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ABSTRACT

This paper outlines a new minimum empirical discrepancy (MD) estimator for missing data, sample
combination and related problems: inverse probability tilting (IPT). Covered examples include estimation
of the average treatment effect (ATE), the average treatment effect on the treated (ATT) and the two
sample instrumental variables (TSIV) model. The proposed estimator attains the semiparametric efficiency
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or the other holds (double robustness). A novel feature of IPT is its 'exact balancing' property: after
reweighting, sample moments of always-observed covariates in the complete-case subsample equal
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distribution of always-observed covariates can be efficiently incorporated into our procedure. We use
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Work (NSW) demonstration using 'non-experimental' comparison groups drawn from the Panel Study
of Income Dynamics (PSID) and the Current Population Survey (CPS) as in LaLonde (1986) and Dehejia
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well, relative to several alternative estimators, across a variety of data generating processes.
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1 Introduction

Let {D,X 0,DY 0}∞i=1 be an independent and identically distributed random sequence drawn from

the unknown distribution F with D a binary ‘missingness’ indicator. When D = 1 we observe

both X and Y , when D = 0 we only observe X. The sampling process identifies F (x, y|D = 1) and

F (d, x), but we seek to identify functionals of F (y, x), a distribution not identified by this process

alone. To ensure identification we assume that Y is ‘missing-at-random’ (MAR)2 conditional on X:

F (y|x) = F (y|x,D = d) , d ∈ {0, 1} . (1)

The only other prior restriction on F is that for some unique γ0

E [ψ (Z, γ0)] =
Z

ψ (z, γ0) f (y, x) dm(y)dm(x) = 0, (2)

where ψ (z, γ0) is a known function of Z = (X 0, Y 0)0 indexed by γ. For simplicity we consider the

exactly identified case when dim(γ) = dim (ψ (z, γ)).3

A large body of research explores identification and estimation of γ0 under restrictions (1),

(2) and additional support conditions. The semiparametric efficiency bound for this problem was

calculated by Robins, Rotnitzky and Zhao (1994) and Hahn (1998). Several estimators attaining

this bound have been proposed. The above set-up is widely used in the analysis of ‘causal effects’

(Rosenbaum and Rubin 1983, Heckman and Robb 1985, Imbens 2004), missing regressors (Robins,

Rotnitzky and Zhao 1994) and non-classical measurement error (Robins, Hsieh and Newey 1995,

Chen, Hong and Tamer 2005, Chen, Hong and Tarozzi 2004, 2008). Below we survey additional

applications and propose new ones.

Existing approaches to efficient estimation of γ0 exploit one of two alternative factorizations of

f (y, x) implied by the MAR restriction. The imputation approach substitutes f (y|x,D = 1) f (x)

for f (y, x) in (2). Imputation estimators then replace f (y|x,D = 1) with a nonparametric estimate

and f (x) with the empirical measure of the full sample. Hahn (1998), Chen, Hong and Tarozzi

(2008) and Imbens, Newey and Ridder (2007) pursue variants of this approach.

The second approach, inverse probability weighting (IPW), uses the factorization f (y, x) =
f (y,x|D=1)Q0

p0(x)
, where p0 (x) = Pr (D = 1|X = x) is the ‘propensity score’ and Q0 = Pr (D = 1) the

marginal probability of complete observation. IPW estimators replace p0 (x) with a nonparametric

estimate and f (y, x|D = 1) with the empirical measure of the D = 1 subsample. Hirano, Imbens

and Ridder (2003) and Wooldridge (2007) develop this approach (cf., Heckman 1987, Rosenbaum

1987). Imputation and IPW are, under appropriate conditions on the estimates of f (y|x,D = 1)

and p0 (x) , semiparametrically efficient. Unfortunately f (y|x,D = 1) and p0 (x) can be difficult to

estimate nonparametrically in moderate-sized samples (Wang, Linton and Härdle 2004, Ichimura

and Linton 2005).

This paper proposes a new method of estimation. We choose bγ to solve (2) after replacing
F (y, x) with an estimate. Our estimate of F (y, x) is a multinomial distribution whose support

coincides with that of D = 1 selected subsample. The distribution of probability mass is chosen to

2The MAR assumption is controversial in certain settings. Little and Rubin (2002) and Manski (2003) provide
discussions of the restriction from differing perspectives.

3The m (·) in (2) denotes a counting measure or a Lebesgue measure as is appropriate.



be as close as possible to the empirical measure of that subsample, while simultaneously requiring

that it be consistent with restrictions on the marginal distribution of X implied by the full sample.

In particular, we require that the means of a finite number of known functions of X calculated with

respect to our estimated measure coincide with their corresponding full sample means. We refer to

this latter property as ‘exact balancing’ (of moments). We show that exactly balancing moments

in this way generates attractive efficiency and robustness properties.

Our procedure, which we call inverse probability tilting (IPT), belongs to the family of minimum

empirical discrepancy (MD) estimators (Corcoran 1998). Conventional MD estimation focuses on

efficient estimation of a distribution function in the absence of sample selection. Our focus is different

since the subsample being ‘tilted’ will generally be inconsistent (in a large sample sense) with the

imposed constraints (since F (x|D = 1) 6= F (x)).4 In this setting the choice of discrepancy function

and imposed constraints together imply a corresponding selection model or propensity score (cf.,

Little and Wu 1991, Hirano, Imbens, Ridder and Rubin 2001). This suggests non-standard choices

for discrepancy functions (cf., Nevo 2002).

When the discrepancy and imposed constraints correspond to a correctly specified propensity

score the inverse probability ‘tilt’ of the selected subsample consistently estimates the true dis-

tribution function F (y, x) . When this is not the case the tilted distribution can still be used to

consistently estimate γ0 when certain auxiliary restrictions are satisfied. In the language of Bang

and Robins (2005), the method is ‘doubly robust’.

Specialized applications of inverse probability tilting have been proposed elsewhere. Little and

Wu (1991) suggest the method for calibrating 2×2 contingency tables to known margins when selec-
tion is logistic. Nevo (2002, 2003) extends their approach to moment condition models. Hellerstein

and Imbens (1999), although with a different motivation, develop related methods for regression

models.

Our contribution is distinctive in a number of ways. First, our focus is on identification. Heller-

stein and Imbens (1999), in contrast, focus on interpreting the probability limit of their weighted

least squares estimator under general forms of misspecification.

Second, we show how to use IPT to solve a large number of econometric problems. We provide

formal results for ignorable missing data and sample combination problems (cf., Robins, Rotnitzky

and Zhao 1994, Hahn 1998, Chen, Hong and Tarozzi 2008, Ridder and Moffitt 2007, Graham 2007).

These two families respectively cover the average treatment effect (ATE) and the average treatment

effect on the treated (ATT) estimands. We make the useful, and apparently new, observation that

the two sample instrumental variables (TSIV) model of Angrist and Krueger (1992) belongs to

our missing data family. We show that our IPT estimator is more efficient than the one proposed

by Angrist and Krueger (1992). Additionally, we extend their model to allow for ‘incompatible’

samples; IPT is the first consistent estimator available for this extended TSIV model. Finally, we

sketch how IPT can be applied to estimate other classes of models such as the additive non-ignorable

(AN) attrition model of Hirano, Imbens, Ridder and Rubin (2001).5

Third, and more innovatively, we show that IPT is locally semiparametric efficient and doubly

robust. Under auxiliary assumptions on the form of the propensity score and the conditional

4This suggests that some of our methods may be useful for analyzing and estimating misspecified moment condition
models.

5Nevo (2003) develops a related method for estimating the AN attrition model.



expectation function (CEF) of ψ (Z, γ0) given X, IPT is semiparametrically efficient. Consistency,

however, requires only one or the other of these two parametric restrictions to hold. For our sample

combination family of problems, which includes the ATT estimand, we are aware of no competing

estimators with similar properties. For missing data problems Robins, Rotnitzky and Zhao (1994)

proposed a locally efficient and doubly robust augmented inverse probability weighting (AIPW)

estimator (cf., Tsiatis 2006). Advantages of IPT relative to AIPW include the need to estimate fewer

nuisance parameters, its exact balancing property, and applicability to settings where a maximum

likelihood estimate of the propensity score is unavailable (e.g., the case of non-ignorable attrition

in panel data).

Fourth, for missing data problems, we show how prior restrictions on the distribution of X

can be incorporated into our procedure. Such restrictions may be available from census cross-tabs

or administrative data. A modification of our IPT estimator is locally efficient for missing data

problems when the distribution of X is known. Although Chen, Hong and Tarozzi (2004) calculate

the efficiency bound for this problem, we are aware of no estimator, other than our own, which

attains this bound.

Fifth, we provide duality results which facilitate computation. Here we build on results drawn

from the generalized empirical likelihood (GEL) literature (e.g., Imbens 1997, Newey and Smith

2004).6 We show that IPT is a numerically feasible procedure by using it to revisit the National

Supported Work (NSW) Demonstration evaluation (LaLonde 1986, Dehejia and Wahba 1999).

Sixth, we explore the small sample properties of IPT in a series of Monte Carlo experiments.

These experiments directly compare the performance of IPT with the parametric IPW estimator

of Wooldridge (2007), the nonparametric IPW estimator of Hirano, Imbens and Ridder (2003),

the imputation estimators of both Imbens, Newey and Ridder (2007) and Chen, Hong and Tarozzi

(2004, 2008) and the AIPW estimator of Robins, Rotnitzky and Zhao (1994). IPT performs well

relative to each of these estimators across a variety of data generating processes.

Our focus on locally efficient estimation requires some justification. Globally efficient estimators

for γ0 have been developed by Hahn (1998), Hirano, Imbens and Ridder (2003), Chen, Hong and

Tarozzi (2008) and Imbens, Newey and Ridder (2007), implementation of these estimators typically

requires high-dimensional nonparametric smoothing. While this does not affect their first order

asymptotic properties, it does affect small sample performance (cf., Wang, Linton and Härdle 2004,

Ichimura and Linton 2005, Imbens, Newey and Ridder 2007). This motivates the ‘flexible paramet-

ric’ approach taken here. In practice, many implementations of missing data methods take such a

form. Our distribution theory is concordant with applied practice. When our parametric assump-

tions are mirrored in the data, IPT is as efficient as methods based on nonparametric smoothing.

The double robustness property of IPT provides some protection against incorrect parametric as-

sumptions. Robins and Ritov (1997) and Robins, Rotnitzky and van der Laan (2000) provide

additional justifications for adopting a flexible parametric approach.

Relative to other methods for estimating moment condition models with missing data an attrac-

tive feature of IPT is its exact balancing property. In program evaluations it is standard practice

to report differences in covariate means across treatment and control units after first blocking on,

or weighting by, the propensity score (e.g., Hirano and Imbens 2001, Table 2, p. 270). In contrast,

6Some of the algorithms we propose will interest those studying GEL estimation. In particular, generalizing an
idea due to Owen, we develop an approach to dealing with ‘restricted domain’ of the IPT/GEL criterion function.



inverse probability tilting constructs a weighting scheme such that treatment and control covariate

means will be identically equal to each another after weighting as well as identically equal to the

(unweighted) covariate means taken across all units. In principle covariate variances, covariances

and higher order sample moments can also be exactly balanced. This property of IPT, in addi-

tion to being aesthetically attractive, is the source of its local semiparametric efficiency and double

robustness.7

Our work exploits insights of Little and Wu (1991), Nevo (2002, 2003) and Hirano, Imbens,

Ridder and Rubin (2001). Little and Wu (1991, p. 89) appear to be the first to note the mapping

between calibration discrepancies and selection probabilities. In the context of a creative proof

of semiparametric just identification of their additive nonignorable (AN) attrition model, Hirano,

Imbens, Ridder and Rubin (2001) fully generalize Little and Wu’s (1991) observation. We exploit

a closely related mapping when constructing the inverse probability tilt. Nevo (2002) provides an

information theoretic interpretation of Little and Wu’s (1991) application of calibration methods

in the presence of logistic sample selection. His ‘generalized’ exponential tilting (GET) criterion

function is a special case of the missing data family of criteria outlined below. Nevo (2003) develops

an estimator for the Hirano, Imbens, Ridder and Rubin (2001) AN attrition model based on GET.

None of these papers demonstrate double robustness or semiparametric efficiency. Less obviously

our work exploits insights from logistic discrimination as in Anderson (1982) and nonparametric

density estimation under constraints as in Efron and Tibshirani (1996).

In independent work Qin and Zhang (2007) have proposed an average treatment effect estimator

which uses empirical likelihood methods to adjust Horvitz-Thompson parametric inverse probabil-

ity weights so that, after reweighting, covariate means across the D = 1 subsample match their

overall sample means. Their method, like ours, is locally efficient and doubly robust. Unlike our

method their approach requires estimation of both the propensity score as well as a vector of em-

pirical likelihood Lagrange multipliers. Our method combines these two steps into one and hence

requires estimation of fewer nuisance parameters and also applies to data combination and certain

nonignorable missing data problems.8

Section 2 provides a heuristic overview of IPT as applied to the simplest of problems: estima-

tion of the mean of a outcome variable that is missing at random (MAR). In the context of this

example we provide intuition for the efficiency and robustness properties of the IPT. This section

also details the connection between IPT and minimum empirical discrepancy (MD) estimation of

distribution functions (Corcoran 1998). Developing the relationship between MD and IPT provides

certain insights into IPT’s attractive theoretical properties. It also connects our work with that

generalized empirical likelihood alternatives to GMM (e.g., Imbens 1997, 2002, Newey and Smith

2004, Kitamura 2007).

In Section 3 we formally outline the application of IPT to semiparametric missing data problems.

We specifically discuss application of IPT to ATE and TSIV estimation in detail. Section 4 then

7An additional advantage of IPT, relative to other currently available methods, is its interpretability under mis-
specification, although we do not develop this point (cf., Hellerstein and Imbens 1999).

8Formally Qin and Zhang (2007) only discuss estimation of the marginal mean of a response variable when it is
missing at random (MAR). However their results easily extend to cover moment condition models with data missing
at random. It also appears possible to adapt their methods to data combination problems (although their efficiency
and robustness properties in that case are unclear). It is not possible to apply their method to nonignorable missing
data problems because in such problems the propensity score cannot be estimated by maximum likelihood.



outlines the application of IPT to a class of semiparametric data combination problems. Examples

covered there include estimation of the ATT and our extension of Angrist and Krueger’s (1992)

TSIV model to allow for ‘incompatible’ samples.

Section 5 sketches the application of IPT to a few non-standard problems, such as the additive

nonignorable attrition model of Hirano, Imbens, Ridder and Rubin (2001). Section 6 reports the

results of a series of Monte Carlo experiments and presents an illustrative application: estimation

of the ATT for National Supported Work (NSW) participants as in LaLonde (1986) and Dehejia

and Wahba (1999). Section 7 summarizes and suggests areas for future research.

Appendix A provides details of computation, while Appendix B collects proofs. In Appendix C

we detail other possible applications of IPT. Examples covered there include M-estimation under

variable probability sampling (Wooldridge 1999, 2007), the construction of counterfactual wage

distributions as in Dinardo, Fortin and Lemieux (1996) and Barsky, Bound, Charles and Lutpon

(2002), binary choice models under choice-based sampling as in Cosslett (1981), and case-control

studies with contaminated controls as in Lancaster and Imbens (1996) and Qin (1998).

2 A simple example

It is helpful to begin by considering the population and asymptotic sampling properties of inverse

probability tilting in a very simple setting. Given the missing data structure outlined in the intro-

duction, as well as the MAR assumption, we seek to efficiently estimate γ0 = E [Y ] . Under (1) our
estimand is the solution to (2) with ψ (Z, γ) = Y − γ or, equivalently,

γ0 =

Z
yf (y, x) dm(y)dm(x) =

Z
y

Q0
p0 (x)

f (y, x|D = 1)dm(y)dm(x),

where the second equality follows from Baye’s Law, Equation (1), and the assumption that p0 (x)

is bounded away from zero for all x ∈ X . The second representation of E [Y ] is exploited by the
inverse probability tilting procedure.

Double robust identification The population analog of the IPT estimate of γ0 is the mean of

Y under the ‘tilted’ distribution F∗ (y, x) :

EF∗ [Y ] =
Z

yf∗ (y, x) dm(y)dm(x). (3)

To describe the construction of the tilted distribution function let h(X, ζ0) = h(X)−ζ0 be anM×1
vector of mean zero functions of X under F (x), the population distribution of X. A leading form

for h(X) is

h(X) =
¡
X,X2, . . . ,XM

¢0
,

which implies that ζ0 equals X 0s first M uncentered moments.9 Note that Q0, p0 (x) and ζ0 are all

asymptotically identified by the sampling process since (D,X 0)0 is observed for all units.
9Alternatively we could choose

h (X) = (1 (X < x1) ,1 (x1 ≤ X < x2) , . . . ,1 (xM−2 ≤ X < xM−1) ,1 (xM−1 ≤ X))0,

in which case ζ0 would give the probability mass associated with each of M intervals of the support of X. We thank
Michael Jansson for this suggestion.



The inverse probability tilt (IPT) of f (y, x|D = 1) is given by

f∗ (y, x) =
f (y, x|D = 1)Q0

G
¡
α∗ + h (x)0 β∗

¢ ,
where α∗ and β∗ are the solutions to the concave programming problem

max
α,β

©
α− E £ϕ+ ¡α+ (h (X)− ζ0)

0 β;Q0
¢ |D = 1

¤ª
, (4)

with ϕ+(v;Q) given by

ϕ+(v;Q) =

"
v

G(v)
Q+

Z a

Q/G(v)
G−1

µ
Q

t

¶
dm(t)

#
, (5)

and G (·) an increasing, differentiable and continuous function mapping the real line onto the unit
interval.

The 1 +M first order conditions for (4) areZ
f (x|d = 1)Q0

G
¡
α∗ + h (x)0 β∗

¢dm(x) = 1 (6)Z
h (x)

f (x|d = 1)Q0
G
¡
α∗ + h (x)0 β∗

¢dm(x) = ζ0.

Equation (6) show that the inverse probability tilt is chosen so that it integrates to one, is greater

than or equal to zero and shares (at least)M moments with F (x). This is the ‘exact balancing’ (of

moments) property of IPT.

Our main identification result is to show that the expectation of Y under the tilted distribution

is consistent for its population expectation (i.e, EF∗ [Y ] = E [Y ] = γ0) if at least one of two auxiliary

parametric restrictions holds: (1) p0 (x) = G (α0 + h(x)0β0) or (2) E [Y |X = x] = ς0+Π0h(x). This

is our double robustness result.

Equality of EF∗ [Y ] and γ0 under the first condition follows from global concavity of ϕ+(v;Q)

and the consequent equalities of α∗ = α0 and β∗ = β0. Equality of EF∗ [Y ] and γ0 under the

second condition is less obvious and an important quality of inverse probability tilting. By iterated

expectations and (1) we have

EF∗ [Y ] =
Z
E [Y |X = x]

f (x|d = 1)Q0
G
¡
α∗ + h (x)0 β∗

¢dm(x).
Substituting in ς0 +Π0h(x) for E [Y |X = x] gives

EF∗ [Y ] = ς0

Z
f (x|d = 1)Q0

G
¡
α∗ + h (x)0 β∗

¢dm(x) +Π0 Z h(x)
f (x|d = 1)Q0

G
¡
α∗ + h (x)0 β∗

¢dm(x) = ς0 +Π0ζ0 = E [Y ]

where the second equality follows from the first order conditions for (α∗, β∗) given by (6) and the
third from iterated expectations. The mean of Y with respect to the inverse probability tilted

distribution will equal its population mean if the two distributions, while different, are sufficiently

similar. For example, if X is a scalar and E [Y |X = x] is quadratic in x, then requiring that the



inverse probability tilt of F (y, x|D = 1) shares the same mean and variance for X as F (x) ensures

that EF∗ [Y ] = γ0.

