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Lustig and Verdelhan (2007) claim that aggregate consumption growth risk explains

the excess returns to borrowing U.S. dollars to �nance lending in other currencies. They

reach this conclusion after estimating a simple consumption-based asset pricing model using

data on the returns of portfolios of short-term foreign-currency denominated money market

securities sorted according to their interest di¤erential with the U.S. They argue that the R2

statistic corresponding to their benchmark estimates means that their model explains about

87 percent of the cross-sectional variation in expected returns.

To the contrary, I argue that their model explains very little of the cross-sectional vari-

ation in the expected returns of their portfolios. My reasoning is straightforward. Any

risk-based explanation relies on signi�cant spread in the covariances between the risk factors

and the returns, yet, to a close approximation, the returns in Lustig and Verdelhan�s data

set are all uncorrelated with their consumption-based risk factors.

How could Lustig and Verdelhan reach the opposite conclusion based on the same data

set? First, Lustig and Verdelhan misinterpret their own evidence by including in their

model�s predicted expected return a component that, in fact, should be interpreted as part

of the model�s pricing error. Were they to properly take this term into account their R2

measure of �t would drop from 0:87 to no more than 0:34. Correctly measuring the pricing

error� but using their approach to inference� would lead them to reject their model at well

below the 5 percent level of signi�cance.

The second problem centers on Lustig and Verdelhan�s implementation of a two-pass pro-

cedure in estimating their model. The �rst pass is a time series regression of each portfolio�s

return on the risk factors. This regression determines the betas. The second pass is a cross-

sectional regression of average portfolio returns on these betas. This regression determines

the lambdas, or factor risk premia. Although it is common in the �nance literature to do

so, Lustig and Verdelhan do not focus on standard errors for the factor risk premia that

correct for the betas being generated regressors in the second pass. Were they to do so, they

would conclude that none of the factor risk premia are statistically signi�cant. The very end

of their paper presents GMM standard errors that correct for estimation of the betas, but

these are inappropriately calculated and lead to incorrect inference.1 I �nd that as long as

1Lustig and Verdelhan�s corrected standard errors are displayed in their �nal table, not in the tables
of benchmark results. The main discussion in their paper is based on uncorrected standard errors. They
acknowledge that standard errors are higher if one uses the Shanken (1992) correction, or if one uses a
bootstrap procedure, but they argue that the factor risk premia remain signi�cant if, instead, a GMM
procedure is used to estimate the model. For reasons I discuss below, their GMM procedure does not
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sampling uncertainty in the factor betas is correctly taken into account, the estimates of the

factor risk premia for Lustig and Verdelhan�s model are only statistically signi�cant in cases

where the R2 is negative.

Taken as a whole, the evidence does not favor Lustig and Verdelhan�s story. In section 1

I review their model, data and methodological approach. In section 2, I present the �rst-pass

estimates of the betas that underlie their estimates of the factor risk premia and demonstrate

that there is little evidence of signi�cant covariance between any of the portfolio returns and

the risk factors. In section 3, I discuss the second-pass estimates of the factor risk premia and

the correct interpretation of the pricing errors. In section 4, I recalculate standard errors for

the factor risk premia taking the estimation of the betas into account. I discuss robustness

of my negative �ndings in section 5. Section 6 concludes.

1 Model, Data, Estimation and Inference

1.1 Modeling the Stochastic Discount Factor

Lustig and Verdelhan work with Yogo�s (2006) model, in which the representative household�s

lifetime utility at time t, Ut, is recursively represented as

Ut =
n
(1� �)u(Ct; Dt)

1�1=� + �
�
Et(U

1�
t+1 )

�(1�1=�)=(1�)o1=(1�1=�)
: (1)

Here Ct represents the household�s consumption of nondurable goods, Dt is the household�s

durable consumption, 0 < � < 1 is the subjective discount factor, � > 0 is the intertemporal

elasticity of substitution and  > 0 determines risk aversion. The instantaneous utility

function is

u(C;D) =
�
(1� �)C1�1=� + �D1�1=��1=(1�1=�) : (2)

Given this representation of preferences, the intertemporal marginal rate of substitution

between t� 1 and t is

Mt =

(
�

�
Ct
Ct�1

��1=� �
v(Dt=Ct)

v(Dt�1=Ct�1)

�1=��1=�
R
1�1=�
Wt

)�
; (3)

where � = (1� )=(1� 1=�), RWt is the gross aggregate return to wealth and

v(D=C) =
�
1� �+ �(D=C)1�1=�

�1=(1�1=�)
: (4)

produce standard errors appropriate to their two-pass estimation approach.
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Lustig and Verdelhan work primarily with a log-linear approximation to (3). Let ct =

ln(Ct), dt = ln(Dt) and rWt = ln(RWt). Also de�ne �c = E (�ct), �d = E(�dt) and

�r = E(rWt). A �rst-order Taylor series expansion of Mt in �ct, dt=ct, dt�1=ct�1, and rWt

around the means of these variables is equivalent to

mt = �[1� bc(�ct � �c)� bd(�dt � �d)� br(rWt � �r)]; (5)

where � = f� exp [��c=� + (1� 1=�)�r]g
�, bc = � [1=� + (1=�� 1=�)�], bd = �� (1=� � 1=�)

and br = 1� �. The approximation is valid in the neighborhood of � = 1.

1.2 Data

Lustig and Verdelhan form eight portfolios of long-positions in foreign currency with the U.S.

dollar as the home currency. The real excess return to a long position in a foreign currency

is

ret =
(1 + i�t�1)St=St�1 � (1 + it�1)

1 + �t
; (6)

where i�t�1 and it�1 are, respectively, the interest rates on nominally riskless foreign currency

denominated and U.S. dollar denominated securities held from date t� 1 to date t, St is the
exchange rate in U.S. dollars per unit of foreign currency, and �t is the U.S. in�ation rate

between dates t� 1 and t.
At each point in time, t� 1, Lustig and Verdelhan sort individual foreign currencies into

portfolios according to their interest di¤erentials with the U.S., i�t�1 � it�1, ordered from
lowest to highest. The real excess return to portfolio i in period t, denoted Reit, is the simple

average of the returns to the currencies that were placed in the ith portfolio at time t � 1.
As the interest di¤erentials �uctuate over time, their ordering and the currency composition

of the portfolios can change.

Lustig and Verdelhan�s measure of Ct is the national income accounts measure of real

per household consumption of nondurables and services excluding housing, clothing and

shoes. Their measure of Dt assumes that the �ow of consumption services from durables

is proportional to the per household real stock of durable goods from the National Income

and Product Accounts. Finally, their measure of the return on aggregate wealth is the value

weighted return of the U.S. stock market, from the Kenneth French�s database.
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1.3 Estimation and Inference

Lustig and Verdelhan estimate the model by exploiting the null hypothesis that the ap-

proximated stochastic discount factor (SDF), mt, prices the n� 1 vector of portfolio excess
returns, Ret . The pricing equation is

E(Retmt) = 0: (7)

I rewrite (5) generically as

mt = �[1� (ft � �)0 b], (8)

where ft is a k � 1 vector of risk factors, � = E(ft), b is a k � 1 vector of coe¢ cients, and �
is a scalar representing the mean of the SDF.

It follows from (8) and (7) that

E(Ret ) = cov(R
e
t ; f

0
t)b = cov(R

e
t ; f

0
t) var(ft)

�1| {z }
�

var(ft)b| {z }
�

: (9)

where � is a n� k matrix of factor betas, and � is a k � 1 vector of factor risk premia.
Lustig and Verdelhan estimate � and � using a two-pass procedure. The �rst pass is a

time series regression of each portfolio�s excess return on the vector of risk factors:

Reit = ai + f
0
t�i + �it, t = 1; : : : ; T , for each i = 1; : : : ; n: (10)

Here �0i represents the ith row in �. The system of equations represented by (10) can be

estimated equation-by-equation using OLS, or as a system using GLS, GMM, or maximum

likelihood. Lustig and Verdelhan use the OLS approach. Given (9), the second pass is a

cross-sectional regression of average portfolio returns on the estimated betas:

�Rei = �̂
0
i�+ �i, i = 1; : : : ; n; (11)

where �Rei =
1
T

PT
t=1R

e
it, �̂i is the OLS estimate of �i obtained in the �rst stage, and �i is a

pricing error. Let the OLS estimator of � be �̂ = (�̂
0
�̂)�1�̂

0 �Re, where �Re is an n� 1 vector
formed from the individual mean returns. The model�s predicted mean returns are �̂�̂ and

the pricing errors are the residuals, �̂ = �Re � �̂�̂.
The model�s �t is assessed using the following statistic:

R2 = 1� (
�Re � �̂�̂)0( �Re � �̂�̂)
( �Re � �Re)0( �Re � �Re)

; (12)
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where �Re = 1
n

Pn
i=1

�Rei is the cross-sectional average of the mean returns in the data.

The model is tested on the basis of the estimated pricing errors using the statistic

C = T �̂0
�1�̂ �̂, where 
�̂ is the asymptotic covariance matrix of
p
T �̂ and the inverse is

generalized. Cochrane (2005) discusses how to form 
�̂ and shows that C is asymptotically

�2n�k.

