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1 Introduction

This paper characterizes the relationship between consumption and income variability in a class

of private information models with asset accumulation and uses this characterization to derive

some of their empirical implications. Interest in these models is partly motivated by the empirical

rejection of simpler approaches, including the hypothesis of complete insurance markets and models

where the only insurance available to agents is self insurance, such as simple versions of the life

cycle/ permanent income hypothesis. Our approach enables us to interpret some of the results in

the literature (and those we present below) as providing evidence on the market structure facing

economic agents. Interestingly, we are able to do so without having to specify the information set

available to economic agents.

The complete insurance hypothesis is soundly rejected by the data (e.g. Attanasio and Davis,

1996). A commonly used alternative is to assume that markets are exogenously incomplete. For

example, the Bewley model embeds a version of the permanent income model in a market structure

where the only mechanism available to agents to smooth consumption is through personal savings

(and borrowing), possibly with a single asset. Intertemporal trades can be further limited by the

impossibility of borrowing beyond a certain level, possibly zero.1 In between the two extremes of

complete markets and very limited and exogenously given intertemporal trade opportunities there

are other possibilities were individuals have access to some state contingent mechanisms that provide

insurance over and above the `self insurance' considered in the Bewley model. These intermediate

cases include models where the intertemporal markets available to agents are exogenously given

and models were the market structure arises endogenously from speci�c imperfections, such as the

lack of contracts enforceability or private information. The model we propose belongs to this latter

set. In particular, we focus on settings with private information problems.

In a life-cycle model (or in a Permanent Income model with in�nite horizon), consumption

levels are pinned down by two sets of equations. A set of intertemporal Euler equations, which

relate expected changes in consumption over time to intertemporal prices, and an intertemporal

budget constraint. The former equations are valid under a variety of circumstances: in particular,

one does not need to specify the complete set of assets (contingent and not) that are available to a

consumer. As long as one considers an asset for which the consumer is not at a corner, then there

is an Euler equation holding for that particular asset, regardless of what the consumer is doing in

other markets. Moreover, the orthogonality restrictions implied by an Euler equation would also

1Whether these constraints are ever binding depends on the properties of the income process and, in particular,

on its support.
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hold if one were to mis-specify the information set available to agents. As long as the agents know

more than the econometrician, by the law of iterated expectations, the Euler equation hold even

with coarser information sets.

The robustness of the Euler equation is a big advantage from an empirical point of view. Starting

with Hall (1978), many authors have focused on the orthogonality restrictions implied by the Euler

equation for consumption that can be derived from a consumer maximization problem. With

this approach one can be agnostic about many aspects of the environment in which the consumer

operates and even on the information set available to agents. While the level of consumption might

depend in an unknown way on expectations of future income and other unobservable quantities,

the Euler equation does not need a closed form solution for consumption and exploits the fact that

changes in marginal utility and, under some functional form assumptions, (log) consumption, should

be unpredictable and, in particular, should not be related to predictable changes in income. Many

authors reported violations of the orthogonality restrictions that take the form of `excess sensitivity'

of consumption growth to expected changes in income and interpreted this as evidence of restrictions

to intertemporal trades or liquidity constraints. Other authors (see Attanasio 2000 for a survey

and a discussion), instead, have argued that the so-called excess sensitivity of consumption is not

necessary due to binding liquidity constraints and can be for explained away by non-separability

between leisure and consumption, demographic e�ects and aggregation problems.

A di�erent approach to the empirical implications of the life cycle model is to focus on the

level of consumption and on its relationship with income. Flavin (1981), for instance, explored

the cross equation restrictions imposed on the VAR representation of consumption and income

by the PIH. Campbell (1987), in a related contribution, shows that savings should be predicting

subsequent declines in labour income. To derive these restrictions one uses both the Euler equation

and the intertemporal budget constraint. Campbell and Deaton (1989), using a similar approach,

pointed out that consumption seems to be `excessively smooth' to be consistent with the PIH: that

is consumption does not seem to react `enough' to permanent innovation to income. If one assumes

that consumers have only access to an asset with a speci�ed interest rate to borrow and save, then,

Campbell and Deaton (1989), show how excess sensitivity and excess smoothness can be related

and, conditional on the intertemporal budget constraint holding, are essentially equivalent.

However, we can have situations where the Euler equation for a given asset is not violated and

yet, an intertemporal budget constraint where that asset is the only one available to the agent is

violated as one neglects all the other (possibly state contingent) assets available to the consumer.

And this violation of the IBC can be such as to imply `excess smoothness' of consumption.
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In this paper, we show how a model where risk is shared imperfectly because of moral hazard

can generate `excess smoothness' in the absence of `excess sensitivity'. In particular, consumption

will not exhibit excess sensitivity but, because of the additional insurance provided to consumers

relative to a Bewley economy, gives rise to 'excess smoothness' in the sense of Campbell and Deaton.

We can therefore distinguish sharply between `excess sensitivity' and `excess smoothness'.

We start by developing a common theoretical framework that allow us to compare two dy-

namic asymmetric information models with asset accumulation that virtually exhaust the existing

literature on dynamic contracting: the hidden income (adverse selection) model and the action

moral hazard framework. Moreover, we crucially assume that agents have secret (or non con-

tractible) access to credit market. Within this framework with hidden asset accumulation, Allen

(1985) and Cole and Kocherlakota (2001) (ACK) show that in the pure adverse selection model

the optimal allocation of consumption coincides with the one the agents would get by insuring

themselves through borrowing and lending at a given interest rate. Abraham and Pavoni (2004)

(AP), in contrast show that, in the action moral hazard model, the e�cient allocation of consump-

tion generically di�ers from that arising from self insurance.2 Our empirical strategy exploits this

marked discrepancy between the two allocations under hidden assets to disentangle the nature of

the information imperfection most relevant in reality.

The fact that individual consumption satis�es an Euler equation is a key distinguishing feature of

models with hidden assets respect to models of asymmetric information where the social planner has

information on assets and, e�ectively, controls intertemporal trades (Rogerson, 1985; and Ligon,

1998). Because of incentive compatibility on saving decisions, both in ACK and AP, the time

series of individual consumption satis�es the usual Euler equation. This implies that, in both

models, conditional on the past marginal utility of consumption, the current marginal utility of

consumption should not react to predictable changes in variables known to the consumer and

therefore to predictable changes in income.

The di�erence between the two models arises in terms of the degree of insurance agents can

achieve. In ACK, agents cannot insure more than in a standard PIH model with a single asset. In

AP, agents can get some additional insurance. This additional insurance, while still maintaining

the Euler equation, can only be achieved by violating the intertemporal budget constraint with a

single asset. Another way of saying the same thing, is that the allocations in AP are equivalent to

those that would occur if the agents had access to a certain set of state contingent trades, rather

2AP also show that, in its general formulation, the action moral hazard model actually nests the ACK model of

adverse selection. This is at the essence of the common framework we propose here.
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than only to a single asset with a �xed interest rate. Or, if one prefers the metaphor of the social

planner, to get the standard PIH results, one should be considering income net of transfers received

from the planner, rather than the standard income concept used in the PIH literature.

In the single asset version of the self-insurance/ACK model consumption moves one to one

with permanent income. Hence, it should fully react to unexpected shocks to permanent income.3

In terms of Campbell and Deaton (1989), consumption should not display excess smoothness.

Since in the AP model consumers obtain some additional insurance relative to what they get by

self insuring with saving, consumption moves only partially to innovations to permanent income,

therefore exhibiting excess smoothness. In a situation in which `excess sensitivity tests' do not

reject the martingale hypothesis for the marginal utility of consumption, we can interpret the

`excess smoothness' test as providing evidence on the market available to consumers. A failure to

reject the null would constitute evidence in favour of the ACK or PIH model, while evidence of

excess smoothness would be consistent with the model we present.

While in what follows we give some general results, we also present two speci�cations of the

model (one with quadratic preferences, another with logarithmic utility) that allow the derivation

of closed form solution for consumption. These are useful because the magnitude of the excess

smoothness of consumption can be directly related to the degree of control the agent has on public

outcomes i.e., to the degree of private information the agent has (as measured by a single parame-

ter). Related to this set of issues, we also discuss how the model can be used to provide a structural

interpretation of recent empirical evidence of Blundell et al. (2004).

As our approach stresses the distinction between the orthogonality restrictions of the Euler

equation and the intertemporal budget constraint, in the empirical section of this paper, we use the

test of intertemporal budget constraints proposed by Hansen, Roberds and Sargent (1991) (HRS

from now on). HRS show that when (the marginal utility of) consumption follows a martingale, the

intertemporal budget constraint does impose testable restrictions on the time series properties of

consumption and income. The type of test HRS derive is related to those derived by West (1988),

Deaton and Campbell (1989) and Gali (1991). These papers interpret violations of their test as a

rejection of the life cycle/permanent income model, as they always take the intertemporal budget

constraint as given. A contribution of this paper, in addition to apply the test to micro data, is to

point out that the endogenously determined amount of risk sharing that can be observed in the

3When the agent has quadratic utility this result holds exactly for the onsumption and income in levels. If

agent's utility is isoelastic the same implication can be derived for consumption and income in logs, using standard

approximations (e.g., Deaton, 1992)
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presence of moral hazard and hidden assets might imply a process for consumption that is smoother

than the one that would arise in a Bewley economy and could manifest itself in a violation of the

intertemporal budget constraint with a single asset. In other words, we show how to interpret a test

of an intertemporal budget constraint as a test of a market structure, and under what conditions

excess smoothness of consumption can be interpreted as risk sharing across individuals. In this

sense, in this paper we also provide a new measure of the risk sharing available if the economy.

An important feature of our test is that it shares with the HRS and West tests the fact that

it is robust to some mis-speci�cations of the agents' information sets. In particular, we only

need to assume that the information set the agents have and use is not smaller than that of the

econometrician. In other terms, we can allow agents to have an informational advantage over the

econometrician. We therefore have a test of market structures that is robust to mis-speci�cation of

the agents' information sets. As we will explain more in detail in the main body of the paper, the

Euler equation (whose validity is a unique feature of our model among the models of asymmetric

information previously proposed in the empirical literature) play a essential role in the identi�cation

of some of the information set available to the agent. Following HRS we are then able to test the

validity of the intertemporal budget constraint along this dimension.

In addition to the HRS test, we also pursue an alternative approach based on the dynamics

of cross sectional variances of consumption and income. This approach is somewhat related to

that in Deaton and Paxson (1994), Attanasio and Jappelli (2001), Attanasio and Szekely (2004)

and Blundell, Pistaferri and Preston (2004). However, our approach, is derived directly from the

equation from consumption levels rather than consumption changes. Moreover, as in the case of the

evidence based on the HRS test, we can give a structural interpretation to the estimated coe�cients

of our regression, related to the importance of the moral hazard model.

Our tests are based on the identi�cation of certain time series properties of the cross sectional

moments (means and variances) of (the marginal utility of) consumption. For this reason, we need

long time series. In the absence of su�ciently long longitudinal data on consumption, we have

to use synthetic panels derived from long time series of cross section. In such a situation the two

approaches we propose are strongly complementary as one focuses on insurance across groups while

the other focuses on within group risk sharing.

To perform the empirical test we propose we use synthetic cohort data constructed from the

UK Family Expenditure Survey (FES). With this pseudo panel of cohort aggregated data on con-

sumption and income we estimate the parameters of a time series model for individual income and

consumption processes that can be used to perform the test proposed by HRS. We also estimate
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the relationship between the dynamics of consumption and income cross sectional variances. Using

both approaches we �nd evidence that is consistent with the model we describe in what follows.

The rest of the paper is organized as follows. In section 2, we present the building blocks of our

model. In section 3, we discuss alternative market structures: complete markets, a Bewley economy

and two di�erent forms of endogenously incomplete markets, with observable and unobservable

assets. In Section 4 we characterizes the equilibria in the di�erent market environments and present

some examples that yield interesting closed form solutions. In Section 5, we discuss the empirical

implications of the equilibria we considered in Section 4. In Section 6, after brie
y presenting the

data we use, we describe our two empirical approaches and report the results we obtain with each

of them. Section 7 concludes the paper. The two appendices contain most of the proofs of the

results stated in the text.

2 Model: Tastes and technology

Consider an economy consisting of a large number of agents that are ex-ante identical, and who

each live T � 1 periods. The individual income (neglecting individual indexes for notational ease)

follows the process:

yt = xt + �t

where xt and �t summarize respectively the permanent and temporary components of income shocks.

We allow for moral hazard problems to the innovations to income. We assume that each agent is

endowed with a private stochastic production technology which takes the following form:

xt = f(�t; et): (1)

That is, the individual income shock xt 2 X can be a�ected by the agent's e�ort level et 2 E � <
and the shock �t 2 � � < which, consistently with previous empirical studies,4 is assumed to follow
a martingale process of the form

�t = �t�1 + v
p
t :

The i:i:d shock vpt can be interpreted as a permanent shock on agent's skill level. In each period, the

e�ort et is taken after having observed the shock �t: The function f is assumed to be continuous,

and increasing in both arguments. Both the e�ort e and the shocks � (hence �) will be considered

private information, while xt is publicly observable. Similarly, we assume �t = g
�
vTt ; lt

�
where

4See, for example, Abowd and Card (1989), and Meghir and Pistaferri (2004).
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vTt is a iid shock
5 only observable by the individual, lt is private e�ort (which is taken after the

realization of vTt ), and �t is publicly observable.

Below, we provide a closed form where optimal e�ort is time constant, delivering an equilibrium

individual income process of the form:

yt = yt�1 + v
p
t +�v

T
t :

This characterization of the income process is reasonably general and in line with the perma-

nent/transitory representation of income often used in permanent income models. For expositional

simplicity, below we focus on moral hazard problems in the innovation to permanent income. We

hence assume g � 0 and normalize lt to zero. Later on, we will consider the general case.
The history of income up to period t will be denoted by xt = (x1; :::; xt); while the agent's

private history of shocks is �t = (�1; :::; �t):

Agents are born with no wealth, have von Neumann-Morgenstern preferences, and rank deter-

ministic sequences according to
TX
t=1

�t�1 u (ct; et) ;

with ct 2 C and � 2 (0; 1) : We assume u to be real valued, continuous, strictly concave, and

smooth. Moreover, we require u to be strictly increasing in c and decreasing in e. Notice that,

given a plan for e�ort levels there is a deterministic and one-to-one mapping between histories of

the private shocks �t and xt; as a consequence we are entitled to use �t alone. Denote by �t the

probability measure on �t and assume that the law of large numbers applies so that �t (A) is also

the fraction of agents with histories �t 2 A at time t.
Since �t are unobservable, we make use of the revelation principle and de�ne a reporting strategy

� = f�tgTt=1 as a sequence of �t-measurable functions such that �t : �t ! � and �t(�
t) = �̂t for

some �̂t 2 �: A truthful reporting strategy �� is such that ��t (�t) = �t a.s. for all �t: Let � be the set

of all possible reporting strategies. A reporting strategy essentially generates publicly observable

histories according to ht = �
�
�t
�
=
�
�1 (�1) ; :::; �t

�
�t
��
; with ht = �t when � = ��:

An allocation (�; c; x) consists in a triplet fet; ct;xtgTt=1 of �t-measurable functions for e�ort,
consumption and income growths (production) such that they are `technically' attainable


 =
n
(�; c; x) : 8 t � 1; �t; et(�t) 2 E; ct(�t) 2 C and xt(�

t) = f
�
�t; et(�

t)
�o

:

The idea behind this notation is that incentive compatibility will guarantee that the agent

announces truthfully his endowments (i.e. uses ��) so that in equilibrium private histories are

5We could easily allow for vTt to follow an MA(d) process.
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public information. Resources feasibility implies that by the law of large numbers

E [ct] � E [yt] ; for all t; (2)

where the expectation is taken with respect to the measure �t on �t: Equation (2) pins down

the interest rate in this economy. For simplicity we disregard aggregate shocks, however since we

consider a production economy, the aggregate income level may change with t. We could have

considered alternative set ups: we could have assumed an exogenously given level of the interest

rate (considering a small open economy or a village economy where a money lender has access to

an external market) or even a production economy where savings takes the form of capital.6 For

what we do below, how we close the model in this dimension is not particularly important.

3 Market Arrangements

Having speci�ed agents' tastes and the technological environment they face, to characterize in-

tertemporal allocations we need to specify the market arrangements in which they operate. We

consider three di�erent environments. The �rst two are exogenously given, while in the third the

type of trades that are feasible is derived from the details of the speci�c information imperfection

we consider. The �rst environment we consider is that of complete contingent markets. We then

move on to the opposite extreme and assume that the only asset available to agents is a bond with

certain return. Finally, we consider two types of endogenously incomplete markets where trades

satisfy incentive compatibility constraints.

