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coarser patent class breakdowns in mitigating these problems. Where possible, we suggest that researchers
increase their sample sizes by aggregating years or using all of the listed patent classes on a patent,
rather than just the first.
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 Patent data have been widely used in organizational research in recent years to study 

firms’ technological innovation (e.g. Rosenkopf & Nerkar, 2001; Benner & Tushman, 2002; 

Sorenson & Stuart, 2000; Helfat, 1994; Ahuja, 2000; Ahuja & Katila, 2001), knowledge flows 

between firms (e.g. Rosenkopf & Almeida, 2003; Song, Wu, & Almeida, 2003; Mowery, Oxley, 

& Silverman, 1996), diversification (e.g. Silverman, 1999; Miller, 2004; Argyres, 1996; 

Piscitello, 2004), and technological spillovers (e.g. Jaffe, 1989; 1986; Jaffe, Trajtenberg, and 

Henderson, 1993). A common use of patent data has been to characterize firms’ technological 

positions and calculate the proximities of firms in technological space (e.g. Jaffe, 1986; 1989; 

Stuart & Podolny, 1996; Rosenkopf & Almeida, 2003).   

This research frequently makes use of one of two approaches for measuring proximity.  

First, researchers use the 3-digit patent classifications listed on each firm’s patents, provided by 

the U.S. Patent and Trademark Office (USPTO).  The distribution of patents across classes is 

taken to characterize a firms’ location in knowledge space, and the distance between firms’ 

technological resources is frequently assessed by calculating the distance between vectors of 

patent class listings (e.g. Jaffe, 1986; Ahuja, 2000; Song, Almeida & Wu, 2004). Two firms are 

close if they tend to patent in the same technological domains, that is, if their shares of patents in 

various patent classes are similar.  Second, researchers use measures of overlap in patent 

citations between firms (Stuart & Podolny, 1996; Mowery, Oxley, & Silverman, 1996). 

The increasing use of patent data in strategy and technology research has given rise to a 

need to better understand the accuracy and appropriate use of such data.  In this paper we explore 

the bias and imprecision of estimates of various measures of proximity between firms when the 

measures are calculated on small samples.  We start with firms holding large patent portfolios, 

allowing us to estimate their distances relatively accurately from the large number of patents in 
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their full samples.  We then compute inter-firm distance measures based on random samples of 

the patent classes listed on each firm’s patents.  The resulting proximity measures are random 

variables, and the apparent distance between two firms depends on the samples drawn.  To 

evaluate the performance of estimates of proximity measures based on, say, 25 patent class 

listings per firm, we calculate measures repeatedly using different random samples of the firms’ 

listings, a process known as “bootstrap sampling.”  This method, which has seen increasing use 

in social science recently, allows us to examine properties of estimators empirically even when – 

as is the case here – analytical derivations would be tedious or difficult.  The resulting empirical 

distribution of proximity measures shows how estimators of proximity perform, in bias and 

precision, relative to the full-sample values.  We perform this exercise for increasingly large 

sample sizes, from 25 to 5000, to allow us to compare how bias and precision improve with 

larger samples.  

The main result in this paper is that for sample sizes commonly employed in the 

literature, patent-based proximity measures have substantial bias and imprecision.  Using larger 

samples of patents or patent class listings, aggregating data across years, or aggregating to 

coarser groupings of patent classifications can mitigate some of these problems.   

Our paper joins recent studies, including Alcacer and Gittleman (2006) and Fogarty, Jaffe 

and Trajtenberg (2000) in providing insight into current practice and caveats associated with the 

use of patent data. We are interested in better understanding the consequences for typical uses of 

proximity measures based on patent data. Our goal is to guide future research using patent data 

by outlining the conditions under which bias and precision issues might emerge. To the extent 

the potential for these issues can be recognized and mitigated, patent information can become 

even more reliable and valuable in research. 
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 We proceed in four sections.  Section 1 provides background on the USPTO’s patent 

classification system along with a discussion of the methods for measuring proximity among 

firms.  Section 2 describes the data used in this study, a sample of 118,350 photography-related 

patents granted to firms in the photography industry between 1980 and 2000 that includes all the 

patent classifications listed for each patent.  Section 3 presents results, and we present our 

conclusions in Section 4. 

 

I. Patent Classifications  

 The USPTO’s patent classification system, comprising over 400 3-digit (main) patent 

classes in addition to over 120,000 nested subclasses, is designed to facilitate the storage and 

retrieval of patent documents to “assist patent examiners performing patentability searches” for 

related claims in prior patents (USPTO Handbook of Classification, 2006). Unlike taxonomies 

such as SIC or NAICS codes that organize industries hierarchically so that digits convey 

information about industries’ relatedness, patent classes were devised as a filing system.  While 

patents within a particular patent class are related to one another, patents in numerically adjacent 

patent classes are not necessarily more related to one another than are patents in distant classes. 

 Each patent document must be classified by a patent examiner into one “Original 

Classification” or “OR,” which is the first patent class listed on the patent document.  There can 

be only one OR, even if the “claims”1 on a patent or information about the invention could easily 

be assigned to multiple different 3-digit patent classes.  The USPTO’s Patent Classification 

                                                 
1 The specific ways the current invention represents an advance over prior art. 
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Office has extensive rules for determining the OR, selected to correspond to the “controlling 

claim” in the patent information.2   

 Patents can list additional patent classes beyond the OR, called “cross-reference 

classifications” or XRs.  These are “mandatory” when there is information about the invention 

(claimed or unclaimed) in the patent that pertains to a different 3-digit patent class.  Patents can 

also include “discretionary” XRs if the examiner deems them useful for searching for the 

information on the patent – the information in this case is not part of the specific information 

about the invention (USPTO, Patent Examiner’s Handbook).3   Thus a patent document may list 

several different 3-digit patent classes.  In our sample, discussed in greater detail below, patents 

contained as many as – in one case – 130 patent class listings, with an average of four patent 

classes. This ratio is not unusual. 