It is common to include a constant in the second-pass regression as follows:

�Rei =  + �̂
0
i�+ ui, i = 1; : : : ; n: (13)

The constant  can be interpreted as the model�s pricing error for the risk free rate. The

statistical argument for running the regression without the constant is that we know with

certainty that the excess return to a risk free asset is zero. One argument for including the

constant is the notion that the risk free rate is imperfectly measured as the real return on

T-bills.

Including the constant in the regression does not bias the estimates of �, since, if the

model is true, plim ̂ = 0. Nonetheless, correctly interpreted, the model�s predicted mean

returns emerging from (13) should still be �̂�̂ and the pricing errors should be the residuals

plus the constant, �̂ = ̂ + û = �Re � �̂�̂. Thus, the R2 statistic should still be formed using
(12) and the test of the pricing errors should be based on �̂ = ̂ + û. At the very least,

the economic and statistical signi�cance of ̂ should be considered before a model with a

constant is deemed reasonable.

One shortcoming of the R2 statistic is that it is not bounded between 0 and 1 unless

a constant is included in the second-pass regression and the predicted returns include the

constant. In sample, the R2 statistic de�ned in (12) can be negative. Nonetheless, if the null

hypothesis is true, the probability limit of the R2 statistic is 1, whether or not a constant is

included in the second-pass regression.

Lustig and Verdelhan estimate their model exactly as described above using the second-

pass regression that includes the constant. They do not, however, present results from the

�rst pass of the procedure. This is key to my discussion in section 2. They measure predicted

returns inclusive of the constant (̂ + �̂�̂). They also exclude the constant from the pricing

errors, which they measure as û, and do not discuss the economic signi�cance of the constant,

̂. This is central to my discussion in section 3.
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2 First-Pass Estimates of the Betas

Table 1 presents �rst-pass estimates of the betas obtained by running the least squares

regressions described by (10). Standard errors are computed using either the standard system

OLS formulas, or a GMM-based VARHAC procedure.2 The individual standard errors are

similar across the two procedures. None of the betas reported in Table 1are individually

statistically signi�cant. Lustig and Verdelhan present factor betas in their Table 6, but

these are individual factor betas, not the betas for their multifactor model. Nonetheless,

there is little signi�cance in these individual factor betas as well.

Joint tests for the signi�cance of the betas lead to similar conclusions. If, for example,

we test whether all the consumption betas are zero, the p-value for the �28 test statistic is

0:81 (using the VARHAC covariance matrix it is 0:80). For durables growth, the equivalent

p-value is 0:62 (using the VARHAC covariance matrix it is 0:67). For the market return, the

equivalent p-value is 0:37 (using the VARHAC covariance matrix it is 0:51). In fact, if we

test whether all the betas are jointly zero, the �224 statistic has a p-value of 0:64, although

with VARHAC standard errors the p-value is very small.

One might argue that it is the covariance of mt and Ret that is crucial, not, per se, the

covariance of ft and Ret . That is, by forming linear combinations of the factors, one might

induce signi�cant cross-sectional spread in cov(mt; R
e
it) across i. One way to capture such

spread is to measure the SDF�s betas. Using (8), (7) can be rewritten as

E(Ret ) = � cov(Ret ;mt)=E(mt): (14)

With the normalization � = 1, (8) implies that E(mt) = 1, so we can rewrite the expression

for E(Ret ) as

E(Ret ) = �
cov(Ret ;mt)

var(mt)
var(mt) = �m�

2
m: (15)

To measure mt, using (8), we need values for the elements of b, so here I use Lustig

and Verdelhan�s GMM estimates of the elements of the b vector: bc = 37:0, bd = 74:7 and

br = 4:65. A regression of Reit on mt gives an estimate of �mi, the SDF beta of the ith

portfolio return. As Table 2(a) indicates, I �nd that none of the estimated SDF betas is

signi�cantly di¤erent from zero at the 5 percent level, when tested individually. The p-value

2The GMM-based standard errors I present in this paper are mainly computed using a variant of the
VARHAC procedure described by den Haan and Levin (2000). I discuss the procedure in the appendix.
Since Lustig and Verdelhan base some of their results on HAC standard errors, I present these when direct
comparisons to their results are needed.
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for a test that �mi = 0 for all i is 0:44 (using the VARHAC covariance matrix it is 0:17).

Table 2(b) repeats the exercise using the b vector corresponding to the calibrated model

discussed in section I.E of Lustig and Verdelhan�s paper: bc = 6:74, bd = 23:3 and br = 0:31.

Here, only the return of portfolio #7 is signi�cantly correlated withmt. However, the p-value

for a test that �mi = 0 for all i is 0:50 (using the VARHAC covariance matrix it is 0:33).

Table 2(c) repeats the exercise using the b vector corresponding to Lustig and Verdelhan�s

two pass estimates of �: bc = �21:0, bd = 130 and br = 4:46. Again, the return of portfolio
#7 is signi�cantly correlated with mt, but the p-value for a test that �mi = 0 for all i is 0:47

(using the VARHAC covariance matrix it is 0:31). These results suggest that there is little

signi�cant spread in the constructed SDF betas.

Linear factor models rely, fundamentally, on there being signi�cant spread in the covari-

ance between the risk factors and the returns. The lack of statistical signi�cance in the factor

and SDF betas casts doubt on the hypothesis that Lustig and Verdelhan�s model explains

the cross-sectional variation in the expected returns. One might also be skeptical about the

reliability of standard errors for factor risk premia computed treating the betas as known. I

return to this issue in section 4.

3 Re-Interpreting the Pricing Errors and the Constant
in the Second Pass

Given that there is little evidence of correlation between the risk factors and the returns, how

did Lustig and Verdelhan reach the conclusion that the factors price the returns? They did

so by focusing mainly on the second-pass estimates of �. Furthermore, they estimated the

second-pass regression using the representation that includes the constant, (13), but did not

test the signi�cance of the constant. Their results are reproduced in Table 3(a). Standard

errors, like theirs, computed assuming that the �rst-pass betas are known are shown in

the �OLS�column. The factor risk premia for consumption and durables are both highly

statistically signi�cant. If a constant is included in the model�s predicted expected return,

the R2 of the model is 0:87 and the p-value for the test for signi�cance of the pricing errors

is 0:483. These results are the basis of Lustig and Verdelhan�s positive assessment of the

model.

As I argued in section 1, however, there is good reason to reject the model on the basis

of these same results. The theoretical model does not include a constant, and predicts that
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the expected returns depend only on the covariance between the factors and the returns.

So, whenever a constant is included in the second-pass regression it is important to consider

its economic and statistical signi�cance. In fact, as Table 3(a) indicates, the constant is

big, implying a �3 percent per annum pricing error for the risk free rate. Furthermore,

when the betas are treated as known, the constant is highly statistically signi�cant, with a

t-statistic of 3:4. Measurement error in the estimated betas, and resulting downward bias in

the estimated factor risk premia, can explain a positive pricing error for the risk free rate.

So can a liquidity premium in T-bills. But a large negative pricing error for the risk free rate

is bad news for the model.

Excluding the constant from the model�s predicted expected returns, the R2 of the model

is �2:6. In other words, the constant is crucial to the model�s �t. This is con�rmed by tests
for the signi�cance of the pricing errors inclusive of the constant. The p-value on the test

falls to 0:001.

Of course, the model can be estimated excluding the constant. Results for this case are

presented in Table 3(b). In this case the factor risk premia are much smaller, none of them

are statistically signi�cant, the R2 is only 0:34, and the model is rejected based on the test

of the pricing errors at below the 1 percent level (the �OLS Covariance Matrix�case provides

the p-value when the betas are treated as known).

A scatter plot of expected returns against factor betas would provide insight into the role

of the constant, but constructing the scatter plot is not possible for a three factor model. I

consider, instead, a scatter plot of expected returns against SDF betas. Figure 1 shows a

scatter plot of �Rei against �̂mi, i = 1, : : : , n, with mt being constructed using the b vector

corresponding to the calibrated model discussed in section I.E of Lustig and Verdelhan�s

paper: bc = 6:74, bd = 23:3 and br = 0:31. Equation (15) implies that a scatter plot

of E(Reit) against the SDF betas, �mi, should lie on a line through the origin with slope

�2m. The constructed mt series has sample variance �̂
2
m = 0:29, so I indicate an estimated

version of this theoretical line, �m�̂
2
m, in bold black in Figure 1. This line correctly prices

the risk free asset, since the intercept is zero. It also correctly prices SDF risk because

an SDF mimicking portfolio has a beta of 1, and a risk premium �2m. The theoretical line,

however, does not correctly price Lustig and Verdelhan�s portfolio returns because the values

of (�̂mi; �R
e
i ), indicated by the small circles in Figure 1, do not �t closely around the black

line. Better �t can be obtained by running a regression of �Rei on a constant and �̂mi. The
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regression line (indicated in bold grey) has an intercept of ̂m = �3:0 percent and a slope of
�̂m = 1:3. This means that although the regression line �ts the scatter plot reasonably well,

it misprices the risk free rate by �3 percent. It also misprices SDF risk because an SDF
mimicking portfolio has a beta of 1, and an implied expected return of ̂m+�̂m = �1:7, rather
than the theoretically predicted expected return, �̂2m = 0:29. When Lustig and Verdelhan

report high R2 statistics for the calibrated model, it is because they measure �t with respect

to the grey line, not the black line. They do not discuss the mispricing of the risk free rate

or an SDF mimicking portfolio.