3.1 Full Information

In the complete market model there is no private information problem. In this economy, the

representative agent solves

max
(�;c;x)2


E

"
TX
t=1

�t�1 u (ct; et)

#
;

s.t.
X
t

Z
�t
pt(�

t)
�
ct(�

t)� yt(�t)
�
d�t � 0; (3)

where pt(�
t) is the (Arrow-Debreu) price of consumption (and income) in state �t; and for all

A � �t; we have
R
A pt(�

t)d�t = q0t �
t(A):7 This is the price at which the agent both buys rights

6For a similar model in a small open economy see Abraham and Pavoni, 2004. For a simple analysis in a closed

economy with capital see Golosov et al., 2003.
7We have hence guessed the `fair price' equilibrium. Under standard conditions such equilibrium always exists

and it is robust to the presence of asymmetric information (e.g., Bisin and Gottardi, 1999). We will disregard all

technical complications associated to the fact that we have allow for a continuum of values for �; and assume that C

and E are such that expectations are always well de�ned.

9



to ct
�
�t
�
units of consumption goods and sells (and commits to supply) yt(�

t) units of the same

good. q0t is the period one price of a bond with maturity t, and q
0
1 = 1: The budget constraint

faced by agents under complete markets makes it clear that they have available a very wide set

of securities whose return is state contingent. This richness in available assets imply that agents'

marginal utilities are equated across histories

u0
�
ct(�

t); et(�
t)
�
= u0 (cs(�

s); es(�
s)) for all t; s and �t; �s: (4)

Since there are no aggregate shocks one can restrict attention to equilibria where q0t are deter-

ministic function of time, and determined so that the resources feasibility conditionZ
�t

�
ct(�

t)� yt(�t)
�
d�t = 0

holds in each period.

3.2 Permanent Income (Self Insurance)

We call permanent income or self-insurance the allocation derived from autarchy by allowing the

agents to participate to a simple credit market. They do not have access to any asset other than

a risk free bond. Let fqtg the sequence of one period bonds prices and b = fbt+1gTt=1 the plan of
asset holding, where bt is a �

t�1�measurable functions. We have

sup
b;(�;c;x)2


E

"
TX
t=1

�t�1 u (ct; et)

#
(5)

subject to

ct(�
t) + qtbt+1(�

t) � bt(�t�1) + yt(�t); (6)

where b0 = 0: As usual we rule out Ponzi games by requiring that limt!T q
0
tbt(�

t) � 0: The

constraint (6) is the budget restriction typically used in Permanent Income models when the agent

has only access to a risk free bond market. For future reference, notice that this problem can be

seen as an extension of the permanent-income model studied by Bewley (1977) which allows for

endogenous labor supply and non stationary income. If one wants to consider, as is often done in

the consumption literature, the case in which the return on the bond is constant (may be because

equation (2) is substituted by an open economy assumption), one can consider equation (6) with a

�xed q; and q0t+1 = (q)
t.8

It is well known that one of the main implications of the self insurance model can be obtained

by considering the following perturbation of the agent's consumption plan: reduce consumption

8Recall indeed that by arbitrage q0t+1 =
Qt

n=1
qn = q

0
t qt:
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in�nitesimally at date t (node �t after et(�
t) has been taken), invest 1

qt
this amount for one period,

then consume the proceeds of the investment at date t+1: If the consumption plan is optimal, this

perturbation must not a�ect the agent's utility level. The �rst-order necessary condition for his

utility not to be a�ected is the Euler equation:

u0c(ct; et) =
�

qt
Et
�
u0c(ct+1; et+1)

�
; (7)

where Et [�] is the conditional expectation operator on future histories given �t:
Another necessary condition that individual intertemporal allocations have to satisfy in this

model can be derived by repeatedly applying the budget constraint (6) starting from any period

t � 1 asset holding level bt we have that almost surely (a.s.) for all histories ��
T emanating from

node ��t�1 the following net present value condition (NPVC) must be satis�ed

TX
n=t

q0n�1
q0t�1

�
cn(��

n)� yn(��n)
�
� bt(��t�1): (8)

Notice that, given the income process and the sequence fqtg equations (7) and (8) de�ne (even
when a closed form solution does not exist), consumption. It is interesting to compare equation (8)

for t = 1 with equation (3). In the complete market case, the agent has available a wide array of

state contingent securities that are linked in an individual budget constraint that sums over time and

across histories, as all trades can be made at time 1. In the permanent income model, the agent has

a single asset. This restriction on trade requires that the net present value on consumption minus

income equals the same bt = bt(��
t�1) for all future histories emanating from node ��t�1: In other

terms the intertemporal transfer technology does not permit cross-subsidizations of consumption

across income histories.

3.3 Endogenously incomplete Markets

We will now consider a series of complete market economies with di�erent assumptions on the

degree of private information.

We have in mind an equilibrium concept �a la Prescott and Townsend (1984a-b) and Kehoe and

Levine (2001). We will therefore use the following de�nition of equilibrium.

De�nition 1 An equilibrium for economy i is an allocation (�; c; x) and a set of prices p =�
pt(�

t)
	T
t=1 such that - given p - the agent maximizes his expected discounted utility subject to

the (Arrow-Debreu) budget constraint, and incentive compatibility constraint ICi, and all markets

clear.
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One might interpret the di�erent degree of asymmetric information as di�erent market arrange-

ments, i.e. as endogenous limitation on the `set' of available assets. It is however important to

notice that all equilibria will be (almost by construction) constrained e�cient. The full information

model can also be seen as a special case of this model, when the incentive compatibility constraints

are not restrictive since e�ort is fully observable. It is easy to see indeed that in this case the only

announcement strategy consistent with (�; c; x) is ��: Below we show that the Permanent Income

allocation can also be generated as the equilibrium outcome of a special case of the moral hazard

model with hidden assets.

We assume that e�ort is not observable. Within this environment with imperfect information

we consider two cases. In the �rst, private assets are observable. This is equivalent to considering a

situation where there are no private assets and all savings are done by the planner. In the second,

instead, private assets are hidden.

3.3.1 Moral Hazard with Monitorable Asset Holdings

Consider the case where each agent has private information on his/her e�ort level e, but there is full

information on consumption and asset decisions, and trade contracts can be made conditional on

these decisions. We de�ne the expected utility from reporting strategy � 2 �; given the allocation
(�; c; x) 2 
 as

E

"
TX
t=1

�t�1u (ct; et) n (�; c; x) ;�
#
=

TX
t=1

�t�1
Z
�t
u
�
ct
�
�(�t)

�
; g
�
�t;xt

�
�(�t)

���
d�t(�t)

where g(x; �) represents the e�ort level needed to generate x when shock is �; i.e., g is the inverse

of f with respect to e keeping �xed �: Since x is observable, the mis-reporting agent must adjust

his/her e�ort level so that the lie is not detected.

The equilibrium allocation solves the following problem for the agent

max
(�;c;x)2


E

"
TX
t=1

�t�1 u (ct; et)

#
;

s.t.
X
t

Z
�t
pt(�

t)
�
ct(�

t)� yt(�t)
�
d�t � 0; (9)

together with the incentive compatibility constraint

E

"
TX
t=1

�t�1 u (ct; et) n (�; c; x) ; ��
#
� E

"
TX
t=1

�t�1 u (ct; et) n (�; c; x) ; �
#

(10)

for all � 2 �: The key di�erence between this problem and that of full information is the incentive

constraint (10), which de�nes the set of allocations for which the agent will be induced to tell the

truth and supplying the e�ort plan �.
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In the additive separable case, u(c; e) = u(c) � v(e);9 the key characteristic of the equilibrium

allocation is summarized by (e.g., Rogerson, 1985; and Golosov et al., 2003)

qtEt

�
1

u0(ct+1)

�
= �

1

u0(ct)
: (11)

In order to relate (11) to the Euler equation (7), notice that the inverse (1=x) is a strictly convex

transformation. As a consequence, Jensen inequality implies

u0(ct) �
�

qt
Et
�
u0(ct+1)

�
;

with strict inequality if ct+1 is not constant with positive probability. That is, the optimality

condition (11) is incompatible with the Euler equation (7). The optimal pure moral hazard contract

tends to front-load transfers, and agents' consumption process behaves as it the agent were saving

constrained. This consideration may play an important role in distinguishing this allocation from

permanent income (see Ligon, 1998; and Section 4.5 below).

3.3.2 Moral Hazard with Hidden Asset Accumulation

Assume now that in addition to the moral hazard problem, agents have hidden access to a simple

credit market and consumption is not observable (and/or contractable). The agents do not have

private access to any other asset market. The equilibrium allocation must solve the following

problem

max
(�;c;x)2


E

"
TX
t=1

�t�1 u (ct; et)

#
;

s.t.
X
t

Z
�t
pt(�

t)
�
ct(�

t)� yt(�t)
�
d�t � 0;

and the incentive compatibility constraint:

E

"
TX
t=1

�t�1 u (ct; et) n (�; c; x) ; ��
#
� E

"
TX
t=1

�t�1 u (ĉt; et) n (�; c; x) ; �
#
for all � 2 �; (12)

where the deviation for consumption ĉ must be such that the new path of consumption can be repli-

cated by a risk free bond, hence satisfy the self insurance budget constraint (6).10 It is straightfor-

ward to see that the incentive constraint (12) (considered at ��) implies that the allocation (�; c; x)

9Will explain below that this property is in fact satis�ed by set of model speci�cations larger than the additive

separable case.
10Formally, for any �; a deviation ĉ� is admissible if there is a plan of bond holdings b̂� such that for all t and a.s.

for all histories �t we have

ĉ�t
�
�t
�
= ct

�
�(�t)

�
+ b̂�t (�

t�1)� qtb̂�t+1(�t); (13)

and limt!T q
0
t b̂

�
t+1(�

t) � 0.
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must satisfy

u0c(ct; et) =
�

qt
Et
�
u0c (ct+1; et+1)

�
; (14)

where the marginal utilities are evaluated at the equilibrium values dictated by (�; c; x) :11 Notice

that condition (14) essentially replicates (7). Clearly the Euler equation is consistent with many

stochastic processes for consumption. In particular it does not says anything about the variance of

ct. For example, the full information model satis�es this conditions as well, and when preferences

are separable ct has zero variance. The key distinguishing feature between this allocation and the

permanent income model is the fact that the former does not satisfy the (NPVC) (8). That is, the

intertemporal budget constraint based on that single asset is violated because it ignores the state

contingent transfers implied by the constrained e�cient equilibrium allocation.

4 Characterizing equilibria

In this section we consider the properties of the di�erent market environments we considered and,

in particular, that of endogenously incomplete markets. We have mentioned that the equilibrium

allocations we consider are constrained Pareto e�cient. This means that the equilibrium allocation

(�; c; x) can be replicated by an incentive compatible plan of lump sum transfers � =
�
� t(�

t)
	T
t=1

that solves the constrained welfare maximization problem of a benevolent social planner who can

transfers resources intertemporally at a rate qt (dictated by the aggregate feasibility constraint).

The optimal transfer scheme � solves

max
�;(�;c;x)2


E

"
TX
t=1

�t�1 u (ct; et)

#

s.t.

ct(�
t) = yt(�

t) + � t(�
t); (15)

the incentive constraint (12), and the planner intertemporal budget constraint

E

"
TX
t=1

q0t �t

#
� 0:

>From condition (15) it is easy to see that the optimal allocation implies that the agents do not

trade intertemporally (bt � 0): This is just a normalization. Alternatively, � could be chosen so that
the transfer �t = � t(�

t) represents the net trade on state contingent assets the agent implements

at each date t node �t. In this case, resources feasibility would require E [�t] = 0. In Appendix A

11This condition is the �rst order equivalent to the incentive constraint that prevents the controls that the agent

is not willing to deviate in assets decisions alone, while contemplating to tell the truth about shock histories �t.
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we show that under some conditions the optimal allocation (�; c; x) can be `implemented' using a

transfer scheme �� which is function of income histories xt alone.12 This will simplify the analysis

and allow us to describe the consumption allocation in terms of observables. At history xt an agent

with asset level bt will face the following budget constraint

ct + qtbt+1 = xt + �
�
t (x

t) + bt:

In what follows, we �rst present a speci�c economy where we get the `Allen-Cole-Kocherlakota'

(ACK) result. As stressed in AP, the crucial restrictions to obtain the `self-insurance' result are

on the way e�ort is converted into output. We then move on to relax these restrictions. Within

the more general case, we consider a speci�c parametrization of the income process that allows us

to obtain a closed form solution for the optimal transfers. While this example is useful because it

gives very sharp predictions, some of the properties of the allocations we discuss generalize to the

more general case and inform our empirical speci�cation.

4.1 The ACK economy as a foundation of the Bewley model

It seems intuitive that our model nests that of Allen (1985). In order to clarify this link and

introduce our closed forms, we derive the ACK result within our framework. Perhaps the analysis

that follows also clari�es further the nature the ACK self-insurance result in terms of a the degree

of asymmetric information in the economy. The following model builds on Allen's.

The �rst speci�cation regards preferences: u (c; e) = u (c� e) : Since consumption and e�ort
enter the utility function in a liner fashion, e�ectively they can be considered as essentially the

same good. The second speci�cation, crucial in order to obtains the self-insurance result, is the use

of a production function which is linear in e�ort and separable in the shock (the linearity in � is

obviously irrelevant)

xt = f (et; �t) = �t + et;

with � = (�1; �max] and E = (�1; emax] : Obviously, in this environment the plan � of e�ort levels
will be indeterminate. We can hence set, without loss of generality, et � 0. This normalization has
two advantages. First, since et does not change with �

t while f(�t; et) is strictly increasing in �t;

all variations in �t will induce variations in xt, automatically guaranteeing the x
t�measurability

of c (see Appendix A). Second, an added bonus of the constant e�ort is that we can focus on the

risk sharing dimension of the optimal allocation. This last argument also motivates the modeling

choice for our closed form solution below.

12In particular, we assume that the optimal plan of consumption c is xt-measurable.
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We now show that, for this speci�cation, incentive compatibility fully characterizes the e�-

cient allocation. Assume T < 1 and consider the last period of the program. Using the budget

constraint, given any history xT�1 we have

u (cT � eT ) = u
�
�T + �

�
T

�
xT�1; xT

�
+ bT

�
= u

�
�T + �

�
T

�
xT�1; �T + eT

�
+ bT

�
:

The key aspect to notice here is that since utility depends on the e�ort choice only through the

transfer, the agent will make to happen the income level xT delivering the maximal transfer. Since

this structure of production allows the agent to obtain any xT from any �T this will always be

possible. In addition, the preferences allow him to do it at no cost. In order to be incentive

compatible, the transfer scheme must hence be invariant across xT 's.
13

Now consider the problem in period T � 1: Taking into account this invariance of �T from xT ,

the incentive compatibility constraint for eT�1 becomes (we set bT�1 = bT = 0 for expositional

simplicity)

u
�
�T�1 + �

�
T�1(x

T�2; xT�1)
�
+ �ET�1u

�
�T + �

�
T (x

T�2; xT�1)
�

� u
�
�T�1 + �

�
T�1

�
xT�2; x̂T�1

��
+ �ET�1u

�
�T + �

�
T

�
xT�2; x̂T�1

��
for all x̂T�1

This constraint says that given xT�2 and �T�1; the planner can only transfer deterministically across

time. When the agent can save and borrow he/she will induce the xT�1 realization generating the

largest T � 1 net present value of transfers. In order to see it more easily assume the transfer
scheme is di�erentiable and write the agent's �rst order conditions with respect to eT�1 evaluated

at e�T = e�T�1 = 0 :

@� �T�1

�
xT�1

�
@xT�1

+ �
@� �T

�
xT
�

@xT�1
ET�1

24 u0 (c�T )

u0
�
c�T�1

�
35 = 0:

Notice that
@��T (x

T )
@xT�1

has been taken out from the expectation operator as we saw that �T is constant

in xT shocks. From the Euler equation - i.e. the incentive constraint for bond holding - we get

ET�1

�
u0(c�T )
u0(c�T�1)

�
=

qT�1
� ; which implies

@� �T�1(x
T�1)

@xT�1
+ qT�1

@� �T (x
T )

@xT�1
= 0:

13Recall that the incentive constraint for e�T = 0 is

u
�
�T + �

�
T

�
xT�1; �T

�
+ bT

�
� u

�
�T + �

�
T

�
xT�1; �T + êT

�
+ bT

�
for all êT 2 E:
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The discounted value of transfer must hence be constant across xT�1 as well, that is, �
�
T�1(x

T�1)+

qT�
�
T (x

T ) is xT�2-measurable. The fact that the agent faces the same interest rate of the planner

implies that for any xT�1 incentive compatibility requires that the net present value of the transfers

must be the same across xT�1 histories, hence as a sole function of xT�2. Going backward, we

get that
PT�t
n=1 q

0
t+n�

�
t+n(x

t+n) is xt�1 measurable since it is a constant number for all history

continuations xt; xt+1; :::; xT .

