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1. Introduction

Uncertainty appears to dramatically increase after major economic and political shocks like the Cuban

Missile crisis, the assassination of JFK, the OPEC I oil-price shock and the 9/11 terrorist attacks.

Figure 1 plots stock market volatility - one proxy for uncertainty - which displays large bursts of

uncertainty after major shocks, temporarily increasing (implied) volatility by up to 200%.1 These

volatility shocks are strongly correlated with other measures of uncertainty, like the cross-sectional

spread of �rm and industry level earnings and productivity growth. Vector Auto Regression (VAR)

estimations suggest that they also have a large real impact, generating a substantial drop and rebound

in output and employment over the following six months.

Uncertainty is also a ubiquitous concern of policymakers - for example after 9/11 the Federal

Open Market Committee (FOMC) worried about exactly the type of real-options e¤ects analyzed in

this paper, stating in October 2001 that �the events of September 11 produced a marked increase in

uncertainty...depressing investment by fostering an increasingly widespread wait-and-see attitude�.

But despite the size and regularity of these second moment (uncertainty) shocks there is no

general structural model that analyzes their e¤ects. This is surprising given the extensive literature

on the impact of �rst moment (levels) shocks. This leaves open a wide variety of questions on the

impact of major macroeconomic shocks, since these typically have both a �rst and second moment

component.

The primary contribution of this paper is a structural framework to analyze these types of un-

certainty shocks, building a model with a time varying second moment of the driving process and a

mix of labor and capital adjustment costs. The model is numerically solved and estimated on �rm

level data using simulated method of moments. Firm-level data helps to overcomes the identi�ca-

tion problem associated with the limited sample size of macro data. Cross-sectional and temporal

aggregation are incorporated to enable the estimation of structural parameters.

With this parameterized model I then simulate the impact of a large temporary uncertainty

shock and �nd that it generates a rapid drop, rebound and overshoot in employment, output and

productivity growth. Hiring and investment rates fall dramatically in the four months after the

shock because higher uncertainty increases the real option value to waiting, so �rms scale back their

plans. But once uncertainty has subsided, activity quickly bounces back as �rms address their pent-

up demand for labor and capital. Aggregate productivity growth also falls dramatically after the

1 In �nancial markets implied share-returns volatility is the canonical measure for uncertainty. Bloom, Bond and
Van Reenen (2007) show that �rm-level share-returns volatility is signi�cantly correlated with a range of alternative
uncertainty proxies, including real sales growth volatility and the cross-sectional distribution of �nancial analysts�
forecasts. While Shiller (1981) has argued that the level of stock price volatility is excessively high, Figure 1 suggests
that changes in stock-price volatility are nevertheless linked with real and �nancial shocks.
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shock because the drop in hiring and investment reduces the rate of re-allocation from low to high

productivity �rms, which drives the majority of productivity growth in the model as in the real

economy.2 But again productivity growth rapidly bounces back as pent-up re-allocation occurs.

In the medium term the increased volatility arising from the uncertainty shock generates a

�volatility-overshoot�. The reason is that most �rms are located near their hiring and investment

thresholds, above which they hire/invest and below which they have a zone of inaction. So small

positive shocks generate a hiring and investment response while small negative shocks generate no

response. Hence, hiring and investment are locally convex in business conditions (demand and

productivity). The increased volatility of business conditions growth after a second-moment shock

therefore leads to a medium-term rise in labor and capital.

In sum, these second moment e¤ects generate a rapid slow-down and bounce-back in economic

activity, entirely consistent with the empirical evidence. This is very di¤erent from the much more

persistent slowdown that typically occurs in response to the type of �rst moment productivity and/or

demand shock that is usually modelled in the literature.3 This highlights the importance to poli-

cymakers of distinguishing between the persistent �rst moment e¤ects and the temporary second

moment e¤ects of major shocks.

I then evaluate the robustness of these predictions to general equilibrium e¤ects, which for com-

putational reasons are not included in my baseline model. To investigate this I build the falls in

interest rates, prices and wages that occur after actual uncertainty shocks into the simulation. This

has little short-run e¤ect on the simulations, suggesting that the results are robust to general equi-

librium e¤ects. The reason is that the rise in uncertainty following a second moment shock not only

generates a slowdown in activity, but it also makes �rms temporarily extremely insensitive to price

changes. This raises a second policy implication that the economy will be particularly unresponsive

to monetary or �scal policy immediately after an uncertainty shock, suggesting additional caution

when thinking about the policy response to these types of events.

The analysis of uncertainty shocks links with the earlier work of Bernanke (1983) and Hassler

(1996) who highlight the importance of variations in uncertainty.4 In this paper I quantify and

substantially extend their predictions through two major advances: �rst by introducing uncertainty

as a stochastic process which is critical for evaluating the high frequency impact of major shocks;

2See Foster, Haltiwanger and Krizan (2000 and 2006).
3See, for example, Christiano, Eichenbaum and Evans (2005) and the references therein.
4Bernanke develops an example of uncertainty in an oil cartel for capital investment, while Hassler solves a model

with time-varying uncertainty and �xed adjustment costs. There are of course many other linked recent strands of
literature, including work on growth and volatility such as Ramey and Ramey (1995) and Aghion et al. (2005), on
investment and uncertainty such as Leahy and Whited (1996) and Bloom, Bond and Van Reenen (2007), on the
business-cycle and uncertainty such as Barlevy (2004) and Gilchrist and Williams (2005), on policy uncertainty such
as Adda and Cooper (2000) and on income and consumption uncertainty such as Meghir and Pistaferri (2004).
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and second by considering a joint mix of labor and capital adjustment costs which is critical for

understanding the dynamics of employment, investment and productivity.

The secondary contribution of this paper is to analyze the importance of jointly modelling labor

and capital adjustment costs. For analytical tractability and aggregation constraints the empirical

literature has either estimated labor or capital adjustment costs individually assuming the other factor

is �exible, or estimated them jointly assuming only convex adjustment costs.5 I jointly estimate a

mix of labor and capital adjustment costs by exploiting the properties of homogeneous functions to

reduce the state space, and develop an approach to address cross-sectional and temporal aggregation.

I �nd moderate non-convex labor adjustment costs and substantial non-convex capital adjustment

costs. I also �nd that assuming capital adjustment costs only - as is standard in the investment

literature - generates an acceptable overall �t, while assuming labor adjustment costs only - as is

standard in the labor demand literature - produces a poor �t.

This framework also suggests a range of future research. Looking at individual events it could

be used, for example, to analyze the uncertainty impact of major deregulations, tax changes, trade

reforms or political elections. It also suggests there is a trade-o¤ between policy �correctness�and

�decisiveness� - it may be better to act decisively (but occasionally incorrectly) then to deliberate

on policy, generating policy-induced uncertainty. More generally, the framework in this paper also

provides one response to the �where are the negative productivity shocks?�critique of real business

cycle theories.6 In particular, since second moment shocks generate large falls in output, employment

and productivity growth, it provides an alternative mechanism to �rst-moment shocks for generat-

ing recessions. Recessions could simply be periods of high uncertainty without negative productivity

shocks. Encouragingly, recessions do indeed appear in periods of signi�cantly higher uncertainty, sug-

gesting an uncertainty approach to modelling business-cycles (see Bloom, Floetotto and Jaimovich,

2007). Taking a longer run perspective this paper also links to the volatility and growth literature,

given the large negative impact of uncertainty on output and productivity growth.

The rest of the paper is organized as follows: in section (2) I empirically investigate the importance

of jumps in stock-market volatility, in section (3) I set up and solve my model of the �rm, in section

(4) I characterize the solution of the model, in section (5) I outline my simulated method of moments

estimation approach, in section (6) I report the parameters estimates using US �rm data, in section

(7) I take my parameterized model and simulate the high frequency e¤ects of a large uncertainty

5See, for example; on capital Cooper and Haltiwanger (1993), Caballero, Engel and Haltiwanger (1995), Cooper,
Haltiwanger and Power (1999) and Cooper and Haltiwanger (2003); on labor Hammermesh (1989), Bertola and Bentolila
(1990), Davis and Haltiwanger (1992), Caballero and Engel (1993), Caballero, Engel and Haltiwanger (1997) and
Cooper, Haltiwanger and Willis (2004); on joint estimation with convex adjustment costs Shapiro (1986), Hall (2004)
and Merz and Yashiv (2005); and Bond and Van Reenen (2007) for a full survey of the literature.

6See the extensive discussion in King and Rebello (1999).
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shock. Finally, section (8) o¤ers some concluding remarks.

2. Do Jumps in Stock-Market Volatility Matter?

Two key questions to address before introducing any models of uncertainty shocks are: (i) do jumps

in the volatility index in Figure 1 represents uncertainty shocks,7 and (ii) do these have any impact

on real economic outcomes? In section (2.1) I address the �rst question by presenting evidence

showing that stock market volatility is strongly linked to other measures of productivity and demand

uncertainty. In section (2.2) I address the second question by presenting Vector Auto Regression

(VAR) estimations showing that volatility shocks generate a short-run drop of 1%, lasting about

6 months, with a longer run gradual overshooting. First moment shocks to the interest-rates and

stock-market levels generate a much more gradual drop and rebound in activity lasting 2 to 3 years.

A full data description for both sections is contained in Appendix A.8

2.1. Empirical Evidence on the Links Between Stock-Market Volatility and Uncertainty

The evidence presented in Table 1 shows that a number of cross-sectional measures of uncertainty

are highly correlated with time-series stock-market volatility. Stock market volatility has also been

previously used as a proxy for uncertainty at the �rm level (e.g. Leahy and Whited (1996) and

Bloom, Bond and Van Reenen. (2007)).

Columns (1) and (2) of Table 1 use the cross-sectional standard deviation of �rms�pre-tax pro�t

growth, taken from the quarterly accounts of public companies. As can be seen from column (1)

stock-market time-series volatility is strongly correlated with the cross-sectional spread of �rm-level

pro�ts growth. All variables in Table 1 have been normalized by their standard deviations (SD). The

coe¢ cient implies that the 2.47 SD rise in stock-market time-series volatility that occurred on average

after the shocks highlighted in Figure 1 would be associated with a 1.31 SD rise in the cross-sectional

spread of the growth rate of pro�ts, a large increase. Column (2) re-estimates this including a full

set of quarterly dummies and a time-trend, �nding very similar results.9

Columns (3) and (4) use a monthly cross-sectional stock-returns measure and show that this is

also strongly correlated with the stock-return volatility index. Columns (5) and (6) report the results

from using the standard-deviation of annual 5-factor TFP growth within the NBER manufacturing

industry database. There is also a large and signi�cant correlation of the cross-sectional spread

of industry productivity growth and stock-market volatility. Finally, Columns (7) and (8) use a

7 I tested for jumps in the volatility series using the bipower variation test of Barndor¤-Nielsen and Shephard (2006)
and found statistically signi�cance evidence for jumps. Full details in Appendix A1.

8All data and program �les are also available at http://www.stanford.edu/~nbloom/
9This helps to control for any secular changes in volatility (see Davis et al. (2006)).
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measure of the dispersion across macro forecasters over their predictions for future GDP, calculated

from the Livingstone half-yearly survey of professional forecasters. Once again, periods of high stock-

market volatility are signi�cantly correlated with cross-sectional dispersion, in this case in terms of

disagreement across macro forecasters.

2.2. VAR Estimates on the Impact of Stock-Market Volatility Shocks

To evaluate the impact of uncertainty shocks on real economic outcomes I estimate a range of

VARs on monthly data from July 1963 to July 2005.10 The variables in the estimation order are

log(industrial production), log(employment), hours, log(consumer price index), log(average hourly

earnings), Federal Funds Rate, a stock-market volatility indicator (described below) and log(S&P500

stock market index). This ordering is based on the assumptions that shocks instantaneously in�uence

the stock market (levels and volatility), then prices (wages, the CPI and interest rates) and �nally

quantities (hours, employment and output). Including the stock market levels as the �rst variable

in the VAR ensures the impact of stock-market levels is already controlled for when looking at the

impact of volatility shocks. All variables are Hodrick Prescott (HP) detrended (� = 129; 600) in the

baseline estimations.

The main stock-market volatility indicator is constructed to take a value 1 for each of the shocks

labelled in Figure 1 and a 0 otherwise. These sixteen shocks were explicitly chosen as those events

when the peak of HP detrended volatility level rose signi�cantly above the mean.11 This indica-

tor function is used to ensure identi�cation comes only from these large, and arguably exogenous,

volatility shocks rather than the smaller ongoing �uctuations.

Figure 2 plots the impulse response function of industrial production (the solid line with plus

symbols) to a volatility shock. Industrial production displays a rapid fall of around 1% within four

months, with a subsequent recovery and rebound from seven months after the shock. The one

standard-error bands (dashed lines) are plotted around this, highlighting that this drop and rebound

is statistically signi�cant at the 5% level. For comparison to a �rst moment shock, the response

to a 1% impulse to the Federal Funds Rate (FFR) is also plotted (solid line with circular symbols)

displaying a much more persistent drop and recovery of up to 0.6% over the subsequent two years.12

In Figure 3 the response of employment to a stock-market volatility shock is also plotted, displaying

a similar large drop and recovery in activity. Figures A1, A2 and A3 in the Appendix con�rm the

10 I would like to thank Valerie Ramey and Chris Sims (my discussants at the NBER EF&G and Evora conferences)
for their initial VAR estimations and subsequent discussions.
11The threshold was 1.65 standard deviations above the mean, selected as the 5% one-tailed signi�cance level treating

each month as an independent observation. The VAR estimation also uses the full volatility series (which does not
require de�ning shocks) and �nds very similar results, as shown in Figure A1.
12The response to a 5% fall in the level of the stock-market levels (not plotted) is very similar in size and magnitude

to the response to a 1% rise in the FFR.
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Notes: VAR Cholesky orthogonalized impulse response functions estimated on monthly data from July 1963 to July 2005 using 12 lags. Dotted lines in 
top and bottom figures are one standard error bands around the response to a volatility shock indicator, coded as a 1 for each of the 16 labelled shocks 
in Figure 1, and 0 otherwise. Variables (in order) are log industrial production, log employment, hours, log wages, log CPI, federal funds rate, the 
volatility shock indicator and log S&P500 levels. Detrending by Hodrick-Prescott filter with smoothing parameter of 129,600. The response to a 1% 
shock to the Federal Funds Rate (dotted line) is plotted to demonstrate the time profile in response to a typical first moment shock.
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Figure 3: VAR estimation of the impact of a volatility shock on employment
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robustness of these VAR results to a range of alternative approaches over variable ordering, variable

inclusion, shock de�nitions, shock timing and detrending. In particular, these results are robust to

identi�cation from uncertainty shocks de�ned by the 10 exogenous shocks arising from wars, OPEC

shocks and terror events.13

3. Modelling the Impact of an Uncertainty Shock

In this section I model the impact of an uncertainty shock. I take a standard model of the �rm14

and extend this in two ways. First, I introduce uncertainty as a stochastic process to evaluate the

impact of the uncertainty shocks shown in Figure 1. Second, I allow a joint mix of convex and non-

convex adjustment costs for both labor and capital. The time varying uncertainty interacts with the

non-convex adjustment costs to generate time-varying real-option e¤ects, which drive �uctuations in

hiring and investment. I also build in temporal and cross-sectional aggregation by assuming �rms

own large numbers of production units, which allows me to estimate the model�s parameters on

�rm-level data.

3.1. The Production and Revenue Function

Each production unit has a Cobb-Douglas15 production function

F ( eA;K;L;H) = eAK�(LH)1�� (3.1)

in productivity ( eA), capital (K), labor (L) and hours (H). The �rm faces an iso-elastic demand

curve with elasticity (�)

Q = BP��; (3.2)

where B is a (potentially stochastic) demand shifter. These can be combined into a revenue function

R( eA;B;K;L;H) = eA1�1=�B1=�K�(1�1=�)(LH)(1��)(1�1=�). For analytical tractability I de�ne a =

�(1 � 1=�), b = (1 � �)(1 � 1=�) and substitute A1�a�b = eA1�1=�B1=�, where A combines the unit

level productivity and demand terms into one index, which for expositional simplicity I will refer to

as �business conditions�. With these rede�nitions we have16

S(A;K;L;H) = A1�a�bKa(LH)b: (3.3)
13 In an earlier version of the paper (Bloom, 2006) I evaluated the impact of one particular uncertainty shock - the

9/11 terrorist attack - against consensus forecasts made two weeks before the attack. I showed that 9/11 appeared to
generate a large drop and rapid rebound in hiring and investment lasting around 6 months.
14See, for example, Bertola and Caballero (1994), Abel and Eberly (1996) or Caballero and Engel (1999).
15While I assume a Cobb-Douglas production function other supermodular homogeneous unit revenue functions

could be used. For example, by replacing (3.1) with a CES aggregator over capital and labor where F ( eA;K;L;H) =eA(�1K� + �2(LH)
�)

1
� I obtained similar simulation results.

