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1 Introduction and motivation

Public-private partnerships (PPPs) increasingly substitute public provision, for a wide ar-

ray of services and infrastructures that require large up-front investments, such as high-

ways, water and sewerage, bridges, trains, sea and airports, jails, hospitals and schools.2,3

A typical PPP bundles investment and service provision into a single contract. For a pe-

riod of 20 to 30 years a private concessionaire controls the assets, manages the service

and collects user fees. At the end of the franchise the asset reverts to government owner-

ship.4 The economics of PPPs are still imperfectly understood and practice has run ahead

of theory. Some practitioners and governments claim that PPPs relieve strained budgets

and free public funds. Others believe that PPPs are appealing because finance, investment

and management is delegated to a private concessionaire—PPPs are believed to represent

temporary privatization. Overall, the experience with infrastructure PPPs has been some-

what disappointing.5 For example, contracts are often renegotiated, changing the original

terms in favor of the concessionaires (Guasch, 2004). The reasons seems to be that most

PPP projects are subject to large, exogenous demand uncertainty (renegotiations usually

occur when demand is lower than predicted) and, perhaps, faulty contracting. Indeed, an

array of risk sharing arrangements has emerged in practice, but there is no benchmark to

compare them to.

The purpose of this paper is to contribute to the normative analysis of PPPs by answer-

ing two questions. First, what is the structure of the optimal risk-sharing contract between

government and concessionaire when there is substantial exogenous demand risk? Sec-

2The surge in PPPs is reflected in the financial press. For example, articles in the Financial Times mention-
ing this concept increased twenty-fold over the last decade, from 50 in 1995 to 1,153 in 2004. Also, in Britain
about 14% of public investment is now done under the so-called Private Finance Initiative (Bennet and Iossa,
2006).

3The case of PPPs in the transportation sector is particularly compelling. Growing congestion, budgetary
problems, and a major decrease in toll collection costs have led more than 20 U.S. states to pass legislation
permitting the operation of public-private partnerships to build, finance and operate toll-roads, bridges and
tunnels. See “Paying on the Highway to Get Out of First Gear.” New York Times, April 28, 2005. Congestion
costs in the top U.S. metro areas have grown steadily, reaching $63.1 billion in 2003, 60% higher (in real terms)
than a decade earlier (Schrank and Lomax, 2005).

4There are several definitions for “Public-Private Partnership”. In this paper we take it to mean an infras-
tructure project such that (i) assets are controlled by a private firm for a (possibly infinite) term; (ii) both the
private firm and the government are residual claimants, often in ambiguous terms due to contract incom-
pleteness; and (iii) there is substantial public planning involved. We use the term “concession” as synony-
mous to PPP.

5By “disappointing” we mean a significant gap between expectations and actual experience with PPPs.
This does not mean that traditional provision would have done better. For an early evaluation of infrastruc-
ture PPPs, see Economic Planning Advisory Commission (EPAC) (1995), Final Report of the Private Infras-
tructure Task Force, Australian Government Publishing Service, Canberra. For more recent evaluations, see
Engel, Fischer and Galetovic (2003) and Grimsey and Lewis (2007).
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ond, what is the impact of PPP’s on the government budget?

In our basic model a risk neutral government contracts a risk-averse concessionaire to

finance, build and operate a project.6 The project requires a large up-front investment I ,

has no operating costs and the demand for its services is perfectly inelastic, exogenous and

stochastic.7 The concessionaire can be compensated with a combination of subsidies and

user fees. We allow the concession term and the size of the subsidy to vary with demand

realizations. In order to model the link between the project and the public finances, we

assume that raising $1 in taxes costs λ> 1 dollars to society.

Our first result is that the usual justification for PPPs—relieving public budgets and sub-

stituting cheap private funding for distortionary tax finance—is incorrect. The intuition is

clear in the case of a PPP in which the concessionaire receives revenues solely from user

fees. An additional $1 invested by the concessionaire saves society λ−1 > 0 current dol-

lars in distortionary taxes. But the concessionaire must be compensated for the additional

investment by extending the concession term to collect an additional $1 in present value.

Since the government could have used this future revenue to reduce the distortions cre-

ated by taxes, the opportunity cost of relinquishing the future $1 in user fees is the shadow

cost of public funds, λ. Thus there is no gain in present value (a similar argument holds if

investment is financed with subsidies to be paid in the future).

Having shown that private financing cannot by itself justify a PPP raises the question

of whether there exist other reasons to use PPPs. Hart (2003) argued that the main char-

acteristic of these contractual arrangements is that they bundle investment expenditure

with life-cycle operation costs.8 A PPP achieves the most efficient mix of these costs and is

therefore superior to conventional methods of infrastructure provision when cost cutting

increases social welfare. In some environments cost cutting leads to lower service quality,

and conventional provision may be welfare enhancing.

In this paper we study a different aspect of having the same firm build and operate

the project, namely that the firm can be remunerated directly with the user fees it collects

during the contract. Experience shows that user fees normally make up a large fraction

of the revenues of the PPP concessionaires. Is there a reason for preferring user fees over

subsidies as compensation for the concessionaire? We show that if subsidy spending is

less efficient than private spending (for example, because private firms have less overhead

6As in principal-agent models, the less risk averse party —in our case the government— is assumed to be
risk neutral. Assuming a risk averse firm is a shortcut for agency problems preventing risk diversification, see
Appendix D in the working paper version of Engel et al. (2001) for a model along these lines. Martimort and
Pouyet (2006) also assume a risk-averse concessionaire.

7Some of these assumptions are relaxed later in the paper.
8See also Bennet and Iossa (2006), Bentz et al. (2005) and Martimort and Pouyet (2006).
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than the government bureaucracy), reducing subsidies and replacing them with user fee

revenue increases productive efficiency by reducing the size of the bureaucracy. Bundling

allows this by substituting user fees received directly by the concessionaire for subsidies,

which are intermediated by the government through the public budget. The relative inef-

ficiency of government is not sufficient to prefer PPPs over conventional provision, since

the choice depends on how bundling affects incentives. Surprisingly, however, from the

point of view of optimal contracts, the effects can be neatly separated. On the one hand,

when investment and life cycle costs are linked, bundling alters incentives, and this affects

whether a PPP is preferred over conventional provision of the project. On the other hand,

conditional on a PPP being preferred, the intertemporal link does not affect the structure

of the optimal risk-sharing contract. The rest of the paper is a systematic exploration of the

structure of the optimal contract.

In order to model the inefficiencies that the government incurs in when paying out

subsidies, we assume that achieving $1 of useful investment costs $1 in the private sector

but ζ > 1 dollars if financed with a subsidy. This means that ζ−1 is a measure of the rel-

ative inefficiency of the bureaucracy when making transfers. Hence the opportunity cost

of transferring an additional dollar to the concessionaire with user fees is λ, while it is λζ

when using subsidies. It follows that the planner will always prefer to remunerate the con-

cessionaire with user fees.

Somewhat less obviously, we find that sometimes the optimal contract trades off insur-

ance with the desire to subsidize as little as possible. What is the economics behind this

tradeoff? Assume for a moment that user fees and subsidies are perfect substitutes at the

margin (ζ = 1). Then it can be easily seen that the combination of user fees and subsidies

paid to the concessionaire is irrelevant, as long as they add up to I in all states. That is, it is

optimal to give full insurance to the risk-averse party.

Next consider how the structure of the optimal contract changes when ζ> 1. First note

that in the contract with full insurance described above the planner will substitute user

fees for subsidies whenever possible. For this reason, in states where the present value of

user fee revenue for an indefinite term exceeds I , the concession should end in finite time

and revenues should be capped at I . By contrast, in states such that the present value of

user fee revenue falls short of I , full insurance can be maintained only by subsidizing the

difference; in these states it is optimal to let the concession run indefinitely to minimize

subsidy payments.

The planner can do better than providing full insurance. By slightly reducing the con-

cessionaire’s revenue in low-demand states to m < I it can save λζ per dollar in lower sub-

sidies. This must be compensated by slightly lengthening the term of the concession in
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high-demand states to increase user fee revenues to M > I , at the smaller cost of λ per dol-

lar. The concessionaire bears some risk, but for values of m and M close to I this effect is of

second-order compared to the savings in resources. The process of reducing expenditures

on costly subsidies by decreasing m and increasing M ceases only when the marginal cost

savings are equal to the cost of incremental risk for the concessionaire.

This analysis suggests, and we prove it formally in this paper, that the optimal contract

is characterized by two thresholds: a minimum revenue guarantee m and a revenue cap

M . Demand states where the present value of user fee revenue exceeds M in finite time are

called high demand states. Those states in which user fee revenue is lower than m even in

an infinite franchise are referred to as low demand states. The concession lasts indefinitely

in low demand states and subsidies are paid to ensure that the concessionaire receives m.

In contrast, the concession ends in finite time in high demand states, and revenues are

capped at M . Finally, in states of demand for which user fees in an infinite length franchise

lie between m and M (which we denote by intermediate demand states), the concession

lasts indefinitely, but the concessionaire receives no subsidies.

Of course, some projects enjoy high demand in all states (i.e., in all states the present

value of user fee revenue exceeds I ), and only the revenue cap M is relevant. In those cases

concessionaires receives full insurance, and the term of the concession is finite. On the

other hand, there are also low-demand projects (i.e., in all states the present value of user

fee revenue falls short of I ). In that case, only the minimum revenue guarantee is relevant,

the concession lasts indefinitely in all states, and the concessionaire receives a subsidy that

allows him full insurance. The economic reasoning is similar in the two cases: the source

of marginal revenue for the concessionaire is the same across states of demand (i.e., either

user fees or subsidies) so there is no wedge that makes it worthwhile to expose him to

risk. In contrast, intermediate-demand projects are distinguished because in some states

the present value of user fee revenue exceeds I , while in others it falls short. Thus, if the

concessionaire were totally insured, the source of marginal revenue would come from user

fees in some cases (with associated distortion λ per dollar) while in the others it would be

derived from a subsidy (at a marginal cost of λζ). The existence of a wedge in the social

cost of the marginal dollar between states makes it worthwhile to have the concessionaire

bear some risk.

Next, we describe how the optimal risk sharing contract can be implemented with a

competitive auction. The government announces the probability density of user fee rev-

enue that characterizes demand uncertainty and the parameters that summarize the cost

of public funds and the inefficiency of subsidies (λ and ζ). Firms offer bids on a minimum

revenue guarantee m and a revenue cap M , and the concession is assigned to the firm
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whose bids minimize a scoring function that depends only on m and M . This means that

implementation of the auction does not require knowledge of the cost of up-front invest-

ment I , nor the firms’ degree of risk aversion.

We next address the issue of the robustness of the structure of the optimal contract

to weakening the assumptions. In one extension we include operation and maintenance

costs, and price responsive demand. We find that user fees should be set above marginal

operation costs because at the margin, user fee revenue substitutes either for distortionary

taxation or subsidies. However, the optimal contract retains the characteristics of the pre-

vious case, as it is described by two thresholds m and M such that in high-demand states

the concession runs for a finite term; in low-demand states subsidies are paid out and the

concession runs indefinitely; and in intermediate-demand states the concession lasts in-

definitely but no subsidies are paid out.

In a second extension we examine a standard moral hazard model where the conces-

sionaire’s effort during the investment stage tilts the distribution of demand states towards

higher realizations. Again, the optimal contract is characterized by thresholds m and M ,

and high-, intermediate- and low-demand states emerge as before, for exactly the same

reasons. However, minimum revenue guarantees in low-demand states and revenue caps

in high-demand states are state-contingent in order to provide incentives for effort.

There is a growing literature on PPPs related to this paper.9 Risk sharing between the

government and the concessionaire has been always a concern among practitioners and

policy makers. The standard prescription is that each risk should be allocated to the party

best able to manage it. Irwin (2007, p. 14) is more precise: each risk should be allocated to

maximize project value, taking account of moral hazard, adverse selection and risk-bearing

preferences.10 Martimort and Pouyet (2006) study this problem in a moral hazard model

where effort during investment affects both the quality of the infrastructure and its operat-

ing cost. Bentz et al. (2005), on the other hand, study a model with moral hazard in building

and adverse selection in operation.

Our paper, by contrast, studies the implications of the optimal allocation of demand

risk, when subsidy finance is less efficient than user-fee finance. Even though we consider

the extension to the case with moral hazard, our main findings are best illustrated with-

out this assumption. We show that intertemporal and not period-by-period risk matters

in the case of PPPs. This implies that variable, state-contingent concession lengths are a

key component of the optimal risk-sharing contract. Moreover, the explicit modeling of

9See Grimsey and Lewis (2004) for a survey, history and experience, and Grimsey and Lewis (2005) for a
collection of articles on PPPs. Vaillancourt-Rosenau (2000) and Akintoye et al. (2003) include useful collec-
tions of essays.