Now recall that self insurance has two de�ning properties: �rst, it must satisfy the Euler

equation. Second, it must satisfy the intertemporal budget constraint with one bond, i.e., the

period zero net present value must be zero for all xT .14 Since the Euler equation is always satis�ed

here, the only way of obtaining a di�erent allocation is that the transfers scheme �� permits to

violate the agent's period zero self insurance intertemporal budget constraint for some history xT .

The previous argument demonstrates that it cannot be the case.15 This implies that the `relaxed-

optimal' contract obtained by using the �rst-order-condition version of the incentive constraint

corresponds to the bond economy allocation. Since this allocation is obviously incentive compatible,

it must be the optimal one.

The intuition for this result is simple. First, as emphasized by ACK, the free access to the

credit market implies that the agent only cares about the net present value of transfers (i.e., he(she

does not care about the exact timing of transfer payments). Second, our de�nition of the set E of

available e�ort levels imply that at each t the agent has full control over the publicly observable

outcome xt: Moreover, the perfect substitutability between consumption and e�ort in the utility

function on one side and between income and e�ort in production on the other side imply that the

agent can substitute e�ort for income at no cost. Agent's preferences over income histories hence

only depend on the planner net present value of transfers, which must hence be constant across

histories. Making the self insurance allocation the only incentive feasible allocation. The result can

be summarized as follows.

14Recall conditions (7) and (8) and the fact that there is a one-to-one onto mapping between xt and �t histories in

this model.
15If we normalize asset holding to zero, we indeed have ��T = c

�
T � y�T ; ��T�1 = c�T�1 � y�T�1; and so on. The above

argument hence implies that for all t the quantity

NPVt =

T�tX
n=1

q0t+n�
�
t+n(x

t+n) =

T�tX
n=1

q0t+n
�
c�t+n(x

t+n)� y�t+n(xt+n)
�

is xt�1 measurable. If we consider the t = 1 case, incentive compatibility implies that NPV1
�
xT
�
=PT

n=1
q0n (cn � yn) is one number a.s. for any history xT . Hence, in order to satisfy resources feasibility the planner

is forced to set this number to zero.
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Proposition 1 Assume T < 1 and that agents have perfect and costless control over publicly

observable income histories. Then the e�cient allocation coincides with self insurance. However, in

more general speci�cations of the income process, the e�cient allocation di�ers from self insurance.

The �rst part of the proposition has been shown above. Notice that we never used the time

series properties of �t: Indeed this result is pretty general, and as we will see below it also applies

to the case with two type of shocks.16 In order to see an example of what is stated in the second

part of the proposition we will now generalize the production function to allow for non-linearities.

4.2 The Case with Some Risk Sharing: Excess Smoothness

Consider now the general case where the function f is left unspeci�ed. Recall that at period t the

agent objective function is:

u (ct � et) = u
�
f (�t; et)� et + � t

�
xt�1; f (�t; et)

��
To gain the most basic intuition, we start by considering the �nal period (T ) of the model. The

incentive constraint (IC) in the last period is

u
�
f (�T ; e

�
T )� e�T + � �T

�
xT�1; f (�T ; e

�
T )
��

� u
�
f (�T ; êT )� êT + � �T

�
xT�1; f (�T ; êT )

��
which, in its �rst order condition form becomes

1 +
@� �T

�
xT�1; xT

�
@xT

=
1

f 0e
: (16)

Recall that in the ACK model we had f 0e =
@f(�T ;e�T )

@eT
= 1: Since risk sharing requires

@��T (x
T�1;xT )
@xT

<

0 no insurance is possible in this environment. However, in general, f 0e might be greater than one,

and this is compatible with some risk sharing. We will see that this argument translates into a

multi-period setting as well.

What is the intuition for this fact? If the planner's aim is to make agents share risk, the key

margin for an optimal scheme is to guarantee that the agent does not shirk. That is that she does

not reduce e�ort. The value 1
f 0e
in the right hand side of (16) represents the return (in terms of

consumption) the agent derives by shirking so that to reduce output by one (marginal) unit. The

left hand side is the net consumption loss: when the marginal tax/transfer is negative the direct

16ACK, they all study the case with iid shocks. It is worth noticing, however, that in the presence of liquidity

constraints (the case considered by Cole and Kocherlakota), the extension to any persistence of shocks does not apply.
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reduction of one unit of consumption is mitigated by the increase in tax revenues. A large f 0e

reduces shirking returns making easier for the planner to satisfy the incentive compatibility, hence

to provide insurance.17

We now consider a model that uses this intuition heavily to deliver a closed form for the transfers,

both in the static and dynamic environments. Consider �rst the last two periods. It is easy to see

that the �rst order version of the e�ort incentive compatibility becomes

1 +
@� �T�1

�
xT�1

�
@xT�1

+ q
@� �T

�
xT
�

@xT�1
=
1

f 0e
:

The intuition is the same. The left had side represents the net cost of shirking while in the right

hand side we have the agent's return from misbehaving. For the same reasons we explained above,

when f 0e > 1; the optimal scheme permits the net present value of transfers to decrease with xT ;

allowing for some additional risk sharing on top of self insurance.

4.3 Closed Forms

Now consider a related special speci�cation for f: Assume income xt depends on exogenous shocks

�t and e�ort et as follows:

xt = f (�t; et) = �t + amin fet; 0g+ bmax fet; 0g ; (17)

with a � 1 � b: In Figure 1 we represent graphically the production function f in this case. Notice

that when a = b = 1; one obtains the linear speci�cation used to obtain the ACK result. Preferences

are as in the previous section

u (ct; et) = u (ct � et) :

The budget constraint obviously does not change:

ct = yt + bt + �t � qbt+1;

where all t subscript variables are xt measurable but bt; which is x
t�1 measurable.

17An equivalent intuition, based on the revelation game, suggests that f 0e may be related to the marginal cost

of lying. Recall that in this model xT is observable by the planner, and notice that when the agent gets the

realization �T and declares �̂T instead, it must adjust e�ort so that xT is consistent with the declaration. If we

denote xT
�
�̂T
�
� xT (�T ) = �̂: The agent obliviously enjoy

@��T (x
T�1;xT )
@xT

�̂ but he is forced to reduce `consumption'

(cT � eT ) by f 0e�1
f 0e
�̂ in order to make xT

�
�̂T
�
to appear in place of xT (�T ) : The quantity

f 0e�1
f 0e

can hence be seen

as the `net cost' of lying.
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In Proposition 2 in Appendix B we show that in the case of a constant q; we get that the

following simple closed form for transfers:18

(Et+1 �Et)
"
T�t�1X
n=0

qn�t+1+n

#
=

�
1

a
� 1

�
(Et+1 �Et)

"
T�t�1X
n=0

qnyt+1+n

#
(18)

Moreover, given the assumed process for skills, and et � 0 we have

(Et+1 �Et)
"
T�t�1X
n=0

qnyt+1+n

#
=
1� qT�t
1� q (�t+1 � �t) =

1� qT�t
1� q vpt+1; (19)

where vpt+1 is the permanent shock on income. When u is quadratic and � = q, the Euler equation

implies:

ct = Etct+s

for all s � 1: From the budget constraint together with bt � 0, we hence get

�ct+1 =
(1� q)
1� qT�t (Et+1 �Et)

"
T�t�1X
n=0

qnyt+n+1

#
+
(1� q)
1� qT�t (Et+1 �Et)

"
T�t�1X
n=0

qn�t+n+1

#
:

Combining (18) and (19), we get

�ct+1 =
1

a

(1� q)
1� qT�t (Et+1 �Et)

"
T�t�1X
n=0

qnxt+1

#
=
1

a
vpt+1: (20)

Hence for a = 1 we are back to the PIH, for larger a we get some more risk sharing over and above

self-insurance, with full insurance obtainable as a limit case for a!1.
In this example, our ability to derive a closed form solution is driven by two factors. The

assumption of quadratic utility (which, as is well known, allows one to derive closed form solution

in a standard life cycle model) and the simple concavity assumed on the income process that takes

the form of a piece-wise linear function. Such a simple function makes zero e�ort the optimal

level the planner is trying to implement so that one can clearly separate the incentive and the risk

sharing margins. The amount of risk sharing the planner can give the agent is that amount that

does not induce the agent to shirk. If the planner tries to guarantee a bit more risk sharing, the

agent will set e�ort equal to �1. For values of a close to one, the amount of risk sharing that
can be implemented is not much and, in the limit, when a approaches unity, the planner cannot do

18This formulation is independent of the relationship between the discount factor � and the price of the bond q;

and of assumptions on the utility function u ( as long as u (c; e) = u (c� e)). Moreover, one can easily show that the
formula can be generalized to the case where qt evolves deterministically with time. It must however be said that

without further speci�cations the expression (18) represents only a necessary condition for optimality. See Appendix

B for details.
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better than self insurance. When a is very large, the planner can actually approach the allocation

obtainable under complete markets.

A couple of remarks regarding our speci�cation are probably needed. First, the fact that zero

is the optimal level of e�ort, can be interpreted as a normalization. Second, at the optimal level of

e�ort, the income process is actually identical to the standard income process used in the permanent

income literature, with the innovation to permanent income equal to the random variable �t:

4.4 Introducing Temporary Shocks

We now allow for temporary shocks. Recall that �t = g
�
vTt ; lt

�
: Let specify a production function

for g of the form

�t = g
�
vTt ; lt

�
= vTt + a

T min flt; 0g+ bT max flt; 0g with aT > 1 > bT ;

f as in (17), and the following agent's preferences over ct; lt and et : u (ct � lt � et) : We can now
follow a similar line of proof than that adopted for the permanent shock (see Appendix B), and

show that the reaction of consumption to the di�erent shocks can be written as

�ct+1=
1

ap
�xt+1 +

1� q
aT

��t+1

=
1

ap
vpt+1 +

1� q
aT

vTt+1;

where, for consistency, we denoted by ap the slope of f for et � 0:
Interestingly, our closed form with temporary shocks provides a structural interpretation of

recent empirical evidence. Using the evolution of the cross sectional variance and covariance of

consumption and income, Blundell et al. (2004) estimate two parameters representing respectively

the fraction of permanent and temporary shocks re
ected into consumption. Within our model

such estimated parameters can be interpreted as the severity of informational problems to income

shocks of di�erent persistence.19

4.5 The Case with Isoelastic Utility

We now discuss again the simpler version of the model with only permanent shocks, but assume

that agents have isoelastic preferences. Full details are to be found in Appendix C. Let us assume

that preferences take the following CRRA form:

E0
X
t=0

�t

�
Ct �N�1

t

�1�

1� 
 for 
 > 1; and E0

X
t=0

�t (lnCt � lnNt) for 
 = 1;

19Blundel et al. use the log formulation of the model, which we will develop below.
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and that the production function is represented by a relatively small departure from the Cobb-

Douglas:

Xt = �tN
a
t for Nt � 1; and Xt = �tN

b
t for Nt � 1; with a > 1 > b;

where, abusing in notation:

ln�t � �t = �t�1 + v
p
t ;

and vpt is normally distributed with zero mean and variance �
2
vp . We are able to obtain a very

similar closed form for discounted taxes, which lead to the following permanent income formulation

for � = q and T very large20

� lnCt+1 := �ct+1 =
1

a
vpt+1 +




2a2
�2vp :

The �rst noticeable di�erence it of course that all variables are expressed in logs. Moreover, the

presence of precautionary saving motive implies that the e�cient allocation to displays increasing

(log) consumption. Notice interestingly, that in this case a > 1 permits both to reduce the cross

sectional dispersion of consumption and to mitigates the precautionary saving motives, hence the

steepness of consumption (i.e., `intertemporal dispersion'). The model implies a very tight rela-

tionship between these two moments. Finally, notice that for a = 1 we obtain the same expression

derived through approximations in the self insurance literature (e.g., Deaton, 1992, and Banks et

al., 2001, and Blundell et al., 2004). It is hence in this approximate sense that we are able to `test'

the self insurance model in the empirical analysis based on our closed form solution in logs.21

Observable Assets. The further interesting aspect of this formulation in logs is that, under the

same assumptions on preferences and technology, when assets are monitorable, for � = q we get the

20The derivation follows closely that in levels, and uses the log normality of shocks to �t in order to get a closed

form expression for the Euler equation (in logs) and the discounted value of taxes. For � = q; when consumption is

log normally distributed, we get

Et�lnCt+1 =



2
�2c ; (21)

where �2c is the conditional variance of � lnCt+1 and 
 is the coe�cient of risk aversion.

When considering both termporary and permanent shocks, one obtains

� lnCt+1 =
1

ap
vpt+1 +

1� q
aT

vTt+1 +



2

��
1

ap

�2
�2vp +

�
1� q
aT

�2
�2vp

�
: (22)

21Strictly speaking, the assumptions of Proposition 1 are not satis�ed in our speci�cation o the income process for

the case with isoelastic utility, not even for a = 1: Hence the necessity to appeal to approximations.
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following expression for expected consumption growth (see equation (11)):

Et� lnCt+1 = �



2
�2c ; (23)

i.e., the trend in log consumption is now negatively a�ected by consumption dispersion.22

Before moving to the empirical speci�cation, we note that even when the income process is

more general than the one that yields a closed form solution, the general results that the planner

can provide agents with more insurance than the Permanent Income model typically holds in the

class of moral hazard models we are considering. This fact is important for our empirical approach.

5 Empirical Implications of the Model

The main implication of the ideas discussed in the previous sections is that in a model with moral

hazard and hidden saving, the typical consumer is able to insure more of her idiosyncratic risk than

in the standard permanent income model in which individuals can transfer resources over time using

a single asset with a given interest rate, even though the presence of the information asymmetries

prevents �rst best allocations to be achievable. We also noticed that with hidden assets the Euler

equation for consumption will always hold. In the standard Permanent Income model with a single

asset that pays a �xed interest rate, intertemporal allocations are completely pinned down by the

Euler equation and the intertemporal budget constraint. Therefore, if the consumer has to get some

additional insurance while at the same time the Euler equation holds, it has to be the case that the

IBC with a single asset has to be violated.23 And within the class of models we are considering, it

has to be violated in a way that gives additional insurance. This implies having consumption higher

than under the PIH when shocks are `bad' and lower when shocks are `good'. Notice also that this

implies that the consumer reacts less than under the PIH to innovation to permanent income, that

is consumption is `excessively' smooth. In this sense our model can explain a result in the empirical

literature on consumption: Campbell and Deaton (1989) and West (1988) had stressed the fact

that consumption did not seem to be reactive enough to permanent innovations to income.

>From these considerations, it also follows that our model has very di�erent implications than

one with observable assets, as studied, for instance, by Ligon (1998). In our case, the Euler

equation holds while in a model with observable assets it does not, as shown in equation (11). With

observable assets, all saving is e�ectively done by the social planner who then allocates consumption

22It is not di�cult to derive the expression for the speci�cation of preferences (and income) delivering our closed

form. Details are available upon request. Regarding the discrepancies on consumption patterns between our model

and that with observable assets see also AP for an analysis based on simulations.

23More formally, the equality version of condition (8) is violated for some histories of shocks.
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to agents with a system of transfers that guarantees that incentive compatibility (only with respect

to e�ort) is satis�ed. When assets are hidden, the set of incentive compatibility constraints must

be amended so that to include (at least) the Euler equation with the interest rate provided by the

hidden intertemporal transfer technology because such a margin is always available to the agents.

The Euler equation (7) has been used extensively in testing the PIH. It can be derived and

holds under a variety of situations. In particular, the Euler equation holds whenever the agent is

not at a corner with respect to the decision of holding the asset whose return is being considered.

It is important to stress that this result holds regardless of the availability of other assets or of

the presence of imperfections in the trading of di�erent assets. Situations where the equation does

not hold include the presence of exogenous liquidity constraints (which e�ectively means that the

agent is at a corner as she would like to borrow more than what is allowed on the market) and the

model with asymmetric information and observed savings.

An attractive features of the Euler equation is that it implies some strong orthogonality con-

ditions that have been used extensively both to estimate preference parameters and to test the

model. According to the model, innovations to marginal utility between time t and t + 1 have to

be uncorrelated with all information available to the consumer at time t. By the law of iterated

expectations, this type of test does not require the exact speci�cation of the agents information set,

as long as such a set includes the variables observed by the econometrician. This logic has been

used to derive the so-called excess sensitivity tests of the permanent income model: consumption,

conditional on lagged consumption should not be related on any other lagged variable, including

those that help to predict income.