Although most patents are classified into more than one 3-digit patent class, with a few 

exceptions (Fleming & Sorenson, 2001; 2004; Benner & Tushman, 2002), the research that has 

utilized patent class information includes only the first patent class listed for each patent and 

ignores the subsequent listed patent classes. The NBER patent data file, which is easily available 

and widely used by researchers, also includes only the first listed patent class, termed the 

“original 3-digit patent class” (Hall, Jaffe, & Trajtenberg, 2001).4 

Utilizing only the first listed patent class in research on technology and innovation relies 

on an (often unstated) assumption that the first classes are representative of the underlying 

technological domain of a firm. Yet a review of the USPTO’s stated process for selecting the 

                                                 
2 In Appendix 1, we have included the detailed hierarchy of rules from the Patent Examiners’ Handbook for 
determining the controlling claim and corresponding OR. 
3At this time there is no way for users of patent data to determine which classes are mandatory or discretionary.    
4 Hall, Jaffe, and Trajtenberg (2001) argue: “For the vast majority of uses one is likely to resort only to the original, 
3-digit patent class, and hence we include only it in the PAT63_99 file.”  The NBER patent data are available at 
http://www.nber.org/patents/.  
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Original Classification suggests that a patent’s (or correspondingly, a firm’s) full technological 

breadth may not be represented accurately when only the first patent class is included.  

For patents that defy easy classification, the patent examiners’ instructions (partly 

summarized in the appendix) make clear why the OR does not fully represent the patent’s 

location in technological space.  When a patent spans multiple technologies, examiners are 

instructed to choose the controlling claim and associated patents class by employing the 

following hierarchy of subject matter: 

1. Relating to maintenance or preservation of life 
2. Chemical subject matter 
3. Electrical subject matter 
4. Mechanical subject matter 

a. Dynamic 
b. Static 

 

When a firm’s patent portfolio is summarized by its distribution of ORs, this algorithm makes it 

appear that the firm is more involved in “preservation of life,” relative to chemistry, electricity, 

or mechanical subject matter, than is actually so. 

Second, the patent office makes a concerted effort to limit cross-referencing, in part, by 

encouraging the use of subclasses within each patent class which can be used to further delineate 

the claims related to a particular technology (USPTO, Handbook of Classification, 2006).5  This 

suggests further that if additional 3-digit patent classes do appear in a patent document, despite 

the USPTO’s efforts to limit them, it is because the patent pertains to a technology that is outside 

the first 3-digit patent class and cannot be characterized by classifying it further in subclasses 

within the first patent class.   

                                                 
5 The text referring to the assignment of a patent to additional cross-reference patent classes is also included in 
Appendix 1, in section V. 
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Moreover, some patent classes, such as Nanotechnology (Patent Class 977), are cross-

reference classes only.  Patents pertaining to nanotechnology must be assigned to another 

Original Classification, as patent class 977 never appears as the first patent class on a patent.  As 

a result, research on innovation pertaining to nanotechnology must utilize the full set of cross 

reference patent classes to identify such patents. 

In light of the patent office’s classification system, using only the Original Classification, 

i.e. the first patent class listed on a patent has two problems.  First, it will not accurately 

characterize the technological footprint of that patent.  Second, the failure to use the remaining 

cross-reference patent classes listed on the patent discards information that would be useful for 

producing the attendant benefits of larger sample sizes. 

 

1. Locating Firms in Technological Space 

 The idea underlying distance measurement is that each firm has a location in N-

dimensional knowledge space, where the N dimensions should in principle represent kinds of 

technology (e.g. electrical, chemical).  It is impossible to observe a firm’s knowledge directly, 

but patents provide a convenient window into its knowledge.  Following the large literature using 

patent data to measure distance among firms, we can view the patent class listings on a firm’s 

patents as draws from the firm’s knowledge base.  For firms that patent a lot – and thus have 

many patent class listings – their many patents provide many draws from their knowledge urn.  

In that case, researchers can form relatively accurate estimates of those firms’ technological 

locations.  Firms that patent less frequently – and therefore have a smaller number of patent class 

listings – offer fewer draws from their urns.  It is harder for researchers to accurately determine 

the technological locations of those firms. 
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Like each firm, each patent also has a location in technological space.  Patents contain 

multiple pieces of information usable for their classification:  these include the assignment to any 

of roughly 120,000 patent class/subclass combinations, or to coarser breakdowns such as the 400 

3-digit patent classes, or to even coarser divisions.    Hall, Jaffe, and Trachtenberg (2001) have 

provided two such higher level classifications or partitions within the NBER patent database.  

The first aggregates all of the roughly 400 patent classes into 36 two-digit technological sub-

categories, and the second further groups the subcategories into an even coarser set of six main 

categories, including:  Chemical (excluding Drugs); Computers and Communications (C&C), 

Drugs and Medical (D&M); Electrical and Electronics (E&E); Mechanical; and Others.  In what 

follows we work with all three of these possible descriptions of knowledge space.   

The first step in class-based distance measurement is choosing the dimensions which, in 

this context means choosing whether to classify patents by class and subclass (approximately 

120,000 dimensions), 3-digit class (approximately 400 dimensions), or by the coarser 36 or 6 

class groupings.  While low-cost computing eliminates technical limits on the number of 

dimensions, adding dimensions does not necessarily improve the measures.  An heuristic 

geographic analogy helps illustrate this.  Suppose we are trying to characterize whether two 

groups of people in the US live near one another using data on the populations of the groups in 

each of the roughly 30,000 US postal zip codes.  We also know the groups’ populations by 

county, state, and region.  How should we calculate the proximity of their residential patterns?   