10See also the discussion in Dewatripont and Legros (2005).
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the intertemporal nature of PPPs shows that there is no fundamental difference between

revenue guarantees and subsidies, since guarantees are analogous to state-contingent sub-

sidies. In addition, we provide a rigorous foundation for minimum revenue guarantees and

revenue caps and show that the optimal guarantees and caps bear no relation to observed

guarantees and revenue sharing agreements.

The optimal demand risk-sharing contract we derive in this paper also has implica-

tions for the ongoing debate about privatizations and PPPs.11 The literature points out

that bundling has several attributes which are typically associated to privatization. Thus in

a PPP the concessionaire owns assets (Hart, 2003);12 retains control over how to produce

the service and may unilaterally implement any cost-saving innovation (Bennet and Iossa,

2006); and directly collects user fees (Grout and Stevens, 2003). However, another hallmark

of privatization is that demand risk is transferred to the firm.13 In this paper we show that

if demand risk is allocated optimally, the allocation of revenue, in present-value terms,

is often similar to that under conventional provision of infrastructure. Most, or even all,

risk is borne by the government and the concessionaire recovers the upfront investment in

most states. Moreover, in the optimal contract the concessionaire should receive no com-

pensation after the end of the concession, once the asset is transferred to the government.

By contrast, under privatization, assets and cash flows are transferred forever to a private

concessionaire in exchange for a one time payment. This means that the link between the

project and the public budget is permanently severed. Under a PPP this link continues to

exist, even when the compensation to the concessionaire is derived solely from user fees.

Our results follow from the assumption that a large risk-neutral government, able to

spread risk, contracts with a risk-averse firm to undertake a “small” project. In the context

of PPPs, some authors find this assumption entirely plausible and probably correct (see,

for example, Dewatripont and Legros [2005, pp. 133 and 134] and Hart [2003, p. C75]).

Others are skeptical, and point out that private firms can use the capital market to diversify

risks at least as well as the government.14 We do not claim to have solved this controversy.

But we point out that the case for PPPs is very weak if private firms are more efficient and

better at diversifying risks, because in this case privatization dominates PPPs. Moreover,

11See, for example, Daniels and Trebilcock (1996, 2000), Gerrard (2001), Savas (2000), and Starr (1988)
12Though usually it needs authorization to sell assets that are comprised in the concession.
13Eurostat, the Statistical Office of the European Communities, focuses on this feature when deciding

whether a PPP-asset should be classified as governmental or not: “Eurostat recommends that the assets in-
volved in a public-private partnership should be classified as non-government assets, and therefore recorded
off balance sheet for government, if both of the following conditions are met: (1) the private partner bears the
construction risk, and (2) the private partner bears at least one of either availability or demand risk.” Eurostat
Press Office, February 11, 2004.

14See, for example, Hemmings [2006 pp 12 and 13] and Klein (1997). For a discussion of the controversy in
economics see Brealey et al. (1997)
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it is a well known fact that private firms routinely demand minimum revenue guarantees

because they deem demand risk in PPPs excessive.15

This paper is also related to the literature on franchise bidding pioneered by Chadwick

(1859) and Demsetz (1968), according to which competition for a monopoly infrastruc-

ture project will replicate the competitive outcome (see Stigler [1968], Posner [1972], Ri-

ordan and Sappington [1987], Spulber [1989, ch. 9], Laffont and Tirole [1993, chs. 7 and

8], Harstad and Crew [1999] and Engel et al. [2001] for papers within this tradition, and

Williamson [1976, 1985] for a criticism). We contribute to this literature by considering

cases where projects are not self-financing and government subsidies are necessary to

make them feasible. We also show that in that case the optimal risk-sharing contract can

be implemented with a two-threshold auction with realistic informational requirements.

Finally, in Engel et al. (2001), we studied the optimal private provision of infrastructure

projects by solving a Ramsey problem with variable concession lengths. In that paper we

assumed a “self-financing constraint,” which ruled out government transfers to the con-

cessionaire. In the present paper, demand-contingent government subsidies play a central

role, thus providing a framework to study the public finance of PPPs.

The remainder of the paper is organized as follows. The model and the basic irrelevance

result when there is no difference between government and private provisions is presented

in section 2. In section 3 we derive the optimal risk-sharing contract when subsidy spend-

ing is inefficient. Section 4 shows how the optimal contract can be implemented with an

auction, and section 5 presents the extensions. Section 6 concludes and is followed by

several appendices.

2 Benchmark model and irrelevance result

A risk-neutral benevolent social planner must hire a concessionaire to finance, build and

operate an infrastructure project with exogenous technical characteristics. There are no

maintenance nor operation costs,16 the up-front investment does not depreciate, and the

15A similar concern possibly underlies the recent move in Europe away from shadow toll contracts towards
availability payments.

16This assumption is relaxed in section 5. In any case, there are two reasons why ignoring maintenance and
operations costs is not a serious limitation. First, for many infrastructure projects, upfront costs are much
larger than maintenance and operation costs (consider the examples of highways, dams, sport stadiums and
rail lines). Secondly, if maintenance and operations costs are proportional to demand for the project, which is
a good approximation in the case of highways and rail lines, then the case with maintenance and operations
costs is a trivial extension.
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concessionaire is selected among many firms that can build the project at cost I > 0.17 All

firms are identical, risk-averse expected utility maximizers, with preferences represented

by the strictly concave utility function u (see footnote 6).

We assume that the project is socially profitable and that a PPP yields a higher social

surplus than conventional unbundled provision (appendices A and B spell out conditions

for this to be the case).

Demand uncertainty is summarized by a probability density over the present value of

user fee revenue that the infrastructure can generate over its entire lifetime, f (v), with c.d.f.

F (v). This density is common knowledge to firms and the planner, and is bounded from

below by vmin and from above by vmax. Also, for simplicity we assume that v equals the

discounted private willingness to pay for the project’s services.18

2.1 Planner’s problem

Let PS(v) denote producer surplus in state v , CS(v) denote consumer surplus in state v

and α ∈ [0,1] be the weight that the planner gives to producer surplus in the social welfare

function.19 The planner’s objective is to maximize20,21

∫
[CS(v)+αPS(v)] f (v)d v, (1)

subject to the concessionaire’s participation constraint∫
u(PS(v)) f (v)d v ≥ u(0),

where u(0) is the concessionaire’s outside option.22

To maximize (1), the planner chooses how much user fee revenue and subsidy the con-

17That is, we ignore construction cost uncertainty and focus instead on demand uncertainty, which is con-
siderably larger for many PPP projects.

18In Appendix A we show that this and other simplifications do not affect the structure of the optimal PPP
contract.

19Observe that in many countries foreign firms are important investors in PPPs, which implies α< 1.
20This objective function assumes that the income of users is uncorrelated with the benefit of using the

project, so that if users spend a small fraction of their incomes on the services of the project they will value
the benefits produced by the project as if they were risk neutral. See Arrow and Lind (1970).

21The planner cares about firms’ profits not per se but because these constitute a source of income for firms’
owners. This, combined with the assumption that the planner can redistribute income among consumers at
no social cost and that each project is relatively small compared to the size of the economy, explains why
producer surplus, and not the expected utility of the firm’s profits, enters the planner’s objective function.

22By using the same probability density in the planner’s objective function and the concessionaire’s par-
ticipation constraint, we are ignoring possible differences between the planner’s and the concessionaire’s
risk-free discount rates.
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cessionaire should receive in each state v . Denote by R(v) the present value of user fee

revenue collected by the concessionaire in state v , and by S(v) the present value of the

subsidy it receives. Hence

PS(v) = R(v)+S(v)− I (2)

Note that by “subsidy” we mean any cash transfer from the government to the private

concessionaire. It may be the up-front payment made by the government with conven-

tional unbundled provision (in which case S(v) is the same for all v), but it could also be

a cash transfer made over time, contingent on v , to supplement revenue from the project

under a Build-Operate-and-Transfer (BOT) contract (a so-called ‘minimum revenue guar-

antee’).

Since the concessionaire receives R(v) in state v , the government receives v −R(v) and

we have 0 ≤ R(v) ≤ v . If the term of the concession is finite and v −R(v) > 0, these funds

are used to reduce distortionary taxation elsewhere in the economy. Moreover, assuming

that willingness to pay is positive at all points in time, we have that R(v) = v only when the

concession lasts forever.

Let E be an externality generated by the project andλ> 1 the cost of public funds. Then

CS(v) = [v −R(v)−λS(v)]+E + (λ−1)[v −R(v)] (3a)

=λ [v −R(v)−S(v)]+E . (3b)

The first term in the r.h.s. of (3a), v −R(v)−λS(v), is the difference between users’ willing-

ness to pay in state v and the total amount transferred to the concessionaire, where the cost

of the subsidy is increased by the tax distortion required to finance it. The term v −R(v) is

total revenue collected by the government (after the end of the concession), so the second

term in the r.h.s. of (3a) corresponds to the reduction in distortionary taxes due to this

increased revenue.

Substituting (2) and (3b) in (1) shows that maximizing the planner’s objective func-

tion (1) is equivalent to maximizing

−(λ−α)
∫

[R(v)+S(v)] f (v)d v.

and therefore to minimizing ∫
[R(v)+S(v)] f (v)d v. (4)

Where we have dropped E , αI and λv from the objective function because they do not

depend on the planner’s choice variables, R and S, and where we have used that λ> 1 ≥α.
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The planner’s program can be rewritten as23

min
{R(v),S(v)}

∫
[R(v)+S(v)] f (v)d v. (5a)

s.t.
∫

u(R(v)+S(v)− I ) f (v)d v ≥ u(0), (5b)

0 ≤ R(v) ≤ v, (5c)

S(v) ≥ 0, (5d)

2.2 Irrelevance result

It has been claimed that a PPP is desirable because it relieves the public budget by substi-

tuting private finance for distortionary tax finance.24 Does this argument make the case

for PPPs?

It follows from the objective function (4) that the per-dollar cost of paying the conces-

sionaire with user fee revenues or subsidies is the same. Thus, social welfare only depends

on total transfers T (v) = R(v)+S(v) to the concessionaire, not on the partition between

subsidies and user fee revenue. This is the fundamental insight behind the following result:

Proposition 1 (Irrelevance of the cost-of-funds argument) Any combination of user fee and

subsidy schedules that satisfies constraints (5c) and (5d) and such that T (v) = I for all v

solves the planner’s program (5a)–(5d).

Proof See Appendix C.1.

What is the economics of this result? The standard reasoning in favor of PPPs points out

that subsidies are an expensive source of finance, because they are financed with distor-

tionary taxes. Yet the multiplicity of optimal subsidy-sales revenue combinations indicates

that distortionary taxation (λ> 1) is not sufficient to prefer private provision. One solution

is R(v) ≡ 0 and S(v) ≡ I . Another solution is that the concessionaire invests I , collects user-

fee revenues equal to I in present value, and no subsidies are paid.25 In addition, there is a

continuum of combinations where the government provides a partial subsidy.

23In Appendix A we consider several additional variables mentioned in the literature that may influence
the choice in favor or against a PPP. In all cases these additional variables are independent of the planner’s
choice functions, R and S. Consequently, if the planner goes for a PPP, her objective function remains similar
to (4). In Appendix A we also show that it is straightforward to model exogenous restrictions on term length,
an imperfect ability to appropriate consumer surplus using user fees, and so on. In all cases the additional
constraints or variables affect the particular solution to program (5a)–(5d), but not its structure.

24An even bolder claim is that I in public funds are permanently liberated with a PPP. But setting up the
problem in present value terms immediately exposes this fallacy—the concessionaire must recover its invest-
ment by receiving future payments.

25This is only possible if vmin ≥ I , for otherwise the project cannot be financed with user fees in all states.
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The intuition for this result is that if the user fee revenue collected by the concessionaire

increases by $1, the government has to levy $1 in additional taxes to replace this transfer,

which costs society λ. This is the same cost that society bears when paying $1 in addi-

tional subsidies. Hence, at the margin the opportunity cost of user fee revenue or sub-

sidizing the concessionaire is exactly the same. The rich set of optimal combinations of

state-contingent subsidies and concession terms reflects that user fees and subsidies are

perfect substitutes in the planner’s objective function.

A similar argument shows that the planner will satisfy the concessionaire’s participation

constraint with equality. An additional dollar in the concessionaires pocket increases social

welfare in α, but costs λ to users. Since λ>α, the planner chooses not to provide rents to

the concessionaire. Finally, note that the optimal contract provides full insurance to the

concessionaire.

Application: Evaluating shadow fees and availability payments

In several industrialized countries PPPs are fully financed with subsidies. However, in-

stead of paying for the infrastructure up-front, the concessionaire is compensated with

so-called “shadow fees,” that is, per-user fees paid directly by the government for a fixed

period of T years. For example, Britain highway concessionaires are paid a shadow toll

for each car on the highway. Proposition 1 suggests that these contracts are suboptimal

because the concessionaire is forced to bear risk.