Excess sensitivity tests and more generally the Euler equation approach to estimating the para-

meters and testing the implications of the PIH do not require the existence of a closed form solution

for consumption. An implication of this, however, is that the Euler equation is silent about the

way in which innovations to (permanent) income are translated into innovations into consumption.

When a closed form solution for consumption is available, however, it is possible to derive the

implications for the correlation between contemporaneous income and consumption. The standard

case that has been extensively studied in the literature is that of quadratic utility case with a �xed

interest rate. In such a situation, given a time series process for income, the intertemporal budget

constraint and the Euler equation for consumption will induce a set of cross equation restrictions

on the joint representation of consumption and income. This is the strategy behind Flavin (1981)

and, subsequently, Campbell (1987). As we discussed above, a similar strategy can be followed with

more general utility functions if one is willing to rely on approximations. Blundell and Preston
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(1998) and Blundell, Pistaferri and Preston (2004) exploit the relationship between income shocks

and consumption innovations to study the evolution over time of cross sectional second moments.

In addition to the cross equation restrictions stressed by Flavin (1981), one can consider other

restrictions implied by the PIH. In particular, Campbell and Deaton (1989) and West (1988),

pointed out that, if current income has a permanent component, consumption should fully adjust

to innovations to such component, because they are fully re
ected in permanent income. These

studies then go on to show that, at least in aggregate data, consumption seems to be excessively

smooth, in that it does not react to innovations in permanent income. Campbell and Deaton (1989)

also point out that, if one takes as valid the intertemporal budget constraint, excess smoothness

can be related to excess sensitivity, in that the failure of consumption to react to innovations to

permanent income can be recasted, if one imposes the intertemporal budget constraint, in terms of

predictability of consumption changes with lagged information.

Our approach is obviously related to these papers. However, in our theoretical model, the

intertemporal budget constraint with a single risk-free asset does not necessarily hold. Indeed,

the additional insurance consumers get in our model relatively to a Bewley model is obtained by

violating such intertemporal budget constraint: consumers with positive innovations to permanent

income would consume quantities that are below what would be predicted by the PIH, while

consumers with negative innovations would consume in excess of what would be predicted by the

PIH. Notice that these deviations e�ectively imply what has been de�ned as excess smoothness of

consumption. At the same time, however, consumption allocations would satisfy the Euler equation

for consumption and therefore would not show 'excess sensitivity'. The deviation of consumption

allocations that our model have from the predictions of the standard PIH would hence be very

di�erent from the directions observed under binding liquidity constraints.

A study that explicitly tests the empirical implications of intertemporal budget constraints is the

paper by Hansen, Roberds and Sargent (1991) (HRS). HRS show two important results. First, given

a consumption and income process and an asset that pays a �xed interest rate, it is not possible to

test the implications of the intertemporal budget constraints without imposing additional structure.

Second, and more importantly for us, if the income process is exogenous and the consumption

process is determined by a linear-quadratic model, so that consumption follows a martingale, the

intertemporal budget constraint imposes additional restrictions on the joint process of income and

consumption. In this sense the implications of the Euler equation (which informs many of the so-

called excess sensitivity tests), and the additional restriction implied by the intertemporal budget
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constraint are distinct. 24 The test of the intertemporal budget constrained proposed by HRS is

equivalent to some of the tests of excess smoothness in the literature. We can use it within our

context and interpret as test of market structure: the null considered in this test is the Bewley

model, while the speci�c alternative implied by `excess smoothness' would be an implication of the

market structure that would prevail under moral hazard with hidden assets. We now make these

connections precise.

5.1 Explaining `excess' smoothness

HRS consider an income process yt which is one element of the information structure available to

the consumer and assume that it admits the following representation:25

(1� L)yt � �yt = �(L)wt (24)

where wt is a n�dimensional vector of orthogonal covariance stationary random variable that

represent the information available to the consumer. �(L) is a 1 � n vector of polynomials in the

lag operator L. The martingale restriction on the process for consumption implies that consumption

can be represented by:

�ct = �w1t (25)

where (wt has been chosen so that) w1t is the �rst element of wt and � is a scalar di�erent from

zero. Notice that equation (25) does not include lags. The coe�cient � represents the extent to

which income news are re
ected into consumption. It is useful to decompose the right hand side

of equation (24) into its �rst component and the remaining ones:

�yt = �1(L)w1t + �2(L)w2t (26)

HRS show that, given this structure, the NPV implies some restrictions on the coe�cients of

equations (25) and (26) In particular, the intertemporal budget constraint implies that:

� = �1(q) (27)

24The HRS result is true for the levels of consumption. However, the analysis we perform in Section 4.5 implies

that a similar results holds (under di�erent parametric restrictions for preferences) for the same set of varible in logs.
25HRS work with a slightly more general framework where the income process is made stationary by the transfor-

mation 
(L); which we are assuming to be equal to (1�L): In what follows, we adopt only in part the HRS notation
and adapt it to ours. In particular, we start from a representation for the income process that has already been

rotated so that its �rst component represents the innovation for the martingale process that generates consumption.

At a more trivial level, we use y and c for income and consumption instead of r and p:
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�2(q) = 0 (28)

HRS show that restriction (27) is testable, while restriction (28) is not, in that there exist other

representations for income, that are observationally equivalent to (26) for which the restriction

holds by construction.

The theoretical structure we have illustrated in the previous section provides a new interpreta-

tion to the `excess smoothness' test and to the HRS test. Notice the similarity of equations (17)

and (20) to equations (25) and (26).26 Our contribution is to point out that the HRS test of the

NPV is e�ectively a test about the market structure. The null considered by HRS corresponds

to the Bewley model we considered in Section 3.2, which also corresponds to a special case of our

model (see Section 4.1). We also point out that the model with moral hazard generates a speci�c

deviation from the null that is consistent with much of the evidence obtained in this literature. The

alternative hypothesis that � < �1(q) is equivalent to what Campbell and Deaton (1989) and West

(1988) de�ne as `excess smoothness' of consumption.27 The model we present implies �1(q)=� = a:

The extent of 'excess smoothness' has in our context, at least for this example, a structural in-

terpretation. It represents the severity of the incentive problem. As we discuss above, when a is

much larger than 1, one gets a considerable amount of risk sharing, and, in the limit case, one

gets full insurance. This is because the return to shirk is very low, the social planner hence �nds

it relatively easy to motivate agents to work hard, and can provide more insurance. On the other

extreme, when a is close to unity, the allocations are similar to those that one would observe under

the PIH.

An important feature of the HRS approach is that the test of the NPV restriction does not

require the econometrician to identify all information available to the consumer. Intuitively, the

test uses two facts. First, under the null the intertemporal budget constraint with a single assets

must hold whatever is the information set available to the agent. Second, under the assumption that

the agent has no coarser information than the econometrician, the validity of the Euler equation

implies that consumption innovation reveals part of the information available to the agent. By

26In particular, set � = 1
a
; w1t = v

p
t ; �1 (L) = 1; and �2 (L) = 0:

27Another paper that is related to our empirical strategy is Gali (1991), who imposes the intertemporal budget

constraint on top of the Euler equation for consumption so to derive a test that uses only data on consumption. The

intertermporal budget constraint is used to derive the relationship between the spectral density at zero frequency

of consumption and the variance of innovations to permanent income. While Gali (1991), as Campbell and Deaton

(1989), interpret his test as a test of the PIH (in various incarnations) this is because he takes for granted the

intertemporal budget constraint with a single asset.
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following the HRS strategy we perform a test of the intertemporal budget constraint along the

dimensions of information identi�ed via the Euler equation (which is not zero as long as insurance

markets are not complete).

While the structural interpretation we have just given only holds for the particular example

we have considered, as we explained in Section 4.2 the intuition about the relationship between

excess smoothness and the trade-o� between incentives and insurance is more general. Unless we

are in a situation in which the optimal e�ort is at higher levels than what would prevail under

the PIH (maybe because of some type of complementarity between shocks and e�ort and negative

wealth e�ects) the intuition will be valid. It should also be noticed that while the speci�c income

process we consider seems special, the income process we get in equilibrium from such an example

is identical to the income process that is typically used in the PIH literature.

Equation (25) can be solved for w1t and the result substituted in (26) to get:

�yt = �(L)�ct + "t (29)

where �(L) = �(L)=� and "t = �2(L)w2t: Expressed in terms of the quantities in equation (29) the

restriction (27) will be:

�(q) = 1 (30)

where q = 1=(1 + r): The test in (30) is very simple to implement and has recently been used by

Nalewaik (2004) as a test of the PIH.

The representation in equations (25) and (26) is derived under the assumption that preferences

are time separable. When this is not the case, maybe because of the presence of multiple con-

sumption goods some of which are durables and some create habits, HRS (Section 4) show how to

generalize equation (25) to the following representation for total consumption expenditure:

�ct = � (L)w1t (31)

where c in equation (31) represents total consumption expenditure, which enters the budget con-

straint, while utility is de�ned over the consumption services which, in turn are a function of

current and, possibly, past expenditure. The polynomial in the lag operator  (L) re
ects these

non-separabilities. In this case, the NPV restriction takes the same form as in equation (27). An

MA structure in the consumption equation can also be obtained in the presence of i.i.d. taste

shocks to the instantaneous utility function, as discussed, for instance, in Attanasio (1999).
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5.2 Reformulating the intertemporal budget constraint

The fact that assets are unobservable makes the moral hazard models we are considering very

close to the PIH, which is one aspect of the ACK results. Indeed, as we showed, there is a set of

parameter values that makes the allocations of the two models equivalent. A useful way to re-write

the intertemporal budget constraint faced by a consumer is as a sequence of period to period budget

constraints where the consumer receives, in addition to her earnings, the contingent transfers made

by the social planner:

�t(x
t) + yt � ct + bt � qtbt+1 (32)

where bt is the amount held in the hidden saving technology, which pays an exogenously given

return r, and �t(x
t) is the state contingent transfer that the consumer receives from the social

planner. Such sequence of transfers and the corresponding consumption allocations will satisfy

the incentive compatibility constraint (14). The advantage of re-writing the intertemporal budget

constraint as (32) are two. First, this formulation makes it clear that the Euler equation

u0c(ct; et) =
�

qt
Et
�
u0c(ct+1; et+1)

�
; (33)

must be part of the incentive compatibility constraints. Moreover, many of the standard results

one gets for the standard Permanent Income model can be applied here, considering the transfer

as a part of the income process.28 For instance, suppose that utility in consumption is quadratic.29

De�ne total income, including the (net) transfer �t(x
t), as eyt = �t(x

t) + yt. If the return on the

(hidden) intertemporal transfer technology is constant and equal to 1
q � 1; then consumption at

time t will be given by:

ct = (1� q)Et

24 1X
j=1

qj eyt+j
35 : (34)

Equation (34) is derived using the Euler equation for quadratic utility and the intertemporal budget

constraint (32) and implies that changes in consumption are equal to the present discounted value

of revised expectations about future values of eyt: Equation (34) also makes it clear why the test of
the intertemporal budget constraint is informative in this context. If one could observe income net

of all the planner transfers eyt = �t(x
t)+yt; and where to formulate the excess smoothness test using

28Notice that, as long as the utility function is additively separable in e�ort and consumption, the fact that income

and the transfer are endogenously determined does not prevent us from using the PIH results, as we can obtain

them conditioning on the equilibrium level of income and transfers. Of course, the same is true for our closed form

speci�cation, since e�ort is constant in equilibrium.

29Moreover assume thet either u (c; e) is additive separable or we are in the case considered in Section 4.3.
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this de�nition of income, one should not get a rejection of the null hypothesis. Using the notation

above, one would get that � = �1(q): These considerations suggest an empirical strategy based on

alternative de�nitions of income. The net transfers made by the social planners are obviously a

metaphor that allow us not to be speci�c about the particular decentralized instruments agents

use in reality. These transfers therefore may include a variety of `income' sources, ranging from

interpersonal transfers, to public transfers to the (net) purchases of state contingent assets. One

could then start from de�nitions of income that do not include any form of shock related transfers,

such as gross income to move on to alternative de�nitions that include explicit or implicit smoothing

mechanisms, such as taxes and bene�ts and interpersonal transfers. One should then �nd more

`excess' smoothness using de�nitions of income that do not include smoothing mechanisms.

5.3 Using Cross-Sectional Variances

The empirical implications stressed so far refer to the means of consumption and income. An

equation such as (29) relates the time series means of consumption and income. For reasons that

will become obvious, it might also be useful to consider the implications of the theory for the cross

sectional variances of income and consumption. For this purpose, it is particularly useful the closed

form solution derived in Appendix C for the Isoelasic case (see equation (66)):

lnCit := cit = xit + �t(x
t;i) =

1

a
xit + t

"

i

2a2
�2vp �

ln q
�i


i

#
+ �i + zt; (35)

where we should stress that we do not allow the price of a bond q to change with time, or any

sort of heterogeneity in the crucial parameter a. The term �i generalizes the expression in the

Appendix by adding some form of ex-ante heterogeneity, which could capture distributional issues,

the initial level of assets of individual i; or unobserved individual variables (all observables can of

course be included in the model, and the relative variances identi�ed independently, see Attanasio

and Jappelli, 1998). Notice that we allow for possible di�erences in the taste parameters 
 and

�. The term zt allows for aggregate shocks, which will be assumed to be orthogonal to individual

shocks and included in the information set of all agents in the economy.

Let �i =

�

i

2a2
� ln q

�i


i

�
: If we compute the cross-sectional variance at time t of both sides of

equation (35), we have

V ar
�
cit

�
=

�
1

a

�2
V ar

�
xit

�
+t2V ar

�
�i
�
+V ar

�
�i
�
+
2

a
Cov

�
xit; �

i
�
+
2t

a
Cov

�
xit;�

i
�
+2tCov

�
�i; �i

�
(36)

We start by assuming that both Cov
�
xit; �

i
�
and Cov

�
xit;�

i
�
are time invariant. These two

assumptions are not particularly strong. For instance, if all agents within the group over which the
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variances are computed have the same 
 and � (risk aversion and discount factors) Cov
�
xit;�

�
= 0

for all t: The invariance of Cov
�
xit; �

i
�
can be obtained by assuming constant Pareto weights (and

unobservables) across agents in the same group (like in our theoretical model).

If we now take �rst di�erence of equation (36), neglecting the individual indexes, we have:

�V ar (ct) =

�
1

a

�2
�V ar (xt) + (2t+ 1)V ar (�) +

2

a
Cov (xt;�) + 2Cov (�; �) (37)

where we used (t+ 1)2 � t2 = 2t+ 1:
If we assume that both � and 
 are homogeneous across agents, the expression further simpli�es

to

�V ar (ct) =
1

a2
�V ar (xt) : (38)

More in general, we could take the second di�erence and obtain an identi�cation of the degree of

cross-sectional heterogeneity in � via the intercept of the following regression:30

�2V ar (ct) =
1

a2
�2V ar (xt) + 2V ar (�) : (39)

Notice that equations (37), (38) and (39) allow the identi�cation of the structural parameter a;

which re
ects the severity of the moral hazard problem. As noted by Deaton and Paxson (1994),

under perfect risk sharing, the cross sectional variance of consumption is constant over time. Under

the PIH, as pointed out by Blundell and Preston (1998), the changes in the variance of consumption

re
ect changes in the variance of (permanent) income. Here, we consider a speci�c alternative to

the perfect insurance hypothesis that implies that consumption variance grows, but less than the

increase in the variance of permanent income.

In the presence of transitory shocks, the tests based on equations (37), (38) and (39) remain

valid under the assumption that the variance of transitory shocks does not change over time.31 If

that assumption were to be violated, then one would have to identify the fraction of the variance of

30A similar expression could be obtained, under the assumption of homogeneous � and 
 while allowing for time-

changing variance of individual income �2vp , as long as the cross-sectional variance of ��
i
t � 1

t

P
t

�
�it
�2
is time constant.

