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Observed returns on national equity portfolios suggest substantial benefits from international

diversification, yet individuals and institutions in most countries hold modest amounts of foreign

equity. Many studies document such home bias (see French and Poterba (1991), Tesar and Werner

(1998) and Ahearne, Griever and Warnock (2004)). One hypothesis is that capital is internationally

immobile across countries, yet this is belied by the speed and volume of international capital flows

among both developed and developing countries. Another hypothesis is that investors have supe-

rior access to information about local firms or economic conditions. But this seems to replace the

assumption of capital immobility with the equally implausible assumption of information immobil-

ity. If an American wished, she could obtain information about foreign firms. Such cross-border

information flows could potentially undermine the home bias. This criticism of home bias theories

strikes at the heart of the whole asymmetric information literature in finance. When investors can

choose what information to learn or what data to collect, can information asymmetry survive?

Most existing models of asymmetric information in financial markets are silent on information

choice.1 A small but growing literature studies how much information investors acquire about one

risky asset or models a representative agent who, by definition, cannot have asymmetric informa-

tion.2 Instead of asking how much investors learn, we ask which assets they learn about. To answer

this question requires a model with three features: information choice, multiple risky assets to learn

about, and heterogeneous agents so that information asymmetry is possible.

We develop a two-country general equilibrium, rational expectations model where investors first

choose what home or foreign information to acquire, and then choose what assets to hold. The prior

information each home investor has about each home asset’s payoff is slightly more precise than the

prior information foreigners have. The reverse is true for foreign assets. Investors choose whether

to acquire additional information about home assets or to acquire information about foreign assets.

The interaction of the information decision and the portfolio decision causes the home investor to

acquire information that magnifies his comparative advantage in home assets. If home investors
1Recent work on asymmetric information in financial markets includes Banerjee (2007), Ozdenoren and Yuan

(2007) and Yuan (2005). The canonical reference on asymmetric information with multiple assets is Admati (1985).
Work on asymmetric information and the home bias, in particular, includes Pastor (2000), Brennan and Cao (1997)
and Portes, Rey and Oh (2001).

2Recent work on information choice in finance includes Peress (2006) and Dow, Goldstein and Guembel (2007).
The canonical references in this literature, Grossman and Stiglitz (1980) and Admati and Pfleiderer (1990), are
also about one risky asset. Our paper also differs from Calvo and Mendoza (2000) who argue that more scope for
international diversification decreases the value of information. Our paper shows the converse: When investors can
choose what to learn about, the value of diversification declines.
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undo their information asymmetry by learning about foreign assets, they earn no excess returns.

When information indicates that an asset’s payoff will be high, all investors know about it and

bid up the price. If an investor instead learns more about some assets and less about others than

what the average investor learns about, and then takes a large position in the assets he knows

more about, he will earn excess returns. When information about an asset he is better informed

about indicates that the payoff will be high, the price need not be high, allowing him to profit.

When choosing what information to learn about, investors’ goal is to make their information sets

as different as possible from that of the average investor. The most efficient way to achieve that

goal is for home investors to take the home assets they start out knowing relatively more about and

specialize in learning even more about them. The result is that information immobility persists not

because investors can’t learn what locals know, nor because it is too expensive, but because they

don’t choose to; capitalizing on what they already know is a more profitable strategy.

The model’s key mechanism is the interaction between information and investment choice. To

illustrate its importance, section 2 shuts down this interaction by forcing investors to take their

portfolios as given, when they choose what to learn. These investors minimize investment risk by

learning about assets that they are most uncertain about. With sufficient capacity, learning undoes

all initial information advantage, and therefore all home bias. Thus, this model embodies the logic

that the asymmetric information criticisms are founded on.

Section 3 shows that when investors have rational expectations about their future optimal

portfolio choices, this logic is reversed. While acquiring information that others do not know

increases expected portfolio returns, it does not imply that home investors take a long position

in home assets, only that they take a large position. Home bias arises because home assets offer

risk-adjusted expected excess returns to informed home investors. Information about the home

asset reduces the risk that the asset poses without changing its return, hence the high risk-adjusted

returns. Why does information reduce risk? An asset’s payoff may be very volatile, high one period

and low the next. But if an investor has information that tells him when the payoff is high and when

it is low, the asset is not very risky to that investor. While foreign assets offer lower risk-adjusted

returns to home investors, they are still held for diversification purposes. The optimal portfolio is

tilted toward home assets.

Considering how learning affects portfolio risk offers an alternative way of understanding why
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investors with an initial information advantage in home assets choose to learn more about home

assets. Because of the excess risk-adjusted returns, a home investor with a small information

advantage initially expects to hold slightly more home assets than a foreign investor would. This

small initial difference is amplified because information has increasing returns in the value of the

asset it pertains to: as the investor decides to hold more of the asset, it becomes more valuable to

learn about. So, the investor chooses to learn more and hold more of the asset, until all his capacity

to learn is exhausted on his home asset.

A variety of evidence supports the model’s predictions. Section 4 connects the theory to facts

about analyst forecasts, portfolio patterns, excess portfolio returns, cross-sectional asset prices, as

well as evidence thought to be incompatible with an information-based home bias explanation.

In particular, the theory offers a unified explanation of home bias and more recent findings of

local bias. While we cannot claim for any one of these facts that no other theory could possibly

explain the same relationship, taken together, they constitute a large body of evidence that would

be difficult to match with one parsimonious alternative theory. A numerical example shows that

learning can magnify the home bias considerably. When all home investors get a small initial

advantage in all home assets, the home bias is between 5 and 46%, depending on the magnitude of

investors’ learning capacity. When each home investor gets an initial information advantage that is

concentrated in one local asset, the home bias is amplified. It rises as high as the 76% home bias in

U.S. portfolio data, for a level of capacity that is consistent with observed excess returns on local

assets. Finally, we derive new testable hypotheses from the model to guide future empirical work.

Information advantages have been used to explain exchange rate fluctuations (Evans and Lyons

(2004), Bacchetta and van Wincoop (2006)), the international consumption correlation puzzle

(Coval 2000), international equity flows (Brennan and Cao 1997), a bias towards investing in

local stocks (Coval and Moskowitz 2001), and the own-company stock puzzle (Boyle, Uppal and

Wang 2003). Information asymmetry also sustains other home bias explanations, such as ambigu-

ity aversion (Uppal and Wang 2003). All of these explanations are bolstered by our finding that

information advantages are not only sustainable when information is mobile, but that asymmetry

is often amplified when investors can choose what to learn.
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1 A Model of Learning and Investing

Using tools from information theory, we construct an equilibrium framework to consider learning

and investment choices jointly. This model uses the one-investor partial-equilibrium problem of

Van Nieuwerburgh and Veldkamp (2006) to build a heterogeneous-agent, two-country equilibrium

model with a continuum of investors in each country. Modeling equilibrium interactions delivers

important new insights. In particular, it allows us to show that investors want to make their

information different from what other investors know. This is the force that delivers asymmetric

information and home bias. Furthermore, the initial heterogeneity in investors across countries

delivers predictions about which investors learn what and allows this model to connect with portfolio

data.

This is a static model which we break up into 3 periods. In period 1, investors choose the

distribution from which to draw signals about the payoff of the assets, subject to a constraint on

the total informativeness of their signals. In period 2, each investor observes signals from the chosen

distribution and makes his investment. Prices are set such that the market clears. In period 3, he

receives the asset payoffs and consumes.

Preferences Investors, with absolute risk aversion parameter ρ, facing an N×1 vector of unknown

asset payoffs f a risk-free rate r and asset prices p, maximize their mean-variance utility:

U = −E

[
−ρq′(f − rp) +

ρ2

2
q′Σ̂q

]
. (1)

where q is the N × 1 vector of quantities of each asset the investor decides to hold and Σ̂ is the

uncertainty about payoffs that investors face after they learn.3 When portfolios are chosen in

period 2, the expectation E is conditional on the realization of the signals the investor has chosen

to see. When signals are chosen at time 1, the investor does not know what the realizations of these

signals will be. Therefore, in period 1, the investor has the same objective, except that expectation

E conditions only on information in prior beliefs. This utility function comes from an exponential
3A technical appendix, posted on the authors’ websites, discusses the foundations for this utility formulation in

detail. The results do not depend on the existence of a risk-free asset. Suppose investors can consume c1 at the
investment date and c2 when asset payoffs are realized. If preferences are defined over rc1 + c2, where r is the
rate of time preference, the solution will be identical. The earlier consumption choice takes the place of the riskless
investment choice.
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form of utility over terminal wealth. Terminal wealth equals initial wealth W0, plus the profit

earned from portfolio investments:

W = rW0 + q′(f − pr) (2)

Initial information Two countries, home and foreign, have an equal-sized continuum of in-

vestors, whose preferences are identical. Investors are endowed with prior beliefs about a vector of

asset payoffs f . Each investor’s prior belief is an unbiased, independent draw from a normal distri-

bution, whose variance depends on where the investor resides. Home prior beliefs are µ ∼ N(f, Σ).