Local semiparametric efficiency By iterated expectations we can show that (6) is equivalent

to the moment restriction

E

"(
D

G
¡
α∗ + h (X)0 β∗

¢ − 1)( 1

h (X)

)#
= 0, (7)

while (3) is equivalent to

E

"
D (Y − γ0)

G
¡
α∗ + h (X)0 β∗

¢# = 0. (8)

Our IPT estimator (in this example) is simply the sequential method-of-moments estimate of γ0
based on these two restrictions. This representation simplifies asymptotic analysis and clarifies that

the inverse probability tilt is constructed using a ‘working model’ for the propensity score of the

form G
¡
α∗ + h (X)0 β∗

¢
. If this working model is correctly specified, p0 (x) = G (α0 + h(x)0β0), and

E [Y |X = x] = ς0+Π0h(x), then our estimator attains the semiparametric efficiency bound for this

problem. This is our local semiparametric efficiency result.

Efficiency is a consequence of the exact balancing property of the IPT.10 Our estimate of γ0 is

given by the solution to
1

N

XN

i=1

Di (Yi − bγ)
G(bα+ h (Xi)

0 bβ) = 0, (9)

where bα and bβ are first step estimates based on (7), which solve
1

N

XN

i=1

⎛⎝ Di

G(α+h(Xi)
0β)

Dih(Xi)

G(α+h(Xi)
0β)

⎞⎠ =

Ã
1bζ
!
, (10)

where bζ = PN
i=1 h (Xi) /N is the full sample mean of h (Xi). Equation (10) shows that bα andbβ are chosen so that the inverse probability weights, Di/G(bα + h (Xi)

0 bβ), sum to one and the

inverse probability weighted mean of h (Xi) equals its full sample (unweighted) mean. These are

the sample analogs of (6) above. An implication of (10) is that the inverse probability weighted

mean of ς0 +Π0h(Xi) in the Di = 1 subsample equals is overall sample mean:

1

N

NX
i=1

Di (ς0 +Π0h(Xi))

G(bα+ h (Xi)
0 bβ) = 1

N

NX
i=1

(ς0 +Π0h(Xi)) .

10Graham (2007) provides a method-of-moments framework for understanding semiparametric efficiency in missing
data models. Efficiency of our estimator can also be shown using his results.



Using this exact balancing implication of (10) we can add and subtract terms to get

0 =
1

N

NX
i=1

Di (Yi − bγ)
G(bα+ h (Xi)

0 bβ)
− 1

N

NX
i=1

Di (ς0 +Π0h(Xi)− γ0)

G(bα+ h (Xi)
0 bβ) − 1

N

NX
i=1

(ς0 +Π0h(Xi)− γ0) .

Exploiting the equality E [Y |X] = ς0 +Π0h(X) and solving for
√
N(bγ − γ0) then gives

√
N(bγ − γ0)

=
1√
N

(
NX
i=1

DiYi

G(bα+ h (Xi)
0 bβ) − γ0 − E [Y |Xi]

G(bα+ h (Xi)
0 bβ)(Di −G(bα+ h (Xi)

0 bβ))) .

Finally, a mean-value expansion in bα and bβ about α0 and β0 yields the asymptotically linear

representation

√
N(bγ − γ0) =

1√
N

NX
i=1

½
DiYi
p0 (Xi)

− γ0 − E [Y |Xi]

p0 (Xi)
(Di − p0 (Xi))

¾
+ op (1) ,

where the term in {·} is the efficient score (cf., Hahn 1998). Local semiparametric efficiency of bγ
follows directly.

Connection to minimum empirical discrepancy estimation of distribution functions
As noted in the introduction, IPT is usefully viewed as a minimum empirical discrepancy (MD)

estimator. This representation is valuable primarily for pedagogical purposes, and for that reason,

we briefly develop it in this subsection. In particular the MD formulation highlights that IPT

involves first estimating the marginal distribution of the missing variable, Y , and then applying

standard M-estimation techniques to reweighted data. For asymptotic analysis as well as estimation

a method-of-moments representation of IPT is more convenient and hence emphasized in subsequent

sections.

Observe that γ0 is a functional of F (y, x) . Unfortunately, due to sample selection, the empirical

distribution function (EDF) of the D = 1 subsample is not a consistent estimate of F (y, x). How-

ever, as X is observed for all units, FN (x) =
PN

i=1 1 (Xi ≤ x) /N is a consistent estimate of F (x).

Since there are no restrictions on X 0s marginal distribution, this estimate is also efficient.
The MD representation of IPT shows that it uses FN (x) in conjunction with the selected or

‘complete-case’ subsample to construct an estimate of F (y, x) . This estimate is chosen to be ‘as close

as possible’ to the empirical measures of the D = 1 subsample subject to the restriction that it share

M moments ofX with FN (x) . Operationalizing ‘as close as possible’ requires choosing a discrepancy

metric or distance function. As pointed out by Hirano, Imbens, Ridder and Rubin (2001) in a related

setting, this choice is isomorphic to specifying a (working) model for the propensity score.

Exploiting this insight we can construct a class of discrepancy functions appropriate for missing

data problems. This class includes the generalized exponential tilting (GET) discrepancy of Little



and Wu (1991) and Nevo (2002) as a special case. Consider the function

D (P,R) =

Z
ϕ

µ
dP
dR

¶
dR,

which measures the divergence between the probability measures P and R. This function is convex,

differentiable on its domain, and chosen such that D (·, R) is minimized at R (cf., Bickel, Klassen,

Ritov and Wellner 1993, Chapter 7, Kitamura 2007). We work with contrast functions of the form

ϕ (v;κ) =

(
− v

k(κ)G
−1 (κ)− 1

k(κ)

R a
v G−1

¡
κ
t

¢
dt v > κ

+∞ v ≤ κ
(11)

for κ ∈ (0, 1) and k (κ) = −κ/G1
¡
G−1 (κ)

¢
. The function G (·) is strictly increasing, differentiable

and maps into the unit interval with lim
v→−∞ G (v) = 0 and lim

v→∞ G (v) = 1. We also require that,

G1 (v) = ∂G (v) /∂v, is symmetric about zero. Observe that (11) is convex, differentiable and

attains its minimum at v = 1.11 The term k (κ) is a normalizing constant; its presence facilitates

asymptotic analysis as well as comparisons with generalized empirical likelihood (GEL) estimation.

Any suitably well-behaved CDF can be used to construct a contrast function of the form given

by (11). In the special case where G(v) = exp (v) / [1 + exp (v)] our family implies (see Appendix

A for details):

ϕ(v;κ) ∝ (v − κ) ln (v − κ)− v ln (1− κ)− (v − κ) , (12)

which is the GET discrepancy of Nevo (2002).

When G (v) is the CDF of a uniform random variable with support [−1, 1] , which corresponds
to a linear probability working model for the propensity score, we have

ϕ(v,Q) ∝ v − ln v,

which equals the (normalized) discrepancy associated with empirical likelihood (Imbens 1997, Newey

and Smith 2004).12

Assume, without loss of generality, that the first N1 observations correspond to D = 1 units,

with the remaining N0 observations corresponding to D = 0 units. The inverse probability tilt of

the selected subsample is given by the solution to

min
π11,...,π1N1

1

N1

N1X
i=1

ϕ(N1π1i; bQ), s.t.
N1X
i=1

π1i = 1,
N1X
i=1

π1ih(Xi, bζ) = 0, (13)

with h(X, ζ0) and bζ as defined above. For what follows we define ρ0 = (Q0, ζ 00)0 .13
11A closely related family of discrepancy metrics is used by Hirano, Imbens, Ridder and Rubin (2001) (cf., Equation

(15) p. 1656 of their paper).
12Note that the linear probability form does not, strictly speaking, satisfy the requirements needed to belong to our

family of discrepancies.
13An important feature of ϕ(v;Q) is that it only finite for v > Q. This effectively constrains N1π1i to be greater

than Q for all i = 1, . . . , N1; a restriction implied by the structure of the missing data problem. By Baye’s Law, the
MAR restriction, and the propensity score being bounded away from zero, we have

f (y1, x)

f (y1, x|D = 1)
=

Q0

p0 (x)
> Q0 ∀ x ∈ X .



Let Fπ1 (y, x) =
PN1

i=1 bπ1i1 (Yi ≤ y,Xi ≤ x) denote the inverse probability tilted distribution

function. Inspection of (13) shows that this distribution function is chosen to be as close as possible

to the empirical measure of the D = 1 subsample subject to the requirement that it satisfies the

‘moment balancing constraint’Z
h (x) dFπ1 (y1, x) =

Z
h (x) dFN (x) . (14)

Since FN (x) is an efficient estimate of the distribution of X, it seems reasonable to require Fπ1 (y, x)

to satisfy (14). As sketched above, imposing (14) leads to a semiparametrically efficient estimate of

γ0.

Let L ¡π11, . . . π1N1 , η1, λ1; bρ¢ be the Lagrangian associated with (13), where η1 is the scalar

multiplier associated with the adding-up constraint and λ1 theM×1 vector of multipliers associated
with requirement that h(X, bζ) be mean zero. TheN1 first order conditions for the probabilities imply
that bπi = bQ

N1

1

G(k( bQ)t(Xi, bζ)0bδ1 +G−1( bQ)) , i = 1, . . . ,N1, (15)

where t(X, ζ) =
¡
1, h (X, ζ)0

¢0 and δ1 = ¡η1, λ10¢0 . The first order conditions for bδ1, after substituting
in (15), are then bQ

N1

N1X
i=1

t(Xi, bζ)
G(k( bQ)t(Xi, bζ)0bδ1 +G−1( bQ)) − t0 = 0, (16)

where t0 = (1, 00)
0 .

Let δ1∗ = (η1∗ , λ10∗ ) denote the probability limit of bδ1. If we define the one-to-one mapping α∗ =
k (Q0) η1∗ − ζ 00λ1∗ + G−1(Q0) and β∗ = k (Q0)λ1∗ it is apparent that (16) is numerically identical to
(10) above and hence that the Lagrange multipliers on the adding-up and moment constraint index

a working model for the propensity score.

Once the weights are constructed the IPT estimate of γ0 is given by

bγ =XN1

i=1
bπ1iYi.

As discussed above, the MD representation’s primary value is to provide insight into some of

the properties of our procedure. To connect the MD approach to the formulation given in (4) we

use duality. Specifically, the Fenchel duality theorem (Rockafellar 1970, Borwein and Lewis 1991)

implies that bδ1 (when it exists) is also the solution to
max
δ1

(
t00δ

1 +
1

N1

N1X
i=1

ϕ+(t(Xi, bζ)0δ1, bQ)) , (17)

The left-hand-side of this expression is the population analog of N1π1i and hence the restriction follows when p0 (x)
is strictly bounded above by one.
When p0 (Xi) is close to zero π1i may become quite large and (13) will be difficult to solve. Both of these problems

are manifestations of ‘limited overlap’ (cf., Imbens 2004). Appendix A discusses computation in detail, with particular
emphasis on how to handle the restricted domain of ϕ (v;κ) and computation when overlap is limited.



where ϕ+(v,Q) is the negative of the Fenchel conjugate of ϕ(v,Q)14:

ϕ+(v, Q) = − 1

k (Q)

"
k (Q) v +G−1 (Q)

G(k (Q) v +G−1 (Q))
Q+

Z a

Q/G(k(Q)v+G−1(Q)
G−1

µ
Q

t

¶
dt

#
. (18)

When G (v) is logistic we have

ϕ+(v,Q) = −vQ−Q (1−Q) exp

∙
v

1−Q
− ln

µ
Q

1−Q

¶¸
,

while for the linear probability case we have

ϕ+(v,Q) ∝ ln (1− v) ,

which is the GEL criterion associated with the empirical likelihood (EL) estimator (Newey and

Smith 2004).

After accounting for normalization (17) is simply the sample analog of (4). The MD probabilities

can be recovered by bπ1i = −ϕ+1 (t(Xi, bζ)0bδ1, bQ)/N1, i = 1, . . . ,N1, (19)

with ϕ+1 (v, Q) = −Q/G
¡
k (Q) v +G−1 (Q)

¢
.

Relationship to inverse probability weighting It is illuminating to compare IPT with in-

verse probability weighting (IPW) as in Hirano, Imbens and Ridder (2003) and Wooldridge (2007).

Wooldridge’s (2007) estimator also solves (9) except bα and bβ are replaced with their MLEs; the
solutions to

1

N

XN

i=1

⎛⎝ Di −G(bα+ h (Xi)
0 bβ)

G(bα+ h (Xi)
0 bβ) h1−G(bα+ h (Xi)

0 bβ)i
⎞⎠( 1

h (Xi)

)
= 0,

instead of (10). Hirano, Imbens and Ridder’s (2003) estimator is the same except that they restrict

G (·) to be the logistic CDF but allow the dimension of h (X) to increase with the sample size. The
resulting inverse probability weights do not sum to one, nor does the weighted mean of h (Xi) equal

to its full sample one (cf., Imbens 2004, pp. 16 - 17). Both estimators perform poorly relative to

IPT in our Monte Carlo experiments.15

Fundamental to both our double robust identification and local semiparametric efficiency results

is IPT’s unique exact balancing property. Exact balancing creates the possibility of consistency

despite misspecification of the propensity score as well as of efficiency when the propensity score is

correctly specified.

14Note that our definition of k (Q) ensures that ϕ+1 (0;Q) = ϕ+2 (0;Q) = −1 (with ϕ+j (x)
def≡ ϕ+j (x) /∂xj for

j = 1, 2, . . .). These are the same normalized imposed on the GEL family of discrepancies studied by Newey and
Smith (2004). This facilitates some comparisons and observations we make in the conclusion.
15Hirano, Imbens and Ridder’s (2003) estimator, because they require the dimension of h (X) to increase with N,

is globally efficient.



3 IPT and semiparametric missing data problems

In this section we formally outline the application, and characterize the large sample properties, of

IPT as applied to semiparametric missing data problems (cf., Robins, Rotnitzky and Zhao 1994,

Chen, Hong and Tarozzi 2008). To describe this class of problems we let Z = (Y 01, Y
0
0 ,X

0)0 be a
random vector, γ0 ∈ G ⊂ RK an unknown parameter and assume that:

Assumption 3.1 (Identification) For some known function ψ (z, γ) = ψ1 (y1, x, γ)−ψ0 (y0, x, γ)

E [ψ (Z, γ0)] = 0,

with E [ψ (Z, γ)] 6= 0 for all γ 6= γ0, γ ∈ G ⊂ RK , z ∈ Z ⊂ Rdim(Z).

If a random sample of Z is available then estimation of γ0 is entirely standard. Instead we

consider the case where the analyst never observes Y1 and Y0 for the same unit. Let D be a binary

indicator variable. When D = 1 we observe Y1, while when D = 0 we observe Y0; X and D are

observed for all units. The semiparametric missing data model is defined by Assumption 3.1 as well

as:

Assumption 3.2 (Random Sampling) {DiY1i, (1−Di) Y0i,Xi,Di}Ni=1 is an independently and
identically distributed random sequence.

Assumption 3.3 (Missing at Random) (Y1, Y0) ⊥ D|X.

Assumption 3.4 (Strong Overlap) Let p0 (x) = Pr (D = 1|X = x) , then 0 < κ < p0 (x) <

1− κ < 1 for some 0 < κ < 1 and all x ∈ X ⊂ Rdim(X).

In what follows we refer to the problem defined by Assumptions 3.1 to 3.4 as the semiparametric

missing data (SMD) problem. That γ0 is identified is well known, following from a straightforward

application of the law of iterated expectations (e.g., Imbens 2004, Wooldridge 2007).

3.1 Estimation

The application of IPT to this problem involves three steps. First, we use the full sample to compute

the marginal probability of the event D = 1 as well as the mean of h (X). That is we solve

1

N

NX
i=1

m1(Zi, bρ) = 1

N

NX
i=1

Ã
Di − bQ

h (Xi)− bζ
!
= 0, (20)

for bρ = ( bQ, bζ 0)0.
Second, we reweight the D = 1 and D = 0 subsamples to match M full sample moments of X.

That is we compute the D = 1 and D = 0 inverse probability tilts

Fπ1 (y1, x) =
XN1

i=1
bπ1i1 (Y1i ≤ y1,Xi ≤ x) , Fπ0 (y0, x) =

XN

i=N1+1
bπ0i1 (Y0i ≤ y0,Xi ≤ x)

with probability weights given by

bπ1i = −ϕ+1 (t(Xi, bζ)0bδ1, bQ)/N1, bπ0i = −ϕ+1 (t(Xi, bζ)0bδ0, 1− bQ)/N0,



for i = 1, . . . ,N1 and i = N1 + 1, . . . ,N respectively and where bδ1 and bδ0 are the solutions to
max
δ1

(
t00δ

1 +
1

N1

N1X
i=1

ϕ+(t(Xi, bζ)0δ1, bQ)) , (21)

and

max
δ0

⎧⎨⎩t00δ
0 +

1

N0

NX
i=N1+1

ϕ+(t(Xi, bζ)0δ0, 1− bQ)
⎫⎬⎭ . (22)

Stacking the two first order conditions associated with (21) and (22) on top of one another implies

that bδ = (bδ10, bδ00) is, after some manipulation, the solution to a second step moment equation of
1

N

NX
i=1

m2(Zi, bρ, bδ) = 1

N

NX
i=1

⎛⎝ t0 +
Di

Q
ϕ+1 (t(Xi, bζ)0bδ1, bQ)t(Xi, bζ)

t0 +
1−Di

1−Q ϕ+1 (t(Xi, bζ)0bδ0, 1− bQ)t(Xi, bζ)
⎞⎠ , (23)

where bρ = ( bQ, bζ 0)0 is fixed at its first step value.
In the third and final step bγ is given by the solution to

1

N

NX
i=1

m3(Zi, bρ, bδ,bγ) = − 1
N

(
NX
i=1

Diϕ
+
1 (t(Xi, bζ)0bδ1, bQ)bQ ψ1 (Y1i,Xi,bγ) (24)

−(1−Di)ϕ
+
1 (t(Xi, bζ)0bδ0, 1− bQ)
1− bQ ψ0 (Y0i, Xi, bγ)) = 0,

with bρ fixed at its first step, and bδ at its second step, value.
Standard sequential GMM results can be used to derive the large sample properties of bγ (cf.,

Newey and McFadden 1994). From a numerical standpoint the second step is the most difficult;

Appendix A details the algorithm we implement in the NSW application and our Monte Carlo

experiments.