Using the most finely detailed (zip code) information, we could calculate proximity 

measures based on vectors showing the share of each group in each zip code.  But this can give 

misleading results.  Suppose that all members of both groups live in the state of Wyoming, but 

they never live in the same zip code.  The use of zip codes as the dimensions of “location space” 
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shows the groups’ residential patterns to be as different as if all members of one group lived in 

New York City while all members of the other group lived in Los Angeles, even though they 

both reside only in Wyoming.  The example shows that spaces with more dimensions do not 

necessarily provide more accurate measures of distance.  Depending on the question one seeks to 

answer, using counties, states, or even regions consisting of groups of states could provide a 

more sensible measure.  In this example, using zip codes as dimensions makes sense only if 

different zip codes are as conceptually distinct as, say, vastly distant regions of the country. 

The lesson of this example for our technological proximity problem is that one does not 

necessarily want to use the finest partition possible such as the thousands of patent classes in 

conjunction with subclasses.  Patent classes, like zip codes, are most useful in assessing 

technological distances between firms to the extent they are conceptually distinct.  Patent class 

partitions should instead group like technologies together into coarser partitions.   

Beyond the choice of what to use as dimensions researchers can choose among a variety 

of ways of locating a particular patent in knowledge space.  One approach is to treat each patent 

as a point along the dimension identified by the OR.  This is a common approach in the literature 

(e.g. Rosenkopf & Almeida, 2003; Song, Almeida, & Wu, 2003; Ahuja, 2000).  Patent k’s 

location in technological space is represented with a 1 on the dimension associated with the class 

of its OR, along with zeroes elsewhere in the vector.  The firm’s location in knowledge space is 

estimated by summing the vectors representing each of the M patents, element by element, then 

dividing the elements by M.  The elements of each firm’s vector p sum to 1, and the elements of 

p estimate the shares of the firm’s knowledge that reside in each of the technological domains.   

For reasons detailed above, it is conceptually preferable to use all listed patent classes 

rather than just the first.  If all listed patent classes are used, rather than simply the Original 
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Classification, then the vector representing a particular patent’s location in knowledge space has 

multiple positive elements.  That is, it is a vector with a 1 for each listed class and zeroes 

elsewhere.  The elements of p are then estimated by summing the vectors and dividing them by 

the number of classes listed across all M patents used in the calculation. 

Once a researcher selects both the dimensionality and the approach for calculating the p 

vector describing each firm’s location, distances among firms may be calculated.  There are three 

common methods.  First, researchers calculate Euclidean distance (E) to compare two vectors 

representing the set of first patent classes listed on each firm’s patents (Ahuja, 2000; Rosenkopf 

& Almeida, 2003).  Technological proximity between firms i and j is defined as:  
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, where indexes are summed over the N dimensions (see Jaffe, 1989).   

When the firms have the same location, this measure equals 1, when their knowledge vectors are 

orthogonal, it is zero.  A third possible measure is correlation between vectors, which we term C.  

The correlation runs from -1 to +1.   

 Citation overlap measures provide an alternative way of measuring proximity among 

firms (Podolny & Stuart, 1996; Mowery, Oxley, & Silverman, 1996).  These measures ask how 

many of the patents that one firm cites are also cited by another firm.  Suppose the universe of 
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cited patents runs from 1 to T, and j
iδ  is an index that is 1 if firm j cites patent i and 0 otherwise. 

Then the overlap between firm j and k , which we term O, is 
∑

∑

=

=
T

i

j
i

T

i

k
i

j
i

1

1

δ

δδ
.   

This is the share of the patents cited by firm j that are also cited by firm k.  Note that this 

measure is not symmetric (the denominator is the number of patents cited by either firm k or firm 

j). 

 In what follows we calculate both class-based proximity measures (A, C, E) with p 

vectors of various dimension as well as the overlap measure (O).  

 

II. Data 

 To address the questions of bias and precision in calculating technological proximity 

using patent class information, we rely on patent data collected for prior studies of innovation 

among firms in the photography industry (e.g. Benner & Tushman, 2002).  The sample includes 

patents that fall within any of 12 technological classes broadly related to photography and 

imaging granted to 64 firms in the photography industry spanning the period 1980 to 2002.6  The 

included patent classes are listed in Table 1.  A patent was selected for the sample if it was held 

by one of the 64 firms with operations in the photography industry and if any of its listed patent 

classes fell into the 12 classes in the study.   

Because these data were obtained for other purposes, it is a convenience sample for this 

study. However, the approach used to collect the data follows other research using patent data 

and patent class information.  In prior work, researchers often select an industry or technological 

                                                 
6 The data were obtained from CHI Research, but similar patent data including all listed patent classes are available 
in the Micropatent data used by Stuart & Podolny (1996) and others.  
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area to study and choose the relevant patent class(es) (e.g. Song, Almeida, & Wu, 2003; 

Rosenkopf and Nerkar, 2001).  Patent data is then collected from within those patent classes for a 

set of firms participating in the industry.  For example, Rosenkopf and Nerkar (2001) select one 

patent class and a set of nested subclasses pertaining specifically to the optical disk industry for 

collecting the relevant patent data for their study of firms’ exploration. Similarly, Ahuja’s (2000) 

study of the effect of alliances on innovation explored firms’ patents related only to chemicals 

patent classes. Beginning by narrowing the technological area under study allows for comparable 

measures across firms of activities in related business areas, especially important when 

comparing the activities of large, multibusiness firms.  Our data were collected in a similar way, 

and thus can shed light on the typical current use of the patent class information.  Our dataset 

draws the patent data from an unusually broad range of 12 patent classes, however, yielding 

118,350 patents, more than the usual number in studies such as this. 