Foreign prior beliefs are distributed µ? ∼ N(f,Σ?). Home investors have lower-variance prior

beliefs for home assets and foreign investors have lower-variance beliefs for foreign assets. One

interpretation is that each investor gets a free signal about each asset in his home country. We will

call this initial difference in variances a group’s information advantage.

Information acquisition For intuition, think of each investor as an econometrician who knows

the true payoff’s mean and variance of asset payoffs f . The only unknown is the realization of

those payoffs, which is what the investor can learn about. He can acquire additional data to form

a more accurate payoff estimate µ̂. The investor chooses what assets to collect data on, subject to

a constraint on the total amount of data. Collecting more data on one asset reduces the standard

error of his estimate for that asset’s payoff. The posterior variance is that standard error, squared.

At time 2, each investor will observe an N × 1 vector of signals η about the vector of asset

payoffs f . At time 1, investors choose what kind of signals to acquire. They don’t choose whether

signals will contain good or bad news. Rather, they choose signals that will contain more precise

information about some assets than others. In other words, they choose a variance Ση such that

η ∼ N(f, Ση). Each investor’s signal is independent of the signals drawn by other investors.

When payoffs co-vary, obtaining a signal about one asset’s payoff is informative about other

payoffs. To describe what a signal is about, it is useful to decompose asset payoff risk into orthogonal

risk factors and the risk of each factor. This decomposition breaks the prior variance-covariance

matrix Σ up into a diagonal eigenvalue matrix Λ, and an eigenvector matrix Γ: Σ = ΓΛΓ′. The

Λi’s are the variances of each risk factor i. The ith column of Γ (denoted Γi) gives the loadings

of each asset on the ith risk factor. To make aggregation tractable, we assume that home and
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foreign prior variances Σ and Σ? have the same eigenvectors, but different eigenvalues. In other

words, home and foreign investors use their capacity to reduce different initial levels of uncertainty

about the same set of risks. This assumption implies that investors observe signals (Γ′η) about

risk factor payoffs (Γ′f). Learning about risk factors (principal components analysis) has long

been used in financial research and among practitioners. It approximates risk categories investors

might study: country risk, business cycle risk, industry, regional, and firm-specific risk. Nothing

prevents investors from learning about many risk factors. The only thing this rules out is signals

with correlated information about independent risks.

Choosing how much to learn about each risk factor is equivalent to choosing the variance of

each entry of the N-dimensional signal vector Γ′η. Since the signal is unbiased, its mean is Γ′f . The

variance of a principal component is its eigenvalue. So, reducing uncertainty about the ith risk factor

means choosing a smaller ith eigenvalue of the signal variance-covariance matrix Ση. Signals about

the payoffs of all assets that load on risk factor i become more accurate. With Bayesian updating,

each Ση results in a unique posterior variance matrix that measures the investor’s uncertainty about

asset payoffs, after incorporating what he learned. Since the mapping between signal choices and

posteriors is unique, information choice is the same as choosing posterior variance, without loss of

generality. Since sums, products and inverses of prior and signal variance matrices have eigenvectors

Γ, posterior beliefs will as well. Denoting posterior beliefs with a hat, Σ̂ = ΓΛ̂Γ′, where Γ is given

and the diagonal eigenvalue matrix Λ̂ is the choice variable. The decrease in risk factor i’s posterior

variance (Λi − Λ̂i) measures the decrease in uncertainty achieved through learning.

There are 2 constraints governing how the investor can choose his signals about risk factors. The

first is the capacity constraint ; it limits the quantity of information investors can observe. Grossman

and Stiglitz (1980) used the ratio of variances of prior and posterior beliefs to measure the ‘quality of

information’ about one risky asset. We generalize the metric to a multi-signal setting by bounding

the ratio of the generalized prior variance to the generalized posterior variance, |Σ̂| ≥ 1
K |Σ|, where

generalized variance is a term that refers to the determinant of the variance-covariance matrix.

Capacity K ≥ 1 measures how much an investor can decrease the uncertainty he faces. For now,

K is the same for all investors. Since determinants are a product of eigenvalues, the capacity

constraint is
∏

i

Λ̂i ≥ 1
K

∏

i

Λi. (3)
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The second constraint is the no negative learning constraint : the investor cannot choose to

increase uncertainty (forget information) about some risks to free up more capacity to decrease

uncertainty about other risks. We rule this out by requiring the variance-covariance matrix of the

signal vector Ση = ΓΛηΓ′, to be positive semi-definite. Since a matrix is positive semi-definite when

all its eigenvalues are positive, the constraint is:

Ληi ≥ 0 ∀ i. (4)

Comments on the learning technology The structure we put on the learning problem keeps

it as simple as possible. But many of these assumptions can be relaxed. First, our results do not

hinge on the assumption that investors learn about principal components of asset payoffs. Investors

specialize in what they know well, for any arbitrary risk factor structure. Second, our framework

can incorporate heterogeneous capacity (see section 4.3). Third, allowing agents to choose how

much capacity to acquire does not change the results. Any cost function increasing in K has

an equivalent capacity endowment that produces identical portfolio outcomes. Finally, a learning

technology with diminishing returns and un-learnable risk will moderate, but not overturn, our

results. Instead of specializing in one risk, investors may learn about a limited set of risks. But

it does not change the conclusion that investors prefer to learn about what they already have an

advantage in.4

It is not true that every capacity constraint preserves specialization. We use this one because it

is a common distance measure in econometrics (a log likelihood ratio) and in statistics (a Kullback-

Liebler distance); it is a bound on entropy reduction, an information measure with a long history in

information theory (Shannon 1948); it can be interpreted as a technology for reducing measurement

error (Hansen and Sargent 2001); it is a measure of information complexity (Cover and Thomas

1991); it has been used to forecast foreign exchange returns (Glodjo and Harvey 1995), and it has

been used to describe limited information processing ability in economic settings by (Sims 2003).5

Although we do not prove this is the correct learning technology, our strategy is to work out its

predictions for international investment choices and ask whether they are consistent with the data.
4A proof of the first, third and final claims can be found in the technical appendix, posted on the authors’ websites.
5 This learning technology is also used in models of rational inattention. However, that work has focused on time-

series phenomena in representative investor models such as delayed response to shocks, inertia, time to digest, and
consumption smoothing. See e.g. Sims (2003) and Moscarini (2004). Instead, we focus on the strategic interactions
and heterogeneity of individuals’ learning choices.

7



Updating beliefs When investors’ portfolios are fixed (section 2), what investors learn does not

affect the market price. But when asset demand responds to observed information (section 3), the

market price is an additional noisy signal of this aggregated information. Using their prior beliefs,

their chosen signals, and information contained in prices, investors form posterior beliefs about

asset payoffs, using Bayes’ law.

The information in prices depends on portfolio choices. Appendix A.3 shows that prices are

linear functions of the true asset payoffs such that (rp−A) ∼ N(f, Σp), for some constant A.

An investor j’s posterior belief about the asset payoff f , conditional on a prior belief µj , signal

ηj ∼ N(f, Σj
η), and prices, is formed using Bayesian updating. The posterior mean is a weighted

average of the prior, the signal and price information, while the posterior variance is a harmonic

mean of the prior, signal, and price variances:

µ̂j ≡ E[f |µj , ηj , p] =
(
(Σj)−1 + (Σj

η)
−1 + Σ−1

p

)−1 (
(Σj)−1µj + (Σj

η)
−1ηj + Σ−1

p (rp−A)
)

(5)

Σ̂j ≡ V [f |µj , ηj , p] =
(
(Σj)−1 + (Σj

η)
−1 + Σ−1

p

)−1
. (6)

We emphasize that acquiring information ((Σj
η)−1 > 0) always reduces posterior variance. This

might appear puzzling because in an econometric setting, new data can make us revise our variance

estimates upward. The difference is that there is no estimation of variance in our problem. The

true variance of f is known to all investors. Rather, Σ̂ is the variance of the estimate of f . It is

a measure of uncertainty, not of volatility. Under Bayes’ law with normal random variables, more

information always reduces uncertainty.