16This reformulation to A as the stochastic variable to yield a jointly homogeneous revenue function avoids any
long-run Hartman (1972) or Abel (1983) e¤ects of uncertainty reducing or increasing output because of convexity or
concavity in the production function. See Caballero (1991) or Abel and Eberly (1996) for a more detailed discussion.
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Wages are determined by undertime and overtime hours around the standard working week of 40

hours, which following the approach in Caballero and Engel (1993), is parameterized as w(H) =

w1(1+w2H

), where w1; w2 and 
 are parameters of the wage equation to be determined empirically.

3.2. The Stochastic Process for Demand and Productivity

I assume business conditions evolve as an augmented geometric random walk. Uncertainty shocks

are modelled as time variations in the standard deviation of the driving process, consistent with the

stochastic volatility measure of uncertainty in Figure 1.

Business conditions are in fact modelled as a multiplicative composite of three separate random-

walks17, a macro-level component (AMt ), a �rm-level component (A
F
i;t) and a unit-level component

(AUi;j;t), where Ai;j;t = AMt A
F
i;tA

U
i;j;t and i indexes �rms, j indexes units and t indexes time. The

macro level component is modelled as follows:

AMt = AMt�1(1 + �t�1W
M
t ) WM

t � N(0; 1); (3.4)

where �t is the standard-deviation of business conditions and WM
t is a macro-level i.i.d. normal

shock. The �rm level component is modelled as follows:

AFi;t = A
F
i;t�1(1 + �i;t + �t�1W

F
i;t) WF

i;t � N(0; 1); (3.5)

where �i;t is a �rm-level drift in business conditions and W
F
i;t is a �rm-level i.i.d. normal shock. The

unit level component is modelled as follows:

AUi;j;t = A
U
i;j;t�1(1 + �t�1W

U
i;j;t) WU

i;j;t � N(0; 1); (3.6)

where WU
i;j;t is a unit-level i.i.d. normal shock. I assume W

M
t ; W

F
t and WU

i;t are all independent of

each other.

While this demand structure may seem complex, it is formulated to ensure that: (i) units within

the same �rm have linked investment behavior due to common �rm-level business conditions and

uncertainty shocks; and (ii) they display some independent behavior due to the idiosyncratic unit

level shocks, which is essential for smoothing under aggregation. This demand structure also assumes

that macro, �rm and unit level uncertainty are the same. This is broadly consistent with the results

from Table 1 for �rm and macro uncertainty, which show these are highly correlated. For unit level

17A random-walk driving process is assumed for analytical tractability, in that it helps to deliver a homogenous
value function (details in the next section). It is also consistent with Gibrat�s law. An equally plausible alternative
assumption would be a persistent AR(1) process, such as the following based on Cooper and Haltiwanger (2006):
log(At) = � + � log(At�1) + vt where vt � N(0; �t�1), � = 0:885. To investigate this alternative I programmed up
another monthly simulation with auto-regressive business conditions and no labor adjustment costs (so I could drop
the labor state) and all other modelling assumptions the same. I found in this set-up there were still large real-options
e¤ects of uncertainty shocks on output, as plotted in Appendix Figure A4.
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uncertainty there is no direct evidence on this. But to the extent this assumption does not hold - so

that unit and macro uncertainty are imperfectly correlated - this will weaken the quantitative impact

of macro uncertainty shocks (since total uncertainty will �uctuate less than one-for-one with macro

uncertainty), but not the qualitative �ndings. The �rm-level business conditions drift (�i;t) is also

assumed to be stochastic, to allow autocorrelated changes over time within �rms. This is important

for empirically identifying adjustment costs from persistent di¤erences in growth rates across �rms,

as section (5) discusses in more detail.18

The stochastic volatility process (�2t ) and the demand conditions drift (�i;t) are both assumed

for simplicity to follow two point Markov Chains

�t 2 f�L; �Hg where Pr(�t+1 = �j j�t = �k) = ��k;j (3.7)

�i;t 2 f�L; �Hg where Pr(�i;t+1 = �j j�i;t = �k) = �
�
k;j : (3.8)

3.3. Adjustment Costs

The third piece of technology determining the �rms�activities are the adjustment costs. There is

a large literature on investment and employment adjustment costs which typically focuses on three

terms, all of which I include in my speci�cation:

Partial irreversibilities: Labor partial irreversibility, labelled CPL , derives from per capita

hiring training and �ring costs, and is denominated as a fraction of annual wages (at the standard

working week). For simplicity I assume these costs apply equally to gross hiring and gross �ring

of workers.19 Capital partial irreversibilities arise from resale losses due to transactions costs, the

market for lemons phenomenon and the physical costs of resale. The resale loss of capital is labelled

CPK and is denominated as a fraction of the relative purchase price of capital.

Fixed disruption costs: When new workers are added into the production process and new

capital is installed some downtime may result, involving a �xed cost loss of output. For example,

adding workers may require �xed costs of advertising, interviewing and training, or the factory may

need to close for a few days while a capital re�t is occurring. I model these �xed costs as CFL and

CFK for hiring/�ring and investment respectively, both denominated as fractions of annual sales.

18This formulation also generates �business conditions�shocks at the unit-level that have a
p
3 times larger standard-

deviation than at the macro level. This appears to be counter empirical given the much higher volatility of establishment
data than macro data. However, because of the non-linearities in the investment and hiring response functions (due
to non-convex adjustment costs) output and input growth is typically around 10 times more volatile at the unit level
then at the smoothed (by aggregation) macro level in the simulation.
Furthermore, all that matters for the simulation results in section (7.1) is the change in the total variance of shocks

to Ai;j;t, rather than the breakdown of this variance between macro, �rm and unit level shocks.
19Microdata evidence, for example Davis and Haltiwanger (1992), suggests both gross and net hiring/�ring costs

may be present. For analytical simplicity I have restricted the model to gross costs, noting that net costs could also
be introduced and estimated in future research through the addition of two net �ring cost parameters.
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Quadratic adjustment costs: The costs of hiring/�ring and investment may also be related to

the rate of adjustment due to higher costs for more rapid changes, where CQLL(
E
L )
2 are the quadratic

hiring/�ring costs and E denotes gross hiring/�ring, and CQKK(
I
K )

2 are the quadratic investment

costs and I denotes gross investment.

The combination of all adjustment costs is given by the adjustment cost function:

C(A;K;L;H; I; E; pKt ) = 52w(40)CPL (E
+ + E�) + (I+ � (1� CPK)I�) +�

CFL 1fE 6=0g + C
F
K1fI 6=0g

�
S(A;K;L;H) + CQLL(

E

L
)2 + CQKK(

I

K
)2

where E+ (I+) and E� (I�) are the absolute values of positive and negative hiring (investment)

respectively, and 1fE 6=0g and 1fI 6=0g are indicator functions which equal 1 if true and 0 otherwise.

New labor and capital take one period to enter production due to time to build. This assumption is

made to allow me to pre-optimize hours (explained in section (3.5) below), but is unlikely to play a

major role in the simulations given the monthly periodicity. At the end of each period there is labor

attrition and capital depreciation proportionate to �L and �K respectively.

3.4. Dealing with Cross-Sectional and Time Aggregation

Gross hiring and investment is typically lumpy with frequent zeros in single-plant establishment level

data but much smoother and continuous in multi-plant establishment and �rm level data. This

appears to be because of extensive aggregation across two dimensions: cross sectional aggregation

across types of capital and production plants; and temporal aggregation across higher-frequency

periods within each year (see Appendix section A4). I build this aggregation into the model by

explicitly assuming that �rms own a large number of production units and that these operate at a

higher frequency than yearly. The units can be thought of as di¤erent production plants, di¤erent

geographic or product markets, or di¤erent divisions within the same �rm.

To solve this model I need to de�ne the relationship between production units within the �rm.

This requires several simplifying assumptions to ensure analytical tractability. These are not attrac-

tive, but are necessary to enable me to derive numerical results and incorporate aggregation into the

model. In doing this I follow the general stochastic aggregation approach of Bertola and Caballero

(1994) and Caballero and Engel (1999) in modelling macro and industry investment respectively, and

most speci�cally Abel and Eberly (2002) in modelling �rm level investment.

The stochastic aggregation approach assumes �rms own a su¢ ciently large number of production

units that any single unit level shock has no signi�cant impact on �rm behavior. Units are assumed

to independently optimize to determine investment and employment. Thus, all linkages across units

within the same �rm are modelled by the common shocks to demand, uncertainty or the price of
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capital. So, to the extent that units are linked over and above these common shocks the implicit

assumption is that they independently optimize due to bounded rationality and/or localized incentive

mechanisms (i.e. managers being assessed only on their own unit�s Pro�t and Loss account).20

In the simulation the number of units per �rm is set at 250, chosen by increasing the number of

units until the results were no longer sensitive to this number.21 This assumption will have a direct

e¤ect on the estimated adjustment costs (since aggregation and adjustment costs are both sources of

smoothing) and thereby an indirect e¤ect on the simulation. Hence, in section (5) I re-estimate the

adjustment costs assuming instead the �rm has 1 and 50 units to investigate this further.

The model also assumes no entry or exit for analytical tractability. This seems acceptable in the

monthly time frame (entry/exit accounts for around 2% of employment on an annual basis), but is

an important assumption to explore in future research. My intuition is that relaxing this assumption

should increase the e¤ect of uncertainty shocks since entry and exit decisions are extremely non-

convex, although this may have some o¤setting e¤ects through the estimation of slightly �smoother�

adjustment costs.

There is also the issue of time series aggregation. Shocks and decisions in a typical business-unit

are likely to occur at a much higher frequency than annually, so annual data will be temporally

aggregated, and I need to explicitly model this. There is little information on the frequency of

decision making in �rms, with the available evidence suggesting monthly frequencies are typical (due

to the need for senior managers to schedule regular meetings), which I assume in my main results.

3.5. Optimal Investment and Employment

The �rm�s optimization problem is to maximize the present discounted �ow of revenues less the wage

bill and adjustment costs across its units. I assume that the �rm is risk neutral to focus on the real

options e¤ects of uncertainty.22

Analytical methods can show that a unique solution to the �rm�s optimization problem exists,

that is continuous and strictly increasing in (A;K;L) with an almost everywhere unique policy

function.23 The model is too complex, however, to be fully solved using analytical methods, so I use

20The semi-independent operation of plants may be theoretically optimal for incentive reasons (to motivate local
managers) and technical reasons (the complexity of centralized information gathering and processing). The empirical
evidence on decentralization in US �rms suggests that plant-managers have substantial hiring and investment discretion
(see for example Bloom and Van Reenen, 2007).
21The �rms in my estimation sample have a mean (median) size of 13,540 (3,450) employees (see section 5.4) so this

implies each unit has 54 (14) employees at the mean (median).
22 In an earlier version of the paper, Bloom (2006), I provided (partial equilibrium) simulation results for �rm risk-

aversion. Including this reinforces the real-options e¤ects because it induces a rise in the investment hurdle-rate after
the uncertainty shock hits which then falls back as certainty returns. In general equilibrium these e¤ects become
ambiguous because of o¤setting consumer risk-aversion e¤ects.
23The application of Stokey and Lucas (1989) for the continuous, concave and almost surely bounded normalized

returns and cost function in (3.9) for quadratic adjustment costs and partial irreversibilities, and Caballero and Leahy
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numerical methods knowing that this solution is convergent with the unique analytical solution.

Given current computing power, however, I have too many state and control variables to solve

the problem as stated. But the optimization problem can be substantially simpli�ed in two steps.

First, hours are a �exible factor of production and depend only on the variables (A;K;L), which are

pre-determined in period t given the time to build assumption. Therefore, hours can be optimized

out in a prior step, which reduces the control space by one dimension. Second, the revenue function,

adjustment cost function, depreciation schedules and demand processes are all jointly homogenous of

degree one in (A;K;L), allowing the whole problem to be normalized by one state variable, reducing

the state space by one dimension.24 I normalize by capital to operate on A
K and L

K : These two steps

dramatically speed up the numerical simulation, which is run on a state space of (AK ;
L
K ; �; �) making

numerical estimation feasible. Appendix B contains a description of the numerical solution method.

The Bellman equation of the optimization problem before simpli�cation (dropping the �rm sub-

scripts) can be stated as

V (At;Kt; Lt; �t; �t) = max
It;Et;Ht

�
S(At;Kt; Lt;Ht)� C(At;Kt; Lt;Ht; It; Et)� w(Ht)Lt

+ 1
1+rE[V (At+1;Kt(1� �K) + It; Lt(1� �L) + Et; �t+1; �t+1)]

�
;

where r is the discount rate and E[:] is the expectation operator. Optimizing over hours and exploiting

the homogeneity in (A;K;L) to take out a factor of Kt enables this to be re-written as

Q(at; lt; �t; �t) = max
it;et

�
S�(at; lt)� C�(at; lt; it; ltet)+
1��K+it
1+r E[Q(at+1; lt; �t+1; �t+1)]

�
; (3.9)

where the normalized variables are lt = Lt
Kt
; at =

At
Kt
; it =

It
Kt
and et = Et

Lt
; S�(at; lt) and C�(at; lt; it; ltet)

are sales and costs after optimization over hours, and Q(at; lt; �t; �t) = V (at; 1; lt; �t; �t), which is

Tobin�s Q.

4. An Example of the Model�s Solution

The model yields a central region of inaction in (AK ;
A
L ) space, due to the non-convex costs of adjust-

ment. Firms only hire and investment when business conditions are su¢ ciently good, and only �re

and disinvest when they are su¢ ciently bad. When uncertainty is higher these thresholds move out

- �rms become more cautious in responding to business conditions.

To provide some graphical intuition Figure 4 plots in (AK ;
A
L ) space the values of the �re and hire

thresholds (left and right lines) and the sell and buy capital thresholds (top and bottom lines) for low

(1996) for the extension to �xed costs.
24The key to this homogeneity result is the random-walk assumption on the demand process. With a random-walk

driving process adjustment costs and depreciation are naturally scaled by unit size, since otherwise units would �out-
grow�adjustment costs and depreciation. The demand-function is homogeneous through the trivial re-normalization
A1�a�b = eA1�1=�B1=�.

12



“Business Conditions”/Labour, log(A/L)

“B
us

in
es

s 
C

on
di

tio
ns

”/
C

ap
ita

l, 
lo

g(
A

/K
)

Figure 4: Hiring/firing and investment/disinvestment thresholds
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Notes: Simulated thresholds using the adjustment cost estimates “All” in table 3. All other parameters and assumptions as outlined in sections 3 and 4. 
Although the optimal policies are of the (s,S) type it can not be proven that this is always the case.
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Figure 5: Thresholds at low and high uncertainty
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Notes: Simulated thresholds using the adjustment cost estimates “All” in Table 3. All other parameters and assumptions as outlined in sections 3 and 4. 
High uncertainty is twice the value of low uncertainty (σH=2×σL). 



uncertainty (�L) and the preferred parameter estimates in Table 3 column �All�. The inner region

is the region of inaction (i = 0 and e = 0), where the real option value of waiting is worth more

than the returns to investment and/or hiring. Outside the region of inaction investment and hiring

will be taking place according to the optimal values of i and e. This diagram is a two dimensional

(two factor) version of the the investment models of Abel and Eberly (1996) and Caballero and

Leahy (1996). The gap between the investment/disinvestment thresholds is higher than between the

hire/�re thresholds due to the higher adjustment costs of capital.

Figure 5 displays the same lines for both low uncertainty (the inner box of lines), and also for

high uncertainty (the outer box of lines). It can be seen that the comparative static intuition that

higher uncertainty increases real options is con�rmed here, suggesting that large changes in �t can

have an important impact on investment and hiring behavior.

