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1. Introduction

Many studies in finance analyze comovement between the expected return on stocks and various

observable quantities, or “predictors.” A question of frequent interest is how xt , a vector of pre-

dictors observed at time t , is related to �t , the conditional expected return defined in the equation

rtC1 D �t C utC1; (1)

where rtC1 denotes the stock return from time t to time t C 1 and the unexpected return utC1

has mean zero conditional on information available at time t . One approach to modeling expected

returns is to use a “predictive regression” in which rtC1 is regressed on xt and the expected return

is given by �t D a C b0xt ; where a and b denote the regression’s intercept and slope coefficients.1

This approach seems too restrictive in modeling expected return as an exact linear function of

the observed predictors. It seems more likely that the predictors are imperfect, in that they are

correlated with �t but cannot deliver it perfectly.

At the same time, the predictive regression approach seems too lax in ignoring a likely eco-

nomic property of the unexpected return—its negative correlation with the innovation in the ex-

pected return. For example, if the expected return obeys the first-order autoregressive process,

�tC1 D ˛ C ˇ�t CwtC1; (2)

then it seems likely that the correlation between the unexpected return and the expected-return

innovation is negative, or that �uw � �.utC1; wtC1/ < 0. That is, an unanticipated increase in

expected future returns (or discount rates) should be accompanied by an unexpected negative return

(or price drop). The likely negative correlation between expected and unexpected returns, which

is not exploited in estimating the predictive regression, emerges as an important consideration in

estimating expected returns when predictors are imperfect.

Our view that �uw is likely to be negative seems reasonable. As observed by Shiller (1981) and

LeRoy and Porter (1981), return volatility appears to be higher than what a constant expected return

can accommodate. If �uw were positive, however, return volatility would have to be lower than

when the expected return is constant. In other words, the “excess volatility puzzle” would be even

1Of the many studies that estimate predictive regressions for stock returns, some early examples include Fama and
Schwert (1977), Rozeff (1984), Keim and Stambaugh (1986), Campbell (1987), and Fama and French (1988). There
is also a substantial literature analyzing econometric issues associated with predictive regressions, including Mankiw
and Shapiro (1986), Stambaugh (1986, 1999), Nelson and Kim (1993), Elliott and Stock (1994), Cavanagh, Elliot, and
Stock (1995), Ferson, Sarkissian, and Simin (2003), Lewellen (2004), Campbell and Yogo (2006), and Jansson and
Moreira (2006).
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more puzzling. To see this, first note that the unexpected return can be represented approximately

as

utC1 D �C;tC1 � �E;tC1; (3)

where �C;tC1 represents the unanticipated revisions in expected future cash flows and �E;tC1 cap-

tures the revisions in expected future returns (Campbell, 1991). If the expected return follows the

process in (2) with 0 < ˇ < 1, then �E;tC1 D gwtC1, where g > 0 is a constant, so

�uw D �.utC1; �E;tC1/: (4)

It follows directly from equations (3) and (4) that �uw < 0 if and only if

�.�C;tC1; �E;tC1/ <
�.�E;tC1/

�.�C;tC1/
; (5)

where the � ’s denote standard deviations. It is easy to see from equation (3) that a violation

of the condition in (5) would require that �.utC1/ < �.�C;tC1/, or that returns be less volatile

than when the expected return is constant. The condition in (5) is violated if cash flow shocks

are more important than discount rate shocks in explaining the variance of stock returns, i.e., if

�.�C;tC1/ > �.�E;tC1/, and if the correlation between those shocks, �.�C;tC1; �E;tC1/, is positive

and sufficiently high. While the latter correlation could well be positive—Menzly, Santos, and

Veronesi (2004), Lettau and Ludvigson (2005), and Kothari, Lewellen, and Warner (2005) find a

positive correlation between shocks to expected return and dividend growth—we suggest that a

violation of (5) seems less likely, in that it would only deepen the excess volatility puzzle.

This study develops and applies an approach to estimating expected returns that generalizes the

standard predictive regression approach. The framework we propose, which we term a predictive

system, allows the predictors in xt to be imperfect, in that �t ¤ a C b0xt . The predictive system

also allows us to explore roles for a variety of prior beliefs about the behavior of expected returns.