Market clearing Asset prices p are determined by market clearing. The per-capita supply of

the risky asset is x̄ + x, a positive constant (x̄ > 0) plus a random (n× 1) vector with known mean

and variance, and zero covariance across assets: x ∼ N(0, σ2
xI). The reason for having a risky asset

supply is to create some noise in the price level that prevents investors from being able to perfectly

infer the private information of others. Without this noise, no information would be private, and

no incentive to learn would exist. We interpret this extra source of randomness in prices as due to

liquidity or life-cycle needs of traders. The market clears if investors’ portfolios qj sum to the asset

supply:
∫ 1
0 qjdj = x̄ + x.
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Definition of Equilibrium An equilibrium is a set of asset demands, asset prices and informa-

tion choices, such that three conditions are satisfied. First, given prior information about asset

payoffs f ∼ N(µ,Σ), each investor’s information choice Λ̂ and portfolio choice q maximize (1),

subject to capacity (3), no-negative-learning (4) and budget constraints (2). Second, asset prices

are set such that the asset market clears. Third, beliefs are updated, using Bayes’ law: (5) and (6)

and expectations are rational: Period-1 beliefs about the portfolio q are consistent with the true

distribution of the optimal q.

2 Why Might Asymmetric Information Disappear?

Returns to specialization come from the interaction of the investment choice and the learning choice.

To highlight the importance of this interaction, we first explore a model where it is shut down. The

only difference with the model in section 3 is that investors do not account for the fact that what

they learn will influence the portfolio they hold. They choose what to learn, in order to minimize

the risk of a portfolio that they take as given. In this setting, investors learn exclusively about

the most uncertain assets until either they run out of capacity, or are equally uncertain about all

assets. Learning undoes information asymmetry and reduces or eliminates home bias. As Karen

Lewis (1999) put it, “Greater uncertainty about foreign returns may induce the investor to pay

more attention to the data and allocate more of his wealth to foreign equities.” This section explains

the basis for her criticism. The next section exposes its logical flaw.

A Model without Increasing Returns to Information In order to shut down the investment-

learning interaction, suppose the investor takes the vector of asset holdings q as given, when choosing

what to learn. Define the amount of risk factor i that an investor holds in his portfolio as q̃i = Γ′iq.

Then the objective (1) collapses to choosing Λ̂i’s to minimize
∑

i q̃
2
i Λ̂i, subject to the capacity

constraint (3) and the no-forgetting constraint Λi − Λ̂i ≥ 0 ∀i. The following result shows that

learning undoes initial information asymmetry.6

Proposition 1. If an investor has an informational advantage in one risk factor Λi < Λj ∀j, then

with sufficient information capacity K ≥ K∗, the investor will choose the same posterior variance

that he would choose if his advantage was in any other risk factor: Λk < Λj ∀j for some k 6= i.

6The proofs of this and all subsequent propositions are in appendix A.
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Figure 1: Allocation of information capacity for a low and high-capacity investor.
The lightly shaded area represents the amount of capacity allocated to the factor. The dark area represents the size of the
information advantage. The unfilled part of each bin represents the posterior variance of the risk factor Λ̂i. With high capacity,
adding the dark block to either bin would result in the ‘water level’ Λ̂−1 being the same for both risk factors. This is the case
where initial information advantages are undone by learning.

The top two panels of figure 1 illustrate this corollary. The brick and water picture is a metaphor

for how information capacity (the water) is diverted to other risks when an investors have an initial

information advantage (the brick). There is a home and foreign risk factor (h, f); the two bins are

equally deep because both risks are equally valuable to learn about (q̃h = q̃f ). Giving an investor

a home (foreign) information advantage is like placing a brick in the left (right) side of the box.

When capacity is high, a brick placed on either side will raise the water level on both sides equally.

Having an initial advantage in home or foreign risk will result in the same the same posterior

variances for both assets. Learning choices compensate for initial information advantage in such a

way as to render the nature of the initial advantage irrelevant. Any home bias that might result

from the information advantage disappears when investors can learn.

The bottom panels of figure 1 illustrate low-capacity allocations. The investor would like the

water level (his posterior precision) to be the same in both bins, but there is insufficient water

(capacity). The no-forgetting constraint prevents him from breaking up the brick to level the

water. He cannot equalize home and foreign uncertainty. The constrained optimum is to devote

all capacity to the most uncertain risk. For a home investor with an initial advantage in the home

risk factor, this means she should use all capacity to learn about the foreign risk factor.

Mechanisms to Preserve Information Advantages Initial information advantages could per-

sist if capacity were low relative to the initial advantage (as in the bottom panels of figure 1).
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However, if this explanation were true, then individuals would never choose to learn about home

assets; they would devote what little information capacity they had entirely to learning about for-

eign assets. This implication is inconsistent with the multi-billion-dollar industry that analyzes

U.S. stocks, produces reports on the U.S. economy, manages portfolios of U.S. assets, and then sells

their products to American investors.

A second candidate explanation is that investors have a harder time processing information

about foreign assets. The observed 76% home bias implies that Americans hold 7.3 times more

U.S. than foreign equity. To explain this requires foreign information to be 7.3 times the price of

home information. (See appendix A.2 for derivation.) This is out of line with the market price of

foreign information. First, English versions of financial newspapers from Germany, France, Spain,

Italy and the UK are inexpensive and easy to access. Second, average salaries for translators are

typically 25% less than for financial analysts.7 If producing home information required one analyst,

and producing foreign information required one analyst and one translator, then the translator’s

salary would have to be 6.3 times the analyst’s. Agency problems and legal/accounting differences

add costs, but the costs must be large. This explanation is also inconsistent with local bias and

underdiversified foreign investment (section 4.1).

3 Main Results

The previous section showed that sustaining information asymmetry, without considering the inter-

action between learning and investment choices, is an uphill battle. This section analyzes a model

where small asymmetries in investors’ information not only persist, but are magnified. The only

change in the setup is that investors do not take their asset demand, or the asset demand of other

investors, to be fixed. Instead, we apply rational expectations: every investor takes into account

that every portfolio in the market depends on what each investor learns. We conclude that home

investors can learn foreign information, but choose not to. They make more profit from specializing

in what they already know.

The Period-2 Portfolio Problem We solve the model using backward induction, starting with

the optimal portfolio decision, taking information choices as given. Given posterior mean µ̂j and
7Average salary figures from PayScale.com for New York state. In other states such as Illinois, Florida and Texas,

translators are paid only 40-60% of the salary of financial analysts.
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variance Σ̂j of asset payoffs, the portfolio for investor j, from either country, is

qj =
1
ρ
(Σ̂j)−1(µ̂j − pr). (7)

Aggregating these asset demand across investors and imposing the market clearing condition de-

livers a solution for the equilibrium asset price level that is linear in the asset payoff f and the

unexpected component of asset supply x: p = 1
r (A + f + Cx). Appendix A.3 derives formulas for

A and C.

The Optimal Learning Problem In period 1, the investor chooses information to maximize

expected utility. In order to impose rational expectations, we substitute the equilibrium asset

demand (7), into expected utility (1). Combining terms yields

U = E

[
1
2
(µ̂j − pr)′(Σ̂j)−1(µ̂j − pr)|µ,Σ

]
. (8)

At time 1, (µ̂j − pr) is a normal variable, with mean (−A) and variance Σp − Σ̂j .8 Thus, expected

utility is the mean of a chi-square. Using the fact that the choice variable Λ̂ is a diagonal matrix,

that Σ̂ = ΓΛ̂Γ′, the formula for A (18), and the formula for the mean of a chi-square, we can rewrite

the period-1 objective as:

max
Λ̂j

∑

i

(
Λpi + (ρΓ′ix̄Λ̂a

i )
2
)

(Λ̂j
i )
−1 s.t. (3) and (4) (9)

where Λpi is the ith eigenvalue of Σp, and Λ̂a
i = (

∫
j(Λ̂

j)−1)−1 is the posterior variance of risk factor

i of a hypothetical investor whose posterior belief precision is the average of all investors’ precisions.

The key feature of the learning problem (9) is its convexity in the posterior variance (Λ̂j). In

a 2-risk factor setting, the objective is U = L1/Λ̂1 + L2/Λ̂2, for positive scalars L1, L2. Thus, an

indifference curve is Λ̂2 = L2Λ̂1/(U Λ̂1 − L1), which asymptotes to ∞ at Λ̂1 = L1/U > 0. The

capacity constraint is Λ̂2 = K/Λ̂1, which asymptotes to ∞ at Λ̂1 = 0. Because the indifference

curve is always crossing the capacity constraint from below, the solution is always a corner solution.

