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1 Introduction

We study the role of information in asset pricing models with long-run cash flow risk. The

idea that long-run cash flow risk can have important affects on asset prices is exemplified

by the work of Bansal and Yaron (2004), who show that a small but persistent common

component in the time-series processes of consumption and dividend growth is capable of

generating large risk premia and high Sharpe ratios.1

A crucial aspect of the long-run risk theory is that the persistent component in con-

sumption growth must be small. That is, it must account for only a small fraction of its

short-run variability. If this were not the case, the model-implied annualized volatilities of

consumption and dividend growth, as well as the correlation between the two, would be

implausibly large and both series implausibly persistent. But with the persistent component

necessarily small, it is (both in theory and in empirical work) diffi cult to detect statistically,

even in large samples. Despite this, a maintained assumption in the theoretical literature is

that investors can directly observe the persistent component and distinguish its innovations

from the more volatile transitory shocks to consumption and dividend growth. We refer to

this assumption as the full information paradigm. While this is a natural starting place and

an important case to understand, in this paper we consider an alternative specification in

which market participants face a signal extraction problem: they can observe the change in

consumption and dividends each period, but they cannot observe the individual components

of that change.

Information about long-run cash flow risk is likely to be limited. Indeed, in reality the

long-run components are unobservable and the parameters of a general dynamic system for

1An extensive literature has followed this work. See Parker (2001); Parker and Julliard (2004); Colacito

and Croce (2004); Bansal, Dittmar and Kiku (2009); Hansen, Heaton and Li (2008); Kiku (2005); Malloy,

Moskowitz and Vissing-Jorgensen (2009); Bansal, Dittmar and Lundblad (2005); Bansal, Kiku and Yaron

(2007); Hansen and Sargent (2006).
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consumption and dividend growth that embeds these components cannot be identified from

historical data using standard estimation techniques. Thus, the full information assumption

takes the amount of information investors have very seriously: market participants must not

only understand that a small predictable component in cash flow growth exists, they must

also be able to decompose each period’s innovation into its component sources and have

complete knowledge of how the shocks to these sources vary and co-vary with one another,

even though the data give us no guide for identifying these components separately.

We propose an alternative model of behavior in which a representative decision maker

optimizes based on a cash flow model that is sparse in the sense that it ignores cross-

equation restrictions that are diffi cult if not impossible to infer in finite samples, and fully

identified from historical data. We refer to this specification as the bounded rationality

limited information model. The cash flow model serves as a signal extraction tool, allowing

the investor to form an estimate of the long-run components in dividend and consumption

growth, given historical data.

As an illustration of the potential importance of the information structure, we study

the implications of models with long-run consumption risk for jointly matching evidence

for a sizable equity risk premium simultaneously with a downward sloping term structure

of equity. The term structure of aggregate equity may be computed by recognizing that

an equity index claim is a portfolio of zero-coupon dividend claims (strips) with different

maturities. A downward sloping equity term structure means that expected excess returns

on strips that pay dividends in the near future are higher than that for the market index,

an average over all strips.

We study a cash flow model in which the aggregate dividend growth rate is differentially

exposed to two systematic risk components driven by aggregate consumption growth, in ad-

dition to a purely idiosyncratic component uncorrelated with aggregate consumption. One

systematic risk component is a small but highly persistent (long-run) component in con-
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sumption growth as in Bansal and Yaron (2004), while the second is a transitory (short-run)

i.i.d. component with much larger variance. The purely idiosyncratic component is volatile,

as required to match the evidence that dividend growth is substantially more volatile than

consumption growth and not highly correlated with it. In addition, we follow the existing

literature on long-run risk by employing the recursive utility specification developed by Ep-

stein and Zin (1989, 1991) and Weil (1989). Under standard parameterizations of the utility

function, investors have a preference for early resolution of uncertainty, implying that shocks

to the priced long-run component of cash flows command large risk premia even if they are

far less volatile over short horizons than are shocks to the priced short-run component.

We use the framework just described to study the term structure of equity. We show

that, with full information, expected excess returns on strips that pay a dividend in the far

future are higher than the market risk premium, implying an upward sloping term structure,

contrary to the historical data. Specifically, the full information paradigm cannot simulta-

neously generate both a high equity risk premium and a downward sloping term structure,

unless the long-run component in dividend growth is a source of insurance, rather than risk.

Insurance means that innovations in the long-run component (holding other shocks fixed)

generate positive covariance between the pricing kernel and returns, so that the long-run

component generates a negative risk premium. In a long-run insurance model, more than

100% of the equity premium must be attributable to short-run consumption risk, and under

reasonable parameterizations of the magnitude of this risk, the equity premium is small and

the level of the term structure too low. We use approximate analytical solutions to the

model to show that this is result is quite general. By contrast, under the bounded rational-

ity limited information model, the equity risk premium can be sizable while the equity term

structure slopes down even if, under full information, the long-run component in dividend

growth would be a source of risk, rather than insurance.

The intuition for this result is as follows. When investors with a preference for early
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resolution of uncertainty can observe the long-run component in cash flows—in which a small

shock today has a large impact on long-run growth rates—the long-run is correctly inferred

to be more risky than the short-run, implying that long maturity equity strips must in

equilibrium command high risk premia. By contrast, short maturity strips command low

risk premia because they depend on exposure to the short-run consumption shock, which

does not generate as large a risk premium as the long-run shock under standard calibrations.2

Under the bounded rationality limited information model proposed here, the opposite can

occur because the decision maker’s estimate of the long-run component in dividend growth

will be “contaminated” by shocks to the i.i.d. components in consumption and dividend

growth (including the idiosyncratic component), which cannot be distinguished from shocks

to the persistent components. Shocks to the short-run component in consumption growth

generate high risk premia on short maturity strips, both because the exposure of dividend

growth to the short-run consumption shock contributes positively to the risk premium on

the one-period strip even under full information, and because the decision maker erroneously

revises upward her estimate of the long-run component in consumption and dividend growth

in response to short-run (i.i.d.) shocks. This latter effect makes short-run shocks appear more

risky under the bounded rationality limited information model than under full information,

leading to higher risk premia on short maturity strips under the former than the latter.

On the other hand, long maturity strips have low risk premia under the bounded ratio-

nality limited information model because shocks to the persistent component in consumption

growth (which drive the persistent component in dividend growth) are too small to be distin-

guished from the large idiosyncratic dividend shocks. Dividend growth as a whole appears

close to i.i.d. and shocks to the long-run component are close to being unpriced under the

2In Section 4 we consider general calibrations of the full information model, including non-standard ones.

Greater exposure to short-run risk can raise the premium on the one-period strip, but longer maturity strips

will have lower risk premia only if the model is one of long-run insurance rather than long-run risk.
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bounded rationality limited information model, even though they command substantial risk

premia under full information. The end result is that long maturity strips have low risk

premia under the bounded rationality limited information model, while they have high risk

premia under full information.

The rest of this paper is organized as follows. The next section discusses related literature

discussed here, as well as the empirical evidence for a downward sloping equity term structure.

Section 3 presents the asset pricing model, the model for cash flows, and the information

assumptions. Section 4 presents the theoretical results on the equity premium, level and

slope of the term structure, beginning with approximate log-linear analytical solutions to

the full and bounded rationality limited information models. We then move on to illustrate

the role of the information structure in driving equilibrium outcomes. Section 5 concludes

the paper.

2 Related Literature

A growing body of literature documents evidence that the term structure of the stock market

is downward sloping (e.g., van Binsbergen, Brandt and Koijen (2010), Ang and Ulrich (2011),

van Binsbergen, Hueskes, Koijen and Vrugt (2012), and Boguth, Carlson, Fisher and Simutin

(2011)). As mentioned, a downward sloping equity term structure means that risk premia

on strips that pay a dividend in the near future are higher than that for the market index,

an average over all strips. The magnitude of these negatives spreads found in the data is

substantial. These findings are consistent with those showing that short duration individual

stocks that make up the equity index have higher expected returns than long duration

individual stocks (Cornell (1999, 2000); Dechow, Sloan and Soliman (2004); Da (2005); van

Binsbergen et al. (2010)).

A number of recent papers address issues related to those studied here. Hansen and Sar-
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gent (2006), also concerned about the agent’s ability to observe the long-run risk component

in aggregate cash flows, study these models in a robust control framework but do not study

implications for the equity term structure.

Our paper is related to a recent literature that seeks to reconcile the cross-sectional

properties of equity returns simultaneously with the cash flow duration properties of value

and growth assets (Lettau and Wachter (2007) and Lettau and Wachter (2009)).3 None of

these studies investigate the role of the information structure on asset prices, a focus of this

paper.

Finally, our work builds on an earlier literature that studies the effect of information

quality and learning on asset prices. Since the cash-flow specifications in our model can be

represented by linear Gaussian state space models, the filtering problem our agents solve is

a special case of Bayesian updating used in many learning models, such as Veronesi (2000),

Li (2005), Ai (2010), and Johannes, Lochstoer and Mou (2013). All of these models consider

learning about the cash-flow or production process, but they differ in their modeling of

preferences and/or technologies and/or the specific variables about which agents learn. In

fact, Veronesi (2000), Li (2005), and Ai (2010) are special cases of our model.4 None of these

papers focus on the implications of learning for the term structure of equity, the goal of this

3Two other papers study duration indirectly. Lustig and Van Nieuwerburgh (2006) study a model with

heterogenous agents and housing collateral constraints and find that conditional expected excess returns are

hump-shaped in their measure of duration. Zhang (2005) shows that, when adjustment costs are asymmetric

and the price of risk varies over time, growth assets can be less risky than assets in place (value stocks),

consistent with the cash flow and return properties of value and growth assets. But the Zhang model does

not account for the finding of Fama and French (1992) that value stocks do not have higher CAPM betas

than growth stocks.
4Veronesi (2000) and Li (2005) study endowment economies with constant relative risk-aversion utility (a

special case of our recursive preferences), while Ai (2010) and Johannes et al. (2013) study economies where

agent’s have recursive preferences, but with consumption equal to dividends (a special case of our model

where consumption and dividend growth are imperfectly correlated).
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paper.

