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Abstract

Missing data are ubiquitous in applied econometric research. A useful, albeit contro-

versial, approach to this problem assumes that conditional on always observed variables

missingness occurs at random or that selection is on observables (e.g., Rosenbaum and Ru-

bin, 1984; Heckman and Robb, 1985). This assumption justifies a simple procedure whereby

complete cases, those units without any missing data, are reweighted by the inverse of the

probability of selection or the propensity score (e.g., Wooldridge, 2007). This paper pro-

poses a flexible parametric variant of inverse probability weighting, inverse probability tilting

(IPT). Inverse probability tilting (IPT) replaces the conditional maximum likelihood esti-

mate (CMLE) of the propensity score with a method of moments one. The methods of

moments estimator chooses the propensity score parameter so that selected moments in

the reweighted complete case subsample exactly coincide with their unweighted full sample

counterparts. This alternative propensity score estimate increases the efficiency and robust-

ness of inverse probability weighting. That replacing an efficient estimate of the propensity

score with an inefficient one improves the properties of inverse probability weighting is ex

ante surprising.

We also compare IPT with the class of augmented inverse probability weighting (AIPW)

estimators introduced by Robins, Rotnitzky and Zhao (1994). Relative to AIPW, IPT

exhibits lower higher order bias and has an implicit distribution function estimate which is

guaranteed to be non-decreasing.

In an empirical application we revisit Johnson and Neal’s (1998) analysis of the Black-

White wage gap for young men in the United States. They find that 60 percent of the

Black-White gap can be explained by group differences in cognitive skills acquired prior to

labor market entry at age 18. We study the effect of group differences in skills acquired

prior to adolescence (i.e., by age 12). Our analysis is complicated by the absence of a

pre-adolescence test score for almost 90 percent of respondents. We use IPT to address

this missing data problem. We find that two thirds of the pre-market effect found by

Johnson and Neal (1998), or 40 percent of the overall gap, can be accounted for by group

differences in cognitive skills already present by age 12. The IPT wage gap estimate is

precisely determined relative to the standard IPW estimate with a standard error one half

as large.

Operationally IPT coincides with standard IPW with the sole exception that the CMLE

of the propensity score is replaced with our method of moments estimate. This estimate

is the unique solution to a globally concave programming problem (Appendix C). In the-

ory, and in practice, computing our IPT propensity score estimate is straightforward. A

MATLAB routine for this purpose is available at https://files.nyu.edu/bsg1/public/.

JEL Classification: C14, C21, C23, J15, J70
Key Words: Missing Data, Semiparametric Efficiency, Double Ro-

bustness, (Augmented) Inverse Probability Weighting (IPW), Black-
White Gap, Causal Inference, Average Treatment Effect (ATE), Two
Sample Instrumental Variables (TSIV)
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Inverse probability weighting (IPW) methods are widely used in economics and

other disciplines to address missing data problems. If the data are missing at ran-

dom (MAR) conditional on always-observed variables, or selection is on observables,

then reweighting complete cases by the inverse of the probability of selection cre-

ates a pseudo-dataset that mimics a random sample from the population of interest

(e.g., Rosenbaum, 1987). Standard estimation procedures applied to the reweighted

complete cases can be used to consistently estimate the parameter of interest (e.g.,

Wooldridge, 2007).

Settings where IPW has proved useful include M-estimation under nonrandom

sampling (e.g., Horvitz and Thompson, 1952; Manski andMcFadden, 1981; Wooldridge,

1999; 2001), correcting for attrition in panel data (e.g., Robins and Rotnitzky, 1995;

Robins, Rotnitzky and Zhao, 1995; Abowd, Crépon and Kramarz, 2001; Wooldridge,

2002), the construction of counterfactual distributions (e.g., Rosenbaum, 1987; Di-

nardo, Fortin and Lemieux, 1996), program evaluation under exogenous treatment

assignment (e.g., Hirano, Imbens and Ridder, 2003), and dealing with mismeasured or

missing regressors (e.g., Robins, Rotnitzky and Zhao, 1994; Chen, Hong and Tarozzi,

2004, 2008). Each of these problems belongs to a class of semiparametric missing

data problems studied by Robins, Rotnitzky and Zhao (1994, Section 8). Wooldridge

(2007) shows how these problems may be solved by appropriately constructed inverse

probability weighted (IPW) M-estimators.

Three difficulties can arise when using IPW2 methods. First, IPW is inefficient

unless the selection probability or propensity score is modelled nonparametrically

(Hirano, Imbens and Ridder, 2003). Unfortunately, due to the curse of dimensionality,

nonparametric modelling of the propensity score can be impractical when more than

a handful of the conditioning variables have continuous components.3 Second, IPW

“can attach large weights to small quantities of data, often in a fairly erratic manner”

(Rosenbaum, 1987; p. 387; cf., Fortin, Lemieux, and Firpo, 2010). In settings where

the probability of missingness is very high for some subpopulations, IPW estimates

can be very sensitive to small changes in the propensity score model. Third, and

2Throughout we will use IPW as an abbreviation for both ‘inverse probability weighted’ and

‘inverse probability weighting’ with the intended meaning clear from the context.
3Unless, of course, a very large sample is available. Heckman, Ichimura and Todd (1998, p.

271) make related point noting that “...the dimensionality of  is a major drawback to practical

application of the matching method or to the use of conventional nonparametric regression....For

high dimensional  variables, neither method is feasible in samples of the size typically available to

social scientists.”
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related to the second concern, the consistency of IPW methods requires that the

propensity score is correctly modelled.4

In this paper we propose a modified version of inverse probability weighting, in-

verse probability tilting (IPT), which addresses each of these concerns. Our point of

departure is a equivalence result due to Graham (2009): the variance bound for the

semiparametric missing data model of Robins, Rotnitzky and Zhao (1994) coincides

with that of a particular conditional moment problem. This problem suggests nat-

ural analog estimators. Operationally two issues arise. First, on which of the infinite

number of unconditional moments implied by the conditional restriction should es-

timation be based? Second, how should any overidentification be dealt with? Our

answer to these two questions results in an easily implementable variant of inverse

probability weighting.

Our procedure coincides with the IPW estimator of, for example, Wooldridge

(2007), except that we replace the conditional maximum likelihood estimate (CMLE)

of the propensity score with an alternative method of moments estimator. We show

that if the unconditional moments used to estimate the propensity score parameter are

appropriately chosen our procedure (i) is locally efficient and (ii) remains consistent

even if the propensity score is misspecified. These properties, local efficiency and

double robustness, which we carefully define below, are not shared by the standard

IPW estimator.5 We show that the correct choice of moments is an implication of

the maintained propensity score model and researcher beliefs about the conditional

distribution of the missing variables given those always observed. As the first object

is the foundation of reweighting and matching approaches to missing data and the

second of imputation approaches (cf., Rubin, 1977; Gourieroux and Monfort, 1981;

Little and Rubin, 2002; Browning and Søren Leth-Petersen, 2003), the process of

optimal moment selection involves considerations familiar to applied researchers.

A key appeal of inverse probability weighting is its conceptual and operational

4In principal, if the richness of the propensity score model is allowed to grow with the sample

size, as in Hirano, Imbens and Ridder (2003) and Chen, Hong and Tarozzi (2004, 2008), IPW

will be consistent (as well as efficient) as long as the true propensity score is sufficiently smooth.

The focus of this paper is on weighting methods that involve (flexible) parametric modelling of the

propensity score. This is the case considered by Wooldridge (2007). In this case fragility vis-a-vis

misspecification of the propensity score is relevant.
5To be more specific, IPW is locally efficient at a rather peculiar data generating process (DGP).

Unfortunately this DGP is difficult to interpret and a priori implausible. We discuss this point

below.
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simplicity. Inverse probability tilting preserves this advantage, while offering im-

provements in terms of estimator efficiency and robustness. However other modifi-

cations of IPW exist. A leading one, which shares IPT’s local efficiency and double

robustness properties, is the augmented inverse probability weighting (AIPW) estima-

tor introduced by Robins, Rotnitzky and Zhao (1994). While perhaps less familiar to

econometricians, although Hirano and Imbens (2001), Imbens (2004), andWooldridge

(2007) are notable exceptions, AIPW methods are widely-studied (and used) by sta-

tisticians. Tsiatis (2006) provides a book length treatment. These estimators chooseb to set a parametric estimate of the efficient score for 0 equal to zero. As shown by
Newey (1990, Section 4), this is a general approach to constructing locally efficient

estimators for semiparametric models.

Several variants of AIPW are now available, including versions due to Newey

(1994a) and Cao, Tsiatis and Davidian (2009). We also show that the estimators

proposed by Hirano and Imbens (2001) and Wooldridge (2007, Section 6.2) are AIPW

ones. This is a priori non obvious. We demonstrate that each of these AIPW estima-

tors belongs to a particular class of iterated GMM estimators (Hansen, Heaton and

Yaron, 1996). The differences among them correspond to differences in the weight

matrix being iterated over.

Using the iterated GMM representation we characterize the asymptotic bias of

AIPW estimators. We also compute the asymptotic bias of our IPT estimator. These

bias comparisons are interesting because IPT and AIPW are first order equivalent.

Our derivations are based on stochastic expansions as in Rilstone, Srivastava and

Ullah (1996) and Newey and Smith (2004). We find that IPT has smaller bias than

AIPW. We also compare AIPW and IPW in terms of their implicit distribution

function estimates (Back and Brown, 1993). While both estimates are efficient under

a common prior restriction, the AIPW one can assign negative weights to some data

points. Consequently it may be decreasing over some intervals. This phenomenon is

likely to occur when the distribution of the always observed covariates is very different

across the complete case and missing case subsamples (i.e., when overlap is limited).

In an empirical application we revisit Johnson and Neal’s (1998) analysis of the

Black-White wage gap for young men in the United States. They find that approx-

imately 60 percent of the Black-White gap can be explained by group differences in

cognitive skills acquired prior to labor market entry at age 18. We study the effect

of group differences in skills acquired prior to adolescence (i.e., by age 12). We find
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that pre-adolescent skill differences can explain about 40 percent of the overall wage

gap and two thirds of pre-market effect found by Johnson and Neal (1998).

Our analysis is complicated by the fact that a pre-adolescence test score is available

for just 11 percent of respondents. In addition to being few in number, these complete

cases are unrepresentative of the sample as a whole. An analysis which ignores these

facts is likely to be both inconsistent and imprecise. The IPT estimate of the wage gap

conditional on the preadolescence test score corrects for the unrepresentativeness of

the complete cases. The IPT point estimate is also precisely determined. Its standard

error is one half the length of the one for the standard IPW estimate. Our application

provides a concrete example of the type of efficiency gains IPT can provide. These

gains arise despite the fact that we implement IPW with a heavily overparameterized

propensity score model, which theory suggests should lead to a precisely determined

point estimate (Hirano, Imbens and Ridder, 2003; Wooldridge, 2007).

All proofs are collected in the appendix. We also detail a computational algorithm

that we have found to be reliable. Software implementing this procedure is available

online at https://files.nyu.edu/bsg1/public/. A supplemental Web Appendix

provides details of some of the more tedious underlying calculations.

Relationship to prior research Our paper is related to several distinct research

programs. In econometrics various individuals have proposed globally efficient esti-

mators for missing data models, particularly treatment effect models under exogenous

treatment assignment (e.g., Cheng, 1994; Newey, 1994a; Hahn, 1998; Hirano, Imbens

and Ridder, 2003; Ichimura and Linton, 2005; Imbens, Newey and Ridder, 2005; Chen,

Hong and Tarrozi, 2004, 2007). All of these estimators require nonparametric estima-

tion of (potentially) high dimensional objects. This limits their practical usefulness.

While their first order asymptotic properties are not sensitive to the particulars of the

nonparametric estimator used (including its dimension), their finite samples proper-

ties often will be (cf., Wang, Linton and Härdle, 2004). This motivates our focus on

finding flexible parametric procedures with good efficiency and robustness properties.

Practicality often demands that empirical work is of the flexible parametric variety,

our theory is consequently concordant with (much of) actual practice.6

6The credibility of the MAR assumption often requires  to be high dimensional: the assumption

of ‘no selection on unobservables’ is typically most persuasive when the researcher is able to condition

on many observed unit characteristics (cf., Heckman, Ichimura and Todd, 1997). Of course, when

deciding on which variables to include in , a variety of considerations must be taken into account.

4



Our focus on flexible parametric modelling is shared by researchers in biostatistics

(e.g., Robins, Rotnitzky and Zhao, 1994). Our proposed estimator, both operationally

and in its derivation, differs from AIPW, the preferred approach in that literature.

We are also the first, to our knowledge, to attempt higher order comparisons in the

missing data context.7 Our theoretical analysis suggests that IPT is attractive relative

to both IPW and AIPW.

Our bias calculations are based on stochastic expansions of the first order condi-

tions defining the IPT and AIPW estimators. In undertaking these calculations we

use Lemma A.4 of Newey and Smith (2004, pp. 241 - 242). Some of the properties

of IPT may be understood by making analogies with empirical likelihood (Imbens,

2002; Kitamura, 2007).8 More generally the desirable properties of IPT are related

to the theory of efficient estimation of expectations (e.g., Brown and Newey, 1998).