Figure 2 shows a scatter plot of the elements of �Rei against the �̂mi, with mt being

constructed using the b corresponding to Lustig and Verdelhan�s two pass estimates of �:

bc = �21:0, bd = 130 and br = 4:46. Once again, the scatter plot shows that the values of
(�̂mi; �R

e
i ) do not �t the line �m�̂

2
m (indicated in bold black) with �̂

2
m � 5:8. The regression line

�t to the scatter (indicated in bold grey) has ̂m = �2:9 percent and slope �̂m = �̂2m = 5:8,
by construction. The regression line �ts the scatter plot very well, but it misprices the risk

free rate and SDF risk by the same amount: �2:9 percent. Again, Lustig and Verdelhan
report high R2 statistics for the estimated model because they measure �t with respect to the

grey line and do not discuss the implied mispricing of the risk free rate or an SDF mimicking

portfolio. A further problem with this version of the model is the implied value of �̂m is

2:41. Given that the mean of mt is 1, by assumption, this is unrealistically large. Indeed,

in sample, the constructed mt is negative in 38 percent of the observations. Furthermore,

the implied structural parameters are theoretically implausible. Lustig and Verdelhan set

� = 0:79, so the other implied parameter values are � = 1:14,  = 113 and � = �0:032.3

The values of � and � are theoretically inadmissible, the former implying that the marginal

utility of nondurables is negative, and the latter implying a negative intertemporal elasticity

of substitution.

Thus, on the basis of the Lustig and Verdelhan�s own benchmark methodology, there is

little evidence in favor of their model. Without the constant in the second pass regression,

the estimated model fails to explain the expected returns. Additionally, the estimated SDF

is economically implausible. In the next section I consider a further problem, which is that

their benchmark inferences do not take into account that the betas are estimated.
3Lustig and Verdelhan report � = 0:21. I explain this discrepancy in the appendix.
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4 Correcting Inference for Estimated Betas

As Cochrane (2005) points out, the fact that the betas are estimated in the �rst pass matters

for inference about the factor risk premia, and this is true even asymptotically. There are

two standard ways to deal with this problem. One is to use the correction of the standard

errors suggested by Shanken (1992). The other is to compute the standard errors using a

GMM-based estimation procedure that replicates the point estimates. The latter procedure

is more general, but as I show here, the two procedures deliver quite similar results.

By construction, neither procedure a¤ects the point estimates of the factor risk premia,

only the standard errors. The Shanken standard errors are a special case of the GMM

standard errors when the �it, in (10), are i.i.d. and homoskedastic. The GMM procedure

is described in Cochrane (2005). When the constant is included in the model the moment

restrictions are E(Reit � ai � �0ift) = 0, E[(Reit � ai � �0ift)f 0t ] = 0, and E(Reit �  � �0i�) = 0
for i = 1, : : : , n. When the constant is excluded from the model, the last set of moment

restrictions is replaced by E(Reit � �0i�) = 0 for i = 1, : : : , n. In both cases, an identity

matrix is used to weight the moment conditions.

The Shanken and GMM-corrected standard errors for the model with the constant [Table

3(a)] are roughly two to three times larger than the OLS standard errors that ignore estima-

tion of the betas. Why is the Shanken correction so big? Let � = (  �0 )0, X = ( � � ),

where � is an n� 1 unit vector, � = E(�t�0t) and �f = E[(ft � �)(ft � �)0], and let ~�f be a
matrix with a leading column and row of zeros, and �f in the lower right corner. When the

betas are treated as known the covariance matrix of
p
T (�̂ � �) is


�̂ = (X
0X)�1X 0�X(X 0X)�1 + ~�f : (16)

With the Shanken correction the covariance matrix is


�̂ = (1 + �
0��1f �)(X

0X)�1X 0�X(X 0X)�1 + ~�f : (17)

For the single factor CAPM model, using annual returns of the Fama-French 25 portfolios

sorted on size and book-to-market value over the period 1953�2002, the Shanken-correction

term is just 1 + �2=�2f = 1:035. In Lustig and Verdelhan�s case, 1 + �0��1f � = 6:79. Al-

though the individual �s in Lustig and Verdelhan�s model are of the same order of mag-

nitude as for the CAPM, the consumption factors have much smaller variance than the

market return. This blows up the size of the Shanken correction substantially. The term
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(X 0X)�1X 0�X(X 0X)�1 also has a relatively larger share in 
�̂ in Lustig and Verdelhan�s

case than for the CAPM.

Using either the Shanken or GMM standard errors, none of the estimated factor risk

premia in Table 3(a) are statistically signi�cant at the 5 percent level, though the � corre-

sponding to durables growth is signi�cant at the 10 percent level. There is so much sampling

uncertainty in the model with the constant than when the signi�cance of the pricing errors is

tested, the model cannot be rejected whether or not the constant is included in the predicted

expected returns. But this is not a success for the model. It is simply a consequence of the

fact that the model�s predicted expected returns are estimated with an enormous degree of

uncertainty. The scatter plot of expected returns against SDF betas is informative about

why taking into account estimation of the betas matters so much for the test. Figure 3 is

a duplicate of Figure 2, but adds two standard error bars around the (�̂mi; �R
e
i ). The error

bars illustrate the enormous degree of uncertainty about not only the betas, but also the

expected returns.

Lustig and Verdelhan (2007) present uncorrected standard errors on the basis that �Ja-

gannathan and Wang (1998) show that the [uncorrected procedure] does not necessarily

overstate the precision of the standard errors if conditional heteroskedasticity is present.�

Indeed, Jagannathan and Wang work out the GMM-based asymptotic theory for inference

under more general conditions than Shanken, and under these more general conditions the

direction of the bias in the standard errors is unclear. However, as we see in Table 3(a), the

GMM-based standard errors are of roughly the same magnitude as the Shanken-corrected

standard errors. So while, in principle, the uncorrected procedure need not produce down-

wardly biased standard errors, it would appear to do so in this case.

The degree of precision in the model without the constant [Table 3(b)] is greater, pre-

sumably because the �� term has to �t the mean of �Re without the use of a constant, and

this puts a much tighter restriction on the statistically admissible set of �s. Nonetheless, the

Shanken and GMM-corrected standard errors are larger than the OLS standard errors by a

factor of about 1.4. None of the factor risk premia is statistically signi�cant for the model

without the constant, no matter how standard errors are computed. The pricing errors are

su¢ ciently big that the model is rejected at the 6 percent level using the Shanken covariance

matrix, but only at the 17 percent level with GMM covariance matrix.

Given these results I conclude that the model is rejected (or borderline rejected) absent
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the constant and that the factor risk premia are statistically insigni�cant once we take into

account sampling uncertainty in the betas. In the next section I explore the robustness of

these �ndings to direct GMM estimation of the model.

5 Robustness

GMM Estimation of the Model Lustig and Verdelhan claim robustness of their uncor-

rected standard errors by appealing to a GMM procedure that estimates the model directly.

This procedure, which is described in more detail in Cochrane (2005), estimates the model,

(8), by GMM using the moment conditions:

EfRet [1� (ft � �)
0 b]g = 0 (18)

E(ft � �) = 0 (19)

Estimates of � = �fb can be obtained from the procedure by adding moment conditions

that identify the unique elements of �f .

There are two problems with Lustig and Verdelhan using the standard errors for �̂ from

this GMM procedure to benchmark the standard errors from the two-pass procedure. First,

and most importantly, the GMM procedure does not include a constant in the vector �, so it

does not produce comparable standard errors to the ones appropriate to the two-pass proce-

dure with a constant in the second pass. Rather, the standard errors are more appropriately

compared to the standard errors from the two-pass procedure without a constant. Second,

the GMM procedure produces the same � estimates as the two-pass procedure only when

an identity matrix is used as the weighting matrix. This is typically the case in the �rst

stage of GMM. Lustig and Verdelhan report results from a second stage of GMM that uses

a di¤erent weighting matrix. Therefore the standard errors of the corresponding �̂s are not

valid estimates of the standard errors of the �̂s produced by the two-pass procedure.

Of course, estimates of � based on the �rst and second stages of the GMM procedure are

of independent interest and shed additional light on the model. In Table 4(a) I present the

results from the �rst stage of GMM. Here, none of the b coe¢ cients is individually signi�cant,

nor are any of the �s. The R2 of the model is 0:34. As explained in the appendix, the point

estimates of the �s and the R2 measure of �t are, by construction, the same as those produced

by the two-pass procedure without the constant [see Table 3(b)].

Turning to the second stage of GMM [Table 4(b)] I reproduce Lustig and Verdelhan�s
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results. I present HAC and VARHAC standard errors for comparability to their Table 14.

Most importantly, the second stage R2 of the model is negative (�0:66). This is very bad
news, because it indicates that a constant would do a better job explaining the cross-sectional

distribution of the returns than the model does. Also, the model only marginally passes the

test of the overidentifying restrictions at the 7 percent level. So, while � is statistically

signi�cant for consumption and durables, and b is signi�cant for durables, the model has

very poor �t.