Figure 2 plots the indifference curve (for L1 = L2), the capacity constraint, and the no-negative

8To derive this variance, note that var(µ̂|µ) = Σ− bΣ, that var(pr|µ) = Σ + Σp, and that cov(µ̂, pr) = Σ.
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learning bounds for our model (left panel) and the exogenous-portfolio model in section 2 (right

panel).
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Figure 2: Objective and constraints in the optimal learning problem with 2 risk factors.

Utility increases as the indifference curve (dark line) moves toward the origin (variance falls). All

feasible learning choices must lie on or above the capacity constraint (lighter line). The no-negative

learning constraint further prohibits posterior variances from exceeding prior variances (dashed

lines). The set of learning choices that satisfy both constraints is the shaded set. Whenever foreign

prior variance is higher than home prior variance, the solution in our model (the large dot in the left

panel) is to devote all capacity to reducing home asset risk. In the section 2 model (right panel),

the objective is linear and the optimum is to reduce variance on home and foreign assets. The right

panel shows why shutting down the information-portfolio interaction reverses our main conclusion.

Proposition 2. Optimal Information Acquisition. Each investor j uses all capacity to learn

about one linear combination of asset payoffs. The linear combination is the payoff of risk factor i

f ′Γi associated with the highest value of the learning index: Λ̂a
i

Λj
i

ρ2(Γ′ix̄)2Λ̂a
i + Λpi

Λj
i

.

Three features make a particular risk factor i desirable to learn about. First, since information

has increasing returns, the investor gains more from learning about a risk that is abundant (high

(Γ′ix̄)2). Second, the investor should learn about a risk factor that the average investor is uncertain

about (high Λ̂a
i ). These risks have prices that reveal less information (high Λpi), and higher returns:

Γ′iE[f − pr] = ρΛ̂a
i Γ
′
ix̄. (See appendix A.3 for definitions of Λ̂a, Λp and expected returns.) Third,

and most importantly for the point of the paper, the investor should learn about risk factors that

he has an initial advantage in, relative to the average investor (high Λ̂a
i /Λi). Since these are the
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assets he will expect to hold more of, these are more valuable to learn about.

The feedback effects of learning and investing can be seen in the learning index. The amount

of a risk factor that an investor j expects to hold, based on his prior information, is the factor’s

expected return, divided by its prior variance: (Λj
i )
−1ρΛ̂a

i Γ
′
ix̄. This expected portfolio holding

shows up in the learning index formula, indicating that a higher expected portfolio share increases

the value of learning about the risk. Expecting to learn more about the risk lowers the posterior

variance Λ̂j
i . Re-computing the expected portfolio with variance Λ̂, instead of Λ, further increases

factor i’s portfolio share, and feeds back to increase i’s learning index. This interaction between the

learning choice and the portfolio choice, an endogenous feature of the model, generates increasing

returns to specialization.

Aggregate Learning Patterns Learning is a strategic substitute. Because other investors’

learning lowers the Λ̂a
i and Λpi for the risks they learn about, each investor prefers to learn about

risks that others do not learn. This Nash equilibrium could be reached by an iterative choice process.

The first investor begins by learning about the risk with the highest learning index. Suppose there

is another risk factor l whose learning index is not far below that of i. Then the fall in Λ̂a
i , brought

on by some investors learning about i will cause other investors to prefer learning about l. If all

home investors are ex-ante identical, they will be indifferent between learning about any of the

risks that any home investor learns about. Foreign investors will also be indifferent between any of

the foreign risks that are learned about.

Although investors may be indifferent between specializing in any one of many risk factors, the

aggregate allocation of capacity is unique. The number of home and foreign risk factors learned

about in each country depends on country-wide capacity. Despite the fact that many risk factors

are potentially being learned about in equilibrium, each investor learns about only one factor.

Learning and Information Asymmetry A special case of our model is one where home and

foreign countries are perfectly symmetric: They have an equal number of risk factors of equal size,

with equal payoff variances. In this case, home investors will learn exclusively about home risks

and foreign investors will learn exclusively about foreign risks. This result follows directly from the

learning index in proposition 2. An investor with no information advantage would have identical

learning indices for home and foreign risks. Thus, he would be indifferent between learning about

14



home and foreign risks. Since investors with no information advantage are indifferent, any initial

advantage in home risk i (lower Λj
i ) breaks that indifference, tilts preferences toward learning more

about home risk and amplifies the initial advantage.

The model’s predictions are much richer than this symmetric special case. To describe the

general result, we need some new notation. Let Λh, Λf , Λ̂h and Λ̂f be N/2-by-N/2 diagonal matrices

that lie on the diagonal quadrants of the prior and posterior belief matrices: Λ = [Λh0; 0Λf ]

and Λ̂ = [Λ̂h0; 0Λ̂f ]. And, let the ? superscript on each of these matrices denotes foreign belief

counterparts. Then, for example, Λf represents home investors’ prior uncertainty about foreign

risk factors and Λ̂?
h represents foreigners’ posterior uncertainty about home risks.

Proposition 3. Learning Amplifies Information Asymmetry. Learning will amplify initial

differences in prior beliefs for every pair of home and foreign investors: |Λ̂?
h|

|Λ̂h|
≥ |Λ?

h|
|Λh| and |Λ̂f |

|Λ̂?
f |
≥ |Λf |

|Λ?
f | .

The effect of an initial information advantage on a learning is similar to the effect of a compara-

tive advantage on trade. Home investors always have a higher learning index than foreigners do for

home risks, and vice-versa for foreign risks. If home risks are particularly valuable to learn about,

for example because those risks are large (high Γ′ix̄), some foreigners may choose to learn about

them. But, if home risks are valuable to learn about, all home investors will specialize in them.

Likewise, if some home investors learn about foreign risks, then all foreigners must be specializing

in foreign risks as well. The one pattern the model rules out is that home investors learn about

foreign risk and foreigners learn about home risk. This is analogous to the principle of comparative

advantage: If country A has an advantage in producing apples and country B an advantage in

bananas, the one production pattern that is not possible is that country A produces bananas and

B apples. Investors never make up for their initial information asymmetry by each learning about

the others’ advantage. Instead, posterior beliefs diverge, relative to priors; information asymmetry

is amplified.

The more asymmetric the markets, the smaller the amplification. Consider an extreme case

where the home market is much smaller than foreign. All investors could learn about foreign risk

factors. The ratio of home and foreign investors’ posterior precisions will then be the same as the

ratio of their prior precisions. The initial advantage will just be preserved.
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Home Bias in Investors’ Portfolios To explore the effect of learning on home bias, we compare

our model’s predictions to two benchmark portfolios. The first portfolio is one with no information

advantage and no capacity to learn. Home investors and foreign investors have identical beliefs and

hold identical portfolios, which depend on the random asset supply. The expected portfolio is the

per capita expected supply: E[qno adv] = x̄.

A second natural benchmark portfolio is one where investors have initial information advantages,

but no capacity (K = 1) to acquire signals and do not learn through prices. For example, this is the

kind of information advantage that Ahearne et al. (2004) capture when they estimate the home bias

that uncertainty about foreign accounting standards could generate. E[qno learn] = ΓΛ−1ΛaΓ′x̄,

where Λa is the average investor’s prior variance.

Specialization in learning does not imply that the investors hold exclusively home assets. They

still exploit gains from diversification. Each investor’s portfolio takes the world market portfolio

(x̄) and tilts it towards the assets i that he knows more about than the average investor (high

Λ̂−1
i Λ̂a

i ). The optimal expected portfolio with learning is

E[q] = ΓΛ̂−1Λ̂aΓ′x̄ (10)

Learning has two effects on an investors’ portfolio. First, it magnifies the asset position and

second, it tilts the portfolio towards the assets learned about. The first effect can be seen in (10):

Learning increases the precision of beliefs Λ̂−1 > Λ−1. Lower risk in factor i makes investors want

to take larger positions in i, positive or negative. But why should the position in home assets be a

large long position, rather than a large short one? The second effect is an equilibrium effect. The

return on an asset compensates the average investor for the amount of risk he bears Λ̂a
i . The fact

that foreign investors are investing in home assets without knowing much about them (typically

as part of a diversified portfolio), raises Λ̂a and thus the asset’s return. Home investors are being

compensated for more risk than they bear (Λ̂a
i > Λ̂j

i ). In other words, the home assets deliver high

risk-adjusted returns. High returns make a long position optimal, on average. Both the magnitude

and the general equilibrium effect increase home bias.9

9 It is possible that a highly negative signal realization on a home asset would make home investors who are
informed short that asset. Short selling is unlikely to occur on a large scale in general equilibrium. The dramatic fall
in prices from widespread shorting would signal the bad news to foreign investors, making them unwilling to take
the corresponding large long positions. Low prices would also make home investors more willing to hold home assets,
despite their low payoffs.
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The final proposition compares home bias in the optimal portfolio (10) and in the benchmark

portfolios. Let Γh be a sum of the eigenvectors in Γ which correspond to the home risk factors.

