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1 Introduction

Restructuring electricity markets has enabled wholesalers to exercise market power. Using

a common method of measuring competitive behavior in these markets, several studies have

found substantial inefficiencies.1 This paper argues that this method overstates actual welfare

loss. I develop an alternative method that accounts for firms’ production constraints that

result in cost non-convexities. The paper then applies the method to the Pennsylvania, New

Jersey, and Maryland (PJM) wholesale electricity market.

In general, welfare loss may occur because of allocative and production inefficiencies.

However, wholesale electricity markets do not have allocative inefficiencies, in the short run,

because derived demand is nearly completely inelastic. There are two reasons for this. First,

consumers have no incentive to reduce quantity demanded at higher wholesale prices because

the regulatory structure of electricity retail markets has kept consumers’ rates constant.2

Second, the firms that procure customers’ electricity in the wholesale market are mandated

to provide the power at any cost.

Therefore, the only short run welfare effects in electricity markets result from inefficient

production. Strategic firms with asymmetric costs, or firms with asymmetric strategies,

distort production decisions from the competitive equilibrium (Borenstein and Farrell, 2000).

This causes cross-firm production inefficiencies. Individually, a firm will achieve a given

1This method has been used primarily to measure markups (for example, see Wolfram, 1999; Joskow and
Kahn, 2002. and Mansur, 2007). However, it has also been used to quantify welfare loss (for example, see
Borenstein, Bushnell, and Wolak, 2002).

2A few customers have “interruptible” contracts that are exercised when the quantity demanded ap-
proaches the capacity of supply, causing customers to curtail the quantity of electricity demanded. As this
does not depend on price, demand shifts but remains completely inelastic.
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output level by minimizing its own production costs. However, in aggregate, the output level

is not produced using the least costly technology.3 This paper measures these production

distortions.

The standard method, which is referred to as the competitive benchmark analysis, has

been developed to simulate wholesale electricity prices that are consistent with a competitive

market.4 This “static” method ignores production constraints and has primarily been used to

measure market transfers. In addition, Borenstein, Bushnell, and Wolak (henceforth BBW,

2002) use this method to quantify welfare loss. In this paper, I predict output decisions

for a similar “static” competitive benchmark analysis counterfactual for the PJM market. I

then compare the static model’s total variable costs with actual variable costs. For the first

summer after PJM restructured, in 1999, the actual costs substantially exceeded these static

simulations of competitive costs.

However, by ignoring certain types of production constraints, this method overstates

production inefficiencies from restructuring. This static technique assumes that power plants

operate following an on-off strategy of producing at full capacity if and only if price exceeds

(or equals) marginal costs of production. Yet, the process of producing electricity efficiently

3Furthermore, an individual oligopolist will not necessarily produce less than it would have in a perfectly
competitive market. Levin (1985) shows that, in an oligopoly with asymmetric costs, some producers may
increase production relative to competitive levels. Note that firms can potentially exercise market power
without distorting production; if all firms uniformly increase bids, the optimal order of production will not
be distorted.

4Wolfram (1999) uses this technique to examine pricing in the England and Wales electricity market.
Since then, the technique has been used in studies of many other markets including: California (Borenstein,
Bushnell, and Wolak, 2002; Joskow and Kahn, 2002); New England (Bushnell and Saravia, 2002); and
PJM (Mansur, 2007). Other studies have made similar assumptions about intertemporal constraints in
determining marginal costs. These include Wolfram (1998), Wolak (2000), Wolak (2003), Hortacsu and
Puller (2004), Fabra and Toro (2005), and Puller (2007).

2



requires that firms consider several non-convexities in costs. For example, when a firm starts

a “generating unit” in order to produce electricity, it incurs start up costs that typically

range between $100 and $7000.5 These costs impose intertemporal constraints on production

decisions.

With start up costs, it may be more efficient to continue operating a generating unit with

a relatively high marginal cost than to fire up a unit with lower marginal costs (but which

would have to incur start up costs). This trade-off between higher marginal costs and start

up costs is of great practical importance. With large within-day variation in demand and no

economically feasible method of storing electricity, demand is met with a variety of current

generation technologies.6 This practical reality makes the exercise of this paper particularly

relevant.

Harvey and Hogan (2001a and 2001b) and others have noted the ramifications of ignoring

production constraints in simulating equilibrium prices.7 Electrical engineers have studied

this “unit commitment” problem extensively. Using many methods, they solve the cost

minimization problem subject to production constraints and an equilibrium condition.8

5Power plants consist of several, independently operating “generating units,” each comprised of a boiler,
a generator, and a smoke stack. This range represents the 5th and 95th percentile of start up costs for
coal, oil and natural gas generating units in the Eastern U.S. transmission grid using output data from the
PROSYM model (Kahn, 2000).

6The amount of within-day variation in hourly demand can be quite significant. For example, the average
coefficient of variation, within a day, in the US is approximately 0.15 (Holland and Mansur, 2006).

7Harvey and Hogan (2001a) note that: “It is a straightforward result of unit commitment logic that when
[start-up costs, minimum-load costs, and operating parameters such as minimum down times and run times]
exist, it will at times be more efficient to meet load with high incremental cost output from a unit that
is already on-line or a high-cost but quick-start unit, than to meet that load by starting a unit with low
incremental energy costs but a long start-up time or high start-up costs.”

8The methods include exhaustive enumeration, dynamic programming, mixed-integer programming, La-
grangian relaxation, and artificial neural networks. See Sheble and Fahd (1994) for an overview of the
literature.
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In contrast to the engineering literature, this paper uses a revealed preferences argument

to determine how cost-minimizing firms behave. I provide an ex-post analysis of firms’ pro-

duction behavior assuming that they have solved the unit commitment problem. It is not

the intention of this paper to solve the difficult optimization problem in order to construct

a counterfactual benchmark. The purpose is to ask whether, by ignoring production con-

straints, the static method common to the literature is likely to result in substantial biases

in measuring welfare. I do this by using a reduced-form representation of firm behavior.

With data from the summer of 1998, prior to restructuring, this paper examines the

factors involved in firms’ actual production decisions. I model production as a function of

prices and costs, allowing the coefficients to differ by generating unit. First, I use these

coefficient estimates to predict production levels for the pre-restructuring period. For this

period, my “intertemporal” model fits actual production decisions substantially better than

the static model. Then, using the coefficient estimates, I extrapolate how firms would have

behaved in 1999 had restructuring not occurred.

For the initial summer of restructuring, I compare actual variable costs with estimates

of variable costs from my intertemporal model. First, I estimate variable costs using the

actual prices. That summer, firms did set prices above those that would have occurred in

a competitive market (Mansur, 2007). If post-restructuring prices exceeded those clearing a

competitive market, then estimates based on observed prices will overstate production and

costs. In turn, this will understate the welfare loss, for both the intertemporal and static

models. To address this, I also develop a counterfactual set of prices that are consistent with
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pre-restructuring behavior.

For the static and intertemporal models, the paper calculates bounds on the welfare losses

associated with restructuring the PJMmarket. As a lower bound, the welfare estimates based

on observed prices imply that actual costs exceeded the intertemporal model’s estimates by

only three percent. This is substantially less than the predictions generated using the static

competitive benchmark analysis technique (13 percent).

As discussed below, the welfare estimates based on conservative estimates of competitive

prices provide upper bounds of the deadweight loss. Using these predicted prices, I estimate

greater welfare loss for both the intertemporal (eight percent of production costs) and static

(21 percent) models. With either set of prices, I find that the static model overstates welfare

effects.

The paper then examines whether these welfare effects are consistent with firms’ incen-

tives. Two firms in PJM had incentives to increase prices in the summer of 1999 (Mansur,

2007). I find that, relative to the output decisions predicted with the intertemporal model for

the post-restructuring period, these oligopolists produced less while the other price-taking

“fringe” firms produced more. The welfare effects are similarly distributed. Namely, for

the strategic firms, actual production costs were $17-37 million, or five to ten percent, less

than those predicted by the intertemporal model. In contrast, actual production costs were

$79-121 million, or seven to 11 percent, greater for the fringe firms.

I conclude that restructuring the PJM market did result in welfare loss, mostly likely due

to wholesalers exercising market power. Using my intertemporal model, I estimate that these
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losses were between three and eight percent of total variable costs during the first summer

after the market was restructured. In contrast, the static model overstates welfare loss by

about three-fold. That model predicts losses between 13 and 21 percent.

Section 2 briefly outlines the PJM wholesale electricity market. Section 3 defines the

optimization problem of competitive firms while accounting for intertemporal constraints.

Section 4 explains the econometric technique and data used in estimating the intertemporal

model. Then, Section 5 discusses the static model. In Section 6, I compare how well the

models predict observed behavior prior to restructuring. Section 7 examines the welfare im-

pacts of market imperfections due to restructuring. The section compares actual production

costs with those computed with the intertemporal and static models. Section 8 discusses the

consistency of the welfare effects with firms’ incentives and Section 9 concludes.

2 The PJM Electricity Market

2.1 Market Rules

In the late 1990s, the PJM Interconnection L.L.C. consisted of most or all of Pennsylvania,

New Jersey, Maryland, Delaware and the District of Columbia, as well as some of Virginia.

While integrated with the Eastern U.S. transmission grid, the market has been regulated as

a single entity based on transmission reliability concerns. In 1997, PJM began facilitating

trades among regulated utilities and independent producers by establishing a spot market.