The model with the constant can also be estimated using GMM by adding an arbitrary

constant to the moment condition, (18), replacing it with

EfRet [1� (ft � �)
0 b]� g = 0: (20)

Table 5(a) presents results from the �rst stage of GMM. As explained in the appendix,

the �rst stage of GMM reproduces the point estimates from the two-pass procedure with

the constant [see Table 3(a)], by construction. None of the b coe¢ cients are individually

statistically signi�cant, nor are any of the �s. The R2 of the model is 0:87 but, as in Table

3, if the constant is excluded from the predicted expected return the R2 is sharply negative.

Turning to second stage GMM estimates [Table 5(b)], the picture is much the same. None

of the bs and �s are statistically signi�cant. Consistent with Table 3(a), the model cannot

be rejected on the basis of the pricing errors, but this is not a success for the model, it is

simply a re�ection of the imprecision in the estimates.

I conclude that if we focus our attention on the model without the constant, and on

estimates obtained using the two-pass procedure (or, equivalently, the �rst stage of GMM),

it is a robust �nding that the R2 �t of the model is only 0:34 and none of the factor bs and

�s are statistically signi�cant. If we base our parameter estimates on the second stage of the

GMM procedure, a subset of the factor bs and �s becomes statistically signi�cant, but only

at the cost that the �t of the model becomes negative. For the model with the constant, it

is a robust �nding that none of the model parameters are statistically signi�cant.

Choice of Sample Lustig and Verdelhan present results for two sample periods, 1953�

2002 and 1971�2002. Does choosing the shorter sample (1971�2002) a¤ect my negative

conclusions? The answer is mainly no.4

4Full results for the 1971�2002 sample are available upon request.
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Consider, �rst, the factor betas. For the shorter sample, the durables beta of the 4th

portfolio is statistically signi�cant at the 5 percent level. This is the only exception to the

lack of signi�cance I demonstrated for the full sample in Table 1.

Consider, next, the second pass estimates of the model that ignore sampling uncertainty

in the betas. Once again, the �t of the model depends on the presence of the constant. If the

constant is included in the model, and the predicted expected returns include the constant,

the R2 is 0:64. However, the constant remains large, negative and statistically signi�cant.

Once the constant is dropped from the model, the R2 falls to 0:38, and the test of the pricing

errors rejects the model.

When sampling uncertainty in the betas is taken into account using the Shanken cor-

rection or GMM-based standard errors, the factor risk premia from the two-pass procedure

with the constant become statistically insigni�cant, as for the full sample. The same is true

for the model without the constant, except for the market return and GMM-based standard

errors.

If the model without the constant is estimated by GMM, the bs are statistically insignif-

icant (except in the second stage of GMM for rW ). The �s are statistically insigni�cant in

the �rst stage of GMM, but are all signi�cant in the second stage of GMM. However, the

R2 at the second stage is 0:06, indicating that, in any case, almost none of the spread in the

expected returns is explained by the risk factors.

6 Conclusion

Lustig and Verdelhan�s consumption-based model does not explain the cross-sectional varia-

tion in the expected returns of their portfolios. A risk-based story requires that at least some

of the returns be correlated with the risk factors. As the �rst-pass regressions reported in

section 2 demonstrate, however, Lustig and Verdelhan�s risk factors are very close to being

uncorrelated with the returns. A symptom of this is that there is no statistically signi�cant

spread in the factor betas. Given these facts, there is little evidence to support Lustig and

Verdelhan�s hypothesis.

They draw the opposite conclusion based on favorable measures of �t, statistically sig-

ni�cant risk premia, and tests of the pricing errors based on second-pass regressions. The

R2 they report is over-stated because it relies on the inclusion of a constant in the model.

This constant does not belong in the model under the null, yet is signi�cantly di¤erent from
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zero using their primary approach to inference. The tests of the pricing errors that they

present also overstate the success of the model for the same reason because they include the

constant. Exclusion of the constant implies an R2 that is never greater than 0:34, regardless

of the estimation procedure used.

Lustig and Verdelhan also largely ignore estimation of the betas when conducting infer-

ence about factor risk premia. Once inference takes into account estimation of the betas, I

�nd that the estimated factor risk premia for their model are usually statistically insigni�-

cant. In the one case where the factor risk prices are signi�cant [two-stage GMM, shown in

Table 4(b)] the model has very poor �t, with an R2 of �0:66. Thus, the second-pass regres-
sions and GMM-based estimates simply con�rm what is clear from the �rst-pass estimates:

a model based primarily on aggregate U.S. consumption and durables growth cannot explain

observed currency risk premia.
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TABLE 1: First-Pass Estimates of the Betas

Portfolio (i) �Rei �0i
�c �d rW

# 1 (smallest i� � i) �2:336 0:201 0:028 �0:068
(0:897) (0:852) (0:612) (0:055)
[0:906] [0:643] [0:568] (0:049)

# 2 �0:873 0:740 0:091 �0:034
(0:937) (0:889) (0:638) (0:058)
[0:947] [0:620] [0:470] [0:062]

# 3 �0:747 �0:639 0:962 0:019
(0:935) (0:882) (0:633) (0:057)
[1:361] [1:026] [0:814] [0:058]

# 4 0:329 �0:546 0:982 �0:089
(1:190) (1:095) (0:786) (0:071)
[1:202] [1:075] [0:749] [0:069]

# 5 �0:151 0:180 0:485 0:009
(1:053) (1:006) (0:722) (0:065)
[1:063] [0:754] [0:714] [0:065]

# 6 �0:213 �0:755 1:079 0:023
(1:148) (1:089) (0:781) (0:071)
[1:160] [0:958] [0:833] [0:068]

# 7 2:988 0:036 1:234 �0:027
(1:144) (1:044) (0:749) (0:068)
[1:155] [0:797] [0:730] [0:063]

# 8 (largest i� � i) 2:031 �1:342 1:426 0:079
(1:756) (1:674) (1:201) (0:108)
[2:586] [1:646] [1:225] [0:114]

Notes: Annual data, 1953�2002. The regression equation is Reit = ai + f
0
t�i + �it, where R

e
it is the excess

return of portfolio i at time t, ft = ( �ct �dt rWt )
0, �c is real per household consumption (nondurables

& services) growth, �d is real per household durable consumption growth, and rW is the value weighted US
stock market return. The portfolios are equally-weighted groups of short-term foreign-currency denominated
money market securities sorted according to their interest di¤erential with the US (i�� i). The table reports
�0i and the sample mean of each portfolio return, �R

e
i . OLS standard errors are in parentheses. GMM-

VARHAC standard errors are in square brackets.

17



TABLE 2: Estimates of the SDF Betas for Specific Values of b

b vector (a) (b) (c)

bc 37:0 6:74 �21:0
bd 74:7 23:3 129:9
br 4:65 0:31 4:46

Portfolio (i) �Rei �im
(a) (b) (c)

# 1 (smallest i� � i) �2:336 �0:030 0:639 0:060
(0:897) (0:452) (1:665) (0:373)
[0:906] [0:658] [2:594] [0:544]

# 2 �0:873 0:437 1:925 0:335
(0:937) (0:468) (1:720) (0:387)
[0:947] [0:285] [1:064] [0:241]

# 3 �0:747 0:513 2:229 0:549
(0:935) (0:465) (1:709) (0:381)
[1:361] [0:526] [2:618] [0:542]

# 4 0:329 0:308 2:692 0:539
(1:190) (0:597) (2:178) (0:489)
[1:202] [1:031] [2:289] [0:702]

# 5 �0:151 0:560 2:158 0:467
(1:053) (0:524) (1:932) (0:433)
[1:063] [0:553] [2:031] [0:470]

# 6 �0:213 0:556 2:422 0:603
(1:148) (0:573) (2:106) (0:470)
[1:160] [0:684] [3:233] [0:705]

# 7 2:988 1:038 4:714 0:999
(1:144) (0:557) (2:019) (0:454)
[1:155] [0:568] [2:043] [0:465]

# 8 (largest i� � i) 2:031 0:653 2:403 0:694
(1:756) (0:879) (3:245) (0:723)
[2:586] [0:844] [3:481] [0:697]

Notes: Annual data, 1953�2002. The regression equation is Reit = ai +mt�im + �it, where R
e
it is the excess

return of portfolio i at time t, mt = 1 � (ft � �f)0b, ft = ( �ct �dt rWt )
0, �c is real per household

consumption (nondurables & services) growth, �d is real per household durable consumption growth, rW is
the value weighted US stock market return, �f is the sample mean of ft and b takes on the value indicated for
each case. The portfolios are equally-weighted groups of short-term foreign-currency denominated money
market securities sorted according to their interest di¤erential with the US (i� � i). The table reports �im
and the sample mean of each portfolio return, �Rei . OLS standard errors are in parentheses. GMM-VARHAC
standard errors are in square brackets.

18



TABLE 3: Second-Pass Estimates of the Factor risk premia

(a) Model With a Constant (b) Model Without a Constant

Factor Risk Premia
Standard Error of �̂ Standard Error of �̂

Factor �̂ OLS Shanken GMM �̂ OLS Shanken GMM

Constant () �2:94 (0:86) [2:23] f2:66g
�c 2:19 (0:83) [2:11] f2:48g 0:59 (0:73) [1:01] f1:17g
�d 4:70 (0:97) [2:42] f2:41g 1:10 (1:02) [1:40] f1:69g
rW 3:33 (7:59) [18:8] f23:1g 11:7 (7:40) [10:1] f10:6g

R2 Measures of Fit

Predicted ERe = ̂ + �̂�̂ 0:87

Predicted ERe = �̂�̂ �2:62 0:34

Tests of the Pricing Errors
Covariance Matrix Covariance Matrix

OLS Shanken GMM OLS Shanken GMM

û = �Re � ̂ � �̂�̂ 0:483 0:972 0:994

�̂ = �Re � �̂�̂ 0:001 0:685 0:891 0:001 0:031 0:173

Notes: Part (a) reports results from running the cross-sectional regression �Rei = + �̂
0
i�+ui.where �R

e
i is the

mean excess return of portfolio i and �̂i is the vector of factor betas of portfolio i estimated in the �rst pass

regression. Part (b) reports results from the a cross-sectional regression without the constant: �Rei = �̂
0
i�+�i.