Then Γ′hq quantifies how much total home risk an investor is holding in their portfolio.

Proposition 4. Learning Increases Home Bias. The average home investor’s portfolio con-

tains at least as much of assets that load on home risk when he can learn (K > 1), than when he

cannot (K = 1): Γ′hE[q] ≥ Γ′hE[qno learn] > Γ′hE[qno adv].

4 Bringing the Theory to Data

Recently, there has been an active literature documenting facts that distinguish information-based

explanations for the home bias from alternatives. For example, behavior biases such as familiarity

(Huberman 2001), loyalty (Cohen 2004), patriotism (Morse and Shive 2003), or overconfidence

(Graham, Harvey and Huang 2006), incentives to hold a portfolio similar to one’s neighbor be-

cause of preferences (Cole, Mailath and Postlewaite 2001) or relative price risk (DeMarzo, Kaniel

and Kremer 2004), would not explain differences in analyst forecast precision, out-performance of

home biased portfolios or why the investors who do invest abroad do not diversify their foreign

investments. Likewise, the idea that one can hold a diversified portfolio of global risks with mostly

American assets cannot explain related phenomena like local bias or industry bias. Our theory

offers a parsimonious explanation for these facts and others. Rather than adding new facts, this

section taps in to the existing empirical literature and connects the theory to the evidence, qual-

itatively and quantitatively (sections 4.1 and 4.2). It also reconciles existing facts that appear to

be at odds with an information explanation (section 4.3) and offers new predictions that can guide

future empirical work (section 4.4).

4.1 Facts That Support Model Predictions

Direct Evidence of Information Asymmetry Bae, Stulz and Tan (2005) measure information

asymmetry and link it to home bias. They show that home analysts in 32 countries make more

precise earnings forecasts for home stocks than foreign analysts do. On average, the increase in

precision is 8%. Furthermore, the size of the home analyst advantage is related to home bias.

When local analysts’ forecasts are more precise relative to foreigners’ forecasts (more information
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asymmetry), foreign investors hold less of that country’s assets.

Guiso and Jappelli (2006) examine survey data on the time customers of a leading Italian bank

spend acquiring financial information. Those who spend more time on information collection hold

portfolios that are less diversified and earn significantly higher returns.

Local Bias Home bias is not just a country-level effect. Investors also favor local assets, head-

quartered near their home, over firms in the same country located further away (Coval and

Moskowitz 2001). A unified explanation for home and local bias is something that many the-

ories cannot provide. Their coexistence makes an information-based explanation more appealing

than explanations rooted in exchange rate risk, institutional difference, or language barriers. Malloy

(2005) offers direct evidence that local analysts do in fact have information advantages. He shows

that local analysts’ forecasts better predict stock returns and that they earn abnormal returns on

their local assets. By giving investors slightly more precise initial information about local assets,

this model can explain the local bias.

Suppose that home investors each had an advantage in only one home risk factor, the one most

concentrated in their region’s asset. An investor j from region m draws an independent prior belief

µj ∼ N(f, Σm), where Σm = ΓΛmΓ, and Λm has a mth diagonal entry that was lower than the

mth diagonal in the beliefs of any other region. In this model, local investors have an incentive

to learn more about their local assets, because of their initial information advantage (proposition

2). Local advantages also amplify the effects of home advantages: When fewer investors share an

advantage in the same local risk, locals have a larger advantage relative to the average investor

(higher Λ̂a
m/Λj

m). A more specialized advantage magnifies the optimal portfolio bias (E[Γ′mq] =

Λ̂a
m/Λj

m(Γ′mx̄)). Because returns to specialization increase when information advantages are more

concentrated, investors diversify less. We illustrate this amplification effect in section 4.2.

Industry Bias One source of prior information advantages could be one’s industry. If so, in-

vestors should reinforce that information asymmetry by learning more about that industry and

investing more in it. Massa and Simonov (2006) confirm this prediction. They show that Swedish

investors buy assets closely related to their non-financial income. Two facts suggest that this be-

havior is not a bias, but is information-driven. First, when an investor changes industries, the

industry concentration of his portfolio declines. This is consistent because information takes time

18



to accumulate. Second, “familiarity-based” portfolios yield higher returns than diversified ones.

Another source of prior information is one’s classmates. Cohen, Frazzini and Malloy (2007) find

that fund managers over-invest in firms run by their former classmates and make excess returns on

those investments. This is consistent with an initial information advantage acquired in school.

Under-diversified Foreign Investment Patriotism, exchange rate risk, coordination motives,

or the ability of home assets to span most global risks, do not explain concentration within the

foreign component of home investors’ portfolios. The part of a portfolio invested in any given

foreign country should therefore be diversified. Kang and Stulz (1997) show that this is not the

case. Using data on foreign investors in Japan, they show that foreigners’ portfolios of Japanese

assets overweight large firms and assets whose returns correlate highly with aggregate risk.

This pattern is consistent with the model. Suppose than an American investor chooses to learn

about and invest in Japanese assets. Holding equal the average uncertainty (Λ̂a), noise in prices

(Λp) and American prior uncertainty (Λ) about each Japanese risk, the most valuable risk to reduce

is the one with the largest quantity (highest Γix̄ in proposition 2). In other words, the American

should learn about the largest risk factors, aggregate macroeconomic risk and the risks associated

with the largest firms. Since investors, on average, hold more of the assets they’ve learned about,

the model predicts that Americans who hold Japanese assets will not diversify their Japanese

holdings. Instead, they will overweight large, high-beta firms.

Portfolio Out-performance If transaction costs or behavioral biases are responsible for under-

diversification, then concentrated portfolios should offer no advantage. In contrast, if investors in

our model concentrate their portfolios, it is because they have informational advantages. Their

concentrated portfolios should out-perform diversified ones.10

There is empirical evidence for such out-performance. Ivkovic, Sialm and Weisbenner (2007)

find that concentrated investors outperform diversified ones by as much as 3% per year. This excess

return is even higher for investments in local stocks, where natural informational asymmetries are

most likely to be present (see also Coval and Moskowitz (2001), Massa and Simonov (2006) and

Ivkovic and Weisbenner (2005)). If fund managers have superior information about stocks in
10On-line technical appendix D proves that concentrated portfolios achieve higher expected returns. It also uses

the theory interpret measures of portfolio risk.
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particular industries, they should outperform in these industries. Kacperczyk, Sialm and Zheng

(2005) show that funds with above-median industry concentration yield an average return that is

1.1% per year higher than those with below-median concentration.

The model also predicts that home investors should out-perform foreign investors on home

assets. Choe, Kho and Stulz (2004) document home asset outperformance by Korean investors.

While one might think that this is only true for individual investors, Hau (2001) documents excess

German-asset returns for professional traders in Germany. Similarly, Shukla and van Inwegen

(1995) document that US mutual funds earn higher returns on US assets than UK funds do.

Dvorak (2007) argues that Indonesian investors outperform foreigners on Indonesian assets, even

when that investment is intermediated by a professional.

Cross-sectional Asset Returns Investors want to learn information others do not know because

assets that many other investors learn about have high prices and low expected returns. Thus a

key falsifiable prediction of the model is its negative relationship between information and returns.

Three studies confirm this prediction. First, Botosan (1997) and Easley, Hvidkjaer and O’Hara

(2002) find that more public information lowers an asset’s return. Second, Pastor and Veronesi

(2003) find that firms with more abundant historical data offer lower returns. Finally, Greenstone,

Oyer and Vissing-Jorgenson (2006) analyze a mandatory disclosure law that changed a group of

assets from being low-information to high-information. This change should cause temporary high

returns while prices are increasing, followed by lower returns going forward. They find that between

proposal and passage of the law, prices of the most affected firms rose, producing abnormal excess

returns of 11-22%. After passage, excess returns disappeared.

4.2 Quantitative Evaluation: Is capacity large enough?

A key unobserved variable in the model is the investor’s capacity, which regulates how much he

can learn. This exercise infers capacity from estimates of portfolio out-performance. The test is:

Does this inferred level of capacity deliver observed home bias? This is a useful test because if

out-performance is strong enough to justify home bias, we need not look to behavioral explanations

or theories about complementarities or externalities. Rather, as in our theory, home bias would

be rationalized by profit-maximization. Before proceeding with the main exercise, we first explore

how two model assumptions affect the optimal degree of home bias: asset correlation and local
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information.