The market uses a uniform-price sealed-bid auction for the right to supply power. Firms

offer flexible bid curves on a day-ahead basis. This study focuses on the summers of 1998

and 1999. During this period, firms had no obligation either to produce or to otherwise cover
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a bid if they made offers to supply electricity.9 In 1998, PJM adopted what is known as a

“nodal” pricing system in order to account for transmission capacity constraints.10

When the nodal market first opened, suppliers were required to make “cost-based” bids

for each generating unit. In other words, the producers had to bid their marginal costs

of production that had been determined by years of regulatory rate hearings. A notable

step in restructuring PJM occurred in April, 1999, when the requirement on the energy bid

component was relaxed. The Federal Energy Regulatory Commission granted firms the right

to change generating units from making cost-based bids to offering a more flexible type of

bid. These “market-based” bids were subject to a price cap of $1000 per megawatt-hour

(MWh).

2.2 Market Structure

While most utilities obtained the right to bid units as market-based, many of the generating

units continued to be offered as cost-based bids during most of the summer of 1999. Firms

may have opted not to switch if they had little incentive to exercise market power. In

particular, those firms that either purchased electricity in the market or supplied their own

generation may have less of an incentive to increase wholesale prices. The degree of vertical

integration of PJM firms helps explain their incentives and behavior.11

9The PJM Market Monitoring Unit (2000) wrote the following about PJM in 1999: “During the time
period covered by this report, unit offers and PJM’s day-ahead scheduling did not constitute or create binding
financial commitments to provide a defined amount of energy at a defined price.”
10Each node is a point where energy is supplied, demanded, or transmitted. When congestion occurs, the

PJM energy market can have over 2000 prices. For more on nodal pricing, see Schweppe, et al. (1988). In
the summers of 1998 and 1999, the transmission system was constrained about 15 and 18 percent of the
hours, respectively.
11Mansur (2007) discusses this issue in greater detail. The discussion below summarizes the market

structure and firms’ incentives that are outlined in that paper.
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The large PJM firms are vertically integrated; they generate electricity and have oblig-

ations to provide power to retail customers. These firms had to provide exogenously deter-

mined quantities of retail obligations (or “native load”) at fixed rates. The greater the retail

obligation, the less incentive a firm has to set high prices. The objective function (assuming

quantity setting behavior) for vertically integrated firm i can be written:

max
qi

Pi(qi) · (qi − qdi ) + rdi q
d
i − Ci(qi), (1)

where, Pi(qi) is the inverse residual demand function firm i faces in the spot market, qi is

its production, rdi and qdi are the retail price and native load, and Ci(qi) is total production

costs. The resulting first order condition implies:

Pi + P 0i · (qi − qdi ) = C 0
i, (2)

where firms have incentives to increase prices only if they are net sellers: qi > qdi .

While most firms remained nearly completely integrated after restructuring, two firms,

PECO and PPL, were large net sellers and thus had incentives to exercise oligopoly power

by raising wholesale prices. The reason for this variation in firms’ net positions is due, in

part, to differences in state policies. PECO and PPL are located in Pennsylvania, where

regulators enacted an aggressive retail choice policy that rewarded customers for leaving

their historic providers. These firms were no longer completely integrated and, because of

regulatory action, were large net sellers in the wholesale market. In other states in the PJM

region, which did not follow such a policy, customers stayed with their incumbent utilities.

For each of the eight major utilities in PJM, Panel A of Table 1 shows the shares of

capacity, generation, peak generation, and demand served. For both PECO and PPL, the
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share of peak generation is about double their shares of retail customers’ demand served. In

contrast, Public Service Electric & Gas (PSE&G) had a slightly larger share of demand than

of generation, on average. Thus, PSE&G benefits from lower prices and would exercise its

oligopsony power by producing from units with marginal costs above price. This behavior

would lower the market price. The other firms, including the largest producer GPU, had

similar market shares of peak generation and demand served. For these firms, the first order

condition is close to that of a price-taking firm (Pi = C 0
i).

Using a difference-in-differences method, Mansur (2007) tests the importance of vertical

integration in understanding firm behavior in the PJM market. He finds that PECO and

PPL did produce significantly less than other firms after restructuring.12 In Section 8, I

compare actual production decisions with those of the intertemporal model in order to test

whether behavior is consistent with the incentives of firms.

2.3 Electricity Prices and Restructuring

Prices increased substantially from the summer of 1998 to the summer of 1999. From April

through September, 1998, the average of the actual prices was $26.04 per MWh. The fol-

lowing summer, the average price was $37.97 per MWh.13

These higher wholesale electricity prices are partially explained by higher input prices in

the summer of 1999 than in the previous summer. Average natural gas prices increased from

$2.33 to $2.60 per mmBTU.14 Average oil prices went from $16.30 to $20.56 per barrel.15

12In a news article, Smith and Fialka (1999) corroborate this finding. They describe the bidding behavior
of PECO and PPL as making “the most of steamy conditions.”
13Electricity price data are from PJM Interconnection. See www.pjm.com.
14Data on natural gas prices at Transco Zone 6 non-New York are from the Natural Gas Intelligence.
15Number two heating oil sold at New York Harbor data are from the U.S. Energy Information Adminis-
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Tradeable permits for sulfur dioxide emissions increased from $172.44 per ton in the summer

of 1998 to $202.71 per ton in the following summer.16

In addition, environmental regulation of nitrogen oxides began in the summer of 1999.

Tradeable permits for the Ozone Transport Commission regulation started near $5000 per

ton but fell dramatically to under $1000 per ton by the end of the summer. For each ton

emitted from May through September, firms were required to have an offsetting permit by

the end of the year.

Increases in input costs, which were also accompanied by greater demand for electricity,

will result in higher prices in a competitive market. Using a method similar to BBW,

Mansur (2007) simulates competitive prices during the summers of 1998 and 1999. During

the summer of 1998, the simulations of the competitive prices were quite similar to the

observed prices. The mean of the simulated competitive prices was $25.93 per MWh, or

11 cents below the observed average price. In contrast, the predicted competitive prices

averaged $32.33 per MWh in the summer following restructuring. While greater than the

competitive price in the summer of 1998, this is approximately $5.64 per MWh below the

actual average price during the summer of 1999. Hence, Mansur finds evidence of market

imperfections after restructuring but not before restructuring.

tration.
16EPA reports monthly average trades of sulfur dioxide permits at two brokerage firms: Cantor Fitzgerald

and Fieldston. I report the mean of the monthly prices.
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2.4 Power Plant Characteristics

For each of the major firms, Panel B of Table 1 reports 1999 generation capacity categorized

by primary fuel type. Firms produce electricity using a variety of technologies, which is

in part due to the longevity of outdated power plants. Furthermore, because of current

technological limits on the storage and production of electricity, even a new generation

system would require a mix of technologies. “Baseload” generating units operate at low

marginal costs most hours. More flexible “peaking” units operate at high marginal costs

just a few hours a day.

In 1999, the market consisted of approximately 57,000 megawatts (MW) of capacity,

including nuclear, hydroelectric, coal, natural gas, and oil energy sources (see Figure 1). Nu-

clear and coal plants provide baseload generation capable of covering most of the demand.

Nuclear power comprises 45 percent of generation but only 24 percent of capacity. In con-

trast, natural gas and oil burning units provide over a third of the market’s capacity, yet

they operate only during peak demand times. These differences in utilization result from

heterogeneous cost structures. Baseload units have low marginal costs and significant in-

tertemporal constraints, like large start up costs, while the relatively flexible peaking units

are more expensive to operate. The next section discusses how these constraints enter into

a competitive firm’s optimization problem.
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3 Intertemporal Model of Competitive Production

Price-taking firms obtain profit maximization by optimizing each unit’s production sepa-

rately. In contrast, a strategic firm will consider how much is being produced at other

plants. The more that is being produced at other plants, the more a strategic firm will profit

by reducing output from the competitive level in order to increase prices (Wolfram, 1998). In

addition, a strategic firm will consider the quantity that it committed to sell under long term

financial contracts with fixed rates (Wolak, 2000). For a firm taking prices as given, neither

a firm’s production at other plants nor its contractual agreements affect optimization. This

section examines the optimization problem for a firm that takes prices as given and faces

non-convexities in costs.

Several technologically-induced intertemporal constraints limit a firm’s ability to produce

electricity. As previously mentioned, after unit i shuts down, in order to resume operation

at hour t, the firm incurs “start up” costs (STARTi). Ramping rates (Ri) limit the speed

at which units change hourly production, i.e., how much output can be changed in one

hour. Constraints on minimum load (MINi) limit how little a unit can generate without

shutting down. These intertemporal constraints create non-convexities in firms’ production

cost functions.17 To fix ideas, I begin with a simplified unit commitment problem.

I model the firm operating unit i as solving a deterministic, discrete-time dynamic pro-

gram.18 The state variable, Sit, equals the level of production going into period t. The choice
17There are other intertemporal constraints as well. For example, a unit may have to remain operating

for some time once it starts before it can be shut down. Conversely, a unit may have to remain off a certain
amount of time before restarting. There may be some costs that the firm incurs regardless of the amount
produced (for example, operating fans and conveyor belts).
18This model differs from engineering models. Here, I take prices as exogenous. Typically, engineers solve
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variable, xit, equals the change in the level of production in period t. The law of motion of

Sit is similar to the literature on extraction of non-renewable resources where xit represents

the change in the state variable: Sit + xit = St+1.