In addition, each of our patent records includes all of the patent classes listed on the 

patent, that is, the Original Classification as well as all Cross-Reference Classifications, allowing 

us to compare the implications of using only the first patent class versus all the listed patent 

classes. The data include 463,611 patent class listings.  The mean number of patent classes listed 

on each patent is 3.9, and the median is 3. 

To determine whether the number of listed classes per patent in our sample is typical, we 

tabulated the mean and median number of patent classes listed per patent for a random sample of 

IBM patents.  IBM was chosen because of their extensive patenting behavior.  A search of IBM 

patents on the USPTO website yielded 46,546 patents granted to IBM between 1976 and the 

present (as of May 31, 2007).  We randomly sampled by choosing every 500th patent in the list of 

IBM patents. We then accessed the patent document, and manually read and coded the patent 
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classes listed on the front page.  This process resulted in a set of 93 patents.  In this sample, the 

average number of patent classes per patent was 3.9 and the median was 3, identical to our 

sample.  The number of patent classes in the IBM sample ranged from one per patent to 14.  In 

our sample the maximum number of patent class listings is 130.7  The 99th percentile is 16. 

 

III. Analysis 

The main analysis in this paper assesses how estimates of distance between firms 

perform, in terms of bias and precision, as the samples underlying their calculation increase in 

size.  We begin with the class-based proximity measures (A, C, E) and then turn to the overlap 

measures (O). 

It is intuitively clear that a distance measure between two firms using many patent class 

observations will be more accurate than measures based on only a few patent class observations.  

Accurate measurement of distances (discussed in the previous section) assumes that the p’s are 

measured with precision. 

Of course the precision with which the p’s are measured is a direct function of the 

number of listings sampled (and relatedly, of the number of patents sampled). The proximity 

measures are nonlinear functions of various proportions, so it is not immediately obvious how 

sample sizes translate to their precision.   

Each element of the p vector is a proportion, such as the proportion of a firm’s patent 

class listings in class 396.  If π is the share of the firm’s patent class listings that would fall into  

class 396 with an infinitely large patent sample, then the standard deviation of an estimate of this 

                                                 
7 While 130 is clearly a large number of listed patent classes, one should bear in mind that this number is the 
maximum across about 300,000 sample patents, while the IBM number is the maximum across fewer than 100 IBM 
patents. 
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true share based on n patent class listings is n)1( ππ − .  As n increases, the precision of the 

estimated proportion increases.  The proximity measures A, C, and E are complicated nonlinear 

functions of the p vectors’ elements, and it is difficult to derive properties of their estimators 

analytically.  Fortunately, fast and inexpensive computing makes it possible to examine them 

empirically using the bootstrap to produce empirical distributions of proximity estimates for 

different-sized samples.8  To see how this works in our context, consider two firms in our 

sample, Kodak and Canon, both of which have thousands of patents over our 22-year period.  

Because they have so many patents (and therefore, patent class listings), their p vectors estimated 

on their full samples are precise measures of their distributions of patent portfolios across the 

partition chosen; and, by extension, the proximity calculations are precise measures of the 

distance between them. 

 

1. Kodak-Canon Proximity 

To see how sample size affects precision, we perform the following exercise: draw 

samples of, say, 25 patent class listings on Kodak patents and 25 class listings on Canon patents.  

Using these samples, we compute the associated proximity measures between Kodak and Canon.  

We then repeat with new random samples of 25 listings per firm.  We perform this exercise 500 

times with replacement, and we plot the empirical distribution of estimated proximity measures 

based on samples of 25. The distribution of these 500 estimates shows how the estimators 

perform with 25 observations per firm.  We then repeat the entire exercise with different-sized 

samples, between 50, 100, 500, 1000, and 5000 patent class listings per firm. We explore how 

                                                 
 8See Efron, B, and Tibshirani, R. J. (1993). An introduction to the bootstrap. Monographs on Statistics and Applied 
Probability, No. 57. Chapman and Hall, London. 
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the resulting distributions of estimated proximity measures change, in terms of bias and 

precision, as sample sizes increase. 

Tables 2-4 illustrate the results of this exercise for our three distance measures computed 

on p vectors of three numbers of dimension (based on 3-digit patent classes as well as the coarser 

aggregations included in the NBER database (Hall et al, 2001).  The top panel of Table 2 shows 

how the distribution of the Euclidean distance measure (E) between Kodak and Canon based on 

3-digit patent classes changes as the size of the patent class sample from each firm increases 

from 25 to 5000.  The first row, for example, summarizes the 500 estimates of Euclidean 

distance measures based on random draws of 25 patent class listings per firm.  While the more 

accurate distance calculation based on the full sample (E) is 0.329, the mean of the 500 

bootstrapped estimates of the 25-draw E measures based on patent classes, which we term classE25 , 

is 0.403.  The average across 500 estimates does not converge to the full-sample value.  Instead, 

the mean of the estimates is substantially biased and is 22 percent above the full-sample value.  

The estimates based on 25 observations are also quite imprecise.  The fifth percentile classE25  is 

0.265, while the 95th percentile classE25 is 0.560, meaning that the 90 percent confidence interval on 

a measure whose full-sample value is 0.329 is 0.295. 