For the factor risk premia (�̂) OLS standard errors are in parentheses, Shanken standard errors are in square
brackets, and GMM-VARHAC standard errors are in braces. For the tests of the pricing errors I compute
the test statistic for each of the three methods of computing the covariance matrix of û or �̂, and report
the p-value associated with the test-statistic. The results in part (a) match Lustig and Verdelhan�s exactly
except for (i) the p-value on the test of the pricing error (OLS case) and (ii) the Shanken standard errors. I
explain these di¤erences in the appendix.
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TABLE 4: GMM Estimates of the Model with no Constant

(a) 1st Stage of GMM (b) 2nd Stage of GMM
Factor b̂ �̂ b̂ �̂

�c �22:0 0:59 37:0 2:37
(63:6) (1:18) (45:4) (1:05)

[44:8] [0:99]

�d 45:5 1:10 74:7 3:48
(51:0) (1:72) (33:5) (1:27)

[32:0] [1:07]

rW 5:16 11:7 4:65 10:2
(3:02) (9:02) (2:82) (8:10)

[2:56] [7:08]

R2 0:34 �0:66

Test of the Pricing Errors 0:068

Notes: Part (a) reports estimates of b and � obtained in the 1st stage of GMM, by exploiting the moment
restrictions EfRet [1 � (ft � �)

0
b]g = 0, E(ft � �) = 0 and E[(ft � �)(ft � �)0 � �f ] = 0, where ft =

( �ct �dt rWt )
0, �c is real per household consumption (nondurables & services) growth, �d is real per

household durable consumption growth, rW is the value weighted US stock market return. Part (b) reports
estimates obtained in the 2nd stage of GMM. GMM-VARHAC standard errors are in parentheses. GMM-
HAC standard errors are in square brackets in part (b) for direct comparison to Lustig and Verdelhan�s Table
14. For the test of the pricing errors I report the p-value associated with the test-statistic. The appendix
provides details of the weighting matrices at each stage, and explains the equivalence of the GMM approach
to the two-pass method. It also explains why the test of the pricing errors is the same at both stages of
GMM. The point estimates in part (b) match Lustig and Verdelhan�s exactly but the HAC standard errors
do not. I explain this di¤erence in the appendix.
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TABLE 5: GMM Estimates of the Model with the Constant

(a) 1st Stage of GMM (b) 2nd Stage of GMM
Factor b̂ �̂ b̂ �̂

Constant () �2:94 �3:02
(2:92) (2:52)

�c �21:0 2:19 27:2 2:73
(88:6) (2:09) (74:8) (2:01)

�d 129:9 4:70 108:3 4:85
(109:5) (3:57) (108:8) (3:67)

rW 4:46 3:33 2:53 0:78
(5:10) (13:3) (4:66) (11:4)

R2

Predicted ERe = ̂ + �̂�̂ 0:87 0:81

Predicted ERe = �̂�̂ �2:62 �2:69

Test of the Pricing Errors 0:703

Notes: Part (a) reports estimates of b and � obtained in the 1st stage of GMM, by exploiting the moment
restrictions EfRet [1 � (ft � �)

0
b] � g = 0, E(ft � �) = 0 and E[(ft � �)(ft � �)0 � �f ] = 0, where

ft = ( �ct �dt rWt )
0, �c is real per household consumption (nondurables & services) growth, �d is

real per household durable consumption growth, rW is the value weighted US stock market return. Part (b)
reports estimates obtained in the 2nd stage of GMM. GMM-VARHAC standard errors are in parentheses.
For the test of the pricing errors I report the p-value associated with the test-statistic.
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FIGURE 1

SDF Betas and Expected Returns for the Calibrated Model
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Note: Filled circles represent (SDF beta, mean excess return) pairs for Lustig and Verdelhan�s eight port-
folios. The �SDF beta�, �̂m, for each portfolio is slope coe¢ cient from a regression of the portfolio excess
return, Reit, on the SDF, mt = 1 �

�
ft � �f

�0
b, with ft = ( �ct �dt rWt )

0, �c is real per household
consumption (nondurables & services) growth, �d is real per household durable consumption growth, rW is
the value weighted US stock market return, �f is the sample mean of ft and b corresponding to the calibrated
model with bc = 6:74, bd = 23:3 and br = 0:31. �Actual ER�is the sample mean of the portfolio return, �Rei .
The black line corresponds to �m�̂

2
m where �̂2m is the variance of the constructed SDF. The grey line is the

estimated regression line �Rei = ̂m + �̂m�̂m. The empty circle marked ER
e
f signi�es that a risk free asset

has a zero beta, and a zero excess return. The empty circle marked EReS signi�es that an SDF mimicking
portfolio has a beta of 1 and expected excess return of �2m.
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FIGURE 2

SDF Betas and Expected Returns for the Benchmark Estimated Model
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Note: Filled circles represent (SDF beta, mean excess return) pairs for Lustig and Verdelhan�s eight port-
folios. The �SDF beta�, �̂m, for each portfolio is slope coe¢ cient from a regression of the portfolio excess
return, Reit, on the SDF, mt = 1 �

�
ft � �f

�0
b, with ft = ( �ct �dt rWt )

0, �c is real per household
consumption (nondurables & services) growth, �d is real per household durable consumption growth, rW is
the value weighted US stock market return, �f is the sample mean of ft and b corresponding to Lustig and
Verdelhan�s two pass estimates of �: bc = �21:0, bd = 130 and br = 4:46. �Actual ER�is the sample mean
of the portfolio return, �Rei . The black line corresponds to �m�̂

2
m where �̂

2
m is the variance of the constructed

SDF. The grey line is the estimated regression line �Rei = ̂m+ �̂m�̂m. The empty circle marked ER
e
f signi�es

that a risk free asset has a zero beta, and a zero excess return. The empty circle marked EReS signi�es that
an SDF mimicking portfolio has a beta of 1 and expected excess return of �2m.
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FIGURE 3

SDF Betas, Expected Returns and Two Standard Error Bars
for the Benchmark Estimated Model
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Note: Filled circles represent (SDF beta, mean excess return) pairs for Lustig and Verdelhan�s eight port-
folios. The �SDF beta�, �̂m, for each portfolio is slope coe¢ cient from a regression of the portfolio excess
return, Reit, on the SDF, mt = 1 �

�
ft � �f

�0
b, with ft = ( �ct �dt rWt )

0, �c is real per household
consumption (nondurables & services) growth, �d is real per household durable consumption growth, rW is
the value weighted US stock market return, �f is the sample mean of ft and b corresponding to Lustig and
Verdelhan�s two pass estimates of �: bc = �21:0, bd = 130 and br = 4:46. The horizontal lines at each circle
are two standard error bands around �̂m. �Actual ER�is the sample mean of the portfolio return, �R

e
i . The

vertical lines are two standard error bands around �Rei . The black line corresponds to �m�̂
2
m where �̂

2
m is the

variance of the constructed SDF. The grey line is the estimated regression line �Rei = ̂m+ �̂m�̂m. The empty
circle marked ERef signi�es that a risk free asset has a zero beta, and a zero excess return. The empty circle
marked EReS signi�es that an SDF mimicking portfolio has a beta of 1 and expected excess return of �

2
m.
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7 Appendix

7.1 Standard Errors for the Two-Pass Procedure

Lustig and Verdelhan compute standard errors under the assumption that the betas are
known. I �rst, consider this case, and then consider the case where the betas are treated as
generated regressors. The derivations here are reproduced from or based on Cochrane (2005)
and Shanken (1992).

7.1.1 Betas are Known

Equation (10) can be rewritten as

Ret = a+ �ft + �t

where a is an n � 1 vector formed from the individual ai, and �t is an n � 1 vector formed
from the individual �it. Traditionally the factors and errors are assumed to be i.i.d. over
time, with var(ft) = �f and var(�t) = �.5 Taking averages over time:

�Re = a+ � �f +��; (21)

where �Re, �f and �� are the sample means of Ret , ft and �t.