Details are available upon request.
31More precisely, the expression for consumption when income includes both temporary and permanent shocks

becomes:

cit =
1

ap
xit +

(1� q)
aT

�it + t

i

2

��
1

ap

�2
�2vp +

�
1� q
aT

�2
�2vT

�
� t

ln q
�i


i
+ �i + zt; :

Under the assumptions that Cov
�
�it; �

i
�
; Cov

�
�it;�

i
�
; Cov (xt; �t) and V ar (�t) are time invariant (as it is the case

in our model), the analysis we performed in the main text remains valid, with exactly the same interpretations for

the coe�cients. Of course, since �V ar (�t) = 0 we would have �V ar (xt) = �V ar (yt) ; hence only the a
p(= a) can

be identi�ed.
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income accounted for by permanent and transitory income using longitudinal data and then relate

each of them to the evolution of consumption inequality. The empirical strategy we follow here is

quite di�erent from Blundell, Pistaferri and Preston (2005). They study the evolution of the cross

sectional variance of consumption growth,32 while we start from the speci�cation for consumption

levels in equation (35) to derive equations (38) and (39).

6 Empirical strategy and results

The time series properties for income and consumption we discussed in the previous sections are

derived, for the most part, from the maximization problem of an individual consumer. Ideally,

therefore, one would like to use individual level data to estimate the relevant parameters and test

the restrictions implied by the alternative theories. The main di�culty that arises in pursuing such

a strategy, however, is the lack of long longitudinal data on consumption. A long time horizon

is clearly crucial to estimate the time series properties of income and consumption without using

unduly restrictive assumptions. In the available micro data sources, however, either the longitudinal

dimension of the data is very short (like in the data from the UK we use below) or the information

on consumption is very limited (like in the PSID, which many people have used). To overcome

this di�culty we follow two di�erent strategies. Both of them involve the creation of synthetic

cohort data or pseudo-panels, along the lines proposed by Deaton (1985) and Browning, Deaton

and Irish (1985). That is, as we cannot follow the same individuals over time, we will form groups

and follow moments of the variables of interest for these groups, that will be assumed to have, in

the population, constant membership over time. The sample moments, therefore, will approximate

the corresponding population moments.

The �rst strategy will be based on the dynamics of cell means, while the second uses cell

variances. The two tests, while allowing us to estimate the same structural parameter a, have

a di�erent focus. The �rst focuses on insurance across groups, as it exploits variation in group

mean for consumption and income. The second, focuses on insurance within a group, as it exploits

variation in the cross sectional distributions of consumption (and income) within a group. The two

tests, therefore, are complements, rather than substitute. Before describing the two approaches in

detail, we discuss brie
y the data we use for these exercise.

32This has important advantages, but it forces to use the approximation V ar(�ct) � �V ar(ct).
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6.1 The data

Our main source is the UK Family Expenditure Survey from 1974 to 2002. The FES is a time

series of repeated cross sections which is collected for the main purpose of computing the weights

for the Consumer Price Index. Each survey consists of about 7,000 contacted over two-week periods

throughout the year. We use data on households headed by individuals born in the 1930s, 1940s,

1950s and 1960s to form pseudo panels for 4 year of birth cohorts. As we truncate the samples so to

have individuals aged between 25 and 60, the four cohorts form an unbalanced sample. The 1930s

cohort is observed over later periods of its life cycle and exits before the end of our sample , while

the opposite is true for the 1960s cohort. A part from the year of birth, the other selection criteria

we used for this study is marital status. As we want to study relatively homogeneous groups, we

excluded from our sample unmarried individuals. We also excluded the self-employed.

These data, which has been used in many studies of consumption (see, for instance, Attanasio

and Weber, 1993), contains detailed information on consumption, income and various demographic

and economic variables. We report results obtained two di�erent de�nitions of consumption. The

�rst uses as `consumption' expenditure on non durable items and services, in real terms and divided

by the number of adult equivalents in the households (where for the latter we use the McClemens

de�nition of adult equivalents). The second also includes the expenditure on durables. For income,

we also consider di�erent de�nitions. In particular, we start with gross earnings, to move on to gross

earnings plus bene�ts and �nally net earnings plus bene�ts. As mentioned above, the idea behind

using di�erent de�nitions of income is to gain insights on the role played in terms of providing

insurance by di�erent mechanisms, such as the bene�t or the tax system.

As households are interviewed every week throughout the year, the FES data are used to

construct quarterly time series. This allows us to exploit a relatively long time series horizon.

6.2 The HRS approach

We follow HRS in that we estimate the equations (26) and (25) - or (26) and (31) - by Maximum

Likelihood, assuming normality of the relevant residuals and implementing a state space repre-

sentation of the system. However, some important modi�cations of the standard procedure are

necessary, induced by the fact that we are using micro level data and by the fact that we do not

have longitudinal data. To address these two problems, we use the approach recently developed by

Attanasio and Borella (2006).

We start by noting that we do not observe the quantities on the left-hand-side of equations

(26) and (25), as our data do not have a longitudinal dimension. However, identifying groups of
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�xed membership, we can de�ne the (population) means (or other moments) for these groups. In

particular, given an individual variable zhgt (where the index h refers to the individual and the index

g to the group), we can state, without loss of generality:

zhgt = zgt + �
h
gt

where the �rst term on the right hand side de�nes the population group mean. We do not

observe zgt; but we can obtain a consistent estimate ezct of it from our sample. This will di�er from

the population mean by an error whose variance can be consistently estimated given the within cell

variability and cell size (see Deaton, 1985). The presence of this measurement error in the levels will

induce an additional MA(1) component in the time series behavior of the changes in the variables

of interest. The variability of this component will have to be taken into account when estimating

the parameters of the model. We do so by assuming that the information on within cell variability

provides an exact measurement of the variance of this component. As discussed in Attanasio and

Borella (2006), given the sample size involved, such an assumption is not a very strong one. Given

the known values for the variance covariance matrix of the sampling error component, the likelihood

function of the MA system in (26) and (25) can be computed using the Kalman �lter (for details

see Attanasio and Borella (2006)).

As for the speci�cation of the multivariate model, we start by specifying the following latent

variable model.

�ygt=�
yy
0 w1gt + �

yy
1 w1gt�1 + �

yy
2 w1gt�2 + �

yc
0 w2gt + �

yc
1 w2gt�1 + �

yc
2 w2gt�2 (40)

�cgt=�
cc
0 w1gt + �

cc
1 w1gt�1 + �

cc
2 w1gt�2 + �

cy
0 w2gt + �

cy
1 w2gt�1 + �

cy
2 w2gt�2

where the two unobserved factors w1;gt and w2;gt are independent over time and with one another.

We allow for correlation between the w of di�erent cohorts observed at the same time. In system

(40), we only allowed two lags of each of the two factors for the sake of notational simplicity, but

larger number of lags can be considered without any problem. As we estimate the variance of w1;gt

and w2;gt we normalize the coe�cients �
yc
0 and �cc0 to 1. Moreover, as is standard in multivariate

system, for identi�cation we need to restrict one of the coe�cients governing the contemporaneous

between consumption and income changes to be zero. We follow HRS and set �cy0 = 0:33 This

assumption on the one hand imposes a triangular structure on the contemporaneous correlation,

and on the other identi�es the factor w2;gt as an `income' shock.

33Attanasio and Borella (2006) set to zero the contemporaneous coe�cient of w2t in the income equation, choosing

the opposite triangular structure.
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The martingale property of consumption implies that the coe�cient on lagged shocks in the

second equation of the system (40) should be zero. However, as discussed in HRS, the presence of

durability in some components of consumption could lead to a speci�cation where lagged coe�cients

on w1 (�
cc
1 and �

cc
2 in our system (40))are di�erent from zero. However, the coe�cients on lagged

values of w2 should be zero. This hypothesis can be tested and results of such a test can be

interpreted as `excess sensitivity' tests. This is important both because this test corresponds to a

test of the Euler equation and because, as stressed by HRS, if consumption does not satisfy the

martingale property implied by the Euler equation, we cannot meaningfully test the intertemporal

budget constraint.

Imposing all these restrictions, the system can be written as follows:

�ygt=�
yy
0 w1gt + �

yy
1 w1gt�1 + �

yy
2 w1gt�2 + w2gt + �

yc
1 w2gt�1 + �

yc
2 w2gt�2 (41)

�cgt=w1gt + �
cc
1 w1gt�1 + �

cc
2 w1gt�2 

w1;gt
w2;gt

!
� N

0@ 0
0

!
;

0@�21;g 0

0 �22;g

1A1A ; Cov(wi;kt; wi;jt) = �i;jk; i = 1; 2:

In section 5, we showed how the equations for consumption and income that make the systems

of equation (40) is very similar to the equations of the closed form system we obtain in Section 4

(equations (17) and (20)). Those equations where derived in levels. In Section 4.5, we showed how

similar expressions can be derived for the log of income and consumption. We now show both the

results in levels and in logs.

6.2.1 Results in levels

In Tables 1 and 2 we report the estimates we obtain estimating the MA system (40) by Maximum

Likelihood. As we allow the variance covariance matrix in the system to be cohort speci�c, we

limit the estimation to cohorts that are observed over a long time period. This meant to use a

balanced pseudo panels with two cohorts: that born in the 1940s and that born in the 1950s. We

experimented with several speci�cations that di�ered in terms of the number of lags considered in

the system. The most general speci�cation included up to eight lags in both the consumption and

income equation. However, no coe�cient beyond lag 2 was either individually or jointly signi�cant.

In the Table, therefore, we focus on the speci�cation with 2 lags.

In the tables we impose the restriction that the coe�cients on the lagged value of w2t are zero.

While we do not report the results for the sake of brevity, this restriction is never violated in our

data. The estimated coe�cients are small in size and never signi�cantly di�erent from zero, either
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individually or jointly. This is an important result as it correspond to a non-violation of the excess

sensitivity test.

Table 1 uses as a de�nition of consumption the expenditure on non-durables and services. We

use three di�erent de�nitions of income. The �rst is gross earnings, the second gross earnings plus

bene�ts (such as unemployment insurance and housing bene�ts) and the third is net earnings plus

bene�ts. For each of the three de�nitions we report two speci�cations: one with 2 lags in each of

the two equations and one where the insigni�cant coe�cients are restricted to zero.

Several interesting elements come out of the Table. First, the dynamics of income is richer than

that of consumption. However, and perhaps surprisingly, the coe�cients on the lags of w2gt are

not statistically signi�cant and are constrained to zero in columns 2, 4 and 6. In the consumption

equation the coe�cient on the �rst lag of w1gt is consistently signi�cant and attracts a negative

sign. As discussed above, this could be a sign of intertemporal non-separability of preference, maybe

induced by some elements of non durable consumption to have some durability at the quarterly

frequency.

The test of the intertemporal budget constraint, which is parametrized as � (q)� �1(q) clearly
shows the presence of excess smoothness. Interestingly, such evidence is stronger for gross earnings.

The value of the test does not change much when we add to gross earnings bene�ts (as in columns

3 and 4). However, when we consider net earnings plus bene�ts, the value of the test is greatly

reduced in absolute value (moving from -0.49 to -0.26), although still statistically di�erent from zero.

Therefore, when we use a de�nition of income that includes an important smoothing mechanism,

we �nd much less evidence of consumption `excess smoothness' relative to that income de�nition.

Table 2 mirrors the content of Table 1, with the di�erence that the de�nition of consumption we

use now includes the expenditure on durables. The results we obtain are, in many ways, similar to

those of Table 1. Perhaps surprisingly, the coe�cient on lagged w1gt in the consumption equation is

smaller in absolute value than in Table 1 and for two of the three income de�nitions, not statistically

di�erent from zero. The most interesting piece of evidence, however, is that the coe�cient that

measures excess smoothness is now considerably lower, indicating less consumption smoothing

relative to the null of the Bewley model. This is suggestive of the fact that durables might be

playing an important role in the absorption of shocks, as speculated, for instance by Browning and

Crossley (2004). However, when we consider di�erent income de�nitions, the evidence is consistent

with that reported in Table 1, in that relative to net earnings consumption exhibit much less `excess

smoothness' than relative to gross earnings.
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6.2.2 Results in logs

When re-estimating the system using the speci�cation in logs, we try to use the same sample used

in the speci�cation in levels. However, as we aggregate the non linear relationship (that is we take

the group average of logs), we are forced to drop observations that have zero or negative income.

A part from this, the sample is the same. We report our estimates in Table 4. Given the evidence

on the dynamics of consumption discussed above, we only report the results for total consumption,

which includes the expenditure on durables. Results for non durables and services are available

upon request from the authors. The evidence is consistent with that of Table 2 in levels in that we

do �nd evidence of excess smoothness. The drop in the size of the excess smoothness parameter

when we move to de�nitions of income that include some smoothing mechanisms is even more

dramatic than in Table 2. In the last column, corresponding to net earnings plus bene�ts, the

excess smoothness parameter, while still negative, is insigni�cantly di�erent from zero.

6.3 The dynamics of consumption variances

The estimation of equation (38) also requires the identi�cation of groups. Here the group implicitly

de�nes the participants in a risk sharing arrangement and the test will identify the amount of risk

sharing within that group. As with the estimation of the HRS system, the lack of truly longitudinal

data and the use of time series of cross sections, implies that the estimated variances (for income

and consumption) will have an error component induced by the variability of the sample. This

is particularly important for the changes in the variance of income on the right hand side: the

problem induced is e�ectively a measurement error problem which induces a bias in the estimated

coe�cient.

In particular, the observable version of equation (38) will be:

�V ar (cgt) =
1

a2
�V ar (xgt) +

1

a2
�"xgt ��"cgt; (42)

where "xgt = V ar(xgt) � V ar (xgt); and "
c
gt = V ar(cgt) � V ar (cgt): Analogous considerations will

hold for equations (37) and (39). The variance of the residuals " will go to zero as the size of the

cells in each time period increases. Moreover, information on the within cell variability can be used

to correct OLS estimates of the coe�cients in equation (42). In particular, a bias correct estimator

will be given by the following expression:

b� = A�1[e� �B] (43)

where e� = (Z 0Z)�1Z 0w is the OLS estimator, B allows for the possibility of correlation between

37



the "xt and "
c
t and A is determined by

B =
�
Z 0Z

��1
� =

�
Z 0Z

��1 n 1
T�1

PT
t=2

�cygt
Ngt

+
�cygt�1
Ngt�1

o
and

A =
h
I �

�
Z 0Z

��1


i
;

where


 =
1

T � 1

TX
t=2

 
�2xgt
Ngt

+
�2xgt�1
Ngt�1

!
:

In computing the variance covariance matrix of this estimator it will be necessary to take into

account the MA structure of the residuals as well as the possibility that observations for di�erent

groups observed at the same time will be correlated.

To estimate the parameters in equation (42) we use the same sample we used for the HRS test,

with the only di�erence that we do not limit ourself to the balanced pseudo panel but use four

cohorts, although the youngest and oldest are only used for part of the time period. Otherwise the

selection criteria used to form our sample are the same as above.

The results are reported in Table 4. There are four columns in the Table, each reporting the slope

coe�cient of equation (38) and the implied a with the corresponding standard errors. The standard

error of a is computed by the delta method. In the �rst two columns, we use expenditure on non

durables and services as our de�nition of consumption. In the second column, total consumption is

divided by the number of adult equivalents. In the third and fourth column we report the results

obtained using total expenditure as our de�nition of consumption. Once more, in the second of these

two columns the total is divided by the number of adult equivalents. The three panels correspond

to the same three de�nitions of income we used for the HRS test.

The �rst thing to note is that all the slope coe�cients are positive and statistically di�erent

from zero. Moreover, consistently with the theory, they all imply a value of a greater than unity.

Finally, the results are a�ected only minimally by the consideration of adult equivalents.

If we analyze the di�erence across income de�nitions we �nd results that are consistent with

the implications of the model and, by and large, with the evidence from the HRS approach. The

coe�cient on the changes in the variance of gross earnings is much smaller than the one on the

other income de�nitions. This is consistent with the evidence from Tables 1 and 2 which showed

more `excess smoothness' for this de�nition. Unlike in Table 1 and 2, however, the main di�erence

in the size of the coe�cient is between the �rst income de�nition on one side and the second and

third from the other. With the HRS approach, instead, the main di�erence was between the �rst

and second on one side and the third on the other.
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Finally, if we look at the di�erences between the de�nitions of consumption that include durables

and those that do not, we �nd that the coe�cients are (except for the �rst income de�nition) larger

for the former than the latter. Again, this is consistent with the evidence from the HRS approach

which �nds less `excess smoothness' when one includes durables in the de�nition of consumption,

i.e., some self-insurance mechanisms seems to be at work via durables.

In addition to equation (38) we also estimated versions of equation (37) which include a time

trend and of (39) which involves the second di�erences of the relevant variances. Remarkably, the

results we report in Table 3 are barely a�ected.