The next row summarizes the distribution of the 500 estimates based on random draws of 

50 ( classE50 ).  The mean falls to 0.374, which is closer to the full-sample value of 0.329, but the 

estimator remains biased, with a mean that is 12 percent above the full-sample value.  Now 90 

percent of the estimates fall between 0.262 and 0.503.  As the number of patent class listings 

used in the distance calculation increases to 5000, the mean declines all the way to the full-

sample value, while the dispersion of estimates shrinks. 
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It is not surprising that small-sample proximity measures are imprecise.  The source of 

their bias is less obvious.  To understand why the bias varies systematically with sample size, 

note that the proximity measure E contains squared differences of patent class shares across 

firms.  While errors cancel in linear procedures such as calculating means, errors propagate in 

nonlinear procedures such as squared differences.  Imprecise estimates of the underlying p’s lead 

to larger (upwardly biased) estimated differences between firms when firms are truly close, and 

lead to smaller (downwardly biased) estimated differences when firms are actually distant from 

each other.  To see this, suppose that there are two patent classes and one firm’s p is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0
1

while 

the other firm’s p vector is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
0

.  The true distance E between them is √2.  Because each element 

of p must be between 0 and 1 (inclusive), estimates of the p vectors will tend to be closer than 

√2.  On the other hand, if both firms; true p vectors are ,
5.0
5.0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 then the true distance is 0; and 

estimated distances will in general be higher.  This indicates that bias will vary for different pairs 

of firms.  When a pair is truly close, imprecise p’s give rise to over-estimates of E, and vice 

versa. 

The second and third panels of Table 2 repeat the exercise of the top panel using 

Euclidean distance measures estimated from the NBER database’s (Hall et al, 2001) coarser 36 

subcategory and six-category groupings.  Similar patterns emerge: bias and imprecision decrease 

as sample size grows. The degree of bias is smaller when the coarser partition is used.  The mean 

of the Euclidean distance measure based on 25 random draws with the 6 patent categories, which 

we term 6
25E , is only 11 percent off of the full sample value, while the mean of classE25 is 22 

percent off its full sample value. 
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 Bias declines with coarser aggregations because grouping related patent classes together 

in the coarser partitions allows for some averaging of the random variation in sample measures 

of the shares of patent class listings in particular 3-digit classes.  Using our heuristic geographic 

example, a random sample of 100 Americans can give rise to an accurate measure of the fraction 

of Americans living east of the Mississippi but only a poor estimate of the fraction of Americans 

living in Kentucky. 

Analogous patterns are repeated in Tables 3 and 4 for proximities measured with vector 

angles and correlation measures.  Here the estimates rise with larger samples toward the full-

sample values with larger samples because, for example, higher correlation, like lower distance, 

denotes greater proximity.  In short, the smaller the samples, the more the estimates are both 

biased and imprecise. 

 Table 5 reports prior citation overlap measures between Kodak and Canon, based on 

repeated draws from samples of different sizes.  For example, for the 25 observation samples, we 

draw 25 random patents from Kodak’s portfolio and 25 from Canon’s.  We then calculate the 

number of patents cited in each of these 25-patent portfolios, as well as the number of patents 

cited by both Kodak and Canon.  We repeat this exercise 500 times, with replacement.  Using 

Kodak (Canon) as the denominator, the mean overlap is 0.0011 (0.0016).  The 90 percent 

confidence intervals are about five times the mean and runs from 0 (0) to 0.0054 (0.0070). 

 As sample size increases, overlap estimates increase, reaching means of 0.0884 (0.0994) 

for samples of 5000 patents per firm.  That the mean estimates change substantially with sample 

size reflects an important source of bias in overlap measures.  To see how this arises, suppose we 

are interested in the overlap between Kodak and Canon, in particular in the share of patents cited 

by Kodak that are also cited by Canon.   
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 If we have all of Canon’s patents but only a small sample of Kodak patents, we will 

produce a noisy but unbiased estimate of the share of patents cited by Kodak that are also cited 

by Canon.  But suppose have a sample of Canon’s patents that collectively cite only half of the 

patents that all of Canon’s patents cite.  Then even if we have all of Kodak’s patents, we will not 

produce an accurate estimate of share of patents cited by Kodak that are also cited by Canon 

when examining the overlap between all of Kodak’s and some of Canon’s patents.  Rather, we 

will produce an estimate of the share of the patents cited by Kodak that were cited by this subset 

of Canon patents.  This will produce a smaller share.   And indeed, when we compute measures 

of overlap based on patent samples of varying sizes, the estimates shrink as the Canon samples 

decline. 

 The difference between class-based and citation measures arises because “the patents 

cited by Canon this year,” unlike “patent class 396,” is a moving target.  What constitutes 

overlap depends on the cited patents in the samples for each firm, and the target grows as sample 

sizes increase.  Patent class 396, by contrast, is a fixed target.  That is, the expected value of the 

share of Kodak patents in class 396 is the same regardless of the Kodak patent sample size, while 

the expected value of the share of Kodak patents also cited by Canon depends on how many of 

Canon’s patents are used to constitute the set of Canon-cited patents.   

 When we try to calculate overlap measures between firms with small patent portfolios, 

we will find small measures of overlap for the mechanical reason that the “target” is small.  The 

question, what share of the patents cited by firm A are also cited by a small firm B, is by nature 

going to be small.  If this is because all of firm B’s knowledge is summarized by its citation 

behavior – but they have little knowledge – then this will be a meaningfully small number.  On 

the other hand, if (small) firm B has lots of knowledge but simply hasn’t patented much of it yet 
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(and therefore hasn’t cited many patents yet), then the small overlap measure will understate the 

extent to which the two firms share sources of knowledge. 

 

2. Proximity among Many Firm Pairs 

 It is clear that proximity sample statistics provide biased and noisy measures.  But how 

much of a problem are these sampling issues?  Tables 2-4 provide one set of answers concerning 

the Kodak-Canon distance using class-based measures.  For the 3-digit patent class based 

measure of Euclidean distance, when the full sample distance between Canon and Kodak is 

0.329, 90 percent of distance estimates based on 25 randomly drawn patent class listings are 

between 0.265 and 0.560. 