Finally, our method of deriving a locally efficient estimator shares similarities with

the literature on optimal instrumental variables in GMM (e.g., Chamberlain, 1987;

Newey, 1993). We make some of these connections explicit in what follows.

1 A general moment condition model with missing

data

In this section we describe a general moment condition model with data missing at

random (MAR) or where selection is on observables (Rosenbaum and Rubin, 1983;

Heckman and Robb, 1985). Our set-up is (essentially) the same as in Wooldridge

(2007) except that our parameter is the solution to a moment condition, as opposed

to a population optimization, problem (cf., Chen, Hong and Tarozzi, 2008). Let

 = ( 0
1  

0)0 be a random vector, 0 an unknown parameter, and assume that:

Assumption 1.1 (Identification) For some known  × 1 vector of functions
 ( )

E [ ( 0)] = 0

with (i) E [ ( )] 6= 0 for all  6= 0  ∈ G ⊂ R and G compact, (ii) | ( )| ≤
7Ichimura and Linton (2005) and Imbens, Newey and Ridder (2005) do undertake mean squared

error calculations, but not to compare alternative estimators.
8These connections were heavily emphasized in our NBER Working Paper (Egel, Graham and

Pinto, 2008).
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 () for all  ∈ Z with  () a non-negative function on Z and E [ ()]  ∞

(iii)  ( ) is continuous on G for each  ∈ Z and continuously differentiable in a

neighborhood of 0, (iv) E
£k ( 0)k2¤ ∞ and (v) E

£
sup∈G k∇ ( )k

¤
∞

Assumption 1.1 provides a standard set of conditions under which the full sample

method-of-moments estimate of 0, the solution to
P

=1  (b)  = 0, will be

consistent and asymptotically normally (cf., Newey and McFadden 1994, Theorems

2.6 and 3.4).9

Here our interest is in identification and estimation when 1 is not observed for all

units. Let  be a binary indicator variable. When  = 1 we observe 1 and , while

when  = 0 we observe only . Our benchmark model is defined by Assumption 1.1

as well as:

Assumption 1.2 (Random Sampling) {  1}=1 is an independently and
identically distributed random sequence. We observe ,  and  = 1 for each

sampled unit.

Assumption 1.3 (Missing at Random) Pr ( = 1|1) = Pr ( = 1|)

Assumption 1.4 (Strong Overlap) Let 0 () = Pr ( = 1| = )  then 0 

 ≤ 0 () ≤ 1 for some 0    1 and all  ∈ X ⊂ Rdim()

Assumption 1.5 (Propensity Score Model) There is a unique ∗0 ∈ D∗ ⊂
Rdim(

∗) known vector  () of linearly independent functions of and known func-

tion  (·) such that (i)  (·) is strictly increasing, differentiable and maps into the
unit interval with lim

→−∞
 () = 0 and lim

→∞
 () = 1, (ii) 0 () =  (()0∗0) for

all  ∈ X , and (iii) 0   ≤  (()0∗) ≤ 1 for all ∗ ∈ D∗ and  ∈ X .

In what follows we refer to the model defined by Assumptions 1.1 to 1.5 as the

semiparametric missing data model. Hahn (1998), Hirano, Imbens and Ridder (2003),

and Chen, Hong and Tarozzi (2004, 2008) study this model without maintaining As-

sumption 1.5, that is, with the propensity score left nonparametric. As is well-known,

removing Assumption 1.5 from the prior restriction does not affect the asymptotic

precision with which 0 may be estimated (e.g., Hahn, 1998; Chen, Hong and Tarozzi,

9Note we assume that 0 is just-identified. Extending what follows to the overidentified case

is straightforward. Extending what follows to the case where  ( ) is non-differentiable is also

possible, albeit technically demanding (cf., Firpo, 2007).
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2008). We nevertheless maintain it when deriving our local efficiency result (Theo-

rem 2.1). Doing so is important for establishing regularity of our estimator. We also

assess the properties of IPT when Assumption 1.5 fails (Theorem 2.2).

To get a sense of the range of problems to which our methods may be applied it

is helpful to consider a few specific examples.

Example 1.1 (Mean of a variable missing at random) Let 1 be a binary

indicator for an individual’s HIV status, let  = 1 if an individual is tested and

zero otherwise; 1 is logically observable only when  = 1 We would like to es-

timate the population prevalence of HIV: 0 = E [1]  This corresponds to setting

 ( ) = 1 − . Assumption 1.3 says that the testing decision is independent of

HIV status in subpopulations homogenous in . This may be plausible if  includes

measures of risk-taking behavior and other background characteristics so that it closely

approximates an individual’s own information set regarding their status. Assumption

1.4 requires that at least some individuals in every subpopulation defined in terms of

 =  get tested. Assumption 1.5 presumes the availability of a parametric model

for the testing decision. This example is closely related to that of average treatment

effect (ATE) estimation under exogenous assignment (e.g., Imbens, 2004; see Section

5 below).

Example 1.2 (Regression function estimation with missing regressors)

Let 1 be a vector of demographic characteristics, 2 log earnings, 1 armed forces

qualification test (AFQT) score, and 3 a vector of always observed surrogates or

proxies for 1 (e.g., scores on subcomponents of the test, on earlier tests, etc.). Let

 = 1 if a unit’s test score is available and zero otherwise. Let  = ( 0
1

0
2

0
3)
0


 = (01 
0
2)
0
and  ( ) = ( 0

1 
0)0 (2 − 0

11 −  0
12)  Here  corresponds to the

coefficient vector indexing the linear predictor of log earnings given demographics and

AFQT score as in Neal and Johnson (1996)10 This corresponds to a linear regression

model where the covariate of interest is subject to item non-response. Assumption 1.3

requires that across individuals with identical earnings (2), demographics (1), and

test proxies (3) the probability of observing the AFQT score is independent of its

value.

10Using 2 to denote a left-hand-side, and 1 a right-hand-side, variable is confusing but is done

here to maintain consistency with the notation of Assumptions 1.1 to 1.5.
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Chen, Hong and Tarozzi (2004), Wooldridge (2002, 2007) and Egel, Graham and

Pinto (2008) survey additional examples of the semiparametric missing data model

defined by Assumptions 1.1 to 1.5. See also Section 5 below.

2 Inverse probability tilting

Our approach to estimation involves inverse probability weighting (IPW) as in Rosen-

baum (1987), Wooldridge (2002, 2007) and others. In what follows, unless noted ex-

plicitly otherwise, we use IPW to denote inverse probability weighting where (i) the

propensity score is modelled parametrically and (ii) fitted by maximum likelihood.

The main difference between our procedure, inverse probability tilting (IPT), and

this standard IPW estimator is that we do not use a conditional maximum likelihood

estimate (CMLE) of the propensity score.11

As the deliberate use of an inefficient estimate of a parameter (albeit a nuisance

one) is non standard we spend some time explaining the reasoning behind our ap-

proach. Central to this approach is an equivalence result on semiparametric efficiency

bounds for missing data problems due to Graham (2009).

2.1 Inverse probability weighting

Our first result shows that IPW, with the propensity score estimated by CMLE, is

typically inefficient under Assumptions 1.1 to 1.5. The maximal asymptotic precision

with which 0 can be estimated under these assumptions was characterized by Robins,

Rotnitzky and Zhao (1994), Hahn (1998) and Chen, Hong and Tarozzi (2004, 2008)

and is given by the inverse of

I (0) = Γ00Λ
−1
0 Γ0 (1)

with

Γ0 = E
∙
 ( 0)

0

¸
 Λ0 = E

∙
Σ (; 0)

0 ()
+  (; 0)  (; 0)

0
¸
 (2)

where Σ (; ) = V ( ( )| = ) and  (; ) = E [ ( )| = ].

11To the best of our knowledge all versions of IPW based on parametric models of the propensity

score use CMLE. Hirano, Imbens and Ridder (2003) and Chen, Hong and Tarozzi (2004, 2008)

use a sieve maximum likelihood (SML) estimate of the propensity score. Operationally this is

nondistinguishable from a flexible parametric maximum likelihood estimate.
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Let  =  ()   () =  ( ) and  =  ( 0). Similarly let  (
∗) =

 (0
∗) and  =  (0

∗
0)  Denote a random unit’s contribution to the score of the

propensity score log-likelihood evaluated at ∗ = ∗0 by

∗ =
 −

 (1−)
1

with  () =  ()  for  = 1 2 Finally let  (; ) = E [ ( )|] and

 =  (; 0)  The inverse probability weighted estimate of 0 is given by the solution

to

1



X
=1

 (b )
( ()

0 b∗)
= 0 (3)

with b∗ the CMLE estimate of 
∗
0. Proposition 2.1 summarizes the first order as-

ymptotic properties of b (cf., Wooldridge, 2002, 2007).

Proposition 2.1 (Asymptotic Sampling Distribution of b ) Suppose As-
sumptions 1.1 to 1.5 and additional regularity conditions hold, then (i)

√
 (b − 0)

→
N (0AVar (b )) with

AVar (b ) = I (0)−1 (4)

+ Γ−1E
∙µµ




− 1
¶
 −Π∗

¶µµ



− 1
¶
 −Π∗

¶0¸
Γ−10

for Π = E
£


0∗

¤
E [∗0∗ ]

−1
and (ii) 0

£
AVar (b )− I (0)−1¤  ≥ 0 for any

vector of constants .

Proof. See Appendix A

While the inefficiency of IPW, part (ii) of Proposition 2.1, is well known (e.g.,

Hirano, Imbens and Ridder, 2003), the asymptotic variance expression (4) provides

some insight into its large sample properties. Observe that Π∗ equals the best

(i.e., mean squared error minimizing) linear predictor of
¡


− 1¢  given ∗.

12 If

∗ happens to be a good predictor of
¡


− 1¢  then IPW will be nearly efficient.

12Note that by the conditional mean zero property of the score function and Assumption 1.3

E
∙µ




− 1
¶
0∗

¸
= E

∙



0∗

¸
= E

∙



0∗

¸
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Consider the case where the propensity score takes a logit form so that  () =

exp ()  [1 + exp ()]  Some basic calculations give ∗ =
¡


− 1¢ · ; therefore if

it so happens that  can be written as a linear function of  ·  then the asymptotic
variance of IPW will coincide with that of an efficient estimator. An interpretation of

Hirano, Imbens and Ridder (2003) is that if the dimension of  is allowed to grow with

the sample size, then  will eventually be arbitrarily well-approximated by a linear

function of  ·  so that this coincidence holds generally (i.e., for all data generating
process (DGPs)). Wooldridge (2002, 2007) makes a related point: (4) cannot decrease

if the dimension of  increases.

2.2 Optimal moments for propensity score estimation

Equation (4) suggests that if we make a random unit’s contribution to the estimating

equation for the propensity score proportional to
¡


− 1¢  then we can improve the

asymptotic precision of IPW estimates of 0. One concern with this conjecture is

that changing the estimating equation for ∗0 necessarily involves replacing b∗ in

(3) with something weakly less efficient. However, since the variance bound for 0 is

unaffected by prior restrictions on the propensity score, the increased sampling error

in b∗ associated with using something other than the CMLE, should not affect b’s
sampling properties (at least to first order). Both of these conjectures turn out to be

correct, as we now show.

Our starting point is the observation that the variance bound for 0 in the condi-

tional moment problem

E
∙



0 ()
 ( 0)

¸
= 0 (5)

E
∙



0 ()
− 1
¯̄̄̄


¸
= 0 (6)

coincides with the inverse of the information bound for 0 in the corresponding semi-

parametric missing data problem (Graham, 2009; Theorem 2.1). To clarify our argu-

ment we initially assume that the propensity score is known. In that case we could

base estimation solely on (5). It is well known that the resulting known weights esti-

mator is inefficient (e.g., Rosenbaum, 1987). The method of moments representation

suggests a simple intuition for why this is so: the known weights estimator ignores

the auxiliary conditional moment (6). This restriction implies that 0 ()− 1 will

10



be uncorrelated with any function of . Using unconditional moments of this form

to augment (5) will typically improve the precision with which 0 is estimated. From

Graham (2009) we know that the maximal asymptotic precision with which 0 can be

estimated under (5) and (6) coincides with I (0)−1. Achieving this bound in practice
requires choosing the appropriate set of unconditional moments implied by (6) (out

of the infinite number of valid ones).

To describe the optimal moment set we need some additional notation. Let  be

a  × matrix of constants, ∗ () a column vector with a 1 in the first row and

known functions of  in the remaining rows, and

 () =

Ã
 0

0 ∗ ()

!
 (7)

Conditions (5) and (6) imply, by iterated expectations, that

E [ ()  ( 0 0 ())] = 0 (8)

for

 ( 0 0 ()) =

Ã


0()
 ( 0)


0()

− 1

!


By Chamberlain (1987) the asymptotic variance of any efficient estimator13 based on

(8) alone will be  =
¡
 0

Ω
−1
 

¢−1
with

 = E
∙
 ()

 ( 0 0 ())

0

¸
(9)

Ω = E
£
 ()  ( 0 0 ())  ( 0 0 ())

0
 ()

¤


The following proposition characterizes the variance-minimizing choice of  ().