If, on the other hand, the concessionaire is paid a so-called availability payment—a

yearly sum independent of the realization of demand, but conditional on delivering the

agreed service quality —, the concessionaire bears no risk, and the contract is optimal if

the concessionaire receives no rents.26 Thus, Proposition 1 provides an argument against

fixed term contracts with shadow fees, and in favor of availability contracts.27

Corollary 1 When no user fees can be charged (usually due to political constraints), S(v) = I

for all states v characterizes the unique optimal contract. Hence shadow fees which make

payments contingent on the use of the infrastructure for a fixed and finite term T are not

optimal. By contrast, availability contracts that leave no rents for the firm are optimal.

26This result extends to the case where yearly payments by the government also include operational costs
incurred by the firm to satisfy demand. What is central for the result to hold is the absence of a link between
demand realizations and the recovery of the upfront investment.

27Shadow fees may be more attractive when the firm can exert costly effort to influence demand. See
Section 5.2
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3 Optimal contract with inefficient subsidies

The irrelevance result implies that the case for PPPs cannot rest on the claim that they

relieve strained budgets. When are PPPs warranted? As mentioned in the introduction, one

justification of PPPs is that bundling may enhance productive efficiency (see section 3.6).

An additional advantage of PPPs is that they reduce the sums flowing through the public

budget, reducing the inefficiencies associated with subsidy transfers. In this section we

derive the optimal contract when subsidy financing is less efficient than user-fee financing.

3.1 Modeling the inefficiency of subsidy financing

To model inefficiency subsidy financing, we assume that achieving $1 of useful spending

costs $1 if financed by the private sector but ζ> 1 dollars if financed with a subsidy. If sub-

sidies are monetary transfers from the government to the concessionaire, then ζ> 1 means

that not all the resources reach their intended end. Other interpretations are possible. For

example, if the government provides subsidies in kind by building part of the infrastruc-

ture, the ζ parameter captures the government’s productive inefficiency relative to private

firms: the government must spend ζ dollars for each $1 spent by the private firm.28

Formally, introducing ζ implies that the termλS(v) in (3a) must be replaced byλζS(v)—

the inefficient subsidy transfer increases the magnitude of the tax distortion. The planner’s

program now is

min
{R(v),S(v)}

∫
[(λ−α)R(v)+ (λζ−α)S(v)] f (v)d v. (6a)

s.t.
∫

u(R(v)+S(v)− I ) f (v)d v ≥ u(0), (6b)

0 ≤ R(v) ≤ v, (6c)

S(v) ≥ 0. (6d)

It is apparent from (6a) that if ζ > 1, user fees are a more efficient compensation the

concessionaire. The cost to society of one dollar in user fees is λ−α, while a subsidy costs

λζ−α. Of course, ζ > 1 is not a sufficient argument against subsidizing projects, for the

project’s social value may exceed I , and user fee revenue may be insufficient to compensate

the concessionaire in low-demand states. But, as we will see next, ζ > 1 determines the

structure of the optimal risk-sharing contract.

28For example, public sector unions may demand higher wages, public agencies may be overstaffed, and
rigid budgetary rules may hinder procedures and increase costs.
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3.2 Optimal risk-sharing contract: overview

The tradeoff faced by the planner when ζ> 1 is the following: On the one hand, it would like

to utilize user fee revenues as far as possible to compensate the concessionaire, in order to

avoid paying subsidies. On the other hand, using only user fees may expose the conces-

sionaire to excessive risk, and an efficient contract would insure against low demand states

through subsidies.

Figure 1: Optimal contract, intermediate demand project 
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Figure 1 shows how the trade off is resolved optimally when vmin < I < vmax (i.e., there

are some states of demand in which user fee revenues is smaller than I while there are

others in which revenues are larger than I ). The horizontal axis plots the support of v

while the vertical axis shows the total revenue received by the concessionaire in each state,

R(v)+S(v).

We will show that the optimal contract is characterized by two thresholds, a minimum

revenue guarantee m and a revenue cap M . These thresholds, in turn, define three types

of demand states. In low-demand states v < m, R(v) = v and S(v) = m − v . Hence the

concession lasts forever and the concessionaire receives a subsidy to attain the guaranteed

minimum revenue m. By contrast, in high-demand states v > M and R(v) = M . Thus the

concession ends in finite time and the government gets v−M . The remaining cases, which

13



we denote intermediate-demand states, are such that m ≤ v ≤ M , R(v) = v and S(v) = 0. In

these states the concession lasts indefinitely, but no subsidies are paid. The remainder of

this section derives the optimality of this risk-sharing arrangement.

3.3 A taxonomy of demand states

To derive the optimal contract, note that in state v the planner will only resort to subsidies

after exhausting user fees—otherwise, it could slightly reduce subsidy payments, which

would save ζλ−α; and increase R(v), which would cost only λ−α. Thus:

S(v) > 0 =⇒ R(v) = v,

or equivalently

R(v) < v =⇒ S(v) = 0.

Now let µ > 0 denote the multiplier of the concessionaire’s participation constraint

(6b).29 The FOC with respect to R(v) for a state v such that the term of the concession

is finite leads to

u′(R(v)− I ) = λ−α
µ

. (7)

While the FOC with respect to S(v) for a state where subsidies are paid leads to

u′(v +S(v)− I ) = λζ−α
µ

, (8)

where in both cases we have used that revenue financing dominates subsidy financing.

Define m and M via

u′(m − I ) = λζ−α
µ

, (9)

u′(M − I ) = λ−α
µ

, (10)

and let ζ̄≡ (λζ−α)/(λ−α).30 Since ζ> 1 we have m < M and

u′(m − I ) = ζ̄u′(M − I ),

It follows from (7) and (10) that in states with v > M no subsidies are paid out and the

29Note that the participation constraint will hold with equality because λ>α, hence µ> 0.
30Note that ζ̄> 1 ⇐⇒ ζ> 1 and ζ̄< 1 ⇐⇒ ζ< 1. Furthermore, ζ= ζ̄ when α= 0.
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concession lasts until the concessionaire collects M in present value. The government, on

the other hand, collects v −M after the concession ends. Thus, in high-demand states the

concessionaire’s revenue is capped by M and the term of the concession is variable.31

Similarly, from (8) and (9) we have that a subsidy equal to m − v is paid in states with

v < m. Therefore, in low-demand states the concession lasts indefinitely and the conces-

sionaire receives a minimum revenue guarantee.

Finally, there is a third class of states of demand such that m ≤ v ≤ M . In these states

the concession lasts indefinitely, for otherwise they would be high-demand states. But no

subsidies are paid out by the government, for otherwise they would be low-demand states.

It follows that R(v) = v and S(v) = 0 in this class.

We summarize this characterization in the following proposition:

Proposition 2 (A taxonomy of demand states) The optimal contract is characterized by a

minimum revenue guarantee, m, and revenue cap, M, with m < M, as follows:

1. If M < v, the concessionaire collects M in present discounted user fees while the gov-

ernment collects the remaining v −M. No subsidies are paid and the concession term

is finite. These are high-demand states.

2. If m ≤ v ≤ M, the concession lasts indefinitely and no subsidies are paid. Total rev-

enues accrued to the concessionaire in present value equals v and the government

budget is unaffected by the concession. These are intermediate-demand states.

3. If v < m, the concession lasts indefinitely and the government grants a subsidy of m−v

to the concessionaire. These are low-demand states.

Let us comment on the economics of this taxonomy. In any state with a finite conces-

sion term, the social opportunity cost of the last dollar received by the concessionaire is

λ−α; this justifies equalizing the concessionaire’s revenue across high-demand states by

fixing a revenue cap M . On the other hand, in any low-demand state the last dollar paid

to the concessionaire comes from a subsidy and costs society λζ−α. Again, this justifies

equalizing revenue across low-demand states at the minimum revenue guarantee m < M .

31If demand grows at a the same rate in all demand states, this implies that higher values of v correspond
to shorter concession terms. This is not necessarily true with more general demand schedules.
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As can be seen from Figure 1, the difference between λ−α and λζ−α introduces a

wedge M −m that leads to the emergence of intermediate-demand states. To see the intu-

ition, consider one such state, ṽ . It is straightforward to obtain the following inequalities

1

ζ̄
< u′(ṽ − I )

u′(m − I )
< 1 < u′(ṽ − I )

u′(M − I )
< ζ̄.

These inequalities imply that the concessionaire’s marginal utility evaluated at ṽ − I is

smaller than the marginal utility at m, but higher than the marginal utility at M . In other

words, the shadow value of the last dollar received by the concessionaire in state ṽ is too

low to warrant a subsidy, as well as too high to warrant a revenue cap. Consequently, the

concession lasts forever, but no subsidies are paid.

3.4 A taxonomy of projects

To complete the characterization of the optimal contract, we show how m and M are de-

termined, which leads to a taxonomy of projects.

Consider first the case where user fees can finance the project in all demand states, that

is, vmin ≥ I . The optimal contract sets R(v) = M = I ≤ v for all v , and the concessionaire

receives full insurance—all states are high demand states when vmin ≥ I .32 To see that this

contract is optimal, note first that it is clearly feasible. Moreover, no contract can give less

than I on average to the concessionaire, for then the participation constraint would not

hold; and had the concessionaire been forced to bear risk, he would have required more

than I on average.

Consider next the case where user fees are never large enough pay for the project, that

is, vmax < I . Then m = I . For if m > I , all states are low-demand, and the concessionaire’s

participation constraint holds with slack, which cannot be optimal. And if m < I , the con-

cessionaire’s participation constraint cannot be satisfied, because revenue in all demand

states will be below I . It follows that m = I while now M is irrelevant. Thus, the optimal

contract subsidizes the concessionaire in all demand states to ensure that total revenue is

equal to the cost of the project.

We refer to a project with vmin ≥ I as a high-demand project, while one with vmax < I is

a low-demand project, and summarize these results in the following Proposition.

32The formal proof is similar to that of Proposition 1. Also note that from m < M it follows that no subsidies
are paid out for all feasible values of m, and therefore this threshold is irrelevant to pin down the optimal
contract.
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Proposition 3 (Optimal contract for high- and low-demand projects) The optimal contract

for high- and low-demand projects specifies that R(v)+S(v) = I for all v. Given demand re-

alization v, the government collects v − I in each state if the project is high-demand, while it

pays a subsidy of I − v in each state if the project is low-demand.

The economics of Proposition 3 should be apparent. The social cost of transferring an

additional dollar to the concessionaire is λ−α in all states when a project is high demand,

and full insurance immediately follows. In a low-demand project the social cost of trans-

ferring an additional dollar to the concessionaire is higher (i.e., λζ−α), but is also the same

across states and therefore full insurance is optimal.

As we can see from Figure 1, the structure of the optimal contract is different for projects

such that vmin < I ≤ vmax, for a contract that gives full insurance to the concessionaire

(m = M = I ) is no longer optimal. To see this, consider decreasing m to I −∆m, and using

the funds to increase M to I +∆M . Lowering the minimum revenue guarantee frees up

resources F (I )∆m in expected value, and this can be used to finance an increase in M of

F (I )∆m/(1−F (I )).33 Society is made better off in the process, since each dollar saved in

guarantees is ζ̄ > 1 times more valuable than a dollar of foregone user fee revenue. Thus

it follows from (6a) that the planner’s objective function improves by λ(ζ−1)F (I )∆m. In-

creased risk reduces the concessionaire’s expected utility by an expression on the order of

(∆m)2. It follows that the optimal values of m and M satisfy m < I < M .

The following proposition characterizes the optimal values of both thresholds.

Proposition 4 (Optimal contract for intermediate-demand projects) Consider a project such

that vmin ≤ I < vmax (intermediate-demand project). Assume u′(vmin − I ) > ζ̄u′(vmax − I ).34

Then the optimal contract is characterized by quantities m and M, with vmin < m < I < M <
vmax, such that states with v > M are high-demand, states with m ≤ v ≤ M are intermediate-

demand and states with v < m are low-demand.35 Also, m and M are determined from the

33Since this is an intermediate demand project, 0 < F (I ) < 1.
34This condition ensures that m > vmin and M < vmax, so that condition (12) below holds with equality. Two

possibilities arise if u′(vmin− I ) < ζ̄u′(vmax− I ). First, if
∫

u(v − I ) f (v)d v > u(0), the optimal contract involves
no subsidies (m < vmin) and M is determined from∫ M

vmin

u(v − I ) f (v)d v + (1−F (M))u(M − I ) = u(0).

By contrast, the optimal contract involves no revenue cap when
∫

u(v − I ) f (v)d v < u(0). In this case the
minimum income guarantee is determined by

F (m)u(m − I )+
∫ vmax

m
u(v − I ) f (v)d v = u(0).