To quantify the impact of these real option values I run the thought experiment of calculating

what temporary fall in wages and interest rates would be required to keep �rms hiring and investment

thresholds unchanged when uncertainty temporarily rises from �L to �H . The required wage and

interest rate falls turn out to be quantitatively large - �rms would need a 25% reduction in wages

in periods of high uncertainty to leave their marginal hiring decisions unchanged, and a 7% (700

basis point) reduction in the interest rates in periods of high uncertainty to leave their marginal

investment decisions unchanged. This can be graphically seen in Figure A5, which plots the low and

high uncertainty thresholds, but with the change that when �t = �H interest rates are 7 percentage

points lower and wage rates 25% lower then when �t = �L.

Interestingly, re-computing these thresholds with permanent (time invariant) di¤erences in un-

certainty results in an even stronger impact on the investment and employment thresholds. So the

standard comparative static result25 on changes in uncertainty will tend to over predict the expected

impact of time changing uncertainty. The reason is that �rms evaluate the uncertainty of their

discounted value of marginal returns over the lifetime of an investment or hire, so high current un-

certainty only matters to the extent that it drives up long run uncertainty. When uncertainty is mean

reverting high current values have a lower impact on expected long run values than if uncertainty

were constant.

Figure 6 shows a one-dimensional cut of Figure 4 (using the same x-axis), with the level of

25See, for example, Dixit and Pindyck (1994). Hassler�s (1996) model actually predicts that temporary shocks
in uncertainty have a larger impact than permanent shocks. This arises in his model because to obtain analytical
tractability he assumes �xed-costs only. With �xed costs the rise in uncertainty in�uences both the investment threshold
and target, with these e¤ects being smaller and larger respectively in response to a temporary versus permanent
uncertainty shock. In his model the target e¤ect dominates the threshold e¤ect. In my model the addition of partial
irreversible (and quadratic) adjustment costs reverses this so the threshold e¤ects dominate, so permanent shocks have
a larger impact than temporary shocks. This highlights the importance of estimating adjustment costs for determining
the impact of uncertainty shocks.
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hiring/�ring (solid line, left y-axis) and cross-sectional density of units (dashed line, right y-axis)

plotted. These are drawn for one illustrative set of parameters: baseline uncertainty (�L), high

demand growth (�H) and the modal value of capital/labor.
26 Three things stand out: �rst, the

distribution is skewed to the right due to positive demand growth and labor attrition; second, the

density just below the hiring threshold is low because whenever the unit hits the hiring threshold it

undertakes a burst of activity (due to hiring �xed costs) that moves it to the interior of the space; and

third, the density peaks at the interior which re�ects the level of hiring that is optimally undertaken

at the hiring threshold.

5. Estimating the Model

The econometric problem consists of estimating the parameter vector � that characterizes the �rm�s

revenue function, stochastic processes, adjustment costs and discount rate. Since the model has

no analytical closed form these can not be estimated using standard regression techniques. Instead

estimation of the parameters is achieved by simulated method of moments (SMM) which minimizes a

distance criterion between key moments from the actual data and the simulated data. Because SMM

is computationally intensive only 10 parameters can be estimated, with the remaining 13 prede�ned.

5.1. Simulated Method of Moments (SMM)

SMM proceeds as follows - a set of actual data moments 	A is selected for the model to match. For

an arbitrary value of � the dynamic program is solved and the policy functions are generated. These

policy functions are used to create a simulated data panel of size (�N; T + 10), where � is a strictly

positive integer, N is the number of �rms in the actual data and T is the time dimension of the

actual data. The �rst ten years are discarded in order to start from the ergodic distribution. The

simulated moments 	S(�) are then calculated on the remaining simulated data panel, along with an

associated criterion function �(�), where �(�) = [	A �	S(�)]0W [	A �	S(�)], which is a weighted

distance between the simulated moments 	S(�) and the actual moments 	A.

The parameter estimate b� is then derived by searching over the parameter space to �nd the
parameter vector which minimizes the criterion function:

b� = argmin
�2�

[	A �	S(�)]0W [	A �	S(�)] (5.1)

Given the potential for discontinuities in the model and the discretization of the state space I use

an annealing algorithm for the parameter search (see Appendix B). Di¤erent initial values of � are

selected to ensure the solution converges to the global minimum.

26Figure 6 is actually a 45� cut across Figure 4. The reason is Figure 6 holds K=L constant while allowing A to vary.
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The e¢ cient choice for W is the inverse of the variance-covariance matrix of [	A � 	S(�)].

De�ning 
 to be the variance-covariance matrix of the data moments, Lee and Ingram (1991) show

that under the estimating null the variance-covariance of the simulated moments is equal to 1
�
: Since

	A and 	S(�) are independent by construction, W = [(1 + 1
�)
]

�1, where the �rst term represents

the randomness in the actual data and the second term the randomness in the simulated data. 


is calculated by block bootstrap with replacement on the actual data. The asymptotic variance of

the e¢ cient estimator b� is proportional to (1 + 1
�). I use � = 25, with each of these 25 �rm-panels

having independent draws of macro shocks. This implies the standard error of b� is increased by 4%
by using simulation estimation.

5.2. Prede�ned Parameters

In principle every parameter could be estimated, but in practice the size of the estimated parameter

space is limited by computational constraints. I therefore focus on the parameters about which there

is probably most uncertainty - the six adjustment cost parameters, the wage/hours trade-o¤ slope,

the baseline level of uncertainty and the two key parameters determining the �rm-level demand drift,

� = (PRL; FCL; QCL; PRK ; FCK ; QCK ; 
; �L; �
�
H;H ; �L). The other thirteen parameters are based

on values in the data and literature, and are displayed in Table 2 below.27

The prede�ned parameters outlined in Table 2 are mostly self-explanatory, although a few require

further discussion. One of these is �, which is the elasticity of demand. In a constant returns to scale

production function set-up this translates directly into the returns to scale parameter on the revenue

function, a + b. There are a wide range of estimates of the revenue returns to scale, with recent

examples being 0.905 in Khan and Thomas (2003), 0.82 in Bachman, Caballero and Engel (2006)

and 0.592 in Cooper and Haltiwanger (2006). I chose a parameter value of 0.75 which is: (i) roughly

in the mid-point of this literature, and (ii) optimal for the speed of the numerical simulation since

a = 0:25 and b = 0:5 so that capital and labor have integer fractions exponentials which compute

much faster.28 Given my assumption of constant-returns to scale and a constant-elasticity of demand

this implies a markup of 33%, which is towards the upper-end of the range estimates for price-cost

mark-ups. I also check the robustness of my results to a parameter value of a + b = 0:83; which is

consistent with a 20% markup.

27This procedure could in principle be used iteratively to check my prede�ned parameters by using the estimated
adjustment costs b� from the �rst round to estimate a subset of the prede�ned parameters in a second round of estimation
and compare them to their prede�ned values.
28 Integer fractional exponentials are more easily approximated in binary calculations (see Judd 1998, Chapter 2 for

details). This is quantitatively important due to the intensity of exponential calculations in the simulation - for example
moving from a+ b = 0:75 to a+ b = 0:76 slows down the simulation by around 15%. Choosing a lower value of a+ b
also has the bene�t of inducing more curvature in the value function so that less grid points are required to map any
given space.
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The uncertainty process parameters are primarily taken from the macro volatility process in

Figure 1, with the baseline level of uncertainty estimated in the simulation. The labor attrition rate

is chosen at 10% per annum. This low �gure is selected for two reasons: (i) to be conservative in

the simulations of an uncertainty shock since attrition drives the fall in employment levels, so that

lower levels reduces the impact of shocks; and (ii) for numerical speed as this matches the capital

depreciation rate, so that the (L=K) dimension can be ignored if no investment and hiring/�ring

occurs. I also report a robustness test for using an annualized labor attrition rate of 20% which more

closely matches the �gures for annualized manufacturing quits in Davis, Faberman and Haltiwanger

(2006).

5.3. Identi�cation

Under the null any full-rank and su¢ cient order set of moments (	A) will identify consistent para-

meter estimates for the adjustment costs (�). However, the precise choice of moments is important

for the e¢ ciency of the estimator, suggesting moments which are �informative� about the under-

lying structural parameters should be included. The basic insights of plant and �rm-level data on

labor and capital is the presence of highly skewed cross-sectional growth rates and rich time-series

dynamics, suggesting some combination of cross-sectional and time-series moments. Two additional

issues help to guide the exact choice of moments.

5.3.1. Distinguishing the Driving Process from Adjustment Costs

A key challenge in estimating adjustment costs for factor inputs is distinguishing between the dy-

namics of the driving process and factor adjustment costs. Concentrating on the moments from only

one factor - for example capital - makes it very hard to do this. To illustrate this �rst consider a very

smooth driving process without adjustment costs, which would produce a smooth investment series.

Alternatively consider a volatile driving process with convex capital adjustment costs, which would

also produce a smooth investment series. Hence, without some additional moments (or assumptions)

it would be very hard to estimate adjustment costs using just the investment series data.

So I focus on the joint (cross-sectional and dynamic) moments of the investment, employment

and sales growth series. The di¤erence in responses across the three series (investment, employment

and sales growth) should identify the two sets of adjustment costs (for capital and labor).29

29An alternative is a two-step estimation process in which the driving process is estimated �rst and then the adjust-
ment costs estimated given this driving process (see for example Cooper and Haltiwanger, 2006).
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5.3.2. Distinguishing Persistent Di¤erences from Adjustment Costs

A stylized fact from the estimation of �rm and plant level investment and labor demand equations

is the empirical importance of ��xed-e¤ects�- that is persistent di¤erences across �rms and plants

in their levels of investment, employment and output growth rates. Without controls for these

persistent di¤erences the estimates of the adjustment costs could be biased. For example, persistent

between-�rm di¤erences in investment, employment and sales growth rates due to di¤erent growth

rates of demand would (in the absence of controls for this) lead to the estimation of large quadratic

adjustment costs, necessary to induce the required �rm-level autocorrelation.

To control for di¤erential �rm-level growth rates the estimator includes two parameters: the

spread of �rm-level business conditions growth, �H � �L, which determines the degree of �rm-

level heterogeneity in the average growth rates of business conditions as de�ned in (3.5); and the

persistence of �rm-level business conditions growth, ��H;H , as de�ned in (3.8). When �H��L is large

there will be large di¤erences in the growth rates of labor, capital and output across �rms, and when

��H;H is close to unity these will be highly persistent.
30 To identify these parameters separately from

adjustment costs requires information on the time path of autocorrelation across the investment,

employment and sales growth series. For example, persistent correlations between investment, sales

and employment growth rates going back over many years would help to identify �xed di¤erences

in the growth rates of the driving process, while decaying correlations in the investment series only

would suggest convex capital adjustment costs.

So I include moments for the second-order and fourth-order correlations of the investment, em-

ployment growth and sales growth series.31 The second-order autocorrelation is chosen to avoid a

negative bias in these moments from underlying levels measurement errors which would arise in a

�rst-order autocorrelation measure, while the fourth-order autocorrelation is chosen to allow a su¢ -

ciently large time-period to pass (2 years) to identify the decay in the autocorrelation series. Shorter

and longer lags, like the third-order, �fth-order and sixth-order order autocorrelations could also be

used, but in experimentations did not make much di¤erence.32

5.4. Firm-Level Data

There is too little data at the macroeconomic level to provide su¢ cient identi�cation for the model.

I therefore identify my parameters using a panel of �rm-level data from US Compustat. I select the

20 years of data covering 1981 to 2000.

30Note that with ��H;H = 1 these will be truly ��xed e¤ect�di¤erences.
31To note, a kth order correlation for series xi;t and yi;t is de�ned as Corr(xit; yit�k)
32Note that because the optimal weighting matrix takes into account the covariance across moments, adding extra

moments that are highly correlated to included moments has very little impact on the parameters estimates.

17



The data were cleaned to remove major mergers and acquisitions by dropping the top and bottom

0.5% of employment growth, sales growth and investment rates. Only �rms with an average of at least

500 employees and $10m sales (in 2000 prices) were kept to focus on larger more aggregated �rms.

This generated a sample of 2548 �rms and 22,950 observations with mean (median) employees of

13,540 (3,450) and mean (median) sales of $2247m ($495m) in 2000 prices. In selecting all Compustat

�rms I am con�ating the parameter estimates across a range of di¤erent industries, and a strong

argument can be made for running this estimation on an industry by industry basis. However, in the

interests of obtaining the �average�parameters for a macro simulation, and to ensure a reasonable

sample size, I keep the full panel leaving industry speci�c estimation to future work.

Capital stocks for �rm i in industry m in year t are constructed by the perpetual inventory

method33, labor �gures come from company accounts, while sales �gures come from accounts after

de�ation using the CPI. The investment rate is calculated as ( IK )i;t =
Ii;t

0:5�(Ki;t+Ki;t�1)
, the employment

growth rate as (�LL )i;t =
Li;t�Li;t�1

0:5�(Li;t+Li;t�1) and the sales growth as (
�S
S )i;t =

Si;t�Si;t�1
0:5�(Si;t+Si;t�1) .

34

The simulated data is constructed in exactly the same way as company accounts are built. First,

�rm value is created by adding up across the N units in each �rm. It is then converted into annual

�gures using standard accounting techniques: simulated data for ��ow��gures from the accounting

Pro�t & Loss and Cash-Flow statements (such as sales and capital expenditure) are added up across

the 12 months of the year; simulated data for �stock��gures from the accounting Balance Sheet

statement (such as the capital stock and labor force) are taken from the year end values.

By constructing my simulation data in the same manner as company accounts I can estimate

adjustment costs using �rm-level datasets like Compustat. This has some advantages versus using

census datasets like the LRD because �rm-level data is: (i) easily available to all researchers in a

range of di¤erent countries; (ii) is matched into �rm level �nancial and cash-�ow data; and (iii) is

available as a yearly panel stretching back several decades (for example to the 1950s in the U.S.).

Thus, this technique of explicitly building aggregation into estimators to match against aggregated

quoted �rm-level data should have a broader use in other applications.

5.5. Measurement Errors

Employment �gures are often poorly measured in company accounts, typically including all part-

time, seasonal and temporary workers in the total employment �gures without any adjustment for

33Ki;t = (1��K)Ki;t�1
Pm;t

Pm;t�1
+Ii;t, initialized using the net book value of capital, where Ii;t is net capital expenditure

on plant, property and equipment, and Pm;t are the industry level capital goods de�ators from Bartelsman, Becker and
Grey (2000).
34Gross investment rates and net employment growth rates are used since these are directly observed in the data.

Under the null that the model is correctly speci�ed the choice of net versus gross is not important for the consistency
of parameter estimates so long as the same actual and simulated moments are matched.
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hours, usually after heavy rounding. This problem is then made much worse by the di¤erencing to

generate growth rates.

As a �rst step towards reducing the sensitivity towards these measurement errors, the autocorre-

lations of growth rates are taken over longer periods (as noted above ). As a second step, I explicitly

introduce employment measurement error into the simulated moments to try and mimic the bias

these impute into the actual data moments. To estimate the size of the measurement error I assume

that �rm wages (Wit) can be decomposed into Wit = �t�j;t�iLit where �t is the absolute price level,

�j;t is the relative industry wage rate, �i is a �rm speci�c salary rate (or skill/seniority mix) and

Lit is the average annual �rm labor force (hours adjusted). I then regress logWit on a full set of

year dummies, a log of the 4-digit SIC industry average wage from Bartelsman, Becker and Gray

(2000), a full set of �rm speci�c �xed e¤ects and logLit. Under my null on the decomposition of Wit

the coe¢ cient on logLit will be approximately
�2L

�2L+�
2
ME

where �2L is the variation in log employment

and �2ME is the measurement error in log employment. I �nd a coe¢ cient (s.e.) on logLit of 0.882

(0.007), implying a measurement error of 13% in the logged labor force numbers.35 This is reassur-

ingly similar to the 8% estimate for measurement error in Compustat manufacturing �rms� labor

�gures Hall (1987) calculates comparing OLS and IV estimates. I take the average of these �gures

and incorporate this into the simulation estimation by multiplying the aggregated annual �rm labor

force by mei;t where mei;t � i:i:d: LN(0; 0:105) before calculating simulated moments.

6. Adjustment Costs Estimates

In this section I present the estimates of the �rms capital and labor adjustment costs. Starting with

Table 3, the �rst column labelled �Data� in the bottom panel reports the actual moments from

Compustat. These demonstrate that investment rates have a low spread but a heavy right skew

due to the lack of disinvestment, and strong dynamic correlations. Labor growth rates are relatively

variable but un-skewed, with weaker dynamic correlations. Sales growth rates have similar moments

to those of labor, although slightly lower spread and higher degree of dynamics correlations.

