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Much recent research has sought to explain the cyclical amplitude of unemployment

�uctuations in the US. Shimer (2005) has shown that a leading model of the aggregate

labor market, the Mortensen-Pissarides (MP) model, cannot explain this cyclical volatility.

A common solution to this problem proposed in subsequent literature has been to invoke

rigidity in the wages of newly hired workers (see among others Shimer, 2004; and Hall,

2005). However, the empirical validity of such an assumption has been questioned by Haefke,

Sonntag, & van Rens (2007), and by Pissarides (2007).1 This paper takes a di¤erent approach.

We show that ampli�cation of the cyclical volatility of unemployment can instead be obtained

simply by adding two very conventional features to the standard search model, namely

downward sloped short run demand for labor and endogenous job destruction.

The motivation for these additional features is simple. First, downward sloped labor

demand is motivated by the fact that other production inputs, notably capital, are not fully

�exible at cyclical frequencies.2 Second, the inclusion of endogenous job destruction is

informed by empirical evidence that part of the cyclical upswing in unemployment in times

of recession is accounted for by increased �ows from employment to unemployment.3

However, incorporating these two conventional features simultaneously is not a trivial

exercise. We show that it is also not a daunting one. In particular, downward sloped labor

demand implies that �rms face a non-linear production technology which poses a number of

theoretical challenges. First, this complicates wage setting because the surplus generated

by each of the employment relationships within a �rm is not the same (e.g. �the�marginal

worker generates less surplus than infra-marginal workers). In section 1, we derive a very

intuitive and explicit wage bargaining solution for this environment, something that has

been considered challenging in recent research (see Cooper, Haltiwanger & Willis, 2007; and

1This echoes the earlier results of Baker, Gibbs, & Holmstrom (1994) who observe substantial wage
�exibility among new hires in data for a particular �rm (see especially their Figure II).

2Another motivation for downward sloped labor demand is the existence of imperfect product market
competition. For a model with this feature (but with exogenous job destruction) see Rotemberg (2006).

3See Perry (1972); Marston (1976); Blanchard & Diamond (1990); Elsby, Michaels, & Solon (2007); Fujita
& Ramey (2007); Pissarides (2007); Shimer (2007); and Yashiv (2006).
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Hobijn & Sahin, 2007). In particular, the solution is a very natural generalization of the

wage bargaining solution in the standard MP model. The simplicity of our solution is

therefore a useful addition to the literature.4

The wage bargaining solution then enables us to characterize the properties of the optimal

labor demand policy of an individual �rm in the presence of idiosyncratic �rm heterogeneity.

An interesting by-product of this exercise is that the optimal labor demand solution in

the generalized model is analogous to that of a model of kinked hiring costs in the spirit

of Bentolila & Bertola (1990), but where the hiring cost is endogenously determined by

frictions in the labor market. Thus, the correspondence between the two major approaches

to the economics of aggregate labor markets �search and matching models and employment

adjustment cost models �sharpens in the process of generalizing the standard search model.

A second analytical challenge in models with a non-linear production technology and idio-

syncratic heterogeneity is that aggregation of microeconomic behavior is not straightforward,

because a representative �rm interpretation of the model doesn�t exist. To address this, in

section 2 we develop a method for aggregating the behavior of individual �rms that holds

for a wide class of optimal labor demand policies at the microeconomic level. In particular,

we are able to solve for the equilibrium distribution of employment across �rms, which in

turn allows us to determine the level of the aggregate (un)employment stock. In addition,

we also provide a related method that allows us to solve for aggregate unemployment �ows

(hires and separations) implied by microeconomic behavior. Together, these characterize

the aggregate equilibrium of the model economy.

These aggregation results allow us to quantitatively evaluate our model, which we turn

to in section 3. In particular, we show that a standard calibration of our generalized model

4Related models with endogenous separations such as Cooper et al. (2007) and Hobijn & Sahin (2007)
have set worker bargaining power to zero in order to derive wages. Acemoglu & Hawkins (2006) characterize
wages in a model with exogenous separations, but they focus on a time to hire aspect to job creation, which
leads to a more challenging bargaining problem. Our solution is analogous to the wage bargaining solutions
derived by Smith (1999), Cahuc & Wasmer (2001), and Krause & Lubik (2007) for models with exogenous
job destruction.
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can more closely match the observed cyclical variation of both the job �nding rate and the

employment to unemployment transition rate in the US, and is a substantial improvement on

the basic MP model. A potential concern in models, such as this, that incorporate counter-

cyclical job destruction has been that they often cannot generate the observed procyclicality

of vacancies (Shimer, 2005; Mortensen & Nagypal, 2007b). Importantly, we �nd that our

model makes considerable progress in this regard: Our calibration of the model generates

approximately 3/4 of the observed comovement between vacancies and output per worker.

Moreover, we suggest that the remaining procyclicality is likely due to procyclical job-to-job

�ows that are observed in the data (Fallick & Fleischman, 2004) but are abstracted from in

the present paper.

The common factor that generates both the procyclicality of the job �nding rate and of

vacancies in the model is the procyclicality of desired job creation. To uncover the processes

underlying this, in section 4 we derive a simple approximation to the decline in job creation

following an adverse aggregate shock in the generalized model, analogous to the method

employed by Shimer (2005) and Mortensen & Nagypal (2007a,b). This exercise reveals two

sources of ampli�cation. The �rst generalizes a well-known result that the standard MP

model is consistent with observed unemployment cyclicality if the average �ow surplus to

employment relationships is su¢ ciently small.5 We show that an analogous result occurs

in the generalized model if a weighted average of the average and marginal �ow surplus

is su¢ ciently small. However, because downward sloped labor demand implies that the

marginal surplus will be smaller than the average surplus, the generalized model can deliver

ampli�cation of the job creation response to aggregate shocks at the same time as preserving

a sizeable average surplus from employment relationships.6 This is important because recent

5Intuitively, a small surplus to employment relationships implies that small reductions in the productivity
of labor (as in a recession) quickly exhaust the surplus and lead �rms to cut back substantially on hiring.
See Mortensen & Pissarides (1994), Hagedorn & Manovskii (2005), and Costain & Reiter (2005).

6One might imagine that a symmetric logic holds on the supply side of the labor market if there is
heterogeneity in workers� valuations of leisure so that �the�marginal worker obtains a low surplus from
employment. Interestingly, Mortensen & Nagypal (2007a) argue that this is not the case. They show that
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research has suggested that the average surplus required for the standard model to match

the observed cyclicality of the job �nding rate is too small (Mortensen & Nagypal, 2007a).7

Our results also suggest a second, more novel source of ampli�cation that is generated

by the interaction of heterogeneous �rms and downward sloped labor demand. Following a

reduction in aggregate labor demand, low productivity �rms wish to shed more workers, and

high productivity �rms wish to hire fewer workers. Thus in�ows into the unemployment pool

rise, and out�ows from the unemployment pool fall, ceteris paribus, causing unemployment

to rise. To restore equilibrium in the model, hiring �rms must be convinced to hire enough

workers to equate in�ows to out�ows once more. The model achieves this by allowing the

labor market to slacken, so that unemployed workers become more abundant, and hiring

(suitable) workers becomes less costly for �rms. With downward sloped labor demand,

increased hiring retards the productivity of additional employment relationships, and so the

labor market must slacken further, and unemployment must rise more, in order to return

the economy back to equilibrium once again.

Section 5 of the paper discusses the broader implications of our analysis. We argue that

the model developed in the paper provides a rich, yet analytically tractable model of the

aggregate labor market in the short run. As such, we believe that this model will provide a

useful laboratory for the cyclical analysis of aggregate labor markets in future empirical and

theoretical research. In addition, we suggest that, by developing a model with a well-de�ned

concept of a �rm, the analytical results derived here are a natural complement to recent re-

search that has investigated the empirical implications of search frictions using establishment

level data (Cooper, Haltiwanger &Willis, 2007; Davis, Faberman, & Haltiwanger, 2007). Fi-

if �rms cannot di¤erentiate workers�types when making hiring decisions, they will base their decision on
the average, rather than the marginal, valuation of leisure among the unemployed. The same is unlikely to
be true of the model studied here, since �rms presumably know their production technology when making
hiring decisions.

7A small average surplus also jars with widespread evidence for the prevalence of long term employment
relationships in the US economy, which researchers have taken to imply substantial rents to ongoing matches
(Hall, 1982; Stevens, 2005).
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nally, we emphasize the wider applicability of the aggregation results we derive as a method

of characterizing aggregate labor market equilibrium in models without a representative

�rm interpretation. Our aggregation results can be applied in exactly the same manner to

other popular models of non-linear microeconomic behavior, such as non�convex adjustment

cost models (Caballero, Engel, & Haltiwanger, 1997; Cooper, Haltiwanger, & Willis, 2004).

Our hope is that this will further our understanding of the macroeconomic implications of

non-linearities in �rm level labor demand for the aggregate labor market.