Proposition 2.2 (Optimal Moments For Missing Data Models) Under con-

ditions (5) and (6) with 0 () known and satisfying Assumption 1.4 (i) the asymp-

13Examples of efficient estimators in this context include two-step GMM and generalized empirical

likelihood (GEL).
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totic variance minimizing choice of  () in (8) is

opt (; 0) =

Ã
 0

0  (; 0)

!
 (10)

and (ii) this variance bound equals I (0)−1 

Proof. Let

 =  0
Ω

−1
  ()  ( 0 0 ())

 =  0
opt

Ω−1optopt (; 0)  ( 0 0 ()) 

Note that E [
0
] =  −1 , and, by iterated expectations, E

£


0


¤
=  −1 . For

part (i) note that

 − E
£


0


¤−1
= E [

0
]
−1 − E £

0


¤−1
= E

£


0


¤−1
×
³
E [

0
]− E

£


0


¤
E
£


0


¤−1
E [

0
]
´
E [

0
]
−1

= E [0]

with  = E
£


0


¤−1 ³
 − E

£


0


¤
E
£


0


¤−1


´
. Since E [0] is positive

definite E
£


0


¤−1
is a lower bound for the asymptotic variance of all estimators

based on the unconditional restriction E [ ()  ( 0 0 ())] = 0 (cf., Newey,

1993). Part (ii) follows from the fact that if  () = opt (; 0), then E
£


0


¤
=

I (0).
Observe that  is the influence function of an efficient estimator based on (8)

with  () = opt (; 0). Since the gradient of  with respect to the propensity

score is mean zero, the above result also holds when the known propensity score is

replaced with a consistent estimate (cf. Newey, 1994b; Proposition 3). This is related

to the fact that knowledge of the propensity score does not alter the efficiency bound

for 0.

Proposition 2.2 suggests several possible approaches to estimation. One approach,

inspired by work on optimal instrumental variables estimation (e.g., Newey, 1993),

would be the following multi-step procedure:

12



Procedure 2.1 (Optimal GMM) (i) compute the conditional maximum likelihood

estimate of the propensity score, ( ()
0 b∗); (ii) compute the (inefficient) IPW

estimate of 0 using the propensity score estimated in step (i); (iii) compute a flexible

parametric estimate of  (; 0) based on a (weighted) least squares fit of  (b )
onto functions of  in the complete-case ( = 1) subsample; (iv) using the step (iii)

fitted values construct the optimal instruments bopt (;b ) ; and (v) compute b by
two-step GMM using bopt (;b ) ³ ( ()0 b∗)

´
as the moment vector.

In Section 3 we show that the above procedure is closely related to the AIPW

estimator first proposed by Robins, Rotnitzky and Zhao (1994).

2.3 A modified reweighting estimator: inverse probability

tilting

One concern with an estimate based on Procedure 2.1 is that while estimation error inbopt (;b ) and ( ()0 b∗) will not affect its asymptotic sampling distribution,

it may be important in finite samples. Our IPT estimator is formulated with this issue

in mind.

Proposition 2.2 shows that the optimal instrument is a function of  (; 0) =

E [ ( 0)|]  Our IPT procedure requires formulating a working model for this
object.

Assumption 2.1 (Moment CEF Model) For some unique matrix Π∗0 and vector

of linear independent functions ∗ () with a constant 1 in the first row, we have

E [ ( 0)|] = Π∗0
∗ () 

The precise content of Assumption 2.1 depends on the form of  ( )  If  ( ) =

1− as in Example 1.1, then it is equivalent to assuming that the conditional mean
of 1 is a linear function of 

∗ (). Example 1.2 provides a more complicated illus-

tration. In that case

E [ ( 0)|] =
Ã

12 −1
0
11 −1E [1|]0 2

E [1|]2 − E [1|] 0
11 − E [1 0

1 |] 2

!
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so that selecting ∗ () requires formulating models for the first and second conditional

moments of 1.
14

When  ( ) is nonlinear in  choosing  () such that Assumption 2.1 holds

is more difficult. In this case one can think of ∗ () as a vector of approximating

functions as in the literature on nonparametric sieve estimation (e.g., Chen, 2007). We

emphasize that any approach to missing data which involves imputation also requires

formulating a model for E [ ( 0)|] (cf., Little and Rubin, 2002; Browning and
Leth-Petersen, 2003).

Under Assumption 2.1 we have the following Corollary.

Corollary 2.1 Under Assumption 2.1, and the conditions of Proposition 2.2, an

efficient estimator based on (8) with

 () =

Ã
 0

0  ()

!

has an asymptotic variance equal to I (0)−1.

Proof. Recall that  =
¡
 0

Ω
−1
 

¢−1
. Since  = (Γ00 0)

0
we have  −1 =

Γ00
©
Ω−1

ª
1:1:

Γ0 where
©
Ω−1

ª
1:1:

is the upper-left-hand  ×  block of Ω.

Evaluating Ω and inverting gives

©
Ω−1

ª
1:1:

= E
∙
E [|]
0 ()

− 1−0 ()
0 ()

Π∗0
∗ () ∗ ()0Π∗00

¸−1
= E

∙
E [|]
0 ()

− 1−0 ()
0 ()

0 () 0 ()
0
¸−1

= E
∙
Σ0 ()

0 ()
+ 0 () 0 ()

0
¸−1

= Λ−10 

with the second equality following from Assumption 2.1, the third from the definition

of conditional variance, and the fourth from the definition of Λ0 given in (2).

14To be explicit assume that E [1|] = 1 ()
0
1 and  (E [1 0

1 |]) = 2 ()
0
2 Let

3 () consist of 1 () and all non-redundant interactions between its elements and those of 1

and 2 then setting ∗ () = (2 ()
0
 3 ()

0
)0 with any redundant entries removed is sufficient

for Assumption 2.1 to hold.
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Corollary 2.1 justifies our approach to estimation. Let  () denote the union

of all distinct elements in ∗ () and  () (recall that  () are the functions of

 entering the propensity score model in Assumption 1.5). Let 1 + equal the

dimension of  (); this vector will include a constant and  known functions of 

Note that  () =
¡
 ()

0
 ∗ ()0

¢0
where ∗ () is the relative complement of  ()

in ∗ (). Letting 0 = (∗00  
0
0)
0
we have under Assumptions 1.1 to 1.5 the following

just-identified unconditional moment problem

E
∙



( ()
0
0)

 ( 0)

¸
= 0 (11)

E
∙µ



( ()
0
0)
− 1
¶
 ()

¸
= 0 (12)

Our proposed estimator chooses b = ³b0  b0´0 to set the sample analog of
(11) and (12) equal to zero:

1



X
=1



( ()
0 b ) (b ) = 0 (13)

1



X
=1

Ã


( ()
0 b ) − 1

!
 () = 0 (14)

Several features of this estimator merit comment. First, if  () is not contained

within ∗ (), then we add moments to the propensity score estimating equation,

replacing ∗ () with  ()  These additional moments do not improve the precision ofb , but they do ensure that (12) contains a sufficient number of moment restrictions
to pin down the propensity score parameter.

Second, in the opposite case where ∗ () is not contained within  (), we enrich

the propensity score model, replacing  ()
0
∗0 with  ()

0
0 in  (·). The effect of

this replacement is to eliminate any overidentifying restrictions. To see this note that

 ()
0
0 =  ()

0
∗0 + ∗ ()0 0

where, by Assumption 1.5, 0 = 0. Nevertheless including ∗ () in the propensity

score model ensures that the combined dimension of (11) and (12) coincides with

dim (0) + dim (0) =  + 1 +  so that 0 = (00 
0
0)
0
is just-identified. This

15



approach to overidentification appeals to be novel.15 Theorem 3.1 below shows that

it results in attractive higher order properties.

Third, our propensity score parameter estimate, b , is not the conditional max-
imum likelihood estimate. Therefore b is an inefficient estimate of 0 = (∗00  00)0.
Although IPT uses an inefficient propensity score estimate, Corollary 2.1 suggests

that b will be locally efficient (Theorem 2.1 shows this formally). We show that

estimating the propensity score in this way also endows IPT with an interesting ro-

bustness property (see Theorem 2.2).

An example helps to fix ideas. Let  ( ) = 1 −  as in Example 1.1 with

 scalar. We assume that Assumption 1.5 holds with  () = (1 )
0
so that the

propensity score is, for example, logit with an index linear in . In choosing ∗ ()

such that Assumption 2.1 holds we are concerned about possible nonlinearities in

E [1| = ], therefore we set ∗ () = (12)
0
 This gives  () =  () and

∗ () = 2 In this case we fit a propensity score model with an index that is

quadratic in  despite the fact that Assumption 1.5 says that a linear one will suffice.

We fit this model not by CMLE but by choosing b to solve (14). Once we have
fitted our propensity score we compute b by choosing it to solve (13).
Now consider the case where the analyst believes that the propensity score might

vary sharply with  so that Assumption 1.5 requires  () = (1 2)
0
, but that

E [1| = ] is linear in  so that Assumption 2.1 requires only ∗ () = (1)0. In

this case  () =  () and ∗ () is empty. Here the added moment serves only to

tie down the propensity score parameter; it does not increase the precision of b .
There is no need to overfit the propensity score in this case.

Table 1 summarizes the main operational differences between IPW and IPT. The

main difference is that we overfit the propensity score if Assumption 2.1 requires us

to do so and (ii) we do not use CMLE to fit the propensity score. In Appendix

C we show that the first step of our procedure requires solving a globally concave

programming problem with unrestricted domain. In theory this is no harder than

computing the CMLE associated with a binary choice logit model and in practice we

have found this step to be straightforward. The second step of our procedure, as with

the standard IPW one, can be completed by any M-estimation program that is able

15It is similar in spirit to the introduction of ‘tilting’ parameters in the context of generalized

empirical likelihood (GEL) estimation of overidentified moment condition models (e.g., Imbens,

1997; Kitamura and Stutzer, 1997; Newey and Smith, 2004). This observation is the source of

inverse probability tilting’s name.
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Table 1: Operational comparison of standard IPW and IPT

IPW IPT

Panel A: Modelling assumptions

Propensity score 0() = (()
0
∗0) with (·) and 0() = (()

0
0) with

model, 0() () as in Ass. 1.5 () the union of all distinct

elements in () (Ass. 1.5)

and ∗() (Ass. 2.1)

Moment CEF, 0() Not modelled 0() = Π∗0
∗();

determined by Ass. 2.1;

choice of ∗() influences
propensity score model

Panel B: Estimation

First stage Conditional maximum likelihood Method-of-Moments;

(i.e., propensity score) see Equation (14).

Second stage Weighted GMM on complete Weighted GMM on complete

case ( = 1) subsample case ( = 1) subsample

Panel C: Inference

Covariance matrix Computed as an application Computed as an application

estimation of two-step GMM of two-step GMM

(see Wooldridge, 2007) (see Equation (44) in Appendix A)

NOTES: For an asymptotic comparison of IPW and IPT see Proposition 2.1 and Theorems

2.1 and 2.2.
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to accept user-specified weights.

The next two theorems characterize the first order asymptotic properties of b .
The first result shows that when Assumptions 1.1 to 1.5, and Assumption 2.1 hold,

the asymptotic variance of b equals I (0)−1. More precisely b is locally efficient
for 0 in the semiparametric model defined by Assumptions 1.1 to 1.5 at the DGP

which also satisfies Assumption 2.1.

Equation (1) is the information bound for 0 without imposing the additional aux-

iliary Assumption 2.1. This assumption imposes restrictions on the joint distribution

of the data not implied by the baseline model. If these restrictions are added to the

prior used to calculate the efficiency bound, then it is generally possible to estimate

0 more precisely. We emphasize that our estimator is not efficient with respect to

this augmented model. Rather it attains the bound defined by (1) if Assumption

2.1 happens to be true in the population being sampled from, but is not part of the

prior restriction used to calculate the bound. Newey (1990, p. 114), Robins, Rot-

nitzky and Zhao (1994, p. 852 - 3) and Tsiatis (2006) discuss the concept of local

efficiency in detail.16 In what follows we will, for brevity, say b is locally efficient
at Assumption 2.1.

Theorem 2.1 (Local Semiparametric Efficiency of b ) Consider the semi-
parametric missing data model defined by Assumptions 1.1 to 1.5 and additional regu-

larity conditions, then for b the solution to (13), (i) b is regular and (ii) locally
efficient at Assumption 2.1 with

√
 (b − 0)

→ N ¡0 I (0)−1¢.
Proof. See Appendix A.