The second column in Table 3 labelled �All�presents the results from estimating the preferred

speci�cation allowing for all types of adjustment costs. The estimated adjustment costs for capital

imply a large resale loss of around 34% on capital, �xed investment costs of 1.5% of annual sales

(about 4 working days) and no quadratic adjustment costs. The estimated labor adjustment costs

35Adding �rm or industry speci�c wage trends reduces the coe¢ cient on logWit implying an even higher degree
of measurement error. Running the reverse regression of log labour on log wages plus the same controls generates
a coe¢ cient (s.e.) of 0.990 (0.008), indicating that the proportional measurement error in wages (a typically much
better recorded �nancial variable) is many times smaller than that of employment. The regressions are run using 2468
observations on 219 �rms.
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Table 3: Adjustment cost estimates
Adjustment Costs Speci�cation: All Capital Labor Quad None
Estimated Parameters:
CP
K 33.9 42.7

investment resale loss (%) (6.8) (14.2)
CF
K 1.5 1.1

investment �xed cost (% annual sales) (1.5) (0.2)
CQ
K 0 0.996 4.844

capital quadratic adjustment cost (parameter) (0.009) (0.044) (454.15)
CP
L 1.8 16.7

per capita hiring/�ring cost (% annual wages) (0.8) (0.1)
CF
L 2.1 1.1

�xed hiring/�ring costs (% annual sales) (0.9) (0.1)
CQ
L 0 1.010 0

labor quadratic adjustment cost (parameter) (0.037) (0.017) (0.002)
�L 0.443 0.413 0.216 0.171 0.100
baseline level of uncertainty (0.009) (0.012) (0.005) (0.005) (0.005)
�H��L 0.121 0.122 0.258 0.082 0.158
spread of �rm business conditions growth (0.002) (0.002) (0.001) (0.001) (0.001)
��H;L 0 0 0.016 0 0.011
transition of �rm business conditions growth (0.001) (0.001) (0.001) (0.001) (0.001)

 2.093 2.221 3.421 2.000 2.013
curvature of the hours/wages function (0.272) (0.146) (0.052) (0.009) (14.71)
Moments: Data Simulated moments - Data moments
Correlation (I=K)i;t with (I=K)i;t�2 0.328 0.060 -0.015 0.049 -0.043 0.148
Correlation (I=K)i;t with (I=K)i;t�4 0.258 0.037 0.004 0.088 0.031 0.162
Correlation (I=K)i;t with (�L=L)i;t�2 0.208 0.003 -0.025 0.004 -0.056 0.078
Correlation (I=K)i;t with (�L=L)i;t�4 0.158 -0.015 -0.009 0.036 0.008 0.091
Correlation (I=K)i;t with (�S=S)i;t�2 0.260 -0.023 -0.062 -0.044 -0.102 0.024
Correlation (I=K)i;t with (�S=S)i;t�4 0.201 -0.010 -0.024 0.018 -0.036 0.087
Standard Deviation (I=K)i;t 0.139 -0.010 0.010 -0.012 0.038 0.006
Coe¢ cient of Skewness (I=K)i;t 1.789 0.004 0.092 1.195 1.311 1.916
Correlation (�L=L)i;t with (I=K)i;t�2 0.188 -0.007 0.052 -0.075 0.055 0.053
Correlation (�L=L)i;t with (I=K)i;t�4 0.133 -0.021 0.024 -0.061 0.038 0.062
Correlation (�L=L)i;t with (�L=L)i;t�2 0.160 0.011 0.083 -0.033 0.071 0.068
Correlation (�L=L)i;t with (�L=L)i;t�4 0.108 -0.013 0.054 -0.026 0.045 0.060
Correlation (�L=L)i;t with (�S=S)i;t�2 0.193 -0.019 0.063 -0.091 0.064 0.023
Correlation (�L=L)i;t with (�S=S)i;t�4 0.152 0.003 0.056 -0.051 0.059 0.063
Standard Deviation (�L=L)i;t 0.189 -0.022 -0.039 0.001 -0.001 0.005
Coe¢ cient of Skewness (�L=L)i;t 0.445 -0.136 0.294 -0.013 0.395 0.470
Correlation (�S=S)i;t with (I=K)i;t�2 0.203 -0.016 -0.015 -0.164 -0.063 -0.068
Correlation (�S=S)i;t with (I=K)i;t�4 0.142 -0.008 -0.010 -0.081 -0.030 -0.027
Correlation (�S=S)i;t with (�L=L)i;t�2 0.161 -0.005 0.032 -0.105 -0.024 -0.037
Correlation (�S=S)i;t with (�L=L)i;t�4 0.103 -0.015 0.011 -0.054 -0.005 -0.020
Correlation (�S=S)i;t with (�S=S)i;t�2 0.207 -0.033 0.002 -0.188 -0.040 -0.158
Correlation (�S=S)i;t with (�S=S)i;t�4 0.156 0.002 0.032 -0.071 -0.021 -0.027
Standard Deviation (�S=S)i;t 0.165 0.004 0.003 0.033 0.051 0.062
Coe¢ cient of Skewness (�S=S)i;t 0.342 -0.407 -0.075 -0.365 0.178 0.370
Criterion, �(�) 404 625 3618 2798 6922



Notes to Table 3: The �Data� column (bottom panel only) contains the moments from
22,950 observations on 2548 �rms. The other columns contain the adjustment costs estimates
(top panel) and simulated moments minus the data moments (bottom panel) for: all adjustment
costs (�All�), just capital adjustment costs (�Capital�), just labor adjustment costs (�Labor�),
just quadratic adjustment costs with 1 unit per �rm (�Quad�) and no adjustment costs (�None�).
So, for example, the number 0.328 at the top of the �rst column (�Data�) reports that the
second-lag of the autocorrelation of investment in the data is 0.328, and the number 0.060 to
the right reports that in the �All�speci�cation the simulated moment is 0.060 greater than the
data moment (so is 0.388 in total). In the top panel standard-errors in italics in brackets below
the point estimates. Parameters estimated using Simulated Method of Moments, and standard
errors calculated using numerical derivatives. All adjustment-cost parameters constrained to be
non-negative. Full simulation and estimation details in Appendix B.



imply limited hiring and �ring costs of about 1.8% of annual wages (about 5 working days) and a high-

�xed cost of around 2.1% of annual revenue (about 6 working days), with no quadratic adjustment

costs. The standard errors suggest all of these point estimates are statistically signi�cant except for

the �xed cost of capital adjustment (CFK)

One question is how do these estimates compare to those previously estimated in the literature?

Table 4 presents a comparison for some other estimates from the literature. Three factors stand

Table 4: A comparison with other capital and labor adjustment cost estimates
Capital Labor

Source: PI (%) Fixed (%) Quad PI (%) Fixed (%) Quad
Column �All�, Table 3, this paper 33.9 1.5 0 1.8 2.1 0
Ramey and Shapiro (2001) 40 to 80
Caballero and Engel (1999) 16.5
Hayashi (1982) 480
Cooper and Haltiwanger (2006) 2.5 20.4 0.294
Shapiro (1986) 36 16
Hall (2004) 0 0
Nickel (1986) 8 to 25
Cooper, Haltiwanger & Willis (2004) 1.7 0

Note: �PI�denotes partial irreversibilities, �Fixed�denotes �xed costs, and �Quad�denotes quadratic adjustment
costs. Missing values indicate no parameter estimated in the main speci�cation. Zeros indicate the parameter
was not signi�cantly di¤erent from zero. Nickel�s (1986) lower[higher] value is for unskilled[skilled] workers.
Shapiro�s (1986) value is a weighted average of (2/3)�0 for production workers and (1/3)�48 for non-production
workers. Quadratic adjustment costs de�ned monthly (12 times the yearly parameter). Comparability subject
to variation in data sample, estimation technique and maintained assumptions.

out: �rst, there is tremendous variation is estimated adjustment costs, re�ecting the variety of data,

techniques and assumptions used in the di¤erent papers; second, my estimates of zero quadratic

adjustment costs appear broadly consistent with recent papers using detailed industry or micro data;

and third, studies which estimate non-convex adjustment costs report positive, and typically very

substantial values.

For interpretation I also display results for four illustrative restricted models. First, a model

with capital adjustment costs only, assuming labor is fully �exible, as is typical in the investment

literature. In the �Capital� column we see that the �t of the model is worse, as shown by the

signi�cant rise in the criterion function from 404 to 625.36 This reduction in �t is primarily due

to the worse �t of the labor moments, suggesting ignoring labor adjustment costs is a reasonable

approximation for modelling investment. Second, a model with labor adjustment costs only - as is

typical in the dynamic labor demand literature - is estimated in the column �Labor�, with the �t

36The �2 value for 3 degrees of freedom is 7.82, so column �Capital�can easily be rejected against the null of �All�
given the di¤erence in criterion values of 221. It is also true, however, that the preferred �All� speci�cation can also
be rejected as the true representation of the data given the �2 value for 10 degrees of freedom is 18.31.
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substantially. This suggests that ignoring capital adjustment costs is problematic. Third, a model

with quadratic costs only and no cross-sectional aggregation - as is typical in convex adjustment

costs models - is estimated in the �Quad�column, leading to a moderate reduction in �t generated

by excessive intertemporal correlation and an inadequate investment skew. Interestingly, industry

and aggregate data are much more autocorrelated and less skewed due to extensive aggregation,

suggesting quadratic adjustments costs could be a reasonable approximation at this level.37 Finally,

a model with no adjustment costs is estimated in column �None�. Omitting adjustment costs clearly

reduces the model �t. It also biases the estimation of the business-conditions process to have much

larger �rm-level growth �xed-e¤ects and lower variance of the idiosyncratic shocks. This helps to

highlight the importance of jointly estimating adjustment costs and the driving process.

In Table 3 there are also some estimates of the driving process parameters �L; �H � �L and

��H;H , as well as the wage-hours curve parameter 
. What is clear is that changes in the adjustment

cost parameters leads to changes in these parameters. For example, the lack of adjustment costs in

column �Quad�generates an estimated uncertainty parameter of around 1/3 of the baseline �All�

value and a spread in �rm-level �xed costs of about 2/3 of the baseline �All�value. This provides

support for the selection of moments that can separately identify the driving process and adjustment

cost parameters.

6.1. Robustness Tests on Estimated Parameters

In Table 5 I run some robustness tests on the modelling assumptions. The �rst column �All�repeats

the baseline results from Table 3 for ease of comparison.

The column ��L=0:2�reports the results from re-estimating the model with a 20% (rather then

10%) annual attrition rate for labor. This higher rate of attrition leads to higher quadratic adjustment

costs for labor and capital, and lower �xed-costs for labor. This is because with higher labor attrition

rates hiring and �ring become more sensitive to current demand shocks (since higher attrition reduces

the sensitivity to past shocks). To compensate the estimated quadratic adjustment costs estimates

are higher and �xed costs lower. The column �a+b=0:83�reports the results for a speci�cation with

a 20% markup, in which the estimated adjustment costs look very similar to the baseline results.

In columns �N=25�and �N=1�the results are reported for simulations assuming the �rm op-

erates 25 units and 1 unit respectively.38 These assumptions also lead to higher estimates for the

quadratic adjustment costs and lower estimates for the non-convex adjustment costs to compensate

37Cooper and Haltiwanger (2006) also note this point.
38The speci�cation with N=1 is included to provide guidance on the impact of simulated aggregation rather than

for empirical realism. The evidence of aggregation in Appendix A4, and from the annual report of any large company
with its typical multi-divisional, suggests aggregation is likely to be pervasive.
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Table 5: Adjustment cost robustness tests
Adjustment Costs Speci�cation: All �L=20% a+b=0:83 N=25 N=1 Yearly
Estimated Parameters:
CP
K 33.9 28.6 29.8 30.3 47.0 45.3

investment resale loss (%) (6.8) (4.8) (4.8) (8.7) (9.1) (5.2)
CF
K 1.5 2.1 2.1 0.9 1.3 2.1

investment �xed cost (% annual sales) (1.0) (0.9) (0.5) (0.4) (0.2) (0.3)
CQ
K 0 0.461 0 0.616 2.056 0.025

capital quadratic adjustment cost (parameter) (0.009) (0.054) (0.007) (0.154) (0.284) (0.015)
CP
L 1.8 1.0 0 0 0 2.0

per capita hiring/�ring cost (% annual wages) (0.8) (0.1) (0.0) (0.1) (0.1) (0.9)
CF
L 2.1 0.3 1.7 1.3 0 2.0

�xed hiring/�ring costs (% annual sales) (0.9) (0.1) (0.6) (0.8) (0.0) (0.5)
CQ
L 0 0.360 0 0.199 0.070 1.039

labor quadratic adjustment cost (parameter) (0.037) (0.087) (0.021) (0.062) (0.031) (0.165)
�L 0.443 0.490 0.498 0.393 0.248 0.339
baseline level of uncertainty (0.009) (0.019) (0.012) (0.013) (0.008) (0.011)
�H��L 0.121 0.137 0.123 0.163 0.126 0.228
spread of �rm business conditions growth (0.002) (0.002) (0.001) (0.002) (0.002) (0.005)
��H;L 0 0 0 0 0 0.016
transition of �rm business conditions growth (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

 2.093 2.129 2.000 2.148 2.108 2.000
curvature of the hours/wages function (0.272) (0.222) (0.353) (0.266) (0.147) (0.166)
Moments: Simulated moments - Data moments
Correlation (I=K)i;t with (I=K)i;t�2 0.060 0.021 0.065 0.002 0.078 -0.0289
Correlation (I=K)i;t with (I=K)i;t�4 0.037 0.017 0.042 0.027 0.081 -0.088
Correlation (I=K)i;t with (�L=L)i;t�2 0.003 -0.020 -0.005 -0.038 0.014 0.025
Correlation (I=K)i;t with (�L=L)i;t�4 -0.015 -0.017 -0.008 -0.020 0.016 -0.023
Correlation (I=K)i;t with (�S=S)i;t�2 -0.023 -0.044 -0.023 -0.075 -0.003 0.033
Correlation (I=K)i;t with (�S=S)i;t�4 -0.010 -0.018 -0.008 -0.021 -0.001 -0.032
Standard Deviation (I=K)i;t -0.010 -0.009 -0.006 0.001 -0.008 0.014
Coe¢ cient of Skewness (I=K)i;t 0.004 -0.010 -0.022 -0.088 -0.188 0.043
Correlation (�L=L)i;t with (I=K)i;t�2 -0.007 0.054 0.007 -0.041 0.043 0.029
Correlation (�L=L)i;t with (I=K)i;t�4 -0.021 0.024 -0.002 -0.020 0.026 -0.027
Correlation (�L=L)i;t with (�L=L)i;t�2 0.011 0.070 0.016 -0.018 0.052 0.014
Correlation (�L=L)i;t with (�L=L)i;t�4 -0.013 0.040 -0.001 -0.009 0.024 -0.020
Correlation (�L=L)i;t with (�S=S)i;t�2 -0.019 0.054 -0.008 -0.054 0.048 0.032
Correlation (�L=L)i;t with (�S=S)i;t�4 0.003 0.058 0.017 0.003 0.032 -0.046
Standard Deviation (�L=L)i;t -0.022 -0.044 -0.028 -0.021 -0.030 0.023
Coe¢ cient of Skewness (�L=L)i;t -0.136 0.207 -0.179 -0.082 0.036 -0.051
Correlation (�S=S)i;t with (I=K)i;t�2 -0.016 0.001 -0.024 -0.063 -0.023 0.048
Correlation (�S=S)i;t with (I=K)i;t�4 -0.008 -0.001 -0.005 -0.037 -0.016 -0.003
Correlation (�S=S)i;t with (�L=L)i;t�2 -0.005 0.018 -0.021 -0.042 -0.007 0.040
Correlation (�S=S)i;t with (�L=L)i;t�4 -0.015 0.003 -0.019 -0.033 -0.021 0.008
Correlation (�S=S)i;t with (�S=S)i;t�2 -0.033 0.009 -0.050 -0.060 -0.015 0.087
Correlation (�S=S)i;t with (�S=S)i;t�4 0.002 0.034 -0.009 -0.010 -0.024 -0.018
Standard Deviation (�S=S)i;t 0.004 -0.012 0.006 0.001 0.011 -0.009
Coe¢ cient of Skewness (�S=S)i;t -0.407 -0.132 -0.251 -0.484 -0.417 -0.176
Criterion, �(�) 404 496 379 556 593 656



Notes to Table 5: The columns contain the adjustment costs estimates (top panel) and
simulated moments minus the data moments (bottom panel). The moments come from 22,950
observations on 2548 �rms, and are reported in full in Table 3). The columns report results for:
the baseline model with all adjustment costs (�All�), baseline model but with 20% annualized
labor attrition (��L=20%�), baseline model but with a 20% mark-up (�a+b=0:83�), baseline
model but with only 25 units per �rm (�N=25�), baseline model but with only 1 unit per
�rm(�N=1�), and the baseline model but with the simulation run at a yearly frequency (rather
than monthly and aggregated to the yearly level) (�Y early�). So, for example, the number
0.060 at the top of the �rst column (�All�) reports that the second-lag of the autocorrelation
of investment in the data is 0.060 greater than the data moment (so is 0.388 in total). In the
top panel standard-errors in italics in brackets below the point estimates. Parameters estimated
using Simulated Method of Moments, and standard errors calculated using numerical derivatives.
All adjustment-cost parameters constrained to be non-negative. Full simulation and estimation
details contained in Appendix B.



for the reduction in smoothing by aggregation. Finally, the column �Yearly�reports the results for

running the simulation at a yearly frequency without any time aggregation. Dropping time aggre-

gation leads to higher estimated quadratic adjustment costs, again to compensate for the loss of

smoothing by aggregation. Hence, modelling cross-sectional or time aggregation appears to matter

for estimating adjustment costs since these play a role in smoothing data moments.

