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The history of the stock market is full of events striking enough to earn their own names: 

the Great Crash of 1929, the 'Tronics Boom of the early 1960s, the Go-Go Years of the late 

1960s, the Nifty Fifty bubble of the early 1970s, and the Black Monday crash of October 1987. 

Each of these events refers to a dramatic level or change in stock prices that seems to defy 

explanation. The standard finance model, where unemotional investors always force capital 

market prices to equal to the rational present value of expected future cash flows, has 

considerably difficulty fitting these patterns. Researchers in behavioral finance have been 

working to augment the standard model with an alternative model built on two basic 

assumptions.1

The first assumption is that investors are subject to sentiment. Investor sentiment, defined 

broadly, is a belief about future cash flows and investment risks that is not justified by the facts 

at hand. The second assumption is that betting against sentimental investors is costly and risky. 

And so, rational investors, or arbitrageurs as they are often called, are not as aggressive in 

forcing prices to fundamentals as the standard model would suggest. In the language of modern 

behavioral finance, there are limits to arbitrage. Recent stock market history has cooperated 

nicely, providing the Internet bubble and the ensuing Nasdaq and telecom crashes and thus 

validating the two premises of behavioral finance. A period of extraordinary investor sentiment 

pushed the prices of speculative and difficult-to-value technology stocks to unfathomable levels 

in the late 1990s. Instead of creating opportunity for contrarian arbitrageurs, the period forced 

many out of business, as prices that were merely high went higher still before an eventual crash.  

Now, the question is no longer, as it was a few decades ago, whether investor sentiment 

affects stock prices, but rather how to measure investor sentiment and quantify its effects. One 

                                                 
1 See De Long et al. (1990) and Shleifer and Vishny (1997) for this conception. 
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approach is “bottom up,” using biases in individual investor psychology, such as overconfidence, 

representativeness, and conservatism, to explain how individual investors underreact or overreact 

to past returns or fundamentals.2 A related class of models, discussed by Hong and Stein in this 

issue, relies on differences of opinion across investors, often combined with short sales 

constraints to generate misvaluation. When aggregated, these models make predictions about 

patterns in market wide investor sentiment, stock prices, and volume. 

The investor sentiment approach that we develop in this paper is, by contrast, distinctly 

“top down” and macroeconomic. The starting point for this approach is that many of the bottom 

up models lead to a similar reduced form of variation over time in mass psychology, and 

certainly none is uniquely true. Real investors and markets are too complicated to be neatly 

summarized by a few selected biases and trading frictions. The top down approach focuses on 

the measurement of reduced form, aggregate sentiment and traces its effects to market returns 

and individual stocks. The new directions in this top down approach build on the two broader 

and more irrefutable assumptions of behavioral finance—sentiment and the limits to arbitrage—

to explain which stocks are likely to be most affected by sentiment, rather than simply pointing 

out that the level of stock prices in the aggregate depends on sentiment.3

In particular, stocks of low capitalization, younger, unprofitable, high volatility, non-

dividend paying, growth companies, or stocks of firms in financial distress, are likely to be 

disproportionately sensitive to broad waves of investor sentiment. As the reader will recall, small 

startup firms represented a majority of the excitement and subsequent carnage of the Internet 

bubble, so this statement may ring true already. Theoretically, it follows because these groups of 

                                                 
2 See Barberis, Shleifer, and Vishny (1998) and Daniel, Hirshleifer, and Subrahmanyman (1998) for models of this 
sort. 
3 As an analogy, aggregate risk aversion is another one-dimensional variable that will affect all stocks to some 
degree but will also affect some more than others.  
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stocks tend to be harder to arbitrage, for example they have higher transaction costs, and because 

they are more difficult to value, making biases more insidious and valuation mistakes more 

likely. 

The remainder of the paper develops these theoretical predictions in more detail, shows 

how one might measure sentiment explicitly, and finally how to use the sentiment measures to 

validate the key predictions of the top down approach. Certainly, both the bottom up and top 

down approaches to investor sentiment deserve continued attention. The advantage of the top 

down approach is its potential to encompass bubbles, crashes, and more everyday patterns in 

stock prices in a simple, intuitive and comprehensive way. The advantage of the bottom up 

model is in providing microfoundations for the variation in investor sentiment that the top down 

model takes as exogenous.  

 

 

Theoretical Effects of Investor Sentiment on Stocks 

 

A pioneering and well-known set of studies of sentiment and aggregate stock returns 

appeared in the 1980s. They were largely atheoretical, testing in various ways whether the stock 

market as a whole could be mispriced. Authors looked for: the tendency of aggregate returns to 

mean revert; volatility in aggregate stock index returns that could not be justified by volatility in 

fundamentals, which is in fact another way of characterizing mean reversion in returns; or 
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predictability of aggregate returns using simple valuation ratios like the ratio of aggregate 

dividends to stock market value.4  

In these studies, the role of sentiment was left implicit, and the statistical evidence was 

not usually very strong. Practically speaking, it is hard to distinguish a random walk from a long-

lived bubble, especially in a short time series containing at best a few bubbles. Even when 

statistical inferences seemed robust, the economic interpretation was still unclear. Predictability 

of stock returns could reflect the correction of sentiment-induced mispricings or, arguably, time-

varying risk or risk aversion that causes time variation in expected stock returns.  

The more recent studies, such as Baker and Wurgler (2006), utilize interim advances in 

behavioral finance theory to provide sharper tests for the effects of sentiment. In particular, in the 

many behavioral models of securities markets inspired by De Long et al. (1990), investors are of 

two types: rational arbitrageurs who are sentiment-free and irrational traders prone to exogenous 

sentiment. They compete in the market and set prices and expected returns. But, arbitrageurs are 

limited in various ways. These limits come from short horizons or costs and risks of trading and 

short selling. So, prices are not always at their fundamental values. In such models, mispricing 

arises out of the combination of two factors: a change in sentiment on the part of the irrational 

traders, and a limit to arbitrage from the rational ones.  

 The key predictions of this framework come from its two moving parts. Consider first the 

possibility that sentiment-based demand shocks vary across firms, while arbitrage is equally 

difficult across firms. For example, suppose one thinks about investor sentiment as the 

propensity to speculate by the marginal investor, akin to a propensity to play the lottery. Then 

sentiment is almost by definition a higher demand for more speculative securities, and when 

                                                 
4 See Shiller (1981) on excess volatility, Fama and French (1988) and Poterba and Summers (1988) on mean 
reversion, and Campbell and Shiller (1988) and Fama and French (1989) on valuation ratios.  
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sentiment increases we expect such “speculative” stocks to have contemporaneously higher 

returns.  