Theorem 2.1 indicates that b has good efficiency properties. By choosing the
estimating equation for the propensity score with the properties of E [ ( 0)|]
in mind, efficiency improvements over the standard IPW estimator are possible.17

16Examples of well-known locally efficient estimators include two-stage least squares, which is

locally efficient under homoscedastic errors and a linear first stage, Robinson’s (1988) estimator for

the partial linear regression model (under homoscedastic errors), and Powell’s (1986) symmetrically

trimmed least squares estimator for the truncated regression model with a conditionally symmetric

disturbance (under homoscedastic normality).
17We comment that the standard IPW estimator is also locally efficient. However this occurs

not at DGPs which satisfies Assumption 2.1, but rather at ones where E [ ( 0)|] is linear in
 () ·  ¡ ()0 ∗0¢  We find this condition a bit awkward from a modelling standpoint, however

it does help to explain why IPW is often nearly efficient in Monte Carlo experiments where the

outcome equation is a direct function of the propensity score (e.g., Busso, DiNardo, and McCrary,

2009). If the data are missing completely at random (MCAR) such that 0 () = Pr ( = 1) = 0
for all  ∈ X , then IPW and IPT will be locally efficient at the same DGPs as long as  () =  () 
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Researchers will often have views about plausible forms for E [ ( 0)|]. As models
for E [ ( 0)|] are central to imputation methods, insight into their formulation
may be garnered from that literature (Little and Rubin, 2002).

Our next Theorem shows that IPW has a double robustness property (cf., Bang

and Robins, 2005; Tsiatis, 2006; Wooldridge, 2007). Restrictions (11) and (12) were

derived under the baseline missing data model defined by Assumptions 1.1 to 1.5.

Consequently regardless of whether Assumption 2.1 also holds b will be consistent
for 0 and asymptotically normal.

18 This is the first part of double robustness.

Now consider a DGP where Assumptions 1.1 to 1.4 and 2.1, but not 1.5 hold. That

is a situation where the propensity score is misspecified but the implicit moment CEF

model is not. In this case b → ∗ where ∗ is the pseudo-true value which solves (12).

This pseudo true value has an interesting property. Rearranging we get

E
∙



( ()
0
∗)

 ()

¸
= E [ ()]  (15)

The inverse probability weighted mean of  () in the  = 1 subpopulation coincides

with its full population mean, E [ ()]. This property holds regardless of whether

the true propensity score is of the form ( ()
0
) for some  = 0

In the sample, rearranging (14), we get

X
=1

b () =
1



X
=1

 ()  b = 1





( ()
0 b )  (16)

so that the inverse probability weighted mean of  () in the = 1 complete case sub-

sample coincides with its full sample mean,
P

=1  ()  By choosing the propen-

sity score parameter to solve (14) we ensure that the estimated inverse probability

weights satisfy an exact balancing property. For example, if  () = (12)
0
with

 scalar, then, after reweighting the complete case sample with b the mean and
variance of  will coincide with their full sample counterparts. Since the first element

of  () is a constant, the b weights will also sum to 1.

Let  ( 1) be the joint distribution of  1, then

b ( 1) =
X

=1
b1 (1 ≤ 1)1 ( ≤ )  (17)

18Its asymptotic variance, however, will lie above I (0)−1, in the matrix sense, unless Assumption
2.1 also holds.
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is the estimate for the joint distribution of  and 1 implied by the IPT estimator

(cf., Back and Brown, 1993; Imbens, 1997). By (16) this distribution function satisfies

the exact balancing conditionZ
 () d b ( 1) =

Z
 () d ()  (18)

where  () is the full sample empirical distribution function of . Since  () is

an efficient estimate of the distribution of , it is reassuring that b ( 1) satisfies

(18). We discuss the properties of b ( 1) further in Section 3.

The exact balancing property of b ( 1) implies that b may be consistent
for 0, even if the maintained propensity score model is incorrect. Let Π0 = (Π

∗
0 0),

under Assumption 2.1 we have Π0E [ ()] = Π∗0
∗ () = E [ ( 0)]  Using this

equality, Assumption 1.3, and exact balancing (15) we get

E
∙
 ( )

( ()
0
∗)

¸
= E

∙
0 () ( )

( ()
0
∗)

¸
= E

∙
0 ()

( ()
0
∗)
{ ( )−Π0 ()}

¸
= E

∙
0 ()

( ()
0
∗)
{E [ ( )|]− E [ ( 0)|]}

¸
= 0 (19)

Therefore  = 0 is a solution to the inverse probability weighted population moment

even if there is no 0 such that ( ()
0
0) = 0 () for all  ∈ X  This is the second

part of double robustness.

If  ( ) is linear in  as in Examples 1.1 and 1.2 above, then  = 0 uniquely

solves (19). In the general nonlinear case ensuring uniqueness of the solution to

(19) may require the imposition of additional conditions, depending on the form of

 ( )  As such conditions are model-specific we do not formulate them here, but

note that doing so if facilitated by the fact that Assumption 1.4 and part (iv) of

Assumption 1.5 ensures that 0 () ( ()
0
∗) is bounded below by some positive

constant.19 Proceeding under the assumption that  = 0 uniquely solves (19) we get

our second result.

19Wooldridge (2001, pp. 458 - 459) develops conditions for consistency of unweighted M-estimators

when the underlying sample is a stratified random one. His argument could be adapted to the current

setting for cases where  [ ( 0)] = 0 corresponds to the first order condition of a population

optimization problem.
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Theorem 2.2 (Double Robustness of b ) Suppose Assumptions 1.1 to 1.4,
either Assumption 1.5 or 2.1,  = 0 uniquely solves (19), and additional regularity

conditions hold, then
√
(b − 0)

→ N (0Ψ0) where the form of Ψ0 depends on

whether Assumption 1.5 or 2.1 holds (see Appendix A).

Proof. See Appendix A.

Our formulation of the IPT estimator was undertaken with efficiency consider-

ations at the forefront. This led to an approach where the propensity score was

parameterized with two concerns in mind. First, the parametric propensity score

family needs to be rich enough to contain the true score. Second, it needs to be rich

enough to balance those functions of  which enter the CEF of  ( 0). Theorem

2.2 shows that the dividend to this approach extends beyond local efficiency. Even if

the propensity score is misspecified, IPT will remain consistent if E [ ( 0)|] is
linear in  ()  More heuristically Theorem 2.2 suggests that IPT will perform well

for moderately rich forms of  () when either the propensity score or the condi-

tional expectation of  ( 0) are smooth in . Researchers should choose  () to

be rich enough so that it accurately approximates whichever function, either 0 ()

or 0 () = E [ ( 0)| = ], is believed to be the least smooth.

We emphasize that consistency of the standard IPW estimate requires Assumption

1.5 to hold, while that of the parametric imputation estimate requires Assumption 2.1

to hold, in contrast, the IPT estimate is consistent if either one (or both) hold. Put

differently while IPW and imputation respectively perform best when the propensity

score and E [ ( 0)|] are smooth in , IPT will work well if either of the two

objects are smooth. This is the practical content of ‘double robustness’.

3 Other alternatives to IPW

Theorems 2.1 and 2.2 provide one argument for routine use of IPT: it is (i) more

robust than either standard IPW or parametric imputation and (ii) locally efficient

at Assumption 2.1. Computationally it is no harder than standard IPW (see Ap-

pendix C). Finally the exact balancing property is likely to be attractive to applied

researchers. It is consistent with the intuition that reweighting makes the complete

case subsample more like the full sample. Tables which assess balance after IPW are

commonly featured in applied work (e.g., Hirano and Imbens, 2001; see also Appendix

F in the Supplemental Web Appendix).
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AIPW Estimator  ()  ()
Locally

Efficient?

Doubly

Robust?

Robins, Rotnitzky, and Zhao (1994) ()


()
Yes Yes

Newey (1994a) 1 1 Yes No

Cao, Tsiatis and Davidian (2009)
1−()

()


()
Yes Yes

Hirano and Imbens (2001) / Wooldridge (2007) 1 

()
Yes Yes

Table 2: Weight functions for different AIPW estimators

While the argument privileging IPT over IPW appears to be straightforward,

other alternatives to IPW exist. One such alternative is the class of augmented

inverse probability weighting (AIPW) estimators introduced by Robins, Rotnitzky,

and Zhao (1994). Like IPT, AIPW is locally efficient at Assumption 2.1. It is also

doubly robust; consistency requires either 1.5 or 2.1 to hold. In this section we present

two theoretical arguments for privileging our IPT method over AIPW ones. First we

show that the implicit estimate of the joint distribution of  and 1 associated with

IPT is attractive relative to the ones associated with AIPW. Second we compare the

higher order bias of the two types of estimators.

3.1 A class of iterated AIPW estimators

Several versions of AIPW are now available. Here we describe a general set-up which

captures many of them. Let  () =  ( ) and  () =  (  ) be known,

scalar-valued, nonnegative weight functions. We require that  ( ) is such that

E [ ( )|] = 1. Our family of AIPW estimators will be indexed by these two

weight functions. Let b() be an AIPW estimate in the family, which is defined as

the solution to

1



X

=1

(


(b)

¡
b()¢− b() ¡;b()¢

(b)

³
 −(b)

´)
= 0 (20)

with b the CMLE of the propensity score parameter. That is the solution to

1



X
=1

 − bb(1− b)
b1 = 0
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and

b() (; ) = " 1


X
=1

b

b () 
0


#
×
"
1



X
=1

bb0
#−1

 () 

with b = (b), b = (b) and b = (b) Note that b() (; ) is the fitted
value associated with a weighted least squares fit of  () onto 

Setting  () = () and  () = () we get the original AIPW estimator

of Robins, Rotnitzky and Zhao (1994);  () = 1 and  () = 1 yields Newey’s (1994,

Section 5.3) estimator, while  () = () and  () = (1−()) () gives

the estimator suggested by Cao, Tsiatis and Davidian (2009) (see Table 2).20

Hirano and Imbens (2001) and Wooldridge (2007) propose a doubly robust esti-

mator for the average treatment effect under exogenous treatment assignment.21 It

turns out that setting  () = () and  () = 1 gives their estimator. In the

general moment model case their approach chooses b to solve

1



X

=1
b (;b ) = 0 (21)

where b (; ) is the weighted least squares fit

b (; ) =

"
1



X
=1

b

 () 
0


#
×
"
1



X
=1

b


0


#−1
 ()  (22)

The following Proposition shows that (21) is also a member of our class of AIPW

estimators.

Proposition 3.1 The solution to (21) is numerically identical to b() with  () =
() and  () = 1.

Proof. Since the first element of  is a constant we have, by the first order condition

associated with (22),

1



X

=1

b

{ (b)− b (; )} = 0 (23)

20Many of the estimators listed in Table 2 were originally proposed in the context of a specific

form for  ( ). We adapt to the general case as necessary. Newey (1994a) derives the large

sample properties of his estimator where the dimension of  () grows with  . Here we consider his

estimator with the dimension of  () held fixed.
21Wooldridge’s (2007) estimator is actually slightly more general than the one described here in

that b (; ) need not correspond to a least squares fit.
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Adding the left-hand side of (23) to (21) and re-arranging gives the result.

Finally note that Procedure 2.1, described in the previous section, is closely related

to (20). Indeed they coincide if steps (iii) to (v) of Procedure 2.1 are iterated over

until convergence. The different AIPW estimators listed in Table 2 are then recovered

by using the appropriate weights when estimating  (; 0) in step (iii).

3.2 Implicit distribution function estimates

A useful way to understand the properties of first order equivalent estimators is in

terms of their implicit distribution function estimates (e.g., Back and Brown, 1993;

Imbens, 1997; Newey and Smith, 2004). After some simple algebra we can show that

the solution to (20) coincides with that toX

=1
b()(b()) = 0

where b() = 1



b

b()  = 1      (24)

with

b() =
⎧⎨⎩1−

"
1



X
=1

µ
b

− 1
¶


#0
×
"
1



X
=1

bb0
#−1

× b
⎫⎬⎭   = 1     

(25)

This implies that the estimate of the joint distribution associated with b() is
b() ( 1) =X

=1
b()1 (1 ≤ 1)1 ( ≤ )  (26)

(see Back and Brown, 1993, Proposition 1).

This distribution function has several interesting properties. First if  = (),

which is true for all the estimators listed in Table 2 except Newey’s (1994a), thenZ
 () d b() ( 1) = Z  () d () 

The re-weighted mean  () in the complete case ( = 1) subsample coincides with

its unweighted full sample mean. Since the unweighted full sample mean of  () is

an efficient estimate of its population analog, then so is the re-weighted complete case
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sample mean. In this sense the b() ( 1) inherits some of the efficiency properties of
 (). Since the first element of  () is 1 the AIPW distribution function estimate

also integrates to 1 (i.e.,
R
d b() ( 1) = 1).

As noted in the previous section the IPT distribution function estimate (17) also

exactly balances the mean of  () and integrates to one. However, it differs fromb() ( 1) in that it is guaranteed to be non-decreasing, whereas b() ( 1) may
be decreasing in  and/or 1 over some ranges. Put differently some of the b()
weights may be negative, while the b weights are positive by construction.
To gain further insight into this problem consider the distribution function esti-

mator associated with standard IPW (e.g., Imbens, 2004):

b ( 1) =
X

=1
b1 (1 ≤ 1)1 ( ≤ )  b =

1



b

 (27)

Now consider a random sample where

1



X
=1

µ
b

− 1
¶
 ()  0⇔

X
=1

b () 
1



X
=1

 ()  (28)

In this case the IPW estimate of the mean of  () exceeds its unweighted full sample

counterpart. The fact that the latter mean is efficient, implies that former is not. The

AIPW distribution function estimator corrects this inefficiency by adjusting the IPW

weights as follows b() = b × b()
with b() as defined in (25). Under (28) large realizations of  () are ‘too frequent’

in the complete case subsample (even after reweighting by the inverse of the estimated

propensity score). In such a situation b() will be less than one for = 1 units with

large values of  () and greater than one for units with small values. In extreme cases

the resulting b() may be negative or exceed one. Condition (28) is especially likely
to occur when the propensity score model is misspecified. In that case b corresponds

to a quasi-MLE propensity score estimate and hence 1


P

=1

³
 b − 1

´
 () may

differ from zero even in large samples.