I also used the estimated parameters across all the columns to re-run the baseline simulation

for the impact of an uncertainty shock (full details in section 7.6.2). The key result of a drop and

rebound in activity was qualitatively robust for all the columns, although there was some variation

in the magnitude of this.

7. Simulating an Uncertainty Shock

The simulation models the impact of a large, but temporary, rise in the variance of business con-

ditions (productivity and demand) growth. This second-moment shock generates a rapid drop in

hiring, investment and productivity growth as �rms become much more cautious due to the rise in

uncertainty. Once the uncertainty shock passes, however, activity bounces back as �rms clear their

pent-up demand for labor and capital. This also leads to a drop and rebound in productivity growth,

since the temporary pause in activity slows down the reallocation of labor and capital from low to

high productivity units. In the medium term this burst of volatility generates an overshoot in activity

due to the convexity of hiring and investment in business conditions.

Of course this is a stylized simulation since other factors also typically change around major

shocks. Some of these factors can and will be added to the simulation, for example allowing for a

simultaneous negative shock to the �rst moment. I start by focusing on a second moment shock

only, however, to isolate the pure uncertainty e¤ects and demonstrate that these alone are capable of

generating large short-run �uctuations. I then discuss the robustness of this analysis to price changes

from general equilibrium e¤ects, a combined �rst and second moment shock, di¤erent estimates for

the adjustment costs, di¤erent predetermined parameters and di¤erent stochastic processes for the

uncertainty shock.

7.1. The Baseline Simulation Outline

I simulate an economy of 1000 units (4 �rms) for 15 years at a monthly frequency. This simulation

is then repeated 25,000 times, with the values for labor, capital, output and productivity averaged

over all these runs. In each simulation the model is hit with an uncertainty shock in month 1 of

year 11, de�ned as �t = �H in equation (3.7). All other micro and macro shocks are randomly

drawn as per sections (3) and (5). The estimated values are taken from the �All�column in Table
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3. This generates the average impact of an uncertainty shock, where the average is taken over the

distribution of micro and macro shocks.

Before presenting the simulation results it is worth �rst showing the precise impulse that will

drive the results. Figure 7a reports the average value of �t normalized to unity before the shock. It

is plotted on a monthly basis, with the month normalized to zero on the date of the shock. Three

things are clear from Figure 7a: �rst, the uncertainty shock generates a sharp spike in the average �t

across the 25,000 simulations, second this dies o¤ rapidly with a half-life of 2 months, and third the

shock almost doubles average �t (the rise is less than 100% because some of the 25,000 simulations

already had �t = �H when the shock occurred). In Figure 7b I show the average time path of

business conditions (Aj;t) showing that the uncertainty shock has no �rst moment e¤ect.

In Figure 8 I plot aggregate detrended labor, again normalized to 1 at the month before the

shock. This displays a substantial fall in the six months immediately after the uncertainty shock and

then overshoots from months 8 onwards, eventually returning to level by around 3 years.

The initial drop occurs because the rise in uncertainty increases the real-option value of inaction,

leading the majority of �rms to temporarily freeze hiring. Because of the ongoing exogenous attrition

of workers this generates a fall in net employment. Endogenizing quits would of course reduce the

impact of these shocks since the quit rate would presumably fall after a shock. But in the model to

o¤set this I have conservatively assumed a 10% annual quit rate - well below the 15% to 25% quit

rate observed over the business cycle in recent JOLTS data (see Davis, Faberman and Haltiwanger.

2006). This low �xed quit rate could be thought of as the exogenous component due to retirement,

maternity, sickness, family-relocation etc.

The rebound from months 4 onwards occurs because of the combination of falling uncertainty

(since the shock is only temporary) and rising pent-up demand for hiring (because �rms paused

hiring over the previous three months). In order to make up the short-fall in labor �rms begin to

hire at a faster pace than usual so the labor force heads back towards it trend-level. This generates

the rapid rebound in the total labor from month 3 until about month 6. From month 7 onwards this

overshoot gradually returns to trend.

7.2. The Volatility Overshoot

One seemingly puzzling phenomenon, however, is the overshoot from month 7 onwards. Pure real-

options e¤ects of uncertainty should generate a drop and overshoot in the growth rate of labor (that

is the hiring rate), but only a drop and convergence back to trend in the level of the labor force. So

the question is what is causing this medium term overshooting in the level of the labor force?

This medium term overshoot arises because the increased volatility of business conditions leads
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Figure 7a: The simulation has a large second moment shock

Figure 7b: The simulation has no first-moment shock
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on 1000 units. This is 
repeated 25000 times 
with the average 
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and macro shocks 
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simulations have σt set 
to σH. Adjustment costs 
are taken from the “All”
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Figure 8: Aggregate (detrended) labor drops, rebounds and overshoots
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Figure 9: Splitting out the uncertainty and volatility effects
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Notes: Simulation run on 1000 
units. This is repeated 25000 
times with the average plotted 
here. All micro and macro shocks 
drawn randomly except at month 
0, when all simulations have σt set 
to σH. Adjustment costs are taken 
from the “All” values in table 3. All 
other parameters and 
assumptions as outlined in 
sections 3 and 4. The aggregate 
figures for Lt are calculated by 
summing up across all units within 
the simulation. They are detrended 
by removing their long-run growth 
rate. The month is normalized to 
zero at the date of the uncertainty 
shock.

Month

Month

Baseline (both effects)

‘Volatility effect’ only

‘Uncertainty effect’ only

Notes: Simulation run on 1000 
units. This is repeated 25000 times 
with the average plotted here. All 
micro and macro shocks drawn 
randomly except at month 0, when 
all simulations have σt set to σH. 
Adjustment costs are taken from 
the “All” values in table 3. All other 
parameters and assumptions as 
outlined in sections 3 and 4 for the 
baseline plot (which plots the 
same figure as in Figure 8 but 
extended out for 36 months). For 
the volatility effect only plot firms 
have expectations set to σt=σL in 
all periods (i.e. uncertainty effects 
are turned off), while in the 
uncertainty effect only they have 
the actual shocks drawn from a 
distribution σt=σLin all periods (i.e. 
the volatility effects are turned off). 



more units to hit both the hiring and �ring thresholds. Since more units are clustered around the

hiring threshold then the �ring threshold due to labor attrition and business conditions growth (see

Figure 6) this leads to a medium term burst of net hiring. In e¤ect hiring is convex in productivity

just below the hiring threshold - �rms that receive a small positive shock hire and �rms that receive

a small negative shock do not respond. So total hiring rises in the medium term with the increased

volatility of productivity growth. Of course once �rms have undertaken a burst of hiring they jump

to the interior of the region of inaction and so do not hire again for some time. So in the long-run

this results in labor falling back to its long-run trend path. I label this phenomenon the �volatility

overshoot�, since this medium-term hiring boom is induced by the higher unit-level volatility of

business conditions shocks.39

Thus, the e¤ect of a rise in �t is two fold. First, the real-options impact e¤ect from increased

uncertainty over future business conditions, which causes an initial drop in activity as �rms pause in-

vestment and hiring. This happens rapidly since expectations change upon impact of the uncertainty

shock, so that hiring and investment instantly freeze. Second, the e¤ect from increased volatility of

realized business conditions, which causes a medium term hiring-boom. This takes more time to

occur because this is driven by the rise in the realized volatility of productivity growth. This rise

is volatility accrues over several months. Because the higher uncertainty temporarily moves out the

hiring and investment thresholds this further delays the volatility overshoot. Thus, the uncertainty

drop always precedes the volatility overshoot.

These distinct uncertainty and volatility e¤ects are shown in Figure 9. This splits out the expec-

tational e¤ects of higher �t from the realized volatility e¤ects of higher �t. These simulations are

shown for 36 months after the shock to highlight the long-run di¤erences between these e¤ects.40

The �uncertainty e¤ect�is simulated by allowing �rms expectations over �t to change after the shock

(as in the baseline) but holds the variance of the actual draw of shocks constant. This generates

a drop and rebound back to levels, but no volatility overshoot. The �volatility e¤ect� is simulated

by holding �rms expectations over �t constant but allowing the realized volatility of the business

conditions to change after the shock (as in the baseline). This generates a volatility overshoot, but

no initial drop in activity from a pause in hiring.41 The baseline �gure in the graph is simply the

39Another way to think about this is the cross-sectional distribution of �rms changes in the medium term from the
ergodic steady-state to one with a lower average A/L ratio. This is because units are more evenly distributed between
the hiring and �ring thresholds after the increased volatility (rather than clustered up around the hiring threshold). In
the longer run this settles back down to its ergodic distribution, bringing the A/L ratio back up to its steady state.
Interestingly, given the �xed costs in hiring this medium-term burst in activity also generates echo e¤ects in future as
L settles back down towards its long-run trend.
40 In general I plot response for the �rst 12 months due to the partial equilibrium nature of the analysis, unless

longer-run plots are expositionally helpful.
41 In the �gure the volatility e¤ects also take 1 extra month to begin. This is simply because of the standard �nance

timing assumption in (3.4) that �t�1 drives the volatility of Aj;t. Allowing volatility to be driven by �t delivers similar
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aggregate detrended labor (as in Figure 8). This suggests that uncertainty and volatility have very

di¤erent e¤ects on economic activity, despite often being driven by the same underlying phenomena.

The response to aggregate capital to the uncertainty shock is similar to labor. Capital also

displays a short-run fall as �rms postpone investing, followed by a rebound as they address their

pent-up demand for investment, with a subsequent medium-run overshoot as the additional volatility

generates a burst of investment (see Appendix Figure A6).

7.3. Why Uncertainty Reduces Productivity Growth

Figure (10a) plots the time series for the growth of �Aggregate productivity�, de�ned as
P
j Aj;tLj;t

where the sum is taken over all j production units in the economy in month t. In this calculation

the growth of business-conditions (Aj;t) can be used as a proxy for the growth of productivity under

the assumption that shocks to demand are small in comparison to productivity (or that the shocks

are independent). Following Baily, Hulten and Campbell (1992) I de�ne three indices as follows42:P
Aj;tLj;t �

P
Aj;t�1Lj;t�1P

Aj;t�1Lj;t�1| {z }
Aggregate Productivity Growth

=

P
(Aj;t �Aj;t�1)Lj;t�1P

Aj;t�1Lj;t�1| {z }
Within Productivity Growth

+

P
Aj;t(Lj;t � Lj;t�1)P
Aj;t�1Lj;t�1| {z }

Reallocation Productivity Growth

The �rst term, �Aggregate Productivity Growth�, is the increase in productivity weighted by em-

ployment across units. This can be broken down into two sub-terms: �Within Productivity Growth�

which measures the productivity increase within each production unit (holding the employment of

each unit constant), and �Reallocation Productivity Growth� which measures the reallocation of

employment from low to high productivity units (holding the productivity of each unit constant).

In Figure 10a �Aggregate Productivity Growth�shows a large fall after the uncertainty shock,

dropping to around 15% of its value. The reason is that uncertainty reduces the shrinkage of low

productivity �rms and the expansion of high productivity �rms, reducing the reallocation of resources

towards more productive units.43 This reallocation from low to high productivity units drives the

majority of productivity growth in the model so that higher uncertainty has a �rst-order e¤ect on

productivity growth. This is clear from the decomposition which shows that the fall in Total is entirely

driven by the fall in the �Reallocation�term. The �Within�term is constant since, by assumption,

the �rst moment of the demand conditions shocks is unchanged.44 In the bottom two panels (Figures

results because in the short-run the uncertainty e¤ect of moving out the hiring and investment thresholds dominate.
42Strictly speaking Bailey, Hulten and Campbell (1992) de�ned four terms, but for simplicity I have combined the

�between�and �cross�terms into a �reallocation�term.
43Formally there is no reallocation in the model because it is partial equilibrium. However, with the large distribution

of contracting and expanding units all experiencing independent shocks, gross changes in unit factor demand are far
larger than net changes, with the di¤erence equivalent to �reallocation�.
44These plots are not completely smooth because the terms are summations of functions which are approximately

squared in Aj;t. For example Aj;tLj;t t �A2j;t for some scalar � since Li;t is approximately linear in Aj;t. Combined
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Figure 10c: ‘Productivity’ and hiring,
period after the uncertainty shock
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Figure 10a: ‘Aggregate productivity’ growth falls & rebounds after the uncertainty shock

Figure 10b: ‘Productivity’ and hiring,
period before the uncertainty shock
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Notes: Simulations run on 1000 units. This is repeated 50000 times with the average plotted here. All micro and macro shocks drawn randomly except at 
month 0, when all simulations have σt set to σH. Adjustment costs are taken from the “All” values in table 3. All other parameters and assumptions as outlined 
in sections 3 and 4. ‘Aggregate Productivity’ = ∑Lj,tAj,t/∑Lj,t, where Aj,t is unit level business conditions and Lj,t is unit level employment. The summation is 
taken across all units in the simulation. ‘Within’ is defined as the productivity growth achieved holding unit size constant and ‘Reallocation’ is defined as the 
productivity growth requiring a change in unit size. In bottom panel unit-level business conditions (Aj,t) is used as proxy for productivity as discussed in 
section 6.1. The month is normalized to zero at the uncertainty shock.
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10b and 10c) this reallocative e¤ect is illustrated by two unit-level scatter plots of gross hiring against

log productivity in the month before the shock (left-hand plot) and the month after the shock (right-

hand plot). It can be seen that after the shock much less reallocative activity takes place with a

substantially lower fraction of expanding productive units and shrinking unproductive units. Since

actual US aggregate productivity growth appears to be 70% to 80% driven by reallocation45 these

uncertainty e¤ects should play an important role in the real impact of large uncertainty shocks.

In Figure 11 plots the level of an alternative productivity measure, �Solow productivity�. This

is de�ned as aggregate output divided by factor share weighted aggregate inputs

Solow productivity =

P
j A

1=(��1)
j;t K�

j;t(Lj;t �Hj;t)1��

(�
P
jKj;t + (1� �)

P
Lj;t �Hj;t

I report this series because macro productivity measures are typically calculated in this way using

only macro data (note the previous �Aggregate Productivity� measure would require micro-data

to calculate).46 As can be seen in Figure 11 the detrended �Solow productivity� series also falls

and rebounds after the uncertainty shock. Again, this initial drop and rebound is because of the

initial pause and subsequent catch-up in the level of reallocation across units immediately after the

uncertainty-shock. The medium-run overshoot is again due to the increased level of cross-sectional

volatility, which increases the potential for reallocation, leading to higher aggregate medium-term

productivity growth.

Finally, Figure 12 plots the e¤ects on an uncertainty shock on output. This shows a clear drop,

rebound and overshoot, very similar to the behavior of the labor, capital and productivity. What

is striking about Figure 12 is the similarity of the size, duration and time-pro�le of the simulated

response of output to an uncertainty shock to the VAR results on actual data shown in Figure 2. In

particular both the simulated and actual data show a drop of detrended activity of around 1% to 2%

after about three months, a return to trend at around 6 months, and a longer-run gradual overshoot.