What makes some stocks more speculative than others? We believe that the crucial 

characteristic is the difficulty and subjectivity of determining their true values. For instance, in 

the case of a young, currently unprofitable but potentially extremely profitable growth firm, the 

combination of no earnings history and a highly uncertain future allows investors to defend 

valuations ranging from much too low to much too high, as befits their prevailing sentiment. 

During a bubble, when the propensity to speculate is high, investment bankers can join the 

chorus arguing for high valuations. By contrast, a firm with a long earnings history, tangible 

assets, and stable dividends is much less subjective to value, and thus its stock is likely to be less 

sensitive to sentiment. One could appeal to psychological foundations here. Uncertainty means 

that the effect of overconfidence (Daniel, Hirshleifer, and Subrahmanyman, 1998), 

representativeness, and conservatism (Barberis, Shleifer, and Vishny, 1998) is more pronounced. 

And, differences of opinion (Miller, 1977), even when investors have the same basic 

information, can be large. The changes over time in these biases, we would call shifts in the 

propensity to speculate. 

Now suppose instead that we view investor sentiment as simply optimism or pessimism 

about stocks in general, and we allow the limits to arbitrage to vary across stocks. A large body 

of research shows that arbitrage tends to be particularly risky and costly for certain stocks: 

namely those that are young, small, unprofitable, or experiencing extreme growth. Such stocks 

tend to be more costly to buy and to sell short (D’Avolio, 2002). Such stocks have a high degree 

of idiosyncratic variation in their returns, which makes betting on them riskier (Wurgler and 

Zhuravskaya, 2002). Such stocks’ higher volatility may lead to second-guessing by the investors 
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who provide funds to the arbitrageur, ultimately leading to withdrawals from contrarian 

arbitrageurs just when the mispricing is greatest (Shleifer and Vishny, 1997). By not paying 

dividends, such stocks’ fundamentals remain far in the future and therefore subject to speculation 

(Pontiff, 1996). Thus, again, we might expect that sentiment has a greater effect on such stocks.  

The key point is that in practice, the same securities that are difficult to value also tend to 

be difficult to arbitrage. Therefore we are left with a very robust and testable conclusion: The 

stocks most sensitive to investor sentiment will be those of companies that are younger, smaller, 

more volatile, unprofitable, non-dividend paying, distressed or with extreme growth potential, or 

having analogous characteristics. Whereas “bond-like” stocks will be less driven by sentiment. 

Again, note that this assessment does not depend on specifying a fine definition of investor 

sentiment or rely on just one arbitrage mechanism such as short-sales constraints.  

 

The Sentiment Seesaw 

Figure 1 summarizes this into a simple, unified view of the effects of sentiment on stocks. 

The x-axis orders stocks according to how difficult they are to value and arbitrage. Bond-like 

stocks, such as regulated utilities, are toward the left; stocks of companies that are newer, 

smaller, more volatile, distressed or extreme growth are toward the right. The y-axis measures 

prices, with P* denoting fundamental values which, of course, can vary over time. The lines then 

illustrate the basic hypotheses about how stock valuations are affected by swings in sentiment. 

High sentiment should be associated with high stock valuations, particularly for the hardest to 

value and arbitrage stocks. Low sentiment works in the reverse direction. In the absence of 

sentiment, stocks are, on average, assumed to be correctly priced at P*. 
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An empirical question that arises in the drawing of Figure 1 is where to locate the 

crossing point of this seesaw. One case (not in Figure 1) is that no crossing point exists: the 

upward-sloping high sentiment line lies entirely above the no sentiment P line, which in turn lies 

entirely above the downard-sloping low sentiment line. That is, when sentiment increases, all 

stocks’ prices go up, but some more than others. In this case, the aggregate effects of sentiment 

will be strong, because aggregate stock indexes are simply averages of the underlying stocks.  

As drawn, Figure 1 reflects the more complex case where the prices of particularly safe, 

easy-to-arbitrage stocks actually are inversely related to sentiment. This could occur if sentiment 

fluctuations induce substantial changes in the demand for speculative securities, for example 

engendering “flights to quality” within the stock market. Such episodes may, controlling for any 

changes in fundamentals, reduce the prices of speculative stocks and at the same time increase 

the prices of bond-like stocks. In this case, the effect of sentiment on aggregate returns will be 

muted, as stocks are not all moving in the same direction.  

Behavioral theory thus delivers clear cross-sectional predictions about the effects of 

sentiment—but the aggregate predictions are somewhat less clear, which may help to explain 

why the 1980s studies did not always reach strong statistical conclusions. The rest of the paper 

reviews some empirical evidence regarding three critical aspects of Figure 1. First, we discuss 

how investor sentiment can be empirically measured.  

Second, we ask whether more speculative and harder to arbitrage stocks are indeed more 

sensitive to sentiment, in the sense that their prices comove more with an index of sentiment 

changes. In finance parlance, we ask whether speculative and harder to arbitrage stocks have 

higher “sentiment betas.” (The term is by analogy to the famous concept of market beta, which 

measures the exposure of a stock to returns on the stock market as a whole. A stock with a 
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market beta of 1.0 appreciates by 1 percentage point, on average, when the market return is one 

percentage point. Market betas above 1.0 indicate relatively high market risk exposure.) We also 

test whether bond-like stocks have negative sentiment betas, i.e. their returns are negatively 

related to changes in sentiment, as represented in Figure 1.  

Third, we investigate whether current investor sentiment levels predict future returns as 

sentiment wanes (perhaps spurred by fundamental news or an absence thereof) or as arbitrage 

forces eventually accumulate to correct mispricings. This is an important test, because sentiment 

measures may, despite our best efforts, be contaminated by economic fundamentals, and 

fundamentals should of course affect stock returns contemporaneously. In other words, the 

comovement patterns are subject to a correlated omitted variables critique. Return predictability 

helps to address this concern because it suggests a profitable trading strategy, which by 

definition cannot exist if stocks are priced correctly.  

 

Ruling Out Other Explanations 

Contrasting Figure 1 with some other finance frameworks helps to clarify the unique 

predictions of the sentiment model. The classical risk-based and the behavioral disagreement 

models make distinct predictions about the slope of the thick, or overall, valuation line. Neither 

makes predictions about the dashed valuations, conditional on sentiment. 

In the risk-based asset pricing models, such as the capital-asset pricing model, a stock’s 

expected return depends on its risk exposure, measured by market beta, times the market risk 

premium, which is the expected return on the stock market as a whole. Furthermore, since 

investors are rational and risk averse in these models, the market risk premium is always 
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positive, though it may change over time. See Fama and French (2004) and Perold (2004) for 

introductions to this model. 