 Tables 2-4 report results on only the Kodak-Canon distance.  But we can perform similar 

exercises for any pairs of firms with sufficient data that the full-sample distance measures 

provide reasonably precise estimates.  To get a better idea of the extent and magnitude of the 

issues associated with small sample sizes, we chose the 16 firms in our sample that had over 

10,000 patent class listings over the sample period.9  This resulted in 120 (16*15/2) pairs.  The 

full sample distances between these firms varies from 0.069 for Kodak and Fuji Photo to 0.680 

for Nikon and Konica using the patent class measure ( classE ).  For each pair we calculate 500 

bootstrapped estimates of Euclidean distance using the finest (400 patent class) and coarsest (6 

category) partitions, based on 25 and 500 observation samples.  That is, we calculate classE25 , 6
25E , 

classE500 , and 6
500E .   

                                                 
9 The 16 firms are 3M, Canon, Dupont, Fuji Photo, Hitachi, Kodak, Konica, Matsushita, Mitsubishi, NEC, Nikon, 
Philips, Samsung, Sony, Toshiba, and Xerox. 
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We illustrate the results of this broader analysis in Figure 1. Here we present the 

distributions of classE25 for each firm pair. That is, for each firm pair we estimate classE25  500 times 

to characterize the distribution of resulting estimates.  In the figure the full-sample distance 

between a firm pair appears on the horizontal axis (and the 45 degree line shows where this 

distance appears on the vertical axis).  Each vertical line in the diagram, located horizontally at a 

pair’s full-sample distance, describes the range from the 5th to the 95th percentile of the 500 

bootstrapped classE25  estimates for the firm pair.  The circles in the figure represent means. 

These ranges are quite large: they are on average larger than the associated full sample 

values. The ratio of the 95th – 5th percentile range to the full-sample value provides one measure 

of precision.  For the classE25  measure, the average ratio across the 120 firm pairs is 1.18.  Bias is 

also systematically related to full-sample distance.   Figure 1 also shows us something we could 

not see when looking at just Kodak-Canon proximity.  With a range of full-sample distances 

among firm pairs, we can see that the distribution of classE25 is upwardly biased for pairs whose 

full-sample values are close, and the distributions are downwardly biased for pairs with more 

distant full sample values.  The average of the 120 full-sample distances is 0.330.  The average 

of the mean classE25  estimates is 0.265. 

Figure 2 repeats the exercise with the larger-sample classE500 measure.  As with the Kodak-

Canon results, the precision is now much greater, which we see here in the smaller ranges of 

estimates for each full sample pair distance.  The ratio of the 95th-5th percentile gap to the full 

sample distance is 0.339, indicating much greater precision than the classE25  distance estimate 

allows.  Bias is also much smaller with a larger sample.  This is evident from the fact that the 
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means are near the 45 degree line in Figure 2.  The averages of these firm-pair means is 0.323, 

much closer to the average of the full-sample distance measures (0.330). 

 Figures 3 and 4 repeat the entire exercise of Figures 1 and 2 with 6
25E and 6

500E  measures.  

As with the distance measures based on patent classes, the distance measures based on 6 patent 

class groupings are imprecise.  The average ratio of the gap between the 95th and 5th percentile to 

the full-sample distance is 1.31 for 6
25E  and 0.339 for 6

500E .  Although the estimates based on 

coarser groupings do not improve on the finer class based measures in precision, the 6E measures 

are less biased, as we see in the fact that the estimate ranges in Figure 3 are more centered on full 

sample values than are the ranges in Figure 1.  Using the 6-categories, the mean of the full-

sample distances among these firms is 0.425.  The mean of the 6
25E  measures is 0.428, which is 

not only very close to the full-sample value but also nearly identical to the mean of the 6
500E  

estimates.   

 

IV. Conclusion 

 If all firms had, say, over a thousand patents per year, then measures computed from 

annual patent data would be fairly precise measures of the differences in vectors of patent classes 

or prior citations.  In reality, patent portfolios are much smaller than this.  IBM tops most lists of 

patenting firms.  The firm received 3,411 patents in 2001 and 2886 in the previous year.10  IBM’s 

p vector for 2001 is presumably a precise estimate of its true p.  But most firms studied in patent 

research receive far fewer patents.  Indeed, only 437 organizations (including both firms and 

academic and other research institutions) received 40 or more US patents during 2004. 11  Many 

                                                 
10 See http://www.uspto.gov/web/offices/com/speeches/02-01.htm, accessed April 25, 2006. 
11 See http://www.uspto.gov/web/offices/ac/ido/oeip/taf/topo_04.htm#PartB, accessed April 25, 2006. 
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contexts receiving academic scrutiny have sufficiently small patent samples so that precision is 

an issue.  As a result, the concerns raised in this study may be important for research employing 

patent-based measures. 

While our results are in some ways negative, we can also offer some helpful prescriptions 

for more accurately assessing distances based on patent characteristics.  For the imprecision that 

arises from employing small samples, the solution is to increase sample size, and researchers 

have at least two easy means for doing this.  First, researchers can roughly quadruple their 

samples by using all, as opposed to just first patent class listings.  Quite apart from the larger 

sample size, this will better reflect the technological footprint of firms’ patent portfolios.  

Second, and possibly in addition, researchers can aggregate their data.  Rather than computing 

measures such as Euclidean distance based on firm-year data, researchers can aggregate data 

across years into 5 or 10-year periods, as in Stuart & Podolny (1996).  This is a useful approach 

if a researcher has reason to believe the technological footprints of the firms they study have 

remained stable.  The greater precision from larger samples of patents, patent classes, or years 

can mitigate both bias and precision problems.  When it’s appropriate to the research question, 

using coarse partitions can improve the bias of proximity measures. 