Without a Constant When the betas are known and the second stage excludes a constant
�̂ = (�0�)�1�0 �Re. This implies that

�̂ = �Re � ��̂ =
�
I � �(�0�)�1�0

�
�Re =M�

�Re:

Given (9), this implies that

plim �̂ =M�E( �R
e) =M��� = 0:

Also, the asymptotic covariance matrix of
p
T �̂ is


�̂ =M�
 �RM�

where 
 �R is the asymptotic covariance matrix of
p
T ( �Re � ERe). Given (21) and the as-

sumptions made above:

 �R = ��f�

0 + �

hence

�̂ =M� (��f�

0 + �)M� =M��M�:

Since 
�̂ has rank n� k, C = T �̂0
�1�̂ �̂ must be computed using a generalized inverse, and
C is distributed �2 with n � k degrees of freedom. Also, the asymptotic covariance matrix
of
p
T (�̂� �) is


�̂ = (�0�)�1�0
 �R�(�
0�)�1

= �f + (�
0�)�1�0��(�0�)�1:

5Lustig and Verdelhan work within this framework, but these assumptions can be generalized.
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With a Constant When a constant is included in the second stage we have

�̂ = (X 0X)�1X 0 �Re

where � = (  �0 )0, X = ( � � ) and � is an n� 1 vector of ones. Therefore,

û = �Re �X�̂ =
�
I �X(X 0X)�1X 0� �Re =MX

�Re:

Given (9) we can write E(Re) =  + �� = X� where  = 0. So

E(û) =MXE( �R
e) =MXX

0� = 0:

Also, the asymptotic covariance matrix of
p
T û is


û =MX
 �RMX :

The term �0�f� can be written as X ~�fX 0 with

~�f =

�
0 0
0 �f

�
:

Therefore we can rewrite 
 �R as X ~�fX 0 + � so that:


û =MX(X ~�fX
0 + �)MX =MX�MX :

Since 
û has rank n � k � 1, C = T û0
�1û û must be computed using a generalized inverse,
and C is distributed �2 with n� k � 1 degrees of freedom. Also, the asymptotic covariance
matrix of

p
T (�̂ � �) is


�̂ = (X 0X)�1X 0
 �RX
0(X 0X)�1

= (X 0X)�1X 0(X ~�fX
0 + �)X 0(X 0X)�1

= ~�f + (X
0X)�1X 0�X 0(X 0X)�1:

As suggested in the text, the constant should really be considered part of the pricing error.
As such, its signi�cance could be tested alone, as it is the �rst element of �̂. Alternatively
one might also consider a reformulated �2 test based on

�̂ = �Re � ��̂ = û+ ̂:

Letting

P =

�
0 0
0 Ik

�
we have

�̂ = �Re �XP�̂ =
�
I �XP (X 0X)�1X 0� �Re = H �Re:

Therefore the asymptotic covariance matrix of
p
T �̂ is


�̂ = H(X ~�fX
0 + �)H 0 = H�H 0:

As in the other cases, this means that a test statistic can be formed as C = T �̂0
�1�̂ �̂. It
will be distributed �2n�k since 
�̂ is of rank n� k and must be computed using a generalized
inverse.
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7.1.2 Shanken Corrections (Betas are Estimated)

When the betas are unknown the �rst stage estimates, �̂i, are given by

�̂i = (f̂
0f̂)�1f̂ 0Rei

where Rei is a T � 1 vector with elements Reit and f̂ is a T � k matrix with rows equal to
(ft � �f)0. Given the model, Rei = ai + f�i + �i, where f is an T � k matrix with rows equal
to f 0t and �i is a T � 1 vector with elements �it. Hence

�̂i = (f̂ 0f̂)�1f̂ 0 (ai + f�i + �i)

= �i + (f̂
0f̂)�1f̂ 0�i:

Assuming that ft and �t are independent, the asymptotic covariance between
p
T (�̂i � �i)

and
p
T (�̂j � �j) is given by �ij��1f where �ij is the covariance between �it and �jt. If �̂ is

rearranged into a nk � 1 stacked vector,

�̂v =

0BBB@
�̂1
�̂2
...
�̂n

1CCCA ;
the asymptotic covariance matrix of

p
T (�̂v � �v) is �
 ��1f .

Without a Constant When the second stage excludes a constant �̂ = Â �Re, where Â =
(�̂
0
�̂)�1�̂

0
. To work out the asymptotics we proceed as follows. De�ne

�� = �+ �f � �: (22)

The model implies that ERe = a+�� = ��. Hence we can write a = �(���). Substituting
this result into (21) we get

�Re = �(�� �+ �f) + ��:

Using (22) we have

�Re = ���+��

= �̂��+��� (�̂ � �)��: (23)

Premultiplying (23) by Â we get

�̂ = ��+ Â[��� (�̂ � �)��];

so that
�̂� �� = Â[��� (�̂ � �)��]: (24)
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Now

�̂� � = (�̂� ��) + (��� �)
= Â[��� (�̂ � �)��] + ( �f � �):

The �f�� term in uncorrelated with the ���(�̂��)�� following arguments in Shanken�s (1992)
Lemma 1. Also we can rewrite the term in brackets as ���(In
��

0
)(�̂v��v). Since plim �� = �,

and plim Â = A = (�0�)�1�0 this means that the asymptotic variance of
p
T (�̂� �) is


�̂ = A[� + (In 
 �
0)
�
�
 ��1f

�
(In 
 �)]A0 + �f :

Using the rules for Kronecker products this reduces to


�̂ = (1 + �
0��1f �)A�A

0 + �f :

The pricing errors are

�̂ = �Re � �̂�̂ =
h
I � �̂(�̂0�̂)�1�̂0

i
�Re =M�̂

�Re

= M�̂

h
�̂��+��� (�̂ � �)��

i
= M�̂

h
��� (�̂ � �)��

i
Hence the asymptotic covariance matrix of

p
T �̂ is


�̂ = (1 + �
0��1f �)M��M�:

Since 
�̂ has rank n� k, C = T �̂0
�1�̂ �̂ must be computed using a generalized inverse, and
C is distributed �2 with n� k degrees of freedom.

With a Constant When a constant is included in the second stage, but the betas are
unknown, we have

�̂ = (X̂ 0X̂)�1X̂ 0 �Re

where � = (  �0 )0, X̂ = ( � �̂
0
) and �n is an n� 1 vector of ones. If X̂ is rearranged into

a n(k + 1)� 1 stacked vector,

X̂v =

0BBBBBBBBB@

1

�̂1
1

�̂2
...
1

�̂n

1CCCCCCCCCA
;

the asymptotic covariance matrix of
p
T (X̂v �Xv) is �
 � where

� =

�
0 0
0 ��1f

�
:
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We have �̂ = Â �Re, where Â = (X̂ 0X̂)�1X̂ 0. The model implies that ERe = a + �� =

 + �� = �� (since, under the null,  = 0). Hence we can write a = �(�� �). Substituting
this result into (21) we get

�Re = �(�� �+ �f) + ��:

De�ning �� � ( 0 ��
0
)0 we can then write this as

�Re = X�� +��

= X̂�� +��� (X̂ �X)��: (25)

Premultiplying (25) by Â we get

�̂ = �� + Â[��� (X̂ �X)��];

so that
�̂ � �� = Â[��� (X̂ �X)��]:

Now

�̂ � � = (�̂ � ��) + (�� � �)

= Â[��� (X̂ �X)��] +
�

0
�f � �

�
:

The �f�� term in uncorrelated with the ���(X̂�X)�� term following arguments in Shanken�s
(1992) Lemma 1. And we can rewrite the term in brackets as ��� (In 
 ��

0
)(X̂v �Xv). Since

plim �� = � and plim Â = A = (X 0X)�1X 0 this means that the asymptotic variance ofp
T (�̂ � �) is


�̂ = A[� + (In 
 �
0) (�
 �) (In 
 �)]A0 + ~�f :

Using the rules for Kronecker products this reduces to


�̂ = (1 + �
0��)A�A0 + ~�f ;

but because of the form of � it can also be written as


�̂ = (1 + �
0��1f �)A�A

0 + ~�f :

The pricing errors are

û = �Re � X̂�̂ =
h
I � X̂(X̂ 0X̂)�1X̂ 0

i
�Re =MX̂

�Re

= MX̂

h
X̂�� +��� (X̂ �X)��

i
= MX̂

h
��� (X̂ �X)��

i
Hence the asymptotic covariance matrix of

p
T û is


û = (1 + �
0��1f �)MX�MX :
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Since 
û has rank n � k � 1, C = T û0
�1û û must be computed using a generalized inverse,
and C is distributed �2 with n� k � 1 degrees of freedom.
As suggested in the text, the constant should really be considered part of the pricing error.

As such, its signi�cance could be tested alone, as it is the �rst element of �̂. Alternatively
one might also consider a reformulated �2 test based on

�̂ = �Re � �̂�̂ = û+ ̂:

Letting

P =

�
0 0
0 Ik

�
we have

�̂ = �Re � X̂P �̂ =
h
I � X̂P (X̂ 0X̂)�1X̂ 0

i
�Re = Ĥ �Re

= Ĥ
h
X̂�� +��� (X̂ �X)��

i
= Ĥ

h
��� (X̂ �X)��

i
:

Therefore the asymptotic covariance matrix of
p
T �̂ is


�̂ = (1 + �
0��1f �)H�H

0:

As in the other cases, this means that a test statistic can be formed as C = T �̂0
�1�̂ �̂. It will
be distributed �2n�k since 
�̂ is of rank n � k and the covariance matrix must be inverted
using a generalized inverse.