What does this imply for tests of return predictability? Even if speculative and hard-to-

arbitrage securities have higher market betas, as is likely the case, classical models predict that 

such stocks always have higher expected returns than bond-like stocks. In fact, as we will see 

below, this is not true. When sentiment is measured to be high, speculative and hard-to-arbitrage 

stocks have lower future returns, on average, than bond-like stocks. This is a powerful 

confirmation of the sentiment-driven mispricing view.  

In a behavioral model of disagreement among regular investors combined with short-

sales constraints by arbitrageurs, on the other hand, hard to short stocks can become overvalued. 

As fundamentals are revealed, this mispricing will disappear, so the future returns of such stocks 

will be relatively low on average. The sentiment seesaw in Figure 1 makes a distinct and testable 

prediction that hard to arbitrage stocks can, conditional on the state of sentiment, be undervalued 

as well. We will also investigate this point.  

 

 

Measuring Investor Sentiment 

 

Investor sentiment is not straightforward to measure, but there is no fundamental reason 

why one cannot find imperfect proxies that remain useful over time. We discuss some generic 

issues involved in measuring sentiment and describe proxies for sentiment that have come into 

use. We then describe a sentiment index which combines several of these proxies, and we show 

that it fluctuates with the major speculative episodes of the past 40 years.  
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Potential Sentiment Proxies 

An exogenous shock in investor sentiment can lead to a chain of events, and the shock 

itself could in principle be observed at any or every part of this chain.  For example, it might 

show up first in investor beliefs, which could be surveyed. These beliefs might then translate to 

observable patterns of securities trades, which are recorded. Limited arbitrage implies that these 

demand pressures might cause some mispricings, which might be observed using benchmarks for 

fundamental value like the book-to-market ratio. These mispricings might engender an informed 

response by insiders, such as corporate executives, who may have both the superior information 

and the incentive to take advantage of it, and the patterns of firms in whether they choose to 

adjust their balance of equity or debt could be observed.  

The bad news is that each part of this chain is also subject to confounding influences. 

Economists always treat surveys with some degree of suspicion, because of the potential gap 

between how people respond to a survey and how they actually behave. Trades net to zero, so 

measuring sentiment with trading activity means taking a stand on the identity of irrational 

investors. Market prices of securities normally reflect fundamentals, by and large, with sentiment 

playing a lesser role.  And, corporations may alter their financial structure for many reasons, 

including a change in business fundamentals, rather than simply acting as corporate arbitrageurs.  

Such considerations suggest that the practical approach is to combine several imperfect 

measures. Candidate ways of measuring sentiment, ordered from origins in investor psychology 

to responses by corporate insiders, include: surveys, mood proxies, retail investor trades, mutual 

fund flows, trading volume, dividend premia, closed-end fund discounts, option implied 

volatility, first-day returns on initial public offerings, volume of initial public offerings, new 
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equity issues, and insider trading. We comment on these sentiment proxies and then choose 

among them.   

Investor Surveys. Perhaps just by asking investors how optimistic they are, we can gain 

insight into the marginal irrational investor. Robert Shiller has conducted investor attitude 

surveys since 1989. UBS/Gallup surveys randomly-selected investor households, and Investors 

Intelligence surveys financial newsletter writers. Qiu and Welch (2006) point out that although 

consumers polled for the University of Michigan Consumer Confidence Index are not asked 

directly for their views on securities prices, changes in that consumer confidence index 

nonetheless correlate highly with changes in the UBS/Gallup index. They show that changes in 

the consumer confidence measure correlate especially strongly with small stock returns and the 

returns of firms held disproportionately by retail investors.  

Investor Mood. Some papers have creatively tried to connect stock prices to exogenous 

changes in human emotions. Kamstra, Kramer, and Levi (2003) find that market returns are on 

average lower through the fall and winter, which they attribute to the onset of seasonal affective 

disorder, a depressive disorder associated with declining hours of daylight. Patterns at different 

latitudes and both hemispheres also are consistent with this interpretation. Edmans, Garcia, and 

Norli (2006) use international soccer results as a mood variable and find that losses in major 

games predict poor returns in the losing country the next day, particularly among small stocks. 

Retail investor trades. The inexperienced retail or individual investor is more likely than 

the professional to be subject to sentiment. Greenwood and Nagel (2006) find that younger 

investors were more likely than older investors to buy stocks at the peak of the Internet bubble. 

More generally, Barber, Odean, and Zhu (2003) and Kumar and Lee (2006) find in micro-level 

trading data that retail investors buy and sell stocks in concert, which is consistent with 
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systematic sentiment. Kumar and Lee suggest constructing sentiment measures for retail 

investors based on whether such investors are buying or selling.  

Mutual fund flows. Data are easily available on how mutual fund investors allocate across 

fund categories. Brown, Goetzmann, Hirkai, Shiraishi, and Watanabe (2002) propose an overall 

market sentiment measure based on how fund investors are moving into and out of, for example, 

“safe” government bond funds to “risky” growth stocks funds. Mutual fund investors are well-

known to chase investments with high recent returns (e.g. Warther, 1995), so whether the 

causality also goes the other direction—whether their allocation decisions actually lead to 

mispricing—is a tricky question. Frazzini and Lamont (2005) find some affirmative evidence by 

using fund flows to proxy for sentiment for individual stocks. They find that when funds that 

hold a particular stock experience strong inflows, the subsequent performance of that stock is 

relatively poor. 

Trading volume. Trading volume, or more generally liquidity, can be viewed as an 

investor sentiment index. For instance, Baker and Stein (2004) note that if short-selling is costlier 

than opening and closing long positions (as it is, in practice), irrational investors are more likely 

to trade, and thus add liquidity, when they are optimistic and betting on rising stocks rather than 

when they are pessimistic and betting on falling stocks.  In Scheinkman and Xiong (2003), 

volume reveals underlying difference of opinion, which are in turn related to valuation levels 

when short selling is difficult. Market turnover, the ratio of trading volume to the number of 

shares listed on the New York Stock Exchange, is a simple proxy for this concept. 

Dividend premium. Dividend-paying stocks resemble bonds in that their predictable 

income stream represents a salient characteristic of safety. The first price-based measure we 

mention here is therefore the relative “premium” for dividend-paying stocks, which may be 
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inversely related to sentiment. Baker and Wurgler (2004a, b) define the dividend premium as the 

difference between the average market-to-book-value ratios of dividend payers and nonpayers. 