Chief among these is the belief that unexpected returns are likely to be negatively correlated with

expected returns (�uw < 0), but we also include beliefs that the degree of true predictability in

equation (1) is relatively modest and that the expected return �t is fairly persistent. We find that,

compared to predictive regressions, predictive systems deliver different and substantially more

precise estimates of expected return. When predictors are imperfect, their predictive ability can

generally be supplemented by information in lagged returns as well as lags of the predictors, and

the predictive system delivers that information via a parsimonious model. The correlation �uw

plays a key role in determining how that additional sample information is used as well as the

relative importance of that information in explaining variation in expected return.

The additional information in lagged returns is used in an interesting way. Suppose one be-

lieves that the conditional expected return is fairly persistent and then observes that recent returns
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have been unusually low. On one hand, since a low mean is more likely to generate low realized

returns, one might think that the expected return has declined. On the other hand, since increases

in expected future returns tend to accompany price drops and thus low returns, one might think that

the expected return has increased. When the correlation between expected and unexpected returns

is sufficiently negative, the latter effect outweighs the former and recent returns enter negatively

when estimating the current expected return. At the same time, more distant past returns enter

positively because they are more informative about the level of the unconditional expected return

than about recent changes in the conditional expected return.

We illustrate the role of lagged returns in a simplified setting where historical returns are the

only available sample information. Suppose, for example, that an investor in January 2000 is

forming an expectation of the stock market return over the following quarter based on the post-war

history of realized market returns. Does the dramatic rise in stock prices in the 1990s increase or

decrease the investor’s expectation of future return? The answer depends on the extent to which

the 1990s’ bull market was caused by unexpected declines in expected returns. The conditional

expected stock return in this simplified setting is just a weighted average of all past realized returns,

and the weights depend on the fraction of the variance in unexpected returns that is explained by

changes in expected returns. For example, if this investor believes that fraction is about 72% (the

values of �2
uw implied by the estimates of Campbell (1991) are in that neighborhood), then returns

realized during the most recent decade receive negative weights in the current expected return,

while the returns from the previous four decades receive positive weights. In other words, the

investor in this example would view the 1990s’ bull market as a bearish indicator.

Imperfection in predictors complicates inference about their relations to expected return. We

show that if predictors are imperfect, the residuals in the predictive regression of rtC1 on xt are

serially correlated. This correlation is often ignored when computing standard errors in predictive

regressions. The serial correlation in residuals joins other features of predictive regressions that are

already well known to complicate inferences, especially in finite samples, such as persistence in the

predictors and correlation between the residuals and innovations in the predictors (e.g., Stambaugh,

1999). Using our alternative framework—the predictive system—we develop a Bayesian approach

that allows us to conduct clean finite-sample inference about various properties of the expected

return. This approach also allows us to incorporate reasonable prior beliefs, especially beliefs

about �uw , the correlation between expected and unexpected returns.

A striking example of the importance of prior beliefs about �uw is provided by regressing post-

war U.S. stock market returns on what we call the “bond yield,” defined as minus the yield on

the 30-year Treasury bond in excess of its most recent 12-month moving average. That variable
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receives a highly significant positive slope (with a p-value of 0.001) in the predictive regression,

but its innovations are positively correlated with the residuals in that regression. The latter cor-

relation, opposite in sign to what one would anticipate for the correlation between expected and

unexpected returns, suggests that the bond yield is a rather imperfect predictor of stock returns.

When judged in a predictive system, the bond yield’s importance as a predictor depends heavily

on prior beliefs about �uw . With noninformative beliefs about that correlation, the bond yield ap-

pears to be a very useful predictor; for example, the posterior mode of its conditional correlation

with �t is 0.9. However, with a more informative belief that innovations in expected returns are

negatively correlated with unexpected returns and explain at least half of their variance, the bond

yield’s conditional correlation with�t drops to 0.2. Prior beliefs also affect the predictive system’s

advantage in explanatory power over the predictive regression. With noninformative prior beliefs,

the predictive system produces an estimate of �t that is 1.4 times more precise than the estimate

from the predictive regression in terms of its posterior variance, but with the more informative

beliefs, the system’s estimate is 12.5 times more precise. Moreover, under the more informative

beliefs, the current value of the bond yield explains only 3% of the variance of �t . Adding lagged

unexpected returns allows the system to explain 86% of this variance, and further adding lagged

predictor innovations increases the fraction of explained variance of �t to 95%.