The value function, V (Sit), depends on several parameters. I assume that firms take price,

Pt, as given. Variable costs are assumed to be linear such that cit is a constant marginal

cost of production. Capacity, CAPi, restricts unit i’s maximum range of operation. The

discount factor is δ. Given these parameters, and the intertemporal constraints STARTi,

Ri, and MINi the Bellman equation equals:

V (Sit) = max
xit∈[−Ri,Ri]

(Pt − cit) · (xit + Sit)− f(xit, Sit) · STARTi + δV (xit + Sit) (3)

s.t. : xit + Sit ≥ g(xit, Sit) ·MINi, and xit + Sit ≤ CAPi,

where f(xit, Sit) indicates starting and g(xit, Sit) indicates continuing to operate:

f(xit, Sit) = { 1 if xit > 0 and Sit = 0
0 else

, and (4)

g(xit, Sit) = { 1 if xit + Sit > 0 and Sit > 0
0 else

. (5)

Intertemporal constraints may reduce a unit’s true marginal cost; for example, postponing

shutting down at low prices may improve overall profits since the firm avoids restarting the

unit later on when prices rise. Intertemporal constraints may also increase marginal costs.

Again, using the case of start up costs, a firm will not operate even when prices exceed

marginal costs of production if rents are not substantial enough to cover the cost of starting.

for the least cost manner to meet the quantity demanded and solve for the price, or “system lambda.”
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If intertemporal constraints are inconsequential, then the optimization problem for price-

taking firms can be further simplified. As the optimization problem is no longer state depen-

dent, I define the choice variable qit = xit+Sit. For each period t, the optimization problem

is:

max
qit∈[0,CAPi]

(Pt − cit)qit. (6)

With no intertemporal constraints, these firms operate units at full capacity when price

exceeds (or equals) marginal cost. Otherwise, they do not produce. This is referred to as

the static competitive benchmark analysis model and is explored in Section 5. Given this

description of competitive firms’ optimization problem, the following section explains the

method used to account for intertemporal constraints in order to determine a competitive

counterfactual market outcome.

4 Method for Estimating Intertemporal Model

4.1 Econometric Model

In this section, I develop a method for estimating competitive behavior for the post-restructuring

period while accounting for intertemporal constraints. First, I estimate the firms’ produc-

tion decisions using data from a period before restructuring. The coefficient estimates from

the regression are used to predict production both in the pre-restructuring period of 1998

and for the post-restructuring period of 1999. A key identifying assumption is that, before

restructuring, firms behaved competitively by taking prices as given and minimizing costs.

I argue that, while power plants were regulated in 1998, their short run operations were

consistent with competitive behavior. Surely this regulated market did not exemplify perfect
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competition. Firms invested inefficiently and probably distorted marginal costs of production

by making inefficient decisions regarding maintenance, labor, and capital allocation including

pollution abatement technologies. However, given these costs, operators likely dispatched

units in a least-cost manner.19 As previously mentioned, Mansur (2007) finds simulated

prices that are close to actual prices, on average, for the summer of 1998. These findings

support the claim made in this paper: in 1998, firm behavior was consistent with that of a

competitive market.

Unlike production models that estimate the optimal mix of inputs, production costs are

known in this case. Rather, I estimate how constraints affect the firm’s dynamic optimization

problem. An alternative approach would be to make a direct calculation of the dynamically

optimal solution. However, this would require information on the exact method the system

operators use to dispatch units and on the ways firms form expectations about future prices.

This paper proposes an approach that econometrically estimates the relationship between

output decisions and firm and industry characteristics.20

Based on (3), I assert that a price-taking firm will choose current output as a function

of historic, current, and future price-cost markups, as well as intertemporal constraints. I

19Under regulation, some argue that firms had incentives to minimize effort rather than costs and therefore
did not operate efficiently. Firms may have let units operate during low demand times instead of stopping
and restarting them. If restructuring improved efficiency then, conditional on market conditions, more starts
would be expected in the summer of 1999 than in that of 1998. Without controlling for market conditions,
the number of starts for the units in my sample decreased from 3970 to 3846.
Furthermore, even in 1998, firms could have withheld production from units that would have operated in a

competitive market. However, as cost-based bids determined prices, the ability to move prices may have been
limited. In contrast, in 1999, the flexibility of using bids as well as quantity may have facilitated exercising
market power to the degree that firms circumvented constraints, such as regulatory surveillance. In addition,
these historically regulated utilities may have undergone a learning process about how to exercise market
power.
20Unlike a dynamic model, the method I use does not make assumptions on how firms make forecasts of

future prices. Rather, I test whether there is a correlation between future prices and production behavior.
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estimate a descriptive model of output (qit) at unit i during hour t. A firm produces more

given greater current price-cost markups (pcmit = Pt − cit). My model incorporates the

static model by including an indicator variable of positive markups (pcm_posit). If the

static model is correct, this variable should fully explain production decisions. In addition,

I include a linear term of pcmit.

If the firm expects prices to increase in the near future, it may also increase production

now. Therefore, I include markups for the following hour: pcmi,t+1. Also, if a firm is slow to

adjust, it may consider average markups (pcmit) for today and tomorrow. Furthermore, if

markups were recently high, the firm may have chosen a high value of Sit and is more likely

to be operating. Therefore, greater markups in the recent past will also be important in

determining current production so the model includes hourly-lagged markups, pcmi,t−1, and

yesterday’s average markup, pcmi,t−24.

Other characteristics (like start up costs, ramping rates, minimum load, and unit capac-

ity) do not vary by time. They cannot be separately identified from an idiosyncratic unit

fixed effect.21 Furthermore, these characteristics are likely to impact how firms respond to

the series of price-cost markups. Therefore, I allow the coefficients on the price-cost markups

to differ by unit as well as include unit fixed effects (αi).

Recall that this is a model of a competitive market and is based on observed behavior

in the pre-restructuring period of 1998 (qpreit ). Therefore, I do not take into consideration

21Note that the other unit commitment issues mentioned in footnotes 7 and 17 (such as minimum up
times, minimum down times, no load costs) are also unit specific and will be captured by the unit fixed effect
in a similar manner. Thus, this method addresses all unit commitment problems that either do not vary
over time or are correlated with price-cost markups.
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strategic variables, such as output at other plants. For the pre-restructuring period, I define

Xit as the set of independent variables, namely the seven measures of price-cost markups

mentioned above. The resulting econometric model is:

qpreit = αpre
i + βprei ·Xpre

it + εpreit . (7)

More explicitly, I model output in the pre-restructuring period as:

qit = αi + β1,ipcm_posit + β2,ipcmit + β3,ipcmi,t−1 + β4,ipcmi,t+1 (8)

+β5,ipcmit + β6,ipcmi,t−24 + β7,ipcmi,t+24 + εit.

To allow for a flexible form, all variables (except the fixed effects and pcm_posit indicators)

are estimated as fifth-order polynomial functions. This data-fitting method is designed for

predictive power. For each of the 130 units, I separately estimate ordinary least-squares co-

efficients and Newey-West (1987) heteroskedasticity and autocorrelation consistent standard

errors (assuming a 24 hour lag structure).

I use the coefficient estimates from pre-restructuring (αpre
i , bβprei ) to determine a compet-

itive counterfactual of production (bqit) both in sample, for 1998:
bqpreit = bαpre

i + bβprei ·Xpre
it , (9)

and also out of sample for the post-restructuring period of 1999:

bqpostit = bαpre
i + bβprei ·Xpost

it . (10)

Some of the predicted output levels, bqit, are not plausible and are truncated. For example,
if the predicted value is below zero, then I truncate the prediction at zero because this is a
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physical constraint. As discussed in the data section below, I define capacity as the maximum

observed amount of production in either 1998 or 1999. If the predicted value is greater than

capacity, then I truncate at this amount.

4.2 Caveats on the Estimation Method

First, regressing output on price-cost markups will result in biased coefficients if either prices

or marginal costs are endogenous. However, recall that the coefficients are estimated for 1998

only, before the market was restructured. As mentioned above, during this period, firms’

behavior is assumed to be consistent with that of a competitive market: I assume firms

cannot change the price. Furthermore, as discussed below, the marginal cost of production

is assumed to be constant for a given unit and a given day. Increasing output may increase a

firm’s marginal cost as it operates more expensive units, but the marginal cost of production

for a given unit will not change. For these reasons, I can estimate (8) using ordinary least-

squares.

Second, I assume that the relationship between output and markups would not have

changed had restructuring not occurred. Furthermore, I place bounds on the welfare esti-

mates. For the lower bound, I assume that the price-cost markups (Xpost
it ) would not have

changed from the observed levels had restructuring not occurred. In other words, the null

hypothesis, in this case, is that restructuring did not result in market power. If firms did set

high prices in 1999, these estimates will overstate production and therefore overstate costs.

This places a lower bound on the welfare effects of a given model but will not necessarily

bias the relative welfare effects of the intertemporal and static models. I define the upper
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bound by constructing conservative estimates of prices that are consistent with competition.

Third, this reduced form method requires a common support of the exogenous variables.

In both summers, actual prices ranged from $0 to $999 per MWh. While the high prices

were more frequent after restructuring, there were some times when prices were extremely

high before restructuring, potentially reflecting scarcity rents. The range of hourly price-cost

markups were quite similar pre- and post-restructuring.22

4.3 Data

The intertemporal model requires data on hourly prices, actual hourly unit-level production,

and daily unit-level marginal costs. PJM reports quantity-weighted average nodal hourly

prices. The EPA’s Continuous Emissions Monitoring System (CEMS) provides actual hourly

gross generation for most fossil fuel burning units.23 Gross generation includes the electricity

generated for sales (net generation) as well as the electricity produced to operate that power

plant. Typically, net generation is 90 to 95 percent of gross generation. CEMS data are

highly accurate and comprehensive for most types of fossil units (Joskow and Kahn, 2002).