To connect our estimator to the more familiar inverse probability weighting (IPW) method of

Hirano, Imbens and Ridder (2003) and Wooldridge (2007) it is helpful to define the one-to-one

mappings bα1 = k( bQ)bη1− bζ 0bλ1+G−1( bQ), bβ1 = k( bQ)bλ1, bα0 = −k(1− bQ)bη0+ bζ 0bλ0−G−1(1− bQ) andbβ0 = −k(1− bQ)bλ0 . We can then re-write (23) as

1

N

NX
i=1

⎛⎜⎜⎜⎜⎜⎜⎝

Di

G(α1+h(Xi)
0β1)

Dih(Xi)

G(α1+h(Xi)
0β1)

1−Di

1−G(α0+h(Xi)
0β0)

(1−Di)h(Xi)

1−G(α0+h(Xi)
0β0)

⎞⎟⎟⎟⎟⎟⎟⎠ = ι2 ⊗
Ã
1bζ
!
, (25)

and (24) as

1

N

NX
i=1

Diψ1 (Y1i,Xi,bγ)
G(bα1 + h (Xi)

0 bβ1) − (1−Di)ψ0 (Y0i,Xi, bγ)
1−G(bα0 + h (Xi)

0 bβ0) = 0. (26)

Equality (26) is an inverse probability weighting of the identifying moment. The final step of

our procedure is therefore similar to conventional IPW methods. However, it differs in that (i) the



D = 1 and D = 0 subsamples are weighted by different estimates of the propensity score and (ii)

neither of these two estimates is the maximum likelihood estimate. Inspection of (25) reveals that

the two sets of propensity score coefficients are chosen to ensure that each set of inverse probability

weights sum to one and also that the weighted subsample means of h (X) equal the corresponding

(unweighted) full sample mean. If the propensity score is correctly specified IPW will also satisfy

these conditions, but only asymptotically, not in finite samples as with IPT.

3.2 Large sample properties

In order to discuss the large sample properties of bγ it is helpful to introduce the following additional
assumptions

Assumption 3.5 (Propensity Score) There is a unique (α0, β0) ∈ A × B ⊂ R1+M such that

p0 (x) = G (α0 + h(x)0β0) for all x ∈ X .

Assumption 3.6 (Moment CEF) Let qj (x; γ0) = E [ψj (Yj , X, γ0) |X = x] for j = 0, 1 and

q1 (x; γ0) = ς1 +Π1h (x) , q0 (x; γ0) = ς0 +Π0h (x)

for some unique (ς1,Π1) ∈ S × P ⊂ RK ×RKM and (ς0,Π0) ∈ S ×P ⊂ RK × RKM .

Assumption 3.5 simply states that the working model for the propensity score implicit in the

minimum empirical discrepancy procedure is correctly specified. Assumption 3.6 is less standard.

Its precise content depends on the form of ψ1 (Y1,X, γ0) and ψ0 (Y0,X, γ0). We discuss its precise

interpretation in the examples section below.

We provide distribution theory for bγ appropriate for two cases: (i) either Assumption 3.5 or
3.6, but not both, is true and (ii) both are true. We could also consider the case where neither

of these two assumptions hold. This would characterize the large sample properties of bγ under
misspecification (cf., Hellerstein and Imbens 1999, Nevo 2003). While we do not pursue this case

here, we note that the asymptotic variance estimator given in the Appendix can also be used to

conduct valid inference about the probability limit of bγ under misspecification.
Our first result shows that if either Assumption 3.5 or 3.6 holds bγ is consistent for γ0 and

asymptotically normal.

Theorem 3.1 (Double Robustness) Suppose Assumptions 3.1 to 3.4, either Assumption 3.5 or
3.6, and additional regularity conditions hold, then as N →∞

bγ p→ γ0

and √
N(bγ − γ0)

D→ N (0,Γ−10 Υ0Γ−100 ),

where Γ0 = E [∂ψ (Z, γ0/∂γ0)] and the form of Υ0 depends on whether Assumption 3.5 or 3.6 holds

(see Appendix B).

Proof. See Appendix B.



Theorem 3.1 implies that the researcher has two opportunities to consistently estimate γ0. More

heuristically it suggests that IPT will perform well for moderately rich forms of h (X) when either

propensity score or the conditional expectations of ψ1 (Y1,X, γ0) and ψ0 (Y0,X, γ0) are smooth in

X .

An immediate corollary of Theorem 3.1 is:

Corollary 3.1 (Asymptotic Normality with data MCAR) When the assumptions of Theo-
rem 3.1 hold and additionally the data are missing completely at random (MCAR) (i.e., Q0 = p0 (X)

for all X ∈ X ) we have

Υ0 = Γ
−1
0

Ã
Ωψ1ψ1 −Ωψ1hΩ−1hhΩ0ψ1h

Q0
+
Ωψ0ψ0 − Ωψ0hΩ−1hhΩ0ψ0h

1−Q0
(27)

+(Ωψ1h −Ωψ0h)Ω−1hh (Ωψ1h − Ωψ0h)0
¢
Γ−100 ,

where Ωψjψj = V (ψj (Yj ,X, γ0)) , Ωψjh = C (ψj (Yj ,X, γ0) , h (X)) for j = 0, 1, and Ωhh = V (h (X)) .

Our next result shows that IPT is locally efficient. By local efficiency we mean that IPT attains

the semiparametric efficiency bound for the SMD model when Assumptions 3.5 and 3.6 happen to

be true in the sampled population but are not part of the prior restriction (cf., Newey 1990 Robins,

Rotnitzky and Zhao 1994).

The maximal asymptotic precision with which γ0 can be estimated has been characterized by

Robins, Rotnitzky and Zhao (1994) and is given by the inverse of

I (γ0) = Γ00Λ−10 Γ0, (28)

with

Λ0 = E
∙
Σ0 (X; γ0)

1− p0 (X)
+
Σ1 (X; γ0)

p0 (X)
+ [q1 (X; γ0)− q0 (X; γ0)] [q1 (X ; γ0)− q0 (X; γ0)]

0
¸
, (29)

where Σj (x; γ0) = V (ψj (Yj ,X, β)|X = x) for j = 0, 1. Our next Theorem shows when IPT attains

the bound derived by Robins, Rotnitzky and Zhao (1994).

Theorem 3.2 (Local Semiparametric Efficiency) Suppose Assumptions 3.1 to 3.6 and ad-
ditional regularity conditions hold, then as N →∞

bγ p→ γ0

and √
N(bγ − γ0)

D→ N (0, I (γ0)−1),

with I (γ0) as defined by (28) and (29).

Proof. See Appendix B.
In Appendix B we provide a single variance-covariance estimator for bγ that is consistent for the

cases covered by Theorems 3.1 and 3.2 as well as Corollary 3.1. From the practitioner’s standpoint



this is a considerable advantage.16

3.3 Incorporation of prior restrictions on F (x)

In this subsection we discuss how prior restrictions on the marginal distribution of X can be effi-

ciently incorporated into the IPT procedure. It is well know that such information, which is often

available from census cross-tabulations or administrative data, increases the asymptotic precision

with which γ0 can be estimated. Chen, Hong and Tarozzi (2004) show that if, in addition to As-

sumptions 3.1 to 3.4, F (x) and Q0 are known, then the variance bound is given by the inverse of

(28), with Λ0 redefined to equal

Λ0 = E
∙
Σ0 (x; γ0)

1− p0 (x)
+
Σ1 (x; γ0)

p0 (x)

¸
. (30)

Assume that Q0 = E [D] and ζ0 = E [h (X)] are known. Our final result characterizes the large
sample properties of the (efficient) GMM estimator based on the restriction

E

⎡⎢⎣ m1(Z)

m2(Z, δ0)

m3(Z, δ0, γ0)

⎤⎥⎦ = 0, (31)

with m1(Z) = m1(Z, ρ0), m2(Z, δ) = m2(Z, ρ0, δ) and m3(Z, δ, γ) = m3(Z, ρ0, δ, γ) and the right-

hand-sides of these equalities as defined by (20), (23) and (24) above. Note that here m1(Z) plays

the role of an auxiliary moment (cf., Imbens and Lancaster 1994, Qian and Schmidt 1999, Imbens

and Hellerstein 1999).

Corollary 3.2 (Prior Knowledge of F(x)) Suppose Assumptions 3.1 to 3.6 and additional
regularity conditions hold, let bγ be the efficient GMM estimator based on (31), then as N →∞

bγ p→ γ0

and √
N(bγ − γ0)

D→ N (0, I (γ0)−1),

with I (γ0) as defined by (28) and (30).

Proof. See Appendix B.
The appendix provides a consistent variance-covariance estimator for the situation covered by

Corollary 3.2. While we do not provide a formal statement of the result, consistency of our known ζ0
estimator requires only one of Assumptions 3.5 or 3.6 to hold. Our variance estimator is consistent

in those cases as well. To the best of our knowledge our estimator is the first estimator to attain

the bound for the missing data problem with F (x) known.

16We also note that the covariance estimator generally associated with Robins, Rotnitzky and Zhao’s (1994) AIPW
estimator is consistent only under the assumptions of Theorem 3.2 (cf., the inference approach adopted by Lunceford
and Davidian 2004 for example). Consequently, AIPW-based inference may be invalid even when AIPW point
estimates are consistent.



3.4 Examples

In order to illustrate the application of each of our large sample results in specific settings we discuss

two examples in detail. Appendix C provides additional examples.

Average Treatment Effects Let D = 1 and D = 0 respectively denote assignment to an active

and control program or intervention and Y1 and Y0 the corresponding potential outcomes. The

Average Treatment Effect (ATE) is

γ0 = E [Y1 − Y0] ,

which corresponds to setting ψ1 (Y1, X, γ) = Y1 and ψ0 (Y0,X, γ) = Y0+γ. Since each unit can only

be exposed to one intervention, either Y1 or Y0 is missing for all units. The conditional probability

of assignment to the active intervention is given by p0 (x).

Efficient estimation of the ATE by IPT involves choosing h (X) such that the true propensity

score is contained in the parametric family G
¡
α+ h (X)0 β

¢
and the true potential outcome CEFs

are linear in h (X) . This will ensure satisfaction of Assumptions 3.5 and 3.6. Consider the case

where the propensity score is known to be constant, as in a randomized experiment. In that case

h (X) should be chosen such that the population regressions of Y1 and Y0 on h (X) accurately

approximate E [Y1|X] and E [Y0|X]. In this case efficient estimation requires overparameterizing
the working model of the propensity score; a result analogous to that of Hirano, Imbens and Ridder

(2003). If E [Y1|X] and E [Y0|X] are smooth relative to p0 (X), then h (X) should be chosen such

that G
¡
α+ h (X)0 β

¢
can provide an accurate approximation of the propensity score (cf., Imbens,

Newey and Ridder 2007, Graham 2007).

Corollary 3.2 has implications important for experimental design. Imagine an experiment involv-

ing a random sample of schools from a well-defined population (e.g., California public elementary

schools). In such a situation administrative data may reveal the marginal distribution of some unit

characteristics perfectly. Inverse probability tilting allows this information to be straightforwardly

incorporated into estimation of ATEs.17

Two sample instrumental variables estimation with compatible samples Assume that

dim (X) ≥ dim(Y0) and consider the following instrumental variables model

Y1 = Y 00γ0 + U, E [UX] = 0.

This suggests a moment function with ψ1 (Y1,X, γ) = XY1 and ψ0 (Y0, X, γ) = XY 00γ. Two inde-
pendent random samples of size N1 and N0 from the same population are available. In the first

sample N1 values of Y1 and X are recorded, while in the second N0 values of Y0 and X are recorded.

For asymptotic analysis we assume that lim
N1,N0→∞

N1/(N1 +N0) = Q0 > 0. This is the two-sample

instrumental variables (TSIV) model analyzed by Angrist and Krueger (1992). Ridder and Moffitt

(2007) provide a technical and historical overview (cf., Arellano and Meghir 1992).

This model is equivalent to a special case of the semiparametric missing data model, an obser-

vation that is apparently new. Assume N units are randomly drawn from some target population.

17We also note that our known ζ0 covariance estimator (with ζ replacing ζ0) is consistent for the asymptotic sampling
variance of the sample average treatment effect (SATE) of Imbens (2004).



With probability Q0 the ith unit’s values for Y1 and X are recorded, while with probably 1−Q0 its

values of Y0 and X are recorded. The indicator variable D denotes which set of variables are mea-

sured. The only difference between this sampling scheme and that of Angrist and Krueger (1992)

is that in the latter N1 and N0 are fixed by the researcher, whilst in the missing data formulation

they are random variables. An adaptation of the argument given by Imbens and Lancaster (1996,

Sections 2.1-2.2) shows that this difference does not affect inference.

Efficient estimation of the TSIV model involves correctly modelling the first stage regression of

Y0 onto X. Assume that X is such that E [Y0|X ] is linear in X. In that case

E [ψ0 (Y0,X, γ)|X ] = E [ψ1 (Y1,X, γ)|X] = XX 0
0γX0 +X

¡
X 0π

¢
γY0,

so that IPT with h (X) including X, the squares of its elements and all pairwise cross-products

results in an efficient estimator. The variance bound for this estimator is given by Corollary 3.1,

which also demonstrates that the TSIV estimate of Angrist and Krueger (1992, Lemma 1, p. 331)

is inefficient. Their estimator has a large sample variance of

Γ−10

µ
Ωψ1ψ1
Q0

+
Ωψ0ψ0
1−Q0

¶
Γ−100 , (32)

which is larger, in a matrix sense, than (27). If X is predictive of Y1 and Y0 — as is required for

identification — the degree of inefficiency can be quite large.

4 IPT and semiparametric data combination problems

In this section we consider semiparametric data combination (SDM) problems (cf., Graham 2007).

Such problems correspond to the ‘verify-out-of-sample’ class of problems considered by Chen, Hong

and Tarozzi (2004). A leading estimand which falls in this family of problems is the Average

Treatment Effect on the Treated (ATT). In this section we also show that the TSIV model, where

the two samples are drawn from different populations, can be analyzed as a SDM problem. This

observation substantially extends the range of situations in which TSIV methods can be applied.

Let Ft (z) denote the distribution function for Z in some target population. Let Et [·] denote
expectations taken with respect to this distribution. In the case of the ATT the target population

would correspond to the treated population. We seek to estimate γ0, which is identified by a prior

restriction on the target population:

Assumption 4.1 (Identification) For some known function ψ (z, γ) = ψ1 (y1, x, γ)−ψ0 (y0, x, γ)

Et [ψ (Z, γ0)] = 0,

with Et [ψ (Z, γ)] 6= 0 for all γ 6= γ0, γ ∈ G ⊂ RK , z ∈ Z ⊂ Rdim(Z).

Available is a random sample of size Nt of (Y1,X) from the target population; Y0 is not observed

for units in the target sample. Also available is an auxiliary sample of size Na containing measure-

ments of (Y0,X). This sample is drawn from some auxiliary population with distribution function

Fa (z) (let Ea [·] denote expectations taken with respect to this distribution). The relationship
between the two distributions is captured by the following two assumptions.



Assumption 4.2 (Conditional Distributional Equality)

Ft (y0, y1|x) = Fa (y0, y1|x)

Assumption 4.3 (Weak Overlap) Let Sj = {x : fj (x) > 0} for j = t, a, then

St ⊂ Sa.

Assumption 4.2 states that the conditional distribution of (Y0, Y1) given X is the same in the

two populations. Equivalently the two populations differ only in terms of the distribution of ‘always

observed’ variables,X . Assumption 4.3 states that fa (x) is positive if ft (x) is positive. This ensures

that in large samples, for each unit in the target sample there will be units with similar values of

X in the auxiliary sample.

The semiparametric data combination model is closed by a sampling assumption:

Assumption 4.4 (Random Sampling) {(Y1i,Xi)}Nt
i=1 and {(Y0i, Xi)}Na

i=1 are random samples

from, respectively, Ft and Fa.

The merged sample is given by
©
(Di, (1−Di)Y

0
0i,DiY

0
1i,X

0
i)
0ªN

i=1
, where N = Na +Nt and D

indicates whether a given unit originates from the target or auxiliary sample. We can treat this

sample as a random one from hypotheticalmerged population Fm (let E [·] denote expectations taken
with respect to this distribution).

The semiparametric data combination model is typically defined by specifying properties of the

merged population (cf., Hahn 1998, Imbens 2004, Chen, Hong and Tarozzi 2004, 2008). For example

Assumption 4.1 corresponds to assuming that E [ψ (Z, γ0)|D = 1] = 0, Assumption 4.2 to the

missing at random restriction of the previous section (i.e., Assumption 3.3 above) and Assumption

4.3 to requiring p0 (x) ≤ 1 − κ < 1 for some 0 < κ < 1 and p0 (x) = E [D|X = x]. One can also

replace the assumption of two independent random samples with a multinomial sampling assumption

(cf., Graham 2007). We prefer the formulation given above because it emphasizes that the problem

is fundamentally one of data combination. Properties of the hypothetical merged population are of

incidental interest. The goal is to use the auxiliary data to learn more about the target population.

Assumptions 4.3 and Bayes’ rule give the relationship

ft (x) = fa (x)

½
1−Q0
Q0

p0 (x)

1− p0 (x)

¾
,

where Q0 = E [D]. This result and Assumption 4.2 then give the equality

Et [ψ (Z, γ)] =
Z

ψ1 (y1, x, γ) ft (y1, x) dm(y1)dm(x)

−
Z

ψ0 (y0, x, γ)
1−Q0
Q0

p0 (x)

1− p0 (x)
fa (y1, x) dm(y0)dm(x).

The IPT estimator chooses bγ to set a sample analog of right-hand-side of the above expression equal
to zero. We replace ft (y1, x) in the first integral with the empirical measure of the target subsample

and 1−Q0
Q0

p0(x)
1−p0(x)fa (y1, x) with a particular minimum empirical discrepancy ‘tilt’ of the empirical



measure of the auxiliary sample. The structure of this tilt differs from the one described in Section

3 for missing data problems.

4.1 Estimation

For data combination problems only the D = 0 subsample need be tilted. However the structure of

the required tilt differs from that needed for missing data problems. For data combination problems

we work with discrepancies of the form

ϕ (v; κ)
def≡
(
− v

k(κ)G
−1 (Q)− 1

k(κ)

R a
v G−1

³
t

t+(1−κ)/κ
´
dt x > 0

+∞ x ≤ 0
, (33)

where k (κ) = κ (1− κ) /G1
¡
G−1(κ)

¢
. The inverse probability tilt of the auxiliary sample is given

by the solution to

min
πaN1+1,...,πaN

1

Na

NX
i=Nt+1

ϕ(Naπai; bQ), s.t.
NX

i=Nt+1

πai = 1,
NX

i=Nt+1

πaih(Xi, bζt) = 0, (34)

with bQ = Nt/N and bζt = 1
Nt

PNt
i=1 h(Xi). The latter mean is taken over the target sample, not the

full sample. This is because we tilt the empirical measure of the auxiliary sample to match moments

of the target sample, not of the full sample as in the missing data case. Let L (πa1, . . . πaN0 , ηa, λa; bρ)
be the Lagrangian associated with (34). The probability weights take the form

bπai = 1

Na

1− bQbQ G(k( bQ)t(Xi, bζt)0bδa +G−1( bQ))
1−G(k( bQ)t(Xi, bζt)0bδa +G−1( bQ)) , i = Nt + 1, . . . ,N, (35)

for t(X, ζ) as defined before and bδa = (bηa, bλa0)0. The vector of Lagrange multipliers solve
1

Na

1− bQbQ
NX

i=Nt+1

G(k( bQ)t(Xi, bζt)0bδa +G−1( bQ))
1−G(k( bQ)t(Xi, bζt)0bδa +G−1( bQ)) t(Xi, bζt)− t0 = 0. (36)

Inspection of (36) indicates the inverse probability tilt, Fπa (y0, x) =
PNa

i=1 bπai1 (Y0i ≤ y0,Xi ≤ x),

is chosen to be as close as possible to the empirical measure of auxiliary sample while simultaneously

satisfying the balancing restrictionsZ
h (x) dFπa (y0, x) =

Z
h (x) dFNt (x) .