7.4. Investigating Robustness to General Equilibrium

Ideally I would set up my model within a General Equilibrium (GE) framework, allowing prices to

endogenously change. This could be done, for example, by assuming agents approximate the cross-

sectional distribution of �rms within the economy using a �nite set of moments, and then using these

with the random walk nature of the driving process (which means some individual units grow very large) this results
in lumpy aggregate productivity growth even in very large samples of units.
45Foster, Haltiwanger and Krizan (2000 and 2006) report that reallocation, broadly de�ned to include entry and

exit, accounts for around 50% of manufacturing and 90% of retail productivity growth. These �gures will in fact
underestimate the full contribution of reallocation since they miss the within establishment reallocation, which Bernard,
Redding and Schott�s (2006) results on product switching suggests could be substantial.
46�Aggregate productivity�(the series shown in growth rates in Figure 10a) looks very similar to the detrended level

of �Solow productivity�. Note output is approximated by A1=(��1)K�(LH)1�� since A1=(��1) = eAB1=(��1).
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Figure 11: ‘Solow productivity’ (detrended) drops, rebounds and overshoots
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Figure 12: Aggregate (detrended) output drops, rebounds & overshoots
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Notes: Simulations run on 
1000 units. This is 
repeated 25000 times with 
the average plotted here. 
All micro and macro 
shocks drawn randomly 
except at month 0, when 
all simulations have σt set 
to σH. Adjustment costs 
are taken from the “All”
values in table 3. All other 
parameters and 
assumptions as outlined in 
sections 3 and 4. Solow 
productivity defined as 
aggregate output divided 
by the factor share 
weighted aggregate inputs. 
Both series are detrended 
by removing their long-run 
growth rate. The month is 
normalized to zero at the 
uncertainty shock.

Month

Month



moments in a representative consumer framework to compute a recursive competitive equilibrium

(see, for example, Krusell and Smith, 1998, Khan and Thomas, 2003, and Bachman, Caballero and

Engel, 2006). However, this would involve another loop in the routine to match the labor, capital

and output markets between �rms and the consumer, making the program too slow to then loop

in the Simulated Method of Moments estimation routine. Hence, there is a trade-o¤ between two

options: (1) a GE model with �exible prices but assumed adjustment costs47, and (2) estimated

adjustment costs but in a �xed price model. Since the e¤ects of uncertainty are sensitive to the

nature of adjustment costs I opted to take the second option and leave GE analysis to future work.

This means the results in this model could be compromised by GE e¤ects if factor prices changed

su¢ ciently to counteract factor demand changes.48 One way to investigate this is to estimate the

actual changes in wages, prices and interest rates arising after a stock-market volatility shock, and

feed these into the model in an expectations consistent way. If these empirically plausible changes

in factor prices radically changed these results this would suggest they are not robust to GE, while

if they have only a small impact it is more reassuring on GE robustness.

To do this I use the estimated changes in factor prices from the VAR (see section 2.2), which are

plotted in Figure 13. An uncertainty shock leads to a short-run drop and rebound of interest rates

of up to 1.1% points (110 basis point), of prices of up to 0.5%, and of wages of up to 0.3%. I take

these numbers and structurally build them into the model so that when �t = �H interest rates are

1.1% lower, prices (of output and capital) are 0.5% lower and wages 0.3% lower. Firms expect this

to occur, so expectations are rational.

In Figure 14 I plot the level of output after an uncertainty shock with and without these pseudo-

GE prices changes. This reveals two surprising outcomes: �rst, the e¤ects of these empirically

reasonable changes in interest rates, prices and wages have very little impact on output in the

immediate aftermath of an uncertainty shock; and second, the limited �pseudo-GE�e¤ects that do

occur are greatest at around 3 to 5 months, when the level of uncertainty (and so the level of the

47Unfortunately there are no �o¤ the shelf�adjustment cost estimates that can be used since no paper has previously
jointly estimated convex and non-convex labor and capital adjustment costs. Furthermore, given the pervasive nature
of temporal and cross-sectional aggregation in all �rm and establishment level datasets, using one-factor estimates
which also do not correct for aggregation may be problematic, especially for non-convex adjustment costs given the
sensitivity of the lumpy behavior they imply to aggregation. This may explain the di¤erences of up to 100 fold in the
estimation of some of these parameters in the current literature.
48Kahn and Thomas (2003) �nd in their micro to macro investment model that GE e¤ects cancel out most of the

macro e¤ects of non-convex adjustment costs on the response to shocks. With a slight abuse of notation this can be
characterized as @(@Kt=@At)

@NC
� 0 where Kt is aggregate capital, At is aggregate productivity and NC are non-convex

adjustment costs. The focus of my paper on the direct impact of uncertainty on aggregate variables, is di¤erent and
can be characterized instead as @Kt

@�t
: Thus, their results are not necessarily inconsistent with mine.

More recent work by Bachman, Caballero and Engel (2006), however, �nds the Kahn and Thomas (2003) results
are sensitive to the choice of parameter values. Sim (2006) builds a GE model with capital adjustment costs and time
varying uncertainty and �nds that the impact of temporary increases in uncertainty on investment is robust to GE
e¤ects.
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Figure 13: VAR estimation of the impact of a volatility shock on prices
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Notes: VAR Cholesky orthogonalized impulse response functions estimated on monthly data from July 1963 to July 2005 using 12 lags. Variables 
(in order) are log industrial production, log employment, hours, log wages, log CPI, federal funds rate, the volatility shock indicator and log S&P500 
levels. Detrended using a Hodrick-Prescott filter with smoothing parameter of 129,600. Impact on the Federal Funds rate plotted as a percentage 
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Figure 14: Aggregate (detrended) output: partial-equilibrium and ‘Pseudo-GE’
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Notes: Simulations run on 
1000 units. Repeated 25000 
times with the average plotted 
here. All micro and macro 
shocks drawn randomly except 
at month 0, when all 
simulations have σt set to σH. 
Adjustment costs are taken 
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interest rate, price and wage reductions) are much smaller. To highlight the surprising nature of these

two �ndings Figure A7 plots the impact of the �pseudo-GE�price e¤ects on capital, labor and output

in a simulation without adjustment costs. In the absence of any adjustment costs these interest rate,

prices and wages changes do have an extremely large e¤ect. So the introduction of adjustment costs

both dampens and delays the response of the economy to the �pseudo-GE�price changes.

The reason for this limited impact of �pseudo-GE�price changes is that after an uncertainty shock

occurs the hiring/�ring and investment/disinvestment thresholds jump out, as shown in Figure 5. As

a result there are no units near any of the response thresholds. This makes the economy insensitive

to changes in interest rates, prices or wages. The only way to get an impact would be to shift the

thresholds back to the original low uncertainty position where the majority units are located. But as

noted in section (4) the quantitative impact of these uncertainty shocks is equivalent to something

like a 7% higher interest rate and a 25% higher wage rate, so these �pseudo-GE�price reductions of

1.1% in interest rates, 0.5% in prices and 0.3% in wages are not su¢ cient to do this.

Of course once the level of uncertainty starts to fall back again the hiring/�ring and invest-

ment/disinvestment thresholds begin to move back towards their low uncertainty values. This means

they start to move back towards the region in (A/K) and (A/L) space where the units are located.

So the economy becomes more sensitive to changes in interest rates, prices and wages. Thus, these

�pseudo-GE�price e¤ects start to play a role. But this e¤ect is limited by the fact that these prices

e¤ects are now reduced by the fall in uncertainty.

In summary, the rise in uncertainty not only reduces levels of labor, capital, productivity and

output, but it also makes the economy temporarily extremely insensitive to changes in factor prices.

This is the macro equivalent to the �cautionary e¤ects�of uncertainty demonstrated on �rm-level

panel data by Bloom, Bond and Van Reenen (2007).

For policymakers this is important since it suggests a monetary or �scal response to an uncertainty

shock is likely to have almost no impact in the immediate aftermath of a shock. But as uncertainty

falls back down and the economy rebounds, it will become more responsive, so any response to policy

will occur with a lag. Hence, a policymaker trying for example, to cut interest rates to counteract the

fall in output after an uncertainty shock would �nd no immediate response, but a delayed response

occurring when the economy was already starting to recover. This cautions against using �rst-

moment policy levers to respond to the second-moment component of shocks, with policies aimed

directly at reducing the underlying increased uncertainty likely to be far more e¤ective.
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7.5. A Combined First and Second Moment Shock

All the large macro shocks highlighted in Figure 1 comprise both a �rst and a second moment element,

suggesting a more realistic simulation would analyze these together. This is undertaken in Figure

15, where the output response to a pure second moment shock (from Figure 12) is plotted alongside

the output response to the same second moment shock with an additional �rst moment shock of -2%

to business conditions.49 Adding an additional �rst moment shock leaves the main character of the

second moment shock unchanged - a large drop and rebound.

Interestingly, a �rst-moment shock on its own shows the type of slow response dynamics that the

real data displays (see, for example, the response to a monetary shock in Figure 3). This is because

the cross-sectional distribution of units generates a dynamic response to shocks.50

This rapid drop and rebound in response to a second moment shock is clearly very di¤erent

to the persistent drop over several quarters in response to a more traditional �rst moment shock.

Thus, to the extent a large shock is more a second moment phenomena - for example 9/ll - the

response is likely to involve a rapid drop and rebound, while to the extent it is more a �rst moment

phenomena - for example OPEC II - it is likely to generate a persistent slowdown. However, in the

immediate aftermath of these shocks distinguishing them will be di¢ cult, as both the �rst and second

moment components will generate an immediate drop in employment, investment and productivity.

The analysis in section (2.1) suggests, however, there are empirical proxies for uncertainty that are

available real-time to aid policymakers, such as the VXO series for implied volatility (see notes

to Figure 1), the cross-sectional spread of stock-market returns and the cross-sectional spread of

professional forecasters.

Of course these �rst and second moment shocks di¤er both in terms of the moments they impact

and also in terms of their duration, permanent and temporary respectively. The reason is that the

second moment component of shocks is almost always temporary while the �rst moment component

tends to be persistent. For completeness a persistent second moment shock would generate a similar

e¤ect on investment and employment as a persistent �rst moment shock, but would generate a

slow-down in productivity growth through the �Reallocation�term rather than a one-time reduction

in productivity levels through the �Within� term. Thus, the temporary/permanent distinction is

important for the predicted time pro�le of the impact of the shocks on hiring and investment, and

the �rst/second moment distinction is important for the route through which these shocks impact

productivity.

49 I choose 2% because this is equivalent to 1 years business conditions growth in the model. Larger or smaller shocks
yield a proportionally larger or smaller impact.
50See the earlier work on this by, for example, Bertola and Caballero (1990, 1994) and Caballero and Engel (1993).
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Figure 15: Combined first and second moment shocks

Figure 16: Different adjustment costs

Notes: Simulations run on 1000 
units. This is repeated 25000 
times with the average plotted 
here. All micro and macro 
shocks drawn randomly except 
at month 0, when all simulations 
have σt set to σH. Adjustment 
costs in the top panel are taken 
from the “All” values in table 3. 
In the bottom panel the “fixed 
costs” specification has only the 
FCK and FCL adjustment costs 
from this estimation, the “partial 
irreversibility” has only the PRK
and PRL from this specification, 
and the “Quadratic” has the 
adjustment costs from the 
“Quad” column in table 3. All 
other parameters and 
assumptions as outlined in 
sections 3 and 4. All series are 
detrended by removing their 
long-run growth rate. The month 
is normalized to zero at the 
uncertainty shock
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The only historical example of a persistent second moment shock was the Great Depression, when

uncertainty - as measured by share returns volatility - rose to an incredible 130% of 9/11 levels on

average for the 4-years of 1929 to 1932. While this type of event is unsuitable for analysis using my

model given the lack of general equilibrium e¤ects and the range of other factors at work, the broad

predictions do seem to match up with the evidence. Romer (1990) argues that uncertainty played an

important real-options role in reducing output in the onset of the Great Depression, while Ohanian

(2001) and Bresnahan and Ra¤ (1991) report �inexplicably�low levels of productivity growth with

an �odd�lack of output reallocation over this period.

7.6. Investigating Robustness to Di¤erent Parameter Values

7.6.1. Adjustment Costs

To evaluate the e¤ects of di¤erent types of adjustment I ran three simulations: the �rst with �xed

costs only, the second with partial irreversibilities only and the third with quadratic adjustment

costs only.51 The output from these three simulations is shown in Figure 16. As can be seen

the two speci�cations with non-convex adjustment costs generate a distinct drop and rebound in

economic activity. The rebound with �xed-costs is faster than with partial irreversibilities because

of the bunching in hiring and investment, but otherwise they are remarkably similar in size, duration

and pro�le. The quadratic adjustment cost speci�cation appears to generate no response to an

uncertainty shock. The reason is that there is no kink in adjustment costs around zero, so no option

values associated with doing nothing.

In summary, this suggests the predictions are very sensitive to the inclusion of some degree of

non-convex adjustment costs, but are much less sensitive to the type (or indeed level) of these non-

convex adjustment costs. This highlights the importance of the prior step of estimating the size and

nature of the underlying labor and capital adjustment costs.

7.6.2. Prede�ned Parameters

To investigate the robustness of the simulation results to the assumptions over the prede�ned pa-

rameters I re-ran the simulations using the di¤erent parameters from Table 5. The results, shown

in Figure 17, highlight that the qualitative result of a drop and rebound in activity is robust to the

di¤erent assumptions over the predetermined parameters. This is because of the presence of some

non-convex component in all the sets of estimated adjustment costs in Table 5.

The size of this drop and rebound did vary across speci�cations, however. Running the simulation

51For �xed costs and partial irreversibilities the adjustment costs are the �xed-cost and partial irreversibility com-
ponents of the parameter values from the �All�column in Table 3. For quadratic adjustment costs the values are from
the �Quad�column in Table 3.
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Figure 17: Simulation robustness to different parameter assumptions
Notes: Simulations run on 1000 
units. This is repeated 25000 times 
with the average plotted here. All 
micro and macro shocks drawn 
randomly except at month 0, when all 
simulations have σt set to σH. 
Parameter values are taken from the 
different columns of table 5, as 
indicated by the labels. All other 
parameters and assumptions as 
outlined in sections 3 and 4. The 
aggregate figures for output are 
calculated by summing up across all 
units within the simulation. They are 
detrended by removing their long-run 
growth rate. The month is normalized 
to zero at the date of the uncertainty 
shock.
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with the �N=1�parameter estimates from Table 5 leads to drop of only 1%, about half the baseline

drop of about 1.8%. This smaller drop was due to the very high levels of estimated quadratic

adjustment costs that were required to smooth the investment and employment series in the absence

of cross-sectional aggregation. Of course, the assumption of no cross-sectional aggregation (�N=1�) is

inconsistent with the aggregation evidence in Appendix A3 and the typical multi-divisional structure

of large-�rms. This simulation is presented simply to highlight the importance of building aggregation

into estimation routines when it is also present in the data.

In the ��L=0:2�speci�cation the drop was around 2.25%, about 30% above the baseline drop, due

to the greater labor attrition after the shock. Hence, this more realistic assumption on 20% annual

labor attrition (rather than 10% in the baseline) generates a larger drop and rebound in activity. The

results for assuming partial cross-sectional aggregation (�N=25�) and a 20% mark-up (�a+b=0:83�)

are both pretty similar to the baseline simulation (which has full cross-sectional aggregation and a

33% mark-up).

7.6.3. Durations and Sizes of Uncertainty Shocks

Finally, I also evaluate the e¤ects of robustness of the simulation predictions to di¤erent durations

and sizes of uncertainty shocks. In Figure 18 I plot the output response to a shorter-lived shock (a

1 month shock half-life) and a longer-lived shock (a 6 month shock half-life). Also plotted is the

baseline (a 2.month shock half-life). It is clear that longer-lived shocks generate larger and more

persistent falls in output. The reason is that the pause in hiring and investment lasts for longer if the

rise in uncertainty is more persistent. Of course, because the rise in uncertainty is more persistent

the cumulative increase in volatility is also larger so that the medium term �volatility-overshoot�is

also greater. Hence, more persistent uncertainty shocks generate a larger and more persistent drop,

rebound and overshoot in activity. This is interesting in the context of the Great Depression, a

period in which uncertainty rose to 260% of the baseline level for over 4-years, which in my (partial

equilibrium) model would generate an extremely large and persistent drop in output and employment.