1 The Firm�s Problem

In what follows we consider a model in which there is a mass of �rms, normalized to one,

and a mass of potential workers equal to the labor force, L.8 In order to hire unemployed

workers, �rms must post vacancies. However, frictions in the labor market limit the rate at

which unemployed workers and hiring �rms can meet. As is conventional in the search and

matching literature, these frictions are embodied in a matching function, M = M (U; V ),

that regulates the number of hires, M , that the economy can sustain given that there are V

vacancies and U unemployed workers. We assume that M (U; V ) exhibits constant returns

to scale.9 Vacancies posted by �rms are therefore �lled with probability q = M=V =

M (U=V; 1) each period. Likewise, unemployed workers �nd jobs with probability f =

M=U = M (1; V=U). Thus, the ratio of aggregate vacancies to aggregate unemployment,

V=U � �, is a su¢ cient statistic for the job �lling (q) and job �nding (f) probabilities in

the model. Taking these �ow probabilities as given, �rms choose their optimal level of

8Assuming a �xed number of �rms is important for the model to depart from the standard MP model.
Free entry would yield an economy of in�nitesimal �rms that converges to the MP limit. In principle, one
could allow for costly �rm entry as a middle ground. We abstract from this in part for simplicity. But our
choice is also informed by evidence in Davis and Haltiwanger (1992). They �nd that, in manufacturing,
establishment births account for 20% of job creation on average each year. While this is not a small number,
the majority of job creation is clearly accounted for by incumbent establishments. For a model that explores
the impact of �rm entry on job creation, see Garibaldi (2006).

9See Petrongolo & Pissarides (2001) for a summary of empirical evidence that suggests this is reasonable.
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employment, to which we now turn.

1.1 Labor Demand

We consider a discrete time, in�nite horizon model in which �rms use labor, n, to produce

output according to the production function, y = pxF (n) where F 0 > 0 and F 00 � 0. The

latter is a key generalization of the standard MP model that we consider: When F 00 < 0,

the marginal product of labor will decline with �rm employment, and thereby will generate

a downward sloped demand for labor at the �rm level. p represents the state of aggregate

labor demand, whereas x represents shocks that are idiosyncratic to an individual �rm.

We assume that the evolution of the latter idiosyncratic shocks is described by the c.d.f.

G (x0jx).

A typical �rm�s decision problem is completely analogous to that in Mortensen & Pis-

sarides (1994), and is as follows. Firms observe the realization of their idiosyncratic shock,

x, at the beginning of a period. Given this, they then make their employment decision.

Speci�cally, they may choose to separate from part or all of their workforce, which we assume

may be done at zero cost. Any such separated workers then join the unemployment pool in

the subsequent period. Alternatively, �rms may hire workers by posting vacancies, v � 0,

at a �ow cost of c per vacancy. If a �rm posts vacancies, the matching process then matches

these up with unemployed workers inherited from the previous period. After the matching

process is complete, production and wage setting are performed simultaneously.

It follows that we can characterize the expected present discounted value of a �rm�s

pro�ts, �(n�1; x), recursively as:10

�(n�1; x) = max
n;v

�
pxF (n)� w (n; x)n� cv + �

Z
�(n; x0) dG (x0jx)

�
(1)

10We adopt the convention of denoting lagged values with a subscript, �1, and forward values with a
prime, 0.
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where w (n; x) is the bargained wage in a �rm of size n and productivity x. A typical �rm

seeks a level of employment that maximizes its pro�ts subject to a dynamic constraint on

the evolution of a �rm�s employment level. Speci�cally, �rms face frictions that limit the

rate at which vacancies may be �lled: A vacancy posted in a given period will be �lled with

probability q < 1 prior to production. Thus, the number of hires an individual �rm achieves

is given by:

�n1+ = qv (2)

where �n is the change in employment, and 1+ is an indicator that equals one when the

�rm is hiring, and zero otherwise. Substituting the constraint, (2), into the �rm�s value

function, we obtain:

�(n�1; x) = max
n

�
pxF (n)� w (n; x)n� c

q
�n1+ + �

Z
�(n; x0) dG (x0jx)

�
(3)

Note that the value function is not fully di¤erentiable in n: There is a kink in the value

function around n = n�1. This re�ects the (partial) irreversibility of separation decisions

in the model. While �rms can shed workers costlessly, it is costly to reverse such a decision

because hiring (posting vacancies) is costly. In this sense, the labor demand side is formally

analogous to the kinked employment adjustment cost model of the form analyzed in Bentolila

& Bertola (1990), except that the per�worker hiring cost, c=q (�), is endogenously determined.

In order to determine the �rm�s optimal employment policy, we take the �rst-order con-

ditions for hires and separations (i.e. conditional on �n 6= 0):

pxF 0 (n)� w (n; x)� wn (n; x)n�
c

q
1+ + �D (n; x) = 0, if �n 6= 0 (4)

where D (n; x) �
R
�n (n; x

0) dG (x0jx) re�ects the marginal e¤ect of current employment

decisions on the future value of the �rm. Equation (4) is quite intuitive. It states that

the marginal product of labor (pxF 0 (n)) net of any hiring costs ( c
q
1+), plus the discounted
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expected future marginal bene�ts from an additional unit of labor (�D (n; x)) must equal

the marginal cost of labor (w (n; x) + wn (n; x)n). To provide a full characterization of the

�rm�s optimal employment policy, it remains to characterize the future marginal bene�ts

from current employment decisions, D (n; x), and the wage bargaining solution, w (n; x), to

which we now turn.

1.2 Wage Setting

The existence of frictions in the labor market implies that it is costly for �rms and workers

to �nd alternative employment relationships. As a result, there exist quasi�rents over which

the �rm and its workers must bargain. The assumption of constant marginal product in

the standard MP model has the tractable implication that these rents are the same for all

workers within a given �rm. It follows that �rms can bargain with each of their workers

independently, because the rents of each individual employment relationship are independent

of the rents of all other employment relationships.

However, because we allow for the possibility of downward�sloped labor demand (F 00 <

0), these rents will depend on the number of workers within a �rm. Intuitively, the rent that

a �rm obtains from �the�marginal worker will be lower than the rent obtained on all infra�

marginal hires due to diminishing marginal product. An implication of the latter is that the

multilateral dimension of the �rm�s bargain with its many workers becomes important: The

rents of each individual employment relationship within a �rm are no longer independent.

To take this into account, we adopt the bargaining solution of Stole & Zwiebel (1996)

which generalizes the Nash solution to a setting with downward�sloped labor demand.11

Stole & Zwiebel present a game where the bargained wage is the same as the outcome of

simple Nash bargaining over the marginal surplus. The game that supports this simple

result is one in which a �rm negotiates with each of its workers in turn, and where the

11This approach was �rst used by Cahuc & Wasmer (2001) to generate a wage equation for the exogenous
job destruction case.
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breakdown of a negotiation with any individual worker leads to the renegotiation of wages

with all remaining workers.12

In accordance with timing of decisions each period, wages are set after employment has

been determined. Thus, hiring costs are sunk at the time of wage setting, and the marginal

surplus, which we denote as J (n; x), is equal to the marginal value of labor gross of the costs

of hiring:

J (n; x) = pxF 0 (n)� w (n; x)� wn (n; x)n+ �D (n; x) (5)

The surplus from an employment relationship for a worker is the additional utility a worker

obtains from working in her current �rm over and above the utility she obtains from un-

employment. The value of employment in a �rm of size n and productivity x, W (n; x), is

given by:

W (n; x) = w (n; x) + �E [sU 0 + (1� s)W (n0; x0) jn; x] (6)

While employed, a worker receives a �ow payo¤ equal to the bargained wage, w (n; x). She

loses her job with (endogenous) probability s next period, upon which she �ows into the

unemployment pool and obtains the value of unemployment, U 0. With probability (1� s),

she retains her job and obtains the expected payo¤ of continued employment in her current

�rm, W (n0; x0). Likewise, the value of unemployment to a worker is given by:

U = b+ �E [(1� f)U 0 + fW (n0; x0)] (7)

Unemployed workers receive �ow payo¤ b, which represents unemployment bene�ts and/or

the value of leisure to a worker. They �nd a job next period with probability f , upon which

they obtain the expected payo¤ from employment, W (n0; x0).

12The intuition for the Stole & Zwiebel result is as follows. If the �rm has only one worker, the �rm and
worker simply strike a Nash bargain. If a second worker is added, the �rm and the additional worker know
that, if their negotiations break down, the �rm will agree to a Nash bargain with the remaining worker.
By induction, then, the �rm approaches negotiations with the nth worker as if that worker were marginal.
Therefore, the wage that solves the bargaining problem is that which maximizes the marginal surplus.
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Wages are then the outcome of a Nash bargain between a �rm and its workers over the

marginal surplus, with worker bargaining power denoted as �:

(1� �) [W (n; x)� U ] = �J (n; x) (8)

Given this, we are able to derive a wage bargaining solution with the following simple struc-

ture:

Proposition 1 The bargained wage, w (n; x), solves the di¤erential equation13

w (n; x) = �

�
pxF 0 (n)� wn (n; x)n+ �f

c

q

�
+ (1� �) b: (9)

The intuition for (9) is quite straightforward. As in the MP model, wages are increasing

in the worker�s bargaining power, �, the marginal product of labor, pxF 0 (n), workers�job

�nding probability, f , the marginal costs of hiring for a �rm, c=q, and workers��ow value of

leisure, b. There is an additional term, however, in wn (n; x)n. To understand the intuition

for this term, consider a �rm�s negotiations with a given worker. If these negotiations break

down, the �rm will have to pay its remaining workers a higher wage. The reason is that

fewer workers imply that the marginal product of labor will be higher in the �rm, which

will partially spillover into higher wages (wnn < 0). The more powerful this e¤ect is (the

more negative is wnn), the more the �rm loses from a given breakdown of negotiations with

a worker, and the more workers can extract a higher wage from the bargain.

In what follows, we will adopt the simple assumption that the production function is of

the Cobb-Douglas form, F (n) = n� with � � 1. Given this, the di¤erential equation for

13An attractive feature of this solution is its similarity to the solution obtained by Cahuc & Wasmer (2001)
for the exogenous job destruction model. It is also consistent with Acemoglu & Hawkins�(2006) Lemma 2,
except that it holds both in and out of steady state.
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the wage function, (9), has the following simple solution:

w (n; x) = �

�
px�n��1

1� � (1� �)
+ �f

c

q

�
+ (1� �) b (10)

Setting � = 1 yields the discrete time analogue to the familiar wage bargaining solution for

the MP model.