We also include as predictors two more familiar choices, the market’s dividend yield and the

consumption-wealth variable “CAY” proposed by Lettau and Ludvigson (2001). Prior beliefs

about the correlation between expected and unexpected returns play a less dramatic role with these

predictors than with the bond yield, but different prior beliefs can nevertheless produce substantial

differences in estimated expected returns. We assess the economic significance of these expected

return differences by comparing average certainty equivalents for mean-variance investors whose

risk aversion would dictate an all-equity portfolio (i.e., no cash or borrowing) when expected re-

turn and volatility equal their long-run sample values. When all three predictors are included,

an investor with the more informative belief mentioned above would suffer an average quarterly

loss of 1.5% if forced to hold the portfolio selected each quarter by an investor who estimates

expected return by the maximum likelihood procedure (which reflects noninformative views about

all parameters, including the correlation between expected and unexpected returns).

Ferson, Sarkissian, and Simin (2003) show that persistent predictors may exhibit spurious pre-

dictive power in finite samples even if they have no such power in population (e.g., if they have

been data-mined). Our paper provides tools that can be helpful in avoiding the spurious regression

problem. A spurious predictor is unlikely to produce a substantially negative correlation between

expected and unexpected returns. Therefore, under our informative prior about this correlation, a

predictive system would likely find the spurious predictor to be almost uncorrelated with �t . The
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basic intuition holds also outside the predictive system framework: if a predictor does not gen-

erate a negative correlation between expected and unexpected returns, it is unlikely to be highly

correlated with the true conditional expected return.

This study is clearly related to an extensive literature on return predictability, but it also con-

tributes to a broader agenda of incorporating economically motivated informative prior beliefs in

inference and decision making in finance. Studies in the latter vein include Pástor and Stambaugh

(1999, 2000, 2001, 2002ab), Pástor (2000), Baks, Metrick, and Wachter (2001), and Jones and

Shanken (2005). Studies that employ informative priors in the context of return predictability

include Kandel and Stambaugh (1996), Avramov (2002, 2004), Cremers (2002), Avramov and

Wermers (2006), and Wachter and Warusawitharana (2006).

The remainder of the paper proceeds as follows. In section 2, we first implement the traditional

predictive regression approach to modeling expected stock returns and examine the estimated cor-

relations between expected and unexpected returns. We then present our alternative approach, the

predictive system, and discuss its implications for expected stock returns. Section 3 presents our

empirical results. We first outline our Bayesian approach to estimating the predictive system and

discuss the specifications of prior beliefs. We then compare the explanatory powers of the predic-

tive system and predictive regression, assess the degree to which various predictors are correlated

with expected return, and analyze the behavior of estimated expected returns. Finally, we decom-

pose the variance of expected return into components due to the current predictor values, lagged

unexpected returns, and lagged predictor innovations. Section 4 reviews the paper’s conclusions.

Many technical aspects of our analysis are presented in the Appendix.

2. Modeling Expected Returns

2.1. Traditional Approach: Predictive Regression

We begin by estimating predictive regressions on quarterly data for three predictors. The first

predictor is the market-wide dividend yield, which is equal to total dividends paid over the previous

12 months divided by the current total market capitalization. We compute the dividend yield from

the with-dividend and without-dividend monthly returns on the value-weighted portfolio of all

NYSE, Amex, and Nasdaq stocks, which we obtain from the Center for Research in Security Prices

(CRSP) at the University of Chicago. The second predictor is CAY from Lettau and Ludvigson

(2001), whose updated quarterly data we obtain from Martin Lettau’s website. The third predictor

is the “bond yield,” which we define as minus the yield on the 30-year Treasury bond in excess of
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its most recent 12-month moving average. The bond yield data are from the Fixed Term Indices in

the CRSP Monthly Treasury file. The three predictors are used to predict quarterly returns on the

value-weighted portfolio of all NYSE, Amex, and Nasdaq stocks in excess of the quarterly return

on a one-month T-bill, which is also obtained from CRSP.

