switzerland, Korea, Norway
and Sweden. We choose to proxy the Euro using the Deutsche mark series up to 1999 and the euro post 1999. The
bootstrap speci�cation is similar to Mark and Sul (2001) and the same as the bootstrap used in the literature review
section (see Appendix for details).
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CW
P­

value
ENC­
NEW

P­
value

Theil's
U

P­
value DMW

P­
value

UK 0.423 0.326 1.343 0.242 1.072 0.991 ­1.879 0.810
Denmark 1.469 0.072 3.884 0.040 1.008 0.268 ­0.285 0.226
Germany 1.662 0.075 5.655 0.034 0.999 0.145 0.035 0.147
Canada 2.724 0.004 21.411 0.000 1.056 0.444 ­0.665 0.142
Japan 1.809 0.090 5.592 0.056 1.004 0.280 ­0.118 0.265
Australia 2.435 0.021 11.391 0.003 0.958 0.006 0.959 0.026
Switzerland 1.239 0.230 4.184 0.106 1.008 0.445 ­0.250 0.385
Korea 1.870 0.059 6.634 0.015 0.975 0.007 0.712 0.056
Norway 0.944 0.155 2.363 0.115 1.033 0.741 ­1.232 0.534
Sweden 2.215 0.030 5.398 0.035 0.999 0.155 0.028 0.157

Recursive specification; quarterly data; country and time dummies included; time dummy effect
forecasted as the simple avg of estimated time dummies over last 4 quarters; first forecast
1983Q1; last forecast 2007Q1 (PPP); The p­value is the bootstrapped version of the respective test
statistic. Bootstrap based on 1000 iterations; Bold p­values imply statistical significance of 10% or
less; Bold Theil's U values represent Theil's U <= 1; Bold CW values represent statistical
significance of 10% (above 1.282) using Clark and West's (2007) simulated critical values.

Table 4: PPP Specification; One Quarter Ahead; Forecasts Incorporate
Common Cross­Country Shocks

The results of Table 4 are very similar to the results in Molodtsova and Papell (2008) pre-
sented in Table 2. If we concentrate our attention only on the statistical signi�cance of the
bootstrapped TU and DMW test statistics, we notice that the results are signi�cant only for
Australia and Korea. However, when one calculates the CW and ENC-NEW out-of-sample test
statistics, CW and ENC-NEW are signi�cant for 7 out of 10 countries. Note that the boot-
strapped CW behaves similarly to the asymptotic CW. In combination with the fact that Clark
and McCracken (2005) and Clark and West (2006, 2007) conclude that the bootstrapped DMW
and TU tend to be more powerful than the asymptotic CW and adequately sized, this implies
that the discrepancy between the CW/ENC-NEW and TU/DMW cannot be attributed to dif-
ferent power and size. Furthermore, an investigation of the results indicates the presence of
forecast bias.40 As a result, the only explanation left for the discrepancy is that the two types
of test statistics test different null hypotheses and cannot be used interchangeably � a point we
prove and discuss further in the Appendix.

6. Forecast Pooling � Empirical Example
40Substantial "scale" forecast bias is present in all of the cases where we observe a discrepancy between the

TU/DMW and CW/ENC-NEW.
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However, a signi�cant CW/ENC-NEW still provides useful information when the bootstrapped
TU/DMW is insigni�cant which is what one observes in Table 4 (For proof see Appendix). In
this section we provide an empirical example of how in such cases one can improve upon the
structural model forecast by pooling the structural model forecast and the random walk forecast.

Endogenous vs Exogenous Weights

The question emerges how one can calculate a weight which will produce a forecast with MSFE
smaller than the MSFE of the random walk. One can either use endogenous time-varying meth-
ods of �nding the optimal weight (see Clements and Hendry, 1998, pp. 229), or one can impose
a �xed weight exogenously. It is conventional wisdom in the literature on forecast pooling that
simple averages tend to outperform endogenous weights (See Stock and Watson, 2003, Clark
and McCracken, 2006 and Clements and Hendry, 2004). Clements and Hendry (2004) explain
this phenomena with the fact that all endogenous procedures of �nding an optimal weight would
be biased in the presence of structural breaks (which might be one explanation of the lack of
robustness of the models over different forecast windows discussed in section 4).41 In contrast,
having a constant weight can serve as an insurance against structural breaks and perform overall
better than a time-varying endogenous weight.42