1.3 The Firm�s Optimal Employment Policy

Now that we have obtained a solution for the bargained wage at a given �rm, we can combine

this with the �rm�s �rst�order condition for employment and thereby characterize the �rms

optimal employment policy, which speci�es the �rm�s optimal employment as a function of

its state, n (n�1; x). Thus, combining (4) and (9) we obtain:

(1� �)

�
px�n��1

1� � (1� �)
� b

�
� ��f

c

q
� c

q
1+ + �D (n; x) = 0 (11)

Given (11) we are able to characterize the �rm�s optimal employment policy as follows:

Proposition 2 The optimal employment policy of a �rm is of the form

n (n�1; x) =

8>>>><>>>>:
R�1v (x) if x > Rv (n�1)

n�1 if x 2 [R (n�1) ; Rv (n�1)]

R�1 (x) if x < R (n�1)

(12)

where the functions Rv (�) and R (�) satisfy

(1� �)

�
pRv (n)�n

��1

1� � (1� �)
� b

�
� ��f

c

q
+ �D (n;Rv (n)) �

c

q
(13)

(1� �)

�
pR (n)�n��1

1� � (1� �)
� b

�
� ��f

c

q
+ �D (n;R (n)) � 0: (14)
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The �rm�s optimal employment policy will be similar to that depicted in Figure 1. It

is characterized by two reservation values for the �rm�s idiosyncratic shock, R (n�1) and

Rv (n�1). Speci�cally, for su¢ ciently bad idiosyncratic shocks (x < R (n�1) in the �gure),

�rms will shed workers until the �rst-order condition in the separation regime, (14), is

satis�ed. Moreover, for su¢ ciently good idiosyncratic realizations (x > Rv (n�1) in the

�gure), �rms will post vacancies and hire workers until the �rst-order condition in the hiring

regime, (13), is satis�ed. Finally, for intermediate values of x, �rms freeze employment so

that n = n�1. This occurs as a result of the kink in the �rm�s pro�ts at n = n�1, which

arises because hiring is costly to �rms, while separations are costless.

To complete our characterization of the �rm�s optimal employment policy, it remains to

determine the marginal e¤ect of current employment decisions on future pro�ts of the �rm,

D (n; x). It turns out that we can show that D (n; x) has the following recursive structure:

Proposition 3 The marginal e¤ect of current employment on future pro�ts, D (n; x), is

given by

D (n; x) = d (n; x) + �

Z Rv(n)

R(n)

D (n; x0) dG (x0jx) (15)

where

d (n; x) �
Z Rv(n)

R(n)

�
(1� �)

�
px0�n��1

1� � (1� �)
� b

�
� ��f

c

q

�
dG (x0jx) +

Z 1

Rv(n)

c

q
dG (x0jx) :

(16)

Equation (15) is a contraction mapping in D (n; �), and therefore has a unique �xed point.

The intuition for this result is as follows. Because of the existence of kinked adjustment

costs (costly hiring and costless separations) the �rm�s employment will be frozen next

period with positive probability. In the event that the �rm freezes employment next period

(x0 2 [R (n) ; Rv (n)]), the current employment level persists into the next period and so do

the marginal e¤ects of the �rm�s current employment choice. Proposition 3 shows that these
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Figure 1: Optimal Employment Policy of a Firm

marginal e¤ects persist into the future in a recursive fashion. Propositions 2 and 3 thus

summarize the microeconomic behavior of �rms in the model.14

To get a sense for how the microeconomic behavior of the model works, we next derive

the response of an individual �rm�s employment policy function to changes in (exogenous)

aggregate productivity, p, and the (endogenous) aggregate vacancy�unemployment ratio, �.

To do this, we assume that the evolution of idiosyncratic shocks is described by:

x0 =

8><>: x with probability 1� �

~x
c:d:f:� ~G (x) with probability �

(17)

Thus, idiosyncratic shocks display some persistence (� < 1) with innovations drawn from

the distribution function ~G. Given this, we can establish the following result:

Proposition 4 If idiosyncratic shocks, x, evolve according to (17), then the e¤ects of the

14It is straightforward to show that equations (10) to (16) reduce down to the discrete time analogue to
the Mortensen & Pissarides (1994) model when � = 1.
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aggregate state variables p and � on a �rm�s optimal employment policy are

@Rv

@p
< 0;

@R

@p
< 0;

@Rv

@�
> 0; and

@R

@�
> 0 () n is su¢ ciently large. (18)

The intuition behind these marginal e¤ects is quite simple. First, note that increases in

aggregate productivity, p, shift a �rm�s employment policy function downwards in Figure 1.

Thus, unsurprisingly, when labor is more productive, a �rm of a given idiosyncratic produc-

tivity, x, is more likely to hire workers, and less likely to shed workers. Second, increases

in the vacancy�unemployment ratio, �, unambiguously reduce the likelihood that a �rm of

a given idiosyncratic productivity will hire workers (Rv increases for all n). The reason is

that higher � implies a lower job��lling probability, q, and thereby raises the marginal cost

of hiring a worker, c=q. Moreover, higher � implies a tighter labor market and therefore

higher wages (from (9)) so that the marginal cost of labor rises as well. Both of these e¤ects

cause �rms to cut back on hiring. Finally, increases in the vacancy�unemployment ratio,

�, will reduce the likelihood of shedding workers for small �rms, but will raise it for large

�rms. This occurs because higher � has countervailing e¤ects on the separation decision of

�rms. On the one hand, higher � reduces the job��lling probability, q, rendering separation

decisions less reversible (since future hiring becomes more costly), so that �rms become less

likely to destroy jobs. On the other hand, higher � implies a tighter labor market, higher

wages, and thereby a higher marginal cost of labor, rendering �rms more likely to shed work-

ers. The former e¤ect is dominant in small �rms because the likelihood of their hiring in

the future is high.
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2 Aggregation and Steady State Equilibrium

2.1 Aggregation

Since we are ultimately interested in the equilibrium behavior of the aggregate unemploy-

ment rate, in this section we take on the task of aggregating up the microeconomic behavior

of section 1 to the macroeconomic level. This exercise is non�trivial because each �rm�s

employment is a non�linear function of the �rm�s lagged employment, n�1, and its idiosyn-

cratic shock realization, x. As a result, there is no representative �rm interpretation that

will aid aggregation of the model.

To this end, we are able to derive the following result which characterizes the steady

state aggregate employment stock and �ows in the model:

Proposition 5 If idiosyncratic shocks, x, evolve according to (17), the steady state c.d.f. of

employment across �rms is given by

H (n) =
~G [R (n)]

1� ~G [Rv (n)] + ~G [R (n)]
: (19)

Thus, the steady state aggregate employment stock is given by

N =

Z
ndH (n) (20)

and the steady state aggregate number of separations, S, and hires, M , is equal to

S = �

Z
[1�H (n)] ~G [R (n)] dn = �

Z
H (n)

�
1� ~G [Rv (n)]

�
dn =M: (21)

Proposition 5 is useful because it provides a tight link between the solution for the micro-

economic behavior of an individual �rm and the macroeconomic outcomes of that behavior.

Speci�cally, it shows that once we know the optimal employment policy function of an in-
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dividual �rm (that is, the functions R (n) and Rv (n)) then we can directly obtain solutions

for the aggregate employment stock and �ows. An important feature to note about Propo-

sition 5 is its generality. Speci�cally, it allows one to generate analytically the steady state

aggregate employment stock and labor �ows for any given employment policy function at the

microeconomic level, not just that derived above. In addition, the expressions for aggregate

employment and �ows are straightforward to compute numerically.

The three components of Proposition 5 are also quite intuitive. The steady state distri-

bution of employment across �rms, (19), is obtained by setting the �ows into and out of the

mass H (n) equal to each other. The in�ow into the mass comes from �rms who reduce their

employment from above n to below n. There are [1�H (n)] such �rms, and since they are

reducing their employment, it follows from (12) that each �rm will reduce its employment

below n with probability equal to Pr [x < R (n)] = � ~G [R (n)]. Thus, th̀e in�ow into H (n)

is equal to � [1�H (n)] ~G [R (n)]. Similarly, one can show that the out�ow from the mass is

equal to �H (n)
�
1� ~G [Rv (n)]

�
. Setting in�ows equal to out�ows yields the expression for

H (n) in (19).15 Given this, the expression for aggregate employment, (20), follows directly.

The intuition for the �nal expression for aggregate �ows in Proposition 5, (21), is as

follows. Recall that the mass of �rms whose employment switches from above some number

n to below n is equal to � [1�H (n)] ~G [R (n)]. Equation (21) states that the aggregate

number of separations in the economy is equal to the cumulative sum of these downward

switches in employment over n. To get a sense for this, consider the following simple

discrete example. Imagine an economy with two separating �rms: one that switches from

three employees to one, and another that switches from two employees to one. It follows

that two �rms have switched from > 2 employees to � 2 employees, and one �rm switched

from > 1 to � 1 employee. Thus, the cumulative sum of downward employment switches is

three, which is also equal to the total number of separations in the economy.

15This mirrors the mass-balance approach used in Burdett & Mortensen (1998) to derive the equilibrium
wage distribution in a search model with wage posting.
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2.2 Steady State Equilibrium

Given (19), (20), and (21), the conditions for aggregate steady state equilibrium can be

obtained as follows. First note that each �rm�s optimal policy function, summarized by the

functions R (n) and Rv (n) in Proposition 2, depends on two aggregate variables: The (ex-

ogenous) state of aggregate productivity, p; and the (endogenous) ratio of aggregate vacancies

to aggregate unemployment, V=U � �, which uniquely determines the �ow probabilities q

and f .