7.1.3 GMM Standard Errors (Betas are Estimated)

Without a Constant The model is estimated by exploiting the moment restrictions
E(Reit � ai � �0ift) = 0, E[(Reit � ai � �0ift)f 0t ] = 0, and E(Reit � �0i�) = 0, i = 1, : : : ,
n. Let ~ft = ( 1 f 0t )

0, ~�i = ( ai �0i )
0 and

� =

0BBBBB@
~�1
~�2
...
~�n
�

1CCCCCA :

De�ne the n(k + 2)� 1 vector

ut(�) =

0BBBB@
~ft(R

e
1t � ~f 0t

~�1)
~ft(R

e
2t � ~f 0t

~�2)
� � �

~ft(R
e
nt � ~f 0t

~�n)
Ret � ��

1CCCCA ;
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the n(k + 2)� 1 vector gT (�) = 1
T

PT
t=1 ut(�), and the [n(k + 1) + k]� [n(k + 2)� 1] matrix

aT =

�
In(k+1) 0

0 �̂
0
OLS

�
:

The GMM estimator that sets aTgT = 0 reproduces the two-pass estimates of a, �, and �.
De�ne

dT =
@gT (�)

@�0
=

 
�In 
M ~f 0n(k+1)�k

�In 

�
0 �̂

0
�

��̂OLS

!
where M ~f =

1
T

PT
t=1

~ft ~f
0
t .

Let a = plim aT and d = plim dT . The covariance matrix of
p
T (�̂ � �) is

V� = (ad)
�1aSa0

�
(ad)�1

�0
and the covariance matrix of

p
TgT (�̂) is

Vg = [I � d(ad)�1a]S[I � d(ad)�1a]0

where S is the asymptotic covariance matrix of
p
TgT (�). These results follow from the

facts that
p
T (�̂ � �) d�! (ad)�1a

p
TgT (�) and

p
TgT (�̂)

d�! [I � d(ad)�1a]
p
TgT (�). The

test statistic for the pricing errors is just TgT (�̂)0V �1g gT (�̂), where the inverse is generalized.
Since S =

P1
j=�1E(utu

0
t�j), I use a variant of a VARHAC estimator for S: due to limited

sample size I only allow lags of an error to enter into the VAR equation for that error.

With a Constant The model is estimated by exploiting the moment restrictions E(Reit�
ai � �0ift) = 0, E[(Reit � ai � �0ift)f 0t ] = 0, and E(Reit �  � �0i�) = 0, i = 1, : : : , n. Now let

� =

0BBBBBBB@

~�1
~�2
...
~�n

�

1CCCCCCCA
:

De�ne the n(k + 2)� 1 vector

ut(�) =

0BBBB@
~ft(R

e
1t � ~f 0t

~�1)
~ft(R

e
2t � ~f 0t

~�2)
� � �

~ft(R
e
nt � ~f 0t

~�n)
Ret �  � ��

1CCCCA ;
the n(k + 2)� 1 vector gT (�) = 1

T

PT
t=1 ut(�);and the (n+ 1)(k + 1)� [n(k + 2)� 1] matrix

aT =

�
In(k+1) 0

0 X̂ 0

�
:
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where X̂ = ( �n�1 �̂OLS ). The GMM estimator that sets aTgT = 0 reproduces the two-pass
estimates of a, �,  and �. De�ne

dT =
@gT (�)

@�0
=

 
�In 
M ~f 0n(k+1)�(k+1)

�In 

�
0 �̂

0
�

�X̂

!
:

Let a = plim aT and d = plim dT . The covariance matrix of
p
T (�̂ � �) is

V� = (ad)
�1aSa0

�
(ad)�1

�0
and the covariance matrix of

p
TgT (�̂) is

Vg = [I � d(ad)�1a]S[I � d(ad)�1a]0

where S is the asymptotic covariance matrix of
p
TgT (�). These results follow from the facts

that
p
T (�̂ � �) d�! (ad)�1a

p
TgT (�) and

p
TgT (�̂)

d�! [I � d(ad)�1a]
p
TgT (�). The test

statistic for the pricing errors is just TgT (�̂)0V �1g gT (�̂), where the inverse is generalized. A
test of the pricing errors inclusive of the contest can be derived from the joint distribution
of
p
T (�̂ � �) and

p
TgT (�̂). Since S =

P1
j=�1E(utu

0
t�j), I use a variant of a VARHAC

estimator for S. Due to limited sample size I only allow lags of an error to enter into the
VAR equation for that error.

7.2 Direct GMM Estimation of the Model

7.2.1 Model without a Constant

Asympotic Theory Let

u1t(b; �) = Ret [1� (ft � �)0b] (26)

g1T (b; �) = T�1
TX
t=1

u1t(b; �) = �Re(1 + �0b)�DT b: (27)

where DT = T
�1PT

t=1R
e
tf
0
t and �R

e = T�1
PT

t=1R
e
t . Also de�ne

u2t(�) = ft � � (28)

g2T (�) = T�1
TX
t=1

u2t(�) = �f � �: (29)

Finally, de�ne the stacked vectors

ut(b; �) =

�
u1t(b; �)
u2t(�)

�
gT (b; �) =

�
g1T (b; �)
g2T (�)

�
and the matrix

S = E[
1X

j=�1
ut(b0; �0)ut�j(b0; �0)

0]:
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The parameters b and � are estimated by setting aTgT = 0, where

aT =

�
(DT � �Re�0)0WT 0

0 Ik

�
;

andWT is some weighting matrix. Given the de�nition of gT this means the GMM estimator
is the solution to�

(DT � �Re�0)0WT 0
0 Ik

��
�Re(1 + �0b)�DT b

�f � �

�
=

�
0
0

�
(30)

implying that

�̂ = �f (31)

b̂ = (d0TWTdT )
�1
d0TWT

�Re; (32)

where dT = DT � �Re �f 0.
In the �rst stage the weighting matrix is WT = In. In the second stage, Lustig and

Verdelhan follow Cochrane (2005) and set

WT =

"
T�1

TX
t=1

u1t(b̂; �̂)u1t(b̂; �̂)
0

#�1
(33)

where b̂ = (d0TdT )
�1 d0T

�Re and �̂ = �f are the �rst stage estimates of the parameters. In this
case

plimWT = W = S�111 where S11 = E[u1t(b0; �0)u1t(b0; �0)
0]:

Given (32), plim b̂ = b0. This follows from the fact that plim dT = d � E[Ret (ft��)0] and
that plim �Re = E(Re). We then get plim b̂ = (d0Wd)�1 d0WE(Re). The model implies that
E(Re) = db0. Hence plim b̂ = b0. So the �rst and second stage estimates of b are obviously
consistent.
The derivation of the asymptotic distribution of (b̂; �̂) relies on deriving the distance

between gT (b̂; �̂) and gT (b0; �0). Using (27) and the consistency of b̂ and �̂ we can argue that
there is a pair (�b; ��) between (b0; �0) and (b̂; �̂) such that

g1T (b̂; �̂) = g1T (b0; �0) +
�
�Re��0 �DT

�
(b̂� b0) + �Re�b0(�̂� �0): (34)

From (29) we also have
g2T (�̂) = g2T (�0)� (�̂� �0): (35)

Premultiplying (34) by d0TWT one obtains

0 = d0TWTg1T (b̂; �̂) = d
0
TWT [g1T (b0; �0) +

�
�Re��0 �DT

�
(b̂� b0) + �Re�b0(�̂� �0)] (36)

We can rewrite (35) and (36) together as

0 = âT

�
gT (b0; �0)��T

�
b̂� b0
�̂� �0

��
: (37)
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where

âT =

�
d0TWT 0
0 Ik

�
�T =

� �
DT � �Re��0

�
� �Re�b0

0 Ik

�
:

We have plim âT = a and plim�T = � where

a =

�
d0W 0
0 Ik

�
� =

�
d �db0b00
0 Ik

�
;

and I have used the fact that plim �Re = E(Re) = db0. Hence

p
T

�
b̂� b0
�̂� �0

�
d!
�
(d0Wd)�1 b0b

0
0

0 Ik

��
d0W 0
0 Ik

�p
TgT (b0; �0):

Thus we have
p
T (b̂� b0)

d!
�
(d0Wd)�1 d0W b0b

0
0

�p
TgT (b0; �0) = B

p
TgT (b0; �0)

p
T (�̂� �0)

d!
�
0 Ik

�p
TgT (b0; �0) =

p
Tg2T (b0; �0)

and the asymptotic covariance matrix of
p
T (b̂� b0) is

Vb = BSB
0: (38)

The fact that � is estimated a¤ects Vb. If � was known the covariance matrix would reduce
to (d0Wd)�1 d0WS11Wd (d0Wd)

�1.
To get a test of the pricing errors, Cochrane (2005) follows Hansen (1982) in showing

that the asymptotic distribution of
p
TgT (b̂; �̂) is normal with covariance matrix

[I ��(a�)�1a]S[I � a0(a�)�1�0]:

Some algebra shows that this implies that
p
Tg1T (b̂; �̂) is normal with covariance matrix

V0 = [I � d (d0Wd)�1 d0W ]S11[I �Wd (d0Wd)�1 d0]:

This is the same expression as one obtains when � is known. Since the test of the pricing
errors is obtained as Tg1T (b̂; �̂)0V �1T g1T (b̂; �̂), where the inverse is generalized, and VT is
a consistent estimate of V0, the fact that � is estimated has no e¤ect on the statistic as
compared to the case where � is treated as known.