Finally, the IPT estimate of γ0 is given by the solution to

0 =
1

Nt

NtX
i=1

ψ1 (Y1i,Xi, bγ)− NX
i=Nt+1

bπaiψ0 (Y0i,Xi, bγ) .
As in the missing data case, the MD representation’s value is primarily pedagogical. For estima-

tion, as well as to characterize large sample properties, a sequential method of moments formulation

is more convenient.



In step one bQ and bζt are chosen to solve
1

N

NX
i=1

m1(Zi, bρ) = 1

N

NX
i=1

Ã
Di − bQ

Di

Q
(h (Xi)− bζt)

!
= 0. (37)

In step two the IPT of the auxiliary sample is computed. As in the missing data case, we work with

the dual problem. The Fenchel conjugate of (33) is

ϕ+(v, Q) = − 1

k (Q)

½£
k (Q) v +G−1 (Q)

¤ 1−Q

Q

G(k (Q) v +G−1 (Q))
1−G(k (Q) v +G−1 (Q))

¾

+

Z a

1−Q
Q

G(k(Q)v+G−1(Q))
1−G(k(Q)v+G−1(Q))

G−1
µ

t

t+ (1−Q) /Q

¶
dt

⎫⎬⎭ .

We therefore estimate bδa by the solution to
max
δa

(
t00δ

a +
1

Na

NX
i=Nt+1

ϕ+(t(Xi, bζt)0δa, bQ)) .

The first order condition to this problem implies that bδa solves
1

N

NX
i=1

m2(Zi, bρ, bδa) = 1

N

NX
i=1

µ
t0 +

1−Di

1− bQ ϕ+1 (t(Xi, bζ t)0bδa, bQ)t(Xi, bζ t)¶ = 0, (38)

where

ϕ+1 (t(Xi, bζ t)0bδa, bQ) = −1− bQbQ G(k( bQ)t(Xi, bζ t)0bδa +G−1( bQ))
1−G(k( bQ)t(Xi, bζ t)0bδa +G−1( bQ)) .

The probability weights can then be recovered by bπai = −ϕ+1 (t(Xi, bζ t)0bδa/Na. Finally bγ solves
1

N

NX
i=1

m3(Zi, bρ, bδa, bγ) = − 1
N

(
NX
i=1

−DibQ ψ1 (Y1i,Xi,bγ) (39)

−(1−Di)ϕ
+
1 (t(Xi, bζt)0bδa, bQ)
1− bQ ψ0 (Y0i,Xi,bγ))

When G (v) = exp [v] / [1 + exp [v]] our data combination estimator is particularly simple to im-

plement. Appendix A shows that for this case ϕ+(v, Q) = − exp [v], which is the GEL criterion
function associated with the exponential tilting (ET) estimator. The second step of IPT in this case

therefore involves reweighting the auxiliary sample by ET to match moments of X calculated using

the target sample. It is well-known that, among GEL estimators, ET is computationally attractive

(cf., Imbens, Spady and Johnson 1998).

4.2 Large sample properties

The large sample properties of bγ in data combination problems parallel those given above for the
missing data case. Our estimator is consistent as long as one of Assumptions 3.5 or 3.6 hold and

efficient if both hold. We are aware of no other estimators for the data combination family of



problems with similar asymptotic properties.18

Theorem 4.1 (Double Robustness) Suppose Assumptions 4.1 to 4.4, either Assumption 3.5 or
3.6, and additional regularity conditions hold, then as N →∞

bγ p→ γ0

and √
N(bγ − γ0)

D→ N (0,Υ0),

with the form of Υ0 depending on whether Assumption 3.5 or 3.6 holds (see Appendix B).

Proof. See Appendix B.
As in the missing data case, double robust consistency is due to the balancing properties of

this estimator (i.e., because the auxiliary sample is tilted to match moments of the target sample).

Imposing balancing in this way ensures that m3 (Zi, ρ0, δ0, γ) will be uniquely mean zero at γ = γ0

as long as Assumption 3.6 holds; even if the propensity score is misspecified.

IPT is also locally efficient for the SDC problem. The maximal asymptotic precision with which

γ0 can be estimated under the SDC setup has been characterized by Hahn (1998) and Chen, Hong

and Tarozzi (2004, 2008) and is equal to the inverse of

J (γ0) = E
∙
p0 (X)

Q0
Γ0 (X)

¸0
E [Φ0 (X)]−1 E

∙
p0 (X)

Q0
Γ0 (X)

¸
, (40)

with Γ0 (x) = E [∂ψ (Z, γ0) /∂γ0|X = x] and

Φ0 (x) =

½
p0 (x)

Q0

¾2½Σ0 (x; γ0)
1− p0 (x)

+
Σ1 (x; γ0)

p0 (x)
(41)

+
1

p0 (x)
[q1 (x; γ0)− q0 (x; γ0)] [q1 (x; γ0)− q0 (x; γ0)]

0
¾
.

If both Assumptions 3.5 and 3.6 hold simultaneously then IPT attains the bound given by (40).

Theorem 4.2 (Local Semiparametric Efficiency) Suppose Assumptions 4.1 to 4.4, both As-
sumptions 3.5 or 3.6, and additional regularity conditions hold, then as N →∞

bγ p→ γ0

and √
N(bγ − γ0)

D→ N (0,J (γ0)−1),

with J (γ0) as defined by (40) and (41).

Proof. See Appendix B.
In Appendix B we provide a single variance-covariance estimator for bγ that is consistent for the

cases covered by Theorems 4.1 and 4.2.

18Globally efficient estimators, based on non-parametric smooths, have been developed by Hahn (1998), Hirano,
Imbens and Ridder (2003) and Chen, Hong and Tarozzi (2004, 2008).



4.3 Examples

To illustrate the application of IPT to data combination problems we discuss estimation of the ATT

and TSIV model (with incompatible samples) in detail. Appendix C provides additional examples.

Average Treatment Effects for the Treated Let D = 1 and D = 0 respectively denote

assignment to an active and control program or intervention and Y1 and Y0 the corresponding

potential outcomes. The Average Treatment Effect on the Treated is

γ0 = E [Y1 − Y0|D = 1] = Et [Y1 − Y0] .

which corresponds to setting ψ1 (Y1,X, γ) = Y1 and ψ0 (Y0,X, γ) = Y0 + γ.

In this case the target population corresponds to the treated population. An example is provided

by LaLonde (1986) who studies the effect of job-training on NSW participants. He has available a

sample of NSW participants with measures of prior earnings and demographic characteristics, X,

and post-training earnings, Y1. Also available is an auxiliary sample taken from the Panel Study of

Income Dynamics (PSID). This sample is not drawn from the same population as the NSW one.

In the auxiliary sample LaLonde (1986) also observes prior earnings and demographics, X, and

post-training earnings for non-participants, Y0.

As with the ATE, efficient estimation of the ATT requires choosing h (X) such that the propen-

sity score in the parametric family G
¡
α+ h (X)0 β

¢
and the conditional expectation of Y1 and Y0

are linear functions of h (X).

Two sample instrumental variables estimation with incompatible samples Currie and

Yelowitz (2000) consider a model relating, Y1, an indicator for whether a school-aged child has

repeated a grade, with an indicator for residence in public housing, Y0. Additional variables in the

model are X = (X0,X 0
1)
0 with X0 equalling the number of male siblings in the household, and X1

equalling the overall number of siblings in the child’s household and other household characteristics.

The moment function is as given in Assumption 4.1 with ψ1 (Y1,X, γ) = XY1 and ψ0 (Y0,X, γ) =

X (X 0
1γX1 + Y 00γY0) .

19 The number of male siblings serves as an excluded instrument for residence

in public housing since, conditional on the overall number of siblings, families with a mixture of

boys and girls qualify for larger units and hence higher (implicit) housing subsidies.20

A total of Nt units are drawn from the target population and their realizations of (Y1,X)

recorded; this forms the target sample. An auxiliary random sample of size Na is taken from

the auxiliary population with realizations of (Y0, X) recorded. Currie and Yelowitz (2000) get

information on (Y0,X) from the US Current Population Survey (CPS), a stratified random sample,

and information on (Y1,X) from a random subsample of the US Census. In this example the

population of interest is school-aged children living in the United States. The US Census sub-

sample can be viewed as a pure random sample from this population.

Since the CPS is not a random sample of the US population, the TSIV estimator of Angrist and

Krueger (1992) is inconsistent (cf., Ridder and Moffitt 2007).21 Other available estimators for the

19This moment corresponds to the textbook linear-IV model.
20This is because children of opposites sexes are not allowed to share rooms under HUD guidelines.
21 In principal CPS sampling weights could be incorporated into Angrist and Krueger’s (1992) procedure to ensure



TSIV model also require that the two samples be random ones from a common population (Arellano

and Meghir 1992). Unfortunately, in many empirical applications estimated moments for variables

common to the two samples differ significantly. Currie and Yelowitz (2000), for example, find

significant differences in the probability of a household being female-headed and ethnic classification

in the CPS and Census samples. IPT could be used to re-weight the CPS to match moments of X

calculated using the Census. Theorems 4.1 and 4.2 provide conditions under which such a procedure

is consistent and efficient.

5 Application of IPT some additional non-standard problems

An attractive feature of IPT is its applicability to a wide range of problems. In particular, the

IPT estimator is often available in settings where inverse probability weighting, based on maximum

likelihood estimates of the propensity score, is not. In this section we sketch the application of IPT

to a few problems that do not belong to either our missing data or data combination families. Each

of these problems has sparked its own, independent literature. The application of IPT to each of

them is conceptually straightforward.

Additive Nonignorable attrition Hirano, Imbens, Ridder and Rubin (2001) consider the fol-

lowing two-period panel data problem. In period one Z1 is observed for a random sample of N

units. In period two Z2 is observed for a subset of originally sampled units (N2 < N). In pe-

riod two an independent refreshment sample is taken and Z2 recorded for Nr units. Let D = 1

denote the event of not attriting from the initial panel sample. This sampling structure asymp-

totically reveals F (Z1, Z2|D = 1) as well as F (Z1) and F (Z2). The probability of not attriting,

p0 (z1, z2) = Pr (D = 1|Z1 = z1, Z2 = z2) , is also identified under quasi-additivity restrictions. For

example, Hirano, Imbens, Ridder and Rubin (2001) show that if

p0 (z1, z2) = G
¡
α0 + h (z1)

0 β10 + h (z2)
0 β20

¢
, (42)

α0, β10 and β20 are identified. To apply IPT to this model we using the missing data class of

discrepancies to reweight the D = 1 complete panel in order to match moments of the marginal

distributions of Z1 and Z2. The former set of moments are identified by the original panel and the

latter by the refreshment sample. Nevo (2003) applies a method similar to IPT to this problem.

Case-control studies In this example interest centers on estimating the parameter indexing

the propensity score. Assume that D ∈ {0, 1} is the binary outcome of interest. The researcher
has access to a random sample of X from the (selected) subpopulation of individuals with outcome

D = 1 and a separate random sample ofX from the D = 0 subpopulation. The marginal probability

Q0 = Pr (D = 1) is known. Such a sampling scheme is often attractive when D = 1 is a rare event.

The researcher has prior knowledge that

Pr (D = 1|X) = G
¡
α0 + h (X)0 β0

¢
.

consistency.



The Lagrange multipliers associated with a tilt of the D = 0 sample to match the means of each

element of h (X) in the D = 1 sample identify α0 and β0. The data combination family of discrep-

ancies should be used with Q0. The variance-covariance estimator associated Theorem 4.1 can be

used for inference.

Case-control studies with contaminated controls In this example interest also centers on

estimating the parameter indexing the propensity score. As before the researcher has access to a

random sample of X from the (selected) subpopulation of individuals with outcome D = 1. Also

available is either (i) an auxiliary random sample from the overall population which contains values

of X for each sampled unit but no information on D or (ii) prior knowledge of ζ0 = E [h (X)] (e.g.,
from census cross tabs).

For example D might indicate whether an individual born in the 1970s is incarcerated in 2006,

with X being a vector of childhood demographic and socioeconomic characteristics. A random

sample of X from the D = 1 population is available from the Survey of Inmates in State and

Federal Correctional Facilities. The marginal distribution of X characteristics is identified by an

auxiliary random sample (e.g., from the 1980 census). The researcher has prior knowledge that

Pr (D = 1|X) = G
¡
α0 + h (X)0 β0

¢
,

with h (X) a known function. In this case the estimated Lagrange multipliers from the inverse

probability tilt of the D = 1 sample identify α0 and β0 (using the missing data class of discrepancies

with Q0). When ζ0 is known the variance-covariance estimator associated Corollary 3.2 can be used

for inference. When ζ0 is estimated from an independent ‘contaminated sample’ new distribution

theory is required. Lancaster and Imbens (1996) and Qin (1998) discuss this model is detail and

suggest alternative estimators.

6 Monte Carlo experiments and application

6.1 Monte Carlo experiments

In this section we compare the small sample performance of IPT with that of several alternative

missing data estimators. Specifically we consider the parametric inverse probability weighting es-

timator described by Wooldridge (2007), henceforth IPW; the non-parametric IPW estimator of

Hirano, Imbens and Ridder (2003), henceforth HIR; the imputation estimator of Imbens, Newey

and Ridder (2007) (with their data-dependent choice of smoothing parameter), henceforth INR; the

conditional expectation projection estimator of Chen, Hong and Tarozzi (2008), henceforth CHT;

and the augmented inverse probability weighting estimator of Robins, Rotnitzky and Zhao (1994)

as described by Tsiatis (2006), henceforth AIPW.22

We assume that Y , the outcome of interest, is generated according to

Y = α0 + α1X + α2Φ

µ
X − a

b

¶
+U, U |X ∼ N (0, 1/64) ,

22Matlab replication files for our Monte Carlo experiments as well as a technical Appendix, describing in detail our
implementation of each estimator, is available online.



Table 1: Parameter values for the four Monte Carlo experiments.

Design 1:
‘smooth-smooth’

Design 2:
‘rough-smooth’

Design 3:
‘smooth-rough’

Design 4:
‘rough-rough’

α0 0.00000 -0.12510 0.00000 -0.12510
α1 -0.25000 -0.25000 -0.25000 -0.25000
α2 0.00000 0.50000 0.00000 0.50000
a 0.50000 0.50000 0.50000 0.50000
b 0.20000 0.20000 0.20000 0.20000
β0 0.00000 0.00000 2.00000 2.00000
β1 2.19722 2.19722 4.19722 4.19722
β2 0.00000 0.00000 -4.00000 -4.00000
c 0.15000 0.15000 0.15000 0.15000pI (γ0) /N 0.00825 0.00752 0.00785 0.00708

Notes: The square root of Hahn’s (1998) variance bound for each design (divided by N1/2 =
√
1, 000) is

reported in the last row of the table.

where Φ (·) is the CDF of a standard normal random variable and X ∼ U (−1, 1). Observations of
Y are missing at random with Y observed if D = 1 where

D = 1 (β0 + β1X + β2Φ (X/c)− V ) ,

with V |X,Y logistic.

We consider four different data generating processes (DGPs), the parameterizations of which are

given in Table 1. In the first design both the outcome CEF and the propensity score are smooth in

X . In the second, the outcome CEF is inhomogenous, while the propensity score remains smooth.

In the third, the CEF is smooth, while the propensity score is now inhomogenous. In the fourth

design both the CEF and propensity score are inhomogenous. The smooth and inhomogenous

outcome CEFs and propensity scores are rendered in Figure 1.

Each design is calibrated such that the propensity score ranges from 0.1 to 0.9 with a marginal

probability of missingness equal to one half. The target estimand is γ0 = E [Y ], which is identically
equal to zero for each design. For each experiment the sample size is set equal to N = 1, 000 with

5, 000 Monte Carlo replications. The IPW, AIPW and IPT estimators are based upon a logistic

model for the propensity score with X entering the index linearly. The HIR estimator is also

based on a logistic model for the propensity score but with X entering quadratically.23 The INR

estimator is based on a polynomial series estimate of E [Y |X ] with the number of series terms
chosen to minimize the estimated mean square error of bγ (see Imbens, Newey and Ridder 2007).
The CHT estimator is based on a polynomial series estimate of E [Y |X] with the number of series
terms fixed at 3 (i.e., a quadratic approximation).

Our designs are chosen to highlight the strengths and weakness of each estimator. In the first

design we expect all estimators to perform well. In the second design we expect the IPW and HIR to

perform acceptably and the imputation-based INR and CHT estimators to perform poorly. In design

3 we expect the opposite pattern. The AIPW and IPT estimators, due to their double-robustness

23Hirano, Imbens and Ridder’s (2003) theoretical results suggest using a series logit estimator with N1/9 polynomial
terms. For our designs 10001/9 ≈ 2.15 which we round up to 3, yielding the quadratic specification.



Figure 1: Conditional expectation function (CEF) of Y given X and the propensity score for the
Monte Carlo experiments.

attribute, should perform well in both designs 2 and 3. In design 4 we expect all estimators to

perform poorly.

Formally HIR, INR and CHT are consistent and attain Hahn’s (1998) bound in all designs.

IPW is never efficient but is consistent in designs 1 and 2. AIPW and IPT are consistent in designs

1, 2 and 3. In design 1 they attain Hahn’s (1998) bound. In design 2 their large sample variance

lies above Hahn’s (1998) bound but below that of parametric IPW. In design 3 their large sample

variance is actually smaller than Hahn’s (1998) bound. Recall that Hahn’s (1998) bound corresponds

to the semiparametric missing data model defined by Assumptions 3.1 to 3.4. The imposition of

Assumption 3.6 further lowers the bound. Therefore, under misspecification of the propensity score

the large sample variance of IPT and AIPW lies between that of the efficient parametric imputation

estimator and Hahn’s (1998) bound.24

For purposes of comparison we also include an inverse probability weighting estimator based on

the true propensity score. This estimator is consistent across all designs, but never efficient. We

also include an infeasible oracle estimator: the mean of Y across all missing as well as non-missing

observations. This estimator calibrates the cost of missingness in each of our designs.

Table 2 summarizes the results from the first design. As expected each estimator performs well,

with small sample properties well-appoximated by asymptotic distribution theory. An approximate

standard error for the Column 2 Monte Carlo scaled bias estimates is
p
(π/2)/5, 000 ≈ 0.0177;

differences in median bias are not significant across estimators for this design.

Table 3 reports results from the second design. In this design the imhomogeneity of E [Y |X]
creates problems for both the INR and CHT imputation estimators, with each exhibiting significant

median bias. Unsurprisingly, given the underlying smoothness of the propensity score, both the

IPW and HIR estimators do well. In this design the HIR procedure involves an overfit of the

propensity score. Consistent with the theoretical results of their paper, such overfitting results

in improved precision (cf., Graham 2007 for a related discussion). The Monte Carlo sampling

standard deviation of the HIR point estimates are about 10 percent lower than the corresponding

24Bang and Robins (2005, p. 966) comment that, when the propensity score is misspecified, but the outcome CEF
is not, AIPW is often ‘nearly’ as efficient as parametric imputation. This assessment is based on their Monte Carlo
experiments. In the designs whose results are reported in the lower half of Table 2 (p. 966) and the upper and lower
portions of Table 4 (p. 970) of their paper, the AIPW estimator with a misspecified propensity score has a Monte
Carlo sampling variance that lies below that of the AIPW estimator based on a correct model for the propensity score,
but above that of the parametric imputation estimator. Our Design 3 results replicate this ordering.



Table 2: Monte Carlo results for Design 1

(1)
Asymptotic

Bias

(2)
Median
Bias

(3)
Asymptotic
Std. Err.