The dividend premium explains well the major historical trends in firms’ propensity to pay 

dividends, such as the post-1977 decline documented by Fama and French (2001)—that is, when 

dividends are at a premium, firms are more likely to pay them, and less so when they are 

discounted. On the margin, firms appear to cater to prevailing sentiment for or against “safety” 

when deciding whether to pay dividends. 

Closed-end Fund Discount. Closed-end funds are investment companies who issue a 

fixed number of shares, which then trade on stock exchanges. The closed-end fund “discount” 

(or occasionally premium) is the difference between the net asset value of a fund’s actual 

security holdings and the fund’s market price. Many authors, including Zweig (1973), Lee, 

Shleifer, and Thaler (1991), and Neal and Wheatley (1998), have argued that if closed-end funds 

are disproportionately held by retail investors, the average discount on closed-end equity funds 

may be a sentiment index, with the discount increasing when retail investors are bearish.  

Option implied volatility. Options prices rise when the value of the underlying asset has 

greater expected volatility, and options pricing models such as the Black-Scholes formula can be 

inverted to yield implied volatility as a function of options prices. The Market Volatility Index 

(“VIX”), which measures the implied volatility of options on the Standard and Poor’s 100 stock 

index, is often called the “investor fear gauge” by practitioners. Whaley (2000) discusses the 

spikes in the VIX series since its 1986 inception, which include the crash of October 1987 and 

the 1998 Long Term Capital Management crisis.  

IPO First-Day Returns. Initial public offerings sometimes earn such remarkable returns 

on their first trading day that it is difficult to find an explanation that does not involve investor 
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enthusiasm. For example, Netscape’s return on the day of its August 1995 IPO was 108 percent. 

Interestingly, IPO first-day returns are not idiosyncratic. Average first-day returns display peaks 

and troughs which are highly correlated with IPO volume (below) and other sentiment proxies 

that are not fundamentally related.5

IPO Volume. The underlying demand for initial public offerings is often said to be 

extremely sensitive to investor sentiment. Investment bankers speak of “windows of 

opportunity” for an initial public offering that capriciously open and close. Such caprice could 

explain the fact that IPO volume displays wild fluctuations, with a rate of over 100 issues per 

month in some periods and zero issues per month in others.   

Equity Issues Over Total New Issues. A broader measure of equity financing activity is 

the equity share of total equity and debt issues by all corporations. This measures all equity 

offerings, not just IPOs.  Baker and Wurgler (2000) find that high values of the equity share 

portend low stock market returns, and suggest that this pattern reflects firms shifting successfully 

between equity and debt to reduce the overall cost of capital. This pattern need not imply that 

individual firms or their managers can predict prices on the market as a whole. Rather, correlated 

mispricings across firms may lead to correlated managerial actions, which may then forecast 

correlated corrections of mispricings – that is, it will forecast market returns.  

Insider Trading. Corporate executives have better information about the true value of 

their firms than outside investors. Thus, legalities aside, executives’ personal portfolio decisions 

may also reveal their views about the mispricing of their firm. If sentiment leads to correlated 

                                                 
5 Why IPOs are “underpriced” to such an extreme degree is still a puzzle, since the prices are set in consultation with 
investment bankers well-informed about market conditions. The extreme unpredictability of investor sentiment may 
be a factor. The offer price is typically set in advance and indications of interest are then gathered from potential 
investors. It may be better to issue shares at a likely discount to first day prices than risk an undersubscribed offering 
in a period of generally high sentiment and valuations. This raises the question of why companies do not simply 
auction their shares. See Ritter (2003) for a discussion of underpricing and Ljungqvist, Nanda, and Singh (2006) for 
a sentiment-based model. 
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mispricings across firms, insider trading patterns may contain a systematic sentiment component. 

See Seyhun (1998) for evidence on the ability of insider trading patterns to predict stock returns. 

 

An Operational Sentiment Index 

Which of the above measures to choose? Data availability narrows the list considerably. 

Sentiment may vary daily, but major episodes occur over years, and the most convincing tests of 

the effects of sentiment are those in which it is used to actually predict long-horizon returns—

tests which suggest a contrarian trading strategy. This rules out using data that do not go back as 

far as our stock returns data (i.e. to the 1960s), for example including insider trading, micro-level 

data on trading behavior, and implied volatility series.  

Instead, we construct an index based on the six proxies used by Baker and Wurgler 

(2006): trading volume as measured by NYSE turnover; the dividend premium; the closed-end 

fund discount; the number and first-day returns on IPOs; and the equity share in new issues. All 

these data are available at www.stern.nyu.edu/~jwurgler. Later on, we will also consider some 

mutual fund series.  

Although these six proxies are highly correlated in the expected directions, some of them 

also contain idiosyncratic components that are unrelated to sentiment. For example, the 1975 

deregulation of brokerage commissions and the subsequent long decline in trading costs has led 

to a decades-long upward trend in turnover, so we use the log of turnover minus a five-year 

moving average. With respect to closed-end fund discounts, if the majority of individual 

investors have come to prefer open-end funds in recent years, the discount provides a less useful 

summary of the opinion of the marginal investor than it once did. And the evolution of public 
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debt markets has made the equity share less useful in recent years. But, no obvious patch 

suggests itself in these cases.  

Also, some of the sentiment proxies reflect economic fundamentals to some extent. For 

instance, IPO volume depends, in part, on prevailing investment opportunities. To remove such 

influences, at least partially, we regress each proxy on a set of macroeconomic indicators—

growth in industrial production, real growth in durable, nondurable, and services consumption, 

growth in employment, and an NBER recession indicator—and use the residuals from these 

regressions as our sentiment proxies.  

Since the six sentiment proxies, especially given that major macroeconomic influences 

have been removed, will have a common sentiment component, we can iron out the remaining 

idiosyncracies by averaging them together into an index. We form a sentiment levels index to 

test for return predictability conditional on the state of sentiment and also a sentiment changes 

index to test for return comovement patterns associated with changes in sentiment. The levels 

index is simply the first principal component of the six proxies.6 The changes index is the first 