35See Proposition 2 for the definition of high, intermediate and low demand states.
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concessionaire’s participation constraint

F (m)u(m − I )+
∫ M

m
u(v − I ) f (v)d v + (1−F (M))u(M − I ) = u(0). (11)

and the condition

u′(m − I ) = ζ̄u′(M − I ). (12)

Proof See Appendix C.2.

3.5 Comparative statics

Comparative statics for high- and low-demand projects are straightforward. When I rises,

the planner must transfer more revenue to the concessionaire. On the other hand, changes

in ζ̄ or in the concessionaire’s degree of risk aversion have no effect on the optimal contract.

By contrast, in an intermediate-demand project both an increase in ζ̄ or a fall in the

concessionaire’s degree of risk aversion increases the wedge between the minimum rev-

enue guarantee m and the revenue cap M . Moreover, the risk premium demanded by a

concessionaire with decreasing absolute risk aversion grows with I , but does not change if

absolute risk aversion is constant. The following proposition formalizes these results:

Proposition 5 (Comparative statics) Denote by m(ζ, I ) the minimum revenue guarantee,

and by M(ζ, I ) the revenue cap that characterize the optimal contract, both as a function of

the inefficiency parameter ζ and the upfront investment I . Assume (ζ, I ) is such that vmin <
m(ζ, I ) < M(ζ, I ) < vmax and denote CARA(c) ≡−u′′(c)/u′(c). Then:

(i) The risk borne by the concessionaire, as measured by the wedge M −m, increases with

the social cost of subsidies, ζ. Furthermore,

λ

(λζ−α)CARA(m − I )
≤ ∂M

∂ζ
(ζ, I ) − ∂m

∂ζ
(ζ, I ) ≤ λ

(λζ−α)CARA(M − I )
.

(ii) The thresholds m and M are increasing in I and grow faster than I . Moreover, for a

concessionaire with decreasing absolute risk aversion, the wedge between M and m

increases with I , while it does not depend on I if the concessionaire has constant abso-

lute risk aversion.

Proof See Appendix C.3.
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3.6 Applications

Minimum income guarantees and revenue sharing Minimum income guarantees are

routine in many types of PPPs. However, most real world contracts have a fixed term and

therefore do not follow the prescriptions laid out in Proposition 4. These contracts would

be closer to the optimal contract if their durations were longer in low-demand states, when

guarantees are paid out. Thus, real world contracts pay too much guarantees in low de-

mand states.

Real world profit and revenue sharing agreements also do not coincide with the revenue

cap that characterizes the optimal contract. When governments impose profit sharing ar-

rangements, they split revenues in excess of a given threshold with the concessionaire in

fixed proportions. By contrast, Propositions 3 and 4 suggest assigning all the revenue in ex-

cess of a given threshold to the government—the windfall profits tax rate should be 100%.

More generally, the rationale behind real-world guarantees and revenue sharing schemes

is to reduce the risk borne by the concessionaire. By contrast, the rationale behind the op-

timal contract in Propositions 3 and 4 is to optimally trade off insurance on one hand, and

the use of user fees and subsidies on the other. This is why the concession lasts indefinitely

when subsidies (i.e., guarantees) are granted; the term is variable in high-demand states;

and the concessionaire’s revenue in high-demand states is higher than in low-demand

states.

When is a PPP warranted? Bundling, incentives and the optimal contract The struc-

ture of the optimal risk-sharing contract is largely determined by the desire to minimize

subsidy finance. Bundling allows the planner to take cash flows off the public budget by

substituting user fees for subsidies, thus increasing productive efficiency. Yet this is not

always enough to make the case for a PPP. Whether a PPP is better than conventional un-

bundled provision also depends crucially on how bundling affects incentives.

The central observation was made by Hart (2003), who showed that bundling links

investment spending with life-cycle operation costs. Hence, bundling stimulates non-

contractible investments that cut operation costs. But cost cutting is not necessarily desir-

able, because it may come at the expense of lower service quality. Therefore, in his model,

a PPP may be better if cost cutting is socially beneficial, but conventional provision proba-

bly carries the day if service quality cannot be well specified and cost cutting substantially

deteriorates it.36

In different guises, this insight emerges in most comparisons of PPPs with conventional

provision. Bennet and Iossa (2006) observe that PPPs also transfer ownership of the asset

36See also Grout (1997).
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to the concessionaire and, in many cases, substitute output and performance measures for

input specifications. With a PPP, then, the concessionaire retains some or all control rights

over how to produce the service, and may unilaterally implement any cost-saving innova-

tion. By contrast, with conventional provision the government retains the right to tell the

concessionaire how to produce, and cost-reducing innovations can be implemented only

after bilateral bargaining.37 Because of this, the case for a PPP again rests on the effect

of cost-reducing innovations. If the main impact is to cut costs, with little or no effect on

service quality and value, then a PPP is probably better. By contrast, if the main effect of

innovations is to increase social surplus and perhaps to increase operation costs, conven-

tional unbundled provision is better because only the government may care about social

welfare.

Martimort and Pouyet (2006), in turn, analyze a moral hazard model where non-verifiable

effort during construction increases quality and gross social surplus, but may either reduce

or increase costs during operation. In line with incomplete contracting models, they show

that a PPP beats conventional provision if and only if quality enhancements reduce opera-

tion costs.

So does the intertemporal incentive effects of bundling affect the structure of the op-

timal risk-sharing contract derived above? The answer is no. As we show in Appendix B,

the costs and benefits affected by bundling are not functions of R or S. For this reason,

and as far as the planner’s program is concerned, these variables are just like terms E or

αI in the planner’s problem. A neat separation thus emerges. On the one hand, incentives

change when investment and life cycle costs are linked, and this affects whether a PPP is

better than conventional provision. On the other hand, it does not affect the structure of

the optimal risk-sharing contract conditional on choosing a PPP.

4 Implementation

The informational requirements needed to implement the optimal contract might seem

formidable, but somewhat surprisingly, this is not the case. We show next how to imple-

ment the optimal contract with a competitive auction when the planner knows neither I

nor firms’ risk aversion.
37Typically, conventional unbundled provision assumes government ownership, while with a PPP the con-

cessionaire owns the asset and has control rights over how to produce the service. Of course, ownership
usually is limited, for example, authorization may be needed to sell assets or transfer the concession. Bennet
and Iossa (2006) also study two rather unconventional structures: bundling with government ownership and
unbundled provision with private ownership of assets and control rights over how to produce the service. We
ignore such structures here.
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4.1 High- and low-demand projects

Consider first a high-demand project. Then an auction where the bidding variable is the to-

tal present value of user fee revenues (PVR) collected by the concessionaire, β, implements

the optimal contract. This follows from noting that rents will be dissipated in a competitive

auction, so that β will satisfy: ∫
u(β− I ) f (v)d v = u(0). (13)

Hence the winning bid will be β= I , which corresponds to the optimal contract derived in

the preceding section. Denote by T (v) the time it takes for user fee revenue accumulated in

state v to attain I . The concession term is shorter when demand is high, that is, when T (v)

is small.38 The concessionaire bears no risk because users pay him the same amount in all

states of nature.39 Furthermore, the planner can implement the optimal contract using a

PVR auction even if she does not know I , the density f (v) or the concessionaire’s degree of

risk aversion. All the planner needs to know is that the project can finance itself in all states

of demand, that is, that vmin ≥ I .40

Consider next a low-demand project. A PVR auction will implement the optimal con-

tract in this case as well, as long as the government subsidizes the difference between the

winning bid and the present value of user fees collected. In this case firms end up bid-

ding on a minimum income guarantee and the winning bid ensures a total revenue of I .

Informational requirements are modest again, since the planner only needs to know that

vmax < I , and be able to verify revenue in each state. Note that the concession lasts forever

in this case. We summarize both cases reviewed so far as follows:

Proposition 6 (High- and low-demand projects) The optimal contract can be implemented

with a PVR auction, or a simple extensions thereof, for both high- and low-demand projects.

Furthermore, bidders reveal I in the auction and there is no need to know f or u.

Application: Evaluating least subsidy auctions Low-demand projects are sometimes awarded

to the firm that makes a bid for the smallest subsidy. That is, the government sets a fixed

concession term T and a user fee p, and firms bid the subsidy they require to build, operate

and maintain the project.

38As noted in footnote 31, this requires that demand grows at the same rate in all states.
39Uncertainty in I , which may be important in some projects, cannot be eliminated with a variable term

contract.
40This case is considered in Engel, Fischer and Galetovic (2001).
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Assume that cumulative user fee revenue accrued by time t in state v is equal toγ(t , v)v ,

with γ strictly increasing in t , and limt→∞γ(t , v) = 1. Assuming a competitive auction, so

that ex-ante rents are dissipated, the winning bid S then satisfies:∫
u

(
γ(T, v)v +S − I

)
f (v)d v = u(0),

which means that the concessionaire will be forced to bear risk.41 It follows that

S > I −
∫
γ(T, v)v f (v)d v.

and, since γ(T, v) ≤ 1,

S > I −µv ,

where µv is the mean of f (v).

By contrast, with a PVR auction the equilibrium outcome satisfies S(v) = I − v and ex-

pected expenditures are equal to:

E[S] = I −µv .

With a minimum subsidy auction the subsidy is the same in all states of demand, which

forces the concessionaire to bear risk. By contrast, the optimal contract features state-

contingent subsidies that ensure that the concessionaire bears no risk. This leads to the

somewhat counterintuitive result that the average subsidy paid out with a PVR auction is

lower than the winning bid in a lowest-subsidy auction. The concessionaire is forced to

bear risk in the latter case, therefore demanding higher revenue on average, and a higher

subsidy.

Proposition 7 (Sub-optimality of least subsidy auctions) A least-subsidy auction of a fixed-

term concession is not optimal. Furthermore, for low-demand projects this auction does not

minimize the average subsidy paid out by the government.

4.2 The general case

Next we consider the case where the planner does not know if the project is high, interme-

diate or low demand. We also assume that the planner does not know firms’ risk aversion,

but does know the probability density f (v).42 We show next how to implement the optimal

41Note that limt→∞γ(t , v) = 1 and vmin < vmax imply that γ(T, v)v has to vary with v .
42The government should be as informed about demand as third parties, because it either provides the ser-

vice directly or it must compare the PPP with unbundled provision. Furthermore, substantial public planning
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contract with a simple scoring auction.

Proposition 8 (Optimality of the two-threshold auction) The following two-threshold, scor-

ing auction implements the optimal contract:

• The government announces the probability density of expected discounted user fee rev-

enue flow from the project, f (v), and the parameter ζ̄ that summarizes the wedge be-

tween the shadow cost of public funds and subsidies.

• Firms bid on the minimum revenue guarantee, m, and the cap on their user fee rev-

enue, M.

• The firm that bids the lowest value of the scoring function

W (M ,m) = M(1−F (M))+
∫ M

0
v f (v)d v + ζ̄

∫ m

0
(m − v) f (v)d v (14)

wins the concession.

Proof Since all firms are identical, the winning bid of the competitive auction minimize the

scoring function subject to firms’ participation constraints. And since the scoring function

is equal to the planner’s objective function, where we use the fact that the optimal contract

is characterized by thresholds m and M , it follows that the winning bid maximizes the

planner’s objective function subject to the firm’s participation constraint, thereby solving

the planner’s problem.

What is the intuition underlying this result? Note first that the planner’s objective func-

tion does not require knowledge of I . The objective function only depends on the prob-

ability distribution of the present value of revenue that the project can generate and the

distortions associated with government expenditures, as summarized by ζ̄. By awarding

the PPP to the bidder that maximizes his objective function, and assuming competitive

bidding, the planner induces the concessionaire to solve society’s problem without know-

ing the cost of the project or the firms’ degree of risk aversion.

In the case of a high demand project, the two-threshold auction is equivalent to a PVR

auction. If all states have high demand, any bid with M = I and m ≤ I will win the auction.

No subsidies are paid out and the concession term is shorter if demand is higher. Similarly,

in the case of a low demand project, a bid with m = I and M ≥ I wins the concession, since

is needed to design most PPP projects, and this requires an assessment of demand.
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this time the upper threshold is irrelevant. In this case the two-threshold auction reduces

to the extension of the PVR auction described above. However, the two-threshold auction

is more general than a PVR auction, as it can be used for intermediate demand projects

or, more importantly, for projects where the planner does not know whether the project is

low-, intermediate- or high-demand.

5 Extensions

This section extends our results in two directions. First, we consider a general case where

demand responds to price changes and the concessionaire faces a standard convex short-

run cost curve. Second, we incorporate moral hazard, by assuming that demand responds

to the concessionaire’s unobservable effort.

5.1 Price-responsive demand

Assuming a totally inelastic demand simplifies the derivations, but is not realistic. We

show next that the main insights obtained above carry through to the case with a price-

responsive demand. Once tolls are set appropriately, the optimal contract continues to be

characterized by a minimum guarantee and a cap on revenues.