The consistency of the results obtained with the variance approach and those obtained with the

HRS approach are remarkable because the two tests, as stressed above, focus on di�erent aspects of

risk sharing: the latter on insurance across groups and the former on insurance between group. It

is remarkable that both yield results that are in line with our model and indicate that the observed

amount of risk sharing is in between that predicted by a simple Permanent Income model and that

predicted by perfect insurance markets. Comparing the magnitude of the coe�cients obtained with

the two approaches, we can have a measure of the di�erent degree of risk sharing possibilities that

are available within cohorts as opposed to those available across cohorts.

7 Conclusions

In in this paper, we discuss the theoretical and empirical implications of a model where perfect

risk sharing is not achieved because of information problems. A speci�c (and certainly unique in

the empirical literature) feature of our model is the hidden access to the credit market. After

characterizing the equilibrium of this model, we have shown how it can be useful to interpret

individual data on consumption and income.

We have considered a combination of moral hazard and information problems on assets (and

therefore consumption). Developing results in Abraham and Pavoni (2004), we have shown that in

the constrained e�cient equilibrium in our model agents obtain more insurance than in a Bewley

set up. Moreover, we are able to construct examples in which we can get closed form solutions

for consumption. These results have more than an aesthetic value: in our empirical approach they

allow us to give a structural interpretation to some of the empirical results in the literature and to

those we obtain. In particular, we show how our model can explain the so-called `excess smoothness'

of consumption and how tests of excess smoothness are distinct from the so-called excess sensitivity

tests.

The presence of excess smoothness follows from the fact that, even in the presence of moral
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hazard and hidden assets, in general, an e�cient competitive equilibrium is able to provide some

insurance over and above what individuals achieve on their own by self insurance. The constrained

e�cient allocations that prevail in the environment we consider di�er from those one would obtain

in a Bewley model with no insurance, in that the agents are able to share some risk and are not

forced to rely only on self-insurance. This additional insurance is what generates excess smooth-

ness in consumption, which can then be interpreted as a violation of the intertemporal budget

constraint with a single asset. What such set of conditions is neglecting is the set of state con-

tingent Arrow-Debreu securities that the agent can purchase (possibly with some restrictions on

trades), in addition to the riskless asset, in a constrained e�cient equilibrium. Or, if one prefers the

metaphor of the social planner, to get the standard PIH results, one should be considering income

net of transfers, rather than the standard concept used in the PIH literature. From an empirical

point of view, we show that in our framework, the so called `excess sensitivity' tests (e�ectively tests

of the martingale property implied by the intertemporal optimization problem solved by the con-

sumers) are distinct from the so called `excess smoothness' tests, which, following Hansen, Roberds

and Sargent (1991), we frame as tests of an intertemporal budget constraint with a single asset.

When agents are able to obtain additional insurance relative to the Bewley economy, the IBC with

a single asset is violated because it neglects state contingent transfers. We show that in our model

we obtain `excess smoothness' in the sense of Campbell and Deaton (1989), while we do not get

excess sensitivity. An important feature of our test, is that it is robust to di�erent hypothesis about

the information structure available to economic agents, as long as the econometrician does not have

superior information.

While many papers, starting with Deaton and Campbell (1989) have documented the `excess

smoothness' of consumption using aggregate time series data, the evidence based on micro data is

recent and limited. Nalewaik (2004) uses a simpli�ed version of the HRS test (e�ectively estimating

equation (29) which, for example, does not permit non-separabilities) and, based on the US CEX,

cannot reject the null of the PIH. This result contrasts both with what is obtained by Blundell et

al., 2004 in the PSID, and with what we �nd in this paper for the UK. Neither Nalewaik (2004),

nor Attanasio and Borella (2006), who (use a di�erent identi�cation strategy to) estimate a time

series model for micro consumption (and other variables) similar to the one we estimate, give their

results an interpretation in terms of risk sharing and test of asset markets.

In addition to the HRS test, we also propose a test based on the cross sectional variance of

consumption and income. While related to the work of Deaton and Paxson (1994), Blundell and

Preston (1994) and Blundell, Pistaferri and Preston (2004), our approach is di�erent in that it
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focuses on the variance in the level rather than changes of consumption. Moreover, as is the case

of the version of the HRS test we present, we can give the coe�cients we estimate a structural

interpretation in terms of our moral hazard model.

The approach followed by Blundell et al., (2004) is di�erent from ours. It is more general

in some dimensions and less so in others. In particular, they exploit the panel dimension of the

PSID and are able to distinguish the e�ects of consumption of permanent versus temporary income

shocks. In our data we cannot identify separately the two parameters. In any case, if one prefers

the assumptions made by Blundell et al. (2004) to those we make in deriving our test based on cross

sectional variances, we can still use our model to give a structural interpretation to the Blundell et

al. (2004) results.

Using our two di�erent approaches we obtain results that are consistent with our model. We

forcefully reject both perfect risk sharing and the simple Bewley economy. Moreover, our rejections

are consistent with the model with moral hazard and hidden assets we considered. Particularly

suggestive is the evidence that when we consider income de�nitions that include smoothing mech-

anisms, such as social assistance and net taxes, we �nd less evidence of `excess smoothness'.

Our results have obvious policy implications, as one could, in principle, be able to quantify in

terms of welfare the insurance role played by the taxation system or UI. Such computations would be

immediately feasible from our analysis. We would also be able to perform accurate counterfactuals

in order to evaluate the e�ects of a given policy. All normative issues, however, are left for future

research.
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8 Appendix A: Implementing the e�cient allocation with income taxes

In this section we show that under some conditions the optimal allocation (�; c; x) can be `imple-

mented' using a transfer scheme � which is function of income histories xt alone. This will simplify

the analysis and allow us to describe the consumption allocation in terms of observables.

Notice �rst, that through xt = xt(�
t) the x component of the optimal allocation generates

histories of income levels xt. Let's denote by xt
�
�t
�
=
�
x1
�
�1
�
; :::; xt

�
�t
��
this mapping. In

general xt(�
t) is not invertible, as it might be the case that for a positive measure of histories

of shocks �t we get the same history of incomes xt. A generalization of the argument used in

Kocherlakota (2006) however shows that it su�ces to assume that the optimal plan of consumption

c alone is xt-measurable.34 This is what we assume thereafter.

Now, notice that yt is x
t-measurable by construction. As a consequence, from (15) is easy to

see that the xt-measurability of c implies that � is xt-measurable as well. From the transfer scheme

� , we can hence obtain the new xt-measurable scheme �� as follows: � �t
�
xt
�
�t
��
= � t

�
�t
�
. Given

��; let

E

"
TX
t=1

�t�1 u (c�t ; êt) n �̂
#
:=

TX
t=1

�t�1
Z
�t
u
�
c�t
�
x̂t(�t)

�
; êt

�
�t
��
d�t(�t)

34That is, that there exists a sequence of xt-measurable functions c� such that for all t; �t we have c�t
�
xt
�
�t
��
=

ct(�
t):We will see below that under fairly general conditions the implementation idea of Kocherlakota (2006) extends

to the general case with hidden savings. A more extensive proof of our argument is also available upon request.
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where c�t
�
x̂t(�t)

�
= � �t

�
x̂t
�
�t
��
+ y�t

�
x̂t
�
�t
��
; and the new mapping is induced by �̂ as follows:

x̂t
�
�t
�
= f

�
�t; êt

�
�t
��
for all t; �t: For any history of shocks �t; a plan �̂ not only entails di�erent

e�ort costs, it also generates a di�erent distribution over income histories xt hence on transfers and

consumption. This justi�es our notation for the conditional expectation.

We say that the optimal allocation (�; c; x) can be implemented with xt�measurable transfers
if the agent does not have incentive to deviate from c�; �� given ��. The incentive constraint in

this case is as follows:

E

"
TX
t=1

�t�1 u (c�t ; e
�
t ) n ��

#
� E

"
TX
t=1

�t�1 u (ĉt; êt) n �̂
#
; (44)

where, as usual, the deviation path of consumption ĉ must be replicated by a plan of risk free

bonds b̂. An important restriction in the deviations �̂ contemplated in constraint (44) is that they

are required to generate `attainable' histories of x0s; i.e. histories of x0s that can happen in an

optimal allocation. The idea is that any o�-the-equilibrium value for xt will detect a deviation with

certainty. One can hence set the planner's transfers to a very low value (perhaps minus in�nity) in

these cases, so that the agent will never have incentive to generate such o�-the-equilibrium histories.

Finally, suppose the agent chooses an e�ort plan �̂ so that the realized history x̂t is at-

tainable in equilibrium. This means both that there is a reporting strategy �̂ so that x̂t =

(x1 (�̂) ; x2 (�̂) ; :::; xt (�̂)) and that given a consumption plan ĉ the utility the agent gets is

E
hPT

t=1 �
t�1 u (ĉt; et) n (�; c; x) ; �̂

i
; where the notation is that in the main text.35 This e�ec-

tively completes the proof since the incentive constraint (12) guarantees that the agent will chose

the truth-telling strategy which implies the equilibrium plans � and c as optimal.

35More in detail, notice that by de�nition we have êt
�
�t
�
= g

�
�t; x̂t

�
�t
��
: Since x̂t

�
�t
�
is `attainable' it can be

induced from x by a `lie', i.e., there exists a �̂ such that x̂t
�
�t
�
= xt

�
�̂
�
�t
��
. But then êt

�
�t
�
= g

�
�t;xt

�
�̂
�
�t
���

and from the de�nition of �� we have c�t
�
x̂t
�
�t
��
= c�t

�
xt
�
�̂
�
�t
���

= ct
�
�̂
�
�t
��
; which implies that

E

"
TX
t=1

�t�1 u (c�t ; êt) n �̂

#
= E

"
TX
t=1

�t�1 u (ct; et) n (�; c; x) ; �̂

#
for some �̂ 2 �: Finally, to see that constraint (13) guarantees incentive compatibility of c� is straightforward.
A �nal remark. One can easily show that under the same conditions, � must also be xt-measurable. The intuition

is a follows. If � is not xt-measurable it means that for at least two some �t; and ��t we have et
�
�t
�
6= et

�
��t
�
while

f
�
�t; et

�
�t
��
= f

�
�t; et

�
��t
��
: However, since u is decreasing in e; e�ort incentive compatibility (at bt = 0) implies

that � s (�
s) 6= � s

�
��s
�
for some s � t with � not xs-measurable. A contradiction to the fact that the optimal transfer

scheme � is xt�measurable.
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9 Appendix B: A Closed Form in Levels

The outcome of this section will be a structural interpretation, in terms of the marginal cost/return

of e�ort, of the coe�cient � coming from a generalized permanent income equation of the form:

�ct = ��ypt :

We will have

� =
1

a

where a � 1 and 1
a is the marginal return to shirking. Since in our model wealth e�ects are absent,

it will deliver a constant e�ort level in any period, which will be normalized to zero. Zero e�ort will

also be the �rst best level of e�ort. So the whole margin in welfare will derive from risk sharing.

The incentive compatibility constraint will hence dictate the degree of such insurance as a function

of the marginal cost of e�ort. A lower e�ort cost/return will allow the planner to insure a lot

the agent without inducing him to shirk. And the planner will use the whole available margin to

impose transfers and obtain consumption smoothing.

For didactical reasons, we will now solve the model is steps, with increasing degree of compli-

cation.

9.1 The Model

Assume that u (c; e) = u (c� e) ; and consider the following speci�cation of the technology36

yt = f (�t; et) = �t + amin fet; 0g+ bmax fet; 0g ; with a � 1 � b; (45)

and e 2 (�1; emax] : In other words, the production function has a kink at zero.37 Interestingly,
as we have seen in Section (4.1) for a = 1 we are in the standard ACK case (this is true even

when b < 1) hence there is no room for risk sharing at all (on top of self insurance) and the model

replicates the Bewley model.

Finally, notice that as long as a > 1 (and b < 1) the �rst best e�ort level would be zero.

However, the �rst best allocation would also imply a constant consumption. This allocation can

only be obtained by imposing a constant tax rate such that � 0t = �1: Obviously, this allocation is
not incentive feasible in a world where e�ort (and �) is private information of the agent.

36It will be clear soon that the linearity of f for e > 0 is not crucial for the closed form, as long as the slope of f

is uniformly bounded above by one in this region.

37None of the results change if we choose the kink at any other �e > �1:
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9.2 Static Conditions

We are looking for optimal transfer schemes among that class of continuously di�erentiable transfer

schemes.

Consider �rst the static problem. When the production function is of the form (45), the incentive

compatibility constraint in its di�erentiable form is as follows

b
�
1 + � 0

�
� 1 if e� � 0 and e� < emax

a
�
1 + � 0

�
� 1 if e� � 0 and e� > �1;

with equalities if e 6= 0: As long as � 0 � 0 the relevant deviation would always be to reduce e�ort,
i.e. only the second constraint is relevant. The great advantage of this formulation is that, since

production e�ciency is not an issue,38 the planner will always use the whole margin to give risk

sharing to the agent. Hence the optimal tax rate is exactly � 0 = 1
a � 1: That is, �

0 increases with a;

and it approaches �1 (the �rst best level) for a!1: Recall that the intuition is as follows: when
a is large the agent does not �nd very attractive to deviate from the optimal level e = 0 and this

reduces incentive costs, allowing more risk sharing. Clearly, a simple normalization z = ae induces

preferences of the form u
�
c� z

a

�
hence 1

a is the marginal cost/return of e�ort. When the marginal

cost/return of e�ort is low the agent is easier to convince not to shirk.

Notice two important things that are very evident in this static case, but that will be veri�ed

in the general case as well. First, since � 0 = 1
a � 1 must hold for all income levels, the tax schedule

must be linear in xt. Second, that since agent's utility and the production function are concave,

when facing a linear tax schedule the agent problem is concave. Hence the incentive compatibility

can be substituted by the agent's �rst order conditions. We conclude that a linear tax scheme is

optimal.

9.3 Two Periods

In order to get an idea about the working of the model in a dynamic framework, let's now consider

the two period version of this model for the agent. They can obviously be seen as the last two

periods of a general T < 1 horizon model. If we normalize to zero the initial level of assets and

neglect the notation for previous history xT�2; the agent objective function is

u (cT�1 � eT�1) + �ET�1u (cT � eT )
38We will normalize e� = 0: Notice that as long as as long as a > 1 > b; e� = 0 is the unique e�cient e�ort level

under full information. With asymmetric information, incentive costs make e� > 0 even less attractive. Moreover,

the linearity for e < 0 implies that a negaive e�ort level cannot be optimal since it requires the same consumption

dispersion as e = 0 and it implies lower net welfare compared to e� = 0.
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where for a given tax schedule � we have

cT�1= yT�1 + �T�1 (xT�1)� qbT ;

cT = yT + �T (xT�1; xT ) + bT ;

and, as before,

yt = �t + amin fet; 0g+max fet; 0g .

The Euler's equation is the usual one (as optimality for bT )

q

�
= ET�1

u0 (cT � eT )
u0 (cT�1 � eT�1)

;

while the optimal e�ort choice eT�1 solves

1 +
@�T (xT�1)

@xT�1
+ �ET�1

@�T (xT�1; xT )

@xT�1

u0 (cT � eT )
u0 (cT�1 � eT�1)

=
1

a
: (46)

The static conditions we derived above imply that

1 +
@�T (xT�1; xT )

@xT
=
1

a
:

We will see more in detail below that since
@�T (xT�1;xT )

@xT
does not depend on xT�1; whenever the

scheme is di�erentiable, we have that
@�T (xT�1;xT )

@xT�1
is constant in xT : Using the Euler equation, the

incentive constraint for eT�1 hence takes the simpler form

@�T (xT�1)

@xT�1
+ q

@�T (xT�1; xT )

@xT�1
=
1

a
� 1; for all xT�1; xT :

This implies that the discounted sum of the last two taxes is a linear function of xT�1, whose slope

does not depend on xT : We hence get

��T � �T �ET�1�T =
�
1

a
� 1

�
xT �Et�1xT

�
1

a
� 1

�
=

�
1

a
� 1

�
�xT :

And, similarly for � (�T�1 + q�T ) ; we get

�T�1 + q�T �ET�2 [�T�1 + q�T ] =
�
1

a
� 1

�
(xT�1 + qxT �ET�2 [xT�1 + qxT ]) :

This expression does not depend on the process on �t; and it provides a very simple (linear)

relationship between the innovation on the expected discounted value of taxes and the innovation

in the permanent income.
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9.4 Generic Time Horizon

We are now ready to derive the results for a generic �nite horizon model. The analogous to (46),

for all s; n; t � 0; is

Et�s

T�tX
n=0

�n
"
@�t+n

�
xt+n

�
@xt

u0 (ct+n � et+n)
u0 (ct � et)

#
= Et�sEt

"
T�tX
n=0

�n
@�t+n

�
xt+n

�
@xt

u0 (ct+n � et+n)
u0 (ct � et)

#
=
1

a
�1:

In order to complete the derivation, we �rst show the following result.