principal component of the changes in the six proxies.7

                                                 
6 Brown and Cliff (2004) also use a principal components methodology to define a sentiment index. The first 
principal component of a set of time series variables is simply the linear combination of the variables with the 
coefficients chosen to capture as much of the joint variation across the series as possible. The second principal 
component performs the same analysis but defines the relevant series as the residuals from the first principal 
component, etc. A decision with defining which of our six series to include in the analysis is timing. Some variables 
may reflect the same shift in sentiment before others. In general, proxies that involve firm supply decisions are 
further down the chain of events and likely to lag behind proxies that are based directly on investor trading patterns 
or prices. Baker and Wurgler (2006) find that the best combination to capture the common variation in annual series 
includes the current values of the closed-end fund discount, the equity share, and IPO volume, and one-year-lagged 
versions of the three other variables. We are using monthly data here, but for simplicity we also adopt this 
convention.  
7  While we could simply take the changes in the sentiment levels index, a better approach is to form a second index 
based on the first principal component of the changes in the six proxies. The reason for this preference is that the 
proxies have differential noisiness in going from levels to changes. E.g., turnover has low frequency error related to 
falling transaction costs, but high frequency changes are more informative; the equity share, on the other hand, has 
low frequency error related to long-term shifts in financing patterns plus high frequency error because corporations 
can respond to sentiment only with a lag (which itself is unlikely to be consistent enough to try to align the changes 
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Figure 2 shows the sentiment indexes graphically. As expected, variables positively 

associated with sentiment levels include share turnover, IPO volume and first-day returns, and 

the equity share in new issues, and those negatively associated are the closed-end fund discount 

and the dividend premium. The bottom panel reports the changes index. The coefficients all have 

the same signs as in the levels index, with the exception of the equity share. We regard its 

unexpected sign as a chance event made possible by the fact that its changes at high frequencies 

are largely unrelated to sentiment, but we retain it to avoid data mining.  

While data availability is the key constraint, some judgment has entered this approach to 

measuring sentiment. Robustness is a natural question. We offer two remarks in response. First, 

the process of averaging the six proxies is not crucial. They are strongly correlated and if they 

were each studied as independent sentiment indexes, some would display empirical results even 

stronger (i.e., more consistent with a strong role for sentiment) than those we present below. We 

pursue the index approach so as not to arbitrarily elevate individual proxies and to iron out 

idiosyncratic variation. Second, Baker and Wurgler (2006) find that macro fundamentals explain 

little of the common variation in the six series. In other words, indexes formed from the “raw” 

series would look and perform almost identically to those used here. Nonetheless we include this 

step to illustrate an approach to controlling for fundamentals.  

 

Does This Index Capture Major Fluctuations In Sentiment? An Eyeball Test 

 Perhaps the best evidence that the index generally succeeds in capturing sentiment is 

simply that it lines up fairly well with the anecdotal accounts of bubbles and crashes written by 

                                                                                                                                                             
in the series). Hence, equity share fluctuations will feature prominently in a changes in the levels index, but will 
likely drop out in an index based on changes.  

 

  17 



authors such as Brown (1991), Dreman (1979), Graham (1973), Malkiel (1999), Shiller (2000), 

and Siegel (1998). The first major bubble in our data period developed in 1967 and 1968. Brown 

(1991, p. 90) writes that “scores of franchisers, computer firms, and mobile home manufactures 

seemed to promise overnight wealth. … [while] quality was pretty much forgotten.” The early 

1970s, on the other hand, are invariably described in bear market terms. Yet a set of established, 

large, stable, consistently profitable stocks known as the “Nifty Fifty” enjoyed extreme price-

earnings ratios. Siegel (1998, p. 106) writes, “All of these stocks had proven growth records, 

continual increases in dividends … and high market capitalization.” The Nifty Fifty is a mirror 

image of the speculative episodes that occurred before and after it, which generally involved 

small, young, unprofitable growth stocks in high sentiment periods.  

The late 1970s through mid-1980s are described anecdotally as a period of generally high 

sentiment and witnessed a series of speculative episodes involving gambling issues in 1977 and 

1978 and—more apparent in the levels index—natural resource startups in 1980 on the heels of 

the second oil crisis (Ritter, 1984) and the high-tech and biotech booms in the first half of 1983. 

But by 1987 and 1988, Malkiel (p. 80) writes, “market sentiment had changed from an 

acceptance of an exciting story … to a desire to stay closer to earth with low-multiple stocks that 

actually pay dividends.” Consistent with this view, the overall index shows sentiment at a high 

level during the early 1980s and tailing off somewhat toward the end of the decade.  

 The late-1990s bubble in technology stocks will be familiar to many readers. By all 

accounts, sentiment was broadly high before the bubble started to burst in 2000. Malkiel draws 

parallels to episodes in the 1960s, 1970s, and 1980s, and Shiller and others compare the Internet 

bubble to that of the late 1920s. The sentiment index flags 1999 as a high-sentiment year, and the 

dividend premium and first-day returns on IPOs hit record levels that year.  
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 The sentiment changes index in the bottom of Figure 2 is harder to decipher in an eyeball 

test. However, when the series is viewed in light of major speculative episodes, one pattern does 

appear: The volatility of sentiment rises in a speculative episode. This suggests that the relative 

influence of fundamentals and sentiment on aggregate market returns changes over time. 

 

Mutual Fund Flows 

Detailed data on mutual fund flows are not available back to the 1960s, so we do not 

include these in our main indexes. However, we use the period of overlap to correlate patterns in 

fund flows and the indexes. This is useful because fund flows provide a transparent measure of 

decisions made by a large set of investors who are, on average, less sophisticated and more likely 

to display sentiment. Moreover, the fund flows data help us to investigate the precise mechanism 

through which sentiment affects stock prices, as we explain.  

The Investment Company Institute offers monthly data on flows into various categories 

of funds. We look at net flows into the eight stock-oriented fund categories for which data exist 

back to January 1990. The categories vary from speculative “Aggressive Growth” funds to safer, 

dividend-paying “Income” funds. 

Figure 3 shows the results of a principal components analysis of changes in fund flows, 

as in Goetzmann et al. (2000). Once more, the principal components analysis helps us detect 

general patterns across several time series while ironing out distracting idiosyncratic fluctuations. 

The results in the figure show that across the eight stock fund categories, the first principal 

component is a “general demand” effect. It reflects the fact that investors often shift in and out of 

stock funds en masse. In contrast, the second principal component shows that the next most 

important effect is shifts between more speculative funds and safer funds. Thus we call this the 
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“speculative demand” component. Therefore, controlling for the overall generic equity fund 

demand, when flows fall in the more speculative categories they tend to rise in the less 

speculative categories. Barberis and Shleifer (2003) would call this “style investing.” 

With these two principal components in hand, we can construct monthly time series of 

the two most important sources of changes in mutual fund flows: one reflecting general demand 

and another reflecting speculative demand. We then correlate these with the sentiment changes 

index. During the period of overlap, the sentiment changes index has a marginally significant 

correlation of 0.16 with general fund demand and, perhaps more interestingly, a highly 

significant correlation of 0.36 with speculative demand. This latter correlation is particularly 

suggestive that our overall sentiment indexes do, to a large extent, capture a prevailing “greed” 

versus “fear” or “bullish” versus “bearish” notion.  