(4)
Median
Std. Err.

(5)
Standard
Deviation

(6)
Coverage of
95% CI

Oracle 0.0000 -0.0363 0.0060 0.0060 0.0060 0.952
True Weights 0.0000 -0.0304 0.0114 0.0113 0.0114 0.947
IPW 0.0000 -0.0217 0.0091 0.0090 0.0092 0.948
HIR 0.0000 -0.0359 0.0083 0.0084 0.0085 0.946
INR 0.0000 -0.0098 0.0083 0.0082 0.0082 0.950
CHT 0.0000 -0.0240 0.0083 0.0082 0.0083 0.949
AIPW 0.0000 -0.0162 0.0083 0.0082 [0.0082] 0.0083 0.949 [0.948]
IPT 0.0000 -0.0224 0.0083 0.0082 0.0083 0.947

NOTES: Each row corresponds to a specific estimator as described in the main text. Column 1 reports the
scaled large sample bias of each estimator (i.e., its probability limit minus the true parameter divided by the
square root of its large sample variance, (AV ar(bγ)/N )1/2). Column 2 reports the median Monte Carlo bias
of each estimator scaled by its asymptotic standard error. Column 1 calibrates the scale of inconsistency for
each estimator, while a comparison of Columns 1 and 2 allows for an assessment of whether an estimator’s
actual sampling distribution is centered at is probability limit. Column 3 gives the large sample standard
error of each estimator (i.e., (AV ar(bγ)/N)1/2), Column 4 the median estimated standard error and column
5 the standard deviation of the point estimates across the 5,000 Monte Carlo replications. Column 6 reports
the actual coverage of a 95 percent Wald-based confidence interval (the asymptotic variance estimators
are described in a technical appendix available online). Two standard errors are provided for the AIPW
estimator. The first assumes that the working model for both E[Y |X ]and p(X)is correctly specified. This
is the covariance estimator typically used in applied work (e.g., Lunceford and Davidian 2004). The second,
given in the square brackets, treats the AIPW estimator as a sequential method-of-moments estimator with
standard errors calculated accordingly. These standard errors are valid whenever AIPW is consistent. The
mean number of series terms selected by the INR estimator is 2.25, while the median is 2.

Table 3: Monte Carlo results for Design 2

(1)
Asymptotic

Bias

(2)
Median
Bias

(3)
Asymptotic
Std. Err.

(4)
Median
Std. Err.

(5)
Standard
Deviation

(6)
Coverage of
95% CI

Oracle 0.0000 -0.0153 0.0050 0.0050 0.0049 0.954
True Weights 0.0000 -0.0207 0.0084 0.0083 0.0085 0.947
IPW 0.0000 -0.0149 0.0083 0.0082 0.0084 0.944
HIR 0.0000 -0.0031 0.0075 0.0075 0.0077 0.941
INR 0.0000 0.0849 0.0075 0.0080 0.0083 0.941
CHT 0.0000 0.0561 0.0075 0.0076 0.0076 0.948
AIPW 0.0000 -0.0150 0.0093 0.0105 [0.0092] 0.0095 0.968 [0.945]
IPT 0.0000 -0.0113 0.0080 0.0080 0.0081 0.945

NOTES: The mean number of series terms selected by the INR estimator is 3.1, while the median is 5. See
notes to Table 2 for additional information.



Table 4: Monte Carlo results for Design 3

(1)
Asymptotic

Bias

(2)
Median
Bias

(3)
Asymptotic
Std. Err.

(4)
Median
Std. Err.

(5)
Standard
Deviation

(6)
Coverage of
95% CI

Oracle 0.0000 0.0217 0.0060 0.0060 0.0061 0.950
True Weights 0.0000 -0.0360 0.0104 0.0103 0.0105 0.943
IPW -0.4042 -0.4181 0.0074 0.0073 0.0075 0.933
HIR 0.0000 -0.3977 0.0079 0.0073 0.0075 0.932
INR 0.0000 -0.0061 0.0079 0.0074 0.0078 0.936
CHT 0.0000 0.0014 0.0079 0.0074 0.0076 0.943
AIPW 0.0000 -0.0005 0.0074 0.0074 [0.0074] 0.0076 0.945 [0.942]
IPT 0.0000 0.0017 0.0074 0.0073 0.0076 0.942

NOTES: The mean number of series terms selected by the INR estimator is 3.06, while the median is 2.
See notes to Table 2 for additional information.

IPW estimates (cf., Column 5).

Both AIPW and IPT estimators also perform well. When both E [Y |X] and p (X) are correctly
modelled the two estimators are first-order equivalent and, if the results from Design 1 are indicative,

have similar small sample properties. However under partial misspecification they are no longer first-

order equivalent. In design 2, while both are consistent, their asymptotic variances differ, with IPT

being more precisely determined (Columns 1 and 3 of Table 3). The small sample properties of the

two estimators mirror their large sample ones. Both are approximately median unbiased, but the

sampling variability of the IPT estimator is about 10 percent lower than that of AIPW (Columns

2 and 5 of Table 3).

Table 4 reports results from the third design. In this case the IPW and HIR perform extremely

poorly, reflecting their fragility vis-a-vis misspecification of the propensity score. The remaining

estimators all perform well. Importantly, the AIPW and IPT estimators, while based on misspec-

ified models for the propensity score, are nevertheless consistent. However, as in design 2, their

asymptotic variances differ with IPT’s again being smaller, albeit negligibly so. These large sample

properties are reflected in small samples. In design 3 both AIPW and IPW are approximately

median unbiased with similar sampling variances (Columns 2 and 5 of Table 4).

Table 5 reports results from the our fourth, and final, design. In this design the AIPW and IPT

estimators are formally inconsistent as is IPW. Formally HIR, INR and CHT are consistent and

efficient. In practice all estimators, with the exception of IPT, exhibit significant median bias.

The performance of IPT across designs 2 and 3 highlights the practical value of using a ‘doubly

robust’ estimator. If either the propensity score or outcome CEF is well approximated by the implicit

parametric models used, then IPT will perform well. While the HIR, INR and CHT estimators have

attractive large sample properties irrespective of the form of the propensity score and outcome CEF,

in practice their small performance is highly sensitive to the smoothness of one of these two functions.

The HIR estimator performs well when the propensity score is smooth, but very poorly when it

is not. The INR and CHT imputation estimators, in contrast, perform best when the outcome

response is smooth.



Table 5: Monte Carlo results for Design 4

(1)
Asymptotic

Bias

(2)
Median
Bias

(3)
Asymptotic
Std. Err.

(4)
Median
Std. Err.

(5)
Standard
Deviation

(6)
Coverage of
95% CI

Oracle 0.0000 -0.0024 0.0050 0.0050 0.0051 0.946
True Weights 0.0000 -0.0159 0.0081 0.0080 0.0081 0.948
IPW 0.0691 0.0442 0.0071 0.0070 0.0071 0.946
HIR 0.0000 0.0513 0.0071 0.0066 0.0066 0.947
INR 0.0000 0.2631 0.0071 0.0065 0.0073 0.913
CHT 0.0000 0.9864 0.0071 0.0066 0.0067 0.803
AIPW -0.0790 -0.1118 0.0073 0.0073 [0.0073] 0.0073 0.947 [0.949]
IPT 0.0536 0.0269 0.0071 0.0071 0.0071 0.946

NOTES: The mean number of series terms selected by the INR estimator is 5, while the median is 5. See
notes to Table 2 for additional information.

The Monte Carlo experiments also highlight differences between the AIPW estimator of Robins,

Rotnitzky and Zhao (1994) and our IPT procedure. Under misspecification of either E [Y |X ] or
p (X), but not both simultaneously, they remain consistent but have different large sample variances.

In the designs considered here IPT has a smaller asymptotic sampling variance than AIPW in such

cases.

6.2 Application to National Supported Work (NSW) demonstration

LaLonde (1986), in an influential paper, compared a variety of non-experimental program evaluation

estimators with an experimental benchmark using data from the National Supported Work (NSW)

demonstration, the Panel Study of Income Dynamics (PSID) and the Current Population Survey

(CPS). Dehejia and Wahba (1999) revisited LaLonde’s work using newer non-experimental program

evaluation estimators. In this section we examine LaLonde’s data once again. We use IPT to

estimate the effect of NSW participation on post-treatment earnings. As our purposes are more

illustrative than substantive, we refer the reader to LaLonde (1986) and Dehejia and Wahba (1999)

for full details on the NSW demonstration and the particular data extracts employed here.25

The evaluation dataset consists of 297 NSW participants and 425 controls. Assignment to partic-

ipation was random, hence a difference in post-intervention earnings across NSW participants and

non-participants (in the evaluation dataset) can serve as a benchmark against which alternative,

non-experimental, estimators can be compared. A sample of (presumably) non-participants drawn

from the PSID and CPS is also available. These samples will form the basis of our non-experimental

estimate of NSW participation on post-treatment earnings (i.e., the average treatment effect on the

treated). In the language of Section 4 the subsample of NSW participants is the target sample. The

samples of non-participants drawn from the PSID and the CPS serve as auxiliary samples.

Table 6 reports the means of a variety of demographic characteristics as well as pre- and post-

intervention earnings amongst NSW participants, a subsample of NSW participants for which (pre-

intervention) 1974 as well as 1975 earnings are available, and the PSID and CPS controls. There

25The data we used was accessed from http://www.nber.org/%7Erdehejia/nswdata.html in the fall of 2007.



Table 6: Means of pre-intervention covariates amongst NSW participants and PSID/CPS ‘controls’

(1)
NSW

Participants

(2)
Dehejia-Wahba

Sample

(3)
PSID
Controls

(4)
CPS

Controls
Age 24.63 25.82 34.85 33.23
Years-of-Schooling 10.38 10.35 12.12 12.03
Black 0.80 0.84 0.25 0.07
Hispanic 0.09 0.06 0.03 0.07
Married 0.17 0.19 0.87 0.71
No Degree 0.73 0.71 0.31 0.30
1974 Earnings - 2,096 19,429 14,017
1975 Earnings 3,066 1,532 19,063 13,651
1978 Earnings (post intervention) 5,976 6,349 21,554 14,847
N 297 185 2,490 15,992

NOTES: The ‘Dehejia-Wahba Sample’ of Column (2) includes the 185 NSW participants with earnings
information available for both 1974 and 1975. LaLonde (1986) and Dehejia and Wahba (1999) provide full
details on each sample.

are substantial differences in the distribution of pre-treatment characteristics across the different

samples. Following the suggestion of Dehejia and Wahba (1999) we use the Column 2 restricted

subsample of NSW participants as our ‘target sample’ in the analysis which follows. Our target

sample only includes the 185 NSW participants for which we observe two years of pre-treatment

earnings.26

Using logistic regression we fitted a model for the propensity score using a merged sample

consisting of NSW participants and either the PSID or CPS controls. In both cases the propensity

score took a logit form with each of the pre-treatment characteristics listed in Table 6 entering

linearly. For non-binary characteristics, specifically age, years-of-schooling and the logarithm of pre-

treatment earnings in 1974 and 1975, we also included squared terms. While Dehejia and Wahba

(1999) suggest using a somewhat richer model for the propensity score, we nevertheless maintain

this specification throughout to keep our application as transparent and simple as possible.

Column 2 of Table 7 reports the difference in the means, and for non-binary variables, the

variances27 of pre-treatment characteristics in the target sample and the corresponding HIR inverse

probability weighted means (based on the propensity score specification described above) of both

the PSID (Panel A) and CPS (Panel B) controls. For comparison, Column 1 gives the raw difference

in (unweighted) means. Inverse probability weighting does lead to considerably more balance in

pre-treatment characteristics across NSW participants and controls drawn from both for the PSID

and the CPS. This balance, however, is far from perfect. Inverse probability weighting has difficulty

balancing the mean and variance of pre-intervention earnings (particularly when using the PSID as

a control sample).

26Our benchmark estimates of the effect of NSW participation on earnings also use just those NSW controls for
which we observe two years of pre-treatment earnings.
27Actually we report uncentered second moments.



Table 7: Difference between means of pre-intervention covariates amongst NSW participants and PSID/CPS ‘controls’ before and after reweighting

Panel A: PSID Controls Panel B: CPS Controls
(1) (2) (3) (1) (2) (3)

No Weights HIR-IPW Weights IPT Weights No Weights HIR-IPW Weights IPT Weights
Age 9.03 -2.33 0 7.41 0.65 0
Age2 606.14 -144.01 0 508.51 37.02 0
Years-of-Schooling 1.77 -0.06 0 1.68 -0.03 0
(Years-of-Schooling)2 45.26 0.10 0 41.84 -1.09 0
Black -0.59 -0.06 0 -0.77 0.02 0
Hispanic -0.03 0.11 0 0.01 -0.01 0
Married 0.68 -0.12 0 0.52 -0.02 0
No Degree -0.40 -0.01 0 -0.41 0.01 0
log(1974 Earnings) 6.46 -1.04 0 5.77 -0.09 0
log(1974 Earnings)2 66.56 -9.14 0 56.96 -0.85 0
log(1975 Earnings) 5.68 1.04 0 5.19 0.09 0
log(1974 Earnings)2 61.69 3.38 0 53.71 -0.22 0

NOTES: The ‘HIR-IPW Weight’ attached to the ith unit (with Di= 0) equals
p(Xi,π)
1−p(Xi,π)

/
PN

i=1 (1−Di)
p(Xi,π)
1−p(Xi,π)

(see Hirano, Imbens and Ridder 2003). The
IPT weights are as described in Section 4 of the text. The target sample includes the 185 NSW participants with two years of pre-intervention earnings data.
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Table 8: Estimates of the ATT: NSW Demonstration

(1)
PSID
Controls

(2)
CPS

Controls

Experimental
1, 794
(669)

1, 794
(669)

HIR
−1, 370
(701)

1, 012
(834)

CHT
3, 240
(5, 415)

1, 308
(812)

IPT
2, 031
(752)

1, 068
(727)

NOTES: The ‘Experimental’ ATT estimate is a difference between the raw means of the 1978 earnings of
NSW participants and non-participants in the NSW evaluation dataset. The included group of participants
and non-participants are those for which earnings information in both 1974 and 1975 is available (see Dehejia
and Wahba (1999) for additional details).

By construction, the IPT estimator, reweights the PSID and CPS data to exactly match the

sample moments of the NSW participants target sample.28 Table 7 verifies this claim, showing that

after inverse probability tilting the differences in the two sets of sample moments are identically

zero (Column 3).

In Table 8 we report estimates of average effect of NSW participation, amongst participants,

on post-intervention earnings. (i.e., the ATT). The top row of the panel reports the ‘experimental’

ATT estimates based on the NSW evaluation dataset. The second two rows report estimates based

on the Hirano, Imbens and Ridder (2003) and Chen, Hong and Tarozzi (2008) procedures.29

Both the HIR and CHT estimators dramatically fail to reproduce the experimental benchmark

ATT estimate when using the PSID controls. When using the CPS controls they reproduce the

experimental benchmark up to sampling error. In contrast, our IPT estimates, reproduce the

experimental benchmark, again up to sampling error, for both sets of controls.

7 Summary

In this paper we have proposed a new estimator for semiparametric missing data and data combina-

tion problems. For both classes of problems our estimator is locally efficient and doubly robust. For

the class of missing data problems our procedure is first-order equivalent to the AIPW estimator

of Robins, Rotnitzky and Zhao (1994) when both the conditional mean of the identifying moment

and the propensity score are correctly specified. Under partial misspecification, however, the two

procedures, whilst both remaining consistent, have different large sample variances. For the class

of data combination problems we are aware of no alternative to IPT with comparable properties.

The attractive theoretical properties of our inverse probability tilting procedure stem from its

distinctive ‘exact balancing’ property. Our re-visit of LaLonde’s (1986) NSW evaluation and a series

of Monte Carlo experiments illustrate the good small sample performance of our procedure. While

28When ‘overlap’ is limited a valid set of balancing weights may not exist.
29Our implementation of Chen, Hong and Tarozzi (2008) is based on a least squares fit of NSW post-intervention

earnings on the same terms entering our HIR propensity score model.



IPT performs very well relative to several alternative estimation procedures in the Monte Carlo

designs we considered, before making strong prescriptions to practitioners more research is required

(cf., Imbens 2004).

Our basic estimation strategy is also applicable, with minor modification, to other, less standard,

missing data problems such as the additive nonignorable attrition model of Hirano, Imbens, Ridder

and Rubin (1998) or case-control designs. A feature of these problems is that a maximum likeli-

hood estimate of the propensity score is unavailable, rendering several other missing data methods

unusable. Appendix C discusses a number of additional problems to which IPT might be fruitfully

applied.

Developing connections between our approach and the recent literature on the estimation of

moment condition models by generalized empirical likelihood (GEL) would be an interesting area

for additional research. Our family of missing data discrepancies can be used, in a manner entirely

analogous to the GEL estimators described by Newey and Smith (2004), to estimate moment con-

dition models. In such cases κ in (11) may be chosen to calibrate the higher-order properties of

the IPT estimates. In that case it is possible to show that the higher-order bias of IPT is given

by Theorem 4.2 of Newey and Smith (2004, p. 228); with ϕ+3 (0, κ) replacing the ρ3 term in their

expression. This term is given by

ϕ+3 (0, κ) =
G2
¡
G−1 (κ)

¢
G1 (G−1 (κ))2

κ− 2.

Therefore choosing κ such that G2
¡
G−1 (κ)

¢
κ/G1

¡
G−1 (κ)

¢2
= 0 results in an estimator with the

same bias as the oracle GMM estimator which chooses the parameter by setting the optimal linear

combination of sample moments equal to zero. For G (·) logistic ϕ+3 (0, κ) = −2 for κ = 1/2. This is
equivalent to IPT estimation using a dual contrast function of

ϕ+ (v,Q) ∝ −v
2
− 1
4
exp [2v] .

It would be interesting to compare the small sample performance of this estimator with that of

various GEL estimators, for example, empirical likelihood (EL).

Returning to missing data problems, an open question is whether IPT has attractive higher-order

properties relative to, say, AIPW. Our Monte Carlo experiments establish that the two estimators

are distinct in practice as well as theory. For the case with data missing completely at random

(MCAR) we conjecture that IPT does exhibit attractive higher-order bias properties. Verifying this

conjecture would require taking stochastic expansions of each estimator. While this appears feasible

it is beyond the scope of this paper.

Finally, it should also be possible to develop globally efficient IPT estimators by allowing the

dimension of h (X) to increase with the sample size at the appropriate rate.



Appendices

A Computation

In this appendix we outline our algorithm for computing IPT point estimates of γ0. As noted in the main text,
estimation consists of three steps. The first step is standard, involving only the computation of sample means. The
second step is the calculation of the IPT weights. This step can be computationally challenging. The third step
involves weighted M-estimation and is application specific. Here we provide details on the first and second step of
estimation. Our proposed algorithm is a generalization of an idea developed by Owen (2001) for the computation of
empirical likelihood confidence intervals.

A.1 Missing data problems

We being by computing the full sample means of D and h (X) :

eQ =
1

N

N[
i=1

Di, eζ = 1

N

N[
i=1

h (Xi) .

We then solve for the inverse probability tilt of the D = 1 subsample:

max
δ1∈∆N1

lN1

�
δ1; eρ� , (43)

where eρ = ( eQ, eζ0)0, the set e∆N1 is defined below and

lN1

�
δ1; ρ

�
= t00δ

1 +
1

N1

N1[
i=1

ϕ+(t(Xi, ζ)
0δ1,Q).