In Figure 19 I plot the output response to a smaller uncertainty shock (�H = 1:5� �L), a larger

uncertainty shock (�H = 3� �L) and the baseline uncertainty shock (�H = 2� �L). Surprisingly, the

three di¤erent sizes of uncertainty shock lead to similar sized drops in activity. The reason is that

real-option values are increasing, but concave, in the level of uncertainty.52 So the impact of a 50%

rise in uncertainty on the hiring and investment thresholds is about 2/3 of the size of the baseline

100% rise in uncertainty. Since the baseline impact on the hiring and investment thresholds is so

large, even 2/3 of this pauses almost all hiring and investment. What is di¤erent across the di¤erent

52See Dixit (1993) and Abel and Eberly (1996) for an analytical derivation and discussion.
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Figure 18: Different durations of uncertainty shocks

Figure 19: Different sizes of uncertainty shocks

Notes for both figures: Simulations run on 1000 units, repeated 25000 times with the average plotted here. All micro and macro shocks drawn randomly 
except at month 0, when all simulations have σt set to σH. Adjustment costs taken from the “All” values in table 3. All other parameters and assumptions as 
outlined in sections 3 and 4. In the top panel the shorter and longer duration uncertainty shocks have half-lives (HL) of 1 month and 6 months respectively 
(baseline is 2 months). In the lower figure the larger and smaller uncertainty shocks have values of σH equal to 150% and 300% of σL level (baseline is 200%). 
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sizes of shocks, however, is that larger uncertainty shocks generate a larger medium-term �volatility

overshoot�because the cumulative increase in volatility is greater.

8. Conclusions

Uncertainty appears to dramatically increase after major economic and political shocks like the

Cuban Missile crisis, the assassination of JFK, the OPEC I oil-price shock and the 9/11 terrorist

attacks. If �rms have non-convex adjustment costs these uncertainty shocks will generate powerful

real-option e¤ects, driving the dynamics of investment and hiring behavior. These shocks appear to

have large real e¤ects, with the uncertainty component alone generating a 1% drop and rebound in

employment and output over the following six months, with a milder long-run overshoot.

This paper o¤ers a structural framework to analyze these types of uncertainty shocks, building

a model with a time varying second moment of the driving process and a mix of labor and capital

adjustment costs. The model is numerically solved and estimated on �rm level data using simulated

method of moments. The parameterized model is then used to simulate a large macro uncertainty

shock, which produces a rapid drop and rebound in output, employment and productivity growth.

This is due to the e¤ect of higher uncertainty making �rms temporarily pause their hiring and

investment behavior. In the medium term the increased volatility arising from the uncertainty shock

generates a �volatility-overshoot�as �rms respond to the increased variance of productivity shocks,

which drives a medium term overshoot and longer-run return to trend. Hence, the simulated response

to uncertainty shocks generates a drop, rebound and longer-run overshoot, much the same as their

actual empirical impact.

This temporary impact of a second moment shock is di¤erent from the typically persistent impact

of a �rst moment shock. While the second moment e¤ect has its biggest drop by month 3 and has

rebounded by about month 6, persistent �rst moment shocks generate falls in activity lasting several

quarters. Thus, for a policy-maker in the immediate aftermath of a shock it is critical to distinguish

the relative contributions of the �rst and second moment component of shocks for predicting the

future evolution of output.

The uncertainty shock also induces a strong insensitivity to other economic stimulus. At high

levels of uncertainty the real-option value of inaction is very high, which makes �rms extremely

cautious. As a result the e¤ects of empirically realistic General Equilibrium type interest rate, wage

and price falls have a very limited short-run e¤ect on reducing the drop and rebound in activity.

This raises a second policy implication, that in the immediate aftermath of an uncertainty shock

monetary or �scal policy is likely to be particularly ine¤ective.

This framework also enables a range of future research. Looking at individual events it could
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be used, for example, to analyze the uncertainty impact of major deregulations, tax changes, trade

reforms or political elections. It also suggests there is a trade-o¤ between policy �correctness�and

�decisiveness�- it may be better to act decisively (but occasionally incorrectly) then to deliberate on

policy, generating policy-induced uncertainty. For example, when the Federal Open Markets Com-

mittee was discussing the negative impact of uncertainty after 9/11 it noted that �A key uncertainty

in the outlook for investment spending was the outcome of the ongoing Congressional debate relating

to tax incentives for investment in equipment and software. Both the passage and the speci�c contents

of such legislation remained in question�(November 6th, 2001). Hence, in this case Congress�s desire

to revive the economy with tax incentives might have been counter-productive due to the increased

uncertainty the policy process induced.

More generally these second moments e¤ects contribute to the �where are the negative productivity

shocks?�debate in the business cycle literature. It appears that second-moment shocks can generate

short sharp drops and rebounds in output, employment, investment and productivity growth without

the need for a �rst-moment productivity shock. Thus, recessions could potentially be driven by

increases in uncertainty. Encouragingly, recessions do indeed appear in periods of signi�cantly higher

uncertainty, suggesting an uncertainty approach to modelling business-cycles (see Bloom, Floetotto

and Jaimovich, 2007). Taking a longer run perspective this model also links to the volatility and

growth literature given the evidence for the primary role of reallocation in productivity growth.

The paper also jointly estimates non-convex and convex labor and capital adjustment costs. I

�nd substantial �xed costs of hiring/�ring and investment, a large loss from capital resale and some

moderate per-worker hiring/�ring costs. I �nd no evidence for quadratic investment or hiring/�ring

adjustment costs. I also �nd that assuming capital adjustment costs only - as is standard in the

investment literature - generates an acceptable overall �t, while assuming labor adjustment costs

only - as is standard in the labor demand literature - produces a poor �t.
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A. Appendix: Data

All data and Stata do �les used to create the empirical Figures 1, 2, 3 and Table 1 are available on
http://www.stanford.edu/~nbloom/. In this Appendix I describe the contents and construction of
these datasets.

A.1. Stock Market Volatility Data

A.1.1. Testing for Jumps in Stock Market Volatility

To test for jumps in stock-market volatility I use the non-parametric bipower variation test of
Barndor¤-Nielsen and Shephard (2006). The test works for a time series fxt; t = 1; 2; :Ng by
comparing the squared variation, SV =

PN
t=3(xt � xt�1)2 with the bipower variation, BPV =PN

t=3(xt � xt�1)(xt�1 � xt�2). In the limit as dt ! 0 if there are no jumps in the data then
E[SV ]! E[BPV ] since the variation is driven by a continuous process. If there are jumps, however,
then E[SV ] > E[BPV ] since jumps have a squared impact on SV but only a linear impact on BPV .
Barndor¤-Nielsen and Shephard (2006) suggest two di¤erent test statistics - the linear-jump and
ratio-jump test - which have the same asymptotic distribution but di¤erent �nite-sample properties.
Using the monthly data from Figure 1 I reject the null of no jumps at the 2.2% and 1.6% level using
the linear and ratio tests, respectively. Using the daily VXO data underlying Figure 1 (available
from January 1986 onwards, providing 5443 observations) I reject the null of no-jumps using both
test at the 0.0% level.

A.1.2. De�ning Stock Market Volatility Shocks

Given the evidence for the existence of stock-market volatility jumps I need to de�ne what these
are. The main measure is an indicator that takes a value of 1 for each of the sixteen events labelled
in Figure 1, and 0 otherwise. These sixteen events are chosen as those with stock-market volatility
more than 1.65 standard-deviations above the Hodrick Prescott detrended (� = 129; 600) mean of
the stock market volatility series (the raw undetrended series is plotted in Figure 1). While some of
these shocks occur in one month only, others span multiple months so there was a choice over the
exact allocation of their timing. I tried two di¤erent approaches, the primary approach is to allocate
each event to the month with the largest volatility spike for that event, with an alternative approach
to allocate each event to the �rst month in which volatility went more than two standard-deviations
above the HP detrended mean. The events can also be categorized in terms of terror, war, oil or
economic shocks. So a third volatility indicator uses only the arguably most exogenous terror, war
and oil shocks.

The volatility shock events, their dates under each timing scheme and their classi�cation are
shown in Table (A.1) below, while in section (A.1.3) below each event is described in more detail.It is
noticeable from Table (A.1) that almost all the shocks are bad events. So one question for empirical
identi�cation is how distinct are stock-market volatility shocks from stock-market levels shocks?
Fortunately, it turns-out these series do move reasonably independently because some events - like
the Cuban Missile crisis - raise volatility without impacting stock-market levels while others - like
Hurricane Katrina - generate falls in the stock-market without raising volatility. So, for example,
the log detrended stock-market level has a correlation of -0.192 with the main 1/0 volatility shock
indicator, a correlation of -0.136 with the 1/0 oil, terror and war shock indicator, and a -0.340
correlation with the log detrended volatility index itself. Thus, the impact of stock-market volatility
can be separately identi�ed from stock-market levels.

A.1.3. Details of the Volatility Events

I brie�y describe each of the sixteen volatility shocks shown on Figure 1 to highlight the fact that
these are typically linked to real shocks.

Cuban Missile Crisis: The crisis began on October 16, 1962 when U.S. reconnaissance planes
discovered Soviet nuclear missile installations on Cuba. This led to a twelve day stand-o¤ between
U.S. President John F. Kennedy and Soviet premier Nikita Khrushchev. The crisis ended on October
28 when the Soviets announced that the installations would be dismantled. The Cuban Missile Crisis
is often regarded as the moment when the Cold War came closest to escalating into a nuclear war.

Assassination of JFK : President Kennedy was assassinated in Dallas on November 22, 1963,
while on a political trip through Texas. Lee Harvey Oswald was arrested 80 minutes later for the
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Table A.1: Major Stock-Market Volatility Shocks.
Event Max Volatility First Volatility Type
Cuban Missile Crisis October 1962 October 1962 Terror
Assassination of JFK November 1963 November 1963 Terror
Vietnam build-up August 1966 August 1966 War
Cambodia and Kent State May 1970 May 1970 War
OPEC I, Arab-Israeli War December 1973 December 1973 Oil
Franklin National October 1974 September 1974 Economic
OPEC II November 1978 November 1978 Oil
Afghanistan, Iran Hostages March 1980 March 1980 War
Monetary cycle turning point October 1982 August 1982 Economic
Black Monday November 1987 October 1987 Economic
Gulf War I October 1990 September 1990 War
Asian Crisis November 1997 November 1997 Economic
Russian, LTCM Default September 1998 September 1998 Economic
9/11 Terrorist Attack September 2001 September 2001 Terror
Worldcom and Enron September 2002 July 2002 Economic
Gulf War II February 2003 February 2003 War

assassination. Oswald denied shooting anyone and claimed that he was being set up. Oswald was
fatally shot less than two days later in a Dallas police station by Jack Ruby.

Vietnam build-up: US troop numbers rose from 184,000 at the beginning of 1966 to almost
500,000 by the end of the year. This military build up caused considerable uncertainty over both
the introduction of wage and price controls (following the precedent set in the Korean War) and the
Budgetary implications of the escalating defense expenditure.53

Cambodia and Kent State: President Nixon, elected in 1968 promising to end the Vietnam war,
announced on April 30, 1970, that the US had invaded Cambodia. This caused student protest
across the US. On May 4th, 1970, four students were fatally shot by the Ohio National Guard during
anti-war protest, followed by two more fatal shootings of student demonstrators at Jackson State by
Mississippi State Police. This generated the largest national strike in US history, and considerable
social unrest.

OPEC I and Arab-Israeli War : A coalition of Arab nations attacked Israel on October 6th, 1973,
with the war lasting until October 26th. As a result of this con�ict Arab members of OPEC plus
Egypt and Syria stopped shipping petroleum to the US and Europe, and increased the price of Oil
four-fold.

Franklin National Financial Crisis: On 8 October 1974, Franklin National bank was declared
insolvent due to mismanagement and fraud, involving losses in currency speculation. It had been
purchased in 1972 by Michele Sindona, a banker with close ties to the Italian Ma�a. At the time
the Franklin National was the 20th largest bank in the US, and its failure was the largest banking
collapse in US history.

OPEC II : The Shah of Iran �ed the country after the Iranian revolution brought the Ayatollah
Khomeini to power. This severely damaged the Iranian oil sector, allowing OPEC to double oil-prices.

Afghanistan and Iran Hostages: On December 25th 1979 the Soviet Union invaded Afghanistan,
generating uncertainty over whether the invasion would continue through into the oil-�elds of neigh-
boring Iran. The storming of the American embassy and capture of 66 diplomats and citizens, who
were held hostage until January 1981 added to the political uncertainty.

Monetary cycle turning point : Market volatility appeared to stem from uncertainty over the
timing of the recovery from the recession and the ability of the Reagan government to deliver its
�scal and supply-side policies.54

53For example Time Magazine (28/10/1966) reported �Defense spending jumped by a startling $4.2 billion annual
rate during the third quarter. So far, Defense Secretary Robert McNamara has been mum as to how much money he
must have next year. Not until that fog lifts will the economy managers, or anybody else, be able to get a clear glimpse
of the 1967 economy.�
54Time Magazine (16/08/1982) reported �On one point nearly everyone agreed: the chaotic trading and uncertainty

were directly traceable to Washington�s ongoing failure to slash the runaway federal de�cits that triggered crippling
interest rates in the �rst place.�
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Black Monday : A large stock-market crash on Monday October 19, 1987 in which the Dow Jones
index fell by 22.8%. No major news or individual event was associated with the crash.

Gulf War I : On August 2nd 1990 Iraq invaded Kuwait. In response the US started deploying
troops to Saudi Arabia. On January 12th, 1991, Congress authorized the use of military force in
Kuwait by 52-47 in the Senate and by 259-183 in the House, the closest margin in authorizing force by
Congress since the War of 1812. This knife-edge political support generated pre-invasion uncertainty
around the US response.

Asian Crisis: On the 14 May 1997 the Thai Baht came under sustained speculative attack,
leading to its devaluation on July 2 1997. This crisis spread (in varying degree) across Asia to the
Philippines, Malaysia, South Korea, Indonesia, Singapore and Hong Kong.

Russian & LTCM Default : In August 17, 1998 Russia defaulted on its Ruble and domestic Dollar
debt. This caused the Long Term Capital Management hedge fund to default on several billion dollars
of �nancial contracts, threatening a major �nancial collapse.

9/11 Terrorist Attack : On the morning of September 11, 2001, al-Qaeda terrorists hijacked four
planes, �ying two into the towers of the World Trade Centre in Manhattan, one into the Pentagon
and one into rural Pennsylvania (which crashed, presumed to be heading for the White House). This
was followed by a wave of Anthrax letters which killed �ve people, initially also believed to be linked
with al-Qaeda.

Worldcom and Enron: Enron, a major energy trading �rm, �lled for bankruptcy in December
2001 after admitting to the fabrication of its accounts. WorldCom, a large telecoms �rm, announced
in July 2002 that an internal audit had uncovered approximately $3.8 billion of overstated revenues.
This was accompanied by a series of other accounting scandals involving major �rms such as Tyco,
AOL Time Warner, Bristol-Myers Squibb, Merck and Dynegy, casting doubt over the veracity of the
accounts of many large �rms.

Gulf War II : In October 2002 Congress gave the President Bush the authority to invade Iraq.
The US worked to obtain UN approval for this, but by March 2003 it became clear this was not going
to happen. On March 20, 2003, the US-led a small coalition force into Iraq. The period running up
to this invasion generated substantial stock-market volatility over whether the UN would support
the war, and if not whether President Bush would proceed without this support.

A.2. Cross-Sectional Uncertainty Measures

There are four key cross-sectional uncertainty measures:
Standard deviation of �rm-level pro�ts growth: This is measured on quarterly basis using Com-

pustat Quarterly Accounts. It is the cross-sectional standard deviation of the growth rates of pre-tax
pro�ts (data item 23). Pro�t growth has a close �t to productivity and demand growth in homo-
geneous revenue functions55, and is one of the few variables to have been continuously reported in
quarterly accounts since the 1960s.56 This is normalized by the �rms average sales (data item 2), and
de�ned as (pro�tst� pro�tst�1)/(0.5�salest+ 0.5�salest�1). Only �rms with 150 or more quarters of
accounts with sales and pretax pro�ts �gures are used to minimize the e¤ects of sample composition
changes.57 The growth rates are windsorized at the top and bottom 0.05% growth rates to prevent
the series being driven by extreme outliers.