Although not modeled explicitly as such, we can think of our information friction about

the consumption process as the result of limited information about deeper variables of the

economy. Examples include Kaltenbrunner and Lochstoer (2010), where the persistent com-

ponent of consumption growth arises from consumption smoothing, or Croce (2014), where

there is a persistent component in the growth of TFP. In both studies, the primitive shock is

a technology shock and limited information could arise about the technology process itself,

which could be subject to shocks with different degrees of persistence in either the first or

second moments.

3 The Asset Pricing Model

Consider a representative agent who maximizes utility defined over aggregate consumption.

To model utility, we use the more flexible version of the power utility model developed by

Epstein and Zin (1989, 1991) and Weil (1989), also employed by other researchers who study

the importance of long-run risks in cash flows (Bansal and Yaron (2004), Hansen et al. (2008)

and Malloy et al. (2009)).

Let Ct denote consumption and RC,t denote the simple gross return on the portfolio of

all invested wealth, which pays Ct as its dividend. The Epstein-Zin-Weil objective function

is defined recursively as:

Ut =
[
(1− δ)C

1−γ
θ

t + δ
(
Et
[
U1−γ
t+1

]) 1
θ

] θ
1−γ

where γ is the coeffi cient of risk aversion and the composite parameter θ = 1−γ
1−1/Ψ

implicitly

defines the elasticity of intertemporal substitution (EIS) Ψ.

Let Dt denote the aggregate dividend at time t, and let PD
t denote the ex-dividend

price measured at the end of time t of a claim to the asset that pays the aggregate dividend

stream {Dt}∞t=1. Let P
C
t denote the ex-dividend price of a claim to the aggregate consumption
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stream. From the first-order condition for optimal consumption choice and the definition of

returns

Et [Mt+1Rc,t+1] = 1, Rc,t+1 =
PC
t+1 + Ct+1

PD
t

(1)

Et [Mt+1Rd,t+1] = 1, Rd,t+1 =
PD
t+1 +Dt+1

PD
t

(2)

where Mt+1 is the stochastic discount factor (SDF), given under Epstein-Zin-Weil utility as

Mt+1 =

(
δ

(
Ct+1

Ct

)− 1
ψ

)θ

Rθ−1
c,t+1. (3)

The return on a one-period risk-free asset whose value is known with certainty at time t is

given by Rf,t+1 ≡ (Et [Mt+1])−1 .

3.1 The Cash Flow Model

Equities are modeled as claims to the aggregate dividend stream. We are interested in a

model for equity cash flows that allows dividend growth rates to be potentially exposed to

both transitory and persistent sources of consumption risk, as well as to purely idiosyncratic

shocks that command no risk premium. We use lower case letters denote log variables,

e.g., log (Ct) ≡ ct. Denote the conditional means of the log difference in consumption

and dividends as xc,t and xd,t, respectively. Consider a general system of equations for log

consumption, ct, and log dividends, dt, taking the form

∆ct+1 = µc + xc,t︸︷︷︸
LR risk

+ σεc,t+1︸ ︷︷ ︸
SR risk

(4)

∆dt+1 = µd + xd,t + φcσεc,t+1 + σdσεd,t+1 (5)

xc,t = ρxc,t−1 + σxcσεxc,t (6)

xd,t = ρdxd,t−1 + σxdσεxd,t (7)
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(εc,t+1, εd,t+1, εxc,t, εxd,t) ∼ N.i.i.d (0,Ω) , (8)

where Ω is an unrestricted symmetric covariance matrix,

Ω =



1 ρc,d ρc,xc ρc,xd

ρc,d 1 ρd,xc ρd,xd

ρc,xc ρd,xc 1 ρxc,xd

ρc,xd ρd,xd ρxc,xd 1


,

where ρi,j denotes the correlation coeffi cient between the shocks εi and εj.

We use the term short-run “SR”risk to refer to the i.i.d. consumption shock, and long-

run “LR”risk to refer to the persistent conditional mean xc,t. This “long-run”terminology

is used in the literature because even small innovations in xc,t, if suffi ciently persistent, will

have large affects on cash flows in the long-run, resulting in high risk premia when investors

prefer early resolution of uncertainty. The model of Bansal and Yaron (2004) is a special case

of the system (4)-(8) in which consumption and dividend growth contain a single, common

predictable component:

∆ct+1 = µc + xc,t︸︷︷︸
LR risk

+ σεc,t+1︸ ︷︷ ︸
SR risk

(9)

∆dt+1 = µd + xd,t + φcσεc,t+1 + σdσεd,t+1 (10)

xc,t = ρxc,t−1 + σxcσεxc,t (11)

xd,t = φxxc,t (12)

εc,t+1, εd,t+1, εxc,t ∼ N.i.i.d (0, 1) , (13)

This special case imposes the parameter restrictions ρd = ρ, σxd = φxσxc, εxd,t = εxc,t,

xc,0 = xd,0 = 0, ρxc,xd = 1, and ρc,d = ρc,xc = ρc,xd = ρd,xc = ρd,xd = 0. The Bansal and Yaron

(2004) specification also sets φc = 0 so that dividend growth is not exposed to short-run

consumption risk.
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The representative agent in the Bansal and Yaron (2004) is assumed to have the power to

observe both the conditional means xc,t and xd,t as well as all the parameters of the cash flow

process (4)-(8). These assumptions imply that the agent takes the cash flow model (9)-(13)

as given, if the true data-generating process embeds the appropriate parameter restrictions.

We refer to this assumption as full information (“FI” for short). In reality, the variables

xc,t and xd,t are unobservable and the parameters of the general system (4)-(8) cannot be

identified from historical data using standard estimation techniques (see below). We define

limited information as a state of the world in which this reality holds for the decision maker

in the model: investors cannot directly observe the latent variables xc,t and xd,t and they do

not know, nor can they identify from data, the parameters of the data generating cash flow

process.

3.2 Limited Information

We assume that investors in a limited information state of the world can observe all historical

data, even asset price information. Because asset prices are endogenous outcomes conditional

on the information in cash flows, asset price data are redundant once the information in

historical consumption and dividend data has been taken into account. Therefore adding

asset return data to the information set that includes consumption and dividend data leads

to the same equilibrium allocations as the model where the information set includes only the

history consumption and dividend data.

Armed with historical data on dividends and consumption, how could one estimate the

parameters of the system together with estimates of the latent variables xc,t and xd,t? A

standard approach would be to write the dynamic system (4)-(8) in state space form and

apply Maximum Likelihood estimation simultaneously with the Kalman filter to estimate

both the latent state variables xc,t and xd,t and the parameters of the general dynamic

system (4)-(8). Without further restrictions on the parameter space, however, the system
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(4)-(8) is unidentified. That is, more than one set of parameter values can give rise to the

same value of the likelihood function and the data give no guide for choosing among these.

To see why note that, given historical data and knowledge of the system (4)-(8), an

investor with limited information can estimate the Wold representation for this system,

which will exist as long as ∆ct+1 and ∆dt+1 follow covariance-stationary processes. For

arbitrary parameter values (limiting to stationarity of the data), the dynamic system (4)-(7)

has a Wold representation that is a first-order vector autoregressive-moving average process,

or V ARMA (1, 1): ∆ct+1

∆dt+1

 =

 µc (1− ρ)

µd (1− ρd)

+

 ρ 0

0 ρd

 ∆ct

∆dt

+

 1 0

0 1

 vVc,t+1

vVd,t+1

−
 bcc bcd

bdc bdd


︸ ︷︷ ︸

b

 vVc,t

vVd,t

 .
(14)

The parameters ρ, ρd, bcc,..., bdd and as well as those in the variance-covariance matrix

of vc,t+1 and vd,t+1 are functions of the deep parameters of the cash flow system (4)-(8).

The system (4)-(8) has 15 unknown parameters (including six unknown parameters in Ω).

Estimation of (14) identifies 11 parameters (including three from the covariance matrix of

the VARMA innovations), four short of what’s needed for identification.5 That is, given an

infinite sample of data on consumption and dividend growth, the parameters of the dynamic

system (4)-(8) can only be observed in certain combinations as the estimates ρ, ρd, bcc,..., bdd

and the variance-covariance matrix of vc,t+1 and vd,t+1, and this information is not enough

to separately identify the deep parameters of (4)-(8).

As we demonstrate in the last section of the paper, under common parameterizations

of the long-run risk cash-flow process, a limited information VARMA model generates an

equity term structure slope that is very similar to the full information case, counterfactually

5One could restrict ρd,c and ρd,xc to zero to account for the fact that one shock to dividends captures

purely idiosyncratic risk. In this case, the full system is underidentified by two parameters rather than four.
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implying that it slopes up. Quite different implications for the term structure can be gener-

ated, however, if the off-diagonal elements of the b matrix are presumed to be zero, so that

the system (14) collapses to a pair of first-order univariate autoregressive moving average

(ARMA(1,1)) processes, each with 4 free parameters:

∆ct+1 = µc (1− ρ) + ρ∆ct + vAc,t+1 − bcvAc,t (15)

∆dt+1 = µd (1− ρd) + ρd∆dt + vAd,t+1 − bdvAd,t. (16)

Under parameter values typically employed in the long-run risk literature, the off-diagonal

elements bcd and bdc are in fact close to zero and impossible to distinguish from zero with

statistical tests, both in samples of the size currently available as well as in samples consid-

erably larger.6 In the data, consumption and dividend growth are only modestly correlated,

and dividend growth is considerably more volatile (Table 1). Typical parameterizations of

long-run risk models are calibrated to match these facts, so the idiosyncratic component

of dividend growth is specified as highly volatile. This is the primary reason why the off-

diagonal elements of b are so small in benchmark long-run risk models.