Two countries have 1000 identical investors each. The 5 home and 5 foreign assets are all

uncorrelated. Foreigners start out α times more uncertain about home risks (1 + α)Λh = Λ?
h, and

home investors are α times more uncertain about foreign risks Λf = (1+α)Λ?
f . We consider a 10%

information advantage (α = 0.1). Risk aversion is ρ = 2. The supply of each asset has mean x̄

=100 and standard deviation 10. Expected payoffs for home and foreign assets are equal. They

are equally spaced between 1 and 2. The mean of the average investor’s prior belief is the asset’s

true payoff. The standard deviation of prior beliefs is between 15-30%, such that all assets have

the same prior expected payoff to standard deviation ratio. To explore various levels of capacity,

we transform K into a more intuitive measure: K̃ = 1−K−1/2 is how much an investor can reduce

the standard deviation of one asset through learning. Following convention, home bias is

home bias = 1− 1− share of home asset in home portfolio

share of foreign assets in world portfolio
. (11)

In this example, as in the data, the share of foreign assets in the world portfolio is 0.5. In a world

where there is no initial information advantage and no learning capacity, home bias is zero. We

use an economy with an initial information advantage, but no learning capacity as a benchmark.

A 10% initial information advantage by itself generates a 5.3% home bias.

Asset Correlation Increases Home Bias With uncorrelated assets, a home investor acquires

information about one home asset and over-weights that asset in his portfolio. When capacity can

eliminate 22% of the standard deviation in one asset (K̃ = .22), home bias is 10%, almost double

its no-learning level. When K̃ = .70, home bias is 45%, more than eight times larger than the home

bias without learning.

Moderate correlation increases home bias because several home assets load on the one risk factor

the investor learns about. When the investor has better information about more home assets, he

tilts his portfolio more towards home risk.

When home assets are positively correlated with each other, and foreign assets are positively

correlated with each other (correlations of 10-30%), but the two sets of assets are mutually uncor-

related, home bias doubles to 19.4% for K̃ = .22. It increases to 59.5% for K̃ = .70. (See line with

circles in figure 3.) In contrast, the no learning benchmark is unaffected (5.3%, line with diamonds).
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With K̃ = .82, home bias is 72%, just shy of the 76% observed in the data. This level of capacity is

still quite high. Two model features would lower required capacity: higher asset payoff correlation

and advantages in local risks, which we explore next.
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Figure 3: Home Bias Increases With Capacity. Assets within a country have correlated payoffs (cov= .092). Home
bias is defined in (11). The ‘no advantage’ line (stars) is an economy with no initial informational advantage and no capacity
to learn. The ‘no learning’ economy (diamonds) has a small initial information advantage (10%) and no learning capacity. The
‘learning’ line (circles) is our model. Learning capacity K varies between 1.1 and 30. The horizontal axis plots K̃, the potential
percentage reduction in the standard deviation of one asset (K̃ = 1−K−1/2).

Local Information Increases Home Bias We use the same numerical example with corre-

lated assets, except that instead of giving 1000 home (foreign) investors a 10% initial information

advantage in all 5 home (foreign) assets, we give 200 investors each a 50% advantage in one asset;

the aggregate information advantages at home and abroad are unchanged. We measure local bias

as in (11), treating localities like countries. With capacity K̃ = 0.70, local bias is 30%. The average

local investor holds 3.6 times what a diversified investor would hold, of his local asset.

Concentrating information advantages in local assets increases home bias. Without learning,

the home bias is 8%; with low capacity (K̃ = 0.22), it is 23%. With more capacity (K̃ = 0.70),

home bias is 76%. This is 16.5% more than in in the previous case and matches the 76% home bias

in the data. The underlying capacity level K that matches the home bias in the local-advantage

model is 3 times smaller than in the home country advantage model.

Inferring the level of capacity Portfolio out-performance provides clues about how much

private information investors have. Ivkovic et al. (2007) use brokerage account data to show that

individuals investors with concentrated portfolios earn 10% higher risk-adjusted annual returns on

local, non-S&P500 stocks than investors with diversified portfolios.
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To link the model to data, we equate the largest risk-factor in the home country (80% of

market capitalization) with S&P500 stocks (73% of US market capitalization). For the non-S&P

risk factors, we compare expected returns of local investors, who learn about the local asset, and

non-local investors. For the level of capacity that matches the empirical home bias (K̃ = .70), local

investors’ return on the smaller risk factors is 5% higher than what non-locals earn. The model

can match Ivkovic et al. (2007)’s 10% result for (K̃ = .75). This inference suggests that the level

of capacity required to match the home bias is not implausibly large.

Ivkovic et al. (2007) focus on non-S&P500 stocks because their informational asymmetries are

potentially the largest. They also report insignificant outperformance on the S&P assets. While

our model cannot speak to the statistical significance of their results, it does qualitatively match

the pattern of lower outperformance on larger assets. For the calibration that matches the home

bias, local investors’ return on the S&P risk factors is only 2% higher than what non-locals earn.

Returns fall on large assets because their size makes them valuable to learn about. Low average

uncertainty about the risks makes equilibrium returns and outperformance low.

4.3 Seemingly Contradictory Evidence

We discuss two facts that are inconsistent with the version of our model outlined so far. We show

that both facts can be explained if we allow for asymmetric capacity (more developed financial

analysis sectors in some countries than others).

Foreign Out-performance in Emerging Markets Using foreign investment data from Tai-

wan, Seasholes (2004) finds that foreign investors outperform the Taiwanese market, particularly

in assets that are large and highly correlated with the macroeconomy. He argues that “The re-

sults point to foreigners having better information processing abilities, especially regarding macro-

fundamentals.” This conclusion leads us to ask two questions of our model.

Question 1: If Taiwanese investors have lower capacity than Americans, might Americans invest

in Taiwanese assets and outperform the market? Recall that expected returns are determined by

Λ̂a. If Americans have more capacity, they will reduce the average posterior variance for American

assets by more: Λ̂a
hi < Λ̂a?

fi , for equally-sized home and foreign risks hi and fi. Therefore, expected

returns for US assets will be lower than for Taiwanese assets. A large enough difference in returns

will induce some Americans to invest in Taiwan and learn about Taiwan. If Americans have

23



capacity that exceeds Taiwanese capacity, and the capacity gap exceeds their initial disadvantage

in a Taiwanese risk factor, then Americans can become the best informed of any investor about

that risk factor. Being best informed, the American will out-perform the average investor in assets

that load on that factor.

Question 2: Will American excess returns be concentrated in those Taiwanese assets that load

heavily on the largest risk factors? Since section 4.1 shows that foreign investors learn about large

assets with high market covariance, these are the Taiwanese assets American should out-perform

on. Thus, an asymmetric capacity version of the model can reconcile high-capacity investors’ out-

performance at home, with their out-performance in emerging markets, for large high-beta assets.

The declining home bias The previous results imply that a rise in learning capacity K should

increase home bias. At first glance, these results seem to suggest that home bias should increase

over time. If anything, the data point to a modest decline in the U.S. home bias. However, only

a symmetric increase in capacity unambiguously increases home bias. If home investors’ capacity

increases more, returns on home assets decline. Relatively higher foreign returns may induce

some home investors to specialize in learning about and holding foreign equity. Thus, asymmetric

increases in capacity could reduce the average investor’s home bias.

Furthermore, capital flow liberalization and increases in equity listings in the last 30 years have

increased investible foreign risk factors (Bekaert, Harvey and Lundblad 2003). The investors in our

model would add these risk factors to the ‘no advantage’ part of their portfolio (x̄). This effect

would also increase in foreign equity investment and reduce home bias.

4.4 A New Direction for Estimating Information

The fact that investors’ information is inherently unobservable is a obstacle to assessing asymmetric

information theories. One approach uses proxies for investors’ information, like the precision of

earnings forecasts. But for many classes of investors, such proxies are not available. Our theory

offers another approach. It delivers information sets as equilibrium outcomes. Observable features

of assets predict information patterns, which in turn, predict observable portfolios, analyst behavior

and pricing errors. This makes for testable hypotheses. A contribution of this paper is that it brings

information-based theories to the data.