Lemma 1. Within the class of continuous di�erentiable transfer schemes the discounted value

of marginal taxes
PT�t
n=0 q

n @� t+n(x
t+n)

@xs
does not depend on (xt; :::; xT ) for all s: They are hence linear

functions of xs given x
t:

The proof is by induction. Recall the discussion made for the static case, and notice that the

static model corresponds to the last period of a �nite period model. We argued above that the

optimal tax satis�es
@�T (xT�1;xT )

@xT
= 1

a�1 for all x
T�1 and xT : This implies that the cross derivative

@�T (xT�1;xT )
@xT @xt

= 0: Since �T is continuously di�erentiable, it must be that
@�T (xT )
@xt

is constant in xT

for all t < T as claimed above.39

Now consider �T�1. Since
@�T (xT )
@xT�1

does not depend on xT ; the e�ort incentive compatibility can

be written as follows:

@�T�1
�
xT�1

�
@xT�1

+ �
@�T

�
xT
�

@xT�1
ET�1

�
u0 (cT )

u0 (cT�1)

�
=
1

a
� 1; for all xT�2 and xT�1:

Since ET�1
h
u0(cT )
u0(cT�1)

i
= q

� ; we have that
@�T�1(xT�1)

@xT�1
+ q

@�T (xT )
@xT�1

is a constant for all all xT�2 and

xT�1: Since the tax scheme is assumed to be di�erentiable, this property implies that
@�T�1(xT�1)

@xt
+

q
@�T (xT )
@xt

is also constant in xT�1 (and xT ) for all t:
40 Going backwards, we have our result:PT

n=t q
n�t @�n(xn)

@xs
is constant in xt; :::xT for all s: Q.E.D.

Given the above results we can apply the law of iterated expectations and get, for a generic �

and q

Et

"
T�tX
n=0

�n
@�t+n

�
xt+n

�
@xt

u0 (ct+n � et+n)
u0 (ct � et)

#

39The tax/transfer function can hence be written as �T
�
xT�1; xT

�
= h

�
xT�1

�
+
�
1
a
� 1
�
xT with h di�erentiable.

40Using the result for �T we get that the discounted sum takes it takes the following from

�T�1
�
xT�1

�
+ q�T

�
xT
�
= g

�
xT�2

�
+
�
1

a
� 1
�
xT�1 + q

�
1

a
� 1
�
xT :
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=Et

24T�t�1X
n=0

�n
@�t+n

�
xt+n

�
@xt

u0 (ct+n � et+n)
u0 (ct � et)

+ �T�tET�1
@�T

�
xT
�

@xt

u0 (cT � eT )
u0 (ct � et)

35
=Et

24T�t�1X
n=0

�n
@�t+n

�
xt+n

�
@xt

u0 (ct+n � et+n)
u0 (ct � et)

+ �T�t
@�T

�
xT
�

@xt
ET�1

u0 (cT � eT )
u0 (cT�1 � eT�1)

u0 (cT�1 � eT�1)
u0 (ct � et)

35
=Et

24T�t�1X
n=0

�n
@�t+n

�
xt+n

�
@xt

u0 (ct+n � et+n)
u0 (ct � et)

+ �T�t�1q
@�T

�
xT
�

@xt

u0 (cT�1 � eT�1)
u0 (ct � et)

35
=Et

24T�t�2X
n=0

�n
@�t+n

�
xt+n

�
@xt

u0 (ct+n � et+n)
u0 (ct � et)

+ �T�t�1ET�2

0@@�T�1
�
xT�1

�
@xt

+ q
@�T

�
xT
�

@xt

1A u0 (cT�1 � eT�1)
u0 (ct � et)

35
=Et

24T�t�2X
n=0

�n
@�t+n

�
xt+n

�
@xt

u0 (ct+n � et+n)
u0 (ct � et)

+ �T�t�2q

0@@�T�1
�
xT�1

�
@xt

+ q
@�T

�
xT
�

@xt

1A u0 (cT�2 � eT�2)
u0 (ct � et)

35
:::

=Et

"
T�tX
n=0

qn
@�t+n

�
xt+n

�
@xt

#
:

where we repeatedly used the linearity of expectations and the Euler equation. We hence obtain

the following expression:

(Et+1 �Et)
"
T�t�1X
n=0

qn�t+1+n
�
xt+1+n

�#
=

�
1

a
� 1

�
(Et+1 �Et)

"
T�t�1X
n=0

qnxt+1+n

#
: (47)

Note that the above expression for taxes holds true for every concave u and all values for �; q < 1:

We have hence shown the following:

Proposition 2 Assume � is an optimal transfer scheme among all di�erentiable contracts for

u (c; e) = u (c� e) ; with u increasing concave and di�erentiable, and f as in (45). Then � solves
(47) or all t < T <1:

The above proposition simply says that (47) is a necessary condition of optimality. Indeed, it is

derived by only using a relaxed version of the incentive compatibility constraint. One line of attach

is to show conditions under which this scheme is unique. We follow a di�erent approach. We will

show the agent's problem is globally concave when facing the optimal tax scheme. Intuitively, since

taxes are linear taxes, as long as they are non-negative in the decision variables of the agent the

result is obtained by the concavity of the utility and the production functions. The formal proof

however forces us to restrict the analysis to the case where � � q and to specify the preferences

of the agent to be quadratic. The speci�cation of preferences will allow us to derive an analytical

speci�cation for taxes and to link linearly consumption to income.
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Since � is bounded above, in any �nite horizon problem we can choose a quadratic utility

speci�cation such that the bliss point is never reached. We will assume

u (c� e) = �1
2

�
�B � (c� e)

�2
with �B >> T�max: (48)

Lemma 2. If the agent has quadratic preferences and � � q; within the class of di�erentiable

schemes, taxes are in fact linear with
@� t(xt)
@xt�s

� 0 for all t � 0 and s > 0:Moreover, 1a � 1+
@� t(xt)
@xt

�

0 for all t: If � = q then
@� t(xt)
@xt�s

= 0 and 1 +
@� t(xt)
@xt

= 1
a ; this for all t � 0 and s > 0:

When the agent has quadratic preferences, the Euler equation in each period together with the

law of iterated expectations imply41

� �B + xt + � t
�
xt
�
=

�
�

q

�s
Et
h
xt+s + � t+s

�
xt+s

�i
�
�
�

q

�s
�B for all t; s � 0: (49)

Moreover, the incentive constraint for et imply

1 +
@� t

�
xt
�

@xt
+ q

@� t+1
�
xt+1

�
@xt

+ :::+ qT�t
@�T

�
xT
�

@xt
=
1

a
: (50)

We will work backwards.

As seen above, the (constant) slope of �T in xT is given by the e�ort incentive constraint (50)

for t = T :

1 +
@�T

�
xT
�

@xT
=
1

a
:= RT : (51)

We now derive
@�T (xT )
@xT�1

and show that it is nonnegative.

Consider the Euler equation between periods T � 1 and T: Using the linearity of �T in xT ;
equation (49) for t = T � 1 and s = 1 speci�es to

� �B + xT�1 + �T�1
�
xT�1

�
=
�

q
ET�1

h
RTxT + �T

�
xT�1

�i
� �

q
�B: (52)

In the expression, we use the fact that in equilibrium EtxT = xT�1; and we abuse in notation

denoting by �T
�
xT�1

�
the xT�1 part of �T : According to this notation,

@�T (xT�1)
@xT�1

=
@�T (xT )
@xT�1

by

the linearity of �T in xT .

In order for equation (52) to hold for all xT�1 given any x
T�2; it must be that

1 +
@�T�1

�
xT�1

�
@xT�1

=
�

q

24RT + @�T
�
xT
�

@xT�1

35 (53)

41Recall that we implement bt � 0 - i.e. ct = yt + �t - and et � 0:
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for all xT�1; xT : If we combine this condition with the incentive constraint for eT�1 :

1 +
@�T�1

�
xT�1

�
@xT�1

+ q
@�T

�
xT
�

@xT�1
=
1

a
; (54)

we are able to eliminate 1 +
@�T�1(xT�1)

@xT�1
; and obtain

�
�

q
+ q

� @�T �xT�
@xT�1

=
1

a
� �

q
RT � 0: (55)

The last inequality - which implies
@�T (xT )
@xT�1

� 0 - is true since RT = 1
a and we assumed � � q:

Next, we obtain the expression for the contemporaneous tax 1 +
@�T�1(xT�1)

@xT�1
from, say, (53):

1 +
@�T�1

�
xT�1

�
@xT�1

=
�

q

24RT + @�T
�
xT
�

@xT�1

35
=
�

q

 
qRT +

1
a

�
q + q

!
:= RT�1 � 0: (56)

We are now almost ready to start the recursion.

Our next target is to derive the marginal taxes with respect to xT�2; namely 1 +
@�T�2(xT�2)

@xT�2
;

@�T�1(xT�1)
@xT�2

and
@�T (xT )
@xT�2

: Those are obtained in �ve steps.

First, from (52) we get

@�T�1
�
xT�1

�
@xT�2

=
�

q

@�T
�
xT
�

@xT�2
: (57)

Second, the version of (53) relative to the Euler equation between periods T � 2 and T � 1 is

1 +
@�T�2

�
xT�2

�
@xT�2

=
�

q
RT�1 +

�

q

@�T�1
�
xT�1

�
@xT�2

: (58)

Third, from (50) for t = T � 2; using (57) we obtain

1 +
@�T�2

�
xT�2

�
@xT�2

+ q
@�T�1

�
xT�1

�
@xT�2

+ q2
@�T

�
xT
�

@xT�2

=1 +
@�T�2

�
xT�2

�
@xT�2

+

�
q + q2

q

�

� @�T�1 �xT�1�
@xT�2

(59)

=
1

a
:

Fourth, rearranging the last two conditions in order to eliminate 1 +
@�T�2(xT�2)

@xT�2
; we obtain

�
�

q
+ q + q2

q

�

� @�T�1 �xT�1�
@xT�2

=
1

a
� �

q
RT�1 � 0; (60)
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where the inequality is true since recalling that RT =
1
a ; (56) can be written as

RT�1 =
1

a

" �
q + �
�
q + q

#
� 1

a
;

and the inequality is implied by the assumption � � q:

Finally, we can now use (58) to obtain RT�2 as follows

1 +
@�T�2

�
xT�2

�
@xT�2

=
�

q
RT�1 +

�

q

@�T�1
�
xT�1

�
@xT�2

=
�

q
RT�1 +

�

q

" 1
a �

�
qRT�1

�
q + q + q

2 q
�

#

=

�
� + q2

�
RT�1 +

�
q
1
a

�
q + q + q

2 q
�

� 1

a
:

Again, the last inequality is implied by the fact that as long as � � q we have both that RT�1 � 1
a

and � + q2 � q + q2 q� . Of course, once
@�T�1(xT�1)

@xT�2
is obtained, it is immediate to derive

@�T (xT )
@xT�2

from (57), which is nonnegative if and only if
@�T�1(xT�1)

@xT�2
� 0.

The derivation for all other marginal taxes is tedious but straightforward. Once the expression

for the contemporaneous taxes 1 +
@� t+1(xt+1)

@xt+1
:= Rt+1 � 0 is obtained, one can follow the same

steps we have describe above to obtain all marginal taxes with respect to xt. Namely: First, one

uses the Euler equation (49) to establish the following relationships:

@� t+1
�
xt+1

�
@xt

=

�
�

q

�s @� t+1+s �xt+1+s�
@xt

for all s � 0:

Second, from the Euler equation one expression for contemporaneous taxes is obtained:

1 +
@� t

�
xt
�

@xt
=
�

q
Rt+1 +

�

q

@� t+1
�
xt+1

�
@xt

:

Third, this expression is combined with that obtained from the incentive compatibility constraint

for et

1 +
@� t

�
xt
�

@xt
+ ::::+ qs

@� t+s
�
xt+s

�
@xt

+ ::::+ qT�t
@�T

�
xT
�

@xt
=
1

a
;

to obtain (fourth) the expression for, say,
@� t+1(xt+1)

@xt
: Which on one hand will then be used to

obtain Rt: On the other hand it will deliver
@� t+s(xt+s)

@xt
from the �rst step. And so on till period

t = 1: By direct inspection, it is not di�cult to realize that they will all satisfy the conditions

stated in the proposition.

The speci�cation of our formulae for � = q imply that Rt =
1
a and, as a consequence,

@�T�s(xT�s)
@xt

= 0 for all t and s: Q.E.D.
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We now use that fact that the tax scheme is linear to show the following Lemma that concludes

the proof.

Lemma 3. If the agent has quadratic preferences, and � � q when facing the above tax, the

agent's problem is concave, so the so derived tax scheme is optimal.

We have to show that, when facing the optimal tax scheme, the agent's problem is jointly

concave in fet (xt)gTt=0 and fbt+1 (xt)g
T
t=0 : Consider two contingent plans e

1;b1; c1 and e2;b2; c2:

Now consider the plan e�;b�; c� where for all xt; and � 2 [0; 1] we have e�t
�
xt
�
:= �e1t

�
xt
�
+

(1� �) e2t
�
xt
�
; and similarly for bt and ct: First of all, since both e�ort and assets enter linearly in

the utility function, the concavity of the agent's utility and the additive separability over time and

states imply that if we show that c� is attainable we are done.

We will show the statement for � = q but the proof is similar for the general case with � � q.

Of course, what is crucial for the proof is what we have shown above. Namely, that marginal taxes

are all nonnegative but the contemporaneous ones
@� t(xt)
@xt

; which are such that 1 +
@� t(xt)
@xt

� 0.

Recall that when � = q
@� t(xt)
@xt�s

� 0; and
@� t(xt)
@xt

� �
(t)
t = 1

a � 1 for all t. The �nal part of the
proof is hence very simple. If the agent chooses plan e� of e�ort, period t net income available for

consumption is given by

x�t + �t (x
�
0 ; x

�
1 ; ::::; x

�
t ) =

�
1 + �

(t)
t

�
x�t + kt

=
1

a
x�t + kt

=
1

a
f (�t; e

�
t ) + kt

� 1
a

h
�f
�
�t; e

1
t

�
+ (1� �) f

�
�t; e

2
t

�i
+ kt

=
1

a

h
�x1t + (1� �)x2t

i
+ kt = c�t ;

where the inequality in the penultimate row comes from the concavity of f in e and a � 1 > 0: The
last line is de�nitional. Q.E.D.

When � = q and u is quadratic, the derivation of the optimal scheme is particularly simple.

Since we know that only contemporaneous taxes are positive, from bt = 0 we must have

ct
�
xt
�
= xt + �t

�
xt
�
= xt + kt +

�
1

a
� 1

�
xt = kt +

1

a
xt for all t � 0:

This, together with the Euler equation implies kt+1 = kt and

�ct+1 = ct+1 � ct =
1

a
(xt+1 � xt) =

1

a
vpt+1: (61)
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The obvious generalization of the previous expression is valid for � < q as well. The reader

should not be surprised to realize that when the agent is facing only permanent shocks expression

(61) for q = � holds true independently from the horizon the agent faces.