3.2.1 A Bounded Rationality Limited Information Model

With these implications of long-run risk models in mind, we propose a bounded rationality

model of behavior in which the decision maker considers a simplified representation of (14)

that is “sparse” in the sense that the small and diffi cult to infer off-diagonal elements of

6This statement is confirmed by Monte Carlo experiments. Specifically, under the benchmark calibration

in column 3 of Table 1 (discussed below), the population (large sample) values for bcd and bdc 0.004 and

-0.038, respectively. In finite samples, there is a significant downward bias in bcd but the standard errors are

large: the average (across 1000 artificial samples of size equal to that of our historical dataset) maximum

likelihood point estimates (standard errors) for bcd and bdc are 0.005 (0.004) and -0.126 (0.111), respectively.
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the b matrix are set to zero.7 Even if the true data generating process implies small but

non-zero values for the off-diagonal elements of the b matrix, this sparsity is nevertheless

optimal in a forecasting sense, as explained below.

In the present context, it is the off-diagonal elements of the b matrix where the natural

sparsity arises, since these values will necessarily be very small with standard error bands

that include zero. We assume that the decision maker sets those elements to zero and

estimates two univariate ARMA(1,1) specifications, one each for consumption and dividend

growth. The ARMA parameters are functions of the primitive parameters of the dynamic

system (4)-(7). The innovations vAc,t+1 and v
A
d,t+1 are in general correlated and are composites

of the underlying innovations in (4)-(7). We refer to this model of behavior as the bounded

rationality limited information model hereafter (“BRLI”for short), to emphasize that this

specification embeds both a change in the information structure and a behavioral assumption,

vis-a-vis the full information model.8

One way to interpret this restriction on the b matrix is to recognize that movements in

consumption growth comprise too small a part of the volatility of dividends (given the noise

created by the large idiosyncratic component) to be informative, so the tiny contemporaneous

correlation between the VARMA innovations vVc,t and v
V
d,t is effectively ignored by setting the

off-diagonal parameters to zero.

This model of behavior may be motivated by statistical considerations. Given the small

7Different forms of sparsity-based bounded rationality models have been proposed in the literature. See,

for example, Gabaix (2011).
8Anderson, Hansen and Sargent (1998) study risk premia for a claim to aggregate consumption in an

asset pricing model where the true data generating process for consumption growth follows an ARMA(1, 1).

We note that if the true data generating process were an ARMA(1, 1), the limited and full information

specifications in our paper would coincide. As we explain below, this case, can match the evidence for

a downward sloping term structure only if fluctuations in expected consumption growth are a source of

insurance rather than risk.
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(and poorly identified) values of the off-diagonal elements of the b matrix, forecasts of con-

sumption and dividend growth are actually improved by using the more parsimonious ARMA

processes in place of an estimated VARMA specification. This is true in samples as large or

even considerably larger than that currently available.9 The reason is that estimation of the

VARMA requires 11 unknown parameters to be identified, compared to just 4 unknown para-

meters in each individual ARMA estimation. The estimation of these additional parameters

creates suffi cient noise so as render the VARMA statistically inferior as a forecasting model

for ∆ct+1 and ∆dt+1, and therefore inferior as a model for estimating the latent conditional

means xc,t and xd,t.10

Even in infinite samples (where the VARMAmodel would provide superior forecasts), the

welfare costs of using the more parsimonious ARMA processes in place of the full VARMA

system are small. Consider two consumption sequences
{
CA
i

}∞
i=0

and
{
CV
i

}∞
i=0
, where the

former is the optimal sequence when the data are generated by (4)-(8) but the agent uses

the two ARMA processes (15) and (16) as a cash-flow model, while the latter is the optimal

sequence when the data are generated by (4)-(8) but the agent uses the VARMA system (14)

as a cash-flow model. Then under our “refined calibration”(discussed below) with cash-flow

statistics given in column (d) of Table 1, the welfare cost of receiving
{
CA
i

}∞
i=0

compared to{
CV
i

}∞
i=0

amounts to 1.1% of time-0 monthly consumption.11

9The Web Appendix of this paper contains a detailed description of these statistical tests, conducted in

both in the model using Monte Carlo experiments, and using historical data.
10The mean-square forecast error is increasing in both the bias and the variance of the forecast. Thus,

investors face a tradeoffbetween the unbiased but noisy predictors ∆ĉV ARMA
t+1 and ∆d̂V ARMA

t+1 , and the biased

but less noisy predictors ∆ĉARMA
t+1 , and ∆d̂ARMA

t+1 . If the improvement in forecast accuracy from eliminating

bias is out-weighed by greater forecast noise, the V ARMA model will produce inferior forecasts.
11We define the welfare cost Λ of receiving

{
CAi
}∞
i=0

rather than
{
CVi
}∞
i=0

as the increment to lifetime

utility (in consumption units) needed to make the investor indifferent between
{
CAi
}∞
i=0

and
{
CVi
}∞
i=0

. This

measure tells us what constant multiple 1 + Λ of consumption in every period must be given to an investor

with the stream
{
CAi
}∞
i=0

to provide her with the same lifetime utility U as an investor with the stream
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Notice that, in the limited information models considered here, there is no learning or

Bayesian updating on the parameters, although there is learning about the latent conditional

means of consumption and dividend growth based on the noisy information from the cash-

flow model. The parameters in the general system (4)-(8) are unidentified, so even with

an infinite amount of data the parameters of the true data generating process can never be

learned. This contrasts with much of the learning literature, e.g., Veronesi (2000), Li (2005),

and Ai (2010), where these papers entertain the possibility that agent’s have some additional

information—a signal—about dividends, consumption, or some component of output that can

be used to learn about parameters.12

The cash flow model (15)-(16) serves as a signal extraction tool, allowing the investor to

form an estimate of the long-run components in dividend and consumption growth, given

historical data. This is immediately evident by noting that the pair of ARMA(1, 1) processes

may be equivalently expressed in terms of the following pair of innovations representations{
CVi
}∞
i=0

. For the EZW preferences explored in this paper, this is given by

1 + Λ =
U0
({
CVi
}∞
i=0

)
U0
({
CAi
}∞
i=0

) .
Under the refined calibration, with Ψ = 1, this ratio has an analytical solution. See Croce (2007).
12Johannes et al. (2013) show that learning about parameters can generate predictability of excess returns.

The model considered here has no scope for generating time-varying risk premia. Adding time-varying con-

sumption volatility to the model could in principle generate predictable variation in excess stock returns,

e.g., (Bansal and Yaron (2004)). Even with a very highly persistent stochastic volatility process for con-

sumption growth, however, long-run-risk models without parameter learning generate tiny magnitudes of

forecastability in returns (see Bansal, Kiku and Yaron (2012), Ludvigson (2012)).
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derived from the Kalman filter:

∆ct+1 = µc + x̂Ac,t + vAc,t+1 (17)

x̂Ac,t+1 = ρx̂Ac,t +KA
c v

A
c,t+1 (18)

∆dt+1 = µd + x̂Ad,t + vAd,t+1 (19)

x̂Ad,t+1 = ρx̂Ad,t +KA
d v

A
d,t+1, (20)

where KA
c ≡ ρ − bc and KA

d ≡ ρ − bd and x̂Ac,t and x̂Ad,t denote optimal linear forecasts

based on the history of consumption and dividend data separately, i.e., x̂Ac,t ≡ Ê (xc,t|ztc),

and x̂Ad,t ≡ Ê (xd,t|ztd), where ztc ≡ (∆ct,∆ct−1, ...,∆c1)′ and ztd ≡ (∆dt,∆dt−1, ...,∆d1)′ .The

optimal forecasts are functions of the observable ARMA parameters and innovations:

x̂Ac,t = −ρµc + ρ∆ct − bcvAc,t

x̂Ad,t = −ρµd + ρ∆dt − bdvAd,t.

Notice that the Kalman gain parameters KA
c and K

A
d govern how much the estimated long-

run components x̂Ac,t and x̂
A
d,t respond to ARMA innovations v

A
c,t and v

A
d,t, where the latter

are non-linear functions of the primitive shocks in (8). The innovations representations

above contain the same information about the latent variables xc,t and xd,t as do the ARMA

processes (15) and (16).

3.3 Model Solution

Under full information, solutions to the model’s equilibrium price-consumption and price-

dividend ratios are found by iterating on the Euler equations (1) and (2), assuming that

individuals observe the consumption and dividend processes. This means that under the

special case (9)-(11), investors know that xd,t = φxxc,t, thus the solution delivers a policy

function for the price-consumption and price-dividend ratios as a function of a single state

variable xc,t.

16



Under the BRLI model, equilibrium price-consumption and price-dividend ratios are

found by iterating on the Euler equations (1) and (2) assuming market participants observe

(15)-(16), even though the data are actually generated by the dynamic system (4)-(8) with

distinct short- and long-run components. In this case, the policy function for the price-

consumption ratio is a function of the single state variable x̂Ac,t, while that for the price-

dividend ratio is a function of two state variables x̂Ac,t and x̂Ad,t. For each specification,

we simulate histories for consumption and dividend growth from the true data generating

process and use solutions to the policy functions to generate equilibrium paths for asset

prices.13 The process is iterated forward to obtain simulated histories for asset returns. The

Web Appendix explains how we solve for these functional equations numerically on a grid of

values for the state variables.

4 Theoretical Results

This section presents theoretical results on the level and term structure of equity for both

the full and BRLI models discussed above. We begin by illustrating the general nature of the

challenge posed by evidence on the equity term structure for the full information paradigm,

by considering the role played by key model parameter values. This can be accomplished by

examining an approximate log-linear solution of the model, similar to Campbell (2003). We

do this in Section 4.2, after introducing the concept of zero-coupon equity in Section 4.1. We

then move on to show how assumptions about behavior and information structure matter,

using numerical solutions.

13A minor complication is that the policy functions for the limited information specifications are a function

of the current innovations in (15) and (16), whereas the actual innovations are generated from (9)-(11).