In the light of Proposition 5, we can characterize the aggregate steady state of the econ-

omy for a given p in terms of two relationships. The �rst, the job creation condition, is

simply equation (20), which we re�state here in terms of unemployment, making explicit its

dependence on the aggregate vacancy�unemployment ratio, �:

U (�)JC = L�
Z
ndH (n; �) (22)

(22) simply speci�es the level of aggregate employment that is consistent with the in�ows to

(hires) and out�ows from (separations) aggregate employment being equal as a function of

�. The second steady state condition is the Beveridge Curve relation. This is derived from

the di¤erence equation that governs the evolution of unemployment over time:

�U 0 = S (�)� f (�)U (23)

(23) simply states that the change in the unemployment stock over time, �U 0, is equal to

the in�ow into the unemployment pool �the number of separations, S �less the out�ow

from the unemployment pool �the job �nding probability, f , times the stock of unemployed

workers, U . In steady state, aggregate unemployment will be stationary, so that we obtain
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the steady state unemployment relation:

U (�)BC =
S (�)

f (�)
(24)

The steady state value of the vacancy�unemployment ratio, �, is co�determined by (22) and

(24).

3 An Illustrative Simulation

Shimer (2005) demonstrated that the standard MP model cannot generate enough cyclical

amplitude in the job �nding rate to match that observed in US data. A natural question

is whether the generalized model analyzed here can alleviate this problem. To this end, we

perform the following illustrative numerical exercise. We normalize aggregate productivity, p,

to 1 and calculate the steady state response of the job �nding rate, f , and the unemployment

in�ow rate, s � S=N , to a 1% reduction in p. We examine the steady state response of the

model as an approximation to the true dynamic response of the model based on the results of

Shimer (2005), Mortensen & Nagypal (2007a), and Rotemberg (2006), who show that such

an approximation is very close in models of the aggregate labor market. To see why, note

that we can rewrite the di¤erence equation for the evolution of unemployment, (23), as:

�U 0 = �f (U � UBC) (25)

where UBC is de�ned in (24) and is the steady state unemployment level. In US data, the

monthly out�ow rate from unemployment is on the order of f = 0:45 (see Shimer, 2007),

implying that around half of the gap between actual and steady state unemployment is closed

over the course of a month. That is, deviations of unemployment from steady state are very

short-lived, and thus steady state responses to aggregate shocks are very good, and intuitive,
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approximations to the true dynamic response of the model.

Calibration. The empirical moments that we seek to match are summarized in Table 1.16

In particular, we want to get sense of the cyclical variation in the job �nding rate implied

by the model. To assess this, we calibrate the model as follows. We take a time period

to be equal to one week, which in practice acts as a good approximation to the continuous

time nature of unemployment �ows (see Hagedorn & Manovskii, 2005). We then assume

that the matching function is of the conventional Cobb-Douglas form,M = �U�V 1��.17 We

set � = 0:6 based on the estimates reported in Petrongolo & Pissarides (2001). We target

a weekly unemployment out�ow probability of f = 0:1125, to be approximately consistent

with a monthly out�ow hazard of 0:45. In addition, we follow Pissarides (2007) and target

a mean value of the vacancy�unemployment ratio of � = 0:72. Noting from the matching

function that f = ��1��, the latter implies that � = 0:129 on a weekly basis.

Idiosyncratic productivity shocks, x, are assumed to evolve according to (17). Follow-

ing Mortensen & Pissarides (1994), we assume for simplicity that the latter distribution is

uniform on the interval [; 1], so that ~G (x) = x�
1� . Given this setup, it is possible to solve

for �rms�optimal employment policy in closed form, the details of which are in Appendix

A. We then use the aggregation results of Proposition 5 to derive numerically the aggregate

job creation, (22), and Beveridge curve, (24), conditions, and thereby solve the model.

Given this, we then target a mean weekly in�ow probability of s = 0:0075 to be consistent

with data in Table 1. Following Mortensen & Nagypal (2007a), we also target the empirical

elasticity of s with respect to aggregate output per worker, Y=N . Speci�cally, we use

Shimer�s (2007) estimate of the employment to unemployment transition rate to measure s

16The elasticity for the job �nding rate reported in Table 1 di¤ers from the value of 2.34 reported in
Mortensen & Nagypal (2005) because they base their calculations on Table 1 of Shimer (2005a) which
reports summary statistics for the monthly job �nding probability, rather than for the hazard, which is what
matters for unemployment �ows.
17An issue that can arise when using a Cobb�Douglas matching function in a discrete time setting is that

the �ow probabilities f and q are not necessarily bounded above by 1. This issue does not arise here due to
the short time period of one week.
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Table 1: Summary Statistics and Target Moments (in italics), Weekly

Outcome Level Elasticity w.r.t. Y
N

Source
f 0.1125 2.95 Shimer (2007)

s 0.0075 �2.48 Shimer (2007)

V � 3.68 Shimer (2005)

b=
�
Y
N

�
0.7 � Mortensen & Nagypal (2007a)

c=E [Workers�Wage] 0.27 � Silva & Toledo (2007)

E [New Hires�Wage] � 0.94 Haefke et al. (2007)

Notes: Following Mortensen & Nagypal (2007a), elasticities are obtained by regressing the log

deviation from trend of f and s on the log deviation from trend of non-farm business output per

worker obtained from the Bureau of Labor Statistics. Following Shimer (2005), series are detrended

using a Hodrick�Prescott �lter with smoothing parameter 105. The series for f and s are respectively

the job-�nding rate and the employment to unemployment transition rate derived in Shimer (2007).

to derive an elasticity with respect to output per worker of �2.48.18

In addition to these, we also target the workers�opportunity cost of employment, b, and

the �ow cost of a vacancy, c, as follows. As suggested by Mortensen & Nagypal (2007a)

and Hall & Milgrom (2008), we target b to be approximately 0.7 of output per worker, Y=N .

Moreover, we target c to generate per worker hiring costs c=q approximately equal to 14%

of quarterly worker compensation in accordance with Silva & Toledo (2007) who used the

Saratoga Institute�s (2004) estimate of the labor costs of posting vacancies. In the context

of the model, this implies a value of c approximately equal to 0.27 of the average worker�s

wage.19

Finally, we target the elasticity of average wages of newly hired workers to be equal to

0.94, based on the results of Haefke et al. (2007).20 We target the elasticity of the average

18We are grateful to Robert Shimer for posting his estimates of �ow transition rates among labor market
states from the CPS Gross Flows data on his webpage.
19We want to equate the per worker hiring cost c=q to 14% of quarterly wages, 0:14 � [12 � E (w)], since

there are 12 weeks per quarter. Then note that the implied weekly job �lling probability is given by
q = ���� = 0:129 � 0:72�0:6 = 0:16. Piecing this together yields c=E (w) = 0:16 � 0:14 � 12 = 0:27.
20We target an elasticity of 0.94 based on Haefke et al.�s baseline results. It is worth bearing in mind that

this is at the upper end of the range of estimates presented in their paper.
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wages of newly hired workers rather than the elasticity of average wages of all workers for two

reasons. First, it is well known empirically that the wages of workers in ongoing relationships

are rigid (see among others Card & Hyslop, 1997), which is at odds with the assumption

of Nash wage setting that we employ here.21 Second, it is also well known that it is the

�exibility of wages of new hires, rather than of ongoing workers, that is relevant to the

cyclicality of the job �nding rate implied by search and matching models of the labor market

such as the one studied here (Shimer, 2004; Hall, 2005).

We thus have six moments that we seek to match, and seven model parameters: �

(production function, F (n) = n�), b (�ow value of leisure), c (�ow cost per vacancy), �

(worker bargaining power), L (potential labor force),22 � (arrival probability of idiosyncratic

shocks), and  (lower support of idiosyncratic shock distribution). We therefore set � to be

equal to the conventional 2/3,23 and evaluate the steady state response of the model over a

grid of values for the remaining six parameters. Given the results of this exercise, we pick

the parameter values that most closely match the six target moments italicized in Table 1.

The parameter results of this numerical exercise are reported in Table 2, and the implied

model outcomes are in Table 3. The results are very encouraging: The model is able to

match quite closely the target moments in italics in Table 1.24 Of particular interest is

that the model can also match the observed elasticity of the job �nding rate with respect to

output per worker even though this moment was not targeted when calibrating the model.