In�nite Horizon Since for T su�ciently large any bond �B will be eventually reached for some

history of income shocks, we cannot address the in�nite horizon cases properly. On the other hand

we can interpret the in�nite horizon case as the `limit case' for T very large, but �nite. According

to this interpretation, we may (heuristically) write the corresponding expression for (47) as

(Et+1 �Et)
" 1X
n=0

qn�t+1+n
�
xt+1+n

�#
=

�
1

a
� 1

�
(Et+1 �Et)

" 1X
n=0

qnyt+1+n

#
: (62)

One can obtain the closed form for the single taxes as well. They will be time-invariant and all

corresponding to the limiting expression one can derive for R1 above as T goes to in�nity. Details

are available upon request. Of course, for � = q also in this limit case we have
@� t(xt)
@xt�s

� 0; and

@� t(xt)
@xt

� 1
a � 1 no matter the time horizon, and �ct+1 =

1
av
p
t+1:

9.5 Temporary shocks

In presence of temporary shocks the planner should obviously condition on �t = g
�
vTt ; lt

�
real-

izations as well. Denote by ht =
�
xt; �t

�
the combined public history. If we specify a production

function of the form

�t = g
�
vTt ; lt

�
= vTt + a

T min flt; 0g+ bT max flt; 0g with aT > 1 > bT ;

and the following agent's preferences over ct; lt and et : u (ct � lt � et) :
The analysis is now performed separately for the two type of shocks, and we get

Et

T�tX
n=0

�n
"
@�t+n

�
ht+n

�
@�t

u0 (ct+n � et+n � lt+n)
u0 (ct � et � lt)

#
=
1

aT
� 1

and

Et

T�tX
n=0

�n
"
@�t+n

�
ht+n

�
@xt

u0 (ct+n � et+n � lt+n)
u0 (ct � et � lt)

#
=
1

ap
� 1;

where, for consistency, we denoted by ap the slope of f for et � 0: By the same reasons we gave

in the proof of Lemma 1, as long as we restrict ourself to di�erentiable schemes, one can uses the

Euler equation and derive the following expressions for the sum of taxes:

Et

T�tX
n=0

qn
@�t+n

�
ht+n

�
@�t

=
1

aT
� 1

and

Et

T�tX
n=0

qn
@�t+n

�
ht+n

�
@xt

=
1

ap
� 1:
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Assuming quadratic preferences, for permanent shocks, the Euler equation implies the same taxes

as we derived above, namely

@�t+s
�
ht+s

�
@xt

�
�

q

�s
=

�
�

q

�k @�t+k �ht+k�
@xt

� 0 for all k; s > 0:

It is easy to see that for temporary shocks we have essentially the same expressions:

@�t+s
�
ht+s

�
@�t

�
�

q

�s
=

�
�

q

�k @�t+k �ht+k�
@�t

; for all k; s > 0:

Then, one uses the incentive constraint and follows the same �ve-steps line of derivation we ex-

plained above to obtain, working backwards, the expressions for marginal taxes
@�t+k(ht+k)

@�t
and

1 +
@�t(ht)
@�t

and show that all are nonnegative. Details are available upon request.

Give our empirical target, we report here below the (analytically simpler) expressions for the

`in�nite-horizon' speci�cation of our model. For permanent shocks, we obviously obtain exactly

the same conditions as before. In the limit case for T very large the tax scheme tends to:

1 +
@�t

�
ht
�

@�t
=

�
�

q

�k @�t+k �ht+k�
@�t

= 1 + �
(t)
� � 0: (63)

As explained in the proof for Lemma 2, all the above expressions imply optimality when � � q:

According to (63) when � < q marginal taxes with respect to temporary shocks explode as k

increases. The expressions for taxes are then obtained as solutions to di�erence equations.

It is easy to see by direct inspection of (63) and from the previous analysis that for � = q the

in�nite horizon case delivers the following expressions for taxes:

1 + �x =
1

ap
and 1 + �� =

1� q
aT

;

where 1 + �x = 1 +
@�t(ht)
@xt

and 1 + �� = 1 +
@�t(ht)
@�t

=
@�t+k(ht+k)

@�t
for k > 0: Hence tax rates are

time-invariant, and the agent's consumption reaction to income shocks is given by:

�ct+1 =
1

ap
�xt+1 +

1� q
aT

��t+1 =
1

ap
vpt+1 +

1� q
aT

vTt+1:

10 Appendix C: Isoelastic Utility: A Closed Form in Logs

We will only consider the in�nite horizon case, and start from the case with only permanent shocks.

The outcome of this section will be an expression for innovation in log consumption of the form

lnCt+1 � lnCt =
1

ap
vpt+1 +

1� q
aT

vTt+1 �
ln q�


+



2

"�
1

ap

�2
�2vp +

�
1� q
aT

�2
�2vp

#
;

where vpt+1 is the innovation to (log) permanent income and
1

 is the intertemporal elasticity of

substitution of consumption and C is consumption.42

42In this section, we change a bit notation hoping that it will be all clear since we de�ne any new variable.
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The Isoelastic Model Let yt = lnYt; and e := lnN: We assume the log income process follows:

yt = xt + �t

where

xt = f(�t; et) = �t + a
pmin f0; eg+ bpmax f0; eg ; with ap � 1 > bp:

This is precisely the same formulation as above, but with all variables interpreted in logs. Similarly,

we specify �t = vTt +a
T min flt; 0g+bT max flt; 0g : Again, for notational simplicity, we will disregard

�t: We hence denote a
p simply with a:

Notice that the production function corresponds to a modi�cation of the standard Cobb-

Douglas: Xt = �tN
a
t ; and Xt = �tN

b
t for Nt � 1 and Nt � 1 respectively.

We specify the following process for skills:

ln�t � �t = �t�1 + v
p
t :

An additional assumption, which will be crucial for us to get an exact closed form, is that the

shocks vpt are normally distributed with mean �vp and variance �
2
vp .

Moreover, assume that the agent has Cobb-Douglas/CRRA preferences of the following form:

E0
X
t=0

�t

�
Ct �N�1

t

�1�

1� 
 for 
 > 1; and E0

X
t=0

�t (lnCt � lnNt) for 
 = 1:

For future use, notice that we can write:�
Ct �N�1

t

�1�

1� 
 =

1

1� 
 exp f(1� 
) (ct � et)g

where ct := lnCt:

It will be convenient to write the problem in logs so that we can use the analogies to the case

in levels. The budget constraint can be written as follows:

exp fctg+ qbt = exp
n
xt + �t

�
xt
�o
+ bt�1:

Since in equilibrium we will have N�
t � 1; the Euler equation is the usual one

Et

"�
Ct+1
Ct

��
#
= Et

�
exp

�
�
 ct+1

ct

��
= exp

�
�
�t + 
2

1

2
�2t

�
=
q

�
;

where we used the fact that Ct+1 is log normally distributed, with �ct+1 having conditional mean

�t and conditional variance �
2
t .
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Since we will implement b�t � 0; ct
�
xt
�
= xt + �t

�
xt
�
and the objective function becomes

E0
X
t=0

�t
1

1� 
 exp
n
(1� 
)

�
xt + �t

�
xt
�
� et

�o
:

Given our speci�cation for f; the objective function can be all expressed in logs. It is now easy to

see the strong analogy to the case in levels considered above. The �rst order condition for (log)

e�ort et is

Et

1X
n=0

�n
�
Ct+n
Ct

�1�
 @�t+n �xt+n�
@xt

=
1

a
� 1 (64)

One can again show that conditional expectations can be decomposed since
@�t+n(xt+n)

@xt
does not

depend on xt+n: This is exactly as above for the model in levels. Moreover, since Ct is log normally

distributed, we have

Et

"�
Ct+n
Ct

�1�
#
= Et

�
exp

�
(1� 
) ct+1

ct

��
= exp

�
(1� 
)�t +

1

2
(1� 
)2 �2t

�
:

>From the Euler equation we obtain:

exp

�
(1� 
)�t +

1

2
(1� 
)2 �2t

�
=exp

�
�
�t + 
2

1

2
�2t

�
exp

�
�t +

1

2
(1� 2
)�2t

�
=
q

�
exp

�
�t +

1

2
�2t � 
�2t

�
: =

q

�
dt: (65)

Similarly, by the law of iterated expectations, we get

Et

"�
Ct+n
Ct

��
#
= Et

"�
Ct+1
Ct

��

Et+1

�
Ct+2
Ct+1

��

� :: �Et+n�1

�
Ct+n
Ct+n�1

��
#
=

�
q

�

�n
Using the properties of the normality, and assuming that log consumption innovation conditional

variance and conditional mean are constant and equal to � and �2 respectively (a property which

can be veri�ed below), and denoting d := exp
�
�+

�
1
2 � 


�
�2
�
> 0; we have43

Et

�
exp

�
(1� 
) ct+n

ct

��
=Et

�
exp

�
�
 ct+1

ct

�
dEt+1 exp

�
�
 ct+2

ct+1

�
d � :: �Et+n�1 exp

�
�
 ct+n

ct+n�1

�
d

�
=

�
qd

�

�n
:

43It can be deduced from (65) the intuitive fact that when utility is logarithmic, we have d = �
q
and, obviously this

is consistent with

Et

h
exp
�
(1� 
) ct+n

ct

�i
= 1:
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Again by the law of iterated expectations, the incentive constraint (64) hence becomes

Et

1X
n=0

(qd)n
@�t+n

�
xt+n

�
@xt

=
1

a
� 1

>From the Euler equation, one can easily see that future marginal taxes must be zero, so that

@�t
�
xt
�

@xt
=
1

a
� 1;

and

�ct+1 = ct+1 � ct =
1

a
vpt+1 + �;

where � = Et�ct+1: Since, from the above expression, the variance of log consumption is �2c =

1
a2
�2vp ; from the Euler equation, we have

� = �
ln q�


+ 


1

2
�2c = �

ln q�


+




2a2
�2vp :

In order to get the expression for log taxes (not in levels) notice that the log of tax must display

a deterministic drift:

�t
�
xt
�
=

�
1

a
� 1

�
xt + t

"
�
ln q�


+




2a2
�2vp

#
: (66)

Now the analogy to the quadratic case is transparent. One can indeed show that the analysis

for temporary shocks is again a combination of that just performed and that we have done when

we studied the case with temporary shocks in the quadratic case. We hence obtain the expression

reported at the beginning of this section.

Why consumption is log normally distributed? By following a similar derivation to that

for the quadratic case, from the Euler equation, we have

ct = xt + �t
�
xt
�
= � lnEt exp

n
�xt+1 � �t+1

�
xt+1

�o
Going backward we obtain that �t+1 only depends on xt+1; and it is actually linear in xt+1 (with

constant slope), hence consumption is log normally distributed. Start by the Euler equation for

bT�1; since we know that the tax in the last period is linear in xT ; we have

xT�1 + �T�1
�
xT�1

�
=�1



lnET�1 exp

�
�
 1

a
xT � 
�T

�
xT�1

��
=�1



ln exp

�
�
 1

a
ET�1xT � 
�T

�
xT�1

�
+ 
2

1

2

1

a2
�2vp

�
=
1

a
xT�1 � �T

�
xT�1

�
+




2a2
�2vp :

where we used the fact that in equilibrium EtxT = xT�1: And so on till period 1:
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Figure 1: The Production Function
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Table 1
Non Durable Consumption

gross earnings gross earnings gross earnings + gross earnings + net earnings + net earnings +
 benefits  benefits benefits benefits

income equation

w2 1 1 1 1 1 1
ayc(t) - - - - - -

0.505 - 0.333 - 0.376 -
ayc(t-1) (20.735) - (25.683) - (18.240) -

-0.672 - -0.748 - -0.507 -
ayc(t-2) (12.252) - (18.183) - (10.247) -
w1
ayy(t) 1.159 1.171 1.073 1.064 0.771 0.793

(0.346) (0.317) (0.329) (0.317) (0.253) (0.243)
ayy(t-1) -1.140 -1.148 -0.887 -0.894 -0.602 -0.587

(0.454) (0.415) (0.492) (0.459) (0.342) (0.323)
ayy(t-2) 0.992 0.995 0.827 0.844 0.619 0.568

(0.370) (0.331) (0.356) (0.311) (0.257) (0.227)
consumption equation
w1
acc(t) 1 1 1 1 1 1

- - - - - -
acc(t-1) -0.577 -0.493 -0.604 -0.491 -0.612 -0.499

(0.196) (0.114) (0.193) (0.116) (0.191) (0.111)
acc(t-2) 0.084 - 0.116 - 0.118 -

(0.201) - (0.191) - (0.193) -
Log L -773.3 -773.9 -759.5 -760.6 -685.0 -685.5

excess smoothness -0.491 -0.499 -0.489 -0.493 -0.273 -0.263
se (0.171) (0.165) (0.160) (0.153) (0.132) (0.128)

Comparison with 4 lags model
Log L 4lags model -771.5 -773.6 -756.3 -760.4 -681.7 -685.3
LR 3.7 0.54 6.34 0.42 6.52 0.34
P-value 0.717 0.763 0.386 0.811 0.368 0.844

NOTES: 
- all data are in (first diff of) levels
- SE in parentheses
- excess smoothness test computed as sum(acc(t-L))-sum(ayy(t-L))=0, with L=0,…,4
- interest rate =0.01
- Income/consumption shock  is the shock that enters both the income and the consumption equation
- LR test is the test of current model against previous (to the left) one. In green if restrictions 



Table 2
Total Consumption Expenditure

gross earnings gross earnings gross earnings + gross earnings + net earnings + net earnings +
benefits benefits benefits benefits

income equation

w2 1 1 1 1 1 1
ayc(t) - - - - - -

51.615 - 0.400 - 0.321 -
ayc(t-1) (1535.290) - (9.124) - (28.027) -

-36.884 - -0.968 - -0.765 -
ayc(t-2) (1072.450) - (7.222) - (20.287) -
w1
ayy(t) 0.596 0.586 0.730 0.497 0.683 0.662

(0.427) (0.351) (0.383) (0.346) (0.236) (0.205)
ayy(t-1) -0.341 -0.673 -0.472 -0.533 -0.277 -0.273

(0.638) (0.473) (0.572) (0.477) (0.358) (0.304)
ayy(t-2) 0.572 0.981 0.561 0.910 0.330 0.363

(0.451) (0.467) (0.430) (0.451) (0.280) (0.238)
consumption equation
w1
acc(t) 1 1 1 1 1 1

- - - - - -
acc(t-1) -0.349 -0.346 -0.386 -0.345 -0.372 -0.395

(0.406) (0.208) (0.366) (0.202) (0.367) (0.172)
acc(t-2) -0.069 - -0.022 - -0.031 -

(0.358) - (0.330) - (0.319) -
Log L -885.2 -886.0 -869.4 -870.5 -788.0 -788.9

excess smoothness -0.233 -0.224 -0.217 -0.203 -0.131 -0.174
se (0.128) (0.144) (0.116) (0.113) (0.099) (0.128)

Comparison with 4 lags model
Log L 4lags model -882.3 -885.4 -867.8 -869.6 -786.2 -788.3
LR 5.78 1.24 3.26 1.82 3.54 1.1
P-value 0.448 0.538 0.776 0.403 0.739 0.577

NOTES: 
all data are in (first diff of) levels
SE in parentheses
excess smoothness test computed as sum(axx(t-L))-sum(ayx(t-L))=0, with L=0,…,4
interest rate =0.01



Table 3
Total Consumption Expenditure: log specification

gross earnings gross earnings gross earnings + gross earnings + net earnings + net earnings +
 benefits  benefits benefits benefits

income equation
Own shock
ayy(t) 1 1 1 1 1 1

- - - - - -
ayy(t-1) 0.332 - 0.181 - 0.159 -

(14.452) - (4.936) - (1.982) -
ayy(t-2) -0.748 - -0.779 - -0.595 -

(10.305) - (3.957) - (1.426) -
Income/Consumption Shock
ayx(t) 0.889 0.816 0.717 0.748 0.799 0.570

(0.200) (0.155) (0.162) (0.146) (0.191) (0.187)
ayx(t-1) -1.102 -1.250 -0.685 -0.836 -0.523 -0.222

(0.249) (0.206) (0.216) (0.177) (0.253) (0.211)
ayx(t-2) 0.393 0.660 0.094 0.223 -0.120 0.086

(0.229) (0.199) (0.191) (0.139) (0.214) (0.152)
consumption equation
Income/Consumption Shock
axx(t) 1 1 1 1 1 1

- - - - - -
axx(t-1) -0.601 -1.011 -0.647 -1.011 -0.578 -0.619

(0.243) (0.008) (0.279) (0.008) (0.324) (0.125)
axx(t-2) -0.411 - -0.368 - -0.444 -

(0.247) - (0.282) - (0.330) -
Log L 100.9 97.2 153.3 148.6 173.8 168.2
LR 7.4 9.38 11.16
P-Value 0.007 0.002 0.001

excess smoothness -0.181 -0.226 -0.133 -0.141 -0.170 -0.048
se (0.100) (0.079) (0.050) (0.053) (0.066) (0.106)

NOTES: 
all data are in (first diff of) levels
SE in parentheses
excess smoothness test computed as sum(axx(t-L))-sum(ayx(t-L))=0, with L=0,…,4
interest rate =0.01



Table 4
Variance Based Test

non durable consumption non durable consumption total consunmption total consumption 
 per ad.eq.  per ad.eq. 

Ind. Var.

Gross earnings 0.0709 0.0376 0.0765 0.0547
0.0133 0.0154 0.0177 0.0196

implied a 3.7556 5.1571 3.6144 4.2746
0.0484 0.0900 0.0610 0.0865

Gross earnings+ 0.2357 0.1476 0.3019 0.2495
benefits 0.0302 0.0355 0.0401 0.0448

implied a 2.0596 2.6032 1.8200 2.0021
0.0447 0.0747 0.0492 0.0634

Net earnings + 0.2601 0.1466 0.3478 0.2733
benefits 0.0351 0.0413 0.0463 0.0519

implied a 1.9608 2.6121 1.6957 1.9129
0.0482 0.0871 0.0511 0.0686

Number of observ 505 505 505 505