However, the moving average representations are invertible, and their innovations can be recovered from∑
i b
i
c (∆ct−i − ρ∆ct−i−1 − µc) and

∑
i b
i
d (∆dt−i − ρ∆dt−i−1 − µd), respectively.
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4.1 Zero-Coupon Equity

An equity claim can be represented as a portfolio of zero-coupon dividend claims with differ-

ent maturities (strips). Let P (n)
t denote the price of an asset at time t that pays the aggregate

dividend n periods from now, and let R(n)
t be the one-period return on a zero-coupon equity

strip that pays the aggregate dividend in n periods:

R
(n)
t+1 =

P
(n−1)
t+1

P
(n)
t

.

Zero-coupon equity claims are priced under no-arbitrage according to the following Euler

equation:

Et

[
Mt+1R

(n)
t+1

]
= 1 =⇒

P
(n)
t = Et

[
Mt+1P

(n−1)
t+1

]
P

(0)
t = Dt.

Denote the log return on the n-period strip r(n)
t+1 = ln

(
R

(n)
t+1

)
. Plotting E

(
r

(n)
t+1 − rf,t+1

)
against n produces a yield curve, or term structure, of zero-coupon dividend strips. Since

the aggregate market is the claim to all future dividends, the market price-dividend ratio

P d
t /Dt =

∑∞
n=1 P

(n)
t /Dt and the return on the market index, Rd,t+1 is the average return

over all strips. We denote the log excess return on the market index as rexd,t+1 ≡ rd,t+1−rf,t+1.

4.2 Analytical Solutions

In this section we examine an approximate log-linear solution of the full and BRLI models

to illustrate the role of key parameters in determining both the level and slope of the equity

term structure.

18



4.2.1 Full Information

Two parameters in (4)-(8) play an important play role in determining whether risk premia

are increasing or decreasing with maturity. These are the parameter ρxc,xd that gives the

correlation between the long-run innovations εxc,t and εxd,t, and the parameter ρc,xc that

gives correlation between the short- and long-run consumption shocks εc,t and εxc,t. For this

reason, we free up restrictions embedded in (9)-(13) by allowing the parameter ρxc,xd 6= 1

and ρc,xc 6= 0. We also allow the short-run consumption shock εc,t+1 to be correlated with

εxd,t+1, but only through its correlation with εxc,t+1, implying ρc,xd = ρc,xc · ρxc,xd.14 The

parameter φx is defined φx ≡ σxd/σxc, consistent with the definition of φx in (9)-(13).

We derive approximate log-linear solutions for the spread of the term structure and

the equity market risk premium. Let Vt (·) denote the conditional variance of the generic

argument “·”. Define the spread, S, of the log equity term structure (adjusted for a Jensen’s

inequality term) as

S ≡ lim
n→∞

Et[r
(n)ex
t+1 + .5Vt(r

(n)ex
t+1 )−

(
r

(1)ex
t+1 + .5Vt(r

(1)ex
t+1 )

)
], (21)

where the superscript “ex” denotes the excess return over the log risk-free rate. S gives

the difference in expected excess return between equity that pays a dividend in the infinite

future and equity that pays a dividend in one period. From the loglinear approximation to

the full information model, S can be shown to equal

S =

(
φxρxc,xd −

1

Ψ

)[
γ
ρc,xc
σxc

+ κc

(
γ − 1/Ψ

1− ρκc

)]
σ2
xcσ

2

1− ρ︸ ︷︷ ︸
>0

(22)

where κc ≡ PC/C

1+PC/C
.

14To avoid clutter in the formulas, we maintain, as a benchmark, other restrictions imposed in (9)-(13) on

the remaining correlations. Specifically we set ρd,xd = ρd,xc = ρc,d = 0. Freeing up these correlations does

not change the conclusions of this section.
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The parameter φx controls the exposure of dividend growth to the persistent component

in consumption growth. The exposure of dividend growth to long-run consumption risk

affects the slope of the term structure because it affects expected future dividend growth.

Equation (22) shows that, the lower is φx, the less persistent is dividend growth and the

less upward sloping is the term structure. This happens because, when dividend growth has

little persistence, only the expected growth rates of dividends paid in the near future are

revised significantly in response to an innovation; those paid in the far future are relatively

unaffected. Thus a lower exposure of dividend growth to long-run consumption risk raises

risk premia on short maturity strips relative to those on long maturity strips, driving down

S. This effect must be multiplied by the correlation ρxc,xd, since that controls the extent to

which a movement in expected dividend growth is correlated with the pricing kernel, and

therefore priced.

The EIS Ψ affects the slope of the term structure by affecting expected future returns,

rather than expected future dividend growth. The lower is Ψ, the more the expected risk-

free rate increases in response to an increase in expected consumption growth. A positive

innovation in expected consumption growth does two things. First, it leads to an increase

in the expected future risk-free rate (increasingly so with smaller values of Ψ), which is

associated with a capital loss for the asset today. Second, it leads to a decline in the stochastic

discount factor. The two combined produce a positive contemporaneous correlation between

the pricing kernel and returns, reducing the overall risk premium on the asset. This effect

is stronger for assets that pay a dividend in the far future because shocks to expected

consumption growth are persistent and cumulate over time. Consequently, the lower is the

EIS Ψ, the lower are risk premia on long-duration assets relative to short-duration assets,

and the less upward sloping is the zero-coupon-equity curve.

For the rest of this discussion, we maintain the assumption that γ > 1/Ψ. If we also

assume for the moment that ρc,xc ≥ 0, then the term in the square brackets of (22) is positive,
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and it is possible to generate a downward sloping term structure of equity (a negative spread,

S < 0) by setting φxρxc,xd < 1/Ψ. In the Bansal and Yaron (2004) parametrization,

ρxc,xd = 1, so a downward slope could be generated by simply changing parameter values so

that φx < 1/Ψ.15

Under full information, however, this strategy for obtaining a downward sloping term

structure presents a different problem. When φxρxc,xd < 1/Ψ, equivalently with S < 0, the

model becomes one of long-run insurance rather than long-run risk. That is, innovations in

xd,t (holding other shocks fixed) generate a positive correlation between the pricing kernel

and returns, so that the marginal contribution of the long-run component to the market risk

premium is negative. In a long-run “insurance”model, the full information term structure

slopes down, but the overall equity premium for the market will be low or negative. This can

be confirmed by examining the loglinear approximate solution for the log equity premium

(adjusted for Jensen’s inequality terms), given by

Et(r
ex
d,t+1) + .5Vt(r

ex
d,t+1) = Et

[
r

(1)ex
t+1 + .5Vt

(
r

(1)ex
t+1

)]
+ κd

(1− ρ)

1− ρκd
S, (23)

where κd ≡
PD/D

1+PD/D
> 0 and the first term on the right-hand-side is excess return on the

one-period zero coupon equity strip. It is evident that if the spread S of the equity term

structure is negative, the equity premium on the left-hand-side will be small or negative,

depending on the size of the risk premium on the one-period strip. But the size of the

premium on the one-period strip—and therefore the level of the term structure—depends only

on the dividend claim’s exposure to short-run consumption risk:

Et

[
r

(1)ex
t+1 + .5Vt

(
r

(1)ex
t+1

)]
=

[
kc
γ − 1/Ψ

1− ρκd
σxcρc,xc + γ

]
φcσ

2. (24)

15When Ψ = 1, the valuation calculations in Hansen et al. (2008) can be used to obtain an exact solution

for S. Under the assumptions just made, such calculations show analogously that φx < 1 is required to

generate a downward sloping equity term structure.
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Long-run consumption risk xc,t contributes to the premium on the one-period strip, but only

in so far as it has a non-zero correlation with short-run risk ρc,xc 6= 0. The one-period strip

will have a zero risk premium in any model where exposure φc to short-run consumption risk

is zero.

These facts imply that to generate S < 0 under full information, shocks to the long-run

component of dividend growth must be a source of insurance so that long-run consumption

shocks generate a negative risk premium. This can be seen by re-writing the market risk

premium as a function of the covariance between the log stochastic discount factor, mt+1,

and the log excess return on the dividend claim:

Et
[
rexd,t+1

]
+ .5Vt(r

ex
d,t+1) ≈ −Covt

(
rexd,t+1,mt+1

)
(25)

= −Covt (φcσεc,t+1,mt+1) (26)

− κd
1− ρκd

σxcσCovt

(
φxεxd,t+1 −

1

Ψ
εxc,t+1,mt+1

)
. (27)

The term in (26) is the component of the total risk premium attributable to short-run

consumption risk. This term always generates a positive risk premium as long as φc > 0

because the short-run shock εc,t+1 is negatively correlated with mt+1. The term in (27) is the

component of the total risk premium attributable to long-run consumption risk. This term

can, under some plausible parameters, contribute a negative risk premium, implying that the

long-run shock is a source of insurance. This term will generate a negative risk premium if φx

and Ψ are suffi ciently small because, with εxd,t+1 and εxc,t+1 both negatively correlated with

mt+1, suffi ciently low values for φx and Ψ imply Covt
(
φxεxd,t+1 − 1

Ψ
εxc,t+1,mt+1

)
> 0 so the

second term in (26) is negative. (Note that the outer multiplicative term κd
1−ρκdσxcσ ≥ 0.)

Under these parameter values, the impact of a long-run risk shock on expected dividend

growth is more than offset by the countervailing effect on the expected risk-free rate, and

long-run shocks to consumption growth are a source of insurance, rather than risk.

But the question of whether shocks to consumption growth are a source of insurance
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rather than risk boils down to the question of whether S is positive or negative:

κd (1− ρ)

1− ρκd
S = − κd

1− ρκd
σxcσCovt

(
φxεxd,t+1 −

1

Ψ
εxc,t+1,mt+1

)
.

This shows that S < 0 only when Covt
(
φxεxd,t+1 − 1

Ψ
εxc,t+1,mt+1

)
> 0, where long-run

consumption risk generates positive covariance with the log pricing kernel and a negative

risk premium.