21Indeed, in the calibration that follows, the Nash wage setting assumption implies an elasticity of average
worker wages with respect to output per worker of approximately 1. This overstates the cyclicality of ongoing
wages observed in the data, which display an elasticity with respect to output per worker of approximately
0.5 (see Solon, Barsky, & Parker, 1994; Pissarides, 2007).
22Taken literally, L represents the labor force as a fraction of the number of the number of �rms in the

model economy. In reality, however, L is more accurately described as the labor force as a fraction of the
number of production units in the economy. The latter may correspond to a small �rm, a small division
within a large �rm etc. For this reason, we do not calibrate L directly.
23Strictly speaking, labor�s share will be more than 2/3 in the model due to surplus sharing. We use a

value of � = 2=3 for simplicity.
24Although the �t with the target moments is good, it is not perfect. This is due to some coarseness in

the grid over which we evaluated the model. However, if anything, we err on the side of generating less
ampli�cation since we overstate the �ow surplus (b is a smaller fraction of output per worker) and overstate
the �exibility in the wages of new hires relative to the target moments.
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Table 2: Calibrated Parameters (Weekly)

Parameter Meaning Value Reason
� Matching elasticity 0.6 Petrongolo & Pissarides (2001)

� Matching e¢ ciency 0.129 Pissarides (2007)

� F (n) = n� 0.67 Labor share � 2/3
� Discount factor 0.999 Quarterly interest rate = 0.012

b

c

�

L

�



Value of leisure

Flow vacancy cost

Worker bargaining power

Labor force

x: arrival rate

x: lower support

0.4

0.12

0.4

2.25

0.045

0.5

9>>>>>>>>>=>>>>>>>>>;
Match target moments

in italics in Table 1

This makes substantial progress relative to the standard MP model. To see this, as a

benchmark for comparison Table 3 also reports the outcomes from calibrating the standard

MP model (the case with � = 1) to match the target moment outcomes obtained for the

� = 2=3 case.25 A striking feature of this comparison is that the standard MP model with

� = 1 generates a much lower elasticity for the job �nding rate. This con�rms the results of

previous literature that details the inability of the standard MP model to generate enough

cyclicality in job creation. Shimer�s (2005a) calibration of the standard MP model yields

an elasticity of f equal to 0.48. Mortensen & Nagypal (2007a) favor a di¤erent calibration

of the standard MP model that yields an elasticity of f equal to 1.56 (see their section 3.2).

Pissarides�(2007) calibration of the standard model with endogenous job destruction obtains

an elasticity of f equal to 1.54. Thus, the standard MP model, with or without endogenous

job destruction, appears to be able explain up to one half of the observed elasticity of the

job �nding rate. The results of Table 3 suggest that the generalized model studied here

25It is possible to rewrite the MP model in terms of b=(Y=N) and c=E[w]. We impose the conditions
b=(Y=N) = 0:67 and c=E[w] = 0:26. We then set � = 0:128 to target f = 0:112; � = 0:625 to target an
elasticity of new hire�s wages of 1.1;  = 0:825 to target a mean level of s = 0:0078; and � = 0:03 to target
an elasticity of s equal to �2.46.
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Table 3: Model Outcomes (Weekly)

Outcome Mean Level Elasticity w.r.t. Y
N

� = 2=3 � = 1 � = 2=3 � = 1

f 0.112 0.112 3.24 1.29

s 0.0078 0.0079 �2.46 �2.47

V � � 2.80 �0.28

b=
�
Y
N

�
0.67 0.67 � �

c=E [Workers�Wage] 0.26 0.26 � �

E [New Hires�Wage] � � 1.1 1.05

Parameter values for � = 2/3 case as in Table 2.

can plausibly account for all of the observed cyclical comovement between f and output per

worker.

Cyclicality of Vacancies. Until now we have ignored the cyclicality of vacancies generated

by our generalized model. Readers of Shimer (2005), however, will recall that the standard

MP search and matching model also fails to match the observed cyclical volatility in the

vacancy rate in the US. Speci�cally, as shown in Table 1, the empirical elasticity of the

vacancy rate with respect to output per worker in the US derived by Shimer (2005) is equal

to 3:68. The implied elasticity from Shimer�s calibration of the standard MP model is

0:995 � 0:027=0:020 = 1:34 (see Shimer, 2005, Table 3). Moreover, the calibration of the

standard MP model with � = 1 in Table 3 reveals that the model with endogenous job

destruction performs even worse on this dimension, yielding a very mild countercyclical

vacancy elasticity of �0:28. This arises because countercyclical job destruction leads to an

o¤setting increase in hires in times of recession to maintain balance between unemployment

in�ows and out�ows, and thereby stymies the procyclicality of vacancies (Shimer, 2005).

The analogous elasticity generated by our simulation of the generalized model studied

here is 2:80. This is clearly a substantial improvement over the standard model, especially

given that the generalized model incorporates countercyclical job destruction. However,
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there remains a question of why the generalized model, which matches the cyclicality of job

�nding and employment to unemployment transition rates so well, cannot fully explain the

cyclicality of vacancies. We believe that the answer is that a complete understanding of the

cyclical behavior of vacancies requires an understanding of the processes underlying job-to-

job employment �ows, a phenomenon that we abstract from in our analysis of unemployment

�ows. To see why, note the following identity that relates the job-�lling rate, q, vacancies

(or job openings), V , and the numbers (not the hazard rates) �owing from unemployment

to employment, UE, and from job to job, EE:

qV = UE + EE (26)

Log di¤erentiation of this identity yields:

d log q + d log V = 'd logUE + (1� ') d logEE (27)

where ' is the share of total hires that originates from unemployment. Recent research has

shown that job-to-job �ows (EE) are substantially procyclical and account for approximately

60% of total hires using Current Population Survey data from 1994 onwards (Fallick &

Fleischman, 2004). Equation (27) shows that the procyclicality of EE �ows must therefore

contribute substantially to the procyclicality of vacancies observed in the data. For this

reason, we feel that the elasticity of vacancies obtained from the generalized model without

on-the-job search may in fact be quite reasonable: If we were able to match the empirical

elasticity, we would implicitly be over-explaining the procyclicality of vacancies. For the

same reason, however, we also feel that extending the model to account for job-to-job �ows

is an important task for future research.
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4 Understanding Ampli�cation

Approximating the Cyclicality of Job Creation. Figure 2 plots the response of

the Job Creation, (22), and Beveridge Curve, (24), conditions to a 1% decline in p for

the simulation detailed in Tables 2 to 4. The �gure reveals that allowing for downward

sloped labor demand ampli�es the response of the vacancy-unemployment ratio to aggregate

disturbances primarily through movements in the Job Creation condition. This naturally

raises the question of why the JC condition moves so much. The following result provides

a sense for where this ampli�cation comes from by taking a log�linear approximation to a

�rm�s marginal surplus around mean employment:

Proposition 6 For small �, the horizontal shift in the JC condition induced by a change in

aggregate productivity, p, is given approximately by

d ln �

d ln p

����
JC

� (1� �) ~p

!� [(1� �) (~p� b)� ��c�] + ��c�
; (28)

where ! is the steady state employment share of hiring �rms, and ~p � �apl + (1� �)mpl

where apl and mpl are respectively the average and marginal product of labor of the average�

sized �rm, and � � ��
1��(1��) .

Corollary 1 The elasticity of the vacancy�unemployment ratio to aggregate productivity in

the � = 1 case (Mortensen & Pissarides, 1994) is approximately equal to

d ln �

d ln p
� (1� �) p

� [(1� �) (p� b)� ��c�] + ��c�
: (29)

Equation (29) extends results presented in Mortensen & Nagypal (2007a) for the standard

MP model with exogenous job destruction to the endogenous job destruction case. It echoes

Mortensen & Nagypal�s results in that it shows that the cyclical response of the vacancy-

unemployment ratio, �, is ampli�ed in the endogenous job destruction case when the average
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�ow surplus to employment relationships, p� b, is small. Intuitively, when the �ow surplus

is small, small reductions in aggregate productivity, p, can easily exhaust that surplus and

lead �rms to cut back substantially on hiring. Thus, to incentivize �rms to hire once more

and thereby restore equilibrium, the model must allow the labor market to slacken, and labor

market tightness to fall, substantially.

Equation (28) generalizes this result to the case of downward sloped labor demand and

endogenous job destruction. Inspection of (29) and (28) reveals that there are two ways

that the addition of downward sloped labor demand can potentially yield ampli�cation of

the response of labor market tightness (and thereby of the job �nding rate, f = ��1��) to

changes in aggregate productivity. The �rst is that the e¤ective surplus that matters for

ampli�cation is now given by by ~p�b, and this is smaller than the average �ow surplus. The

reason is that the e¤ective �ow surplus, ~p� b, is now a weighted average of the average and

marginal �ow surplus. When the demand for labor slopes downward, the marginal surplus

will be smaller than the average surplus, because infra�marginal employment relationships

are more productive. This provides a sense for why the numerical exercise above is able to

generate greater volatility in � even when the average �ow surplus is relatively large: It is

because the marginal �ow surplus is relatively small in the simulation.

It�s important to stress that while the model implies a small marginal surplus, it does

allow for a substantial average �ow surplus to employment relationships. This stands in

marked contrast to the standard MP model. For instance, Mortensen and Nagypal (2007a)

report that their preferred estimate of the average �ow match surplus is 1
b=(Y=N)

� 1 =
1
0:73

� 1 = 37 percent, which is comparable to, though still somewhat less than, what we

obtain (see Table 3). They �nd that under this calibration, the standard MP model is able

to account for only about one half of the ampli�cation generated by the model developed

here. When endogenous job destruction is added to the standard (� = 1) model, Pissarides

(2007) �nds that it is still unable to reconcile the observed volatility of f with a substantial
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Figure 2: Job Creation and Beveridge Curve in the Simulated Model

average surplus.26

Equation (28) also suggests that there is an additional e¤ect at work in the form of the

variable !, the steady state employment share of hiring �rms. To understand the signi�cance

of this term, note that in the standard MP model with �at labor demand (the special case

where � = 1), ! is equal to 1. When � = 1, a �rm that reduces its employment will shed

all of its workers since, if one worker is unpro�table at a �rm, all workers are unpro�table.

Similarly, when � = 1, if it is pro�table to hire one worker, it is pro�table to hire any number

of workers. Thus shedding �rms have zero employment, and all of steady state employment

is accounted for by hiring �rms in the standard MP model.