We test which pooling procedure produces better results � imposing exogenous �xed weights
or calculating endogenous weights using the regression method presented in Clements and
Hendry (1998, pp. 229). As expected, our results con�rm the conclusion of the literature on
forecast pooling that simple means and �xed weights perform better than endogenously calcu-
lated optimal weights. 43 As a result, we choose to impose a �xed weight of 0:2 on the structural
model forecast and 0:8 on the random walk forecast (which is essentially zero).44

41Since endogenous weights are estimated on the basis of data prior to the forecast, a structural break in the
recent past or in the near future will lead to biased weights. It is possible that prior to the break, a certain model
performs better than the alternative but performs poorly after the structural break. As a result, endogenously
determined weights would lead to the forecaster weighting more heavily the model which performed better prior
to the break but poorly after it.
42Potential structural breaks affect also the degree to which the information provided by the CW and the ENC-

NEW is valuable. In the presence of structural breaks, pooling can be appropriate even if the CW and the ENC-
NEW are not statistically signi�cant (and of course the bootstrapped TU and DMW are not statistically signi�cant)
(see Hendry and Clements, 2004). The reason why this is the case is that the forecaster does not know in advance
whether the CW/ENC-NEW will be signi�cant or not if the test statistic is calculated using data from the next
regime.
43Results available upon request.
44The results are relatively robust to using a simple average.
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Results After Pooling

Table 5 presents the "pooled" forecast results where we combine the forecast of the PPP model
which incorporates persistent cross-country shocks and the driftless random walk model.

Theil's
U

P­
value DMW P­value

UK 1.000 0.452 ­0.058 0.433
Denmark 0.994 0.050 1.127 0.090
Germany 0.991 0.046 1.355 0.090
Canada 0.962 0.000 2.092 0.005
Japan 0.991 0.071 1.441 0.121
Australia 0.981 0.000 2.151 0.009
Switzerland 0.993 0.123 0.955 0.239
Korea 0.989 0.014 1.645 0.047
Norway 0.997 0.145 0.511 0.189
Sweden 0.991 0.043 1.794 0.044

Table 5: "Pooled" Forecast; PPP Specification;
One Quarter Ahead; Forecasts Incorporate

Common Cross­Country Shocks

See note of Table 4;  Forecasts are calculated as 0.2
times the forecast of the Structural PPP Model which
incorporates common cross­country shocks

Exploring the results of Table 5, it is interesting to note that when the forecasts are pooled,
the bootstrapped TU becomes statistically signi�cant for the same 7 out of 10 countries for
which CW was signi�cant prior to pooling (Table 4).45 Therefore, by simply pooling the fore-
casts (a decision we choose to make after observing the signi�cance of the bootstrapped CW
and the ENC-NEW), we are able to outperform the driftless random walk in as many as 7 out
of 10 cases. As a result, we would suggest that forecasters interested in �nding the forecast
which produces the smallest MSFE should not ignore the bootstrapped CW and ENC-NEW
test statistics. They should explore the potential of improving their forecast by weighting if the
bootstrapped TU and DMW are not statistically signi�cant but the bootstrapped CW and ENC-
NEW are signi�cant. However, one should note that while exogenously imposed weights tend
to perform relatively well, assigning �xed weights is an ad hoc and sub-optimal process. As a
result, it does not guarantee that the same weight will continue performing well after a potential
future structural break for example.

45The bootstrapped DMW test statistic is signi�cant in 6 out of 10 cases.
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Robustness of the Pooled Forecast with Respect to Different Forecast Win-
dows - Is Pooling Enough?

Finally, we test whether our combined forecasts which incorporate the information presented
by the bootstrapped CW and ENC-NEW test statistics are robust over different periods of time.
As before, we test the robustness of the results by graphing the bootstrapped TU p-value for
different forecast windows. Only those countries for which we have signi�cant results for a
number of different forecast windows are included. The "pooled" PPP speci�cation seems to
perform exceptionally well in the early-to mid 1980s and relatively well in the early to mid-
1990s.