In practice the IPW and AIPW distribution functions can generate nonsensical

estimates. Let  ( ) = 1− Neither b and b() are guaranteed to lie within
the convex hull of the data. If 1 ∈ {0 1}, for example, this means it is possible
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for b and b() to exceed one. In contrast b will lie in the convex hull of
the data by construction. In our view an estimator which sets a weighted mean of

 ( ) equal to zero, where these weights need not lie on the unit interval is a priori

unattractive (cf., Robins, Sued, Lei-Gomez and Rotnitzky 2007).

3.3 Higher order bias

Another way IPT and AIPW can be compared is in terms of their higher order bias.

In this section we present higher order bias expressions for both IPT and AIPW when

Assumptions 1.1 to 1.5 and Assumption 2.1 hold. Bias comparisons are interesting

in this case because IPT and AIPW are first order equivalent. Theorem 3.1, which is

based on an application of Lemma A.4 of Newey and Smith (2004), gives the result.

Theorem 3.1 (Higher Order Bias) Suppose Assumptions 1.1 to 1.5, Assumption

2.1, and additional regularity conditions hold, then

Bias(b()) =  +  ( ) (29)

Bias(b ) =  (30)

where

 = − 1

2

X
=1

Γ−1E
∙

2

0

¸
I (0)−1 

+
1


Γ−1E

∙


0
Γ−1

1


{ −Π0}

¸
+
1


Γ−1E

∙


0
Γ−1Π0

¸
 ( ) = −Γ

−1


E
∙


2
Σ ()Λ−1Π

¸
+
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E
∙½





µ
2 − 1



¶
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¾
Π0

0Π00Λ
−1Π

¸
+

Γ−1


Π0E

∙


µ



− 

¶µ



− 1
¶
0−10 

¸


with  denoting a  × 1 vector with a 1 in the  row and zeros elsewhere.

Proof. See Appendix B.
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These bias expressions have intuitive interpretations. The first bias component ofb() corresponds to the bias of the (infeasible) solution to
1



X

=1
opt (; 0)  (b  0 ()) = 0

with opt (; 0) and  (  0 ()) as defined in Section 2. This estimator is infea-

sible because it uses the true optimal combination of moments, opt (; 0), and the

true propensity score, 0 (). Theorem 3.1 shows that the higher order bias of b
and this infeasible oracle estimator coincide. The coincidence is a consequence of the

just identified nature of b .
The additional term in (29) is due to sampling error inopt(; b()) and( ()0 b).

Intuitively, the additional higher order bias in b() arises from AIPW’s separation

of the tasks of (i) propensity score estimation and (ii) imposition of the optimal set

of moments implied by (6). The first task generates no gains in terms of asymptotic

precision, while at the same time introducing sampling error into the vector of es-

timating equations for b() The second task results in an overidentified system of

moment equations. The finite sample properties of b() may degrade as a result. It
is straightforward to constructed stylized examples where the bias of b() increases
with  , the dimension of  (), while that of b does not. This will be especially
true if the distribution of  () is skewed and/or that of  ( 0) is heteroscedastic.

The contrast between the higher order bias of b and b() in some ways par-
allels that between empirical likelihood (EL) and two-step GMM for general mo-

ment condition models (Newey and Smith, 2004). The empirical likelihood estimator

transforms an overidentified moment conditional problem into a just-identified one

by introducing a vector of tilting parameters (cf., Imbens, 1997). Our approach to

overidentification, in contrast, involves overparameterizing the propensity score. The

idea of overfitting a nuisance function to eliminate overidentification appears to be

novel.

IPT, which heavily exploits the special structure of the missing data problem,

has important computational advantages relative to a standard application of EL to

the vector of moment equations suggested by the Corollary to Proposition 2.2. Let

 = dim ( ()) and ∗ = dim (
∗ ()). Such an approach would apply EL to the
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 + ∗ +  system of moments

E

⎡⎢⎢⎢⎢⎣


(()0∗0)
 ( 0)³



(()0∗0)
− 1
´
∗ ()µ

−(()0∗0)
(()0∗0)[1−(()0∗0)]

¶
1( ()

0
∗0) ()

⎤⎥⎥⎥⎥⎦ = 0

Computation of b would involve solving a saddle point problem with 2 ( + ) +

∗ parameters (Newey and Smith, 2004; Section 2). In contrast computing b
requires solving a 1 + ≤ ∗ +  dimensional globally concave problem and a

just-identified moment condition problem with  parameters. Relative to EL, our

approach substantially reduces the parameter space and sidesteps the need to solve

a saddle point problem.

4 Basic skills and the Black-White wage gap

In an important pair of papers Neal and Johnson (1996) and Johnson and Neal (1998)

document that a substantial portion of the Black-White gap in hourly earnings can

be accounted for by differences in basic skills across the two groups acquired prior

to labor market entry (i.e., by age 18). In particular they find that three fifths of

the raw 28 percent Black-White gap in average hourly earnings can be accounted

for by differences in Armed Forces Qualification Test (AFQT) scores, a measure of

basic skills used by the military. Their finding suggests that pre-market differences

in basic skills across racial groups may be relatively more important drivers of racial

inequality than overt labor market discrimination.

A corollary to their finding is that further reductions in Black-White inequality

will likely require interventions which facilitate skill acquisition among young Black

men. A related question is when do those skill differences important for labor market

outcomes first arise. A large literature documents that, in terms of standardized

test scores, Blacks enter school behind their White counterparts and that this gap

grows over time (e.g., Fryer and Levitt, 2006, forthcoming). The connection between

the timing and magnitude of these gaps and labor market outcomes is not well-

understood.

Here we repeat Johnson and Neal ’s (1998) analysis after replacing AFQT scores
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with measures of cognitive skills acquired prior to adolescence. The idea is to mea-

sure how much of Black-White differences in hourly earnings can be accounted for by

differences in skills across the two groups manifest prior to adolescence. If a substan-

tial portion of the wage gap can be so accounted for, then educational interventions

which aim to ameliorate racial inequality might be more appropriately targeted to-

ward younger children (cf., Carneiro and Heckman, 2004).

We reconstruct the National Longitudinal Survey of Youth 1979 (NLSY79) extract

analyzed by Johnson and Neal (1998). This sample is a stratified random sample of

young men from the United States born between 1962 and 1964. Measurements of

average hourly wages over the 1990 to 1993 period, race, as well as AFQT scores

are available for each individual. The NLSY79 also collected data from respondents’

school records. In some cases these records included (nationally normed) percentile

scores on IQ tests taken at various ages. We use those scores corresponding to tests

taken between the ages of 7 and 12 as measures of cognitive skills acquired prior to

adolescence.22 Unfortunately these scores are missing for almost 90 percent of individ-

uals. An unweighted analysis based on those individuals with complete information

would be problematic for two reasons: (i) there are few complete cases making precise

inference difficult and (ii) the complete cases are not representative of the full sample

in terms of always-observed characteristics. Our IPT estimator is designed to address

both of these problems.

Dataset description and replication of Johnson and Neal (1998) Our initial

goal was to reconstruct the NLSY79 extract used by Johnson and Neal (1998). A

preliminary inspection of the data, however, revealed that a preadolescence test score

was available for only a handful of Hispanic respondents. We therefore decided to

exclude Hispanics from our analysis. We targeted all non-Hispanic male respondents

in the cross-sectional sample, as well as in the supplemental Black sample, born during

or after 1962 ( = 1 612). These individuals were aged 16 to 18 when they took

the NLSY79’s administration of the Armed Services Vocational Aptitude Battery

(ASVAB) from which the AFQT score is constructed.

Of the 1 612 targeted individuals 159 were missing 1990 to 1993 average hourly

22If a respondent’s record includes multiple test scores from the age 7 to 12 period, we use the

average percentile score across all available tests. A STATA dictionary file of the NLSY79 extract

used in our analysis as well as a do file which replicates the data manipulations described here is

available online at https://files.nyu.edu/bsg1/public/.

29



wage data, 58 a valid AFQT score, and 24 both these items.23 Our base sample

therefore consists of the 1 371 individuals with valid wage and AFQT data. As in

Johnson and Neal (1998) we condition on this non-response in what follows (cf.,

Johnson, Kitamura and Neal, 2000).

AFQT scores are reported in terms of normed percentiles (i.e., relative to popula-

tion of American youths aged 18 to 23).24 We transformed these scores onto the real

line using the inverse normal CDF. The residual associated with the least squares fit

of the transformed scores onto a vector of birth year dummies is our AFQT mea-

sure.25 The average hourly wage for Whites in the base sample is $12.32 in 1993

prices. Blacks earn on average $2.87 less per hour. The mean AFQT score for Whites

is 0.160, while that for Blacks is 1.031 standard deviations lower.

Columns 1 and 2 of Table 3 replicate Columns 1 and 2 of Table 14-1 in John-

son and Neal (1998, p. 483) (with the exception that we exclude Hispanics from

our analysis).26 The first column reports the least squares fit of LogWage onto a

constant, YearOfBirth, and Black. The estimated wage gap between Blacks and

Whites of the same age is 28 percent.

Column 2 adds AQFT to the set of explanatory variables. The wage gap between

Blacks and Whites of the same age with the same pre-market AFQT score is only 11

percent. Seventeen percentage points of the unconditional Black-White hourly wage

gap can be accounted for by average differences in pre-market AFQT scores across

the two groups. That a substantial portion of racial differences in hourly wages can

be accounted for by differences in skills acquired prior to entry into the labor market

is Neal and Johnson’s (1996) central result.

Racial wage gaps and preadolescent skill differences For 11 percent of the

respondents ( = 144) in our base sample an IQ test score from between the ages of

23Hourly wages are equal to their average over the 1990 to 1993 survey waves. In cases where

an individual was not employed or interviewed in a given year, the average is over those years with

wage information. Reported wage values less that $1 and greater than $75 per hour are discarded.

Wages are measured in 1993 dollars. As in Johnson and Neal (1998) we exclude any AFQT score

where the testing protocol was non-standard.
24We used the 1989 scoring of the AFQT.
25Neal and Johnson (1996) appear to have used the residual associated with the least squares

fit of AFQT percentiles onto a set of birth year dummies (see their Figure 2, p. 886). Even after

standardizing this variable to have mean zero and unit variance its distribution is non-normal. Our

approach results in an AFQT score distribution that is indistinguishable from a normal one.
26See also Columns 1 and 3 of Table 1 in Neal and Johnson (1996, p. 875).
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Table 3: Replication of Table 14-1 of Johnson and Neal (1998) and unweighted com-

plete case analysis with pre-adolescent test score

(1)



(2)



(3)

 −

(4)

 −

YearOfBirth
−00458
(00151)

∗∗
−00466
(00147)

∗∗
−00947
(00464)

∗
−00940
(00470)

∗

Black
−02776
(00261)

∗∗
−01079
(00284)

∗∗
−02708
(00833)

∗∗
−01606
(00900)

+

AFQT − 01645

(00146)
∗∗ − −

EarlyTest − − − 01011

(00539)
+

2 0062 0183 0068 0120

 1 371 1 371 144 144

NOTES: Estimation samples are as described in the main text. The 1979 baseline sampling
weights are used in place of the empirical measure when computing all estimates. A ‘∗∗’,
‘∗’ and ‘+’ denotes that a point estimate is significantly different from zero at the 1, 5

and 10 percent levels. Standard errors (in parentheses) allow for arbitrary patterns of

heteroscedasticity and dependence across units residing in the same household at baseline.

7 and 12 is available. This score is recorded as a (nationally normed) percentile. As

with the AFQT scores we transformed these scores onto the real line using the inverse

normal CDF. The residual associated with the least squares fit of these transformed

scores onto a vector of birth year and age when tested (in years) dummies is our

EarlyTest measure. We view this score as measure of acquired cognitive skills not

of innate ability (cf., Fryer and Levitt, forthcoming).

Columns 3 and 4 of Table 3 replicate the basic Johnson and Neal (1998) analysis

after replacing AFQT with the earlier test score. This is an unweighted analysis

based on the 144 complete cases. Conditioning on age alone, racial wage gaps in

the complete case subsample are very similar to those computed using the full sample

(Column 3). The wage gap conditional on the pre-adolescent test score is substantially

lower (Column 4). Unfortunately these wage gap estimates are very imprecise; their

standard errors are almost four times those of their Columns 1 and 2 counterparts.