Throughout this analysis, I define my sample to be a panel of the 130 units in the CEMS

data that operated during both summers. These units account for approximately 92 percent

22In my sample, the markups faced by all generating units (regardless of whether they operated or not)
ranged from $-114 to $986 per MWh in the pre-restructuring summer. They averaged $-1.92 per MWh. After
restructuring, the markups ranged from $-134 to $984 per MWh and averaged $4.79 per MWh. Conditional
on operating, the pre-restructuring markups ranged from $-87 to $986 per MWh (and averaged $7.09 per
MWh). The post-restructuring markups ranged from $-121 to $984 per MWh (and averaged $21.16 per
MWh).
23CEMS records hourly gross production of electricity, heat input, and three pollutants—sulfur dioxide,

nitrogen oxides, and carbon dioxide—for most fossil units in the country. During the summers of 1998 and
1999, CEMS monitored 234 units that accounted for over 97 percent of PJM’s fossil fuel capacity. In order
to comply with the 1990 Clean Air Act, fossil-fuel generating electric producers are required to report hourly
emissions and electricity production by unit. Regulation affects units of 25 MW capacity plus new units
under 25 megawatts that use fuel with a sulfur content greater than 0.05% by weight.
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of the fossil generation in PJM.24

I calculate marginal costs using a typical engineering formula based on years of regulation.

A unit’s marginal cost of production up to capacity (cit) is independent of production:

cit = V OMi +HRi · (W fuel
it +WSO2

it rSO2i +WNOx
it rNOx

i ), (11)

where V OMi is variable operating and maintenance cost and HR is an efficiency measure

called heat rate.25 W fuel
it ,WSO2

it , and WNOx
it are daily prices for unit i’s fuel usage, sulfur

dioxide emissions, and nitrogen oxides emissions, respectively. rSO2i and rNOx
i are emissions

rates. I merge production data with data on unit characteristics and input prices.26 I define

24During the summer of 1998, the units in the sample produced on average 16,653 gross MWh per hour (or
approximately 15,820 net MWh per hour). According to the EPA’s eGRID database, fossil units produced
an average of 17,237 net MWh per hour in 1998.
25Constant marginal costs is an assumption. As power plants increase output, they run more efficiently

and the heat rate falls, thereby reducing the marginal cost. To test the importance of this assumption, I look
at the variation in hourly heat rates reported in the CEMS data. For the PJM generating units during the
summers of 1998 and 1999, I regress hourly heat rates on unit fixed effects. Overall, the fixed effects explain
only eight percent of the variation. However, this is primarily due to some extreme outliers. Dropping the
lowest and highest one (five) percent of the heat rates, the fixed effects explain about 60 (70) percent of
the variation. Similarly, due to locational marginal pricing, the price a firm would earn may differ slightly
from the load-weighted average price that I use in the study. As mentioned in footnote 10, about a sixth of
the hours in my sample exhibit congestion. However, during this time period, congestion did not result in
large price differences, on average, within PJM (see www.pjm.com). I conclude that the errors-in-variables
problem from incorrectly measuring price-cost markups is likely to be small.
26PROSYM (Kahn, 2000) provides data on heat rate, coal costs, sulfur dioxide emissions rates, nitrogen

oxides emissions rates, and variable operating and maintenance costs. I measure fuel prices using spot prices
of oil and natural gas while assuming constant coal costs. EIA provides data on the daily spot price of
New York Harbor No. 2 heating oil and BTU/gallon conversion rates. Natural Gas Intelligence provided
daily natural gas spot prices for Transco Zone 6 non-New York. For oil and natural gas units, I add fuel
distribution costs that I approximate as the difference between the average spot price in the region and the
price PJM firms reports for delivered fuel over the summers of 1998 and 1999 (EIA form 423, 1998 and 1999).
Unit specific coal prices are from Kahn (2000). To calculate SO2 regulation costs, I use the mean of two
monthly price indices of SO2 permit prices that brokerage firms Cantor Fitzgerald and Fieldston report to
the EPA. The EPA lists which units had to comply with the Acid Rain program during Phase I (including
“substituting” units). Few firms traded in the new NOx permits when it first opened. In fact, they had
until the end of the year to “true up" their allowances with actual emissions. About once a month, Cantor
Fitzgerald reports data on NOx prices which started near $5000/ton in May and ended around $1000/ton in
September. By November, the price had fallen to $723/ton. I define the NOx price to be $2000/ton, which
is approximately the average of the NOx prices from May until December, 1999. Plants in Pennsylvania,
New Jersey, and Delaware had NOx regulatory compliance obligations in 1999.
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capacity (CAPi) as the maximum observed gross production over the summers of 1998 and

1999.

5 Static Competitive Benchmark Analysis

The static competitive benchmark analysis counterfactual assumes no intertemporal con-

straints. As with Section 4, the null hypothesis in this section is that, post-restructuring,

firms continued to take prices as given. Thus, I assume that the N units in my sample would

have produced the same amount, in aggregate, under the static model as they actually gen-

erated each hour:

Qt =
NX
i=1

qit =
NX
i=1

q∗it, (12)

where, for unit i at hour t, qit is actual production and q∗it is the static competitive counter-

factual of production.

Figure 2 depicts the measure of welfare loss for the static model. The figure includes two

marginal cost curves: the marginal cost curve where strategic firms actually produce and the

marginal costs of competitive supply. Residual demand equals the market demand, which is

nearly perfectly inelastic, less the response from fringe units.

The fringe is comprised of some PJM units that are not in the balanced panel. The EPA

does not monitor units that are small or do not emit air pollution. In addition, some plants

did not operate in one of the summers and, therefore, were not in the balanced sample. The

fringe also includes plants in areas bordering PJM that export power to PJM. The fringe

firms are assumed to be competitive. When firms in the sample exercise market power,
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the marginal costs are greater because of inefficient production. The welfare loss is (at a

minimum) the grey area between the strategic and competitive marginal cost curves.

Note that if firms exercise market power, then the total amount produced by all strategic

firms, Qt, will be less than the competitive equilibrium, Q∗t . By assuming that the com-

petitive output equals the observed level, the gray area ignores the changes in imports and

other units not in the sample. This assumption implies that calculations of deadweight loss

will be understated. The hashed area in Figure 2 accounts for the additional economic gains

from competition. In the next section, I measure both the gray and hashed areas: the gray

area is measured by using actual prices while the additional welfare loss is captured using

an alternative set of prices that are consistent with a competitive market.

The static technique assumes that the units would be dispatched in order of marginal

cost and produce at full capacity. However, whenever a firm attempts to generate using unit

i, their is some probability, fi, that the unit will not be able to operate. As with BBW,

this model accounts for these “forced outages” by using Monte Carlo simulations. For each

hour in the sample, outages are simulated by drawing ξit from a [0, 1] uniform distribution.

If ξit is less than fi, the unit cannot operate. For every hour and Monte Carlo simulation,

each unit’s output is calculated. A unit’s hourly production, q∗it, equals the mean of 100

simulation draws. See Mansur (2007) for a discussion of the additional data used for this

method.
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6 Comparison of Models

6.1 Comparing Predictive Power of Models

For the pre-restructuring period, Table 2 summarizes the results of estimating (8). For each

variable, I compute the mean of the 130 unit-specific coefficients and their standard errors.

As expected, the coefficients on the price-cost margins tend to be positive. The static

model variable, pcm_pos, is significant and positive. However, the other variables do have

predictive power. I report the number of units for which each coefficient is significant at the

five percent level. The hourly lead pcm variables are significant for most units whereas the

daily lag pcm variables are significant for about a third of the units. For each observation,

I calculated the marginal effect for each of the six markup variables. The table shows the

average of these marginal effects. The average of the marginal effects for the hourly markups

are similar to the average of the linear coefficients. However, for the three sets of daily

markup measures, the marginal effects differ from the linear coefficients. The hourly and

daily lead pcm terms have large marginal effects, suggesting that firms are considering what

future prices are likely to be when making decisions on how much to produce. The model

has an R-squared of 0.81.

Next, I compare whether the intertemporal or static model is a better predictor of actual

generation in 1998. If intertemporal constraints were unimportant, then the flexible econo-

metric model would not necessarily be better. I normalize generation by capacity to give

equal weight to all observations. The ratio of generation to capacity is called the utilization

rate. The correlation of actual utilization rates to static utilization rate estimates is 0.61.
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In contrast, the correlation of actual utilization rates with intertemporal utilization rate

estimates is 0.79.27

For the summer before PJM restructured, Figure 3 plots a kernel regression of markups

ranging from -$30 to $30/MWh on actual utilization rates (black line).28 As markups in-

crease, the average utilization rate rises slowly from 0.2 to 0.8. The intertemporal model (the

dashed, dark gray line) closely fits observed behavior. In contrast, the static competitive

benchmark analysis model assumes that units do not operate if markups are negative and

operate at capacity when price exceeds marginal costs. This static model is depicted with

the light gray line. This figure suggests that intertemporal constraints do matter in firms’

production decisions. By failing to account for these constraints, the static model is a poor

predictor, on average, of actual production.

The intertemporal model also is a better predictor of when power plants start up. Pre-

restructuring, the average number of times a unit in my sample started each month was

5.09.29 Over this period, the intertemporal model predicts 4.78 starts per month while the

27A more formal test requires the use of some non-nested test, since there does not exist a mapping of
one utilization rate estimate to the other. I follow the method of an encompassing test, as described in
Davidson and MacKinnon (1993). This is done by testing one hypothesis and including the variables from
the second hypothesis that are not already in the model. In this case, I regress actual utilization rates on
the intertemporal model estimates, and also include the static model’s estimates. If one model’s predicted
values are significant and the other is not, then that model is determined to be the better predictor. As
above, I estimate the Newey-West (1987) standard errors with a 24 hour lag structure. As the independent
variables are estimated, I correct the errors using the method suggested by Murphy and Topel (1985). The
coefficient on the intertemporal model’s estimate is 0.92 (s.e. of 0.01). The static model’s coefficient is 0.09
(0.01). While this is smaller in magnitude, it is still significant. Therefore, neither model can be rejected.
28These are the 5th and 95th percentiles of the distribution of price-cost markups in the summer of 1998.