Nevertheless, the only two countries for which there is robust evidence for forecastability
are the commodity exporters Canada and Australia since the bootstrapped TU p-value for these
countries is always below 0.1 regardless of the forecast window considered.46 It is interesting to
note that the forecasting success we observe for Australia and Canada is a result of the way we
specify the time dummy effect forecast and not so much of the economic fundamental we use.
Even a speci�cation with no structural fundamental (only time and country dummies) produces
relatively robust results for Australia and Canada. While these results might be of interest to
46There is no guarantee that the relationship for Australia and Canada will be preserved in the future. As a result,

one should be careful when interpreting the results. Furthermore, we do not observe similar success when we use
the same approach to forecast the exchange rates of other commodity producers such as New Zealand and South
Africa. Note also that the results are somewhat robust for Sweden as well.
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forecasters, they would most likely be of lesser value to policy makers who are interested in the
relationship between structural models and fundamentals.47

Overview and Summary of PPP Model (with Common Cross-Country Shocks)

To summarize, panel forecast techniques should improve our ability to forecast exchange rates
by increasing the sample size and by allowing for cross-country interactions. We argue that,
to an extent, forecasters can exploit cross-country interactions even further via specifying the
time dummy effect forecast in a way which captures world economic trends. However, while
allowing for the incorporation of cross-country information produces slight improvement over
simple panel speci�cations, it fails to produce robust results for the majority of the countries
considered. The only exceptions are the commodity producers � Canada and Australia � but
we caution the reader that further investigation of these "success" cases is required. Last but
not least, while alternative ways to forecast the time dummy or pooling the structural model
coef�cient across countries may potentially improve our ability to forecast exchange rates for
some countries, one should be cautious when interpreting the results.48 If our ability to forecast
exchange rates can be attributed solely to "ad hoc" procedures that take into account unknown
cross-country shocks and common relationships, we still have not improved signi�cantly our
knowledge of the relationship between structural models and exchange rates.

Conclusion

In this paper we attempt to answer the question "Are structural models getting closer to being
able to forecast exchange rates at short horizons?" and the answer is "A little." However, over-
reliance on asymptotic test statistics in out-of-sample comparisons, misinterpretation of some
tests, and failure to suf�ciently check robustness to alternative time windows has led many stud-
ies to overstate even the relatively thin positive results that have been found. We �nd that by
allowing for common shocks in our panel speci�cation, we are able to generate some improve-
ment, but even that improvement is not entirely robust to the forecast window, and much of the
gain appears to come from non-structural rather than structural factors.
47For example, while our results suggest that common cross-country shocks seem to forecast the exchange rates

of Australia and Canada relatively well, this result does not help policy makers determine the cause of these shocks
or determine the relationship between structural variables and the exchange rate. A recent paper by Chen, Rogoff
and Rossi (2008) is an example of the dif�culty of forecasting the exchange rates of commodity producers solely
using fundamentals such as commodity prices even when one takes into account structural breaks.
48For example, Rapach and Wohar (2004) provide empirical evidence against pooling the monetary model co-

ef�cient across countries.
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We explore the application of popular new out of sample test statistics such as the Clark
and West (2006, 2007) and Clark and McCracken (2001) out-of-sample test statistics. We argue
that they have been widely misinterpreted as minimum mean square forecast error test statistics
and that, in addition, popular simple asymptotic versions may suffer from size distortions. In
other words, signi�cant Clark-West and Clark-McCracken test statistics do not always imply
that the forecast of the structural model outperforms the forecast of the random walk in terms
of mean square forecast error. For this question, statistics such as the bootstrapped Theil's U or
Diebold-Mariano/West may be more appropriate (especially given the advances in time series
bootstrapping); at the very least, researchers should test the robustness of their results with
respect to alternative test statistics.

We note that some researchers may be speci�cally interested in whether one can reject the
null hypothesis that the true model is the random walk model in favor a particular structural
model. But we would argue that in the vast majority of applications, policy-makers and practi-
tioners treat the random walk model only as a straw man, and simply want to know whether the
structural model can deliver a better forecast and what that forecast is.

We do note that, in principle, a positive CW statistic implies that there does exist some linear
combination of the driftless random walk and the structural model that outperforms the naive
random walk as measured by relative mean square forecast error. Finding a stable linear combi-
nation, however, is tricky and potentially opens up a whole new range of problems. Endogenous
methods for �nding optimal weights tend to fail due to the presence of structural instability. In
practice, �xed exogenous weights tend to perform better, although here too stability is a chal-
lenge.