A second problem with this analysis is that those individuals with early test scores

differ systematically from those without them. This is shown in Table 4. Columns

1, 2 and 3 respectively report average values across the full sample, the complete
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Table 4: Comparison of the full sample with the complete case subsample

(1)

Full Sample

(2)

 = 1

(3)

 = 0

(4)

Difference

LogWage 6984 6999 6982
00167

(00433)

YearOfBirth 6299 6291 6299
−00842
(00824)

Black 0155 0111 0160
−00490
(00218)

∗

AFQT 0000 0196 −0025 02205

(00953)
∗

 1 371 144 1 227

Notes: Samples are as described in the main text. The 1979 baseline sampling weights are
used when computing all summary statistics. A ‘∗∗’, ‘∗’ and ‘+’ denotes that the Column
4 difference is significantly different from zero at the 1, 5 and 10 percent levels. Standard

errors (in parentheses) allow for arbitrary patterns of heteroscedasticity and dependence

across units residing in the same household at baseline.

case subsample ( = 1), and the subsample with missing early test scores ( = 0).

Column 4 gives the Column 2 versus Column 3 difference. While the full and complete

case samples are similar in terms of wages and age, they are rather different in terms

of racial composition and AFQT.

To address bias due to non-randomness in the missingness process as well as to

improve precision we re-estimated the Table 3, Column 4 model using our IPT pro-

cedure. To appropriately use IPT we require that EarlyTest is missing at random

(Assumption 1.3). That is, conditional on YearOfBirth, Black, LogWage and

AFQT, we require that the probability of observing EarlyTest is independent of

its value. Since LogWage and AFQT are good measures of long run productivity

and skills, characteristics which might inform the decision to be tested at a young

age, this requirement is not unreasonable.

The the joint support of YearOfBirth andBlack contains 3×2 = 6 points. We
included in  () five non-redundant dummy variables for YearOfBirth-by-Black

cell (whites born in 1962 are the excluded group). This resulted in full distributional

balance for the discretely-valued components of  We also balanced the means,

variance and covariance of AFQT and LogWage conditional on race alone, and age
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alone, but not their interaction.27 That is  () also included AFQT, LogWage,

AFQT2, LogWage2 and AFQT×LogWage as well as the interactions of these
variables with Black and the two year of birth dummies (1962 being the excluded

cohort). This led to a specification of  () with 26 elements.

Our choice of  () was informed by two considerations. First, we wanted  () to

be rich enough to allow for rich forms for the propensity score (see Assumption 1.5)

as well as for the conditional mean and variance of EarlyTest (see Assumption 2.1

and Example 1.2). Second, we wanted to reweight the 144 complete cases such that

an analyst with access to these data alone would numerically exactly reproduce the

results of Johnson and Neal (1998) (i.e., the point estimates in Columns 1 and 2 of

Table 3). Our choice of  () ensures that all those moments used to compute the

full sample least squares fit are exactly balanced. Heuristically our hope is that if

the point estimates associated with the Johnson and Neal (1998) specification when

computed using the reweighted complete cases coincide with those computed using the

unweighted full sample, that the reweighted complete case analysis with EarlyTest

replacingAFQTwill approximate the ideal, but infeasible, unweighted analysis based

on full sample.

Column 2 of Table 5 reports IPT estimates of the best linear predictor of Log-

Wage given, YearOfBirth, Black, and EarlyTest. For comparison the un-

weighted complete case estimates are reproduced in Column 1 of the table, while the

standard inverse probability weighted (IPW) estimates are given in Column 3. Table

7 in Appendix F reports the underlying IPT and CMLE estimates of the propensity

score parameter.

Relative to the unweighted complete case one, the IPT estimate of the Black-

White wage gap, conditional on skills acquired prior to adolescence (EarlyTest),

is larger in absolute value with a standard error almost two thirds smaller. Recall

that the wage gap conditional on age alone was 28 percent (Table 3, Column 1).

Conditioning on skills acquired prior to adolescence this gap falls to 18 percent. This

is larger than the 11 percent gap present after conditioning on the later AFQT score,

but substantially smaller than the unconditional gap. Put differently roughly 40

percent of the raw Black-White wage gap can be explained by differences in average

skill levels across the two groups manifest prior to adolescence. This represents about

27Given the near normal distribution of AFQT and LogWage in our sample focusing on the first
two moments of these variables seemed appropriate.
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two-thirds of the pre-market effect found by Neal and Johnson (1996).

Column 3 of Table 5 reports IPW estimates of the same model. The IPW estimate

of the Black-White wage gap is imprecisely determined with a standard error over

twice as large as the IPT one. This provides a concrete example of the efficiency gains

IPT can provide relative to IPW (see Proposition 2.1 and Theorem 2.1). Columns

4 through 7 report estimates based on the four implementations of AIPW described

in Section 3. The AIPW point estimates, with the exception of Newey’s (1994a), are

very similar to their IPT counterpart, albeit with slightly larger standard errors.

In this particular example the implicit AIPW distribution function estimates are

reasonably similar to the IPT one; AIPW does not give inordinate weight to any

particular respondent and negative weight is attached to only a handful of units. The

exception is Newey’s (1994a) variant of AIPW. Theorem 3.1 suggests this variant of

AIPW is more biased than the others, consistent with the empirical results.

Table 6 provides a synopsis of our main results. Conditioning on age alone the

Black-White gap in wages is 28 percent (Column 1). Conditioning on AFQT, a mea-

sure of cognitive skills acquired by age 18, this gap falls to 11 percent. Conditioning

on our early test measure, a measure of cognitive skills acquired by age 12, the gap is

18 percent. We interpret this result as implying that approximately two thirds of the

pre-market effect found by Neal and Johnson (1996) reflects skill differences already

present by age 12. This interpretation is justified by two additional pieces of evidence.

First, when we include both AFQT and EarlyTest simultaneously in our model

we find that the coefficient on the latter is insignificantly different from zero, while

that on the former is insignificantly different from the estimate which conditions on

AFQT alone (Column 4 of Table 6). This suggests that AFQT and EarlyTest

measure similar types of skills, with the later measure being relevant for labor market

outcomes. A similar interpretation is suggested by Table 9 in Appendix F of the

Supplemental Web Appendix which shows that roughly two thirds of the AFQT gap

across Blacks and Whites can be accounted for by skill differences present by age 12

(i.e., our EarlyTest variable).
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Table 5: IPT, IPW and AIPW estimates of the Black-White wage gap conditional on preadolescent skills

(1)

 −

(2)



(3)



(4)



(5)



(6)



(7)



YearOfBirth
−00940
(00470)

∗
−00537
(00162)

∗∗
−00968
(00302)

∗∗
−00533
(00165)

∗∗
−00353
(00528)

−00535
(00166)

∗∗
−00543
(00167)

∗∗

Black
−01606
(00900)

+
−01837
(00356)

∗∗
−02126
(00791)

∗
−01836
(00418)

∗∗
−00797
(01518)

−01871
(00392)

∗∗
−01837
(00390)

∗∗

EarlyTest
01011

(00539)
+

01112

(00296)
∗∗

01220

(00362)
∗∗

01049

(00358)
∗∗

00956

(00360)

01072

(00346)
∗∗

01144

(00344)
∗∗

Notes: Samples are as described in the main text. The 1979 baseline sampling weights are used when computing all estimates.
A ‘∗∗’, ‘∗’ and ‘+’ denotes that a coefficient is significantly different from zero at the 1, 5 and 10 percent levels. Standard errors

(in parentheses) allow for arbitrary patterns of heteroscedasticity and dependence across units residing in the same household at

baseline.
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Table 6: Pre-adolescent skills and adult wages: a synopsis

(1)



(2)



(3)



(4)



YearOfBirth
−00458
(00151)

∗∗
−00466
(00147)

∗∗
−00537
(00162)

∗∗
−00443
(00147)

∗∗

Black
−02776
(00261)

∗∗
−01079
(00284)

∗∗
−01837
(00356)

∗∗
−01132
(00293)

∗∗

AFQT − 01645

(00146)
∗∗ − 01866

(00284)
∗∗

EarlyTest − − 01112

(00296)
∗∗

−00332
(00374)

Notes: Samples are as described in the main text. The 1979 baseline sampling weights
are used when computing all estimates. A ‘∗∗’, ‘∗’ and ‘+’ denotes that a coefficient is
significantly different from zero at the 1, 5 and 10 percent levels. Standard errors (in

parentheses) allow for arbitrary patterns of heteroscedasticity and dependence across units

residing in the same household at baseline.

5 Extensions

Thus far we have focused on problems where  is completely observed if  = 1.

Now consider the case where  = ( 0  0
0  

0
1)
0
with   and  = (1−)0+1

observed. That is we observe 0 if  = 0 and 1 if  = 1. Let the moment function

take the separable form

 ( ) = 1 (1  )− 0 (0  ) 

Many problems fall into this basic set-up.

Example 5.1 (Average treatment effects (ATEs)) Let  = 1 and  = 0

respectively denote assignment to an active and control program or intervention and

1 and 0 the corresponding potential outcomes. The Average Treatment Effect (ATE)

is

0 = E [1 − 0] 

which corresponds to setting 1 (1  ) = 1 and 0 (0  ) = 0+. Since each

unit can only be exposed to one intervention, either 1 or 0 is missing for all units.

Example 5.2 (Two sample instrumental variables (TSIV) estimation with
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compatible samples) Assume that dim () ≥ dim (0) and consider the following
instrumental variables model

1 =  0
00 +  E [] = 0

This suggests a moment function with 1 (1 ) = 1 and 0 (0  ) =  0
0

Two independent random samples of size 1 and 0 from the same population are

available. In the first sample 1 values of 1 and  are recorded, while in the sec-

ond 0 values of 0 and  are recorded. For asymptotic analysis we assume that

lim
10→∞

1(1 + 0) = 0  0. This is the two-sample instrumental variables

(TSIV) model analyzed by Angrist and Krueger (1992). Ridder and Moffitt (2007)

provide a technical and historical overview (cf., Arellano and Meghir, 1992). This

model is equivalent to a special case of the semiparametric missing data model, an

observation that is apparently new. Assume  units are randomly drawn from some

target population. With probability 0 the 
 unit’s values for 1 and  are recorded,

while with probably 1 − 0 its values of 0 and  are recorded. The indicator vari-

able  denotes which set of variables are measured. The only difference between this

sampling scheme and that of Angrist and Krueger (1992) is that in the latter 1 and

0 are fixed by the researcher, whilst in the missing data formulation they are ran-

dom variables. An adaptation of the argument given by Imbens and Lancaster (1996,

Sections 2.1-2.2) shows that this difference does not affect inference.

To apply IPT to these problems we find the b0 , b1 and b which solves
1



X
=1

(
1 (1b )
( ()

0 b1 ) − (1−)0 (0 b )
1−( ()

0 b0 )
)
= 0

1



X
=1

Ã
1−

1−( ()
0 b0 ) − 1

!
 () = 0

1



X
=1

Ã


( ()
0 b1 ) − 1

!
 () = 0

Note that this involves computing two propensity score parameter estimates. One

which balances the mean of  () in the  = 1 subsample (b1 ) with its full sample
mean and one which balances the mean of  () in the  = 0 subsample with its

full sample mean (b0 ). Each of these propensity score estimates may be computed
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using the algorithm described in Appendix C. The second step of estimation involves

solving a just-identified moment condition problem.

It is straightforward to extend the arguments given above to show that the above

estimator is locally efficient and doubly robust.28 As before  () should be rich

enough to adequately model the propensity score. Local efficiency requires that

E [0 (0  )|] and E [1 (1  )|] be linear in  () (this is also the con-

dition for double robustness). As in the examples outlined above the form of  ()

is often suggested by the structure of the problem. Consider efficient estimation of

the ATE by IPT. This requires choosing  () such that the true propensity score is

contained in the parametric family 
¡
 ()

0

¢
and the true potential outcome CEFs

are linear in  ()  Consistency requires only one of these two restrictions to be true.

28These results are contained in our NBER Working Paper (Egel, Graham and Pinto, 2008).
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Appendix

This appendix outlines the proofs of the results given in the main text. Throughout the Appendix we assume

that  () = ∗ () =  () so that Π0 =

Π∗0 0


and 0 =


∗0  0


 This is done only to simplify the notation

and is without loss of generality. Appendix A outlines the proofs of the first order asymptotic properties of IPW

and IPT stated in Section 2. Appendix B outlines our higher order bias derivations. Computation of the IPT

propensity score estimate is detailed in Section C. All notation is as stated in the main text unless stated otherwise.

A supplemental web appendix, available at https://files.nyu.edu/bsg1/public/, contains details of some of the

more tedious calculations as well as additional tables related to the empirical application. Throughout we drop ‘0’

subscripts, used to denote (true) population values, when doing so causes no confusion

A Derivation of the first order asymptotic properties of IPW, IPT and

AIPW

This appendix details the derivation of the (first order) asymptotic properties of the inverse probability weighting

(IPW) estimator of Wooldridge (2007), the inverse probability tilting (IPT) estimator introduced here, as well as

those of a class of three-step augmented inverse probability weighting (AIPW) estimators.

A.1 The asymptotic variance of IPW (Proposition 2.1)

Wooldridge (2002, 2007) proves consistency and asymptotic normality of IPW M-estimators. Here we detail the deriva-

tion of the alternative variance expression given in Proposition 2.1, which clarifies that IPW is generally inefficient.