The novel part of this theory is the link it establishes between observable asset characteristics
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and the average investor’s information, through the learning index. The following algorithm could

be used to estimate learning indices: (i) Compute the eigen-decomposition (principal components)

of asset payoffs. Payoffs are the dividend paid between t and t + 1 plus the price at t + 1: ft =

dt + pt+1. Post-multiply asset prices and payoffs by the eigenvector matrix Γ, to form risk factor

prices and payoffs. Risk factor returns are (ft−rpt)Γ. (ii) Construct unconditional (prior) risk factor

Sharpe ratios: Divide each risk factor’s average return by its standard deviation. (iii) Estimate the

coefficient ΛB from a regression of risk factor prices (Γ′p) on a constant and risk factor payoffs (Γ′f)

– the risk factor counterpart to the price equation (12). Attributing the residual to asset supply

shocks, the residual variance is Λ2
Cσ2

x. One minus that regression’s R2 is Λpi/Λi for an investor

whose prior belief is based on past realizations of returns.11 (iv) Add the squared Sharpe ratio to

(1−R2) to obtain the learning index for each risk factor. (v) Pre-multiply the vector of risk factor

indices by the eigenvector matrix Γ. The resulting vector contains learning indices for each asset.

Alternatively, this procedure could be applied to countries or regions by using market indices for

prices and returns.

Learning indices could be used to test many aspects of the theory. (1) They should predict

information-related variables such as analyst coverage. (2) Countries, regions or firms with higher

learning indices should have lower returns, relative to what a standard model like the CAPM

predicts. This is because the average investor is less uncertain about an asset he learns more about

(higher learning index), and because lower uncertainty implies a lower return. When the average

investor learns more about an asset with a higher index, he reduces its risk and therefore its return.

(3) Finally, a country or region’s learning index should be related to the home bias of its residents’

portfolios. This relationship is non-monotonic. If the learning index is near zero, no one, not even

locals learn about home risk. When all investors learn about foreign risk, there is only a small

home bias that comes from initial information differences. As the home learning index grows, more

home investors specialize in home risks. Information asymmetry and home bias rise. In the limit,

as the home learning index grows very large, all investors study home risks. Again, the small home

bias comes only from the small differences in initial information. Because home bias depends on

comparative information advantage, it is strongest for an intermediate level of the learning index.
11To derive the link between the regression R2 and the learning index, manipulate (14) to get C = −ρΣa

η. Square
this equation and use (16) to get C2σ2

x = Σp. Since C2σ2
x is the unexplained sum of squares in the price regression

and Σ is the total variance in prices, the regression (1−R2) is Σ−1Σp, for assets and Λpi/Λi for risk factor i.
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5 Conclusions

Every expectations operator, every variance and every covariance is conditioned on an information

set. Therefore, every asset pricing and portfolio choice model makes assumptions about what infor-

mation agents use. Most theories employ stylized informational assumptions: complete information

about all past events and no additional information about future events. Their predictions rest

on these assumptions. While preferences have been re-examined and new risk factors have been

identified, relatively little work has explored information sets. We can’t observe information, but

we can ask what investors would observe if they had a choice. Predicting information sets on the

basis of observed features of assets circumvents the problem of unobserved information.

This paper questions the common assumption that residents have more information about their

region’s assets than do non-residents. If investors are restricted in the amount of information they

can learn about risky asset payoffs, which assets would they choose to learn about? Investors who

do not account for the effect of learning on portfolio choice, choose to undo their initial advantages.

But, investors with rational expectations reinforce informational asymmetries. Investors learn more

about risks they have an advantage in because they want their information to be very different

from what others know. Thus our main message is that information asymmetry assumptions are

defensible, but not for the reason originally thought. We do not need cross-border information

frictions. With sufficient capacity to learn, small initial information advantages can lead to a home

bias of the magnitude observed in the data.

An important assumption in our model is that every investor must process his own information.

But paying one portfolio manager to learn for many investors is efficient. How might such a setting

regenerate a home bias? Because monitoring information collection is difficult, portfolio managers

have an incentive to lie about how much research they do. Investors may want to occasionally audit

portfolio managers. Thus having a manager from the same region, with similar initial information,

is advantageous because checking the manager’s work requires less capacity. Portfolio managers

with the same initial information advantage as their clients form the same optimal portfolio as

would a client who processed information himself. This optimal portfolio is home biased.

A broader message of our paper is that investors choose to have different information sets.

Models that assume symmetric information, commonly used in finance, are subject to a criticism:

Investors have an incentive to deviate by learning information that others do not know.
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A Proofs

A.1 Proof of Proposition 1

Step 1: Derive the optimal learning strategy Claim: Optimal learning about principal compo-
nents Γ produces a posterior belief Σ̂ = ΓΛ̂Γ with eigenvalues Λ̂i = min(Λi,

1
q̃2

i
M), where M is a constant,

common to all assets.
Proof: The optimization problem is

max
Λ̂

∑

i

q̃2
i Λ̂i

s.t. Λ̂i ≤ Λi and
∏

i Λ̂i ≥
∏

i Λi
1
K , where q̃i = Γ′iq. The first-order condition for this problem is

q̃2
i − υ

1
Λ̂i

∏

i

Λ̂i + φi = 0

where υ is the Lagrange multiplier on the capacity constraint and φi is the Lagrange multiplier on the
no-negative-learning constraint for asset i. Define M = υ 1

K

∏
i Λi. The result that Λ̂i = min

{
Λi,

M
q̃2

i

}

follows from the first order condition and the no-negative learning constraint, which states that φi = 0 when
Λ̂i > Λi.

Step 2: Show that learning eliminates initial advantages If (Λi − ε)q̃2
i > M for i =

argminj(Λj − ε)q̃2
j , then the optimal learning strategy tells us that posterior beliefs Λ̂i are unaffected by

an ε reduction in the prior belief. There exists a capacity K? such that mini

(
(Λi − ε)q̃2

i

)
= M . All that

is left is to characterize K?. Since the capacity used learning about a factor j is Λj/Λ̂j) = Λj/( 1
q̃2

j
M) =

(Λj q̃
2
j )/

(
mini

(
(Λi − ε)q̃2

i

))
, the total capacity required is

K? = −
(
min

i

(
(Λi − ε)q̃2

i

))N




N∏

j=1

Λj q̃
2
j


 .

A.2 The required price of foreign information without increasing returns

Consider a setting with one home and one foreign asset, with prior variances σ2
h and σ2

f , posterior variances
σ̂2

h and σ̂2
f , and zero covariance. Replace (3) with a capacity constraint that requires ψ times more capacity

to process foreign than home information: σh/σ̂h · (σf/σ̂f )ψ ≤ K. The optimal learning choice is described
by the σ̂2

h and σ̂2
f first order conditions. Capacity permitting, an investor sets the ratio of posterior variances

to σ̂2
f/σ̂2

h = ψq2
h/q2

f . The investor’s optimal portfolio is: q? = 1/ρΣ̂−1(µ̂−pr). This implies that an investor,
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who initially expects to hold a balanced portfolio (qh = qf ) but ends up holding 7.3 times more home assets
(as in the data), must have ψ = 7.3. If home and foreign expected returns (µ̂− pr) are equal and covariance
is zero, then q?

h/q?
f = σ̂2

f/σ̂2
h.

The zero covariance assumption biases ψ downward by overestimating home bias in two ways. (1) It
makes gains to diversification large. (2) If home signals are informative about correlated foreign assets, home
bias would fall and the required cost differential would have to be even higher.

Adding an initial home advantage does not alter this required processing cost, unless the advantage alone
can account for the home bias. Of course, home bias could arise if an investor anticipated holding lots of
home assets: qh > qf . But then home bias comes not from processing costs, but from portfolio expectations.
This is the mechanism explored in section 3.

A.3 Equilibrium Asset Prices

From Admati (1985), we know that equilibrium price takes the form

rp = A + Bf + Cx where (12)

A = −ρ

(
1

ρ2σ2
x

(Σa
ηΣa′

η )−1 + (Σa
η)−1

)−1

x̄, (13)

C = −
(

1
ρ2σ2

x

(Σa
ηΣa′

η )−1 + (Σa
η)−1

)−1 (
ρI +

1
ρσ2

x

(Σa
η)−1′

)
. (14)

The matrix B is the identity matrix, because all investors have independently distributed priors. We treat
priors as though they were private signals. This assumption deviates from Admati (1985) and Van Nieuwer-
burgh and Veldkamp (2004), which assumes that investors have identical priors.

Let Σηj be the variance-covariance matrix of the private signals that investor j chooses to observe. For
future use, we define the following three precision matrices. They are derived from the above pricing function
and the definitions for A, B, and C. (Σa

η)−1 is the average precision of investors’ information advantage, plus
the average precision of the information they choose to learn. (Σp)−1 is the precision of prices as a signal
about true payoffs. (Σ̂a)−1 is the average of all investors’ posterior belief precisions, taking into account
priors, signals and prices.