The planner’s problem

There exists a continuum of verifiable demand states indexed by θ and described by

a probability density g (θ). For tractability, we assume that the demand curve becomes

known immediately after the project is built and remains constant over time.43

In the earlier sections we had a one-to-one correspondence between demand states, θ,

and the present-value of user fee revenue, v . Now the present value of user fee revenue in

a given demand state depends on the user fee being charged. If user fee p is charged both

during and after the concession, we denote present discounted demand for the infrastruc-

ture in state θ by Q(p,θ), while the present discounted cost of producing Q units is c(Q,θ),

which is increasing and convex in Q.44 It follows that the concessionaire’s discounted cash

flow is:

Π(p,θ) ≡ pQ(p,θ)− c(Q,θ),

43The results that follow extend easily to the case where the demand schedule grows at an exogenous rate
that may vary over time and with θ, since the price-elasticities of demand do not vary over time in this case
as well. The problem becomes considerably harder when demand is allowed to evolve arbitrarily over time.

44This formulation makes it easy to extend the model to include congestion, which is important in the case
of projects such as roads, tunnels and bridges. See, e.g., Engel et al. (2001).
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which we assume increasing in θ.

Assume that the planner gives weight η ≥ 0 to the firm’s discounted cash flow, and let

CS(p,θ) denote discounted consumer surplus if the user fee is p in state θ. Then

H(p,η,θ) ≡ CS(p,θ)+ηΠ(p,θ), (15)

is the planner’s discounted welfare.45

Let p∗(η,θ) ≡ argmaxp H(p,η,θ). We assume that p∗(η,θ) increases with η for a fixed

value of θ. That is, the user fee that maximizes (15) increases with the relative importance

of producer’s surplus.46 From the first order condition that characterizes p∗(η,θ) we have:

η=−CSp (p∗(η,θ),θ)

Πp (p∗(η,θ),θ)
, (16)

where CSp andΠp denote the partial derivatives of CS andΠwith respect to p. As η grows,

p∗(η,θ) approaches the monopoly price for state θ, denoted by pM (θ). We also assume

thatΠ(p,θ) is concave and strictly increasing in p in the range [p∗(1,θ), pM (θ)].

For every demand state θ, the planner chooses two prices, the user fee paid during the

concession, pC (θ), and the user fee collected by the government after the concession ends,

pG (θ). The planner also sets the optimal concession length T (θ). Let r be the discount

rate. For notational convenience we work with a monotonic transformation of T (θ), L(θ) ≡
e−r T (θ), so that L decreases as T grows, from a value of 1 when T = 0 to a value of zero when

T =∞. Therefore the planner chooses functions pC (θ), pG (θ), L(θ) and S(θ), that solve the

following program:

max
∫ {

[1−L(θ)]H(pC (θ),α,θ)+L(θ)H(pG (θ),λ,θ)− (λζ−α)S(θ)
}

g (θ)dθ (17a)

s.t.
∫

u
(
[1−L(θ)]Π(pC (θ),θ)+S(θ)− I

)
g (θ)dθ = u(0), (17b)

0 ≤ L(θ) ≤ 1, (17c)

S(θ) ≥ 0. (17d)

The first term in the integrand of (17a) is the planner’s welfare during the concession—

the planner weighs the cash flow generated during this period by α, because it accrues

to the concessionaire. By contrast, the second term reflects welfare after the concession

ends—during this period user fees are collected by the government and substitute for dis-

45For notational simplicity, we use η as a placeholder for α or other valuations of profits.
46See Engel et al. (2001) for an example with congestion where this property is derived from first principles.

Of course, demand must be relatively inelastic.
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tortionary taxation, thus explaining why the planner’s weight on instantaneous cash flow is

λ. The third term in the objective function subtracts the cost of subsidies, which reflect the

difference between the social cost of one dollar of subsidy, λζ, and the weight the planner

gives to an additional dollar in the concessionaire’s pocket, α. As before, the terms αI and

E are omitted because they do not depend on the planner’s choice variables.

The optimal contract

While the determination of optimal user fees is no longer trivial, the structure of the

optimal contract remains identical to the case of perfectly inelastic demand. Thus, the

present value of the cash flow received by the concessionaire is equal to M across all high-

demand states, and m across low-demand states, with m < M . As before, the cash flow re-

ceived by the concessionaire in intermediate-demand states lies between m and M . More-

over, high-, intermediate- and low-demand projects are defined as before. The following

proposition characterizes the optimal risk-sharing contract which solves program (17a)-

(17d).

Proposition 9 (Taxonomy of projects) Projects can be classified into three types:

(i) A project is high-demand if and only ifΠ(p∗(λ,θ),θ) ≥ I for all states θ. The concession-

aire receives cash flow I in all states of demand, the concession term is finite, and the

government collectsΠ(p∗(λ,θ),θ)− I . Moreover, pC = pG = p∗(λ,θ).

(ii) A project is low-demand if and only if Π(p∗(λζ,θ),θ) < I . The concessionaire’s receives

cash flow I in all states of demand, the concession term is indefinite, and the conces-

sionaire receives a subsidy equal to I −Π(p∗(λζ,θ),θ). Moreover, pC = p∗(λζ,θ) (and

pG is irrelevant).

(iii) A project is intermediate-demand if and only if there exists at least one state θ such that

Π(p∗(λ,θ),θ) < I <Π(p∗(λζ,θ),θ).

For intermediate demand projects, the optimal contract is characterized by thresholds

m and M, with m < I < M, as follows:47

47As before, we assume u′(vmin−I ) > ζ̄u′(vmax−I ). If this is not the case, then the optimal policy is described
along the lines of footnote 34.
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• A state θ is high-demand if and only ifΠ(p∗(λ,θ),θ) > M. The concession term is

finite and the user fee is p∗(λ,θ), both during and after the concession. The con-

cessionaire’s discounted cash flow is M and the government collectsΠ(p∗(λ,θ),θ)−
M.

• A state θ is low-demand if and only if Π(p∗(λζ,θ) < m. The user fee is p∗(λζ),

the concession lasts indefinitely, and the concessionaire receives a subsidy equal

to m −Π(p∗(λζ,θ)).

• A state θ is intermediate-demand if and only if:48

m ≤Π(p∗(λ,θ),θ) <Π(p∗(λζ,θ),θ) ≤ M .

The concession lasts indefinitely but no subsidies are paid. The user fee p∗(η(θ),θ) ∈
[p∗(λ,θ), p∗(λζ,θ)] is determined by solving for η in:

η−α
λζ−αu′(m − I ) = u′ (Π(p∗(η,θ))− I

)= η−α
λ−αu′(M − I ). (18)

Proof See Appendix C.4.

The economics of optimal user fees

We now discuss how user fees are optimally set, thereby providing the intuition for the

results n Proposition 9. Consider first pG , the user fee after the concession ends. There

are no more profits for the concessionaire, so the planner just maximizes H(pG (θ),λ,θ).

Hence η=λ in equation (16) and pG (θ) = p∗(λ,θ).

The economic intuition is that when demand is responsive to user fees there is an ad-

ditional margin. The cash flow generated by user fees in each state increases with p as long

as p < pM . Thus, it is optimal to depart from marginal cost pricing as long as the distortion

at the margin is smaller than the cost of the alternative source of funding at the margin. If

ε is the elasticity of demand and cq is the short-run marginal cost, simple manipulations

show that at the optimum the Lerner margin that maximizes (15) is such that

p∗− cq

p∗ = λ−1

λ
× 1

ε
,

48The assumptions we made—p∗(η,θ) increasing in η and Π(p,θ) increasing and concave for p ∈
(p∗(1,θ), pM (θ))—ensure that Π(p∗(λ,θ) < Π(p∗(λζ,θ)). Therefore, our taxonomy of states creates a parti-
tion of the set of possible states.
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i.e., the planner chooses a user fee that creates a distortion commensurate with the cost of

public funds.

The same principle applies, mutatis mutandis to the different types of demand states

during the life of the concession. Consider optimal user fees during the concession. In a

high-demand state pC must solve

max
pC ,L

{
(1−L)H(pC ,α)+LH(p∗(λ))

}
(19a)

s.t. (1−L)Π(pC ) = K , (19b)

where K is a constant and we have omitted θ to reduce clutter. The interpretation of this

program is that if the concessionaire is to receive cash flow K in present value under the

optimal contract, then the most efficient price is pC .

The key to our result is that L is a function of pC in the constraint, since a higher user

fee shortens the concession. Thus, we use the constraint to get rid of L, and replacing in

the objective function, the optimal user fee must solve

max
pC

{
CS(pC )−H(p∗(λ))

Π(pC )

}
.

The FOC leads to

H(p∗(λ)) = CS(pC )− CSp (pC )

Πp (pC )
Π(pC )

which, as follows from (16), implies that pC = p∗(λ) is optimal.

It may seem surprising at first sight that pC = p∗(λ), because the planner values a dollar

in the concessionaire’s pocket at α < λ. Nevertheless, as the constraint in program (19a)-

(19b) shows, the planner can recover the extra cash flow that the concessionaire receives

in a high-demand state as a result of a higher pC because the concession is shorter. This

implies that at the margin the higher revenue generated by raising the user fee during the

concession substitutes for distortionary taxation after the concession ends. Hence, pC =
p∗(λ) is optimal.

In a low-demand state the user fee must solve

max
{pC ,S}

{
H(p,α)− (λζ−α)S

}
s.t. Π(pC )+S = K
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which, after using the constraint to get rid of S, reduces to

max
pC

{
CS(pC )+λζΠ(pC )

}
.

It follows that pC = p∗(λζ) is optimal. In low-demand states the planner can recover any

extra dollar of user fee revenue received by the concessionaire by lowering subsidy S. Hence,

at the margin the higher revenue generated by raising the user fee during the concession

substitutes for subsidies and it pays to distort the use of the project until the Lerner margin

reaches λζ−1
λζ × 1

ε .

Finally, consider an intermediate-demand state. On the one hand, in this state p∗(λζ)

generates more cash flow than the cap m allows, and at that point user fee revenue does

not substitute for subsidies at the margin. Thus, setting pC = p∗(λζ) would reduce the use

of the project by too much. On the other hand, p∗(λ) generates less revenue than required

by the revenue cap M . Hence, pC = p∗(λ) would lead to excessive use of the facility. This is

expressed formally by the following condition:

η−α
λζ−αu′(m − I ) = u′ (Π(p∗(η))− I

)= η−α
λ−αu′(M − I ). (20)

Finding m and M

In section 3 there existed a one-to-one relationship between demand states and user’s

willingness to pay for the project, allowing us to set v = θ. W

As mentioned above, when demand responds to user fees there is no one-to-one rela-

tion between demand state’s, θ, and user’s willingness to pay for the project, v . Nonethe-

less, demand uncertainty can be conveniently summarized by the joint distribution of the

flow of profits generated by the project for two particular user fees, p∗(λ) and p∗(λζ), and

this distribution can be used later to characterize the thresholds m and M that define

intermediate-demand states.

We denote the joint density of Π(p∗(λ,θ),θ) and Π(p∗(λζ,θ),θ) by f (wλ, wλζ), and the

corresponding marginal c.d.f.s. by Fλ(wλ) and Fλζ(wλζ). Figure 2 depicts a partition of the

(wλ, wλζ)-space into high, intermediate and low demand states, for given values of m and

M . Since wλζ is always larger than wλ, the joint density only has mass above the 45-degree

line. The lower-left triangle depicts demand states where user fees add up to less than m in

present value and subsidies are handed out. By contrast, user fee revenue in states in the

upper-right triangle adds up to more than M and the government obtains revenue in these

states.
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Figure 2: Partition of (wλ, wλζ)-space into high, intermediate and low demand states

This characterization of uncertainty can be used to find m and M for an intermediate

demand project:

Proposition 10 For an intermediate demand project, m and M are characterized by the

concessionaire’s participation constraint:

Fλζ(m)u(m−I )+
∫ M

0

∫ ∞

m
u

(
Π(wλζ, wλ)− I

)
f (wλζ, wλ)d wλζd wλ+(1−Fλ(M))u(M−I ) = u(0), (21)

and

u′(m − I ) = ζ̄u′(M − I ), (22)

where ζ̄= (λζ−α)/(λ−α) andΠ(wλ, wλζ) is a shortcut for the expectation ofΠ(p∗(η(θ),θ),θ)

conditional onΠ(p∗(λ,θ),θ) = wλ andΠ(p∗(λζ,θ),θ) = wλζ.

Proof The first expression is obtained from (17a) and the fact that the optimal policy is of

the two-threshold type. The second expression follows from (18). Appendix C.5 includes

an alternative derivation of the second expression that provides additional insights.