All units in my sample are included in the analysis. I estimate the kernel regression with Stata’s kernreg1
command. The command computes the Nadaraya-Watson nonparametric regression. I define the number of
equally spaced points to be 30 and use an Epanechnikov weight function.
29A start is defined as zero production in the previous hour and production of at least one MWh both in

the current hour and in the following hour.
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static model predicts approximately twice as many (11.76 per month). In order to address

the implied start up costs of these models, I use a revealed preferences argument. If a firm

opts to shut down and restart a unit, it must be the case that the unit’s start up costs are

no larger than the profits earned (in expectation) when running. Using the predicted and

actual output decisions for theN units in my sample over the T hours of the pre-restructuring

period, I calculate the average producer surplus per start:

PN
i=1

PT
t=1(Pt − cit) · (xit + Sit)PN
i=1

PT
t=1 f(xit, Sit)

, (13)

using the notation from (3) and (4). The average surplus is an upper bound on the implied

start up costs. For the units in my sample, an engineering model (Kahn, 2000) assumes an

(unweighted) average start up cost of $1821. For the pre-restructured period, the average

surplus per start is: $1666 using actual production data; $1740 using the intertemporal

model; and $820 using the static model. The actual average surplus is double that of the

static model while the intertemporal model is a close proxy.

6.2 Comparing Output Predictions by Fuel Type

Another interesting comparison examines which types of power plants operate under these

alternative models. Coal units, which are primarily used for baseload and “shoulder” hour

production, typically have larger start up costs than oil and natural gas fired units. Seeing

differences in types of generating units could provide further evidence of the importance of

intertemporal constraints. Furthermore, from an environmental perspective, there may be

significant consequences as to whether coal, oil, or natural gas plants are operating.
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By fuel type, I compare actual production with the production estimates of both models

for the pre-restructuring period. In aggregate, production levels are similar.30 By fuel type,

the intertemporal model predicts output levels similar to actual production levels: coal (-

0.1%) is used slightly less, while oil (2.5%) and natural gas (2.7%) are used slightly more. In

contrast, the static model overstates the use of coal (9.4%), and vastly understates the use

of oil (-46.1%) and natural gas (-64.2%).31

7 Measuring Aggregate Welfare Effects

Intertemporal constraints may substantially affect output decisions and lead the static model

to overestimate welfare loss. Here, I measure welfare loss based on direct production costs,

namely the variable costs excluding start up costs. During peak hours, intertemporal con-

straints will lead to units with moderate marginal cost of production not starting. This

will require units with high marginal costs of production to operate, increasing the direct

production costs. In contrast, during the middle of the night, intertemporal constraints will

lead to moderate cost units operating at a loss but avoiding start up costs the next morning.

In measuring price-cost margins, BBW argue that these intertemporal biases are po-

tentially off-setting. Some hours intertemporal constraints increase marginal costs while in

other hours these constraints decrease the costs. However, in the case of measuring welfare,

the static model will always overstate welfare losses in competitive markets. If firms deviate

30This is not surprising given the methods used to estimate the intertemporal model and to construct the
static model.
31For both models, coal is used even more after restructuring while oil and gas are used even less. See

Mansur (forthcoming) for an analysis of the environmental consequences of firms exercising market power
in the PJM market after restructuring.
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from the static model’s least-cost dispatch in any way, then variable production costs will

necessarily increase.

In this market, short-run welfare loss only results from production inefficiencies. I com-

pare the total variable costs of actual production (qit) with the total variable costs of the

competitive counterfactual estimates using both the static (q∗it) and intertemporal (bqit) mod-
els. As in Section 3, I assume variable costs to be a linear function: citqit. For a sample of

T hours and N units in PJM, I measure the welfare effects (∆W ∗,∆cW ) to be:
∆W ∗ =

TX
t=1

NX
i=1

cit · (qit − q∗it), and (14)

∆cW =
TX
t=1

NX
i=1

cit · (qit − bqit). (15)

Note that this measure of welfare does not directly account for any changes in start up costs

or other intertemporal constraints.

In order to place bounds on the amount of deadweight loss associated with exercising

market power in this restructured electricity market, I estimate welfare loss using both

actual prices and counterfactual competitive price estimates. Actual prices exceeding those

of a competitive equilibrium result in too much production and therefore higher production

costs, placing a lower bound on the welfare loss. Conservative estimates of competitive prices

result in low prices, resulting in too little production. This places an upper bound on the

welfare loss estimate.
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7.1 Welfare Effects given Actual Prices

First, I measure lower bounds of the welfare estimates using actual prices. Table 3 ex-

amines both the welfare implications of restructuring and the importance of intertemporal

constraints in measuring these welfare effects. The generating units in my sample actually

produced 72 million MWh in the summer of 1998 and 68 million MWh in the following

summer. In 1998, the actual production costs totaled $1.33 billion. In 1999, these costs

increased by 13 percent to $1.50 billion. These costs are compared to those of both the

static and intertemporal models.

The predictions of q∗it that are based on the static competitive benchmark analysis method

imply substantial welfare loss from restructuring. In the summer of 1999, the static model’s

predicted costs equaled $1.33 billion, implying that production inefficiencies (∆W ∗) totaled

$173 million. Welfare losses were 13.0 percent of the competitive production cost estimates.

However, this method also predicts losses even before restructuring. For 1998, this static

model’s predictions of variable production costs were only $1.21 billion. This is $118 million,

or ten percent, less than actual production costs. This model is simulated and therefore,

conditional its assumptions, there are no standard errors for these calculations.

One way to account for intertemporal constraints is to treat the pre-restructuring static

model estimates as a control group. Assuming that the welfare loss estimates in 1998 resulted

solely from the bias of ignoring these constraints, the welfare effects from restructuring

related market imperfections equal the change in total welfare losses from 1998 to 1999, or

$55 million. Note that this calculation provides an accurate measure of the welfare effects
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only if the bias is constant over time. However, in most cases, demand and cost shocks

will impact this bias. Furthermore, this method requires a control period when prices are

assumed to be determined competitively.

The second method of predicting competitive production, bqit, is based on the intertempo-
ral model. Recall that this reduced-form method does not impose an equilibrium constraint.

Nevertheless, the predicted output is similar to actual output given the observed price-cost

markups.

In the summer of 1998, the intertemporal model’s total variable cost estimates equaled

$1.33 billion, just six million above actual costs. Note that this is not surprising given that

the coefficients are estimated using these pre-restructuring data. However, in 1999, the in-

tertemporal production estimates were $1.46 billion. These cost differences imply production

inefficiencies (∆cW ) of $43 million, or three percent, after restructuring. I compute standard
errors on this welfare loss measure based on the errors from Section 6.32 The standard error

on the production inefficiencies in 1999 is $11 million. In each year, the intertemporal model

predicts less welfare loss than the static model.

Relative to wealth transfers, the intertemporal model’s estimates of deadweight loss are

small. During the summer of 1999, Mansur (2007) estimates that the costs of procuring

electricity from the PJM spot market exceeded the estimated procurement costs of a perfectly

competitive market by $182 million. The spot market accounts for only ten to 15 percent of

32First, I compute the errors on the predicted output for each unit and hour. I multiply these standard
errors by the marginal cost of production and square the product. This is the measure of variance for the
variable costs of each unit and hour. Finally, I sum across these variances for all units and hours in a summer.
The square root of this sum equals the standard error of the total variable costs. For 1998, the standard
errors are 0.2 million.
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all sales. An additional 30 percent of electricity is sold through bilateral contracts.33 If these

contracts reflect markups similar to those in the spot market, then the total procurement

costs increase by $676 million.

I assert that firms behaved competitively before restructuring in 1998. Therefore, I at-

tribute most of the welfare loss that the static model predicts for 1998 to be actual production

costs that result from intertemporal constraints. Of these $118 million in variable costs, at

most 17 percent can be attributed to start up costs. As noted by BBW, an upper bound

on the share of these variable costs that may be attributed to start up costs is the amount

firms actually spent starting up. The sampled units’ actual number of starts fell from 4,213

(in the summer of 1998) to 4,081 (in the summer of 1999). Using data on start up costs

from Kahn (2000), the cost of these observed starts totaled $21.6 million in 1998 and $20.4

million in 1999. These findings suggest that other intertemporal constraints, like ramping

rates and minimum run times, also affect firms’ production decisions.

7.2 Welfare Effects given Competitive Prices

If firms did set high prices, then a competitive counterfactual requires price estimates from a

competitive model. Furthermore, the higher observed prices will result in greater predicted

production post-restructuring than would have occurred under competitive prices. Appendix

A describes how I construct counterfactual competitive prices that are likely to provide an

upper bound on these costs.

33In a personal communication, Joe Bowring of the Market Monitoring Unit estimated this level of con-
tracts. In addition, 10 to 15 percent of supply comes from spot market purchases, one to two percent from
imports, and the remaining 53 to 59 percent is self-supplied by firms.
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Table 4 exhibits the welfare results using these predicted prices. The predicted prices

after restructuring average $32/MWh in contrast to the $38/MWh average of observed prices.

These lower prices resulted in less production by all firms. The predicted output totals 65.4

million MWh over the summer of 1999, 2.3 million less than observed. This reduction in

output means that firms incurred fewer variable costs. These costs total only $1394 million

using the intertemporal model, or $105 million below the actual costs. This is 7.5 percent of

the predicted costs, more than double the estimates in Section 7.1.