What about ρxc,xd? Equation (22) shows that we can make the spread S negative by

lowering ρxc,xd. But, (23) makes clear that S < 0 in this model comes at the expense of

a lower equity premium. Moreover this problem cannot be remedied by freely setting the

correlation ρcxc between short-run consumption shocks εc,t and long-run shocks εxc,t. For

example, if we restrict φxρxc,xd > 1/Ψ to avoid the implications just discussed, then (22)

shows that we can obtain a downward sloping term structure by setting ρcxc < 0. But (23)

and (24) show that this will again make the overall equity premium low or negative, since it

makes both S and the first term of (24) negative.

In summary, the full information paradigm can generate a negative equity term structure

spread S, but only if the model is one of long-run insurance rather than long-run risk.

Since in this case the persistent component of consumption growth generates a negative risk

premium, the overall market risk premium will typically be small or negative. We explore

the magnitudes of these effects for specific parameter values below.

4.2.2 Limited Information

In the BRLI model, there is one source of risk, captured by the ARMA innovation vAc,t. The

approximate log linear solution under the BRLI model implies that the slope of the term

structure, (21), is

S = (φAx − 1/Ψ)
1

1− ρ

[
κAc
γ − 1/Ψ

1− ρκc
+

γ

KA
c

]
(KA

c σvAc )2,
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φAx = ρvAc ,vAd

KA
d σvAd

KA
c σvAc

, (28)

where κAc ≡
PC/C

1+PC/C
and PC/C is the mean price-consumption ratio under the BRLI equilib-

rium, ρvAc ,vAd is the correlation between the two ARMA innovations v
A
c and v

A
d , and σvAc and

σvAd are their respective standard deviations. Thus φ
A
x is the coeffi cient from a projection of

x̂Ad,t on x̂
A
c,t and is therefore a measure of the exposure of the estimated long-run component

in dividend growth to the estimated long-run consumption component (See the Appendix for

a derivation). The φAx coeffi cient plays the analogous role to φxρxc,xd in (22), which measures

the exposure of dividend growth to the persistent component in consumption growth under

full information.

In the BRLI model, this exposure is not observed and what is observed—the history of

dividend growth ∆dt+1—is but a noisy signal of the long-run component, xd,t. The estimate

of the long-run component x̂Ad,t is contaminated by the two i.i.d. shocks that affect ∆dt+1

through the terms φcσεc,t+1 + σdσεd,t+1 in (5). The more volatile are these shocks relative

to xd,t, the lower is the information content of observable dividend growth for movements in

the long-run dividend component xd,t. The idiosyncratic shock εd,t+1 is especially important

here, since it is the most volatile. The higher is σd, the less correlated dividend growth

appears to be with consumption growth and the lower is ρvAc ,vAd in (28). A low value for

ρvAc ,vAd lowers φ
A
x , making dividends appear to have little exposure to long-run consumption

risk, and lowering S. Thus shocks to the long-run risk component of dividends are close to

being unpriced in the BRLI model, even though they command a substantial risk premium

under full information. For this reason, long maturity strips have low risk premia in the

BRLI model, generating a low or negative value for S.

Turning our attention to the level of the term structure, we prove in the Appendix that
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the following relation follows from a log-linear approximation:

Et[r
(1)ex
t ] + .5Vt(r

(1)ex
t ) =

[
κAc
γ − 1/Ψ

1− ρκc
KA
c + γ

]
ρvAc ,vAd σvAc σvAd︸ ︷︷ ︸

CovAt

. (29)

The term in square brackets, which is positive under common parameter configurations, is

the price of consumption risk in the BRLI model, and CovAt is the quantity of that risk.

It is instructive to compare (29) with its counterpart under full information (24). There

are two ways in which these equations substantively differ. First, the quantity of risk CovAt

in (29) differs conceptually from the true covariance between the short-run components

Cov (σεc,t, φcσεc,t) = φcσ
2 that appears in (24). But it is straightforward to show that, un-

der a range of parameter values around the benchmark, CovAt is virtually indistinguishable

from φcσ
2. To see why, recall that CovAt is not appreciably affected by shocks to the long-run

component of dividend growth εxd,t+1 in (7) because those shocks are too small to be detected

given the larger short-run shocks σεc,t+1 in (5). And covAt is not greatly affected by the idio-

syncratic dividend shocks because those shocks are uncorrelated with consumption. Thus,

CovAt ≈ Cov (σεc,t, φcσεc,t) = φcσ
2 implying that the quantity of short-run consumption risk

is virtually identical in the BRLI and LI models. In both cases, it increases monotonically

in φc.

By contrast, the price of short-run consumption risk is affected by the information struc-

ture. The price of risk (in square brackets) differs across these models in the terms that

govern the perceived standard deviation of the long-run consumption component (relative

to the standard deviation of the short-run component), scaled by the perceived correla-

tion between the short- and long-run consumption shocks. In the full information for-

mula, (24), this term is σxcρc,xc, where recall that σ
2
xc = V art (xc,t+1) /σ2. In (29), the

term σxcρc,xc is replaced by the Kalman gain parameter K
A
c . Note that this parameter, like

σxc, controls the relative volatility of the estimated long-run consumption risk component:(
KA
c

)2
= V art

(
x̂Ac,t
)
/σ2

vAc
. Thus, KA

c in the BRLI model plays the role of σxc in full infor-
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mation. While σxc is multiplied by the correlation ρc,xc in (24), K
A
c is multiplied by unity in

(29), because Corrt
(
x̂Ac,t+1, v

A
c,t+1

)
= 1.

Importantly, under plausible parameter configurations, the parameter KA
c will be greater

than σxcρc,xc > 0, implying that Et
[
r

(1)ex
t+1 + .5Vt

(
r

(1)ex
t+1

)]
will be greater under the BRLI

model than under full information. This happens because, as we show in the next section,

the BRLI decision maker cannot distinguish the short-and long-run components. As a con-

sequence, she erroneously revises upward her estimate of the long-run component x̂Ac,t in

response to an observed increase in consumption driven by a purely short-run (i.i.d.) con-

sumption innovation, thereby making x̂Ac,t look more volatile (relative to short-run risk) than

is the true xc,t+1 observable under full information. For this reason, short-run consumption

shocks generate a larger negative covariance between the pricing kernel and returns under

the BRLI model than under full information, for any given quantity of risk. This feature

of the model generates higher risk premia on short maturity strips under the BRLI model

than under full information. In the web Appendix we prove that, up to the parameter

κAd ≡
PD/D

1+PD/D
(now a function of the equilibrium PD/D ratio under the BRLI model), the

approximate solution (23) for the market risk premium in full information also holds under

the BRLI model:

Et(r
ex
d,t+1) + .5Vt(r

ex
d,t+1) = Et

[
r

(1)ex
t+1 + .5Vt

(
r

(1)ex
t+1

)]
+ κAd

(1− ρ)

1− ρκAd
S (30)

But since Et
[
r

(1)ex
t+1 + .5Vt

(
r

(1)ex
t+1

)]
will, under plausible parameter configurations, be greater

under the BRLI model than under full information, (30) shows that, all else equal, the market

risk premium will also be higher under the BRLI model than under full information.

We close this section by noting that the full information long-run risk paradigm cannot

generate both a non-trivial downward sloping term structure and sizable equity premium

even if the true cash flow process is a pair of ARMA (1, 1) processes. As we show in the

appendix, in this case the only parameterizations of the cash flow process for which this
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is possible are those in which the model is one of long-run insurance, where the persistent

component of consumption growth reduces the equity premium, rather than increases it.

This is not true of the BRLI model, in which the true cash flow process still implies that

the persistent component of consumption growth would contribute positively to the equity

premium if the agent could observe it. It is only because the agent conflates the sources

of cash-flow variation, coupled with the bounded rationality behavioral assumption, that

the term structure can be downward sloping along with a sizable equity premium. In the

next section we employ numerical solutions to explore the magnitudes of these effects under

plausible parameter values.

4.3 Numerical Solutions

4.3.1 Benchmark Parameter Values

We begin by presenting theoretical results based on a benchmark calibration, and then ask

how those results change as we change key parameters. To form a benchmark, we take a

special case of the general cash flow model (4)-(8) that is close to what has been used in

the long-run risk literature. In this special case, as in (9)-(13), consumption and dividend

growth contain a single, common predictable component xd,t = φxxc,t implying ρxc,xd = 1

and σxd = φxσxc. Also, ρd = ρ, xc,0 = xd,0 = 0, and except for ρxc,xd, the off-diagonal

elements in (8) are all zero. The benchmark calibration of (4)-(8) with parameters set

at monthly frequency is as follows: γ = 10, Ψ = 1.5, δ = 0.998985, µc = µd = 0.0015,

ρ = 0.979, σ = 0.0078, φx = 1, φc = 4, σxc = 0.044, σxd = φxσxc, σd = 4.5, ρxc,xd = 1 and

ρc,d = ρc,xc = ρc,xd = ρd,xc = ρd,xd = 0. With the exception of φx and φc, these values are

the same as those in the benchmark specification of Bansal and Yaron (2004). Notice that

the innovation variance in xc,t is small relative to the overall volatility of consumption (the

standard deviation of εxc is 0.044 times the standard deviation of εc), but the persistence of
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xc,t is high, a hallmark of long-run risk models. In Bansal and Yaron (2004), the loadings

φx and φc are set to 3 and 0, respectively; we instead set the benchmark loadings φx and φc

to 1 and 4, respectively. These loadings require more discussion.