The latter is a useful point of contrast with the model with downward sloped labor de-

mand and endogenous job destruction. Because of downward sloped labor demand, shedding

26The worker�s surplus in our simulation is also substantial compared to previous calibrations using the
standard MP model. Our calibration implies workers obtain a (E[w]� b) =b = 15 percent �ow surplus from
employment over unemployment.
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�rms do not reduce their employment to zero because reducing employment replenishes the

marginal product of labor in those �rms. Likewise, hiring �rms�desired employment level

is bounded because additional hiring depletes the marginal product of labor. Hence ! will

be less than unity, and inspection of (28) and (29) reveals that this will lead to greater

ampli�cation relative to the standard MP model.27

The intuition for this e¤ect is related to the interaction of downward sloped labor demand

and heterogeneous �rms. Following a reduction in aggregate productivity, shedding �rms

wish to shed more workers, and hiring �rms wish to hire fewer workers. Thus, in�ows

into the unemployment pool rise, and out�ows from the unemployment pool fall, ceteris

paribus, and unemployment rises. To return the model to steady state, hiring �rms must

be convinced to hire enough workers to equate in�ows to out�ows once more. The model

achieves this by allowing the job �lling probability, q (�), to rise (and labor market tightness,

�, to fall) so that hiring becomes less costly for �rms. However, when the demand for

labor slopes downward, additional hiring reduces the marginal product of labor, making

additional employment relationships less attractive to hiring �rms. As a result, the job

�lling probability, q (�) must rise (and hence � must fall) more to convince these �rms to

increase hiring and return the economy back to steady state once more.

A natural question in the light of this is how much of the cyclicality of job creation gener-

ated by the model can be attributed to small surplus to marginal employment relationships

on the one hand, and to the interaction of endogenous job destruction with job creation on

the other. To get a sense for this, Table 4 reports outcomes for a special case of the gener-

alized model that preserves downward sloped labor demand (� = 2=3), but which switches

o¤ endogenous job destruction.28 As before, we calibrate this exogenous job destruction

27The reader may worry whether (1� �) (~p� b)� ��c� is positive or not. To see that it is, note that we
can rewrite it as (1� �)

�
p�xn��1

1��(1��) � b
�
� ��c�, and observe from equations (13) and (14) that it is, in fact,

the marginal �ow surplus of a �rm, and therefore must be positive.
28This special case of the model is formally analogous to the model analyzed in Cahuc &Wasmer (2001) and

Krause & Lubik (2007). Krause & Lubik �nd much less cyclicality in the job �nding rate in their calibration.
This is because the �ow surplus to employment relationships is very large in their parameterization (b as a
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Table 4: Endogenous vs. Exogenous Job Destruction, � = 2=3

Outcome Mean Level Elasticity w.r.t. Y
N

Endog. JD Exog. JD Endog. JD Exog. JD

f 0.112 0.112 3.24 2.48

s 0.0078 0.0078 �2.46 0

V � � 2.80 3.88

b=
�
Y
N

�
0.67 0.67 � �

c=E [Workers�Wage] 0.26 0.26 � �

E [New Hires�Wage] � � 1.1 1.1

version of the model to match the target moment outcomes generated by the generalized

model in Table 3.29 This exercise yields an elasticity of the job �nding rate equal to 2:48,

which is lower than the value of 3:24 derived for the model with endogenous job destruction.

This suggests that, while the majority of the procyclicality in job �nding generated by the

model is attributable to small marginal surplus, the addition of endogenous job destruction

enhances this result, and this second e¤ect is also not small.30

5 Summary and Discussion

This paper has shown that the addition of two very simple features �downward sloped short

run labor demand and endogenous job destruction �to an otherwise standard model of the

aggregate labor market can help explain the observed cyclical variation in the job �nding rate,

the employment to unemployment transition rate, and vacancies observed in US data. We

show that this is driven by two e¤ects. First, cyclicality in job creation is generated by the

fact that marginal employment relationships generate a low surplus in the short run. Small

fraction of output per worker is approximately equal to 0.1).
29Speci�cally, it is possible to rewrite the model with exogenous job destruction in terms of b=(Y=N) and

c=E[w]. We then impose the conditions b=(Y=N) = 0:67 and c=E[w] = 0:26, and choose � and � to match
f = 0:112 and an elasticity of wages of 1.1. Setting � = 0:128 and � = 0:517 achieves this.
30It is also true that the model with exogenous job destruction yields greater procyclicality in vacancies.

However, as shown in Shimer (2005) and Mortensen & Nagypal (2007b), this is simply a side-e¤ect of the
(counterfactual) lack of any countercyclical movement in separations in that version of the model.
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aggregate disturbances quickly exhaust this surplus and lead to substantial reductions in

hiring. Importantly, however, due to downward sloped labor demand, low marginal surplus

is nevertheless consistent with a sizeable surplus to the average employment relationship,

contrary to the standard search model. Second, increased job destruction in recessions must

be soaked up by increased hiring in equilibrium. With downward sloped labor demand,

increased hiring diminishes the value of additional employment relationships to �rms. As

a result, hiring �rms are less willing to soak up the separations of shedding �rms, and

unemployment rises more in the wake of a recession. Calibration of the model to available

moments suggests that, while the majority of the cyclicality in job creation is attributable

to small marginal surplus, both of these mechanisms appear to be quantitatively signi�cant.

In the course of establishing these results, we also provide a rich, yet analytically tractable

model of the aggregate labor market in the short run. As such, we believe that this model

will provide a useful laboratory for the cyclical analysis of aggregate labor markets in future

empirical and theoretical research. A number of avenues arise naturally in the light of

this. First, the model has a well-de�ned concept of a �rm and so lends itself to estimation

using establishment level data. As a result, the analytical framework developed here will

complement recent research e¤orts that have sought to solve and estimate search models

using numerical methods (e.g. Cooper, Haltiwanger & Willis, 2007).

A second natural extension relates to the aggregation results derived in the analysis of

section 2. Speci�cally, we provide a very simple and general approach to deriving both the

aggregate unemployment stock and �ows in non-linear models without representative �rms

such as the one studied here. An obvious extension is to apply these results to other popular

models of non-linear microeconomic behavior. For example, recent research has emphasized

the importance of non�convex adjustment costs in explaining the empirical properties of

labor demand at the micro level (see for example Caballero, Engel, & Haltiwanger, 1997,

and Cooper, Haltiwanger, & Willis, 2004). From the perspective of the analysis of section
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2, non�convex adjustment costs simply lead to another form for the optimal employment

policy of a �rm, which can be aggregated in exactly the same manner. Our hope, therefore,

is that this will enable future work that further explores the implications of non-linearities

in �rm level labor demand for the aggregate labor market.
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7 Appendix

A Solution of the Simulated Model

Optimal Employment Policy. We follow Mortensen & Pissarides (1994) and assume
idiosyncratic shocks evolve according to (17), with ~x � U [; 1] so that ~G (x) = x�

1� . In this
case, we can rewrite the recursion for the function D (n; x) in Proposition 3 as:

D (n; x) = (1� �)� (x) + �

Z Rv(n)

R(n)

� (x0) d ~G (x0) + �

Z 1

Rv(n)

c

q
d ~G (x0)

+� (1� �)D (n; x) + ��

Z Rv(n)

R(n)

D (n; x0) d ~G (x0) (30)

where � (x) � (1� �)
h
px�n��1

1��(1��) � b
i
� ��f c

q
. We then conjecture that the function D (n; x)

is of the form D (n; x) = d0 + d1� (x). Substituting this into the latter, and equating
coe¢ cients, we obtain the following solution for D (n; x):

D (n; x) =
1� �

1� � (1� �)
� (x)

+
�

1� � (1� �)

Rv �R

[1� � (1� �)] (1� )� �� (Rv �R)
�

�
R +Rv

2

�
+

1�Rv

[1� � (1� �)] (1� )� �� (Rv �R)
�
c

q
(31)

Note also that di¤erencing the �rst-order conditions (13) and (14) in this case implies that:

Rv (n)�R (n) � � (n) = [1� � (1� �)]
c=q

 p�n��1
(32)

where  � 1��
1��(1��) . Using these two results, and after some tedious algebra, one obtains

the following closed�form solution for Rv (n):

Rv (n) =
(1� �) b+ ��cf

q
+
�
1� � � �� 

1�

�
c
q
� �� [1� � (1� �)] 1

1�
1
2

�
c
q

�2
1

 p�n��1

 p�n��1 � �� 1
1�

c
q

(33)
To derive R (n), simply note that, by de�nition, R (n) = Rv (n)� � (n). The aggregate em-
ployment stock and �ows are then obtained directly from applying the results of Proposition
5.

Average Product and Average Marginal Product. The average product of labor
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implied by the model is given by APL = E [pxn��1]. Note that:

E
�
xn��1

�
=

Z �Z
xdG (xjn)

�
n��1dH (n)

Moreover, the optimal employment policy implies that, given n, x must lie in the interval
[R (n) ; Rv (n)], but is otherwise independently distributed. Thus:Z

xdG (xjn) =
R Rv(n)
R(n)

xdG (x)

G [Rv (n)]�G [R (n)]
=
1

2
[R (n) +Rv (n)] (34)

where the last equality follows from the assumption of uniform idiosyncratic shocks in the
simulation. Thus:

APL = E
�
pxn��1

�
= p

Z
1

2
[R (n) +Rv (n)]n

��1dH (n) (35)

Moreover, the average marginal product of labor is simply given by E [MPL] = E [px�n��1] =
�APL.