Finally, recall that there are essentially two distinct channels by which sentiment will 

have cross-sectional effects: when general investor demand for risky assets is uniform but stocks 

differ in the costs and risks arbitrage, and when investor demand focuses on relatively 

speculative stocks and the difficulty of arbitrage is held constant. The fairly clean empirical 

break of fund flows into general and speculative demand components suggests the possibility of 

empirically separating the two channels. Of course, both can operate at the same time. 

 

Using Sentiment to Explain Current Returns 

 

 With the index of sentiment changes and the fund flow series in hand, we now turn to 

testing the key hypotheses about how sentiment affects stocks. We start by asking whether 
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speculative and harder-to-arbitrage stocks are relatively more affected by sentiment changes. At 

the end of the section, we briefly consider effects on the aggregate market.  

 

Defining Speculative, Difficult-to-arbitrage Stocks  

To study the differential effects of investor sentiment across firms, we first need to settle 

on a way of sorting stocks according to their speculative appeal and their difficulty of arbitrage. 

A natural proxy for speculative appeal would be the dispersion of professional analysts’earnings 

forecasts for that company, but such forecasts are not available for all stocks back to the mid-

1960s.  A possible proxy for difficulty of arbitrage could be a direct measure of transaction costs 

for given stocks, but those too are unavailable for a long time series.  

We simply sort stocks according to their recent return volatility, specifically the standard 

deviation of monthly returns over the prior year. Returns data are from the Center for Research 

in Securities Prices (CRSP). High volatility is characteristic of stocks with strong speculative 

appeal; low volatility is a bond-like feature. Moreover, highly volatile stocks are generally riskier 

to arbitrage, so an arbitrageur with limited risk-bearing capacity will hesitate before making large 

bets against mispricing. Each month, we place each stock into one of ten portfolios according to 

the decile of their return volatility of the previous year, and we use the returns on the resulting 

portfolios to represent the cross-section of stock returns.8

 

 

                                                 
8 Baker and Wurgler (2006) divide stocks in several other ways, including firm age, market capitalization, dividend 
payment, and profitability. These are natural given an intuition that larger, older, dividend paying and profitable 
firms tend to be more bond-like and generally easier to arbitrage. They also sort stocks on growth and distress 
indicators such as the market-to-book equity ratio, asset growth, and sales growth. When sorted this way, bond-like 
stocks now lie in the middle deciles while speculative stocks, whether due to their extreme growth potential or risk 
of financial distress, are found at both extremes. These other sorting methods produce qualitatively similar results, 
so we report results only for volatility portfolios here.  
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Sentiment Betas: Cross-Sectional Effects of Sentiment Changes 

 Figure 4 shows the relationship between sentiment changes and the returns on the ten 

volatility portfolios. The dependent variable is the monthly return on one of the ten volatility 

portfolios. For each one of these ten portfolios, we run three time-series regressions. In Panel A, 

we plot the coefficients on the general or speculative mutual fund demand factors. In Panel B, we 

plot the coefficients on the sentiment changes index. Each of the regressions also includes the 

value-weighted market return as a control variable, because high volatility stocks are likely to 

have higher market betas, an effect that we do not want to contaminate the sentiment betas.  

 The results are as expected. The effect of general demand for stock funds on monthly 

returns is higher for higher volatility portfolios, presumably because stocks therein are harder to 

arbitrage. In addition, the effect of speculative demand is also increasing, presumably reflecting 

the more speculative nature of volatile stocks. The convex pattern in the coefficients is 

intriguing—stocks in the extreme volatility decile, which are often small, rapidly growing, or in 

financial distress, are disproportionately more sensitive to both components of fund flows.  

 Sentiment betas also increase as stocks become more speculative and harder to arbitrage.9 

The figure shows that controlling for market returns, a one-standard-deviation increase in the 

sentiment changes index increases returns on the eighth volatility decile portfolio, for example, 

by about one percentage point. The effect on the tenth decile portfolio is over two percentage 

points. For particularly bond-like stocks, on the other hand, the effect is slightly negative. This is 

consistent with the most bond-like stocks actually having slightly negative sentiment betas, i.e. 

as conjectured in Figure 1. Once again, there is a convex pattern in the sentiment betas.  

                                                 
9 See Glushkov (2005) for sentiment betas for portfolios sorted on other characteristics as well (as opposed to only 
volatility). All of his results are closely consistent with the argument that hard to arbitrage and value stocks are more 
sensitive to sentiment.  
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Although these results are all highly consistent with the seesaw diagram, there are other 

interpretations. For example, perhaps speculative flows are highly correlated with the returns of 

speculative stocks simply because mutual fund investors chase returns, not because their trading 

has any causal effect on its own. Or, the sentiment changes index may include components, such 

as the dividend premium, which lead to mechanical differences in the correlations between 

sentiment changes and different stocks (e.g., dividend paying and nonpaying stocks).10 Or, the 

sentiment index may, despite our best efforts, be contaminated by economic fundamentals, 

which should of course affect returns independently. The fact that sentiment actually helps to 

predict returns, as we illustrate below, suggests that these considerations cannot fully account for 

the patterns in Figure 4. 

 

Aggregate Effects 

 Although our main focus is on cross-sectional differences, a positive correlation will exist 

between aggregate market returns and sentiment changes if the average stock is affected by 

sentiment. Indeed, the correlation between an equal-weighted market return index and the 

sentiment changes index is a highly significant 0.43. The correlation between equal-weighted 

returns and speculative demand estimated from fund flows is 0.26, and the correlation between 

equal-weighted returns and general demand from fund flows is 0.48. Using capitalization-

weighted market returns, which give more weight to large firms, the respective correlations are 

0.32, 0.29, and 0.39, again all highly significant.  

 

 

                                                 
10 Excluding any particular component from the sentiment indexes, including the dividend premium, does not alter 
our conclusions.  
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Using Sentiment to Predict Stock Returns 

 

 We have perhaps saved the best for last. The strongest tests of the effects of sentiment 

involve return predictability. If high sentiment indeed causes overvaluation, we may be able to 

document low future returns on sentiment-prone stocks as sentiment wanes and fundamentals are 

revealed. But predictability is not a natural implication of, for example, the skeptical view that 

the correlation between returns and sentiment arises because the latter is contaminated by 

fundamentals, for example. 

  

Cross-sectional Predictability 

To test these ideas further, we create an empirical version of the sentiment seesaw and 

compare it to the predictions in Figure 1. We use the same volatility-based characterization of 

stocks to identify those that are speculative and difficult to arbitrage. Next, we split the time 

series into high- and low- sentiment periods using the previous month’s measure of the sentiment 

level. Finally, we compute average returns for each of the ten volatility portfolios, for the two 

separate periods and overall. As with the calculation of sentiment betas, we control for the value-

weighted market return. 