Implementation

The optimal contract can be implemented with a competitive auction. In common with

the infinitely inelastic demand case, the planner does not need to know the up-front cost
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of the project or the firms’ utility function. Firms bid on the lower and upper thresholds

m and M and the contract is adjudicated to the concessionaire that bids the highest value

of aggregate welfare. As before, aggregate welfare can be split up into the contribution of

high, intermediate and low demand states, leading to:49

W (M ,m) =Whigh +Wint +Wlow,

with

Whigh =
∫ ∞

M
[CS(w)+αM +λ(w −M)]dFλ(w),

Wint =
∫ M

0

∫ ∞

m
[CS(p∗(η(wλζ, wλ)))+αΠ(η(wλζ, wλ))] f (wλζ, wλ)d wλζd wλ,

Wlow =
∫ m

0
[CS(w)+αm +λζ(w −m)]dFλζ(w).

Even though more information on demand is needed to set up the auction than in the case

of inelastic demand, a good approximation to the optimal auction can be obtained if the

government provides the distribution of the present value of profits under two particu-

lar sets of user fees: those corresponding to the shadow cost of subsidies for the project,

p∗(λζ), and those reflecting the shadow cost of funds elsewhere in the economy, p∗(λ).

5.2 Moral hazard

In this section we allow for demand that depends on unobservable and costly effort by the

concessionaire. An additional motive to have the firm bear risk emerges in this case, as risk

now helps induce optimal levels of effort by the franchise holder. As before, two thresholds,

m and M , suffice to partition states into high, intermediate and low-demand states. Even

though now total revenue collected by the concessionaire increases with v , subsidies are

paid out only in low demand states (v < m), while the government collects user-fees only

in high demand states (v > M).

The planner’s problem

We embed the model of section 3 in a simple moral hazard framework. The conces-

sionaire can exert costly effort, which affects the probability distribution of demand real-

izations. The density f (v |ε) summarizes uncertainty about the present discounted value

49See Appendix C.5 for the derivation of the expressions that follow.
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of user fee revenue, for an indefinite contract, when the concessionaire chooses effort level

ε.50 We assume the monotone likelihood ratio property (MLRP) holds, so that `(v,ε) ≡
∂ f
∂ε (v |ε)/ f (v |ε) is increasing in v for all ε; i.e., effort increases the probability of higher real-

izations of demand. The utility of the concessionaire, U (y,ε) = u(y)−kε, k > 0, is separable

into net revenue and effort, where y denotes the present value of user fees collected by the

concessionaire and ε≥ 0 the concessionaire’s effort.

The planner chooses effort ε, and revenue and subsidy schedules R(v) and S(v), to solve

the following program

min
{R(v),S(v),ε}

∫
[(λ−α)R(v)+ (λζ−α)S(v)−λv] f (v |ε)d v (23a)

s.t.
∫

u(R(v)+S(v)− I ) f (v |ε)d v ≥ u(0)+kε, (23b)

ε= argmax
ε′

{∫
u(R(v)+S(v)− I ) f (v |ε′)d v −kε′

}
, (23c)

0 ≤ R(v) ≤ v, (23d)

S(v) ≥ 0. (23e)

Comparing program (6a)-(6d) with program (23a)-(23e) it can be seen that the term λv has

been added because now effort affects the p.d.f. of users’ present discounted willingness

to pay. Constraint (23b) is the concessionaire’s participation constraint, and (23c) is the

incentive compatibility constraint.

Under standard assumptions,51 we can use the First Order Approach to examine the

properties of the solution. The concessionaire’s incentive compatibility constraint can be

replaced by ∫
u(R(v)+S(v)− I )`(v,ε) f (v |ε)d v = k. (24)

Denoting by µ> 0 the multiplier associated with (23b) and τ> 0 the multiplier associ-

ated with (24),52 we have that the Lagrangian of the problem is:

L =
∫

[(λ−α)R(v)+ (λζ−α)S(v)−λv] f (v |ε)d v − µ

[∫
u(R(v)+S(v)− I ) f (v |ε)d v −kε

]
− τ

∫
u(R(v)+S(v)− I )`(v,ε) f (v |ε)d v. (25)

50In this section, effort is an action undertaken by the concessionaire during the construction phase that
affects demand for the infrastructure service both during and after the concession.

51E.g., strict concavity of the agent’s utility as a function of ε and the convexity of the distribution function
condition, see, e.g., Proposition 5.2 in Laffont and Martimort [2002].

52See Appendix D for formal proofs showing that µ> 0 and τ> 0.
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The first order condition w.r.t. to ε, combined with (24), provides an expression for τ:

τ=
∫

[(λ−α)R(v)+ (λζ−α)S(v)−λv]`(v,ε) f (v |ε)d v∫
u(R(v)+S(v)− I )∂

2 f
∂e2 (v,ε)d v

.

Optimal contract when ζ= 1

When ζ = 1, it follows from the Lagrangian (25) that the distinction between user fees

and subsidies is irrelevant, as before, and the optimal policy can be described exclusively

in terms of total revenue, T (v) ≡ R(v)+S(v). The irrelevance result also holds in this case,

and λ> 1 does not make the case for a PPP.

It is no longer optimal to grant full insurance to the concessionaire. Indeed, the FOC

with respect to T (v) leads to

u′(T (v)− I ) = λ−α
µ+τ`(v,ε)

, (26)

and the MLRP implies that T (v) is strictly increasing in v . It also follows that, contrary to

the results obtained in section 3, the concessionaire’s average revenue is larger than I , both

because he bears risk and because he must be compensated for exerting costly effort.

To further characterize the optimal contract with moral hazard, we assume that G (v,ε) ≡
u′(v − I )[µ+τ`(v,ε)] is strictly decreasing in v for all feasible ε.53 This assumption implies

that, given µ and τ, there exists M such that

u′(M − I ) = λ−α
µ+τ`(M ,ε)

. (27)

The optimal contract then falls into one of the three following cases:

Proposition 11 Assume ζ = 1, G (v,ε) ≡ u′(v − I )[µ+τ`(v,ε)] strictly decreasing in v for all

feasible ε, and define M as in (27). Then:

(i) If M < vmin: T (v) < v for all v ∈ [vmin, vmax].

(ii) If M > vmax: T (v) > v for all v ∈ [vmin, vmax].

53To derive this condition from first principles is not trivial, since µ and τ are multipliers that vary with
the problem’s parameters and, at least in principle, can take any positive value. Appendix D derives suffi-
cient conditions for ∂G/∂v < 0, in terms of the problem’s deep parameters, for the case of an exponential
distribution and constant absolute risk aversion. As discussed in that appendix, all we really need is a weaker
single-crossing condition.
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(iii) If M ∈ [vmin, vmax]: T (v) < v for v ∈ [vmin, M) and T (v) > v for v ∈ (M , vmax].

Proof See Appendix D.

The above proposition is a standard result in principal-agent theory: To induce socially

optimal effort, subject to the incentive compatibility constraint, the principal designs a

contract where the agent bears risk. The increase in demand compensates for the addi-

tional revenue required by the agent because he is not fully insured. Furthermore, the

MLRP ensures that total revenue is increasing in v , and there exists a threshold M such

that the firm is subsidized when v < M while the government shares in user fee revenue

when v > M . Depending on the value of M , the project may be high- or low-demand, but

there are no intermediate demand projects, i.e., those that, for a range of values of v , have

no effect on government finances. For these states to appear in the optimal contract, it is

necessary that ζ> 1. We turn to this case next.

Optimal contract when ζ> 1

Figure 3 depicts the optimal contract when ζ > 1. To derive this contract formally, we

first note that user-fees dominate subsidies as a source of revenue for the firm when ζ> 1.

Therefore subsidy financing only takes place when R(v) = 0. It follows that the FOC with

respect to R(v) for a state v where the concession term is finite leads to:

u′(R(v)− I ) = λ−α
µ+τ`(v,ε)

, (28)

while the FOC with respect to S(v) for a state where subsidies are paid out yields

u′(v +S(v)− I ) = λζ−α
µ+τ`(v,ε)

. (29)

Define M and m via:

u′(M − I ) = λ−α
µ+τ`(M ,ε)

, (30a)

u′(m − I ) = λζ−α
µ+τ`(m,ε)

, (30b)

given µ, τ and ε. It then follows from u′′ < 0, (28), (29), and the assumption that G (v,ε)

is decreasing in v , that states with v ≥ M are high-demand states, while states v ≤ m are

low-demand states, in the sense that the government collects user fees in the former case

and pays subsidies in the latter.
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Figure 3: Optimal contract with moral hazard and ζ> 1 
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Contrary to the optimal contract for the case with no moral hazard depicted in Figure 1,

the concessionaire’s revenue is not equal across all high-demand states or all low-demand

states. But the gap between m and M emerges for precisely the same reason as before,

namely that subsidy finance is more expensive than user fee revenue at the margin. Moral

hazard does not change the basic structure of the optimal contract, even though now the

concessionaire’s total revenue is strictly increasing in v .

Figure 3 shows that for an intermediate-demand project with ζ > 1 we have a range

of values of v where the contract lasts indefinitely and there are no subsidies. This range

of intermediate-demand states (and intermediate-demand projects) emerges only when

ζ> 1, leading to an increase in risk borne by the franchise holder beyond the level predicted

by the standard principal-agency model for the case ζ= 1. To make this statement precise,

we note that it follows from the MLRP and the definition of m and M that if vH denotes a

high-demand state and vL a low-demand state, then:

u′(vL − I ) = ζ̄
µ+τ`(vH ,ε)

µ+τ`(vL ,ε)
u′(vH − I ). (31)

The need to induce effort would make revenue in state vH greater than that in state vL

even when ζ= 1. But because ζ> 1, (which is equivalent to ζ̄> 1), the difference in revenue
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between states is amplified, since (31) implies

u′(m − I ) > ζ̄u′(M − I ),

while without effort we have an equality (see (12)). For example, for CARA utility with co-

efficient of absolute risk aversion A:

M −m = 1

A

[
log(ζ̄)+ log

(
µ+τ`(M ,ε)

µ+τ`(m,ε)

)]
,

which, because of the MLRP, is larger than the corresponding expression when effort does

not matter:

M −m = 1

A
log(ζ̄).

It is time to take stock:

Proposition 12 Assume ζ > 1, G (v,ε) ≡ u′(v − I )[µ+τ`(v,ε)] strictly decreasing in v for all

feasible ε, and define M and m as in (30a)-(30b). Then T (v) is increasing in v and:

(i) If M < vmin: T (v) = R(v) < v for all v ∈ [vmin, vmax] and no subsidies are paid (high-

demand project).

(ii) If m > vmax: T (v) > v for all v ∈ [vmin, vmax] and subsidies are paid in all states (low-

demand project).

(iii) If vmin < m < M < vmax:

• v > M corresponds to high demand states, with no subsidies and a finite contract

length.

• v < m corresponds to low demand states, with indefinite contracts and subsidies

• m < v < M corresponds to intermediate demand states, with indefinite contracts

and no implications for the government budget.

Application: Profit sharing and profit guarantees in the real world

In many PPP contracts the counterpart of minimum revenue guarantees has been a

revenue (and sometimes profit) sharing clause. We argue that these contracts are far from

optimal when effort matters.

The optimal contract involves both a state-dependent subsidy in low-demand states

and a state-dependent revenue cap above which the government collects all revenues.
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Moreover, the concession term is state contingent in high-demand states, and the con-

cession lasts indefinitely when subsidies are paid out. Both characteristics are seldom, if

ever, observed in real world PPP contracts. Normally, the guarantee leads to a constant rev-

enue for the concessionaire in low demand states, and the term of the concession is fixed

and finite.

Note, moreover, that the choice between the incentive contract described above and

the contract for the case without moral hazard discussed earlier (sections 3 and 5.1) de-

pends on the extent to which demand is exogenous, or should it be endogenous, the extent

to which the concessionaire’s actions affecting demand are enforceable. When these con-

ditions hold—as in the case for highways, which account for more than half of the world’s

expenditures on PPPs54—the contract without moral hazard applies and profit sharing ar-

rangements are not justified. By contrast, when the optimal contract needs to be high-

powered, then an incentive contract probably is desirable.

6 Conclusion: Are PPPs public or private?

As the worldwide enthusiasm about privatizations waned, PPPs began to boom. One rea-

son governments like PPPs is that they provide a temporary transfer of most of the benefits

of ownership of the assets at stake to private firms, thus avoiding criticism from those who

oppose privatization. At the same time, because some ownership rights are transferred,

governments can also claim that private sector participation is being advanced.

This raises the question of whether PPPs should be viewed as temporary privatizations,

or simply as another option to procure public services. Some characteristics of PPPs clearly

resemble a privatization. For example, Bennet and Iossa (2006) argue that in addition to

bundling, a PPP gives the concessionaire ownership rights over assets and control rights

over how to produce the service.55 Furthermore, our analysis has shown that the optimal

risk-sharing contract allocates all user fees to the concessionaire for as long as the conces-

sion lasts, as in the case of a privatized firm.