Standard deviation of �rm-level stock returns: This is measured on a monthly basis using the
CRPS data �le. It is the cross-sectional standard deviation of the monthly stock returns. The sample
is all �rms with 500 or more months of stock-returns data. The returns are windsorized at the top
and bottom 0.5% growth rates to prevent the series being driven by extreme outliers.

Standard deviation of industry-level TFP growth: This is measured on an annual basis using the
NBER industry database (Bartelsman, Becker and Grey 2000). The cross-sectional spread is de�ned

55Consider, for example, a Cobb-Douglas revenue function, AK�L� , where A is the productivity term, K is capital,
and L is labor. Pro�t can be written as � = pAK�L� � rK � wL where p is the price, r is the cost-of-capital and w
is the wage rate, initially assumed to be �xed. First, consider the situation where K and L are costlessly adjustable.
Under pro�t maximization one can easily show that K = �1A and L = �2A where �1 and �2 are functions of �, �, p,r
and w, so that the growth of pro�t/sales is a linear function of �A=A. Alternatively consider the situation in which
K and L are totally �xed. In this case the growth rate of pro�t/sales is also a linear function of the growth rate of A
because ��=AK�L� = �AK�L�=AK�L� = �A=A. Of p, w and r will also �uctuate somewhat over time, but to the
extent these �uctuations are common to all �rms this will not e¤ect the cross-sectional standard-deviation of pro�ts
growth.
56Note that employment is not reported quarterly, so no quarterly productivity �gures are available.
57Limiting compositional change helps to address some of the issues raised by Davis, Faberman and Haltiwanger

(2006), who �nd rising sales volatility of publicly-quoted �rms but �at volatility of privately-held �rms. I also include
a time-trend in column (2) to directly control for this and focus on short-run movements.

36



as the standard deviation of the 5-factor TFP growth rates, taken across all SIC 4-digit manufacturing
industries. The complete sample is a balanced panel for 422 of the 425 industries (results are robust
to dropping these 3 industries).

Standard deviation of GDP forecasts. This is measured on a half-yearly basis using the Philadel-
phia Federal Reserve Bank�s Livingstone survey of professional forecasters. It is de�ned as the
cross-sectional standard deviation of the one-year ahead GDP forecasts normalized by the mean of
the one-year ahead GDP forecasts. Only half-years with 50+ forecasts are used to ensure su¢ cient
sample size for the calculations. This series is linearly detrended across the sample (1950 to 2006) to
remove a long-run downward drift of forecaster variance.

A.3. VAR Data

The VAR estimations are run using monthly data from July 1962 until July 2005. The full set of
VAR variables in the estimation are log industrial production in manufacturing (Federal Reserve
Board of Governors, seasonally adjusted), employment in manufacturing (BLS, seasonally adjusted),
average hours in manufacturing (BLS, seasonally adjusted), log consumer price index (all urban
consumers, seasonally adjusted), log average hourly earnings production workers (manufacturing),
Federal Funds Rate (e¤ective rate, Federal Reserve Board of Governors), a monthly stock-market
volatility indicator (described below) and the log of the S&P500 stock market index. All variables
are HP detrended using a �lter value of � = 129; 600.

In Figure A1 the industrial production impulse response function is shown for four di¤erent
measures of volatility: the actual series in Figure 1 after HP detrending (square symbols), the 1/0
volatility indicator with the shocks scaled by the HP detrended series (dot symbols), an alternative
volatility indicator which dates shocks by their �rst month (rather than their highest month) (triangle
symbols), and a series which only uses the shocks linked to terror, war and oil (plus symbols). As
can be seen each one of these shock measures generates a rapid drop and rebound in the predicted
industrial production. In Figure A2 the VAR results are also shown to be robust to a variety of
alternative variable sets and orderings. The VAR is re-estimated using a simple bivariate VAR with
industrial production and the volatility indicator only (square symbols), also displaying a drop and
rebound. The trivariate VAR (industrial production, log employment and the volatility indicator) also
displays a similar drop and rebound (cross symbols), as does the trivariate VAR with the variable
ordering reversed (circular symbols). Hence the response of industrial production to a volatility
shock appears robust to both the basic selection and ordering of variables. In Figure A3 I plot the
results using di¤erent HP detrending �lter values: the linear detrended series (� = 1) is plotted
(square symbols) alongside the baseline detrending (� = 129; 600) (cross-symbols) and the ��exible�
detrending (� = 1296). As can be seen the results again appear robust. I also conducted a range of
other experiments, such as adding controls for the oil price (spot price of West Texas), and found
the results to be robust.

A.4. Evidence for Cross-Sectional and Temporal Aggregation

Table (A2) shows that as investment data is aggregated across units (going from the small establish-
ments on the bottom row to �rms on the top row) and across lines of capital (going from structures,
equipment and vehicles columns on the left to the total column on the right) the investment ze-
ros disappear. Table (A3) shows that going from quarterly to annual data generates a drop in the
volatility of sales and investment data.

Table A.2: Cross-Sectional Aggregation and Zero Investment Episodes.
Annual zero investment episodes (%) Structures Equipment Vehicles Total
Firms 5.9 0.1 n.a. 0.1
Establishments (All) 46.8 3.2 21.2 1.8
Establishments (Single Plants) 53.0 4.3 23.6 2.4
Establishments (Single Plants, <250 employees ) 57.6 5.6 24.4 3.2

Source: UK ARD plant-level data and UK Datastream �rm level data
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Table A.3: Temporal Aggregation and Time Series Volatility.
Standard deviation/mean of growth rates Quarterly Yearly
Sales 6.78 2.97
Investment 1.18 0.84

Source: Compustat �rms with quarterly data 1993-2001

B. Appendix: Numerical Solution Method

This Appendix describes some of the key steps in the numerical techniques used to solve the �rm�s
maximization problem. The full program, which runs on Matlab 64-bit, is on http://www.stanford.edu/~nbloom.

B.1. Value Function Iteration

The objective is to solve the value function (3.9). This value function solution procedure is used
in two parts of the paper. The �rst is in the Simulated Method of Moments estimation of the
unknown adjustment cost parameters, whereby the value function is repeatedly solved for a variety of
di¤erent parameters, the data simulated and these moments used in the parameter search algorithm.
The second is in the simulation where the value function is solved just once - using the estimated
parameters choices - and then used to simulate a panel of 1000 units, repeated 25000 times. The
numerical contraction mapping procedure used to solve the value function in both cases is the same.
This proceeds following four steps:

(1) Choose a grid of points in (a; l; �; �) space. Given the log-linear structure of demand process
I use a grid of points in (log(a); log(l); �; �) space. In the log(a) and log(l) dimensions this is
equidistantly spaced, and in the � and � spacing this is determined by the estimated parameters.
The normalization by capital in a and l - noting that a = A=K and l = L=K - also requires
that the grid spacing in the log(a) and log(l) dimensions is the same (i.e. ai+1=ai = lj+1=lj where
i; j = 1; 2; ::N index grid points) so that the set of investment rates fai=a1; ai=a2; :::ai=aNg maintains
the state space on the grid.58 This equivalency between the grid spaces in the log(a) and log(l)
dimensions means that the solution is substantially simpli�ed if the values of �K and �L are equal, so
that depreciation leaves the log(l) dimension unchanged. When �K and �L are unequal the di¤erence
between them needs to be an integer of the grid spacing. For the log(a) dimension depreciation is
added to the drift in the stochastic process, so there is no constraint on �K . Given the conversion
to logs I need to apply the standard Jensen�s correction to the driving process (3.4, 3.5 and 3.6), for
example for (3.4) log(AMt ) = log(AMt�1) � (�2t�1 � �2L)=2 + �t�1WM

t : The uncertainty e¤ect on the
drift rate is second-order compared its real-options e¤ect, so the simulations are virtually unchanged
if this correction is omitted.

I used a grid of 40,000 points (100 � 100 � 2 � 2). I also experimented with �ner and coarser
partitions and found that there was some changes in the value functions and policy choices as the
partition changed, but the characteristics of the solution - i.e. a threshold response space as depicted
in Figure (3) - was unchanged so long as about 60 or more grid points were used in the log(a) and
log(l) dimensions. Hence, the qualitative nature of the simulation results were robust to moderate
changes in the number of points in the state space partition.

(2) De�ne the value function on the grid of points. The is straightforward for most of the grid but
towards the edge of the grid due to the random walk nature of the demand process this requires taking
expectations of the value function o¤ the edge of the state space. To address this an extrapolation
procedure is used to approximate the value function o¤ the edge of the state space. Under partial-
irreversibilities and/or �xed-costs the value function is log linear outside the zone of inaction, so that
so long as the state space is de�ned to include the region of inaction this approximation is exact.
Under quadratic adjustment costs the value function, however, is concave so a log-linear approach is
only approximately correct. With a su¢ ciently large state space, however, the probability of being at
a point o¤ the edge of the state space is very low so any approximation error will have little impact.

(3) Select a starting value for the value function in the �rst loop. I used the solution for the value
function without any adjustment costs, which can be easily derived. In the SMM estimation routine
I initially tried using the last solution in the next iteration, but found this could generate instability
in the estimations loop. So I instead I always used the same initial value function.

58Note that some extreme choices of the investment rate will move the state o¤ the l grid which induces an o¤setting
choice of employment growth rates e to ensure this does not occur.
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(4) The value function iteration process. The speed of value function iteration depends on the
modulus of contraction, which with a monthly frequency and a 6.5% annual discount rate is relatively
slow. So I used value function acceleration (see Judd, 1998) in which the factor of acceleration � was
set to 0.33 as follows

Qi+1 = Qi + �(Qi �Qi�1)
where Qi is iteration number i for the value function in the numerical contraction mapping.59 The
number of loops was �xed at 250 which was chosen to ensure convergence in the policy functions. In
practice, as Krusell and Smith (1998) note, value functions typically converge more slowly than the
policy function rules associated with them. Thus, it is generally more e¢ cient to stop the iterations
when the policy functions have converged even if the value function has not yet fully converged.

B.2. Simulated Method of Moments Estimation (SMM)

To generate the simulated data for the SMM estimation (used to create 	S(�) in equation 5.1) I
simulate an economy with 1000 �rms, with 250 units each. This is run for 30 years, with the �rst 10
years discarded to eliminate the e¤ects of any assumptions on initial conditions. I run this simulations
25 times to try to average out over the impact of any individual macro shocks. The same seed is always
used in every simulation iteration. I also assume �rms are initially distributed equally across �L and
�H given the symmetry of the transition matrix for �i;t. In order to ensure that �rst moment draws

have a constant aggregate drift rate I numerically set
P
i;j Ai;j;t = exp

�L+�H
2

tP
i;j Ai;j;0, consistent

with (3.8) as N !1, which in smaller samples stops extreme draws for individual units from driving
macro averages

B.2.1. Estimation

I use a simulated-annealing algorithm for minimizing the criterion function in the estimation step in
equation 5.1. This starts with a prede�ned �rst and second guess. For the third guess onwards it
takes the best prior guess and randomizes from this to generate a new set of parameter guesses. That
is, it takes the best-�t parameters and randomly �jumps�o¤ from this point for its next guess. Over
time the algorithm �cools�, so that the variance of the parameter jumps falls, allowing the estimator
to �ne-tune its parameter estimates around the global best-�t. I restart the program with di¤erent
initial conditions to ensure the estimator converges to the global minimum. The simulated annealing
algorithm is extremely slow, which is an issue since it restricts the size of the parameter space which
can be estimated. Nevertheless, I use this because it is robust to the presence of local-minima and
discontinuities in the criterion function across the parameter space.

B.2.2. Numerical Standard Errors

To generate the standard errors for the parameter point estimates I generate numerical derivatives of
the simulation moments with respect to the parameters and weight these using the optimal weighting
matrix. One practical issue with this is the value of the numerical derivative, de�ned as f 0(x) =
f(x+�)�f(x)

� , is sensitive to exact value of � chosen. This is a common problem with calculating
numerical derivatives using simulated data with underlying discontinuities, arising for example from
grid point de�ned value functions. To address this I calculate four values of the numerical derivative
for an � of +1%, +2.5%, +5% and -1% of the �mid-point�of the parameter space60 and then take
the median value of these numerical derivative. This helps to ensure that the numerical derivative is
robust to outliers arising from any discontinuities in the criterion function.

59 I experimented with di¤erent values for � and found 0.33 was a good trade o¤ between speed (higher values are
faster) and stability (higher values make the value function iteration less stable).
60For example, the mid-point of parameter space for CFK is taken as 0.01, so that � is de�ned as 0.0001, 0.00025,

0.0005 and -0.0001.
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Figure A2: VAR robustness to different variable sets and ordering

Figure A1: VAR robustness to different shock definitions
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Notes for both figures: VAR Cholesky orthogonalized impulse response functions estimated on monthly data from July 1963 to July 2005 using 12 lags. All
data detrended using a Hodrick-Prescott filter with smoothing parameter of 129600 (Stata’s monthly default value). In top panel variables (in order) are log 
industrial production, log employment, hours, log wages, log CPI, federal funds rate, the volatility shock indicator and log S&P500 levels. The volatility 
indicator used is different for each plot as follows: “actual volatility” is the de-trended series itself, “shocks scaled by actual volatility” uses the 16 shocks but 
scales these by their actual de-trended level, “shocks dated by first month” uses the 16 events with the timing defined by their first month, and “terror, war 
and oil shocks only” uses a 1/0 indicator for just the 10 shocks defined as terror, war or oil related. In the bottom panel the standard volatility indicator is used 
(a 1/0 for each of the 16 shocks in Figure 1 timed by the peak volatility month) but the variable sets and ordering are different as noted. 
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Figure A3: VAR robustness to different variable detrending assumptions
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Notes for figures: VAR Cholesky orthogonalized impulse response functions estimated on monthly data from July 1963 to July 2005 using 12 lags. All data 
detrended using a Hodrick-Prescott filter with smoothing parameters noted above next to each series. Variables (in order) are log industrial production, log 
employment, hours, log wages, log CPI, federal funds rate, the baseline (1/0) volatility shock indicator and log S&P500 levels. Response to a one-unit 
change in the volatility shocks indicator is plotted (i.e. the Cholesky response scaled by 1/SD of the impulse variable).

Notes for figures: Simulations run on 
1000 units. This is repeated 10000 times 
with the average plotted here. All micro 
and macro shocks drawn randomly 
except at month 0, when all simulations 
have σt set to σH. Adjustment costs for 
capital are taken from the “All” values in 
table 3. No adjustment costs for labor. 
Business conditions (Ai,j,t) ,follow a 
stationary autoregressive process, Ai,j,t = 
ρAi,j,t-1 + vt   where  vt ~ N(0,σt-1). Following 
Cooper and Haltiwanger (2006) I set 
monthly ρ=0.8851/12. The month is 
normalized to zero at the date of the 
uncertainty shock. Full program available 
on http://www.stanford.edu/~nbloom/

Figure A4: Simulation with a stationary autoregressive demand process
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Figure A5: Quantifying the size of the real-options effect
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Notes: Simulated thresholds using the adjustment cost estimates “All” in Table 3. At σt=σH interest rates are 7% points (700 basis points) lower and wages 
25% lower, to quantify the approximate size of the short-run rise in uncertainty. All other parameters and assumptions as outlined in sections 3 and 4.

Figure A7: Impact of ‘Pseudo-GE’ price changes without adjustment costs
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Notes: Simulation run on 1000 units. 
This is repeated 25000 times with 
the average plotted here. All micro 
and macro shocks drawn randomly 
except at month 0, when all 
simulations have σt set to σH. All 
adjustment costs are set to zero. All 
other parameters taken from the 
estimated ‘’All’’ column in Table 3 
and as outlined in sections 3 and 4. 
The simulation is ‘Pseudo-GE’, so 
interest rates, prices and wages are 
1.1% points, 0.5% and 0.3% lower 
during periods of high uncertainty. 
All series are detrended by removing 
their long-run growth rate. The 
month is normalized to zero at the 
uncertainty shock.

Figure A6: Aggregate (detrended) capital drops, rebounds and overshoots
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Notes: Simulations run on 1000 
units. This is repeated 25000 times 
with the average plotted here. All 
micro and macro shocks drawn 
randomly except at month 0, when all 
simulations have σt set to σH. 
Adjustment costs are taken from the 
“All” values in table 3. All other 
parameters and assumptions as 
outlined in sections 3 and 4. The 
aggregate figures for Kt are 
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units within the simulation. They are 
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growth rate. The month is normalized 
to zero at the date of the uncertainty 
shock.
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