Note that the 2.3 million MWh output shortfall must be produced somehow. In other

words, the excess demand implies that the competitive prices, in equilibrium, must be greater

than these predicted ones. Therefore, the $105 million provides an upper bound on the

welfare loss.

Similarly, the static model shows increases in welfare losses. For comparison purposes,

I solved the static model such that the aggregate amount produced equals the amount

produced in the intertemporal model (versus actual production). The total variable costs of

$1243 million in 1999 are $256 million less than the observed costs. The same caveat as with

the intertemporal model applies here. That said, the upper bound of welfare losses using

the static model is 21 percent of estimated costs after restructuring.

I conclude that the welfare losses are greater with the predicted prices than with actual

prices. However, the intertemporal model’s losses are still $100 million less than those of the

static model. In other words, the static model continues to exhibit substantial biases. I find

qualitatively similar results using several other measures of price.34

34These alternative prices include the pt price estimates described in Appendix A without the additional
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7.3 Response of Non-Modeled Firms

Next, I examine how other firms that are not directly modeled would change behavior given

the alternative predicted prices from Section 7.2. If actual prices exceed those of a compet-

itive market, then not only would the modeled firms have produced less in a competitive

regime, but so would those power plants that are not directly modeled, including imports.

Appendix B discusses how I estimate the supply function and variable costs for these non-

modeled firms.

Both pre- and post-restructuring, the non-modeled firms are more price sensitive during

peak hours. The implied average elasticities pre-restructuring are 0.19, during peak hours,

and 0.13 off-peak (and only weakly significant). Post-restructuring, the elasticities are even

smaller: 0.08 on peak and 0.06 off-peak (and insignificant).

The actual output of these firms increased by 7.7 million MWh from the summer of 1998

to the summer of 1999. However, even with the predicted prices, the firms increase output

by 7.2 million MWh. In other words, with inelastic supply from these non-modeled firms,

there is not much difference in their production decisions even when the predicted prices are

substantially lower than the actual ones.

Given the modest response by these firms, the additional welfare effect is only $32 million.

Note that these welfare effects are the same for both the intertemporal and static model.

With a more complex intertemporal model that estimates equilibrium competitive prices,

error terms, the price estimates multiplied by a mean-preserving variable that increases the variance by a
uniform amount, price estimates from a GARCH model, and competitive price estimates based on the static
model from Mansur (2007).
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one could compare that approach’s prices with the static model’s prices. However, as BBW

note, intertemporal constraints both bias their price simulations upwards and downwards

in different situations. Therefore, it is not clear for which model the welfare loss would be

greater given my non-modeled firms’ supply function.

8 Firm Level Analysis

Next, I examine whether these welfare effects are consistent with the incentives of firms.

Table 5 compares the actual and estimated production and welfare loss of each of the major

firms in PJM before and after restructuring. From 1998 to 1999, PECO and PPL reduced ac-

tual output at their units in my sample by 10 and 19 percent, respectively. The intertemporal

model also predicts a reduction in output, but only of seven percent for each firm.

The observed output for most of the other firms was similar to that predicted by the

intertemporal model. However, PSE&G did increase production substantially. Rather than

reduce output by 15 percent as my model predicts, it increased production by 11 percent

from the summer of 1998 to the summer of 1999. As discussed in Section 2.2, this is also

consistent with the firm’s incentives.

For the oligopolists, PECO and PPL, Figure 4 shows the goodness-of-fit comparison of

utilization rates across price-cost markups. I smooth the data using the same kernel regres-

sion method as the previous figure. Unlike Figure 3, this figure shows the relationship for

both the pre- and post-restructuring summers. In the pre-restructuring period, the intertem-

poral model “supply” function is similar to the observed. However, after restructuring, these

firms produced less than predicted for a given markup.
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In the bottom panel of Table 5, note that the static model predicts much larger reductions

for some firms. For example, based on the static model’s estimates post-restructuring, one

might conclude that GPU and Baltimore Gas & Electric, as well as PPL, produced less than

would be expected given the observed prices. For either the static or intertemporal model,

PSE&G produces more after restructuring than predicted.

Table 5 also reports the welfare effects of these production distortions. As with produc-

tion, PSE&G’s variable costs were much greater in 1999 than predicted. In contrast, PPL’s

costs are substantially lower. Overall, the oligopolists’ actual production costs were $37

million less than those predicted by the intertemporal model. In contrast, actual production

costs were $79 million greater for the other firms.

These firm level effects are relatively robust to the counterfactual competitive price es-

timates. Table 6 reports the firm level output and welfare effects for the intertemporal and

static models using the predicted prices. The comparison with actual behavior is more dif-

ficult to make as aggregate production is less than the observed with these predicted prices.

Nevertheless, PPL produced less than even that suggested by the intertemporal model us-

ing these counterfactual prices. With these prices, the oligopolists’ actual production costs

were $17 million less than those predicted by the intertemporal model, while they were $121

million greater for the other firms.

9 Conclusions

The competitive benchmark analysis method for measuring competition in restructured

wholesale electricity markets has identified market failures in many markets. This static
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method ignores intertemporal constraints such as the cost of starting a power plant. This

may result in competitive price simulations that are biased upwards in some hours and

downwards in others. While the measurement error of this simplification may be partially

offsetting in measuring price, it will overstate actual welfare loss due to changes in produc-

tion costs (which ignore changes in start up costs). In other words, if production constraints

bind, then these production costs will increase. For example, I find that—even in the sum-

mer before restructuring—the actual variable costs of production were ten percent above the

competitive counterfactual costs. After restructuring, the welfare loss is 13 to 21 percent of

production cost estimates.

In this paper, I develop a measure of competitive production decisions to estimate welfare

while accounting for production constraints. Relative to the static competitive benchmark

analysis technique, my model predicts production behavior more accurately prior to restruc-

turing. Given that firms have exercised market power, I develop a counterfactual set of prices

that are consistent with competitive behavior. Comparing actual production costs with these

competitive production cost estimates for the summer after restructuring, I estimate that

actual costs exceeded competitive estimates by only three to eight percent, substantially less

than the estimates using the static technique.

The paper also examines whether these welfare effects are consistent with firms’ incen-

tives. Two PJM firms had incentives to increase prices in the summer of 1999. I find that

these strategic firms did produce less, while the other price-taking firms produced more.

The welfare effects are similarly distributed. Namely, for the oligopolists, actual production
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costs were about five to ten percent less than those predicted by the intertemporal model.

In contrast, actual production costs were seven to 11 percent greater for the price-taking

firms. For these reasons, the welfare losses measured in this paper are likely the result of

firms exercising market power.

In conclusion, I find that intertemporal constraints result in significant non-convexities in

the costs of producing electricity. This suggests that one should be cautious using measures

of welfare effects that ignore the firms’ dynamic optimization problem. Finally, further

research on modeling strategic firms’ dynamic problem in these restructured markets may

provide insight into firm behavior and help develop better restructured markets.
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Appendix A: Predicted Prices

This appendix discusses how I predict prices that are consistent with competitive behavior.

I use an approach similar to the method that I use to predict firms’ supply decisions (in

Section 4). Namely, I examine the relationship between prices (pt) pre-restructuring and the

quantity demanded. As in BBW, I focus on the demand for fossil supply by subtracting

the inframarginal production of hydroelectric and nuclear power plants. Derived demand

is perfectly inelastic and these non-fossil generators are not likely to respond substantially

to wholesale prices. Thus, net demand (Dnet
t ) is assumed to be perfectly inelastic and the

quantity of net demand will not be correlated with the error term of prices. Hence, ordinary

least squares estimates are unbiased. I allow the coefficient on net demand to vary by hour-

of-day i (as well as include hour-of-day fixed effects) and use a ten part piece-wise linear

spline function (split by decile for each hour):

pt = αi +
10X

j(i)=1

βi,j(i)D
net
t + et. (A1)

The function is extremely flexible and fits the pre-restructuring data with an R2 of 0.46.

I use these predicted coefficients to construct a second series of prices for the post-

restructuring period. As in Section 4, this method requires a common support. The range

of net demand in the pre-restructuring summer of 1998 was from 6,301 to 36,679 MW. The

summer after restructuring was quite hot. The net demand increased and the range was

6,997 to 39,841 MW. Thus, there are some predicted prices that are out of sample.

Finally, the predicted prices are adjusted to reflect the actual variance observed in 1998.

Note from Figure 3 that supply (the inverse of the function shown) is highly non-linear and,
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for positive price-cost markups, the function is convex. Thus, by Jensen’s inequality, the

supply at the expected price will exceed the expected supply, particularly in high demand

hours. In 1998, the variation of the unadjusted predicted prices (pt) is much lower than the

variation of actual prices (29.5 and 43.5, respectively).

In order to increase the variance, I use the residuals from the regression (A1) based on

the pre-restructuring data. First, I fit an AR(1) process for the residuals:

bet = ρbet−1 + ut, (A2)

and estimate bρ of 0.72. Then I use a Monte Carlo simulation, drawing from the sample

distribution of ut and reconstruct a new series of eet, which I add to pt to get the adjusted

predicted prices for the post-restructuring period. This is repeated 100 times. For each set

of prices, I calculate the welfare losses and report the mean. As with the main results, I use

actual prices for the pre-restructuring period.

For the summers of 1998 and 1999, Figure A.1 shows the actual and predicted prices

as a function of net demand. A kernel regression is used to smooth over the thousands of

prices. The largest difference between actual and predicted prices is seen in the high demand

hours of 1999. It is these hours when firms had the greatest ability to exercise market power

(Bushnell, Mansur, and Saravia, 2006).