Yet this paper’s results can be used to argue that, as far as the risk profile of the govern-

ment’s budget is concerned, PPPs are much closer to public provision than to privatization.

Our starting point to derive this insight is that when thinking about the risk allocation im-

plied by PPPs, what matters is the intertemporal risk profile of cash flows, not the year-to-

year risk profile. This has interesting implications: for low- and high-demand projects, an

54See Hemming (2006).
55Bennet and Iossa (2006) argue that bundling is not a sufficient condition for a PPP since the could con-

tract a bundled service, while still keeping ownership of the assets and user fees, as under conventional pro-
vision.
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optimal PPP contract replicates the net cash flow streams of conventional (‘public’) provi-

sion, state by state. Essentially, all residual risk is transferred to the government, and the

concessionaire recovers I in all states, as in the case of conventional provision.

For intermediate-demand projects, our results show that a risk-sharing arrangement

is optimal. The extent to which the firm bears risk now depends on the extent to which

subsidies are a more costly source of financing than user fees, as captured by the parameter

ζ̄. When subsidy financing is very inefficient, it is too expensive to reduce the firm’s risk

via subsidies, and it is best to have the firm bear most (sometimes all) of the risk. PPPs

resemble privatizations in this case. On the other hand, if subsidy financing is only slightly

less efficient than user-fee financing, the minimum income guarantee and the cap on user

fee revenues that characterize the optimal contract are very similar, and the government

bears most of the risk. As with high- and low-demand projects, risk sharing arrangements

resemble public provision in this case.

Under privatization, the project is sold for a one-time payment and all risk is transferred

to the firm. Moreover, the link between the project and the public budget is permanently

severed. This is not the case with a PPP, where at the margin cash flows from the project

always substitute for either taxes or subsidies. The conclusion, then, is that from a public

finance perspective there is a strong presumption that PPPs are analogous to conventional

provision—in essence, they remain public projects, and should be treated as such.
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Appendix

A When is a project socially valuable?

A.1 Model

We define producer surplus as

PS(v) = R(v)+S(v)− I .

Letβp stand for the fraction of the private willingness to pay that can be collected by charg-
ing user fees over the life of the infrastructure project (this is a generalization of our as-
sumption βp = 1 in the body of the paper) and let E be the externality generated by the
project. Consumer surplus is:56

C S(v) = (λ−1)
[
βpv −R(v)

]+ [v −R(v)−λζS(v)]+E .

Hence

C S(v)+αPS(v) = (λ−1)
[
βpv −R(v)

]+ [v −R(v)−λζS(v)]+α(R(v)+S(v)− I )+E .

= [
(λ−1)βp +1

]
v − (λ−α)R(v)− (λζ−α)S(v)−αI +E .

Let γv be the maximum fraction of consumer willingness to pay that can be transferred to
the concessionaire under a PPP.57 Clearly, γ≤βp. Let

{
R∗(v),S∗(v)

}
solve

max
{R(v),S(v)}

∫
[C S(v)+αPS(v)] f (v)d v

s.t.
∫

u(R(v)+S(v)− I ) f (v)d v ≥ u(0),

0 ≤ R(v) ≤ γv

S(v) ≥ 0.

The expected social value of the project is

SV ≡
∫ {[

(λ−1)βp +1
]

v − (λ−α)R∗(v)− (λζ−α)S∗(v)−αI
}

f (v)d v +E . (32)

We can now use (32) to explore the conditions required for SV > 0.

56Note that the unpaid fraction (1−βp) remains as part of consumer surplus with or without the project.
57This parameter can be used to model a legally mandated maximum length of a PPP (e.g. 50 years in

Chile). βp, on the other hand, models the ability to appropriate user’s willingness to pay.
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A.2 The social value of a project

A high-demand project In this case I ≤ γvmin, R∗(v) = I and S∗(v) = 0 for all v . Then a
high-demand project is socially worthwhile if and only if

SV =
∫ {[

(λ−1)βp +1
]

v −λI
}

f (v)d v +E ≥ 0.

If, in addition βp = 1, then the condition simplifies to

SV =
∫
λ (v − I ) f (v)d v +E ≥ 0. (33)

Note that in the case of a high-demand project, the social value does not depend on α.
Since λ> 1, the social value of the project increases with βp. Finally, when βp = 1, expres-
sion (33) has a simple interpretation: the social value of the project is the sum, over all
demand states, of private surplus v − I , augmented by the fact that this surplus allows the
government to reduce distortionary taxation, plus the value of the externality.

A low-demand project In this case I > γvmax, S∗(v)+R∗(v) = I and R∗(v) = γv for all
states v . Hence, after some algebraic manipulation,

SV =
∫ {[

(λ−1)βp +1
]

v −λI −λ(ζ−1)(I −γv)
}

f (v)d v +E ≥ 0.

If, in addition, γ= 1 (which implies βp = 1), this condition becomes

SV =
∫ [

λ(v − I )−λ(ζ−1)(I −γv)
]

f (v)d v +E ≥ 0.

This expression is the same as (33), but for the fact that now the project must bear an addi-
tional cost in states where subsidies are paid: λ(ζ−1)(I −γv). Moreover, since

S∗(v) = I −R∗(v) = I −γv,

the social value of the project is (locally) increasing in γ when γ<βp.

An intermediate-demand project In this case, R∗(v) = M > I , and S∗(v) = 0 in high-
demand states. Hence, social surplus in such a state s is

SV (s) = [
(λ−1)βp +1

]
v + (λ−α)M −αI +E

In intermediate-demand states R∗(v) = γv and S∗(v) = 0. Hence, social surplus is SV(s)
= [

(λ−1)βp +1
]

v −λγv +α(γv − I )+E
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In low-demand states R∗(v) = γv and γv +S∗(v) = m < I . Hence, social surplus is SV(s) =[
(λ−1)βp +1

]
v −λ(1−ζ)γν−λζm +α(m − I )+E

This implies that the condition is

SV =
∫ {

(λ−1)βpv + v −αI
}

f (v)d v − (λ−α)

[
M(1−F (M))+

∫ M

m
γv f (v)d v +mF (m)

]

−λ(ζ−1)
∫ m

vmin

(m −γv) f (v)d v + E ≥ 0.

B When is a PPP better than conventional unbundled pro-
vision?

B.1 Modeling the differences between conventional provision and PPPs

The literature has identified several reasons for the differences between PPPs and conven-
tional provision.

1. As we point out, government spending may be inefficient in general, in addition to
the costs created by distortionary taxation. This is captured by the parameter ζ in our
model.

2. Hart (2003) suggested that bundling may stimulate cost savings, because design is
adapted to lower operation costs. The point is that the procurement choice by itself
may affect costs. In our framework this can be modeled by assuming that under con-
ventional (unbundled) provision total costs are σI instead of I . If the public sector is
more efficient in building a particular project, then σ < 1, while σ > 1 if the private
sector is more efficient.

3. Hart (2003) has also pointed out that the private concessionaire may have incentives
to save at the expense of quality of service. I other projects, a private concessionaire
may responde better better to the needs of users. We may assume that user willing-
ness to pay is ηv with conventional provision and v with a private concessionaire.
If the public sector is more effective in creating welfare for consumers, then η > 1,
while η< 1 if the private sector is more effective.

4. The capacity to charge users of the infrastructure may depend on the way the infras-
tructure is provided. We introduce a parameter βtr that captures the fraction of user’s
willingness to pay that can be effectively charged under conventional provision.

Assumption 1 βtr ≤βp.
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It follows that with conventional provision, consumer surplus is

C S(v) = [
(λ−1)βtr +η

]
v −λζσI +E .

Social surplus is thus ∫ {[
(λ−1)βtr +η

]
v −λζσI

}
f (v)d v +E . (34)

B.2 PPPs vs. conventional provision

Substracting (34) from (32) above, yields that a PPP is better than conventional provision if∫ {
(λ−1)(βp −βtr)v − [

(λ−α)R∗(v)+ (λζ−α)S∗(v)
]}

f (v)d v

+
∫ [

(1−η)v + (λζσ−α)I
]

f (v)d v ≥ 0. (35)

The first integral contains the terms that are central to our paper. (λ−1)(βp −βtr)v indi-
cates that one advantage of PPPs is that they substitute for distortionary taxation. If PPP’s
enhance the ability to charge users, this is a point in their favor over conventional provi-
sion. This term disappears if βp = βtr = 1. The second term, (λ−α)R∗(v)+ (λζ−α)S∗(v),
explains the structure of the optimal contract. As a means of financing the project, subsi-
dies are more expensive than project revenues, which is captured by λζ−α>λ−α.

The second integral contains two terms identified in the literature (in particular, Hart
(2003)), as potential advantages or disadvantages of PPPs. The first term, (1−η)v , indicates
that gross consumer surplus may increase or decrease with a PPP, depending on the sign
of 1−η, i.e., on whether the concessionaire is better at providing the servie to users. The
second term, (λζσ−α)I , shows that PPP may reduce the costs of provision. One possible
reason is that subsidy spending is by itself wasteful; this is captured with ζ > 1. The other
reason is that a PPP structure by itself may alter incentives in such a way that the direct cost
of the project may be smaller, for example, because bundling stimulates better design or
by reducing total costs during the duration of the concession. This is captured by the term
σ> 1.

We can now develop specific expressions for each type of project.

A high-demand project In this case I ≤ γvmin, R∗(v) = I and S∗(v) = 0 for all v . Thus,
substituting into (35) and rearranging yields that a PPP is better if∫ [

(λ−1)(βp −βtr)v
]

f (v)d v +
∫ [

(1−η)v +λ(ζσ−1)I
]

f (v)d v ≥ 0.

Result 1 With a high-demand project it is irrelevant whether productive efficiencies are
achieved in ζ or σ. Moreover, whether a PPP beats conventional provision does not depend
on α.
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A low-demand project In this case I > γvmax, S∗(v)+R∗(v) = I and R∗(v) = γv for all
states v . Substituting into (35) and rearranging yields that a PPP is better if∫ [

(λ−1)(βp −βtr)v −λ(ζ−1)(I −γv)
]

f (v)d v +
∫ [

(1−η)v +λ(ζσ−1)I
]

f (v)d v ≥ 0.

An intermediate-demand project In this case, evaluation of (35) in the different cases
and rearranging yields that a PPP is preferable if∫ {

(λ−1)(βp −βtr)v + (1−η)v + (λζσ−α)I
}

f (v)d v

− (λ−α)

[
M(1−F (M))+

∫ M

m
γv f (v)d v +mF (m)

]
−λ(ζ−1)

∫ m

vmin

(m −γv) f (v)d v ≥ 0.

C Proofs of Propositions

C.1 Proof of Proposition 1

Since u is concave, applying Jensen’s inequality to the concessionaire’s participation con-
straint leads to

u(
∫

[R(v)+S(v)] f (v)d v − I ) ≥
∫

u(R(v)+S(v)− I ) f (v)d v = u(0).

And since u is strictly increasing, the above inequality implies that

E[R]+E[S] ≥ I ,

where E[R] = ∫
R(v) f (v)d v denotes the expected revenue before demand is realized and

E[S] denotes expected government expenditure on subsidies.
It follows that if the solution to

min
R≥0,S≥0

(λ−α)E[R]+ (λζ−α)E[S] (36)

s.t. E[R]+E[S] ≥ I ,

satisfies (5b)–(5d), then it solves program (5a)-(5d) as well.
Hence, if ζ = 1, any combination of revenue and subsidy schedules that satisfies (5c),

(5d), and R(v)+S(v) = I for all v , solves the planner’s problem.
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C.2 Proof of Proposition 4

Having established the form of the optimal contract, the planner’s problem is equivalent
to finding m and M that minimize

M(1−F (M))+
∫ M

0
v f (v)d v + ζ̄F (m)

∫ m

0
(m − v) f (v)d v, (37)

subject to the concessionaire’s participation constraint (11). Noting that (11) implicitly de-
fines M as a function of m, we have that:

M ′(m) =− F (m)u′(m − I )

(1−F (M))u′(M − I )
. (38)

A similar calculation shows that the rate at which M and m have to change to keep the
objective function (37) unchanged is given by

M ′(m) =− ζ̄F (m)

1−F (M)
. (39)

Equating (38) and (39) for M ′(m) leads to (12) and completes the proof.58

C.3 Proof of Proposition 5

With the assumptions and notation introduced in the main text we prove that:

M ′(ζ) = λF (m)

(λζ−α)F (m)CARA(M − I )+ (λ−α)(1−F (M))CARA(m − I )
,

m′(ζ) =− λ(λ−α)(1−F (M))

(λζ−α)[(λζ−α)F (m)CARA(M − I )+ (λ−α)(1−F (M))CARA(m − I )]
,

M ′(ζ)−m′(ζ) = λ[(λζ−α)F (m)+ (λ−α)(1−F (M))]

(λζ−α)[(λζ−α)F (m)CARA(M − I )+ (λ−α)(1−F (M))CARA(m − I )]
.