Average Wages. It follows from equation (9) that the average wage across �rms is given
by:

�wf =
�

1� � (1� �)
E [MPL] + ��f

c

q
+ (1� �) b (36)

To obtain the average wage across workers, which we denote �ww, note that �ww = E
h

n
E(n)w (n; x)

i
where w (n; x) is the wage in a given �rm de�ned in (9). That is, it is the employment-
weighted average of wages across �rms. Thus:

�ww =
�

1� � (1� �)

1

E (n)
E [px�n�] + ��f

c

q
+ (1� �) b (37)

This has a very similar structure to the average wage across �rms. It follows that:

�ww =
�p�

1� � (1� �)

1

E (n)

Z
1

2
[R (n) +Rv (n)]n

�dH (n) + ��f
c

q
+ (1� �) b (38)

Finally, the average wage of new hires, which we denote �wm, is equal to a hiring�weighted
average of wages across hiring �rms. Noting from (12) that idiosyncratic productivity of
hiring �rms is given by x = Rv (n), we have that:

�wm = E [E (w (n; x) jn > n�1; n�1)] =

Z Z
n�1

w (n;Rv (n))
dG [Rv (n)]

1�G [Rv (n�1)]
dH (n�1) (39)
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B Proofs

Conjecture 1 The optimal employment policy function is of the form speci�ed in (12).

We will later verify in the proof of Proposition 2 that the Conjecture is consistent with
the solution for the wage equation obtained in Proposition 1.

Proof of Proposition 1. Note �rst that, under the Conjecture, we can write the marginal
surplus to a �rm recursively as:

J (n; x) = pxF 0 (n)�w (n; x)�wn (n; x)n+�
Z 1

Rv(n)

c

q
dG (x0)+�

Z Rv(n)

R(n)

J (n; x0) dG (x0) (40)

In addition, we can write the value to a worker of unemployment as:

U = b+ �

�
(1� f)U 0 + f

Z 1

0

Z 1

Rv(n)

W
�
R�1v (x0) ; x0

� dG (x0)

1�G (Rv (n))
dH (n)

�
(41)

Upon �nding a job, which occurs with probability f , the new job must be in a �rm which is
posting vacancies. This implies that the idiosyncratic productivity of the �rm, x0 > Rv (n),
and that the level of employment in the hiring �rm, n = R�1v (x0). Moreover, since �rms
di¤er in size, there is a distribution of employment levels, H (n), over which an unemployed
worker will take expectations when evaluating the expected future bene�ts of being hired.
It is useful to rewrite the worker�s value of unemployment as:

U = b+ �

�
U 0 + f

Z 1

0

Z 1

Rv(n)

�
W
�
R�1v (x0) ; x0

�
� U 0

� dG (x0)

1�G (Rv (n))
dH (n)

�
(42)

Then note that, due to Nash sharing, the worker�s surplus in an expanding �rm,W (R�1v (x0) ; x0)�
U 0 = �

1��J (R
�1
v (x0) ; x0), and moreover that, by the �rst-order condition for a hiring �rm

(see (4)), J (R�1v (x0) ; x) = c=q. Thus, we obtain the simple result:

U = b+ �U 0 + �f
�

1� �

c

q
(43)

The value of employment to a worker can be written as:

W (n; x) = w (n; x) + �

(Z R(n)

0

�
~sU 0 + (1� ~s)W

�
R�1 (x0) ; x0

��
dG (x0) (44)

+

Z Rv(n)

R(n)

W (n; x0) dG (x0) +

Z 1

Rv(n)

W
�
R�1v (x0) ; x0

�
dG (x0)

)

An employed worker�s expected future payo¤ can be split into three regimes. If the �rm
sheds workers next period (x0 < R (n)) then the worker may separate from the �rm. We
denote by ~s the probability that a worker separates from a �rm conditional on the �rm
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shedding workers. If the worker separates, she transitions into unemployment and receives
a payo¤ U 0. Otherwise she continues to be employed in a �rm of size n0 = R�1 (x0). Note
that Nash sharing implies that W (R�1 (x0) ; x0) � U 0 = �

1��J (R
�1 (x0) ; x0), and that, by

the �rst-order condition, J (R�1 (x0) ; x0) = 0. Thus, W (R�1 (x0) ; x0) = U 0. In the event
that a �rm freezes employment next period (x0 2 [R (n) ; Rv (n)]) then Nash sharing implies
that W (n; x0) � U 0 = �

1��J (n; x
0). Finally, in the event that the �rm hires next period,

W (R�1v (x0) ; x0)� U 0 = �
1��

c
q
. Thus, we have that:

W (n; x) = w (n; x) + �U 0 + �
�

1� �

Z 1

Rv(n)

c

q
dG (x0) + �

�

1� �

Z Rv(n)

R(n)

J (n; x0) dG (x0) (45)

Subtracting the value of unemployment to a worker from the latter, we obtain the following
description of the worker�s surplus:

W (n; x)�U = w (n; x)�b+� �

1� �

Z 1

Rv(n)

c

q
dG (x0)+�

�

1� �

Z Rv(n)

R(n)

J (n; x0) dG (x0)��f �

1� �

c

q
(46)

Under Nash, this must be equal to �
1��J (n; x), where J (n; x) is as derived in (40) so that

we have:

w (n; x) = �

�
pxF 0 (n)� wn (n; x)n+ �f

c

q

�
+ (1� �) b (47)

as required.

Proof of Proposition 2. Given the wage function in (9), it follows that the �rm�s
objective, (3), is continuous in (n�1; x) and concave in n. Thus, it follows from the Theorem
of the Maximum that the �rm�s optimal employment policy function is continuous in (n�1; x).
Given this, it follows that the employment policy function must be of the form stated in
Proposition 2. This veri�es that the Conjecture stated at the beginning of the appendix
holds.

Proof of Proposition 3. First, note that one can re-write the continuation value condi-
tional on each of the three possible continuation regimes:

�(n; x0) =

8<:
�� (n; x0) if x0 < R (n)
�0 (n; x0) if x0 2 [R (n) ; Rv (n)]
�+ (n; x0) if x0 > Rv (n)

(48)

where superscripts �=0=+ refer to whether their are separations, a hiring freeze, or hires
tomorrow. Thus we can write31:Z

�(n; x0) dG (x0jx) =
Z R(n)

0

�� (n; x0) dG+

Z Rv(n)

R(n)

�0 (n; x0) dG+

Z 1

Rv(n)

�+ (n; x0) dG (49)

31Henceforth, �dG�without further elaboration is to be taken as �dG (x0jx)�.
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Taking derivatives with respect to n, recalling the de�nition of D (�), and noting that, since
�(n; x0) is continuous, it must be that �� (n;R (n)) = �0 (n;R (n)) and �0 (n;Rv (n)) =
�+ (n;Rv (n)), yields:

D (n; x) =

Z R(n)

0

��n (n; x
0) dG+

Z Rv(n)

R(n)

�0n (n; x
0) dG+

Z 1

Rv(n)

�+n (n; x
0) dG (50)

Finally, using the Envelope conditions in Lemma 1 below, and substituting into (50) we
obtain (15) and (16) in the main text:

D (n; x) =

Z Rv(n)

R(n)

�
(1� �)

�
px0�n��1

1� � (1� �)
� b

�
� ��f

c

q

�
dG (x0jx)

+

Z 1

Rv(n)

c

q
dG (x0jx) + �

Z Rv(n)

R(n)

D (n; x0) dG (x0jx)

� (CD) (n; x) (51)

To verify that C is a contraction mapping, we con�rm that Blackwell�s su¢ cient conditions
for a contraction hold here (see Stokey & Lucas, 1989, p.54). To verify monotonicity, �x
(n; x) = (�n; �x), and take D̂ � D. Then note that:Z Rv(�n)

R(�n)

D̂ (�n; x0) dG (x0j�x)�
Z Rv(�n)

R(�n)

D (�n; x0) dG (x0j�x) =
Z Rv(�n)

R(�n)

h
D̂ (�n; x0)�D (�n; x0)

i
dG (x0j�x) � 0

(52)
Since (�n; �x) were arbitrary, it thus follows that C is monotonic in D. To verify discounting,
note that:

[C (D + a)] (n; x) = (CD) (n; x)+�a [G (Rv (n) jx)�G (R (n) jx)] � (CD) (n; x)+�a (53)

Since � < 1 it follows that C is a contraction. It therefore follows from the Contraction
Mapping Theorem that C has a unique �xed point.

Lemma 1 The value function de�ned in (3) has the following properties:

��n (n; x
0) = 0 (54)

�0n (n; x
0) = (1� �)

�
px0�n��1

1� � (1� �)
� b

�
� ��f

c

q
+ �D (n; x0)

�+n (n; x
0) = c=q

Proof of Lemma 1. First, note that standard application of the Envelope Theorem implies
that ��n (n; x

0) = 0 and �+n (n; x
0) = c=q. It is only slightly less obvious what happens when

�n0 = 0, i.e. when the employment is frozen next period. In this case, n0 = n and this
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implies that:

�0 (n; x0) = px0F (n)� w (n; x0)n+ �

Z
�(n; x00) dG (x00jx0) (55)

It therefore follows that:

�0n (n; x
0) = px0F 0 (n)� w (n; x0)� wn (n; x

0)n+ �

Z
�n (n; x

00) dG (x00jx0) (56)

Since, by de�nition D (n; x0) �
R
�n (n; x

00) dG (x00jx0), the statement holds as required.