The resulting picture, in Figure 5, is strikingly similar to the predictions of the seesaw 

diagram. When sentiment is low, the average future returns of speculative stocks exceed those of 

bond-like stocks. When sentiment is high, the average future returns of speculative stocks are on 

average lower than the returns of bond-like stocks. This is a telling pattern—the fact that riskier 

stocks (at least, stocks that are riskier by all outward appearances) sometimes have lower 
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expected returns is inconsistent with classical asset pricing in which investors bear risk because 

they are compensated by higher expected return. 

The unconditional average returns are slightly lower for speculative stocks, consistent 

with behavioral models of disagreement among investors combined with short-sales constraints 

such Hong and Stein (2003) and others they discuss in this volume. The market-adjusted returns 

are on average positive because of the well-known size effect—in January, small capitalization 

stocks earn high returns, on average—which increases the average return of our equally-

weighted portfolios. Controlling for equal-weighted market returns instead of value-weighted 

returns shifts the market-adjusted returns down across all ten portfolios, but the overall similarity 

to Figure 1 remains intact. 

 

Aggregate Predictability 

When sentiment is high, subsequent market returns are low. Figure 6 shows that when the 

sentiment level is more than one standard deviation above its historical average, monthly returns 

average -0.34 percentage points for value-weighted market index returns and -0.41 percentage 

points for equal-weighted returns. And when the investor sentiment level is very low, for 

example more than one standard deviation below its historical average, monthly returns average 

1.18 and 2.75 percentage points for value- and equal-weighted indexes, respectively.11 

Therefore, just as the correlation between sentiment changes and returns is higher for an equal-

weighted index of returns, so is the correlation between sentiment levels and subsequent equal-

                                                 
11 Figure 6 breaks the historical time series into four sentiment states, while Figure 5 conditions breaks it into only 
two. We made the latter choice to allow for an easier comparison to the seesaw diagram. If Figure 5 were to display 
results for four sentiment states, it would display all of the expected patterns, e.g. when sentiment is very high, the 
highest-volatility stocks subsequently earn particularly low returns, and so on.  
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weighted stock returns. The gap between equal-weighted and value-weighted market returns 

again demonstrates that the impact of sentiment is stronger on small stocks, as predicted. 

While Figure 6 indicates economically important gaps, the statistical significance is 

modest, as is the case with other non-sentiment predictors of aggregate returns such as the 

dividend-price ratio. Put another way, market crashes tend to occur in high sentiment periods, 

but the timing of the crashes within these periods is very hard to predict.  

 

 

Conclusion 

 

This paper takes a “top down” approach to behavioral finance and the stock market, 

whereby we take the origin of investor sentiment as exogenous and instead focus on its empirical 

effects. We show that it is quite possible to measure investor sentiment, and that waves of 

sentiment have clearly discernible, important, and regular effects on individual firms and on the 

stock market as a whole. In particular, stocks that are difficult to arbitrage or to value are most 

affected by sentiment. The seesaw diagram in Figure 1 summarizes our approach. 

Looking forward, the investor sentiment approach faces a number of challenges: 

characterizing and measuring uninformed demand or investor sentiment; understanding the 

foundations and variation in investor sentiment over time; and determining which particular 

stocks attract speculators or have limited arbitrage potential. Much remains to be done in terms 

of spelling out this framework, but the potential payoffs of an improved understanding of 

investor sentiment are substantial. For example, the standard methodology for estimating 

fundamental market betas, an input to long-term capital budgeting and other important financial 

  26 



decisions, does not account for sentiment; doing so might improve estimates and clarify their 

interpretation. Finally, we have seen that sentiment affects the cost of capital. Therefore it may 

have real consequences for the allocation of corporate investment capital across safer and more 

speculative firms. 

  27 



Acknowledgements 
 
 
We thank Xavier Gabaix, Robin Greenwood, Jim Hines, Stefan Nagel, Ronnie Sadka, Andrei 
Shleifer, Timothy Taylor, and Michael Waldmann for very helpful comments. We thank the 
Investment Company Institute for data on mutual fund flows. Baker gratefully acknowledges 
financial support from the Division of Research of the Harvard Business School.

  28 



References 
 
Baker, Malcolm, and Jeremy Stein, 2004, Market liquidity as a sentiment indicator, Journal of 

Financial Markets 7, 271-299. 
Baker, Malcolm, and Jeffrey Wurgler, 2000, The equity share in new issues and aggregate stock 

returns, Journal of Finance 55, 2219-2257. 
Baker, Malcolm, and Jeffrey Wurgler, 2004a, A catering theory of dividends, Journal of Finance 

59, 1125-1165. 
Baker, Malcolm, and Jeffrey Wurgler, 2004b, Appearing and disappearing dividends: The link to 

catering incentives, Journal of Financial Economics 73, 271-288. 
Baker, Malcolm, and Jeffrey Wurgler, 2006, Investor sentiment and the cross-section of stock 

returns, Journal of Finance 61, 1645-1680. 
Barber, Brad, Terrance Odean, and Ning Zhu, 2003, Systematic noise, Unversity of California at 

Davis working paper.  
Barberis, Nicholas, Andrei Shleifer, and Robert Vishny, 1998, A model of investor sentiment, 

Journal of Financial Economics 49, 307-343. 
Barberis, Nicholas, and Andrei Shleifer, 2003, Style investing, Journal of Financial Economics 

68, 161-199. 
Brown, John Dennis, 1991, 101 Years on Wall Street, Prentice Hall.  
Brown, Gregory W., and Michael T. Cliff, 2004, Investor sentiment and the near-term stock 

market, Journal of Empirical Finance 11, 1-27. 
Brown, Stephen J., William N. Goetzmann, Takato Hiraki, Noriyoshi Shiraishi, and Masahiro 

Watanabe, 2005, Investor sentiment in Japanese and U.S. daily mutual fund flows, New 
York University working paper.  

D’Avolio, Gene, 2002, The market for borrowing stock, Journal of Financial Economics 66, 
271-306.  