The parameters φx and φc are crucial determinants of the slope and level of the equity

term structure, since they govern the exposure of dividends long-run versus short-run con-

sumption risk. Although Bansal and Yaron (2004) set the exposure to short-run risk to zero

(implying φc = 0), we have seen in (24) that this parametrization implies, counterfactually,

that the one-period zero coupon equity strip has no risk premium. Exposure to short-run

consumption risk is necessary for the model to match evidence for a non-zero (and sizable)

risk premium on the one-period strip. Since the one-period strip is estimated to have a risk

premium as much as 5 to 7 percent per annum higher than the market index itself, as a

benchmark we set φc = 4. Table 1 compares the statistical properties of the implied cash

flow processes under the original Bansal and Yaron (2004) calibration with φc = 0 (column 1)

with this alternative where φc = 4 and all other parameters are unchanged (column 2). Al-

though φc = 4 is needed to help match the evidence for a sizable premium on the one-period

strip, if no other parameter values are changed, column (2) shows that dividend growth is

then too autocorrelated and too highly correlated with consumption growth. For this reason,

in our benchmark, we lower exposure of dividend growth to long-run risk by setting φx = 1

rather than φx = 3, largely restoring the model’s favorable cash flow properties for the joint

behavior of dividend and consumption growth (column (3)). Since σxd = φxσxc, under this

benchmark calibration σxd = σxc. Column 4 of Table 1 shows the cash flow properties of a

“refined”calibration that will be discussed below.

It is instructive to begin by comparing the full information and BRLI models with re-

gard to how the cash flow state variables react to primitive shocks under the benchmark

calibration. Figure 1 compares the full and BRLI cases by plotting the impulse responses

to primitive shocks (in percent deviations from steady state). The responses plotted are for
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xc,t, as compared to x̂Ac,t (column 1 of panels), for xd,t, as compared to x̂
A
d,t (column 2) and

finally for the dividend surprise (∆dt − Et−1∆dt) in the full information and BRLI models

(column 3). The first row of each column displays the responses to a one-standard deviation

increase in the i.i.d. consumption shock, εc,t; the second row displays the responses to a

one-standard deviation increase in the idiosyncratic dividend shock, εd,t; and the third row

displays responses to a one-standard deviation increase in the innovation to the persistent

component of consumption growth, εxc,t. In the figures, we denote all variables under full

information without hats, while variables in the BRLI model are denoted with hats.

Figure 1 shows that a one-standard deviation increase in the i.i.d. consumption shock εc,t

leads to a sharp, unexpected increase in dividend growth in both the FI and BRLI models

(row 1, column 3). With full information, the agent observes the source of the shock and

understands that it has no persistence. Accordingly, expectations of future consumption

growth and future dividend growth are unchanged, so the impulse responses of xc,t and

xd,t are flat at zero. By contrast, in the BRLI model agents cannot directly observe the

source of the shock and do not know if it is persistent or transitory. The solution to their

filtering problem implies that agents erroneously revise upward their expectation of future

consumption growth and, to a lesser extent, future dividend growth, even though in reality

the shock has no persistence. Thus, both x̂Ac,t and x̂
A
d,t rise. In response to a transitory shock,

agents in the BRLI model revise their expectations of future consumption and dividend

growth more than they would under full information.

Now consider the responses to an innovation in the persistent component of consumption,

εcx,t, in the third row of Figure 1. Under full information, investors recognize that this is a

shock to the persistent component of consumption and dividend growth and they accordingly

revise upward their expectations of future consumption and dividend growth immediately

upon observing the shock. Row 3 of Figure 1 shows that a one-standard deviation increase in

εcx,t leads to a jump upward in xc,t and xd,t. By contrast, investors in the BRLI model revise
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upward their expectation of future consumption and dividend growth only gradually and by

much less than they do under full information. The state variable, x̂Ac,t responds sluggishly

to the shock and x̂Ad,t barely responds at all. This happens because the persistent component

in consumption growth (which drives the persistent component in dividend growth) is too

small to be distinguished from the large idiosyncratic dividend shocks. In response to a

persistent shock, agents in the BRLI model revise their expectations of future consumption

and dividend growth less than they would under full information.

Finally, the middle row of Figure 1 shows that a purely idiosyncratic shock to dividend

growth, εd,t, has no affect on expected consumption or dividend growth in full information,

and has only a tiny affect on expected dividend growth in the BRLI model. This i.i.d.

shock is the most volatile component of dividend growth and in the BRLI model it swamps

everything, making dividend growth appear close to i.i.d. We return to these responses to

interpret why risk premia differ depending on the information structure.

To illustrate how risk premia depend on the information structure, it is useful to compare

economies with different aggregate dividend processes. Specifically, we study how risk premia

differ across information specifications when the relative exposure of dividend growth to long-

run versus short-run consumption risk differs. This is accomplished by comparing how the

loadings governing long-run and short-run risk exposure effect equilibrium outcomes.

Table 2 presents the model’s implications for summary statistics on the price-dividend

ratio, excess returns, and risk-free rate under limited and full information. The model

output is generated by simulating 1000 samples of size 840 months, computing annual returns

from monthly data, reporting the average statistics across the 1000 simulations.16 With the

16The average levels of the price-dividend ratios reported below are not directly comparable to their

empirical counterparts for actual firms, since unlike real firms, the firms in the model have no debt and do

not retain earnings. Dividends in the model are more analogous to free cash flow than to actual dividends,

implying that model price-dividend ratios should be lower than measured price-dividend ratios in historical
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exception of the parameters φc and φx (where results for a range of values are presented), the

results in Table 2 are based on the benchmark parameter configuration discussed above.17

The log return on the dividend claim is denoted rd,t+1 = ln (Rd,t+1) and the log return on

the risk-free rate rf,t+1 ≡ ln
(
Rf,t+1

)
.

The results in Table 2 show that, with full information, high exposure to long-run con-

sumption risk is required to generate high risk premia. Economies comprised of assets with

relatively low exposure φx to long-run consumption risk and high exposure φc to short-run

consumption risk (e.g., row 2 of Table 2), have lower risk premia and higher price-dividend

ratios than do economies comprised of assets with higher φx and lower φc (e.g., row 5 of Table

2). In addition, substantial variation in risk premia can only be generated by heterogeneity

in the exposure to long-run consumption risk; heterogeneity in short-run risk is inadequate.

For example, when φx = 3 and φc is increased from 2.5 to 6, the log risk premium E (rd − rf )

increases by just one and a third percent, from 7.33% to 9.66% per annum. By contrast if

we keep φc = 2.5 and increase φx from 1 to 3, the risk premium rises almost three-fold, from

2.73% to 7.33%.

The results under the proposed bounded rationality limited information model of behavior

are much the opposite. Economies comprised of assets with relatively low exposure to long-

run consumption risk and high exposure to short-run consumption risk, (e.g., row 2 of Table

2), now have high risk premia and low price-dividend ratios. Under this parametrization,

the log risk premium E (rd − rf ) is over 8 percent per annum in the BRLI model, while it is

a smaller 5.24 percent per annum under full information. At the same time, assets with high

φx and low φc (e.g., row 5 of Table 2), have a log risk premium that is a much smaller 4.9%

data.
17The table reports values for φc ranging from a low of 2.5 to a high of 6. Smaller values for φc are ruled

out in the BRLI model by the requirement that the price-dividend ratio be finite. This is analogous to

the requirement in the Gordon growth model that the expected stock return be greater than the expected

dividend growth rate to keep the price-dividend ratio finite.
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per annum whereas the premium under full information is 7.3% per annum. And, unlike

full information, in the BRLI model substantial variation in risk premia can be generated

by heterogeneity in the exposure to short-run consumption risk. For example, when φx = 3

and φc is increased from 2.5 to 6, the log risk premium increases by over 5 percentage points

from 4.91% to 10.73% per annum. On the other hand, fixing φc and varying φx generates

much less variation in risk premia in the BRLI model.

These findings can be illuminated graphically as in Figure 2, which plots annualized price-

dividend ratio policy functions as a function of the ratio of long-run to short-run consumption

risk exposure, φx/φc. For this figure, the ratio φx/φc is varied along the horizontal axis in

such as way as to hold the 15-month variance of dividend growth that is attributable to the

consumption innovations fixed. The left-most panel plots this ratio in the BRLI model at

the steady state value of x̂Ac,t, along with plus and minus two standard deviations around

steady state in x̂Ac,t (holding fixed x̂Ad,t at its steady-state level). The middle panel plots

the price-dividend ratio at the steady state value of x̂Ad,t, along with plus and minus two

standard deviations around steady state in x̂Ad,t (holding fixed x̂
A
c,t at its steady-state level).

The right-most panel plots the price-dividend ratio under full information as a function of

φx/φc, plus and minus two standard deviations around steady state in the single state variable

xc,t. Note that the plots in Figure 2 are upward sloping in the BRLI model but downward

sloping under full information. Since price-dividend ratios are high when risk premia are

low, and vice versa, this shows that assets with cash flows that load heavily on the long-run

component, xc,t, are more risky under full information but less risky in the BRLI model.

These results can be understood intuitively by noting that the risk premium on these

assets is determined primarily by the covariance between the pricing kernelMt and revisions

in expectations (news) about future cash flow growth.18 As such, cash flow shocks have two

18Revisions in expected future returns are relatively unimportant because we have not introduced mecha-

nisms such as changing consumption and dividend volatility for generating time-varying risk premia on the

32



offsetting effects on the equity premium in the BRLI model as compared to full information.

First, when a positive innovation εxc,t+1 to the persistent component of consumption growth

occurs, investors using the BRLI cash flow model assign some weight to the possibility that

the change in observed cash flow growth rates is attributable to one of the i.i.d shocks

(εc,t+1 or εd,t+1). As a consequence, these investors revise upward their expectation of future

consumption and dividend growth in response to a persistent shock by less than they would

if they had full information. Persistent shocks therefore generate a larger (in absolute value)

negative correlation betweenMt and cash flow news under full information than in the BRLI

model. Second, when a positive innovation εc,t to the short-run risk component occurs,

investors using the BRLI cash flow model assign some weight to the possibility that the shock

is persistent (coming from the long-run risk component). As a consequence, these investors

revise upward their expectation of future consumption and dividend growth in response to

an i.i.d. consumption growth shock more than they would if they had full information. The

i.i.d. shocks therefore generate a larger (in absolute value) negative correlation between Mt

and cash flow news in the BRLI model than in the FI model.