(Σa
η)−1 = Γ(Λa

η)−1Γ′ =
1
2
Σ−1 +

1
2
(Σ?)−1 +

∫

j

(Σj
η)−1dj, (15)

(Σp)−1 = ΓΛ−1
p Γ′ =

1
ρ2σ2

x

(Σa
ηΣa′

η )−1, (16)

(Σ̂a)−1 = ΓΛ̂−1
a Γ′ =

1
ρ2σ2

x

(Σa
ηΣa′

η )−1 + (Σa
η)−1 (17)

We have assumed that investors choose to obtain signals about the eigenvectors Γ of the prior covariance
matrix Σ. It is easy to show that when Ση has eigenvectors Γ, the three precision matrices above also have
the same eigenvectors.

We note and later use that CC ′σ2
x = ρ2σ2

xΣa
ηΣa′

η = Σp, because C = −ρΣa
η. We also use that

− Γ′iA = ρΓ′iΣ̂
ax̄ = ρΓ′iΓΛ̂aΓ′x̄ = ρ(Γ′ix̄)Λ̂a

i , (18)

where the first equality follows from the definition of A and the definition of Σ̂a, the second equality follows
from Σ̂a = ΓΛ̂aΓ′, and the last equality follows from Γ′Γ = I.
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A.4 Proof of Proposition 2

Expected excess returns µ̂ − pr are normally distributed with mean −A and variance VER = Σp − Σ̂. The

first part of the objective is Tr
(
Σ̂−1VER

)
, which we rewrite as Tr

(
Σ̂−1ΣΣ−1(VER + Σ̂− Σ̂)

)
. This is

Tr
(
Σ̂−1ΣΣ−1(VER + Σ̂)− I

)
or Tr

(
Σ̂−1ΣΣ−1(VER + Σ̂)

)
− N . The trace is the sum of the eigenvalues.

Let yi, be the ratio of the precision of the posterior to the precision of the prior for risk i, i.e. it is the ith

eigenvalue of Σ̂−1Σ: yi ≡ Λ̂−1
i Λi. Let Xi be the ith eigenvalue of Σ−1(VER + Σ̂). Then the ith eigenvalue

of the matrix inside the trace is yiXi, and Tr
(
Σ̂−1ΣΣ−1(VER + Σ̂)

)
=

∑N
i=1 Xiyi. This is because Σ, Σ̂,

and C all share the same eigenvectors Γ. The matrix Σ−1(VER +Σ̂) = Σ−1Σp has eigenvalues Xi = ΛpiΛ−1
i .

The second part of the object function is
∑N

i=1 θ2
i yi, where θ2

i = (Γ′iA)2 Λ−1
i is the prior squared Sharpe

ratio of risk factor i. The objective is to maximize
∑N

i=1(Xi + θ2
i )yi, where Xi + θ2

i is the learning index

of risk factor i. The maximization over {yi} is subject to
∏N

i=1 yi ≤ K and yi ≥ 1 +
Λ−1

pi

Λ−1
i

. This problem
maximizes a sum subject to a product constraint. A simple variational argument shows that the maximum
is attained by maximizing the yi with the highest learning index Xi + θ2

i . The investor devotes all his ‘spare

capacity’ to learning about this risk factor i. To be more precise, he sets yj = 1 +
Λ−1

pj

Λ−1
j

, for all risk factors

j that he does not learn about, and he uses all remaining capacity to obtain a private signal on risk factor

i: yi = τ

(
1 +

Λ−1
pi

Λ−1
i

)
, where τ = K

(∏N
j=1

(
1 +

Λ−1
pj

Λ−1
j

))−1

. We endow the investor with enough capacity

such that he has spare capacity to acquire private signals after devoting capacity to learning from prices:
∏N

j=1

(
1 +

Λ−1
pj

Λ−1
j

)
< K and therefore τ > 1. For future reference define the ‘spare capacity’ of an investor

who learns about risk factor i as

K̃i =
∏

j 6=i

(
1 +

Λ−1
pj

Λ−1
j

)−1

. (19)

A.5 Proof of Proposition 3

The learning index for home risk factor i is always greater for a home investor:

Λpi

Λi
+

(Λ̂a
i )2

Λi
(Γ′ix̄)2 >

Λpi

Λ?
i

+
(Λ̂a

i )2

Λ?
i

(Γ′ix̄)2. (20)

because Λi < Λ?
i . Likewise, the learning index of a foreign risk factor j is always greater for a foreign investor:

Λpj

Λ?
j

+
(Λ̂a

j )2

Λ?
j

(Γ′j x̄)2 >
Λpj

Λj
+

(Λ̂a
j )2

Λj
(Γ′j x̄)2. (21)

because Λj > Λ?
j .

Therefore, if one foreign investor learns about a home risk factor i, then all home investors must also
be learning about i, or some other risk factor with an equally high learning index. This other risk factor
must be a home risk factor, otherwise the foreign investor would strictly prefer to learn about it. Let K̃ be
the spare capacity for a particular home risk factor (19). Since every home investor learns about that home
risk factor, then |Λ̂h| = 1

K̃
|Λ−1

h + Λ−1
p |−1 and |Λ̂f | = |Λ−1

f + Λ−1
p |−1. Since foreign investors might learn

about home risk, but might not: |Λ̂?
h| ≥ 1

K̃
|Λ?

h + Λ−1
p |−1 and since he might or might not learn about his

own foreign risk: |Λ̂?
f | ≤ |Λ?

f + Λ−1
p |−1. Since price precisions (Λ−1

p ) are constant and positive, taking ratios
of |Λ̂?

h| to |Λ̂h| and of |Λ̂f | to |Λ̂?
f | yields the result. The same argument can be made, in the case where one

or more home investors learn about foreign risks.
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A.6 Proof of Proposition 4

Symmetric risk factors From the previous proposition, we know that an investor with K > 0 will
learn about a risk factor that they have an advantage in, one of their home risk factors. Let i denote that
risk factor. Then Λ̂−1

i = KΛ−1
i . When investors can learn (K > 0), let ξi denote the fraction of home

investors that learn about home risk factor i. Then (Λ̂a
i )−1 = 1

2ξiK(Λi)−1 + 1
2 (1− ξi)(Λi)−1 + 1

2 (Λ?
i )
−1. The

product Λ̂−1
i Λ̂a

i is increasing in K because the first term is increasing proportionally and the second term
is decreasing less than proportionally in K. Using equation (10), describing the portfolio with K > 0 and
equation (??), describing the no learning portfolio (K = 0), it follows that the difference between the ith

component, Γ′i(Λ̂
−1Λ̂a − Λ−1Λa)(Γx̄) is strictly positive.

General case From the previous proposition, we know there are three situations to consider: all investors
learn about their own home assets, some home investors learn about foreign risk factors, or some foreigners
learn about home risk factors. This first case we considered in the previous paragraph. We prove the third
case here; the second one follows from the same logic.

When some foreign investors learn about home risks, all home investors must learn about home risks as
well. Every investor who learns about home risks is indifferent between learning about any home risk learned
about in equilibrium. While the extent of home bias won’t hinge on which risk factor, within a country, any
investor learns about, it simplifies our analysis to assume that each investor who learns about home risks
adopts a symmetric mixed strategy over which risks to specialize in. Let ξi (ξ?

i ) be the fraction of home
(foreign) investors who learn about home risk i. Because all home investors learn about home risks, it must
be that: ξi ≥ ξ?

i .
Define Γ′iq

ha = (Λ̂−1
i )haΛ̂aΓ′ix̄ to be the portfolio holdings of risk factor i of the average home investor

(ha). This follows from pre-multiplying both sides of equation (10) by Γ′i. Here, (Λ̂−1
i )ha = ξiK(Λi)−1 +

(1−ξi)(Λi)−1 is the average posterior precision of home investors about risk factor i. The worldwide average
precision is (Λ̂a

i )−1 = 1
2ξiK(Λi)−1 + 1

2 (1− ξi)(Λi)−1 + 1
2ξ?

i K(Λ?
i )
−1 + 1

2 (1− ξ?
i )(Λ?

i )
−1.

Consider the extreme case where all foreign investors learn about home risk factors (ξi = ξ?
i ). Then

(Λ̂−1
i )haΛ̂a

i can be shown to collapse to 2Λ̂−1
i

Λ̂−1
i +(Λ̂?

i )−1 . This expression does not depend on K. This implies

that the learning portfolio (K > 0) and the no-learning portfolio (K = 0) are identical: E[qi] = E[qno learn
i ].

In all other cases, ξi > ξ?
i . Taking a partial derivative of (Λ̂−1

i )haΛ̂a reveals that it is increasing in K. As
a result, the difference between the learning and the no-learning portfolio on risk factor i is strictly positive:
E[qi] > E[qno learn

i ].
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