In addition to misinterpretation of the new out-of-sample tests for nested models, some of
the excess optimism in the literature can be attributed to the failure to check for robustness over
different forecast windows. Regardless of whether one uses new or old structural models, single
equation or panel speci�cations, one of the main problems related to the forecastability of the
majority of exchange rates remains - lack of robustness over different time periods. Whether
the lack of robustness is due to non-linear functional forms, structural breaks or simply het-
erogenous market sentiments over time49, the literature on exchange rate forecasting has not
been able to develop the tools to produce robust forecasts for the majority of exchange rates.
Innovative approaches of overcoming these problems are required in order for the forecasts of
49One way of explaining the lack of robustness is with the existence of structural breaks which are identi�ed

as one of the main problems related to out-of-sample forecasting (see Clements and Hendry, 2005, Rossi, 2005,
Stock and Watson, 1996, 2003). Potential model mis-speci�cation could be an alternative explanation. Empirical
evidence suggest that the relationship between fundamentals and exchange rates can be better represented by
non-linear rather than linear functional forms (see Taylor and Peel, 2000, Meese and Rose, 1991 and Kilian and
Taylor, 2001). However, even when forecasters try to account for non-linear functional forms directly (Meese and
Rose,1991, and Killian and Taylor, 2001), or estimate a regime switching model (Marsh, 2000, and Dacco and
Satchell, 1999), results remain non-robust.

26



structural models to outperform the forecasts of the driftless random walk at short-horizons.
Until then, we would call the glass ninety-�ve percent empty rather than �ve percent full.
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APPENDIX:

A. Minimum MSFE Out-of-Sample Test Statistics

The Theil's U Test (TU)

The TU test statistic is a minimum MSFE test de�ned as the square root of the MSFE of the
structural model over the square root of the MSFE of the random walk model. Therefore, a
TU < 1 implies that the structural model outperforms the random walk model. TU is often
preferred for its simplicity and intuitive interpretation and its statistical signi�cance is tested via
a bootstrap. The test we use is a one-sided test.

The Diebold � Mariano/West Test (DMW)

The DMW test statistic can be considered an alternative to the TU test. It measures the statisti-
cal signi�cance of the difference between the MSFE of the random walk model and that of the
structural model. A signi�cant and positive DMW test implies that the structural model outper-
forms the random walk. On the basis of both theoretical and simulation evidence, West (1996),
McCracken (1999), Clark and McCracken (2001, 2005) and Clark and West (2006) show that,
when comparing nested models, the asymptotic DMW test statistic is undersized, which means
that it may not detect statistical signi�cance (i.e., that the structural model outperforms the ran-
dom walk model) even when it exists. While Clark and West (2006) attribute the poor size
of the asymptotic DMW test statistic to small-sample bias, McCracken (1999) and Clark and
McCracken (2001, 2005) claim that the asymptotic DMW is undersized because the limiting
distribution of the DMW under the null hypothesis is not standard normal when nested models
are compared. To correct for this problem, a number of studies opt for the bootstrapped DMW
test statistic which does not assume any distributional form. This is the approach we take in this
paper. Again, we calculate the DMW test as a one sided test.

The Clark � West Test (CW)

To compensate for the fact that the asymptotic DMW test statistic is undersized under the null
hypothesis when comparing nested models and to avoid the use of a bootstrap, Clark and West
(2006, 2007) propose a new asymptotic test for nested models, the CW, that builds on the
asymptotic DMW test. The CW test statistic takes into account the fact that the two models
compared are nested by assuming that, under the null hypothesis, the exchange rate follows a
random walk.
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When the forecast is calculated using rolling regressions, the limiting distribution of the
CW under the null hypothesis is standard normal. However, when the estimation is performed
recursively, the asymptotic distribution is approximated using Brownian motion. Based on sim-
ulation evidence, Clark and West (2007) suggest that, for recursive speci�cations, one can use
a one-sided test and should reject the null hypothesis of equal forecasting power when the CW
= +1:282 at 10 percent and CW = +1:645 at 5 percent (which are the critical values one
would use assuming a normal distribution). Finally, we also calculate the bootstrapped CW test
statistic to test whether the asymptotic CW test is properly sized.

The Clark - McCracken Test (ENC-NEW)

Another relatively new out-of-sample test statistic for nested models, the ENC-NEW, intro-
duced by Clark and McCracken (2001, 2005), also implicitly assumes that, under the null, the
exchange rate follows a random walk.50 The ENC-NEW and the CW differ only by a scaling
factor. In other words, the two test statistics can differ slightly because of different power or
size but they test the same null hypothesis. The shortcoming of the ENC-NEW is that its as-
ymptotic distribution is a function of both the in-sample and out-of-sample portion of the data
which makes evaluation of statistical signi�cance quite cumbersome. Therefore, bootstrapping
the ENC-NEW is an attractive alternative and this is the approach we take in this paper.