The form of ϕ+(v,Q) is given by Equation (18) of the main text. For future reference we also have the first and
second derivatives

ϕ+1 (v,Q) = − Q

G (k (Q) v +G−1 (Q))
, ϕ+2 (v,Q) =

G1

�
k (Q) v +G−1 (Q)

�
G (k (Q) v +G−1 (Q))2

k (Q)Q

with k (Q) = −Q/G1

�
G−1 (Q)

�
< 0. It is straightforward to verify that ϕ+1 (0,Q) = ϕ+2 (0,Q) = −1, and hence that

the Fenchel conjugate is appropriately normalized. Also recall that δ1 =
�
η1, λ10

�0 are the 1+M Lagrange multiplier(s)
on the adding up and moment constraints in the primal problem (13), t0 = (1, 00)

0 and

t (Xi, ζ) =

�
1

h (Zi, ζ)

�
.

It is also helpful to establish the notational conventions ti (ζ) = t (Xi, ζ) and ti = t (Xi, ζ0) .
As noted in the main text, inspection of the minimum discrepancy problem (13) shows that a valid solution

requires each of the empirical probabilities to be bounded below by Q0/N1 and above by 1. The first restriction holds
automatically since G (·) is increasing with G (∞) = 1. The second restriction, however, implies a substantive domain
restriction on lN1

�
δ1; ρ

�
. In particular, excluding improper probability weights requires that the maximization (13)

occurs over the set e∆N1

def≡
q
δ1 : Q0/N1 < −ϕ+1 (ti(eζ)0δ1, eQ)/N1 < 1, i = 1, . . . ,N1

r
.

Instead of imposing these N1 nonlinear constraints directly we extend an idea due to Owen (2001). To describe this
idea it is helpful to first analyze the structure of the maximization problem in more detail. Differentiating lN1

�
δ1; ρ

�
with respect to δ1 gives a gradient vector of

∇δ1 lN1

�
δ1; ρ

�
1+M×1

= t0 +
1

N1

N1[
i=1

ϕ+1 (ti(ζ)
0δ1,Q)ti(ζ). (44)

Note that (44) will have an ‘exploding denominator’ when ti(ζ)
0δ1 is large and positive. Differentiating again gives a

Hessian matrix of

∇δ1δ1 lN1

�
δ1; ρ

�
1+M×1+M

=
1

N1

N1[
i=1

ϕ+2 (ti(ζ)
0δ1,Q)ti(ζ)ti(ζ)

0, (45)



which is a negative semi-definite function of δ1.30 Solving for eδ1 therefore involves maximizing a concave function over
a convex domain. This follows from the outer-product structure of (45) and strict concavity of ϕ+ (v,Q).

In order to avoid maximization over a restricted domain we redefine lN1

�
δ1; ρ

�
so that it is concave in δ1 over

R1+M without changing its value near the solution (cf., Owen 2001). At any valid solution the estimated probabilities
must lie between Q0/N1 and 1. As noted previously the lower-bound will be satisfied automatically for any valid IPT
contrast function. Let vi = ti (ζ)

0 δ1, then the second inequality requires that

vi <
1

k (Q0)

�
G−1

�
Q0

N1

�
−G−1 (Q0)

�
, i = 1, . . . ,N1

where the left-hand side of the above expression is a positive number. Let v∗N1
= 1

k(Q0)

k
G−1

�
Q0
N1

�
−G−1 (Q0)

l
.

Observe that v∗N1
→ ∞ as N1 → ∞, suggesting that, in large enough samples, computation can occur without

explicitly imposing the domain restriction.
Our modified estimator replaces ϕ+(v,Q0) in (43) with the hybrid function

ϕ◦(v,Q0)
def≡

�
ϕ+(v,Q0) v < v∗N1

aN1 + bN1v +
1
2
cN1v

2 v ≥ v∗N1

,

where aN1 , bN1 and cN1 are the solutions to

cN1 = ϕ+2 (v
∗
N1
,Q0)

bN1 + cN1v
∗
N1
= ϕ+1 (v

∗
N1
,Q0)

aN1 + bN1v
∗
N1
+

cN1

2
(v∗N1

)2 = ϕ+(v∗N1
,Q0).

This choice of coefficients ensures that ϕ◦(v∗N1
,Q0) equals ϕ+(v∗N1

,Q0) and also equality of first and second derivatives
at v∗N1

.
Solving these equations yields

cN1 = ϕ+2 (v
∗
N1
,Q0)

bN1 = ϕ+1 (v
∗
N1
,Q0)− ϕ+2 (v

∗
N1

,Q0)v
∗
N1

aN1 = ϕ+(v∗N1
,Q0)− ϕ+1 (v

∗
N1

,Q0)v
∗
N1
+

ϕ+2 (v
∗
N1
,Q0)

2
(v∗N1

)2 .

We then estimate δ1 by solving
max

δ1∈R1+M
l◦N1

�
δ1; eρ� ,

where

l◦N1

�
δ1; ρ

� def≡ t00δ
1 +

1

N1

N1[
i=1

ϕ◦(ti(ζ)
0δ1,Q). (46)

Since l◦N1

�
δ1; ρ

�
coincides with lN1

�
δ1; ρ

�
at valid solutions, solving the modified problem yields the same solution as

the original one. In practice it is useful to check that the domain restrictions are satisfied at the candidate solution
(i.e., the solution is a valid one). This can be done by checking that the probability weights sum to one and are
all bounded below by Q0/N1 and above by 1. In addition to providing a simple way to avoid maximization over a
restricted domain, using (46) in place of (43) avoids numerical problems caused by a ‘exploding denominator’ in (44).

We calculate eδ1 by applying gradient-based procedures to maximize l◦N1

�
δ1; eρ�. This is a concave unconstrained

maximization problem and hence straightforward to solve. The first and second derivatives are given by (44) and (45)
above with ϕ◦1(v, Q) and ϕ◦2(v,Q) replacing ϕ

+
1 (v,Q) and ϕ+2 (v,Q) where

ϕ◦1(v,Q) = 1 (v < v∗N1
) · ϕ+1 (v,Q) + 1 (v ≥ v∗N1

) · (bN1 + cN1v)

ϕ◦2(v,Q) = 1 (v < v∗N1
) · ϕ+2 (v,Q) + 1 (v ≥ v∗N1

) · cN1 .

To get starting values for this procedure we take a Taylor expansion of (44) around eδ1 = 0 to get
0 ' t0 − 1

N1

N1[
i=1

ti(eζ)−+ 1

N1

N1[
i=1

ti(eζ)ti(eζ)0,eδ1,
30As long as the ti(ζ) do not lie in a linear subspace of dimension less than 1 +M, it is a negative definite function

of δ1.



and use the solution eδ1 = �SN1
i=1 ti(

eζ)ti(eζ)0�−1 �N1t0 −SN1
i=1 ti(

eζ)� as starting values. Alternatively a 1 +M vector
of zeros can serve as starting values.

Calculation of eδ0 is entirely parallel with N0 and 1− eQ replacing N1 and eQ throughout and summation occurring
from N1 + 1 to N instead of 1 to N1.

Computational details for inverse logistic tilting In this subsection we provide closed form expressions for

ϕ(v,Q), ϕ+(v,Q) and ϕ◦(v,Q) when G (v) takes the logistic form. We begin by noting that G−1 (Q) = ln
�

Q
1−Q

�
and

hence that
k (Q) = −Q/G1

�
G−1 (Q)

�
= − (1−Q)−1 .

To derive the closed form expressions for ϕ (v,Q) and ϕ+ (v,Q) given in the paper involves applications of ‘integration
by substitution’: ] t=b

t=a

f (t) dt =
] u=h−1(b)

u=h−1(a)
f (h (u))h0 (u)du, (47)

where h0 (u) 6= 0 for all u ∈ [a, b].
We begin with the MD contrast function, ϕ (v,Q). Let u = Q

t
/
�
1− Q

t

�
= Q

t−Q and hence t =
�
1+u
u

�
Q = h (u) ,

we then have

ϕ (v,Q) = − v

k (Q)
G−1 (Q)− 1

k (Q)

] a

v

G−1 (Q/t)dt

= v (1−Q) ln

�
Q

1−Q

�
+ (1−Q)

] Q
a−Q

Q
v−Q

ln (u)

�
−Q

u2

�
du

∝ (v−Q) ln (v−Q)− v ln (1−Q)− (v−Q)

which is a normalized version of Nevo’s (2002) generalized exponential tilting contrast function. The normalized
criterion for the dual problem, ϕ+ (v,Q), is

ϕ+ (v,Q) = − 1

k (Q)

%
k (Q) v+G−1 (Q)

G (k (Q) v +G−1 (Q))
Q+

] a

Q/G(k(Q)v+G−1(Q))
G−1

�
Q

t

�
dt

&

= − 1

k (Q)

k (Q) v +G−1 (Q)
G (k (Q) v +G−1 (Q))

Q− 1

k (Q)

] Q
a−Q
G(k(Q)v+G−1(Q))

1−G(k(Q)v+G−1(Q))

ln (u)

�
− Q

u2

�
du

where the second line follows from integration by substitution with, once again, u = Q
t
/
�
1− Q

t

�
= Q

t−Q . Continuing
we have

ϕ+ (v,Q) = − 1

k (Q)

k (Q) v +G−1 (Q)
G (k (Q) v +G−1 (Q))

Q+
Q

k (Q)

�
u−1

−1 ln (u)− u−1
� Q
a−Q

G(k(Q)v+G−1(Q))
1−G(k(Q)v+G−1(Q))

∝ − Q

k (Q)

k (Q) v +G−1 (Q)
G (k (Q) v +G−1 (Q))

− Q

k (Q)

%
−1−G

�
k (Q) v+G−1 (Q)

�
G (k (Q) v+G−1 (Q))

ln

#
G
�
k (Q) v+G−1 (Q)

�
1−G (k (Q) v+G−1 (Q))

$
− 1−G

�
k (Q) v +G−1 (Q)

�
G (k (Q) v+G−1 (Q))

&
.

Using the facts that
G (v)

1−G (v)
= ev ,

1

G (v)
= 1 + e−v ,

to simplify further gives

ϕ+ (v,Q) ∝ −vQ−Q (1−Q) exp

�
v

1−Q
− ln

�
Q

1−Q

��
.

For completeness the following are handy for computation

ϕ+1 (v,Q) = −Q−Q exp

�
v

1−Q
− ln

�
Q

1−Q

��
ϕ+2 (v,Q) = − Q

1−Q
exp

�
v

1−Q
− ln

�
Q

1−Q

��
.

Calculating the modified version of the criterion function, ϕ◦(v,Q), is straightforward, but tedious. Using the



general expression for v∗N1
given above yields

v∗N1
= (1−Q) ln

�
N1 −Q

1−Q

�
,

and therefore

ϕ+(v∗N1
, Q) = −Q (1−Q) ln

�
N1 −Q

1−Q

�
− (1−Q) (N1 −Q)

ϕ+1 (v
∗
N1
, Q) = −N1

ϕ+2 (v
∗
N1
, Q) = −N1 −Q

1−Q
.

Using these expressions we can solve for the coefficients in the quadratic portion of ϕ◦(v,Q):

cN1 = −
N1 −Q

1−Q

bN1 = −N1 + (N1 −Q) ln

�
N1 −Q

1−Q

�
aN1 = − (1−Q) (N1 −Q)

+
1

2

�
ln

�
N1 −Q

1−Q

��2
− ln

�
N1 −Q

1−Q

�
+ 1

,
.

This gives a modified criterion function of

ϕ◦(v,Q) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−xQ−Q (1−Q) exp
k

v
1−Q − ln

�
Q

1−Q

�l
v < (1−Q) ln

�
N1−Q
1−Q

�
= − (1−Q) (N1 −Q)

�
1
2

k
ln
�
N1−Q
1−Q

�l2 − ln�N1−Q
1−Q

�
+ 1

�
−
k
N1 − (N1 −Q) ln

�
N1−Q
1−Q

�l
v

− 1
2
N1−Q
1−Q v2

v ≥ (1−Q) ln
�
N1−Q
1−Q

� .

Computational details for inverse linear probability tilting The CDF of a uniform random variable on [−1, 1]
is given by G (v) = 1

2 (1 + v) and hence G−1 (v) = 2v−1. This gives k (Q) = −2Q and hence an empirical discrepancy
of

ϕ (v,Q) = − v

k (Q)
G−1 (Q)− 1

k (Q)

] a

v

G−1 (Q/t)dt

=
v

2Q
(2Q− 1) + 1

2Q

] a

v

�
2Q

t
− 1
�
dt

∝ v− ln v.

The corresponding Fenchel conjugate is given by

ϕ+ (v,Q) =
1

2Q

%
−2Qv + 2Q− 1

1− v
+

] a

1
1−v

�
2Q

t
− 1
�
dt

&
∝ ln (1− v) .

Calculating the modified dual criterion function is relatively straightforward. We have ϕ+1 (v,Q0) = − (1− v)−1 and
ϕ+2 (v,Q0) = − (1− v)−2 and therefore v∗N1

= 1− 1/N1. This gives

cN1 = −N2
1

bN1 = −N1 +N2
1

�
1− 1

N1

�
= N2

1 − 2N1

aN1 = ln (1/N1) +N1

�
1− 1

N1

�
− N2

1

2

�
1− 1

N1

�2
= ln (1/N1)− N2

1

2
+ 2N1 − 3

2
,

and hence, after some re-arranging,

ϕ◦(v, Q0) =

+
ln (1− v) v < 1− 1/N1

ln (1/N1)− 3
2
+ 2N1 (1− v)− N2

1
2
(1− v)2 v ≥ 1− 1/N1

.



This is exactly the modification to the ln (1− v) function proposed by Owen (2001, p. 235).

A.2 Data combination problems

Computing the inverse probability tilt of the auxiliary sample in data combination problems follows the basis algorithm
outlined above. We begin by computing

eQ = 1

N

N[
i=1

Di, eζt = 1

Nt

Nt[
i=1

h (Xi) .

We then solve the dual problem
max

δa∈∆Na

lNa (δ
a; eρ) ,

where lNa (δ
a; ρ) = t00δ

a + 1
Na

SNa
i=Nt+1

ϕ+(t(Xi, ζ
t)0δa,Q), eρ = ( eQ, eζt0)0, the set e∆Na is defined below, and the form

of ϕ+(v,Q) is as given in Section 4 of the main text. The first and second derivatives of ϕ+(v,Q) are given by

ϕ+1 (v,Q) = −1−Q

Q

G(k (Q) v+G−1 (Q))
1−G(k (Q) v+G−1 (Q))

, ϕ+2 (v,Q) = −1−Q

Q

G1(k (Q) v +G−1 (Q))

[1−G(k (Q) v+G−1 (Q))]2
k (Q) .

The set e∆Na is given by
q
δa : 0 ≤ −ϕ+1 (ti(eζt)0δa, eQ)/Na < 1, i = Nt + 1, . . . , N

r
which ensures that the probabili-

ties attached to each support point of the auxiliary sample are between zero and one. The lower-bound requirement
will be satisfied automatically for any valid data combination contrast function. The upper bound is a substantive
domain restriction. Let vi = ti

�
ζt
�0
δ0; we require that for i = Nt + 1, . . . ,N

vi <
1

k (Q)

+
G−1

#�
1 +

1

Na

1−Q

Q

�−1$
−G−1 (Q)

,
.

Let v∗Na
= 1

k(Q)

�
G−1

�k
1 + 1

Na

1−Q
Q

l−1�−G−1 (Q)
�
(note that v∗Na → ∞ as Na → ∞). We define ϕ◦(v,Q0) as

above with Na and v∗Na replacing N1 and v∗N1
in the relevant expressions. The vector eδa is then computed using a

Newton-Raphson algorithm applied to the modified criterion function.

Computational details for inverse logistic tilting When the propensity score is logistic our algorithm is par-
ticularly straightforward to implement. We have k (Q) = 1, v∗Na = lnNa and.

ϕ+(v,Q0) = ϕ+1 (v,Q0) = ϕ+2 (v,Q0) = − exp [v] .

Our modified criterion function is thus given by

ϕ◦(v,Q0) =

� − exp [v] v < lnNa

−Na

�
1− lnNa +

1
2 (lnNa)

2 + (1− lnNa) v +
1
2v

2
�

v ≥ lnNa
.

We comment that this procedure is an apparently new algorithm for ET estimation.

B Proofs of theorems

B.1 Proof of Theorem 3.1

Since the IPT estimate of γ0 can be represented as the solution to a three-step sequential GMM problem, Theorem
3.1 follows from a direct application of Theorem 6.1 of Newey and McFadden (1994, p. 2178). Here we demonstrate
double robustness and derive expressions for the asymptotic variance of eγ under different assumptions.

The IPT procedure outlined in Section 3 consists of first estimating ρ0 by the full sample analog estimates

1

N

N[
i=1

m1(Zi, eρ) = 1

N

N[
i=1

#
Di − eQ

h (Xi)− eζ
$
=
1

N

N[
i=1

�
Di − eQ 0
0 IM

�
t(Xi, eζ) = 0. (48)

Second we solve (21) and (22) for eδ1 and eδ0. The corresponding first order conditions are
1

N

N[
i=1

m2(Zi, eρ, eδ) = 1

N

N[
i=1

#
t0 +

Di
Q
ϕ+1 (t(Xi, eζ)0eδ1, eQ)t(Xi, eζ)

t0 +
1−Di
1−Q ϕ+1 (t(Xi, eζ)0eδ0, 1− eQ)t(Xi, eζ)

$
, (49)



where δ =
�
δ10, δ00

�0
.

Consistency of the solution to (49) follows from standard M-estimator arguments. Since ϕ+(v,Q) is globally
concave sufficient variation in h (X) in each of the two subsamples will generally suffice for (48) to have a unique
solution.

In the third step γ0 is estimated by the solution to

1

N

N[
i=1

m3(Zi, eρ, eδ, eγ) = N1[
i=1

eπ1iψ1 (Y1i,Xi,eγ)− N[
i=N1+1

eπ0iψ0 (Y0i,Xi, eγ) (50)

= − 1
N

+
N[
i=1

Diϕ
+
1 (t(Xi, eζ)0eδ1, eQ)eQ ψ1 (Y1i,Xi, eγ)

− (1−Di)ϕ
+
1 (t(Xi, eζ)0eδ0, 1− eQ)
1− eQ ψ0 (Y0i,Xi,eγ), = 0

where eρ is fixed at its first step, and eδ at its second step, value.
Demonstration of ‘double robustness’ First consider the case where the propensity score is correctly modelled
(i.e., Assumption 3.5 holds) but where E [ψ1 (Y1,X, γ0)|X] and E [ψ0 (Y0,X, γ0)|X] are not linear functions of h (X)
(i.e., Assumption 3.6 does not hold). By the one to one mapping between δ1 and (α0, β0) and δ0 and (α0, β0), and
iterated expectations we then have

E [m3(Z, ρ0, δ0, γ)] = E
%

D

G
�
α0 + h (X)0 β0

�ψ1 (Y1,X, γ)− 1−D

1−G
�
α0 + h (X)0 β0

�ψ0 (Y0, X, γ)

&
= E [ψ1 (Y1,X, γ)− ψ0 (Y0,X, γ)] ,

which by Assumption 3.1 is uniquely zero at γ = γ0.
Consistency of eγ for γ0 then follows under additional (standard) regularity conditions (e.g., Newey and McFadden

1994, Section 2.5). These conditions, which include moment and continuity conditions on ψ (Z, γ) and consistency ofeδ for δ0, ensure that
1

N

N[
i=1

m3(Zi, eρ, eδ, γ)
converges uniformly in γ ∈ G ⊂ RK to E [m3(Z, ρ0, δ0, γ)] = E [ψ1 (Y1, X, γ)− ψ0 (Y0,X, γ)] = E [ψ(Z, γ)] .