My predicted prices provide an upper bound on the welfare effects for both the intertem-

poral and static models. In addition to restructuring, the summer of 1999 saw an increase

in input prices for natural gas, fuel oil, and sulfur dioxide. Furthermore, a new nitrogen

oxides tradeable permit regulation began that year, which resulted in higher costs for many
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power plants. The competitive pricing model focuses only on determining the average supply

function and, intentionally, does not include costs. This will result in price estimates that

are likely to be less than what a competitive model would have observed because the cost

increases are not taken into account. Therefore, the actual prices and the predicted prices

provide bounds on the size of the production costs, and therefore welfare effects, for both

models.

Appendix B: Supply Response of Non-Modeled Firms

The quantity supplied by non-modeled firms (qNM
t ), including net imports into PJM, will

depend on price. I measure qNM
t as the amount of demand not met by the firms in the

sample:

qNM
t = Dt −

130X
i=1

qit (B1)

To account for this price sensitivity, I use a method similar to that of Bushnell, Mansur, and

Saravia (2006) and Mansur (2007). For a given summer, I model net imports as a linear-log

function of actual price (Pt) in hour t:

qNM
t = β1 ln(Pt) ∗ Peakt + β2 ln(Pt) ∗ (1− Peakt) (B2)

+
MX
m=1

αmMonthmt + δPeakt +
SX
s=1

γsTempst + εt,

where Peakt indicates hours between 11 AM and 8 PM on weekdays,Monthmt is an indicator

variable for each summer month, Tempst measures temperature for bordering states.35 For

35The temperature variables for bordering states are modeled as quadratic functions for cooling degree
days (degrees daily mean above 65◦ F) and heating degree days (degrees daily mean below 65◦ F). As such,
Tempst has four variables for each of the four states. These data are state averages from the NOAA web
site daily temperature data.
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hour t, the idiosyncratic error term on net imports is εt. The data sources and model are

further described in Mansur (2007).

Prices are endogenous. I instrument using daily temperature variables in states in PJM

using the same functional form as described in footnote 35. Then, I interact each instrument

with both Peakt and (1 − Peakt). Note that Mansur (2007) uses load as the instrument

but—as I use load in my definition of qNM
t —these alternative temperature instruments are used

here. Wald tests of joint significance suggest that these are strong instruments. Separately

for 1998 and 1999, Table A.1 reports the two stage least squares coefficient and standard

error estimates for β1 and β2 that account for serial correlation and heteroskedasticity.
36

The elasticity at the average is the coefficient divided by the average supply of non-modeled

firms. I integrate the supply function and obtain variable cost estimates in order to measure

welfare.

36First I estimate the IV coefficients assuming i.i.d. errors in order to calculate an unbiased estimate of ρ,
the first-degree autocorrelation parameter. After quasi-differencing the data, I re-estimate the IV coefficients
while using the White technique to address heteroskedasticity.
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Table 1: PJM Firm Characteristics 
 
Panel A: Generation Capacity by Firm and Fuel Type in 1999a 

 
Firm Coal Oil Gas Water Nuclear Total
Public Service Electricb 1,607 1,842 3,311 - 3,510 10,269
PECO 895 2,476 311 1,274 4,534 9,490
GPU, Inc. 5,459 1,816 203 454 1,513 9,445
PPL, Inc. 3,923 478 1,701 148 2,304 8,554
Potomac Electric Power 3,082 2,549 876 - - 6,507
Baltimore Gas & Electric 2,265 925 755 - 1,829 5,773
Delmarva Power & Light 1,259 888 311 - - 2,458
Atlantic City Electric  391  436  482 - - 1,309
Otherc 2,087 353 - 439 - 2,880
Total 20,967 11,762 7,949 2,316 13,690 56,685
Market Share 37% 21% 14% 4% 24% 

 
Panel B: Market Shares of Capacity, Generation, and Demand by Firm in Summer of 1999d 

 
 
Firm 

 
Capacity 

 
Generatione 

Peak 
Generationf 

Demand 
Servedg 

Public Service Electric 18.1% 14.0% 16.8% 17.3% 
PECO 16.7% 17.8% 19.9% 8.8% 
GPU, Inc. 16.7% 19.8% 16.4% 14.7% 
PPL, Inc. 15.1% 15.9% 16.1% 9.9% 
Potomac Electric Power 11.5% 10.1% 10.2% 10.4% 
Baltimore Gas & Electric 10.2% 12.5% 11.3% 11.2% 
Delmarva Power & Light 4.3% 3.2% 3.3% 6.0% 
Atlantic City Electric 2.3% 1.1% 1.3% 4.3% 
Other 5.1% 5.6% 4.7% 17.4% 

 
Notes: 

a) Capacity, in megawatts (MW), is listed by primary fuel type used in each generating unit at a power plant, as 
determined by the EIA. Coal includes anthracite, bituminous coal, and petroleum coke. Oil includes No. 2, 4, 
and 6 fuel oil and kerosene. The other categories are natural gas, hydroelectric, and nuclear. Source: Energy 
Information Administration (EIA), Form 860 (1999). 

b) In 1999, the GPU parent company owned Jersey Central, GPU Nuclear, Metropolitan Edison and Pennsylvania 
Electric. 

c) “Other” includes the following utilities: Safe Harbor Water Power, Easton Utilities, UGI Development, 
Allegheny Electric Coop, A&N Electric Coop, and cities of Berlin, Dover, Lewes, Seaford, and Vineland. Also 
I include Edison, which purchased Homer City from GPU in March 1999. 

d) Summer is defined as April 1 to September 30. 
e) Source: EIA Form 759, 1999. I aggregate monthly generation for April through September. 
f) Source: EPA Continuous Emissions Monitoring System, 1999. Peak generation share is share during hours with 

demand above 40,000 MW.  
g) Demand served is share summer peak demand less direct access customers. On July 6, 1999, the system-wide 

demand reached a peak of 51,700 MW. Source: EIA Form 861, 1999. In 1999, many Pennsylvania customers 
switched to alternative providers, leaving GPU (3.4 percent of total market demand), PECO (5.6 percent), and 
PPL (2.5 percent).  “Other” demand includes direct access customers. Source: www.oca.state.pa.us. 
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Table 2: Summary of Intertemporal Competitive Model Estimation 
 
Dependent variable: Electricity output by unit and hour 
Average of the coefficients, standard errors, and marginal effects over 130 units.  
 
 
Variable 

Average of
Coefficients

Average of 
Std. Errors

# of Coefs 
Significant 

Marginal 
Effects

fixed effect 122.83 2.40 126 
pcm positive 26.76 3.45 101 
pcm -0.06 0.27 47 -0.05
pcm2 (times 1000) -0.60 3.21 37 
pcm3 (times 1000) 0.00 0.01 33 
pcm4 (times 106) -0.01 0.02 30 
pcm5 (times 109) 0.00 0.01 28 
pcmlag 0.44 0.19 96 0.46
pcmlag2 (times 1000) -4.02 2.44 80  
pcmlag3 (times 1000) 0.01 0.01 64 
pcmlag4 (times 106) -0.02 0.01 63 
pcmlag5 (times 109) 0.01 0.01 59 
pcmlead 1.23 0.19 121 1.27
pcmlead2 (times 1000) -11.90 2.41 114  
pcmlead3 (times 1000) 0.04 0.01 109  
pcmlead4 (times 106) -0.05 0.01 106 
pcmlead5 (times 109) 0.02 0.01 102 
avepcm -0.04 0.34 21 1.41
avepcm2 (times 1000) -14.19 18.34 31  
avepcm3 (times 1000) 0.47 0.42 30 
avepcm4 (times 106) -3.98 3.63 43 
avepcm5 (times 109) 10.00 10.09 45 
avepcmlag 0.76 0.29 44 0.42
avepcmlag2 (times 1000) -13.99 17.18 27 
avepcmlag3 (times 1000) 0.11 0.40 25  
avepcmlag4 (times 106) -0.21 3.46 24 
avepcmlag5 (times 109) -0.50 9.53 25 
avepcmlead 0.19 0.29 18 1.34
avepcmlead2 (times 1000) -17.49 17.14 21 
avepcmlead3 (times 1000) 0.38 0.40 20 
avepcmlead4 (times 106) -2.88 3.40 27 
avepcmlead5 (times 109) 7.31 9.36 31 

 

Notes: Each unit specific regression includes a constant and an indicator variable of positive 
current price-cost markups (pcm). The other variables are estimated as a fifth order polynomials. 
pcmlag is last hour’s pcm, and pcmlead is next hour’s pcm. avepcm is the daily average pcm, 
avepcmlag is yesterday’s average pcm, and avepcmlead is tomorrow’s average pcm. The unit 
fixed effect is also shown. The model’s R squared is 0.81. 
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Table 3: Welfare Implications of Production Inefficiencies, Pre- and Post-Restructuring 
using Actual Prices 
 
Type Pre- Post- Change Percentage
  
Actual Outcomes  
Output (million MWh) 71.8 67.7 -4.1 -6%
Average Variable Costs ($/MWh) $18.46 $22.15 $3.70  20%
Total Variable Costs ($ millions) 1325 1499 174.0 13%
  
Static Model  
  Output 71.8 67.7 -4.3 -6%
  Average Variable Costs $16.82 $19.60 $2.78  17%
  Total Variable Costs 1207 1326 118.5 10%
  Deadweight Loss 117.8 172.8 54.9 47%
  DWL Share of Comp. Costs (9.7%) (13.1%)  
  