It follows that risk borne by the concessionaire increases with the social cost of subsi-
dies, ζ. Furthermore, (λζ−α)(M ′(ζ)−m′(ζ))/λ takes a value between 1/CARA(m − I ) and
1/CARA(M − I ).

We define C (I ) ≡ CARA(M − I )/CARA(m − I ) and also show that:

m′(I ) = 1 + ζ̄C (I )
∫ M

m u′(v − I ) f (v)d v

[ζ̄C (I )F (m)+1−F (M)]u′(m − I )
,

M ′(I ) = 1 +
∫ M

m u′(v − I ) f (v)d v

[ζ̄C (I )F (m)+1−F (M)]u′(M − I )
,

M ′(I )−m′(I ) = ζ̄(1−C (I ))

∫ M
m u′(v − I ) f (v)d v

[ζ̄C (I )F (m)+1−F (M)]u′(m − I )
.

58The above proof assumes that F (m) > 0 and F (M) < 1. Footnote 34 outlines the proof when this is not the
case.
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It follows that m and M grow faster than I . Also, for a concessionaire with decreasing
absolute risk aversion, the wedge between M and m increases with I , while it does not
depend on I for a concessionaire with constant absolute risk aversion.

Proof Implicit differentiation of (12) with respect to ζ and a bit of algebra leads to:

M ′(ζ) = λ

(λζ−α)CARA(M − I )
+ CARA(m − I )

CARA(M − I )
m′(ζ).

Implicitly differentiating (11) with respect to ζ̄ leads to:

M ′(ζ) =− (λζ−α)F (m)

(λ−α)(1−F (M)))
m′(ζ).

Both expressions above lead to the comparative statics results for ζ̄.
Implicit differentiation of (12) with respect to I leads to:

m′(I )−1

M ′(I )−1
= ζ̄C (I ).

Implicit differentiation of (11) with respect to I leads to:

F (m)u′(m − I )[m′(I )−1]+
∫ M

m
u′(v − I ) f (v)d v + (1−F (M))u′(M − I )[M ′(I )−1] = 0.

The three comparative statics expressions in I now follow easily.

C.4 Proof of Proposition 9

Proof Part (i) It follows immediately from the planner’s objective function that pG (θ) =
p∗(λ,θ) when γ< 1, that is, when the contract length is finite.

To derive the expressions for pC (θ), consider first the case where the contract length is
finite. We fix the concessionaire’s profits, and choose the price that maximizes the planner’s
welfare, that is, we solve:

max
p,γ

γH(p,α)+ (1−γ)H∗(λ)

s.t. γΠ(p) = K ,

where we have dropped θ from our notation, H∗(λ) ≡ H(p∗(λ)) and p stands for pC . Using
the constraint to get rid of γ in the objective function leads to the following equivalent
problem:

max
p

CS(p)−H∗(λ)

Π(p)
.
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The corresponding first order condition leads to:

H∗(λ) = CS(p)− CS′(p)

Π′(p)
Π(p)

and it follows from (16) that p = p∗(λ) is optimal in this case.

Part (ii) Next we consider the case where S > 0 and maximize the planner’s objective
function over p and S, keeping fixed the concessionaire’s total profits:

max
p,S

H(p,α)− (λζ−α)S

s.t. Π(p)+S = K .

This time we use the constraint to get rid of S in the objective function, which leads to:

max
p

H(p,α)+ (λζ−α)Π(p),

which, by the definition of H , is equivalent to choosing the user fee that maximizes H(p,λζ).
It follows that pC = p∗(λζ) in this case.

Part (iii) We consider two intermediate demand states, θ1 and θ2, and find the optimal
price in each state subject to a fixed expected utility for the concessionaire. That is, we
solve:

max
p1,p2

H(p1,α,θ1) f (θ1)+H(p2,α,θ2) f (θ2)

s.t. u
(
Π(p1,θ)− I

)
f (θ1)+u

(
Π(p2,θ)− I

)
f (θ2) = K .

The Lagrangian for this problem is

L (p1, p2) = H(p1,α,θ1) f (θ1)+H(p2,α,θ2) f (θ2)+µ[u′
1 f (θ1)+u′

2 f (θ2)],

where u′
i = u(Π(pi , v)− I ), i = 1,2, and µ denotes the multiplier for the concessionaire’s

participation constraint.
Using the first order conditions in p1 and p2 to get rid of µ then leads to:

u′
1

u′
2

=
CSp (p1,θ)
Πp (p1,θ1) +α

CSp (p2,θ2)
Πp (p1,θ1) +α

.

Define η1 and η2 via p1 = p∗(η1,θ1) and p2 = p∗(η2,θ2). Since θ1 and θ2 are intermediate
demand states and Π(p∗(η),θ) is increasing in η, we have that ηi ∈ (λ,λζ), i = 1,2. The
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above expression combined with (16) implies that:

u′
1

u′
2

= η1 −α
η2 −α

.

A similar argument, with an intermediate and a low (high) demand state instead of two
intermediate states, leads to the second (third) equality in (20).

C.5 Proof of Proposition 10

We use Figure 2 to extend (37) and (38) to the more general setting considered here and in
this way prove (22). We show that the planner substitutes m and M at a rate:

M ′(m) =− ζ̄Fλζ(m)

1−Fλ(M)
, (40)

while the rate at which m and M are substituted along the concessionaire’s participation
constraint satisfies:

M ′(m) =− Fλζ(m)u′(m − I )

(1−Fλ(M))u′(M − I )
. (41)

Equating both rates of substitution leads to (22).
Consider the impact on the concessionaire’s participation constraint of an increase of

m by ∆m. Demand states than originally enjoyed a minimum revenue guarantee of m
see this guarantee increase by ∆m, thereby increasing the concessionaire’s expected utility
by Fλζ(m)u′(m − I )∆m. We also have a small fraction of states—those with vλζ ∈ [m,m +
∆m]—that now have a guarantee and did not have one before. And the user-fee in these
states is somewhat smaller once they have a minimum revenue guarantee. In any case, the
contribution of these marginal states to the concessionaire’s expected utility is of second
order in ∆m and can therefore be ignored.

A similar argument shows that a decrease of M by ∆M leads to a decrease of the con-
cessionaire’s expected utility of (1−Fλ(M)u′(M−I )∆M , where again we ignore higher order
terms in ∆M . Equating to zero the expected utility change associated with an increase in
m and a decrease of M leads to (41).

To derive (40) we first use our two-threshold characterization of the optimal contract to
simplify the planner’s objective function (17a). In high demand states we have γΠ(p∗(λ)) =
M and therefore

[αγ+λ(1−γ)]Π=λΠ− (λ−α)M .

We use this expression to get rid of γ in the expression for welfare in high demand states:

Whigh = CS(p∗(λ)) + αM + λ(Π(p∗(λ))−M). (42)

In low demand states we have Π+ S = m, which allows us to get rid of S in the planner’s

50



welfare function for these states:

Wlow = CS(p∗(λζ)) + αm + λζ(Π(p∗(λζ))−m) (43)

Finally, in intermediate demand states we have:

Wint = CS(p∗(η)) + αΠ(p∗(η)), (44)

with η ∈ (λ,λζ) determined from (20).
Consider next the effect on total welfare of an increase of ∆m in m and a decrease of

∆M in M . Comparing (42)–(44) it is clear that the change in welfare due to marginal firms—
those close to m or M—is second order, since η≈λζ for firms with wλζ close to m and η≈λ

for firms with wλ close to M . It follows that, as in the previous case, the first order aggre-
gate change in welfare is due to inframarginal low demand states and inframarginal high
demand states. The subsidy paid out in the former states increases significantly, leading
to a welfare reduction of (λζ−α)Fλζ(m)∆m. And user fees freed up by the decrease in M
allow the government to reduce distortions elsewhere in the economy, increasing welfare
by (λ−α)(1−Fλ(M))∆M . Equating to zero the total change in welfare leads to (40) and
completes the proof.

D Moral hazard and a single-crossing property

Proof of Proposition 11

A straightforward adaptation of the proof of standard moral hazard results can be used
to prove that T (v) is strictly increasing. For example, following the argument in the proof
of Proposition 5.2 in Laffont and Martimort (2002) leads to

µ = (λ−α)E

[
1

u′(T (v)− I )

]
,

τ = λ−α
k

Cov

(
1

u′(T (v)− I )
, u(T (v)− I )

)
.

From u′ > 0 it then follows that µ > 0, while the fact that u and u′ covary in opposite
directions implies that τ> 0. The MLRP and (26) then imply that T (v) is strictly increasing
in v .

The fact that T is strictly increasing in v does not imply that it crosses the 45-degree
line only once and from above, thereby ensuring the existence of M such that states with
v < M are low-demand (they require a subsidy) while state with v > M are high-demand
(finite term). This requires that the function G (v,ε) satisfies a single-crossing property. We
consider this property below, working with the more general case where ζ> 1.
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Problem Set Up

We partition demand states into three sets:

• H : outcomes where it is optimal to have a finite contract term and therefore no
subsidies,

• L : outcomes where subsidies are called for and therefore the contract lasts indefi-
nitely,

• I : outcomes where the contract lasts indefinitely but no subsidies are involved.

With the notation introduced in section 5.2, let:

G(v,ε) = u′(v − I )[µ+τ`(v,ε)]. (45)

The first order conditions (30a)-(30b) and u′′ < 0 imply that

H = {v : G (v,ε) <λ−α},

I = {v :λ−α≤G (v,ε) ≤λζ−α},

L = {v : G (v,ε) >λζ−α},

where ε is set equal to the value that maximizes the planner’s objective function, which is
assumed positive.

We want to show that there exist constants m and M , with m < M , such that H , I and
L are characterized by v > M , m ≤ v ≤ M and v < m, respectively.59 When ` ≡ 0 in (45),
this follows directly from u′′ < 0. Yet once effort matters, we must show that, for all feasible
values of ε, G (v,ε) crosses the horizontal lines λζ−α and λ−α only once and from above
(‘single-crossing property’). The problem is not trivial because µ and τ are multipliers that
vary with the problem’s parameters and, in principle, can take any positive values.

A particular case

In what follows we assume that the distribution of users’ willingness to pay follows an
exponential distribution with mean θ that increases with effort ε. The concessionaire has
constant absolute risk aversion A. In the remainder of this appendix we find conditions on
θ, k and A so that the optimal contract derived in section 5.2 is of the two threshold type.

The distribution of discounted demand follows an exponential distribution with mean
θ(ε), with θ′(ε) > 0:

f (v |ε) = 1

θ
e−v/θ.

It follows that:

`(v,ε) = θ′

θ

[v

θ
−1

]
59Since we do not know the value of ε a priori, this must hold for all feasible values of ε.
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and therefore
∂`(v,ε)

∂v
= θ′

θ2
> 0.

and the MLRP holds.
Since the concessionaire has constant risk aversion, denoted by A in what follows, the

concessionaire’s participation and incentive compatibility constraints lead to:∫
u′(T (v)− I ) f (v |ε)d v = 1−k Aε, (46)∫

u′(T (v)− I )`(v,ε) f (v |ε)d v =−k A. (47)

A useful identity

The first order conditions (28) and (29) imply that for all v we have:

λ−α≤ u′(T (v)− I )[µ+τ`(v,ε)] ≤λζ−α.

Integrating over v we then have:

µ

∫
u′(T (v)− I ) f (v |ε)d v +τ

∫
u′(T (v)− I )`(v,ε) f (v |ε)d v =C ,

with λ−α≤C ≤λζ−α. Substituting (46) and (47) in this expression leads to:

(1−k Aε)µ= τk A+C . (48)

Since µ, τ and C are positive, this expression implies that

ε< 1

k A
.

Thus, as expected, optimal effort is smaller when the concessionaire is more risk averse or
the cost of effort is higher. It also follows from (48) that:

µ

τ
= k A

1−k Aε
+ C

τ(1−k Aε)
,

and since k Aε< 1 and C > 0, this implies that:

µ

τ
> k A. (49)

Sufficient condition
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A straightforward calculation shows that:

∂G

∂ε
(v,ε) =−e−A(v−I )

[
Aµ−τ θ

′

θ2
(1+ Aθ)+ Aτ

θ′

θ2
v

]
.

It follows that G (v,ε) is decreasing in v over the entire range of possible values if and only
if

Aµ> τ
θ′

θ2
(1+ Aθ),

that is, if and only if
µ

τ
> θ′

θ

(
1+ 1

Aθ

)
. (50)

From (49) and (50) it follows that

k A > θ′

θ

(
1+ 1

Aθ

)
(51)

is sufficient to ensure that the optimal policy is of the two-threshold type.
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