Now consider the case where the propensity score is misspecified, but E [ψ1 (Y1,X, γ0)|X] and E [ψ0 (Y0,X, γ0)|X]
are linear functions of h (X). In this case denote the probability limits of eδ1 and eδ0 by δ1∗ and δ0∗. By Assumptions
3.1, 3.3 and 3.4 and iterated expectations we have

E [m3(Z, ρ0, δ∗, γ)] = E
�

D

G(k(Q0)t(X, ζ0)0δ1∗ +G−1(Q0))
ψ1 (Y1,X, γ)

− 1−D

G (k(1−Q0)t(X, ζ0)0δ0∗ +G−1(1−Q0))
ψ0 (Y0,X, γ)

�
= E

�
p0 (X)

G(k(Q0)t(X, ζ0)0δ1∗ +G−1(Q0))
E [ψ1 (Y1,X, γ)|X]

− 1− p0 (X)

G (k(1−Q0)t(X, ζ0)0δ0∗ +G−1(1−Q0))
E [ψ0 (Y0,X, γ)|X]

+
D

G(k(Q0)t(X, ζ0)0δ1∗ +G−1(Q0))
Π∗1t(X, ζ0)

− 1−D

G (k(1−Q0)t(X, ζ0)0δ0∗ +G−1(1−Q0))
Π∗0t(X, ζ0)

�
= E

�
p0 (X)

G(k(Q0)t(X, ζ0)0δ1∗ +G−1(Q0))
{E [ψ1 (Y1,X, γ)|X]− E [ψ1 (Y1,X, γ0)|X]}

− 1− p0 (X)

G (k(1−Q0)t(X, ζ0)0δ0∗ +G−1(1−Q0))
{E [ψ0 (Y0,X, γ)|X] − E [ψ0 (Y0,X, γ0)|X]}

�
Clearly E [m2(Z, ρ0, δ∗, γ)] = 0 at γ = γ0, however it need not be true that γ0 is a unique solution. If ψ0 (Y0,X, γ)
does not depend on γ then

E [m3(Z, ρ0, δ∗, γ)] = E
�

p0 (X)

G(k(Q0)t(X, ζ0)0δ1∗ +G−1(Q0))
{E [ψ1 (Y1,X, γ)|X]− E [ψ1 (Y1,X, γ0)|X]}

�
.



Since p0 (x) /G(k(Q0)t(X, ζ0)
0δ1∗ + G−1(Q0)) > 0 for all x ∈ X Assumption 3.1 implies that E [m3(Z, ρ0, δ∗, γ)] = 0

uniquely at γ = γ0 for that case. If ψ1 (Y1,X, γ) does not depend on γ a parallel argument applies. One of these two
conditions hold for many of our motivating examples. In other cases we must assume uniqueness of the solution to
E [m3(Z, ρ0, δ∗, γ0)] = 0 by hypothesis.

Asymptotic normality As long as at least one of Assumptions 3.5 and 3.6 it follows from standard GMM results
that √

N(eγ − γ0)→ N (0,Υ0) ,

where Υ0 is the lower K ×K block of M−1
0 V0M

−10
0 where M0 and V0 are given by

M0 = E
�
∂m(Z, ρ0, δ0, γ0)

∂θ0

�
=

⎛⎝ M1ρ 0 0
M2ρ M2δ 0
M3ρ M3δ M3γ

⎞⎠ , V0 = E
�
m(Z, ρ0, δ0, γ0)m(Z, ρ0, δ0, γ0)

0� , (51)

with θ = (ρ0, δ0, γ0)0. Define

p1∗ (X) = G(k(Q0)t(X, ζ0)
0δ1∗ +G−1(Q0))

1− p0∗ (X) = G(k(1−Q0)t(X, ζ0)
0δ0∗ +G−1(1−Q0))

and

A1
1+M×1

=

⎛⎝ ∂
∂Q

q
1

G(k(Q0)t(X,ζ0)0δ1∗+G−1(Q0))

r
∂
∂ζ

q
1

G(k(Q0)t(X,ζ0)0δ1∗+G−1(Q0))

r ⎞⎠
=

⎛⎝ −G1(k(Q0)t(X,ζ0)
0δ1∗+G

−1(Q0))

G(k(Q0)t(X,ζ0)0δ1∗+G−1(Q0))2

k
k1(Q0)t(X, ζ0)

0δ1∗ +G1

�
G−1(Q0)

�−1l
−G1(k(Q0)t(X,ζ0)

0δ1∗+G
−1(Q0))

G(k(Q0)t(X,ζ0)0δ1∗+G−1(Q0))2

k
k(Q0)

�
0 −IM

�0
δ1∗
l ⎞⎠ ,

where the ∗ subscripts emphasize the possibility that the (implicitly defined) propensity score is incorrect.
The vector A0 is defined analogously to that of A1 with 1 −Q0 and δ0∗ replacing Q0 and δ1∗ throughout. Using

these definition we can write non-zero elements of M0 as

M1ρ
1+M×1+M

= −I1+M

M2ρ
2(1+M)×1+M

= E

⎡⎢⎢⎣ Dt(X, ζ0)A
0
1 − D

p1∗(X)

�
0 0
0 −IM

�
(1−D) t(X, ζ0)A

0
0 − 1−D

1−p0∗(X)

�
0 0
0 −IM

�
⎤⎥⎥⎦

M3ρ
K×1+M

= E
�
Dψ1(Y1,X, γ0)A

0
1 − (1−D)ψ0(Y0,X, γ0)A

0
0

�
M2δ

2(1+M)×2(1+M)
= E

⎡⎢⎣
⎛⎜⎝ Dk(Q)G1(G−1(p1∗(X)))

p1∗(X)2
0

0
(1−D)k(1−Q)G1(G−1(1−p0∗(X)))

(1−p0∗(X))
2

⎞⎟⎠⊗ t(X, ζ0)t(X, ζ0)
0

⎤⎥⎦
M3δ

K×2(1+M)
= −E

%
Dk(Q)G1

�
G−1

�
p1∗ (X)

��
p1∗ (X)

2 ψ1 (Y1,X, γ0) t(X, ζ0)
0,

− (1−D)k(1−Q)G1

�
G−1

�
1− p0∗ (X)

��
(1− p0∗ (X))

2
ψ0 (Y0,X, γ0) t(X, ζ0)

0
&

M3γ
K×K

= E
�

D

p1∗ (X)
∂ψ1 (Y1i,Xi, γ0)

∂γ0
− 1−D

1− p0∗ (X)
∂ψ0 (Y0i,Xi, γ0)

∂γ0

�
.

These expressions can be used to construct an analog estimate of Υ0 in the usual way (e.g., Newey and McFadden 1994,
Section 4). This estimate will be consistent for the asymptotic sampling variance of eγ as long as one of Assumptions
3.5 or 3.6 holds; we therefore recommend this estimator in practice.

B.2 Proof of Theorem 3.2

We provide interpretable forms for the large sample variance of eγ under two cases: ρ0 is (i) known and (ii) unknown.
A third case, where some elements of ρ0 are known and others are not, follows directly. In both cases we maintain
Assumptions 3.5 and 3.6.



Form of Υ0 when ρ0 is known This case corresponds to the result given in Corollary 3.2. The estimator is
equivalent to GMM using the moment function

m (Z, δ, γ) =

⎛⎝ m1(Z)
m2(Z, δ)
m3(Z, δ, γ)

⎞⎠ ,

with m1(Z) = m1(Z, ρ0), m2(Z, δ) = m2(Z, ρ0, δ) and m3(Z, δ, γ) = m3(Z, ρ0, δ, γ). In this case, since ρ0 is known,
m1(Z) plays the role of an auxiliary moment (cf., Hellerstein and Imbens 1999, Qian and Schmidt 1999).

The relevant Jacobian is now

M0 = E
k

∂m(Z,δ,γ)
∂δ0

∂m(Z,δ,γ)
∂γ0

l
=

⎛⎝ 0 0
M2δ 0
M3δ M3γ

⎞⎠ .

where the three non-zero elements of M0 are given by

M2δ
2(1+M)×2(1+M)

= E

⎡⎣⎛⎝ k(Q)G1(G−1(p0(X)))
p0(X)

0

0
k(1−Q)G1(G−1(1−p0(X)))

1−p0(X)

⎞⎠⊗ t(X, ζ0)t(X, ζ0)
0

⎤⎦
M3δ

K×2(1+M)
= −E

%
k(Q)G1

�
G−1 (p0 (X))

�
p0 (X)

ψ1 (Y1,X, γ0) t(X, ζ0)
0,

−k(1−Q)G1

�
G−1 (1− p0 (X))

�
1− p0 (X)

ψ0 (Y0,X, γ0) t(X, ζ0)
0
&

M3γ
K×K

= E
�
∂ψ (Z, γ0)

∂γ0

�
=Γ0,

while those of V0 are given by

V11
1+M×1+M

= E
�

Q0 (1−Q0) (D−Q)h(X, ζ0)
0

h(X, ζ0) (D−Q) h(X, ζ0)h(X, ζ0)
0

�

V21
2(1+M)×1+M

= −E

⎡⎢⎢⎣
1−Q0 0
0 h(X, ζ0)h(X, ζ0)

0

−Q0 0
0 h(X, ζ0)h(X, ζ0)

0

⎤⎥⎥⎦
V22

2(1+M)×2(1+M)
= E

%
t(X,ζ0)t(X,ζ0)

0
p0(X)

− t0t
0
0 −t0t00

−t0t00 t(X,ζ0)t(X,ζ0)
0

1−p0(X) − t0t
0
0

&

V31
K×1+M

= E
��

ψ1 (Y1,X, γ0) −ψ0 (Y0,X, γ0)
�� 1−Q0 h(X, ζ0)

0

−Q0 h(X, ζ0)
0

��
V32

K×2(1+M)
= E

k�
− q1(X;γ0)

p0(X)
q0(X;γ0)
1−p0(X)

�
t(X, ζ0)

0
l

V33
K×K

= E
�
Σ1 (X; γ0)

p0 (X)
+
1− p0 (X)

p0 (X)
q1 (X; γ0) q1 (X; γ0)

0 + q1 (X; γ0) q1 (X; γ0)
0

+
Σ0 (X; γ0)

1− p0 (X)
+

p0 (X)

1− p0 (X)
q0 (X; γ0) q0 (X; γ0)

0 + q0 (X; γ0) q0 (X; γ0)
0
�
.

The forms of both M0 and V0 have been simplified by using Assumptions 3.5 or 3.6. The asymptotic variance-
covariance matrix is given by

�
M 0
0V
−1
0 M0

�−1
. An analog estimate of this can be constructed in the usual way. In

practice M0 and V0 should be estimated without exploiting the simplifications due to Assumptions 3.5 or 3.6.
Under Assumption 3.6 we have

E [ψ1 (Y1,X, γ0)|X] = Π∗1t(X, ζ0), E [ψ0 (Y0,X, γ0)|X] = Π∗0t(X, ζ0)

for Π∗0 = (ς0 +Π0ζ0,Π0) and Π∗1 = (ς1 +Π1ζ0,Π1) .



Applying this result and iterated expectations to M3δ yields

M3δ = −E
%
k(Q)G1

�
G−1 (p0 (X))

�
p0 (X)

E [ψ1 (Y1,X, γ0)|X] t(X, ζ0)
0,

−k(1−Q)G1

�
G−1 (1− p0 (X))

�
1− p0 (X)

E [ψ0 (Y0,X, γ0)|X] t(X, ζ0)
0
&

= −E
%
k(Q)G1

�
G−1 (p0 (X))

�
p0 (X)

Π∗1t(X, ζ0)t(X, ζ0)
0,

−k(1−Q)G1

�
G−1 (1− p0 (X))

�
1− p0 (X)

Π∗0t(X, ζ0)t(X, ζ0)
0
&

= − � Π∗1 −Π∗0
�
E

⎡⎣⎛⎝ k(Q)G1(G−1(p0(X)))
p0(X)

0

0
k(1−Q)G1(G−1(1−p0(X)))

1−p0(X)

⎞⎠⊗ t(X, ζ0)t(X, ζ0)
0

⎤⎦
= − � Π∗1 −Π∗0

�
M2δ,

which then gives

M3δM
−1
2δ V22 = −

�
Π∗1 −Π∗0

�
E

%
t(X,ζ0)t(X,ζ0)

0
p0(X)

− t0t
0
0 −t0t00

−t0t00 t(X,ζ0)t(X,ζ0)
0

1−p0(X) − t0t
0
0

&
= −E

k
Π∗1 t(X,ζ0)t(X,ζ0)

0
p0(X)

−Π∗1t0t
0
0 +Π∗0t0t

0
0 −Π∗1t0t00 − Π∗0t(X,ζ0)t(X,ζ0)

0
1−p0(X) +Π∗0t0t

0
0

l
= E

k�
− q1(X;γ0)

p0(X)
q0(X;γ0)
1−p0(X)

�
t(X, ζ0)

0
l

= V32

where the second to last line uses the fact that Π∗1t0t
0
0 −Π∗0t0t

0
0 = E [ψ1 (Y1,X, γ0)− ψ0 (Y0, X, γ0)] t

0
0 = 0.

This result and some straightforward algebra then give

�
M 0
0V
−1
0 M0

�−1
=

�
M−1
2δ V22M

−10
2δ 0

0 Γ−10
�
V33 −M3δM

−1
2δ V22M

−10
2δ M 0

3δ

�
Γ−100

�
.

Now observe that

M3δM
−1
2δ V22M

−10
2δ M 0

3δ =
�
Π∗1 −Π∗0

�
E
%

t(X,ζ0)t(X,ζ0)
0

p0(X)
− t0t

0
0 −t0t00

−t0t00 t(X,ζ0)t(X,ζ0)
0

1−p0(X) − t0t
0
0

&�
Π∗1
−Π∗0

�
=
�

Π∗1t(X,ζ0)t(X,ζ0)
0

p0(X)
−Π∗1t0t

0
0 +Π∗0t0t

0
0 −Π∗1t0t00 − Π∗0 t(X,ζ0)t(X,ζ0)

0
1−p0(X) +Π∗0t0t

0
0

�
×
�

Π∗1
−Π∗0

�
=
�

Π∗1t(X,ζ0)t(X,ζ0)
0

p0(X)
−Π∗0 t(X,ζ0)t(X,ζ0)

0
1−p0(X)

�� Π∗1
−Π∗0

�
=

q1 (X; γ0) q1 (X; γ0)
0

p0 (X)
+

q0 (X; γ0) q0 (X; γ0)
0

1− p0 (X)
.

Therefore the large sample variance of eγ when ρ0 is known is given by

Γ−10 E
�
Σ0 (X; γ0)

1− p0 (X)
+

Σ1 (X; γ0)

p0 (X)

�
Γ−100 ,

as claimed.

Form of Υ0 when ρ0 is unknown This case corresponds to the result given in Theorem 3.2. IPT is equivalent to
GMM using the moment function

m (Z, ρ, δ, γ) =

⎛⎝ m1(Z, ρ)
m2(Z, ρ, δ)
m3(Z, ρ, δ, γ)

⎞⎠ .



The variance of m (Z, ρ0, δ0, γ0) is the same as in the known ρ0 case, the Jacobian matrix partitioned as in (51) with

M1ρ
1+M×1+M

= −I1+M

M2ρ
2(1+M)×1+M

= E

⎡⎢⎢⎣ Dt(X, ζ0)A
0
1 − D

p0(X)

�
0 0
0 −IM

�
(1−D) t(X, ζ0)A

0
0 − 1−D

1−p0(X)

�
0 0
0 −IM

�
⎤⎥⎥⎦

M3ρ
K×1+M

= E
�
Dψ1(Y1,X, γ0)A

0
1 − (1−D)ψ0(Y0,X, γ0)A

0
0

�
and all other elements are as defined in the known ρ0 case.

For this case note that

M3δM
−1
2δ V21 =

�
Π∗1 −Π∗0

�
E

⎡⎢⎢⎣
1−Q0 0
0 h(X, ζ0)h(X, ζ0)

0

−Q0 0
0 h(X, ζ0)h(X, ζ0)

0

⎤⎥⎥⎦

=
�
ς1 +Π1ζ0 Π1 −ς0 −Π0ζ0 −Π0

�
E

⎡⎢⎢⎣
1−Q0 0
0 h(X, ζ0)h(X, ζ0)

0

−Q0 0
0 h(X, ζ0)h(X, ζ0)

0

⎤⎥⎥⎦
= E

��
ψ1 (Y1,X, γ0) −ψ0 (Y0,X, γ0)

�� 1−Q0 h(X, ζ0)
0

−Q0 h(X, ζ0)
0

��
= V31,

which, along with the equality M3δM
−1
2δ V22 = V32, and some tedious but straightforward algebra implies that�

M−1
0 V −10 M−10

0

�
33
= Γ−10 V33Γ

−10
0 − Γ−10 M3δM

−1
2δ V22M

−10
2δ M 0

3δΓ
−10
0

+ Γ−10
�
M3ρ −M3δM

−1
2δ M2ρ

�
M−1
1ρ V11M

−10
1ρ

�
M3ρ −M3δM

−1
2δ M2ρ

�0
Γ−100 ,

where we can also show that
M3ρ −M3δM

−1
2δ M2ρ =

�
0 Π1 −Π0

�
.

This gives a large sample variance of eγ when ρ0 is unknown of

Γ−10 E
�
Σ0 (X; γ0)

1− p0 (X)
+

Σ1 (X; γ0)

p0 (X)
+ [q1 (X; γ0)− q0 (X; γ0)] [q1 (X; γ0)− q0 (X; γ0)]

0
�
Γ−100

as claimed.

B.3 Proof of Corollary 3.1

When the data are MCAR we have eδ1 p→ 0 and eδ0 p→ 0. Recalling that k(Q) = −Q/G1

�
G−1 (Q)

�
then gives

M2δ = −I2 ⊗
�
1 0
0 Ωhh

�
, M3δ =

�
E [ψ1 (Y1,X, γ0)] Ωψ1h −E [ψ0 (Y0,X, γ0)] −Ωψ0h

�
, M3γ = Γ0

as well as M3ρ −M3δM
−1
2δ M2ρ =

�
0 (Ωψ1h −Ωψ0h)Ω

−1
hh

�
and

V22 =

⎛⎜⎜⎜⎝
1
Q0
− 1 0 −1 0

0 Ωhh
Q0

0 0

−1 0 1
1−Q0

− 1 0

0 0 0 Ωhh
1−Q0

⎞⎟⎟⎟⎠
V33 =

Ωψ1ψ1 + E [ψ1 (Y1,X, γ0)]E [ψ1 (Y1,X, γ0)]
0

Q0
+

Ωψ0ψ0 + E [ψ0 (Y0,X, γ0)]E [ψ0 (Y0,X, γ0)]
0

1−Q0
.