B. Proofs: The New Out-of-Sample Tests for Nested Models

In this section of the Appendix we provide a theoretical argument why the CW and ENC-NEW
cannot be considered minimum MSFE tests in cases of severe "scale" forecast bias. We also
argue that one should interpret these out-of-sample tests for nested models as prior tests of
whether one can pool the random walk and the structural model forecast to produce a forecast
with MSFE signi�cantly smaller than the MSFE of the random walk.

50Similarly to the CW, the ENC-NEW has been one of the most widely used out-of-sample test statistics in the
exchange rate forecasting literature. Some of the studies that test out-of-sample forecastability using the ENC-
NEW are Franses and Legerstee (2007), Rossi (2006), Zagaglia (2006), Boucher (2006), Giacomini and Rossi
(2006), Rangvid, Rapach, Wohar (2005).
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From the Diebold � Mariano to the Clark � West Test

Before proceeding to the proofs, we present a derivation of the Clark and West test statistic,
as presented in Clark andWest (2006). In order to simplify the notation, assume that the forecast
is one period ahead and that the forecast variable is the change in the exchange rate. Assume
that yt = st � st�1; where st is the natural log of the exchange rate for period t: Also let Xt

be a matrix of explanatory variables. We are interested in comparing the forecasting power of
the following theoretical models:

Driftless Random Walk Model: yt = e1;t; and
Structural Model: yt = Xt�1b+ e2;t;

where e1;t and e2;t are the unobservable innovation terms.

The CW test assumes that, under the null hypothesis, the exchange rate is a random walk,
and therefore, the population parameter b = 0; and the forecast innovation terms are equal,
that is, e1;t+1 = e2;t+1. The models can be estimated by OLS using either recursive or rolling
regressions. The estimated forecasts for the random walk and the structural model are ŷ1;t+1 =
0 and ŷ2;t+1 = Xtb̂t respectively. Denoting P as the number of forecasts, T as the sample length,
andR as the sample reserved to calculate the �rst forecast, we can rewrite the sample difference
between the MSFE of the two models (which is the main component of the DMW test statistic)
as:

P�1
t=TX
t=R+1

ê21;t+1 � P�1
t=TX
t=R+1

ê22;t+1 = 2P
�1

t=TX
t=R+1

(yt+1Xtb̂t)� P�1
t=TX
t=R+1

(Xtb̂t)
2:

Clark and West (2006, 2007) argue that under the null hypothesis e1;t+1 = e2;t+1 = yt+1;
and since Clark and West (2006, 2007) assume that the independent variables are not correlated
with the theoretical disturbance terms, it follows that E(yt+1Xtb̂t) = 0:

51 Therefore, they argue
that we should expect

Pt=T
t=R+1(yt+1Xtb̂t) � 0 for both the rolling and recursive speci�cations.

However, due to small-sample bias, �P�1
Pt=T

t=R+1(Xtb̂t)
2 < 0: As a result, the sample differ-

ence of the MSFEs of the random walk and the structural model is negatively biased in favor of
the random walk.

The fact that the DMW test is negatively biased under the null hypothesis implies that it fa-
vors the random walk. Therefore, Clark and West (2006) propose an "adjusted" DMW statistic,
or the so-called CW statistic, which tests whether
51e1;t+1 = e2;t+1 implies E(yt+1Xtb̂t) = E(e1;t+1Xtb̂t) = E(e2;t+1Xtb̂t). By assumption, E(e2;t+1Xt) =

0. Then if one assumed that underlying variables are independent, E(e2;t+1Xtb̂t) = E(e2;t+1Xt)E(b̂t) = 0:
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d̂ = 2P�1
t=TX
t=R+1

(yt+1Xtb̂t) (6)

is signi�cantly greater than zero. If it is, the structural model outperforms the random walk.
More formally, we can de�ne the CW as

CW =
P 0:5d̂p

d̂

where 
d̂ is the variance of d̂: In comparison, one can write the ENC-NEW test statistics as

ENC �NEW =
P
Pt=T

t=R+1(yt+1Xtb̂t)Pt=T
t=R+1(yt+1 �Xtb̂t)2

which makes it clear that the CW and ENC-NEW differ only by a scaling factor and we would
expect that they behave similarly.