Dreman, David, 1979, Contrarian Investment Strategy, Dreman Contrarian Group. 
Daniel, Kent, David Hirshleifer, and Avanidhar Subramanyam. 1998, Investor psychology and 

security market under- and overreactions, Journal of Finance 53, 1839-85. 
De Long, J. Bradford, Andrei Shleifer, Lawrence H. Summers, and Robert J. Waldmann, 1990, 

Noise trader risk in financial markets, Journal of Political Economy 98:4, 703-738. 
Edmans, Alex, Diego Garcia, and Oyvind Norli, 2006, Sports sentiment and stock returns, 

Journal of Finance, forthcoming.  
Fama, Eugene F., and Kenneth R. French, 1988, Permanent and termporary components of stock 

prices, Journal of Political Economy 96, 246-73. 
Fama, Eugene F., and Kenneth R. French, 1989, Business conditions and expected returns on 

stocks and bonds, Journal of Financial Economics 25, 23-49.  
Fama, Eugene F., and Kenneth R. French, 2001, Disappearing dividends: Changing firm 

characteristics or lower propensity to pay?, Journal of Financial Economics 60, 3-44. 
Fama, Eugene F., and Kenneth R. French, 2004, The capital asset pricing model: Theory and 

evidence, Journal of Economic Perspectives 18:3, 25-46. 
Glushkov, Denys, 2005, Sentiment betas, University of Texas working paper. 
Graham, Benjamin, 1973, The Intelligent Investor, 4th ed., Harper & Row.  
Greenwood, Robin, and Stefan Nagel, 2006, Inexperienced investors and bubbles, Harvard 

University working paper. 

  29 



Hong, Harrison, and Jeremy Stein, 2003, Differences of opinion, short-sales constraints and 
market crashes, Review of Financial Studies 16, 487-525. 

Kamstra, Mark J., Lisa A. Kramer, and Maurice D. Levi, 2003, Winter blues: Seasonal Affective 
Disorder (SAD) and stock market returns, American Economic Review 92, 1257-63. 

Kumar, Alok, and Charles Lee, 2006, Retail investor sentiment and return comovement, Journal 
of Finance, forthcoming.  

Lee, Charles, Andrei Shleifer and Richard H. Thaler, 1991, Investor Sentiment and the 
Closed-End Fund Puzzle, Journal of Finance, 46, 75-109. 

Ljungqvist, Alexander, Vikram Nanda and Rajdeep Singh, 2006, Hot markets, investor 
sentiment, and IPO pricing, Journal of Business, forthcoming. 

Malkiel, Burton, 1999, A Random Walk Down Wall Street, W.W. Norton. 
Neal, Robert and Simon M. Wheatley, (1998), Do Measures of Investor Sentiment Predict 

Returns?, Journal of Financial & Quantitative Analysis, Vol. 33, Issue 4, 523-548. 
Perold, Andre F., 2004, The capital asset pricing model, Journal of Economic Perspectives 18:3, 

3-24. 
Pontiff, Jeffrey, 1996, Costly arbitrage: Evidence from closed-end funds, Quarterly Journal of 

Economics 111, 1135-51. 
Poterba, James M., and Lawrench H. Summers, 1988, Mean reversion in stock prices: Evidence 

and implications, Journal of Financial Economics 22, 27-59. 
Ritter, Jay, 1984, The 'hot issue' market of 1980, The Journal of Business 57, 215-40. 
Ritter, Jay, 2003, Investment banking and securities issuance, in Constantinides, George, Milton 

Harris, and Rene Stulz, editors, Handbook of the Economics of Finance, Elsevier 
Science. 

Scheinkman, Jose, and Wei Xiong, 2003, Overconfidence and speculative bubbles, Journal of 
Political Economy 111, 1183-1219. 

Seyhun, H. Nejat, 1998, Investment Intelligence from Insider Trading, (Cambridge, MA: MIT 
Press).  

Shiller, Robert J., 2000, Irrational Exuberance, Princeton University Press. 
Shleifer, Andrei, and Robert Vishny, 1997, The limits of arbitrage, Journal of Finance 52, 35-55. 
Warther, Vincent A., 1995, Aggregate mutual fund flows and security returns, Journal of 

Financial Economics 39, 209-235. 
Whaley, Robert E., 2000, The investor fear gauge, Journal of Portfolio Management, Vol. 

26, Issue 3. 
Wurgler, Jeffrey, and Katia Zhuravskaya, 2002, Does arbitrage flatten demand curves for 

stocks?, Journal of Business 75, 583-608. 
Zweig, Martin E., 1973, An investor expectations stock price predictive model using closed-end 

fund premiums, Journal of Finance 28, 67-87. 

  30 



Figure 1. Cross-sectional effects of investor sentiment. Stocks that are speculative and difficult to value and 
arbitrage will have higher relative valuations when sentiment is high. 
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Figure 2. A sentiment index, January 1966 through December 2005. The first principal component of levels and 
changes in six measures of sentiment: the closed-end fund discount (CEFD), detrended log turnover (TURN), the 
number of IPOs (NIPO), the first-day return on IPOs (RIPO), the dividend premium (PDND), and the equity share 
in new issues (S), each standardized and with the effect of macroeconomic conditions removed. In the levels index, 
turnover, the first-day return on IPOs, and the dividend premium are lagged 12 months. Both indices are 
standardized to have zero mean and unit variance over the 40 year period. 
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Panel B. Index of sentiment changes 
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Figure 3. Principal components of equity mutual fund flow changes, January 1990 through December 2005. 
The contribution of a one standard deviation change in each equity-oriented mutual fund category to the first two 
principal components of changes in mutual fund flows, which we label general and speculative demand components. 
Each bar shows the impact of a one standard deviation change in mutual fund flow. For example, a one standard 
deviation change in flows into Aggressive Growth funds increases the first principal component by 0.23 and the 
second principal component by 0.29. Flows are net sales minus redemptions by category, scaled by total mutual 
fund assets across categories.  
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Panel B. Speculative demand: The second principal component of flow changes 
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Figure 4. The sensitivity of stock returns to investor sentiment.  The monthly returns of volatility sorted 
portfolios are regressed on general and speculative demand components of mutual fund flow changes (Panel A) and 
the index of sentiment changes (Panel B). The coefficients, or sentiment betas, show the effect of a one standard 
deviation difference in the sentiment measure on average returns in percentage points. The regressions control for 
the value-weighted stock market return. 
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Panel B. Sentiment index betas  
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Figure 5. Sentiment and future returns. Average monthly returns over the value-weighted market index for 
volatility sorted portfolios following a month with a positive sentiment level (short dash); a negative level (long 
dash); and the overall average market-adjusted return. The latter are positive because of the small firm effect over 
this period: the volatility portfolios are equal weighted while the market index is value weighted. 
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Figure 6. Sentiment and market returns. Average monthly returns in percentage points on the equal- and value-
weighted market portfolios. The sample is divided into four groups according to the sentiment level in the preceding 
month.  
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