When φx is large and φc relatively small, the first effect dominates the second. In this case,

the risk premium in the full information case can be substantial while the premium in the

bounded rationality limited information case is small. On the other hand, when φx is small

and φc relatively large, the second effect dominates. In this case, the risk premium bounded

rationality limited information case can be substantial while that under full information is

small. Note that when φc is small, volatility in the ARMA dividend shock v
A
d,t+1 is dominated

by the volatile idiosyncratic cash flow shocks εd,t+1 that carry no risk premium. This explains

why suffi ciently high exposure to short-run risk φc is required to generate a large risk premium

in the BRLI model. These results help explain the differing implications for the slope and

level of the equity term structure, discussed next.

asset, and because the expected risk-free rate has small volatility.
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4.3.2 The Term Structure of Equity

We now turn to the equity term structure. Figure 3 plots summary statistics for expected log

excess returns E
(
r

(n)
t+1 − rf,t+1

)
as a function of maturity, n, in months, directly comparing

the FI and BRLI models using the benchmark calibration. It is immediately evident that,

under full information, the annualized log risk premium increases with maturity (top panel).

The log risk premium is 1.3% per annum for equity that pays a dividend one month from

now and 2.3% per annum for equity that pays a dividend 15 years from now.

Keeping the same parameter values but imposing the bounded-rationality limited infor-

mation assumptions, we see that the slope of the term structure is reversed. The annualized

log risk premium now declines with maturity. At the benchmark parameter values the spread

is modest (a point we return to below), with the log risk premium for equity that pays a div-

idend one month from now equal to 5.5% per annum compared to 4.5% for equity that pays

a dividend 15 years from now (top panel). Nevertheless, short-horizon strips have higher

expected returns and lower price-dividend ratios than do long-horizon strips and the term

structure slopes down.

The key to the downward sloping term structure in the BRLI model is that the process

for dividend growth given by the estimated ARMA cash flow model appears close to i.i.d.

(the estimated moving average and autoregressive roots in (16) are close to canceling). Thus,

surprises to dividend growth are perceived only to affect dividend growth and returns in the

near term, so only assets that pay a dividend in the near future command high risk premia.

By contrast, when agents can directly observe xc,t, it is understood that innovations to this

component can have large, long-term effects on consumption and dividend growth. Accord-

ingly, the long-run appears risky, and assets that pay a dividend in the far future command

higher risk premia than those that pay a dividend in the near future. The endogenous

relation between equity maturity and risk premia goes the wrong way.

34



The middle panel of Figure 3 shows that in both models, volatility increases with the

horizon. But the bottom panels show that the Sharpe ratios decrease with the horizon under

the BRLI model whereas they rise with the horizon under full information. This suggests

that the BRLI specification is better able to explain the empirically higher Sharpe ratios

of short-duration value stocks as compared to long-horizon growth stocks (Cornell (1999,

2000); Dechow et al. (2004); Da (2005)).

Figure 4 shows that, in the BRLI model, short maturity strips have high CAPM alphas,

whereas the long maturity strips have smaller (in absolute value) negative alphas. This

feature of the model is consistent with the data and with the prior findings of Fama and

French (1992). The bottom panel also shows that, in the BRLI model, long maturity strips–

despite their lower expected excess returns– have slightly higher CAPM betas. This also is

consistent with the evidence in Cornell (1999, 2000); Dechow et al. (2004); Da (2005); van

Binsbergen et al. (2010). By contrast, under full information there is much less variation

in the alphas with maturity and the alphas of short maturity strips are lower than those of

long maturity strips.19

Alternative parameterizations: Full Information We have seen that the full informa-

tion model generates an upward sloping term structure under the benchmark parametriza-

tion. Accordingly, assets that pay a dividend in the far future counterfactually command

higher risk premia than those that pay a dividend in the near future. Here we explore the

sensitivity of this result to alternative parameter values.

Figure 5 illustrates graphically the role different parameters play in determining both the

equity term structure spread S and the total equity premium under full information. Panel

19The plots are reminiscent of Hansen et al. (2008). Hansen et. al. report price-dividend zero-coupon

equity structures for value and growth firms separately, whereas we plot the zero-coupon-equity curve for

aggregate dividends. In this sense, the results in this section are not directly comparable to those in Hansen

et al. (2008).
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(a) illustrates the role of φx, by showing the results when this parameter is altered and all

others are kept at their benchmark values. When φx = 1, as in the benchmark, the term

structure slopes up and the log equity premium is 3.82% per annum. When we shut down

the exposure of dividend growth to long-run risk entirely, setting φx = 0, the term structure

now slopes down, S < 0, but the log risk premium is only 0.9% per annum. We can make

S more negative by making exposure to long-run risk negative, e.g., φx = −0.5, but now the

equity premium is negative, equal to -0.96%.

Panel (b) of Figure 5 illustrates the role of the correlation between the long-run compo-

nents in consumption and dividend growth εxd,t+1 and εxc,t+1 by altering only ρxc,xd and keep-

ing all other parameters fixed at their benchmark values. Under the benchmark ρxc,xd = 1,

the term structure slopes up and the log equity premium is 3.82% per annum. Panel b shows

that we can make the spread S negative by lowering ρxc,xd. When ρxc,xd = 0.5, the spread is

slightly negative but almost flat. When ρxc,xd = 0, we get a more sizable negative spread,

but now the log risk-premium is low, equal to 0.88% per annum. An empirically plausible

value for S would require a steeply negative risk-premium.

The full information specification can produce a sizable equity premium with S < 0 if

exposure of dividend growth to short-run risk is suffi ciently high, while exposure to long-run

shocks suffi ciently low. This is displayed in Panel (c) of Figure 5, where we fix φx = 0, so

as to completely eliminate the exposure of dividend growth to long-run shocks, and vary

exposure to short-run shocks φc (all other parameters remain at their benchmark levels.) If

φc = 4, we get a modest downward spread S = −2% with a small log equity premium of

0.9% per annum. We can increase the log of the market risk premium to 2.42% by increasing

φc to 6. Notice however that, whenever S < 0, there is no more long-run risk, only long-run

insurance, so more than 100% of the equity premium must be accounted for by short-run

risk. For example, when φc = 6, the total equity premium is 2.42% but the part attributable

to short-run risk is greater than this, equal to 4.38%.
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Finally, panel (d) of Figure 5 shows that these challenges cannot be addressed by freely

setting the correlation ρc,xc between short-run consumption shocks εc,t and long-run shocks

εxc,t. Even when ρc,xc = −1, the term structure is essentially flat while the log risk premium

on the market is -2.11%.

Alternative Parameterizations: The BRLI Model Figure 6 shows the role of key

parameters in determining the slope and level of the term structure in the BRLI model.

Panel (a) shows the crucial role of σd, the standard deviation of idiosyncratic dividend shocks,

in determining the parameter φAx in (28). Recall that φ
A
x is a measure of the exposure of

estimated expected dividend growth, x̂Ad,t, to estimated expected consumption growth, x̂
A
c,t, as

measured by the coeffi cient from a projection of the former onto the latter. The panel plots

φAx as a function of σd, for various values of φc. Also plotted in this panel is the value of φx,

which by definition doesn’t vary with σd but governs the true exposure to of dividend growth

to long-run consumption risk. The higher is σd the lower is φ
A
x . This represents a crucial

difference with full information: the size of the volatility of the idiosyncratic component in

dividend growth has no effect on the agent’s perception of how exposed dividend growth

is to long-run consumption risk under full information (axiomatically since the agent can

distinguish the shocks), whereas it can have a large effect in the BRLI model. Panel a also

shows that while φc plays a role in φ
A
x for small values of σd (with lower values of φc implying

lower φAx ), in the empirically plausible region of σd > 3, the exposure of dividend growth

to short-run consumption shocks is too small relative to the idiosyncratic dividend shocks

to have a large effect on φAx and therefore only the volatility σd of the idiosyncratic shock

matters for φAx . The bigger is σd, the smaller is φ
A
x .

Panel (b) of Figure 6 shows that a higher σd translates into a lower slope S. Under a

range of plausible parameter values for σd, the slope S of the term structure is negative. Be-

cause the large idiosyncratic shocks to dividend growth cannot be distinguished from either
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of the other two shocks that drive consumption growth, dividend growth appears close to

i.i.d. and shocks to the long-run component of dividend growth are virtually undetectable.

Since long-run consumption shocks are undetectable, they are not priced and long maturity

strips have lower risk premia than short maturity strips, leading S to be negative. Note

that for this result, it is crucial that agents do not use information on consumption growth

when modeling the dynamics of dividend growth. If they did, it would be possible to observe

whether a given movement in dividend growth is correlated with consumption growth and

therefore to distinguish idiosyncratic shocks from systematic ones. Since the i.i.d. idiosyn-

cratic component of dividend growth would then be correctly identified as uncorrelated with

consumption growth, it would no longer contaminate the decision maker’s estimates of the

systematic components of dividend growth that do command a risk premium. Under stan-

dard calibrations, the sum of the two systematic components is not close to i.i.d., instead

displaying persistence (the moving average and autoregressive roots no longer almost cancel

as in the case where all three components are conflated). Long-run shocks would effectively

be priced, leading S to be positive. To summarize, it is the large value of σd, coupled with the

bounded rationality behavioral assumption that leads agents to use a univariate specification

for dividend growth that generates a negative term structure slope in this model. This result

is exhibited below when we compare the implications of the limited information VARMA

model—where consumption data are used in a system with dividend data—with those of the

BRLI ARMA model.