New Out-of-Sample Test Statistics (CW and ENC-NEW) : Not Minimum MSFE Tests

While the CW (and to a lesser degree the ENC-NEW) are often used interchangeably with the
older minimum MSFE tests, we argue that their use as minimum MSFE tests is based on a
misinterpretation, and that they should not be used as a substitute for the TU and the DMW
tests. We present a theoretical proof that the CW is not a minimum MSFE test.52 The proof can
be easily generalized for the ENC-NEW out-of-sample test statistic.

Our proof is based on the rolling window speci�cation (R=P ! 0 and R is �xed) which
generalizes well the main point made by Clark and West (2006, 2007), namely, the presence of
small-sample bias. The proof for the recursive case is similar.53 While the proof assumes that
the benchmark model is the driftless random walk, it can be generalized to any nested-model
speci�cation.
52Clark and West themselves suggest that researchers should interpret the CW as a minimumMSFE test statistic

(2007, pp. 297). Clark and McCracken (2001, 2005) do not make such a claim regarding the ENC-NEW.
53The recursive speci�cation can be analyzed in a framework either with or without small-sample bias. If we

assume that small sample bias is present, even when b̂t is estimated using recursive regressions, as Clark and West
(2006) argue, we would still expect under certain assumptions that 2P�1

Pt=T
t=R+1(yt+1Xtb̂t) � 2E(yt+1Xtb̂t).

As a result, in the presence of small-sample bias, the proof we present generalizes to the recursive case.
In the case when R ! 1; P ! 1 (i.e., no small-sample bias is present), the proof we present still holds.

However, this case is irrelevant, given that according to Clark and West's (2006, 2007) null hypothesis, if small-
sample bias was not an issue, the adjustment of the DMW the authors propose would not be justi�ed (under the
null, the negative bias would disappear since b = 0 and, as a result, E(Xtb)2 = 0).
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Assume that all the variables are de�ned as above. In the rolling regression speci�cation, the
null hypothesis incorporates the presence of small-sample bias and can be de�ned as Ee21;t+1 =
Ee22;t+1(R): The alternative can be de�ned as Ee21;t+1 > Ee22;t+1(R): The respective MSFEs are

Ee21;t+1 = E(yt+1)
2; and (7)

Ee22;t+1(R) = E(yt+1 �Xtb̂t)
2 = E(yt+1)

2 � 2Eyt+1Xtb̂t + E(Xtb̂t)
2; (8)

where x(R) implies that the variable x is a function of a rolling window of �xed size, R: In the
rolling regression case (the extreme version of small-sample bias with respect to the structural
model parameter), R is �xed, and b̂t never converges to b; regardless of the sample size, T:
The larger R is, the smaller the small-sample bias is. Also, when R is �xed, then under mild
assumptions, we would expect yt+1Xtb̂t to be a well-behaved iid random variable. Then, it
follows that

p lim(P�12
t=TX
t=R+1

(yt+1Xtb̂t)) = 2E(yt+1Xtb̂t);

where the probability limit is de�ned with respect to P ! 1: Given the rolling regression
set-up, we proceed to prove that CW is not a minimum MSFE test statistic. In other words, a
statistically signi�cant CW test does not imply a statistically signi�cant minimum MSFE test.

Proposition 1: 2E(yt+1Xtb̂t) > 0 ; Ee21;t+1 � Ee22;t+1(R) > 0:

Proof of Proposition 1: From equations (7) and (8), if 2E(yt+1Xtb̂t) � E(Xtb̂t)
2 thenEe21;t+1�

Ee22;t+1(R) � 0. However 2E(yt+1Xtb̂t) � E(Xtb̂t)
2 can hold even if 2E(yt+1Xtb̂t) > 0. As

a result, 2E(yt+1Xtb̂t) > 0 does not imply Ee21;t+1 � Ee22;t+1(R) > 0: �

The question emerges how often we would expect the CW(ENC-NEW) and DMW(TU) to
produce different results due to the fact that the two test statistics test a different null hypotheses.
In other words, how often we would observe 0 < 2E(yt+1Xtb̂t) � E(Xtb̂t)

2 in practice. The
condition 0 < 2E(yt+1Xtb̂t) � E(Xtb̂t)

2 implies that if we regress the observed exchange rate
change on the structural model forecast and no constant, the estimated coef�cient should be less
than or equal to 1

2
and greater than 0. This is equivalent to having a signi�cantly biased forecast

(if the forecast is unbiased the estimated coef�cient should be 1).54

54Note that the analysis refers only to "scale" bias since no constant is included in the forecast bias regression
(for details see Marcellino, 2000, and Holden and Peel, 1989).