Intertemporal Model  
  Output 72.0 67.7 -4.3 -6%
  Average Variable Costs $18.49 $21.50 $3.01  16%
  Total Variable Costs 1331 1456 125.0 9%
  Deadweight Loss -6.0 42.6 48.6 
 (Standard Errors) (0.2) (11.2) (11.2) 
  DWL Share of Comp. Costs  (-0.5%) (3.0%)  
  
  DWL Ratio (Intertemp./Static) -5% 20%  
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Table 4: Welfare Implications with Predicted Prices, Pre- and Post-Restructuring using 
Counterfactual Competitive Price Estimates 
 
Type Pre- Post- Change Percentage
  
Wholesale Prices  
  Actual ($/ MWh) 26.05 37.97 11.93 46%
  (standard deviation) (43.47) (101.00) (57.53) 132%
  Estimated ($/ MWh) 26.05 31.53 5.48 21%
  (standard deviation) (43.47) (56.98) (13.51) 31%
  
Actual Outcomes  
Output (million MWh) 71.8 67.7 -4.1 -6%
Average Variable Costs ($/MWh) $18.46 $22.15 $3.70  20%
Total Variable Costs ($ millions) 1325 1499 174 13%
  
Static Model  
  Output 72.0 65.4 -6.6 -9%
  Average Variable Costs $16.60 $19.00 $2.40  14%
  Total Variable Costs 1195 1243 48 4%
  Deadweight Loss 130.6 255.2 124.6 97%
  DWL Share of Comp. Costs (10.9%) (20.6%)  
  
Intertemporal Model  
  Output 72.0 65.4 -6.6 -9%
  Average Variable Costs $18.49 $21.31 $2.82  15%
  Total Variable Costs 1331 1394 63 5%
  Deadweight Loss -6.0 104.8 110.8 
  DWL Share of Comp. Costs (-0.5%) (7.5%)  
  
  DWL Ratio (Intertemp./Static) -5% 20%  
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Table 5: Output Production and Welfare Implications by Firm and Model, Pre- vs. Post-
Restructuring, using Actual Prices 
 
Panel A: Actual Outcomes 
   Output     Total Variables Costs 

Firm Pre Post Change Pre Post Change 
Public Service 3,791 4,213 422 11% 95 137 42.8 45%
PECO 3,047 2,728 -319 -10% 66 73 6.9 10%
GPU, Inc. 19,208 18,106 -1,102 -6% 295 349 54.7 19%
PPL, Inc. 13,344 10,752 -2,592 -19% 258 244 -14.3 -6%
Potomac 11,633 12,183 550 5% 244 287 43.0 18%
Baltimore 8,772 8,700 -72 -1% 157 158 1.8 1%
Delmarva 3,522 3,129 -393 -11% 77 87 9.8 13%
Atlantic City  1,152 1,235 83 7% 29 41 12.1 42%
Other   7,320 6,613 -707 -10% 106 122 16.7 16%
Total 71,789 67,659 -4,130 -6% 1,325 1,499 173.4 13%

 
Panel B: Intertemporal Model Estimates 
   Output     Total Variables Costs 

Firm Pre Post Change Pre Post Change 
Public Service 3,828 3,259 -569 -15% 96 104 8.7 9%
PECO 3,096 2,883 -213 -7% 67 74 6.8 10%
GPU, Inc. 19,213 18,033 -1,180 -6% 295 346 50.9 17%
PPL, Inc. 13,362 12,373 -989 -7% 259 280 20.9 8%
Potomac 11,701 11,331 -370 -3% 246 254 8.2 3%
Baltimore 8,780 8,785 5 0% 157 158 0.9 1%
Delmarva 3,529 3,131 -398 -11% 77 81 4.5 6%
Atlantic City  1,160 1,053 -107 -9% 29 35 5.6 19%
Other   7,319 6,811 -508 -7% 106 124 18.2 17%
Total 71,988 67,659 -4,329 -6% 1,331 1,456 124.7 9%

 
Panel C: Static Model Estimates 
   Output     Total Variables Costs 

Firm Pre Post Change Pre Post Change 
Public Service 2,650 2,030 -620 -23% 56 58 2.0 4%
PECO 3,653 2,699 -954 -26% 74 61 -12.9 -17%
GPU, Inc. 20,431 18,813 -1,618 -8% 301 349 47.9 16%
PPL, Inc. 13,697 11,679 -2,018 -15% 238 245 7.0 3%
Potomac 10,444 11,874 1,430 14% 197 233 36.4 18%
Baltimore 8,931 9,457 526 6% 148 160 12.2 8%
Delmarva 3,076 2,497 -579 -19% 62 61 -1.0 -2%
Atlantic City  657 411 -246 -37% 16 13 -2.6 -16%
Other   8,245 8,198 -47 -1% 116 145 29.4 25%
Total 71,784 67,658 -4,126 -6% 1,207 1,326 118.5 10%

 
Notes: Output is measured in GWh’s (1000s of MWh) and total variables costs are measured in 
millions of dollars. 
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Table 6: Output Production and Welfare Implications by Firm and Model, Pre- vs. Post-
Restructuring, using Counterfactual Competitive Price Estimates 
 
Panel A: Actual Outcomes 
   Output     Total Variables Costs 

Firm Pre Post Change Pre Post Change 
Public Service 3,791 4,213 422 11% 95 137 42.8 45%
PECO 3,047 2,728 -319 -10% 66 73 6.9 10%
GPU, Inc. 19,208 18,106 -1,102 -6% 295 349 54.7 19%
PPL, Inc. 13,344 10,752 -2,592 -19% 258 244 -14.3 -6%
Potomac 11,633 12,183 550 5% 244 287 43.0 18%
Baltimore 8,772 8,700 -72 -1% 157 158 1.8 1%
Delmarva 3,522 3,129 -393 -11% 77 87 9.8 13%
Atlantic City  1,152 1,235 83 7% 29 41 12.1 42%
Other   7,320 6,613 -707 -10% 106 122 16.7 16%
Total 71,789 67,659 -4,130 -6% 1,325 1,499 173.4 13%

 
Panel B: Intertemporal Model Estimates 
   Output     Total Variables Costs 

Firm Pre Post Change Pre Post Change 
Public Service 3,828 2,611 -1,217 -32% 96 87 -9.1 -9%
PECO 3,096 2,436 -660 -21% 67 63 -4.1 -6%
GPU, Inc. 19,213 18,370 -843 -4% 295 353 57.6 20%
PPL, Inc. 13,362 11,992 -1,370 -10% 259 271 11.9 5%
Potomac 11,701 11,126 -575 -5% 246 245 -0.9 0%
Baltimore 8,780 8,214 -566 -6% 157 146 -11.2 -7%
Delmarva 3,529 2,710 -819 -23% 77 71 -5.4 -7%
Atlantic City  1,160 965 -195 -17% 29 32 3.3 11%
Other   7,319 6,984 -335 -5% 106 126 20.6 19%
Total 71,988 65,408 -6,580 -9% 1,331 1,394 62.6 5%

 
Panel C: Static Model Estimates 
   Output     Total Variables Costs 

Firm Pre Post Change Pre Post Change 
Public Service 2,650 1,389 -1,261 -48% 56 39 -16.8 -30%
PECO 3,653 2,531 -1,122 -31% 74 54 -19.8 -27%
GPU, Inc. 20,431 19,081 -1,350 -7% 301 352 50.9 17%
PPL, Inc. 13,697 11,154 -2,543 -19% 238 227 -11.0 -5%
Potomac 10,444 11,393 949 9% 197 213 16.5 8%
Baltimore 8,931 9,380 449 5% 148 156 8.1 5%
Delmarva 3,076 2,026 -1,050 -34% 62 48 -13.7 -22%
Atlantic City  657 252 -405 -62% 16 8 -7.9 -49%
Other   8,245 8,196 -49 -1% 116 145 29.1 25%
Total 71,784 65,402 -6,382 -9% 1,207 1,243 36.3 3%

 
Notes: Output is measured in GWh’s (1000s of MWh) and total variables costs are measured in 
millions of dollars. 
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Table A.1: Non-Modeled Firms Supply Function, Pre- and Post-Restructuring 
 
Dependent variable is hourly non-modeled firms quantity supplied into PJM by year. 
 
Variable Pre- Post- 
ln(Price)*Peak 2851.8** 1372.6** 
 (773.3) (525.4) 
   
ln(Price)*Off-Peak 1657.8# 841.5 
 (904.9) (723.3) 
   
R-squared 0.08 0.19 
AR(1) coef (ρ) 0.84 0.83 
Sample size 4,330 4,341 
 
Notes:  
Table presents 2SLS coefficients. First I estimate 2SLS and use the errors to correct for serial correlation 
by estimating an AR(1) coefficient (ρ). Then I quasi-difference the data by calculating ∆x=x(t)-ρ*x(t-1) for 
all data. I re-estimate the 2SLS results using these quasi-differenced data. Robust standard errors are given 
in parentheses. Significance is marked with (**) at the 1% level, (*) at the 5% level, and (#) at the 10% 
level. Regression includes month fixed effects, peak indicator (between 11 AM and 8 PM weekdays) and 
weather variables for bordering states (New York, Ohio, Virginia, and West Virginia), which are modeled 
as quadratic functions for cooling degree days (degrees daily mean below 65° F) and heating degree days 
(degrees daily mean above 65° F). In the first stage, I regress PJM ln(price) on the exogenous variables and 
instruments of daily weather for the states in PJM (Delaware, Maryland, New Jersey, and Pennsylvania) 
with the same flexible form as the weather for bordering states.  The sample is from April 1 to September 
30 for each year: pre-restructuring (1998) and post-restructuring (1999). 