This gives M3δM
−1
2δ = − � E [ψ1 (Y1,X, γ0)] Ωψ1hΩ

−1
hh −E [ψ0 (Y0,X, γ0)] −Ωψ0hΩ

−1
hh

�
and hence

M3δM
−1
2δ V22M

−10
2δ M 0

3δ =
�
E [ψ1 (Y1,X, γ0)] Ωψ1hΩ

−1
hh −E [ψ0 (Y0,X, γ0)] −Ωψ0hΩ

−1
hh

�
×

⎛⎜⎜⎜⎝
1
Q0
− 1 0 −1 0

0 Ωhh
Q0

0 0

−1 0 1
1−Q0

− 1 0

0 0 0 Ωhh
1−Q0

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

E [ψ1 (Y1,X, γ0)]
0

Ω−1hhΩ
0
ψ1h−E [ψ0 (Y0,X, γ0)]

0

−Ω−1hhΩ0ψ0h

⎞⎟⎟⎠

=
�

E[ψ1(Y1,X,γ0)]
Q0

Ωψ1h
Q0

−E[ψ0(Y0,X,γ0)]
1−Q0

− Ωψ0h
1−Q0

�⎛⎜⎜⎝
E [ψ1 (Y1,X, γ0)]

0

Ω−1hhΩ
0
ψ1h−E [ψ0 (Y0,X, γ0)]

0

−Ω−1hhΩ0ψ0h

⎞⎟⎟⎠
=
E [ψ1 (Y1,X, γ0)]E [ψ1 (Y1,X, γ0)]

0

Q0
+

Ωψ1hΩ
−1
hhΩ

0
ψ1h

Q0

+
E [ψ0 (Y0,X, γ0)]E [ψ0 (Y0,X, γ0)]

0

1−Q0
+

Ωψ0hΩ
−1
hhΩ

0
ψ0h

1−Q0
.

Similarly �
M3ρ −M3δM

−1
2δ M2ρ

�
M−1
1ρ V11M

−10
1ρ

�
M3ρ −M3δM

−1
2δ M2ρ

�0
= (Ωψ1h − Ωψ0h)Ω

−1
hh (Ωψ1h −Ωψ0h)

0

= ΩψhΩ
−1
hhΩψ0h.

The asymptotic variance of eγ is thus given by
Γ−10

#
Ωψ1ψ1 − Ωψ1hΩ

−1
hhΩ

0
ψ1h

Q0
+

Ωψ0ψ0 − Ωψ0hΩ
−1
hhΩ

0
ψ0h

1−Q0
+ ΩψhΩ

−1
hhΩψ0h

$
Γ−100 ,

which, when Assumption 3.6 holds, can be shown to be identical to the variance bound.

B.4 Proof of Theorem 4.1

As in the missing data case, the IPT estimate of γ0 in the data combination case can be represented as a solution to
a three-step sequential GMM problem. First, we estimate ρ0 =

�
Q0, ζ

t0
0

�0 using the target sample analog estimates
1

N

N[
i=1

m1(Zi, eρ) = 1

N

N[
i=1

# Di
Q
− 1

Di
Q
(h (Xi)− eζt)

$
= 0.

Note that ζt0 = E [h (X)|D = 1] = Et [h (X)].
Second, we find eδa by solving

1

N

N[
i=1

m2(Zi, eρ, eδa) = 1

N

N[
i=1

�
t0 +

1−Di

1− eQ ϕ+1 (t(Xi, eζt)0eδa, eQ)t(Xi, eζt)� = 0,
where

ϕ+1 (t(Xi, eζt)0eδa, eQ) = −1− eQeQ G(k( eQ)t(Xi, eζt)0eδa +G−1( eQ))
1−G(k( eQ)t(Xi, eζt)0eδa +G−1( eQ)) .

In the third, and final, step, we estimate γ0 by solving

0 =
1

N

N[
i=1

m3(Zi, eρ, eδa, eγ) = 1

N

N[
i=1

�
DieQ ψ1 (Y1i,Xi, eγ) + 1−Di

1− eQ ϕ+1 (t(Xi, eζt)0eδa, eQ)ψ0 (Y0i,Xi,eγ)� .

Demonstration of ‘double robustness’ We first consider the case where the propensity score is correctly specified,
but the conditional expectation functions, E [ψ1 (Y1,X, γ0)|X] and E [ψ0 (Y0,X, γ0)|X], are not linear in h (X). We
have, by iterated expectations,

E [m3 (Zi, ρ0, δ
a
0 , γ)] = E [ψ1 (Y1,X, γ)|D = 1] − E

�
p0 (X)

Q0
E [ψ0 (Y0,X, γ)|X,D = 1]

�
= E [ψ1 (Y1,X, γ)|D = 1]− E [ψ0 (Y1,X, γ)|D = 1]

= E [ψ (Z, γ)|D = 1]



which is uniquely zero at γ = γ0. Consistency of eγ for γ0 then follows under regularity conditions.
Now consider the case where the propensity score is misspecified, but Assumption 3.6 holds. Denote the probability

limit of eδa by δa∗ and define pa∗ (X) = G(k (Q0) t
�
Xi, ζ

t
0

�0
δa∗ +G−1 (Q0)) and Π∗0 =

�
ς0 +Π0ζ

t
0,Π0

�
. Observe that the

second step moment restriction implies the population equality

0 = E
�
t0 − 1−D

1−Q0

1−Q0

Q0

pa∗ (X)
1− pa∗ (X)

t(X, ζt0)

�
.

Multiplying through by Π∗0 and rearranging gives, using Assumption 3.6,

E [ψ0 (Y0,X, γ)|D = 1] = E
�
1− p0 (X)

Q0

pa∗ (X)
1− pa∗ (X)

E [ψ0 (Y0,X, γ)|X]
�

since Π∗0t0 = ς0 +Π0ζ
t
0 = E [ψ0 (Y0,X, γ)|D = 1] . This equality is a consequence of linearity of E [ψ0 (Y0,X, γ)|X] in

h (X) and the imposition of the moment balancing constraints.
Using this result, Assumptions 4.1 to 4.4, and iterated expectations we have

E [m3(Z, ρ0, δ
a
∗ , γ)] = E [ψ1 (Y1,X, γ)|D = 1] − E

�
1− p0 (X)

Q0

pa∗ (X)
1− pa∗ (X)

E [ψ0 (Y0, X, γ)|X]
�

= E [ψ1 (Y1,X, γ)|D = 1] − E [ψ0 (Y0,X, γ)|D = 1]

= E [ψ (Z, γ)|D = 1]

which is uniquely zero at γ = γ0 by Assumption 4.1.

Asymptotic normality If Assumptions 4.1 to 4.4 hold as well as either Assumption 3.5 or 3.6, we can use the
standard GMM results to show that √

N(eγ − γ0)
D→ N (0,Υ0),

where Υ0 is the lower K ×K block of M−1
0 V0M

−10
0 with M−1

0 and V0 given by

M−1
0 =

⎛⎝ M−1
1ρ 0 0

−M−1
2δ M2ρM

−1
1ρ M−1

2δ 0
M−1
3γ

�
M3ρ −M3δM

−1
2δ M2ρ

�
M−1
1ρ M−1

3γ M3δM
−1
2δ M−1

3γ

⎞⎠ , V0 = E
�
m (Z, ρ0, δ

a
∗ , γ0)m (Z, ρ0, δ

a
∗ , γ0)

0� .

After defining

Aa
(M+1×1)

=

⎛⎝ ∂
∂Q

q
G(k(Q0)t(X,ζ

t
0)
0δa∗+G

−1(Q0))

1−G(k(Q0)t(X,ζ
t
0)
0δa∗+G−1(Q0))

r
∂
∂ζ0

q
G(k(Q0)t(X,ζ

t
0)
0δa∗+G−1(Q0))

1−G(k(Q0)t(X,ζt0)
0δa∗+G−1(Q0))

r ⎞⎠
=

G1

�
k (Q0) t(X, ζt0)

0δa∗ +G−1 (Q0)
�

1−G(k(Q0)t(X, ζt0)
0δa∗ +G−1(Q0))

#
k1 (Q0) t(X, ζt0)

0δa∗ +G1

�
G−1 (Q0)

�−1
k (Q0)

�
0 −IM

�0
δa∗

$
,

we can write the non-zero elements of the Jacobian matrix as

M1ρ
1+M×1+M

= −
�
1/Q0 0
0 IM

�
M2ρ

M+1xM+1

= E
�
1−D

Q2
0

pa∗ (X)
1− pa∗ (X)

t
�
X, ζt0

�
t00 − 1−D

Q0

1

1− pa∗ (X)
t
�
X, ζt0

�
A0a − 1−D

Q0

pa∗ (X)
1− pa∗ (X)

�
0 0
0 −IM

��
M3ρ

K×1+M
= E

�
− D

Q2
0

ψ1 (Y1,X, γ0) t
0
0 + ψ0 (Y0,X, γ0)

�
1−D

Q2
0

pa∗ (X)
1− pa∗ (X)

t00 − 1−D

Q0

1

1− pa∗ (X)
A0a

��
M2δ

1+M×1+M
= −E

�
1−D

Q0

k (Q0)

(1− pa∗ (X))
2G1(k (Q0) t

�
X, ζt0

�0
δa∗ +G−1 (Q0))t

�
X, ζt0

�
t
�
X, ζt0

�0�
M3δ

K×1+M
= −E

�
1−D

Q0

k (Q0)

(1− pa∗ (X))
2G1(k (Q0) t

�
X, ζt0

�0
δa∗ +G−1 (Q0))ψ0 (Y0,X, γ0) t

�
X, ζt0

�0�
M3γ
K×K

= E
�
D

Q0

∂ψ1 (Y1,X, γ)

∂γ
− 1−D

Q0

pa∗ (X)
1− pa∗ (X)

∂ψ0 (Y0,X, γ)

∂γ

�
As in the missing data case, these expressions can be used to construct an analog estimate of Υ0.



B.5 Proof of Theorem 4.2

Here we derive the large sample variance of eγ when both Assumptions 3.5 and 3.6 hold.
Form of Υ0 when ρ0 is unknown

m1(Z, ρ0) =

�
D−Q0

D
Q0

h
�
X, ζt0

� �
m2(Z, ρ0, δ

a
0 ) = t0 − 1−D

Q0

p0 (X)

1− p0 (X)
t(X, ζt0)

m2(Z, ρ0, δ
a
0 , γ0) =

D

Q0
ψ1 (Y1,X, γ0)− 1−D

Q0

p0 (X)

1− p0 (X)
ψ0 (Y0, X, γ0)

Under Assumptions 3.5 and 3.6 we have

Aa
(M+1×1)

=
G1

�
k (Q0) t(X, ζt0)

0δa0 +G−1 (Q0)
�

1− p0 (X)

#
k1 (Q0) t(X, ζt0)

0δa0 +G1

�
G−1 (Q0)

�−1
k (Q0)

�
0 −IM

�0
δa0

$
,

and hence the elements of the Jacobian matrix equal to

M1ρ
1+M×1+M

= −I1+M

M2ρ
M+1xM+1

= E
�
p0 (X)

Q2
0

t
�
X, ζt0

�
t00 − 1

Q0
t
�
X, ζt0

�
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Q0

�
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0 −IM

��
M3ρ

K×1+M
= E

�
−p0 (X)

Q2
0

q1 (X; γ0) t
0
0 + q0 (X,γ0)

�
p0 (X)

Q2
0

t00 − 1

Q0
A0
a

��
M2δ

1+M×1+M
= −E

�
1

Q0

k (Q0)

1− p0 (X)
G1(k (Q0) t

�
X, ζt0

�0
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�
X, ζt0

�
t
�
X, ζt0

�0�
M3δ

K×1+M
= −E

�
1

Q0

k (Q0)

1− p0 (X)
G1(k (Q0) t

�
X, ζt0

�0
δa0 +G−1 (Q0))q0 (X; γ0) t

�
X, ζt0

�0�
M3γ
K×K

= E
�
p0 (X)

Q0
Γ0 (X)

�
.

Notice that M3δ = Π∗0M2δ.
Partitioning V0 we have

V11
1+M×1+M

=

%
Q0 (1−Q0) 0

0 p0(X)

Q2
0

h
�
X, ζt0

�
h
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X, ζt0

�0 &
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X, ζt0
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�
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p0 (X)
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Q0

q1 (X; γ0) + p0 (X) q0 (X; γ0)
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Q2
0

q1 (X; γ0) h
�
X, ζt0

�0 l
V22

1+M×1+M
= t0t

0
0 − E
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p0 (X)

Q0
t0t(X, ζt0)

0 +
p0 (X)

Q0
t(X, ζt0)t

0
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�
p0 (X)

Q0

�2
t(X, ζt0)t(X, ζt0)

0

1− p0 (X)
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Combining the previous results gives�
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Using these expressions and the fact that E [ψ1 (Y1,X, γ0)|D = 1] − E [ψ0 (Y0,X, γ0)|D = 1] = Et [ψ (Z, γ0)] = 0, to
evaluate Υ0 gives

Υ0 = E
�
p0 (X)

Q0
Γ0 (X)

�−1
× E

%�
p0 (X)

Q0

�2�
Σ1 (X; γ0)

p0 (X)
+

Σ0 (X; γ0)

1− p0 (X)
+

1

p0 (X)
[q1 (X; γ0)− q0 (X; γ0)] [q1 (X; γ0)− q0 (X; γ0)]

0
�&

× E
�
p0 (X)

Q0
Γ0 (X)

�−10
as claimed.

C Additional examples

In this appendix we briefly outline the application of IPT to some additional missing data and data combination
problems.



C.1 Missing data examples

Variable probability sampling Assume that Y1 ⊂ Rdim(Y1) is partitioned into 1 +M exhaustive and mutually
exclusive strata

Y10,Y11, . . . ,Y1M ,

and let X be an M × 1 vector of corresponding strata indicator variables,

X = (1(Y1 ∈ Y11), . . . ,1(Y1 ∈ Y1M ))0,

where the 0th strata is omitted. A total of N draws are taken from some target population. Each draw is retained
with a known probability depending on its strata, pm, m = 0, . . . ,M . A total of N1 < N units are retained and
their realizations of Y1 recorded. No information on Y1 is available for non-retained units. Either strata membership,
X, for all sampled units is available or the population frequencies of each strata, E [X], are available. The moment
function is as in Assumption 3.1 with ψ0 (Y0,X, γ) a vector of zeros.

In this example Assumptions 3.5 and 3.6 place no additional restrictions on the model. When the population
strata frequencies, ζ0, are known, Corollary 3.2 gives a variance bound of Γ−10 Λ0Γ
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0 with
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ζ0,m

�
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pm

�
,

which is the variance of Wooldridge’s (1999) estimator (cf., Theorem 7.1, pp. 1399 - 1400). When ζ0 is unknown but
the strata of discarded units are available, Theorem 3.2 gives a bound of Γ−10 Λ0Γ

−10
0 with

[M

m=0
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�
V (ψ1 (Y1,X, γ0)|Y1 ∈ Y1m)
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+E [ψ1 (Y1,X, γ0)|Y1 ∈ Y1m]E [ψ1 (Y1,X, γ0)|Y1 ∈ Y1m]0
�
.

This implies that Wooldridge’s (1999) estimator for ζ0 unknown is inefficient (in fairness he does not require knowledge
of the strata of discarded units as we do here). In later work, Wooldridge (2007) proposes an efficient estimator for
the unknown ζ0 case. Some simple algebra shows that the IPT estimator is numerically identical to his.

C.2 Data combination examples

Small area estimation Let Y0 be an indicator for household poverty and X a vector of household characteristics.
We seek to estimate the poverty rate in a specific target municipality. Available is a random sample of Nt observations
of X from this municipality. Also available is a random sample of size Na of both Y0 and X from the entire country.
Our estimand is

γ0 = Et [Y0]

which corresponds to setting ψ1 (Y1,X, γ) = 0 and ψ0 (Y0,X, γ) = Y0 −γ. In this example Assumption 4.2 establishes
that the conditional distribution of Y0 is the same in the entire country as it is in the specific municipality of interest.
Under this assumption Tarozzi and Deaton (2007) identify γ0 by

γ0 =

]
Ea [Y0|X = x] · ft (x) dm (x)

They then suggest applying the non-parametric estimator of Chen, Hong and Tarozzi (2008) to this problem. See
Tarozzi (2007) for related applications. The application of IPT to this problem is straightforward.

Earnings decompositions Let Y1 denote earnings in 1979 and Y0 earnings in 1992. Let X be a vector of worker
characteristics (e.g., age, race, education, union coverage). Available are two random samples of workers which record
characteristics and earnings in 1979 and 1992. We seek to decompose changes in specific quantiles of the earnings
distribution across the two periods into portions due to changes in the distribution of worker characteristics and
changes in the mapping from characteristics to earnings.

Such a decomposition requires a characterization of the distribution of 1992 earnings that would prevail under the
1979 distribution of worker characteristics. The αth quantile of this counterfactual distribution, γα92|79, is identified
by

Et
�
1(Y0 ≤ γα92|79)− α

�
= 0,

which corresponds to setting ψ0 (Y0,X, γ) = α− 1(Y0 ≤ γα92|79) and ψ1 (Y1,X, γ) to a vector of zeros. Here 1979 and
1992 workers respectively play the role of the target and auxiliary populations.

The αth quantiles of the actual 1979 and 1992 earnings distributions are denoted by γα79|79 and γα92|92. A decom-
position into compositional and wage structure effects is then given by

γα92|92 − γα79|79 =
�
γα92|92 − γα92|79

�− �γα79|79 − γα92|79
�
.



Dinardo, Fortin and Lemieux (1996) and Barsky, Bound, Charles and Lupton (2002) develop alternative methods
for earnings decompositions. Firpo, Fortin and Lemieux (2007) suggest a method of finer decomposition into the
contributions from changes in each individual worker characteristic and its price.

M-estimation with endogenously stratified random samples Assume that Y0 ⊂ Rdim(Y0) is partitioned into
1 +M exhaustive and mutually exclusive strata

Y00,Y01, . . . ,Y0M

and let X be an M × 1 vector of corresponding strata indicator variables,

X = (1(Y0 ∈ Y01), . . . ,1(Y0 ∈ Y0M ))0,

with the 0th strata omitted. A total of Na draws of Y0 are taken via multinomial sampling: with probability Hm the
researcher draws (at random) from the mth strata. The moment function is as in Assumption 4.1 with ψ1 (Y1,X, γ)
a vector of zeros. A random sample of size Nt from the target population identifies the aggregate population strata
shares ζt0 = Et [X] (alternatively these may be known a priori).

The distribution of (Y0,X) in the stratified sample is connected to its target population counterpart by the
equality
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with H = (H, . . . , Hm)
0 (cf., Imbens and Lancaster 1996, Equation (5), p. 294). This demonstrates that this model

is contained within our data combination set-up as long as the probability of sampling each stratum is positive.
Wooldridge (2001) and Tripathi (2007) also considers M-estimation with stratified random samples. Cosslett (1981)
and Imbens and Lancaster (1996) consider the case where γ0 indexes a conditional density. That case allows for more
efficient estimation, but does not fall within our basic set-up.31 Our estimator is semiparametrically efficient in the
M-estimator case, but not the conditional likelihood case.

Non-classical measurement error Partition X = (X0,X
0
1,X

0
2)
0 with X0 a noisy measure of Y0, some regressor

of interest, X1 an outcome variable, and X2 additional controls (measured without error). Available is a random
sample of X from the target population and a separate ‘validation sample’ of Y0 and X from some different, auxiliary,
population. The moment function is as in Assumption 4.1 with ψ1 (Y1,X, γ) a vector of zeros. For example X0 might
be self-reported earnings and Y0 earnings as recorded by the Social Security Administration. Robins, Hsieh and Newey
(1995), Chen, Hong and Tamer (2005) and Chen, Hong and Tarozzi (2004, 2008) develop estimators for this problem.
Ridder and Moffitt (2007) survey the literature.
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