Panel (c) of Figure 6 shows the impact of φc on the level of the term structure under

the BRLI model. This panel plots Et[r
(1)ex
t+1 ] as a function of φc, for various values of σd. For

comparison, it also plots Et[r
(1)ex
t+1 ] as a function of φc under full information. Two points

bear noting. First, σd has virtually no affect on the risk premium of the one-period strip

(the three lines corresponding to different values of σd lie on top of one another). The

idiosyncratic shock creates no correlation with consumption so it generates no premium for
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strips of any maturity. Second, both the FI and BRLI models imply that the risk premium

on the one-period strip is increasing in the exposure φc of dividend growth to short-run

consumption risk. The premium in the BRLI model is, however, more steeply increasing

in φc. This occurs for the reasons explained in the discussion of equation (29): φc controls

the quantity of short-run risk in both models but short-run shocks have a higher effective

price of risk in the BRLI model than in the FI model. This result implies not only that

premia on one-period strips are higher under the BRLI model than under full information,

it also implies that the market risk premium can be much higher—see (30). This can be seen

in Panel (d) of Figure 6, which shows that the market risk-premium in the BRLI model is

sharply increasing in φc, and sizable (e.g., greater than 5% per annum) at plausible values

for φc such as the benchmark value of φc = 4. This contrasts with Panel (c) of Figure 5,

which shows that even with φc = 6, the full information paradigm generates a risk-premium

of just 2.4% when other parameters are set so that S is at most modestly negative (and the

model is one of long-run insurance).

Finally, we turn to the magnitude of the zero coupon equity spread. Under the benchmark

parameter values used for Figure 3, the absolute value of the spread in risk premia between

short and long maturity equity in the BRLI model, while negative, is small, roughly 1% per

annum. Figure 7 (left panel) reproduces the zero-coupon equity curve for this benchmark

case and reports the log equity premium of 5.4%. Figure 7 also shows that, with a refined

calibration, our limited information model of behavior is able to generate a much more

negative S, while maintaining the sizable market risk premium. Figure 7 plots the term

structure for the calibration given in column (4) of Table 1. This alternative calibration

changes the benchmark values by reducing Ψ from 1.5. to 1, reducing σ from 0.78% to

0.76%, increasing ρ from 0.979 to 0.984 and increasing σxc from 4.40% to 4.84%. With

these changes, the summary statistics for dividend growth are plausible, and within range

of those recorded for the benchmark case and for the data, as can be seen from Table 1,
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column (d). But Figure 7 shows that the equity term spread is now much more negative

(S = −3.4%) with the log equity premium at 5% per annum (Figure 7). By comparison,

under full information this refined calibration generates a spread S = 0, while the market

risk premium is 2.8%.

We close this section by showing, in the right panel of Figure 7, the term structures under

the VARMA limited information model, with the same two parameterizations. Under either

parameterization, the slope of the term structure under the VARMA limited information

specification is very close to that under full information. As explained above, this occurs

because the use of consumption data in a system with dividend data allows the agent to

distinguish idiosyncratic shocks from systematic shocks. The i.i.d. idiosyncratic component

of dividend growth no longer contaminates the two systematic components, while the latter

no longer look close to i.i.d. once combined. Long-run shocks are now effectively priced,

leading S to be positive. Thus, the slope under VARMA limited information is either

upward sloping or flat for these parameterizations, and the only difference between this case

and full information is that the equity premium is slightly higher under VARMA limited

information.

5 Conclusion

A recent strand of asset pricing literature emphasizes the potential role of long-run con-

sumption risk for explaining salient asset pricing phenomena. A maintained assumption in

the existing theoretical literature is that investors can directly observe the small long-run

component of consumption risk and can distinguish its innovations from transitory shocks to

consumption and dividend growth, even though in general these components cannot be iden-

tified from historical data. In this paper we study how equilibrium asset prices are affected

if decision makers in the model must use consumption and dividend data to infer small long-
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run components in cash flows and consumption. We propose a model of behavior in which

a representative decision maker optimizes based on a cash flow model that is both sparse

in the sense that it ignores cross-equation restrictions that are diffi cult if not impossible to

infer in finite samples, and fully identified from historical data.

A key result of the present study is that, under many parameter configurations, the

bounded rationality limited information model studied here causes market participants to

demand a higher premium for engaging in risky assets than would be the case under full

information and rational expectations. Specifically, assets that have small exposure to long-

run consumption risk but are highly exposed to short-run, even i.i.d., consumption risk can

command high risk premia in the bounded rationality limited information case but not under

full information. Thus the term structure of equity can be downward sloping in the former

case, as in the data, but is upward sloping under full information.

In general, these patterns mean that the bounded rationality limited information speci-

fications we explore are better able than their full information counterparts to reconcile the

return properties of zero-coupon equity strips with those of the market index, an average

across all strips. In a full information world, long maturity strips can be made less risky

than short maturity strips only if the long-run component in consumption growth is a source

of insurance rather than risk, implying that the long-run component generates a negative

market risk premium. By contrast, the bounded rationality limited information framework

we consider here matches empirical evidence for a downward sloping equity term structure

simultaneously with a sizable equity market risk premium.
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TABLE 1: CONSUMPTION AND DIVIDEND PROPERTIES

Data (1) (2) (3) (4)
Ψ 1.50 1.50 1.50 1.00
φx 3.00 3.00 1.00 1.00
φc 0.00 4.00 4.00 4.00
σ 0.78% 0.78% 0.78% 0.76%
σxc 4.40% 4.40% 4.40% 4.84%
ρ .979 .979 .979 .984

StD[∆d] 11.49 11.36 14.53 13.64 13.34
ACF[∆d] 0.21 0.34 0.29 0.22 0.23
Corr[∆d, ∆c] 0.55 0.27 0.70 0.59 0.58
StD[∆c] 2.93 2.80 2.80 2.80 2.99
ACF[∆c] 0.49 0.43 0.43 0.43 0.50

Notes - This table reports consumption and dividend growth statistics from four monthly
calibrations with alternate parameter configurations given in the top portion of the table.
Benchmark parameter values are in column (3) Ψ = 1.5, γ = 10, δ = 0.999, µc = µd =
.15%, ρc = ρd = 0.979, σ = .78%, σxc = 4.4%, σd = 4.5, φx = 1.0, σxd = φxσxc, φc = 4,
ρxc,xd = 1, ρc,xc = ρc,d = ρd,xc = ρd,xd = ρc,xd = 0. For other columns, deviations from this
benchmark are reported in the top portion of the table. The calibration in column (1) and
the statistics under “Data”are from Bansal and Yaron (2004). The entries for the cash-flow
models are obtained by repetitions of small-sample simulations. Simulated monthly data
are time aggregated to annual data, as in Bansal and Yaron (2004).



TABLE 2: ASSET PRICING IMPLICATIONS: FI VS. BRLI

Row Model E (P/D) E
(
rd − r f

)
E
(
r f
)

σ
(
rd − r f

)
φx φc FI BRLI FI BRLI FI BRLI FI BRLI

1 1 2.5 75.42 107.75 2.73 2.93 1.38 0.78 14.02 14.02
2 1 6.0 36.32 17.45 5.24 8.62 1.38 0.78 20.34 19.41
3 2 2.5 28.06 73.48 5.16 3.79 1.38 0.78 15.40 16.75
4 2 6.0 20.38 16.00 7.57 9.50 1.38 0.78 21.23 21.16
5 3 2.5 18.67 55.47 7.33 4.91 1.38 0.78 17.67 20.43
6 3 6.0 15.02 14.45 9.66 10.73 1.38 0.78 22.80 23.68

Notes - This table reports financial statistics of the model with full information (FI) and
limited information ARMA(1,1)-based signal extraction (BRLI), for varying degrees of
exposure to the long-run and short-run risk components, governed by φx and φc, re-
spectively. All other parameters are set as in the benchmark calibration–see notes Table
1. E

(
rd − r f

)
and E

(
r f
)

denote the annual average of the equity excess return and the
risk-free rate, respectively. The standard deviation of the annual equity excess return is
denoted by σ

(
rd − r f

)
. E (P/D) is the annual price-dividend ratio.
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FIGURE 2: PRICE-DIVIDEND RATIOS: FI VS. BRLI MODELS

Notes - This figure displays price-dividend ratios at steady state, and plus/minus two
standard deviations of the state variables(s) around steady state, as a function of the rel-
ative exposure to long-run risk, governed by φx, and to short-run risk, governed by φc.
Held fixed is the 2-year variance of dividend growth attributable to the consumption in-
novations. All parameters other than φx and φc are set at benchmark values given in notes
to Table 1. The BRLI case refers to the ARMA(1,1)-based signal extraction procedure.
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Notes - This figure shows annualized log real risk-premia on zero-coupon equity, E[r(n)t+1 −
r f ,t+1], as a function of maturity, n, in months. The middle panel shows the standard
deviation of excess returns on zero-coupon equity. The bottom panel shows the Sharpe
ratio. Parameter values are set at benchmark values given in notes to Table 1. The BRLI
case refers to the ARMA(1,1)-based signal extraction procedure.
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are set at benchmark values given in the notes to Table 1. The BRLI case refers to the
ARMA(1,1)-based signal extraction procedure.
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FIGURE 6: TERM STRUCTURE OF EQUITY UNDER THE BRLI MODEL.

Notes - The data generating process is described by the system of equations (9)–(13) and is as-
sumed to be known under full information (FI). All parameters are set at benchmark values given
in notes to Table 1. In Panel A, we vary both the exposure of dividends to short-run consump-
tion shocks, φc, and the volatility of dividends-specific shocks, σd. We compare the true dividends
long-run risk exposure, φx, with its counterpart, φA

x , computed under the BRLI case (see equations
(17)–(20) and (29)). In panel B, we depict the term structure slope, S = E[r∞ − r1], for the same
parameters chosen in Panel A to show the direct correspondence between S and φx (φA

x ) in the FI
(BRLI) case. Panel B shows that σd is the key determinant of the term structure slope. In Panel C
and D, we show the intercept, E[rex

1 ], and the value-weighted average level of the term structure
(i.e., the aggregate equity premium, E[rex

d ]), respectively. Panels C and D show that under BRLI
the level of the term structure is primarily determined by φc.
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