Let  = (0 0)0 and define the moment vector and derivative matrix

 () =




()
 ()

−()
()(1−())1 () 


  () =




()

()

0 − 
()

1()

()
 () 

0


0 − ()


 (31)

where  () is the 
 unit’s contribution to the Hessian of the log-likelihood for the propensity score parameter 

The solution to


=1


  = 0 corresponds to the IPW estimate. The covariance of  is given by

Ω =

 E

0



E

1

0


E

1

0


I ()

  (32)

while the population mean of  equals

 =


Γ −E


1

0


0 −I (0)


 (33)

with I (0) the Fisher information for 0
Standard results on GMM imply that

√

 − 0


has a limiting sampling variance of

−1Ω−10 =


Γ−1E


0



Γ−10 − Γ−1E


1

0

I (0)−1 E


1

0

Γ−10 0

0 I (0)−1


 (34)

An insightful rearrangement of the upper-left-hand block of (34) is (see the Supplemental Web Appendix)

I (0)−1 + Γ−1E





− 1

 −Π





− 1

 −Π

0
Γ−10 (35)

with Π as defined in the statement of Proposition 2.1. Part (ii) of the result follows by inspection.
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A.2 Local efficiency and double robustness of b (Theorems 2.2 and 2.1)
Consistency and double robustness We first consider the case where Assumptions 1.1 to 1.5 hold. In this case the

consistency argument parallels that for the standard IPW estimator given in Wooldridge (2002, 2007). Assumptions

1.1 and 1.4 give

E
 | ( )|

0 ()


≤ −1E [| ( )|] ∞

Since −1 | ( )| dominates  ( ) 0 () we may apply the law of iterated expectations and the missing at

random restriction (Assumption 1.3) to get

E

 ( )

0 ()


= E [ ( )] 

By Assumption 1.1 E [ ( )] is uniquely mean zero at  = 0 Consistency follows from Theorem 2.6 of Newey and

McFadden (1994).

Replacing 0 () with the IPT estimate  causes no real difficulties. We have  → 0 which gives the sample

average of  ( ) ( ()0 ) converging uniformly in  ∈ G to E [ ( ) 0 ()] 

Next we consider the case where Assumptions 1.1 to 1.4 and 2.1 hold, but not 1.5 (we do assume that the

 (·) function satisfies the stated regularity conditions; in particular that ( ()0 )  0 for all  ∈ X and  ∈ D).
In this case the propensity score is misspecified such that  → ∗ where ∗ is some pseudo-true value which solves
E

( ()0 ∗)− 1


 ()


= 0 This gives E


0 ()  () ( ()

0 ∗)

= E [ ()] so that under Assumption 1.3

and 2.1 we have equation (19) of the main text. Therefore  = 0 is a solution to the IPW population moment. If

 ( ) is linear in , then this solution is also unique. Otherwise uniqueness follows by hypothesis.

Asymptotic normality Asymptotic normality of  follows under standard regularity conditions by Theorem

6.1 of Newey and McFadden (1994). As above let  = (0 0)0  The  + 1 + × 1 moment vector and derivative
matrix are now given by

 ()
+1+×1

=

 
()

 ()


()
− 1



   () =




()

()

0 − 
()

1()

()
 () 

0


0 − 
()

1()

()


0



 (36)

We first consider the case where Assumptions 1.1 to 1.5 hold. Let  = E [ (0)] and Ω = E

 (0) (0)

0, then
√
 ( − 0)

→ N (0Ψ0) for Ψ0 =


 0Ω−1
−1

1:1:
(where 1:1: is the upper left hand  × block of

). The covariance of  =  (0) equals

Ω =


E

0



0

00 0


 (37)

with

0 = E

1−


0

 0 = E


1−


0

 (38)

The the population mean of  = (0) equals

 =

 Γ −E

1

0


0 −E

1

0
   (39)
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Standard GMM results then give a limiting sampling variance for
√

 − 0


equal to

−1Ω−10 =

 Γ−1

E

0



−0

−1
0 00


Γ−10 + Γ−1E


1

0
−1

∆0
00∆0E


1

0
−1

Γ−10

−E

1

0
−1

0


0

−1
0 − E


1

0

E

1

0
−10

Γ−10
(40)

−Γ−1

0

−1
0 − E


1

0

E

1

0
−1

0E

1

0
−1

 ()

 

where

∆0 = E






 − 0

−1
0 


0


  (0) = E


1


0
−1

0E

1


0
−1

 (41)

Now consider the case where Assumptions 1.1 to 1.4 and 2.1 hold, but not 1.5. Let ∗ =

00 

0∗
0
 with ∗ the

pseudo-true propensity score parameter. Let ∗ = ( ()0 ∗) etc. Under this set of assumptions we have

Ω∗ =

 E

0()

2∗
0


E

0()

∗


1−∗
∗


0


E

0()

∗


1−∗
∗


0


E


0()

2∗
− 2 0()

∗ + 1

0
  

and

∗ =

 E

0()

∗

0


−E

0()

∗
1∗
∗ 

0


0 −E

0()

∗
1∗
∗ 

0
  

so that Ψ0 =


 0∗Ω

−1
∗ ∗

−1
1:1:



Local efficiency If Assumption 2.1 also holds we have E [|] = Π0 =  so that 0
−1
0 = Π0 and hence

0
−1
0 00 = E


1−


Π0

0Π00


= E


1−


0

 (42)

which gives the equality Γ−1

E

0



−0

−1
0 00


Γ−10 = I (0)−1  In that case we also have ∆0 = 0 since

E [|] = 0
−1
0  Under these conditions (40) simplifies to

−1Ω−10 = 

I (0)−1   (0)


 (43)

Local efficiency at Assumption 2.1 follows if we can show that IPT is regular under Assumptions 1.1 to 1.5. The

score function for a parametric submodel of the semiparametric missing data model is (e.g., Chen, Hong and Tarrozzi,

2004, 2008)

 (  ; ) =  (1|; ) + −( ()0 )
( ()0 )


1−( ()0 )

1( ()0 ) ()× 




+  (; ) 

Under Assumption 1.1 we have, differentiating under the integral and using iterated expectations,

 (0)


= −Γ−1E


 ( 0)

 log  (1; 0)




= −Γ−1 {E [ ( 0)  (1|; 0)] + E [ (; )  (; 0)]} 

Under Assumptions 1.1 to 1.5 standard calculations yield an asymptotically linear representation of  equal to:
 = 0 − 1




=1

Γ−1

 ( 0)

( ()
0 0)

−12
−1
22




( ()
0 0)

− 1

 ()


+ 


−12
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where −Γ−1 times the term in {·} is the influence function and 12 and 22 denote the upper righthand × 1+

and lower righthand 1 + × 1 + blocks of  as given in (39) above. Let  denote this influence function, by

Theorem 2.2 of Newey (1990), regularity of  follows if
 (0)


= E [ (| 0)] = −Γ−1 {E [ ( 0)  (1|; 0)] + E [ (; 0)  (; 0)]} 

We have, using the conditional mean zero property of scores, the MAR assumption, and the fact that 0() =

( ()0 0)

E [ (| 0)] = −Γ−1E


 ( 0)

( ()0 0)
−12

−1
22




( ()0 0)
− 1

 ()


{ (1|; 0) +  (; 0)}


= −Γ−1E


 ( 0)

( ()0 0)
{ (1|; 0) +  (; 0)}


= −Γ−1E [ ( 0) { (1|; 0) +  (; 0)}]
= −Γ−1 {E [ ( 0)  (1|; 0)] + E [ (; 0)  (; 0)]} 

as required.

Consistent variance-covariance matrix estimation If Assumptions 1.1 to 1.4 and either 2.1 or 1.5 or both

hold, then the asymptotic variance of  may be consistently estimated, under regularity conditions, by
Ψ =

 0Ω−1−1
1:1:

 (44)

with  =

=1



  and Ω = 
=1





0  .
A.3 The asymptotic variance of three-step AIPW estimators

In this appendix we summarize the first order asymptotic properties of a class of three-step AIPW estimators under

Assumptions 1.1 to 1.5. This class includes the estimator proposed by Robins, Rotnitzky and Zhao (1994). As well as

the variations proposed by Newey (1994a), Hirano and Imbens (2001), and Cao, Tsiatis and Davidian (2009). While

the first order properties of AIPW are well-known, we include the results below as they will prove useful for the higher

order bias calculations.

We begin by developing some notation. Let  = (0 0)0 and define the  + 2 (1 +) × 1 moment vector and
derivative matrix

 ()
+2(1+)×1

=




()
 ()


()

− 1



−()
()(1−())1 () 

   () =




()

()

0 − 
()

1()

()
 () 

0


0 − 
()

1()

()


0


0  ()

  (45)

with  () as defined above. Further define the weight matrix

 () =




()
2 () ()

0 
()

 () () 
0
 0


()

 ()  ()
0  () () 

0
 0

0


()

1()

()


0
 − ()

  (46)

where  () =  ( ) and  () =  ( ) are known, scalar-valued, weight functions (the latter with the

property that E [ (0)|] = 1).
Finally let

 () =
1




=1

 ()   () =
1




=1

 ()   () =
1




=1

 ()  (47)

Our asymptotic analysis of three-step AIPW estimators exploits their representation as particular iterated GMM
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estimators.

Lemma A.1 (Iterated GMM Representation of AIPW) The AIPW estimate  which solves (20) in the main
text is numerically identical to the iterated GMM estimate  = 0 00 which solves


 −1 = 0 (48)

Proof. See the Supplemental Web Appendix.

Invoking Lemma A.1 we proceed to characterize the large sample properties of (48). The population mean of the

derivative of  (0)  as defined in (45) above, equals

 =


Γ −E


1

0


0 −E

1

0


0 −I (0)

  (49)

The probability limit of the weight matrix (46) is given by

 =


E

0



 0

0  0

0 E

1

0


I (0)

  (50)

with  = E [0] and  = E [0] 
The covariance of the moment vector  = (0) is

Ω =


E

0



0 E


1

0


00 0 E

1

0


E

1

0


E

1

0


I (0)

  (51)

with 0 and 0 as defined above.

Standard results on GMM imply that
√

 − 0


has a limiting sampling variance of


 0 −1

−1
 0 −1Ω −1


 0 −1

−10
(52)

=


 Γ−1


E

0



−0

−1
0 00 −∆I (0)−1∆0




Γ−10

+Γ−1

0

−1
0 −

−1



0


0

−1
0 −

−1


0
Γ−10

 0

0 I (0)−1

 

with

∆ = E






 −

−1
 


0




If Assumption 2.1 also holds (52) simplifies to 

I (0)−1 I (0)−1




B Derivation of the higher order bias of IPT and AIPW (Theorem 3.1)

In this appendix we outline the derivation of the 

−1


bias expressions for the class of AIPW estimates of 0

discussed in the main text as well as for our IPT estimate (i.e., equations (29) and (30) in the main text). These

bias expressions follow from stochastic expansions (i.e., second order, as opposed to the usual first order, Taylor series

approximations of the estimating equations). Such expansions have a long history in statistics (e.g., Cox and Snell,

1968, Section 2; Rilstone, Srivastava and Ullah, 1996). Newey and Smith (2004, Lemma A.4, pp. 241 - 242) provide

a general formula for the 

−1


bias of M-estimators which they then specialize to analyze the bias properties of

two-step GMM and GEL estimators (see also Newey (2002)). As each of the estimators we consider have M-estimator
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representations we use their general result in our calculations. In what follows parameter’s are evaluated at their

population values unless stated otherwise; for this reason we drop ‘0’ subscripts when doing so causes no confusion.

In contrast to Appendix A we maintain Assumption 2.1 in what follows (in addition to Assumptions 1.1 to 1.5).

Let  be the solution to
()
×1

=


=1
() = 0 (53)

then under regularity conditions stated in Newey and Smith (2004, Lemma A.4) the asymptotic (higher order) bias

of  is given by
Bias() = −−1




E [] +

1

2
E


=1



 (54)

where  a  × 1 column vector with a one in the  row and zeros elsewhere and


×

= E

 ()

0


 

×1
= −−1 ()  

×
=

 ()

0
− 

×
= E


2 ()

0


 (55)

We assume that these objects are well-defined.

B.1 Higher order bias of b
The IPT estimator of  = (0 0)0 is given by the solution to (53) with

() =

 
()

 ()


()
− 1



 

Objects,
(0)

0 ,  and  of (55) above specialize to

 (0)

0
=






0 −



1



0


0 −


1



0



  =

 Γ −E

1

0


0 −E

1

0
    =





0 − Γ −



1



0
 + E


1

0


0 −


1



0
 + E


1

0
  

Using the partitioned inverse formula we have

−1 =

Γ−1 −Γ−1E

1

0

E

1

0
−1

0 −E

1

0
−1

  (56)

Combining the above expressions then gives

E [] = −

 E


0 Γ

−1 1



− E


1−



0 Γ

−1E

1

0

E

1

0
−1




+ E


1−


1

0E


1

0
−1




E

1−


1

0E


1

0
−1




 
(57)
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Let Π∗
≡ E


1

0

E

1

0
−1

; using (57) we have the first  rows of −−1E [] equal to

Γ−1E



0
Γ−1

1





− Γ−1E


1−





0
Γ−1E


1


0

E

1


0
−1




(58)

+ Γ−1E


1−



1


0E


1


0
−1





− Γ−1E

1


0

E

1


0
−1

E


1−



1


0E


1


0
−1





= Γ−1E



0
Γ−1

1


{ −Π∗}


+ Γ−1E




0
Γ−1Π∗


+ Γ−1E


1−



1


{ −Π∗} 0E


1


0
−1





Assumption 2.1 gives  = Π0 so that Π∗ = Π0; therefore, applying the law of iterated expectations, gives the last

term in the expression above identically equal to zero.