But researchers should at a minimum be aware of the issues we raise so that they can 

better interpret their results.  When comparing proximities of firms, researchers should be wary 

of calculations involving firms with small patent portfolios.  Such a firm might appear very close 

or very far from another firm simply because its small patent portfolio provides few draws from 

its knowledge urn.   
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Table 1 – 3 Digit Patent Classes  
  

Patent class Title 
250 Radiant Energy 
345 Computer Graphics Processing, Operator Interface Processing,  

and Selective Visual Display Systems 
348 Television (many digital camera patents are included here) 
355 Photocopying 
356 Optics: Measuring and Testing 
359 Optics: Systems (Including Communication) and Elements 
360 Dynamic Magnetic Information Storage or Retrieval 
382 Image Analysis 
386 Television Signal Processing for Dynamic  

Recording or Reproducing 
396 Photography 
428 Stock Material or Miscellaneous Articles 
430 Radiation Imagery Chemistry: Process, Composition 

or Product Thereof 
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 Table 2: Kodak/Canon Euclidean Distance Distributions with 500 Draws 
 

N Type 
5th 

percentile mean 95th percentile 
25 3-digit patent classes 0.265 0.403 0.560 
50 3-digit patent classes 0.262 0.374 0.503 

100 3-digit patent classes 0.267 0.349 0.437 
500 3-digit patent classes 0.290 0.333 0.373 

1000 3-digit patent classes 0.302 0.331 0.362 
5000 3-digit patent classes 0.315 0.329 0.342 

Full-sample 3-digit patent classes  0.329  
25 36 sub-categories 0.256 0.410 0.592 
50 36 sub-categories 0.238 0.377 0.522 

100 36 sub-categories 0.274 0.360 0.458 
500 36 sub-categories 0.297 0.342 0.387 

1000 36 sub-categories 0.308 0.340 0.369 
5000 36 sub-categories 0.326 0.340 0.355 

Full-sample 36 sub-categories  0.340  
25 6 categories 0.265 0.454 0.656 
50 6 categories 0.295 0.438 0.583 

100 6 categories 0.317 0.419 0.530 
500 6 categories 0.362 0.412 0.462 

1000 6 categories 0.372 0.410 0.442 
5000 6 categories 0.394 0.410 0.426 

Full-sample 6 categories  0.410  
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Table 3: Kodak/Canon Angle Distributions with 500 Draws 
 

N Type 
5th 

percentile mean 95th percentile 
25 3-digit patent classes 0.228 0.536 0.774 
50 3-digit patent classes 0.345 0.591 0.785 

100 3-digit patent classes 0.458 0.639 0.795 
500 3-digit patent classes 0.614 0.688 0.762 

1000 3-digit patent classes 0.640 0.694 0.743 
5000 3-digit patent classes 0.673 0.700 0.723 

Full-sample 3-digit patent classes  0.700  
25 36 sub-categories 0.350 0.625 0.843 
50 36 sub-categories 0.457 0.672 0.853 

100 36 sub-categories 0.553 0.699 0.828 
500 36 sub-categories 0.658 0.725 0.790 

1000 36 sub-categories 0.680 0.728 0.772 
5000 36 sub-categories 0.707 0.729 0.749 

Full-sample 36 sub-categories  0.728  
25 6 categories 0.407 0.652 0.884 
50 6 categories 0.493 0.675 0.851 

100 6 categories 0.557 0.692 0.817 
500 6 categories 0.637 0.701 0.758 

1000 6 categories 0.661 0.702 0.749 
5000 6 categories 0.683 0.702 0.721 

Full-sample 6 categories  0.703  
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Table 4: Kodak/Canon Correlation Distributions with 500 Draws 
 

N Type 
5th 

percentile mean 95th percentile 
25 3-digit patent classes -0.156 0.301 0.698 
50 3-digit patent classes 0.115 0.469 0.737 

100 3-digit patent classes 0.346 0.572 0.775 
500 3-digit patent classes 0.587 0.668 0.748 

1000 3-digit patent classes 0.621 0.680 0.732 
5000 3-digit patent classes 0.663 0.692 0.715 

Full-sample 3-digit patent classes  0.694  
25 36 sub-categories -0.025 0.399 0.765 
50 36 sub-categories 0.226 0.527 0.799 

100 36 sub-categories 0.398 0.592 0.783 
500 36 sub-categories 0.571 0.656 0.740 

1000 36 sub-categories 0.604 0.666 0.723 
5000 36 sub-categories 0.655 0.680 0.705 

Full-sample 36 sub-categories  0.686  
25 6 categories -0.673 -0.076 0.652 
50 6 categories -0.568 -0.061 0.518 

100 6 categories -0.459 -0.054 0.426 
500 6 categories -0.234 0.135 0.353 

1000 6 categories -0.148 0.205 0.342 
5000 6 categories 0.198 0.238 0.280 

Full-sample 6 categories  0.238  
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Table 5: Overlap between Kodak and Canon with Different Sized Samples 
 

mean 
5th 

percentile 
95th 

 percentile 
Number 
of 
patents 
per firm Kodak Canon Kodak Canon Kodak Canon 

25 0.0011 0.0016 0.0000 0.0000 0.0054 0.0070 
50 0.0019 0.0025 0.0000 0.0000 0.0061 0.0083 

100 0.0039 0.0054 0.0009 0.0012 0.0087 0.0119 
500 0.0171 0.0225 0.0126 0.0171 0.0214 0.0284 

1000 0.0306 0.0387 0.0263 0.0329 0.0349 0.0444 
5000 0.0884 0.0994 0.0851 0.0952 0.0924 0.1037 

 
Note: Each row in this table characterizes the distribution of overlap estimates from 500 draws 
with different numbers of patents per firm (25, 50, and so on).
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Figure 2 
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Figure 3 
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Figure 4 
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APPENDIX 1– USPTO Rules for determining the Original Patent Class 
From the Examiner’s Handbook and Handbook of Classification 
 