36



Forecast bias is a signi�cant problem in the literature on exchange rate forecasting. Mar-
cellino (1998) emphasizes the importance of taking into account forecast bias when applying
encompassing test statistics. Clements and Hendry (1996, 2005) investigate the theoretical re-
lationship between structural breaks and forecast bias and �nd that structural breaks, which are
fairly common in forecasting, can lead to forecast bias.

What Do the New Out-of-Sample Test Statistics for Nested Models Test?

Here we prove that, in theory, a signi�cant CW test implies that one can pool the random-walk
and the structural-model forecasts and obtain a combined forecast whose MSFE is smaller than
that of the random walk. Again, this proof also applies to the ENC-NEW test statistic.

Similarly to the proof of Proposition 1, we prove the statement above in the context of the
rolling speci�cation, which implies that there is small-sample bias under the null hypothesis.
However, a similar proof can be presented with respect to the recursive speci�cation. The proof
here is generalized to any nested model speci�cation where Model 1 is nested in Model 2. Let
yc;t+1 = �y2;t+1(R) + (1 � �)y1;t+1(R); 0 � � � 1 be the combined forecast where � is the
weight on the structural model forecast. Subscripts represent the respective model (1 or 2) and
c stands for "combined". As before, the variable that we forecast is yt+1: One can rewrite the
CW test statistic as testing whether

d̂ = 2P�1
t=TX
t=R+1

ê1;t+1(ê1;t+1 � ê2;t+1)

is signi�cantly greater than zero. Within the more general framework of any nested model
speci�cation, we prove that a signi�cant CW implies that there exists an optimal combination
between the two forecasts which will produce a combined forecast that outperforms the simpler
model (Model 1) in terms of MSFE.

Proposition 2 : 2Ee1;t+1(R)(e1;t+1(R)� e2;t+1(R)) > 0
) 9 � s : t : Ee21;t+1(R)� Ee2c;t+1(R) > 0
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Proof of Proposition 2:55 The proof we present is similar to the proof provided by Harvey
and Newbold (1998). In a rolling regression framework and under mild assumptions

p lim(2P�1
TX

t=R+1

ê1;t+1(ê1;t+1 � ê2;t+1)) =

2Ee1;t+1(R)(e1;t+1(R)� e2;t+1(R)); P ! 1

We can minimize the MSFE of the combined forecast, by regressing yt+1; the observed
series, on y1;t+1(R) and y2;t+1(R) using OLS and constraining the coef�cients to sum to one.

yt+1 = �y2;t+1(R) + (1� �)y1;t+1(R) + ec;t+1(R); 0 � � � 1 (9)

If � > 0; then combining the forecasts will produce a forecast s.t. Ee21;t+1(R) > Ee2c;t+1(R).
Equation (9) can be rewritten as

e1;t+1(R) = �(e1;t+1(R)� e2;t+1(R)) + ec;t+1(R); (10)

If we estimate equation (10) without a constant, then

� =
Ee1;t+1(R)(e1;t+1(R)� e2;t+1(R))

E(e1;t+1(R)� e2;t+1(R))2

Testing whether 2Ee1;t+1(R)(e1;t+1(R)� e2;t+1(R)) = 0 is testing the same hypothesis as test-
ing whether � = 0 using equation (9) or (10). Therefore, 2Ee1;t+1(R)(e1;t+1(R)�e2;t+1(R)) >
0) 9 � s : t : Ee21;t+1(R)� Ee2c;t+1(R) > 0 �

As a result, while the CW and the ENC-NEW out-of-sample test statistics cannot be con-
sidered minimum MSFE test statistics, they still provide meaningful information. They can be
used as a prior test of whether a combined forecast exists that outperforms the driftless random
walk forecast in terms of MSFE.