Proof of Proposition 4. First note that if x evolves according to (17), then we can
rewrite the recursion for D (n; x) as:

D (n; x) =
1� �

1� � (1� �)
� (x) +

�

1� � (1� �)

Z Rv(n)

R(n)

� (x0) d ~G (x0)

+
�

1� � (1� �)

Z 1

Rv(n)

c

q
d ~G (x0) +

��

1� � (1� �)

Z Rv(n)

R(n)

D (n; x0) d ~G (x0)(57)

where � (x) � (1� �)
h
px�n��1

1��(1��) � b
i
� ��c�. It follows that the LHS of the �rst�order

conditions, (13) and (14) are increasing in x, because � (x) is increasing in x. Thus, to
establish that @Rv=@p < 0 and @R=@p < 0, simply note that the function D (n; x) is also
increasing in p and thus the LHS of (13) and (14) are increasing in p.
To ascertain the marginal e¤ects of � we �rst need to establish the marginal e¤ect of � on

the function D (n; x). Rewriting f=q = � and q = q (�) in (57), di¤erentiating with respect
to �, and using the �rst�order conditions, (13) and (14), to eliminate terms we obtain:

D� = ���c
1� � (1� p0)

1� � [1� � (1� p0)]
� c

q

q0 (�)

q

�p+

1� � [1� � (1� p0)]
(58)

where p0 � ~G (Rv (n))� ~G (R (n)), p+ � 1� ~G (Rv (n)), and p� � ~G [R (n)]. Note that D�

is independent of x. Di¤erentiating the �rst�order condition for a hiring �rm, (13), with
respect to � we obtain:

���c+ c

q

q0 (�)

q
+ �D� = �

��c

1� � [1� � (1� p0)]
+
c

q

q0 (�)

q

1� � (1� �p�)

1� � [1� � (1� p0)]
< 0 (59)

since q0 (�) < 0. Thus it follows that @Rv=@� > 0. Likewise, di¤erentiating the �rst�order
condition for a shedding �rm, (14), with respect to � we obtain:

���c+ �D� = �
��c

1� � [1� � (1� p0)]
� �

c

q

q0 (�)

q

�p+

1� � [1� � (1� p0)]
(60)

Thus, @R=@� > 0 () n > R�1v ~G�1
�
1 + �

"q�

f
�

�
where "q� � d ln q

d ln �
.
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Proof of Proposition 5. Proof of (19) and (20): See main text.
Proof of (21): First note that a necessary condition for a �rm to shed workers is that it

receives an idiosyncratic shock, which occurs with probability �. In this event, the number
of separations in a �rm that is shedding workers is equal to [n�1 �R�1 (x)], since separating
�rms set employment, n = R�1 (x). Now imagine, counterfactually, that all �rms shared
the same lagged employment level, n�1. Then, the aggregate number of separations in the
economy would equal:

� (n�1) = �

Z R(n�1)

nmin

�
n�1 �R�1 (x)

�
d ~G (x) (61)

where nmin is the lower support of employment. Using the change of variables, x = R (n),
and integrating by parts:

� (n�1) = �

Z n�1

nmin

(n�1 � n)
d ~G [R (n)]

dn
dn = �

Z n�1

nmin

~G [R (n)] dn (62)

Now, of course, the true aggregate number of separations is equal to S =
R
� (n�1) dH (n�1),

whereH (�) is the c.d.f. of employment. Denoting nmax as the upper support ofH (�), further
integration by parts reveals that:

S = � (nmax)� �

Z
~G [R (n�1)]H (n�1) dn�1 = �

Z
[1�H (n)] ~G [R (n)] dn (63)

as required. A similar method reveals that the aggregate number of hires in the economy,
M = �

R
H (n)

�
1� ~G [Rv (n)]

�
dn. It follows from the steady state condition for the

distribution for employment, (19), that separations, S, are equal to hires, M .

Lemma 2 If idiosyncratic shocks evolve according to (17), and the matching function is of
the form M (U; V ) = �U�V 1��, then the marginal �rm surplus de�ned in (40) is given by

J =
 p�n��1

1� � (1� �)

�
x+

��p0

1� � (1� �)� ��p0
E (n)

�
� (1� �) b

1� � (1� �)� ��p0
� �

c

q

�f � �p+

1� � (1� �)� ��p0
; (64)

and the marginal e¤ects of n, p and � on J are given by

Jn = �1� �

n

 p�n��1

1� � (1� �)

�
x+

��p0

1� � (1� �)� ��p0
E (n)

�
Jp =

1

p

 p�n��1

1� � (1� �)

�
x+

��p0

1� � (1� �)� ��p0
E (n)

�
J� = �� c

q

1

�

�f � ��p+

1� � (1� �)� ��p0
; (65)
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where  � 1��
1��(1��) , E (n) � E (x

0jx0 2 [R (n) ; Rv (n)]), and p0, p+ are as de�ned in the Proof
to Proposition 4.

Proof. Since �rms only receive an idiosyncratic shock with probability � each period, we
can use the recursion for J (n; x), (40), to write:

J (n; x) =
1

1� � (1� �)

�
 px�n��1 � (1� �) b� ��c�

�
+

��

1� � (1� �)

c

q

Z
Rv(n)

d ~G+
��

1� � (1� �)

Z Rv(n)

R(n)

J (n; x0) d ~G (66)

We then conjecture that J (n; x) is of the form j0 + j1x. Substituting this assumption into
the latter, and equating coe¢ cients yields:

j0 = � (1� �) b

1� � (1� �)
� �

c

q

�f � �p+

1� � (1� �)
+

��p0

1� � (1� �)
[j0 + j1E (n)]

j1 =
 p�n��1

1� � (1� �)
(67)

Solving for j0 we obtain the required solution for J (n; x). Likewise, we can obtain recursions
for the marginal e¤ects of n and �:

Jn (n; x) = � 1

1� � (1� �)

1� �

n
 px�n��1 +

��

1� � (1� �)

Z Rv(n)

R(n)

Jn (n; x
0) dG

Jp (n; x) =
1

1� � (1� �)
 x�n��1 +

��

1� � (1� �)

Z Rv(n)

R(n)

Jp (n; x
0) d ~G

J� (n; x) = �
��c+ �� c

q2
q0 (�)

R
Rv(n)

dG

1� � (1� �)
+

��

1� � (1� �)

Z Rv(n)

R(n)

J� (n; x
0) dG (68)

Again using the method of undetermined coe¢ cients, and noting that the Cobb Douglas
matching function implies q = ���� =) c

q2
q0 (�) = � c

q
�
�
, yields the required solutions for

Jn, Jp and J�.

Proof of Proposition 6. Total di¤erentiation of the JC condition, U (�) = L � E (n),
yields d�

dp
= �E(@n=@p)

E(@n=@�) . In steady state, the probabilities of raising, freezing, and cutting em-
ployment will all be constants. Denoting these probabilities as p+;p0; and p� respectively,
it follows that we can write:

E
�
@n

@�

�
= p+E

�
@n

@�
j�n > 0

�
+ p0E

�
@n�1
@�

�
+ p�E

�
@n

@�
j�n < 0

�
(69)

for any variable �. Note further that in steady state E (@n=@�) = E (@n�1=@�) so that we
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obtain the result that:

E
�
@n

@�

�
= �E

�
@n

@�
j�n > 0

�
+ (1� �)E

�
@n

@�
j�n < 0

�
(70)

where � � p+

1�p0 . Thus, we can rewrite the marginal e¤ect of a change in p on � as:

d�

dp
= �

�E
�
@n
@p
j�n > 0

�
+ (1� �)E

�
@n
@p
j�n < 0

�
�E
�
@n
@�
j�n > 0

�
+ (1� �)E

�
@n
@�
j�n < 0

� (71)

Then note that the �rst�order conditions for optimal labor demand set the marginal �rm
surplus, J (n; x) as follows:

J (n; x) =

�
c=q (�) if �n > 0
0 if �n < 0

(72)

It is immediate from Lemma 2 that @n
@p
= � Jp

Jn
= 1

1��
n
p
regardless of whether �n > 0 or

�n < 0. Thus it remains to derive @n
@�
in each case. Log�linearizing the function J around

n, p, x, and �, we obtain:

log J � "Jn log n+ "Jp (log p+ log x) + "J� log � + const: (73)

Using this and totally di¤erentiating the �rst�order conditions for optimal labor demand
with respect to n and �, we obtain:

"Jnd log n+ "J�d log � �
�
�d log q (�) if �n > 0

0 if �n < 0
(74)

Given the Cobb Douglas matching function assumption, q (�) = ����, and it follows that
d log q (�) = ��d log �. Thus:

@n

@�
=
@ log n

@ log �

n

�
�
� ��"J�

"Jn

n
�
if �n > 0

� "J�
"Jn

n
�
if �n < 0

(75)

Substituting this into (71), we obtain:

d log �

d log p
jJC � �

1

1� �

"Jn
!�� "J�

(76)

where ! � �E(nj�n>0)
E(n) is the steady state share of employment in hiring �rms. In what

follows, we evaluate the approximation (73) to the marginal surplus around mean employ-
ment, �n � E (n), and mean productivity conditional on mean employment, x = E (�n) �
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E (x0jx0 2 [R (�n) ; Rv (�n)]). Thus, using the results of Lemma 2 it follows that we can write:

Jn = �
1

�n

(1� �) p��n��1

1� � (1� �)� ��p0
E (�n)

and:
J
�
1� � (1� �)� ��p0

�
=  pE (�n)��n��1 � (1� �) b� �

c

q

�
�f � �p+

�
(77)

where  � 1��
1��(1��) . Substituting back into the aggregate elasticity of � with respect to p,

we obtain:

d log �

d log p
jJC �

 pE (�n)��n��1
!� [ pE (�n)��n��1 � (1� �) b� ��c�] + ��c� � (1� !)�� c

q
�p+

(78)

Noting that the marginal product of labor in the average�sized �rm is equal to pE (�n)�n��1,
and assuming � is su¢ ciently small, we obtain:

d log �

d log p
jJC �

(1� �) ~p

!� [(1� �) (~p� b)� ��c�] + ��c�
(79)

where ~p � �pE (�n) �n��1 + (1� �) pE (�n)��n��1 and � � ��
1��(1��) , as required.
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