Now consider the second component of the bias expression (54). Evaluating E



0



yields

E



0



=

 I (0)−1 0

0  ()


 (59)

For  = 1 , using the expression for  (0) 
0 we have

 = E


2

0 −1





0

0 0


 (60)

for  as defined in (55) above. For  =  + 1  + 1 + (=  ) we have instead

 = E

 −1

−


0


221
2

− 2



−0

0


221
2

− 2



−0

  (61)

Using (59), (60) and (61) the first  rows of −
−1

2
E


=1 


can be shown to equal

−−1
2

E


=1



1::

=

−−1

2


=1

E



0






1::

= − 1

2


=1

Γ−1E


2

0


I (0)−1 

(62)

Combining (58) and (62) yields  as given in the statement of the Theorem.

B.2 Higher order bias of b
Let  = (0 0 0) be the  = 2 + 3 (1 +) vector of parameters of interest. Let  be the solution to (53) with

 () = −


 ()
0 

 () +  ()
0 


 (63)

and () and  () as defined by (45) and (46) above. The AIPW estimate corresponds to the first×1 components
of  since  −1 = − so that  0  = 

0  −1 = 0 which, by Lemma A.1, is the first

order condition for the AIPW estimator.

Similar to the treatment of two-step and iterated GMM by Newey and Smith (2004, cf., Lemmas A.5 and A.6),

we derive the higher order bias properties of the AIPW estimate of 0 by considering those of a simplified 


−32


equivalent estimate.
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We have, by Lemma A.4 of Newey and Smith (2004), − 0 = √ + (1) with  =
=1 

√
 for 

as defined in (55) above. This means that for  = 1     + 1 + we have  − 0 = 0 √ +  (1)  Now

consider the mean value expansion


 =  (0) +

+1+

=1








 − 0


=  (0) +

+1+

=1
E

 (0)



 − 0


+ (1)

=  (0) +
+1+

=1
E

 (0)




0 √ + (1) 

with  () and  () as defined in (47) and (46) above;  is mean value between 0 and . Let  =  −  ++1+
=1 E


(0)




0 with  as given in (50) above. This gives 

 =  + 1



=1  +  (1)  Now

consider the solution to 
∗  = 1




=1 

∗


 = 0 with
∗ () = −


 ()

0 
 () + [ + ]

0 


 (64)

Using the definitions above we have

0 = 
∗  (65)

= 
+ 0


−  − 1




=1 

0 


= 
+


−32




since 
 −  − 1




=1  =  (1) and  = 0 + 


1
√


 Appealing to the equivalence implicit in the

last line of (65) we henceforth analyze the bias properties of the solution to 
∗  = 0 In what follows we redefine

 () to be equal to 
∗
 () as given in (64).

The terms defined in (55) are given by, recalling that 0 = 0,

 = −


0  0

 


  = −


0 ( −)0

( −) 




with  and  given by (49) and (50) above.

The partitioned inverse formula gives

−1 = −
 −Υ 

0 


 (66)

with

Υ =

 0 −1

−1
  = Υ 0 −1  =  −1 −  −1 (67)

The supplemental web appendix shows that

Υ =


Γ−1ΛΓ−10 0

Π0Γ
−10 I (0)−1


(68)

 =


Γ−1 −Γ−1Π0 0

0 0 −I (0)−1


(69)

 =


0 0 −Λ−1Π

0 −1 Π00Λ
−1Π

Π0Λ
−1 −I (0)−1 E


1

0


 − 0E

0


−1


−1
0

  (70)
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From (55) and the expressions above we also have  = −

0 0

0
 where we evaluate at the population value

of .

The first part of the AIPW bias formula is given by the first  rows of −
−1


E []  Manipulating, using the

expressions given above, we have

−−1E [] = −E
 − +Υ 0

−

− −0 0
− 





 (71)

We require expressions for the first  rows of the matrix E

 −Υ 0

+




 Let {}1:: denote rows

1 to  of a matrix. Very tedious calculations detailed in the supplemental web appendix give

{E []}1:: = Γ−1E

1



 ()

0
Γ−1 ( −Π0)


+ Γ−1E


 ()

0
Γ−1Π0


(72)

−ΥE  0



1::

= I (0)−1 E








0

0
Λ−1Π


(73)

{E []}1:: = Γ−1Π0E







− 





− 1

0−10 


(74)

− Γ−1E










 − Π00

0
Λ−1Π


+ Γ−1E








− 


Π0

0Π0Λ−1Π




Collecting these terms yields a bias contribution of

 =
Γ−1


E

1



 ()

0
Γ−1 ( −Π0)


+

Γ−1


E

 ()

0
Γ−1Π0


(75)

+
I (0)−1


E








0

0
Λ−1Π


+

Γ−1


Π0E








− 





− 1

0−10 


− Γ−1


E










 − Π00

0
Λ−1Π


+

Γ−1


E







− 


Π0

0Π0Λ−1Π




To compute the second component of (54) for  we require some additional notation and results. Recall

that  = E

2 () 

0  For  = 1     + 1 + we have this term equal to

 = −
 0 E


0





E





0

  (76)

while for  =  + 1 + + 1     2 + 3 (1 +) is it given by

 = −
 E


2−−1− ()

0


0

0 0

  (77)

We also have

E



0



=


Ω0 Ω0

Ω0 +  (Ω−  )0


 (78)

with Ω as given by (51) above. Note that  0 =  so that Ω0 =  0 +  (Ω−  )0 = +  (Ω−  )0
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Using these expressions we evaluate the second component of (54) (i.e., −−1
2

E


=1 


) as follows:

−−1

2
E


=1



= − 1

2

+1+

=1

 −ΥE

0





Ω0 +E


0





Ω0

+0E

0





Ω0 + E


0





Ω0

  (79)

− 1

2

+2(1+)

=1

 −ΥE

2()

0


Ω0

+0E

2()

0


Ω0

 

The first  rows of (79) contribute to the bias expression for   To determine the form of the first  rows of

(79) we only require expressions for the first  rows of the two matrices in parentheses to the right of the equality in

(79).

After tedious calculation we have, for  = 1    ,

−

ΥE


 0






Ω0


1::

=

0 −I (0)−1 E


2


0
Λ−1Π


(80)

E






Ω0


1::

=


Γ−1E


2



I (0)−1 −Γ−1E








0



I (0)−1


(81)

Similarly, for  =  + 1     + 1 + , we have

−

ΥE


 0






Ω0


1::

=

0 I (0)−1 E






0 

0
−

0
Λ−1Π


(82)

E






Ω0


1::

=

−Γ−1E






0 

0
−


I (0)−1 0


(83)

Using (79) and (80) to (83) we get, after some manipulation, a bias contribution of

1 = −
1

2



=1
Γ−1E


2




I (0)−1  (84)

− I (0)−1
2

E








0

0
Λ−1Π




Now consider the second part of (79). For  = 1     we have

−

ΥE


2 ( )

0


Ω0


1:

=

I (0)−1 E








0



Π0Λ

−1 (Not Needed) (Not Needed)

 (85)

while for  =  + 1     + 1 +

−

ΥE


2 ( )

0


Ω0


1:

=

0 0 0


 (86)

and finally for  =  + 1 + + 1     + 2 (1 +)

−

ΥE


2 ( )

0


Ω0


1:

=

0 0 0


 (87)

Using (79) and (85) to (87) we get, after some manipulation, a bias contribution of

2 = −
I (0)−1
2

E








0

0
Λ−1Π


 (88)

Equation (29) is given by the sum of (75), (84), and (88).
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C Computation
Computation of the IPT estimate of  consists of two steps. In the first step, which is nonstandard and detailed
here,  is computed as the solution to (14). In the second  is computed as the solution to (13). The second step
is identical to that associated with standard inverse probability weighting (IPW) (e.g., Wooldridge, 2002, 2007).

As second step is both application specific, and typically straightforward to compute using standard software (that

accepts user-specified weights), we do not detail it here.

The IPT propensity score parameter  estimate corresponds to the solution to (14). This solution could be com-

puted in any number of ways (e.g., by a nonlinear GMM program such as STATA’s gmm routine). Here we outline

an approach which we have found to be computationally convenient and very reliable in practice. This involves

defining  to be the solution to a globally concave programming problem with unrestricted domain. Such problems

are straightforward to solve using standard gradient-based numerical minimization procedures (e.g., MATLAB’s fmi-

nunc() routine). A MATLAB routine, IPT_LOGIT (), implementing the algorithm described here is available online

at https://files.nyu.edu/bsg1/public/. The inverse probability weights computed using this procedure can be im-

ported into standard software in order to implement the second step of IPT estimation. A nonparametric bootstrap

procedure, which repeats each of the two stages of estimation for each bootstrap draw, can be used to construct

asymptotically valid standard errors and confidence intervals (cf., Fortin, Lemieux, and Firpo, 2010). Alternatively,

analytic standard errors may be computed as described in Appendix A.

Consider the following function

 () =


 ()
+

 

1()

−1

1




d (89)

with  (·) as defined in Assumption 1.5 of the main text. When the propensity score takes the logit  () = (1 +

exp (−))−1 form (89) exists in closed form (see below). We implement the logit specification in the empirical

application and expect that most users will do likewise. If a different propensity score model is assumed, then (89) is

easily evaluated numerically if a closed form expression is unavailable.

The first and second derivatives of  () are

1 () =
1

 ()
 2 () = −1 ()

 ()2
 (90)

so that (89) is strictly concave.

We compute  by solving the following optimization problem
max


 ()   () =
1




=1



 ()

0 
− 1




=1

 ()
0  (91)

Differentiating  () with respect to  gives an 1 + × 1 gradient vector of

∇ ()
1+×1

=
1




=1

1

 ()

0 

 ()−

1




=1

 () =
1




=1






 ()

0 
 − 1  ()  (92)

which coincides with (14) as required. The 1 + × 1 + Hessian matrix is

∇ ()
1+×1+

=
1




=1

2

 ()

0 

 ()  ()

0  (93)

This is a negative definite function of ; the problem (91) is consequently concave with a unique solution (if one exists;

cf., Albert and Anderson, 1984).

In practice (92) will have an ‘exploding denominator’ when  ()
0  is a large negative number. This can lead

to numerical instabilities by causing the Hessian to be ill-conditioned. We address this problem by noting that at a

valid solution


=1( ()
0 ) = 1. Since Assumption 1.5 implies that  () is bounded below by zero, this

means that ( ()
0 )   for all  = 1      . Letting  =  ()

0  this inequality corresponds to requiring
that

−1 ()    = 1     (94)
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at  = . Let ∗ = −1 (1); note that ∗ →−∞ as  →∞ suggesting that (94) will be satisfied for most values

of  in large enough samples. In small samples (94) may be violated for some  at some iterations of the maximization

procedure (although not at a valid solution). Our approach to estimation involves replacing  () with a quadratic

function when  ≤ ∗ ; this ensures that the denominator in (92) is bounded. This will improve the condition of the
Hessian with respect to  without changing the solution Owen (2001, Chapter 12) proposes a similar procedure in

the context of empirical likelihood estimation of moment condition models.

Specifically we replace  () in (91), (92) and (93) with

◦ () =


 ()   ∗



 + ∗ +

2


∗
2

 ≤ ∗
 (95)

where  ,  and  are the solutions to

 = 2 (
∗
 )

 + ∗ = 1 (
∗
 )

 + ∗ +


2
(∗ )

2 = 0 (
∗
 ) 

This choice of coefficients ensures that ◦ () equals  (), as well as equality of first and second derivatives, at
 = ∗




When  () is logit our algorithm is particularly simple to implement. To derive the closed form expressions for

 () in this case involves an application of integration by substitution:

 =

=

 () d =

 =−1()

=−1()
 ( ())0 () d (96)

where 0 () 6= 0 for all  ∈ [ ].
Let  = 1 (− 1) so that  = 1+


=  () with 0 () = 1


− 1+

2
= − 1

2
applying (96) for  () =

exp ()  [1 + exp ()] we get

 () =


 ()
+

 1(−1)

()
1−()

ln ()


− 1

2


d ∝  − exp (−) 

Differentiating with respect to  then gives 1 () = 1 + exp (−) and 2 () = − exp (−) 
We also have ∗ = −1 (1) = ln


1

1−1

= ln


1

−1

so that solving for  ,  and  yields

 = − ( − 1)

1 + ln


1

 − 1


+
1

2


ln


1

 − 1

2
  =  + ( − 1) ln


1

 − 1


  = − ( − 1) 
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