Factor Risk Premia The GMM estimator produces estimates of b and �. To obtain an
estimate of � we can use the expression � = �fb. This requires estimation of �f . This can
be done by adding moment conditions that identify the unique elements of �f :

E[(fit � �i)
�
fjt � �j

�
� �f;ij], i = 1; : : : ; k; j = i; : : : ; k: (39)

The estimate �̂f then corresponds to the sample covariance matrix of ft. Of course, standard
errors for �̂ should take into account estimation of �f .
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Equivalence Between the First Stage of GMM and the Two-Pass Procedure The
�rst stage estimate of b based onW = In is b̂ = (d0TdT )

�1 d0T
�Re. The matrix dT is the sample

covariance between Rt and ft. Hence �̂ = dT �̂�1f , where �̂f is the sample covariance of the

risk factors. Therefore dT = �̂�̂f and b̂ = (�̂f �̂
0
�̂�̂f )

�1�̂f �̂
0 �Re = �̂�1f �̂. Since �̂GMM � �̂f b̂,

�̂GMM = �̂ from the two-pass procedure.

VARHAC Spectral Density Matrix Since S =
P1

j=�1E(utu
0
t�j), I estimate it as

follows. De�ne u1t and u2t as in (26) and (28). I use a VARHAC estimator for S, imposing
the restriction that Eu1tu0t�j = 0 for j � 1. This means that the VARHAC estimator for
S11, the sub-block of S equal to

P1
j=�1E(u1tu

0
1t�j), is the same as the HAC estimator for

S11. But this is not true for the S12, S21 and S22 sub-blocks. In practice, the VARHAC
procedure typically �nds persistence in some elements of u2t because these are the GMM
errors corresponding to ft � �̂. Since some of the risk factors are persistent it is important
to allow for this possibility, which is not ruled out by theory.

Equivalence of the Pricing Error Test at the First and Second Stages of GMM
At the �rst stage of GMM we have

b̂1 = (d
0
TdT )

�1
d0T
�Re

so the pricing errors are �̂1 = �Re � dT b̂1 = Md
�Re where Md = I � dT (d0TdT )

�1 d0T . The
estimated covariance matrix of �̂1 is VT =MdŜ11Md, so the test statistic is

T
�
�Re
�0
Md(MdŜ11Md)

�1Md
�Re

where the inverse is generalized.
At the second stage of GMM we have

b̂2 = (d
0
TWTdT )

�1
d0TWT

�Re

so the pricing errors are �̂2 = �Re�dT b̂2 =MW
�Re whereMW = [I�dT (d0TWTdT )

�1 d0TWT ] �R
e.

The estimated covariance matrix of �̂2 is VT =MW Ŝ11M
0
W so the test statistic is

T
�
�Re
�0
M 0
W (MW Ŝ11M

0
W )

�1MW
�Re:

Because Md(MdŜ11Md)
�1Md = M

0
W (MW Ŝ11M

0
W )

�1MW , when W = Ŝ�111 , the two statistics
are the same.

7.2.2 Model with a Constant

Asympotic Theory Let

u1t(b; �; ) = �Ret [1� (ft � �)0b]�  (40)

g1T (b; �; ) = T�1
TX
t=1

u1t(b; �; ) = �Re(1 + ��0�b)� �DT
�b: (41)

35



where �b = (  b0 )0, �� = ( 0 �0 )0 and �DT = ( �n�1 DT ).
De�ne u2t and g2T as in (28) and (29). De�ne the stacked vectors

ut(b; �; ) =

�
u1t(b; �; )
u2t(�)

�
gT (b; �; ) =

�
g1T (b; �; )
g2T (�)

�
and the matrix

S = E[

1X
j=�1

ut(b0; �0; 0)ut�j(b0; �0; 0)
0]:

The parameters �b and � are estimated by setting aTgT = 0, where

aT =

�
( �DT � �Re��0)0WT 0

0 Ik

�
;

andWT is some weighting matrix. Given the de�nition of gT this means the GMM estimator
is the solution to�

( �DT � �Re��0)0WT 0
0 Ik

��
�Re(1 + ��0�b)� �DT

�b
�f � �

�
=

�
0
0

�
(42)

implying that

�̂ = �f (43)b�b =
�
�d0TWT

�dT
��1 �d0TWT

�Re; (44)

where �dT = �DT � �Reb��0 = ( �n�1 DT )� �R( 0 �f 0 ) = ( �n�1 dT ).
The �rst and second stage estimates are calculated as in the case with the constant. In

the �rst stage WT = In. In the second stage, WT is the inverse of a consistent estimator for
S11 = E[u1t(b0; �0; 0)u1t(b0; �0; 0)

0].

Equivalence Between the First Stage of GMM and the Two-Pass Procedure
The �rst stage estimate of �b based on W = In is b�b = �

�d0T
�dT
��1 �d0T �Re. The matrix �dT =

( �n�1 dT ), which can be rewritten as �dT = ( �n�1 �̂�̂f ). Hence

b�b =

 
�0� �0�̂�̂f

�̂f �̂
0
� �̂f �̂

0
�̂�̂f

!=1�
�0 �Re

�̂f �̂
0 �Re

�

=

"�
1 0

0 �̂f

� 
�0� �0�̂

�̂
0
� �̂

0
�̂

!�
1 0

0 �̂f

�#�1�
�0 �Re

�̂f �̂
0 �Re

�

=

�
1 0

0 �̂�1f

� 
�0� �0�̂

�̂
0
� �̂

0
�̂

!�1�
�0 �Re

�̂
0 �Re

�
:

The two-step estimator of  and � is�
̂

�̂

�
=

 
�0� �0�̂

�̂
0
� �̂

0
�̂

!�1�
�0 �Re

�̂
0 �Re

�
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Hence b�b = � 1 0

0 �̂�1f

��
̂

�̂

�
=

�
̂

�̂�1f �̂

�
:

So the GMM estimator of  is identical to the two-step estimator of . Also �̂GMM � �̂f b̂,
�̂GMM = �̂ from the two-pass procedure.

7.3 Accounting for Di¤erences in Results

Some of my results di¤er from Lustig and Verdelhan�s. I discuss each of these di¤erences in
turn and in the order they appear in the tables.

7.3.1 Table 3(a), OLS Case

There is only one di¤erence here. The p-value on the test statistic for the pricing errors
when the constant is included in the model�s predicted mean returns. In their Table 14,
Lustig and Verdelhan report a p-value of 0:628, while I report a p-value of 0:483. The test
statistic is 3:4666. When a constant is included in the model, the covariance matrix of the
error vector has rank n� k � 1 = 4. The p-value for a statistic of 3:4666, with 4 degrees of
freedom is 0:483. If one incorrectly uses the n� k = 5 as the degrees of freedom for the test,
one obtains Lustig and Verdelhan�s p-value, 0:628.

7.3.2 Table 3(a), Shanken Case

The numbers here that directly correspond to numbers given in Lustig and Verdelhan�s
paper are the Shanken standard errors for the model with a constant, which they report in
their Table 14. For consumption growth, durables growth and the market return, I report
standard errors of 2:11, 2:42 and 18:8. They report slightly larger standard errors: 2:15, 2:52
and 19:8. I believe that this may be due to them using the formula [1+(�0��1f �)](A�A

0+~�f )

in computing the standard errors instead of [1 + (�0��1f �)]A�A
0 + ~�f (the meaning of these

expressions is explained in a previous section of the appendix). When I use the incorrect
formula, I reproduce their standard errors to within one decimal place.

7.3.3 Mapping from b to the Structural Parameters

As reported in the main text the structural parameters in the model map to the bs according
to

b1 = �(1=� + �(1=�� 1=�)) (45)

b2 = ��(1=� � 1=�) (46)

b3 = 1� � (47)

where � = (1� )=(1� 1=�). This corresponds to equation (19) is Yogo (2006).
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Given estimates of the bs, Yogo�s approach is to set a value for � and then solve the
three equations above for �,  and �. The solutions Yogo (2006) states in his paper near
the bottom of page 557 are

� =
1� b3
b1 + b3

(48)

 = b1 + b2 + b3 (49)

� =
b2

b1 + b2 + (b3 � 1) =�
: (50)

The expression for � (48) is wrong and should be:

� =
1� b3
b1 + b2

(51)

With bc = �21:0, bd = 130 and br = 4:46 I obtain � = �0:032 using (51). Using the
incorrect formula in (48) gives � = 0:21, as in Lustig and Verdelhan�s paper. This error does
not a¤ect values of structural parameters given in Yogo (2006), as the error appears to only
be in the text, not in calculations.

7.3.4 Table 4(b)

Table 4(b) presents estimates obtained using GMM. Lustig and Verdelhan�s second stage
results (which are presented in their Table 14). The point estimates in my table are the
same as theirs, but the HAC standard errors are slightly di¤erent than theirs. I believe that
this di¤erence may be due to them using an incorrect expression for the standard errors
which ignores the sampling uncertainty due to � being estimated.
When �0 is known, the expression in (38) is simpler, and reduces to

Vk = (d
0Wd)

�1
d0WS11Wd (d

0Wd)
�1
: (52)

In the second stage of GMM W0 = S
�1
11 so (52) reduces to

Vk =
�
d0S�111 d

��1
: (53)

I believe that Lustig and Verdelhan base their GMM standard errors on (53). However, this
is inappropriate when �0 must be estimated. This is because Vb, given in (38), does not
reduce to Vk unless b0 = 0 or �0 is known. This problem does not bias the standard errors
sharply in a consistent direction, and the di¤erences it induces are small.
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