55One can also think of CW and ENC-NEW in the framework of encompassing test statistics. If one fails to
reject the null that d̂ is equal to zero, then the random walk encompasses the structural model. If one rejects the null
that d̂ is equal to zero, then the CW test statistic is statistically signi�cant and the random walk fails to encompass
the structural model. Note that a signi�cant CW test statistic does not necessarily imply that the structural model
encompasses the random walk. The distinction is important. If the structural model encompasses the random walk,
which would occur if we fail to reject the null thatEe2;t+1(e2;t+1�e1;t+1) equals 0, then the structural model will
have a smaller MSFE than the random walk. As a result, encompassing will entail MSFE dominance (for proof
see Ericsson, 1992, and Marcellino,2000).
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C. The Bootstrap

Different Bootstrapping Procedures

First, we brie�y discuss alternative approaches to bootstrapping. The standard bootstrap (also
known as "case" bootstrap with replacement), introduced by Efron (1979), assumes that the re-
sampled data are independent and identically distributed (iid). If the data are serially correlated
or if heteroskedasticity is present (which is usually the case in time series data), a simple "case"
bootstrap leads to inconsistent results. A better way to bootstrap time series data would be via
a block bootstrap which implies that the data is re-sampled in blocks of a certain length rather
than observation by observation, thereby preserving the properties of the data generating process
(DGP). However, �nding the optimal block size to preserve the DGP is not that straight forward.
Indeed, Berkowitz and Kilian (1996) suggest that block bootstrapping is not the optimal way to
bootstrap time series data given the state of development of the block bootstrap literature.

As a better alternative, Berkowitz and Kilian (1996) suggest a residual bootstrap procedure
which is the bootstrap speci�cation implemented by Mark (1995) and subsequently improved
by Kilian (1999) and Mark and Sul (2001). The idea of residual bootstrapping is that in spec-
i�cations such as Mark (1995) where the independent variable is de�ned as the deviation of
the exchange rate from the fundamental, the cointegration (or the lack of cointegration) will
be preserved when one uses the residual bootstrap. One way to implement it is to estimate an
error correction speci�cation, then re-sample the estimated residuals and recursively simulate
the independent variable. (This type of bootstrap is commonly referred to as "semi-parametric"
bootstrap. If one draws the residuals from a normal distribution, the bootstrap will be called
"parametric".) While not always easy to implement, if properly speci�ed, the bootstrap auto-
matically corrects for small-sample bias and can be also used for forecast horizons greater than
one as discussed in Kilian (1999).

Bootstrap Used in the Paper

The bootstrap procedure used to calculate the p-values of DMW, TU, CW and ENC-NEW for
all speci�cations is similar to the bootstrap of Mark and Sul (2001) and Basher and Westerlund
(2006). The main difference between our bootstrap and Mark and Sul's (2001) bootstrap is that
we use country speci�c OLS - regressions rather than seemingly unrelated regressions (SURs).
We also perform a "semi-parametric" rather than "parametric" bootstrap. The data generating
process (DGP) is a country � speci�c error correction process. The assumption of no unit root
(or cointegration between the fundamental and the exchange rate) is imposed.

For each country, we estimate the following equations using an OLS regression (the �i�
subscript is dropped for simplicity) :
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where zt is the deviation of the exchange rate from the fundamental (or simply the fundamental)
de�ned in (2), (3), (4) and (5). st is the nominal exchange rate. We also de�ne �st = st �
st�1;�zt = zt � zt�1 , � is a constant and t is a trend.

Lags of �st and �zt are included in the error correction equation to account for potential
autocorrelation. The bootstrap procedure uses the Akaike's information criterion (AIC) method
in order to choose between the appropriate number of lags of�st and�zt ( d and l can differ).
The DGP can also differ across countries depending on whether AIC picks a speci�cation with
no constant, with constant or with a constant and a trend. The restriction that the sum of the
coef�cients of the lags of �zt equals one is imposed in order to avoid exploding simulated
series. Then we re-sample the estimated matrix of residuals, ("s; "z), either case by case (or
more precisely row by row) or in blocks of 4 for quarterly data and 12 for monthly data. The
results are relatively robust to the alternative methods of re-sampling of the residuals. Therefore,
the results presented in the paper are based on case by case re-sampling of the residuals rather
than block re-sampling.

Once the residuals are re-sampled, the exchange rate and the independent variable(s) are
simulated recursively. The �rst 100 simulated observations are discarded in order to attenuate
potential bias related to choosing the starting values of the recursion - the sample averages.
With the new generated sample, the forecasting model is re-estimated and the test statistics are
calculated. The p-values of the DMW, CW and ENC-NEW test statistics are measured as the
portion of the distribution above the test statistics estimated using the observed data (since all
these tests are one-sided tests), while the p-value of the TU statistic is the proportion of the
bootstrapped TU distribution below the estimated TU value using the observed data. All the
bootstrapped p-values are calculated on the basis of 1000 simulated distributions.
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