III. DETERMINATION OF A CLASS FOR ORIGINAL CLASSIFICATION OR 

ASSIGNMENT FOR EXAMINATION  
 
The process for selecting which claimed invention will represent the original classification or 
assignment designation is effected by considering, in turn, the factors listed below: 
 

Selection of the most comprehensive claim; 
Selection among categories of subject matter when claims are equally comprehensive, or 
when the most comprehensive claim cannot be determined; 
Selection among superiority of types of subject matter;  
Selection among generic classes and species classes thereunder;  
Selection among classes in “related subject” listing 

 
1. Selection of the Most Comprehensive Claim 

 
This is illustrated by comparing the following two claims (which not only differ in 
comprehensiveness, but are also directed to different categories of subject matter) each of which 
define subject matter properly classified in a different class: 
 
Claim 1 

A laminated sheet comprising two panels of aluminum bonded with an intermediate layer 
of a binder, said binder comprising an elastic, self-vulcanizing rubber-like cement, the 
adjacent faces of the panels being roughened in a cross-hatched pattern to facilitate 
adhesion of the cement, two opposite edges of the sheet being notched with 
corresponding, interfitting dovetail cutout portions to facilitate securing the edges one to 
the other.  

 
Claim 2 
 

A process comprising scoring the faces of two aluminum panels in a cross-hatched 
pattern, applying a binder to the scored faces, pressing the coated faces together to secure 
the panels and forming a sandwich and then bending the sandwich and securing the 
opposite edges to each other to form a tube. 

 
Explanation 
 
 Claim 1 encompasses a product comprising a laminated sheet. Claim 2 encompasses a 
process of making such a sheet, but includes the additional steps of bending the sheet and 
securing the edges to form a tube. Process Claim 2 thus contains a greater extent of subject 
matter than does Claim 1 and is therefore more comprehensive. Assuming that separate classes 
provided for the subject matter in Claim 1 and 2, respectively, a patent with these two claims 
should be placed as an original in the class providing for the subject matter of Claim 2.  
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2. Selection Among Categories of Subject Matter 
 

When a patent document includes separate claims to two or more different categories of 
subject matter and none of the claims is more comprehensive than the other(s) or if greater 
comprehensiveness cannot be determined, the Original is classified in the class providing for the 
claimed category that appears highest in the following list 
 

1) Process (of using product 2, e.g. using a fuel or radio transmitter) 
2) Product (of manufacture, e.g. a fuel or radio transmitter) 
3) Process (of making product 2) 
4) Apparatus (to perform 3 or to make 2, e.g. machine, tool, etc. 
5) Materials (used in 3 to make 2) 

 
For example, when considering claims to a radio transmitter (category 2) and to a process of 
manufacturing the same (category 3), the claim to the transmitter would control class 
assignment.  Similarly, a claim to a process of using the transmitter (category 1) would control a 
claim to the transmitter or process of making it.  
 

3. Selection Among Superiority of Types of Subject Matter 
 

When placement of the Original cannot be determined from considerations of a) 
comprehensiveness or b) categories of subject matter, placement is next determined by 
considering the highest category below that provides for claimed subject matter. 
 

1) Relating to maintenance or preservation of life 
2) Chemical subject matter 
3) Electrical subject matter 
4) Mechanical subject matter 

a. Dynamic 
b. Static 

 
4. Selection Among Classes in “Related Subject” Listing (Last Resort Only) 
 
The number of a class generally has no significance insofar as superiority of one class 

relative to another. The class number is merely an arbitrary mark of identification. Nor is the 
class listing the “Classes Arranged in Alphabetical Order” in the Manual of Classification an 
order of superiority.  The title of a class is an accident of language and varies from one language 
to another.   
 
However, a theoretical organization of the applied sciences into three major areas is published in 
the front of the Manual of Classification, Section I, titled “Patent Office Classes arranged by 
Related Subjects.” Within each of the areas the classes have been listed in a hierarchy suggesting 
an order of superiority. 
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Where the other bases for selection discussed above cannot be applied, a controlling claim is 
selected according to this listing.  The controlling claim is identified as the one having subject 
matter provided for by the class that appears highest in such listings.  
 
5. Exceptions:  
 

a) Where special agreements between groups are in effect, such as for high temperature 
superconductivity applications and for certain biotechnology areas, these agreements 
override all other considerations.  

b) Where the historical placement of patents having particular claimed disclosure has been 
contrary to written definitions and notes, the historical placement overrides all other 
considerations, except the special agreements mentioned above, and controls placement 
of like subject matter until corrective reclassification is effected.  

c) Classification definitions (particularly the search notes and lines with other classes) must 
be read for possible exceptions to the selection procedures discussed in 1-5 above, 
inasmuch as disclosures in a given areas of technology may have required deviation from 
these procedures. Any deviation will be mentioned, and explained, in a modern class 
definition.  

 
V. ORIGINALS VS. CROSS-REFERENCES 
 
The original classification (OR) is a mandatory classification selected from among all the 
mandatory classifications as being the highest in the schedule (superiority) of the class 
containing the controlling claim. The remaining mandatory classifications are designated as 
mandatory cross-references (XR). 
 

A. Discretionary Classifications 
 

Each Technology Center generally has specific information that varies from class to class 
that they would like to see classified in the USPC, even when the information may not 
constitute invention information in a patent document. Because this information is useful for 
other, non-invention search purposes the cross-references assigned to documents based on 
this invention information must be designated as “discretionary” cross-references.   
 
In creating the USPC system, several techniques have been used to limit the need for 
discretionary cross referencing. These consist of 1) proper positioning of subclasses in a class 
schedule and 2) search notes 
 
A search note in the class definition of each of related classes generally precludes the need 
for discretionary cross-referencing. However, as in all discretionary cross-referencing, there 
may be a time when it is desirable to cross-reference even if there is cross noting.   
 
 

 