Whereas the first two predictors have been used extensively, the third predictor appears to

be new. It seems plausible for the long-term T-bond yield to be related to future stock returns

since expected returns on stocks and T-bonds may comove due to discount-rate-related factors.

Subtracting the 12-month average yield is an adjustment that is commonly applied to the short-

term risk-free rate (e.g., Campbell and Ammer, 1993).

Table I reports the estimated slope coefficients Ob and the R2’s from the predictive regressions,

as well as the estimated correlations between unexpected returns and the innovations in expected

returns. To obtain the innovations in expected return, we make the common assumption that the

vector of predictors follows a first-order autoregressive process,

xt D � C Axt�1 C vt ; (6)

where vt is distributed independently through time. The correlation between expected and unex-

pected returns is then simply Corr.b0vt ; et/, where the predictive regression disturbance is et D
rt � a � b0xt�1 . Table I also reports the OLS t-statistics and the bootstrapped p-values associated

with these t-statistics as well as with the R2s. Panel A reports the full-sample results covering

1952 Q1 – 2003 Q4. Panels B and C report sub-sample results.2

The results suggest that all three predictors have some forecasting ability. The dividend yield

produces the weakest evidence (highest p-values, lowest R2s) in all three sample periods. When

included as the single predictor, the dividend yield is marginally significant in the full sample (p-

value of 5:7%). It is significant in the first subperiod (p D 1:4%) but not in the second subperiod

(p D 40:9%). The significance of the dividend yield weakens further when the other two predictors

are included in the predictive regression.

In contrast, both the bond yield and CAY are highly significant predictors. When used alone,

both predictors exhibit p-values of 0.1% or less in the full sample, and they are also significant in

both subperiods. If judged by the p-values, CAY is the stronger predictor in the first subperiod but

the bond yield is stronger in the second subperiod. When all three predictors are used together,

both CAY and the bond yield are highly and about equally significant in the full sample.

2Since we use the T-bond and T-bill yields in our analysis, we begin our sample in 1952, after the 1951 Treasury-
Fed accord that made possible the independent conduct of monetary policy. Campbell and Ammer (1993), Campbell
and Yogo (2006), and others also begin their samples in 1952 for this reason.
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In addition to the p-values and R2s, it is also informative to examine the correlations between

expected and unexpected returns, shown in the fourth column of Table I. When the single predictor

is either the dividend yield or CAY, these correlations are negative and highly significant: -91.9%

for the dividend yield and -53.6% for CAY in the full sample. These negative correlations are

not surprising since both predictors are negatively related to stock prices, by construction. For the

bond yield, however, this correlation is positive and highly significant in all three sample periods,

ranging from 21.7% to 25.1%. This positive correlation makes it unlikely that the bond yield is

perfectly correlated with the true conditional expected return.

The correlation between expected and unexpected returns is a useful diagnostic that should

be considered when examining the output of a predictive regression. Basic economic principles

suggest that this correlation is likely to be negative, so predictive models in which this correlation

is positive seem less plausible.3 The model in which the bond yield is the single predictor is a

good example. Based on the predictive-regression p-value, the bond yield would appear to be a

highly successful predictor whose forecasting ability is better than that of the dividend yield and

comparable to that of CAY. However, the bond yield produces expected return estimates whose

innovations are positively correlated with unexpected returns, suggesting that this predictor is im-

perfect. We suspect that the same statement can be made about many macroeconomic variables

that the literature has related to expected returns. In the rest of the paper, we develop a predictive

framework that allows us to incorporate the prior belief that the correlation between expected and

unexpected returns is negative.

2.2. Predictive System

In the predictive regression approach, the expected return is modeled as a linear combination of the

predictors in xt . We generalize this approach to recognize that no combination of those predictors

need capture perfectly the true unobserved expected return, �t . Our alternative framework, which

we call a predictive system, combines the three equations in (1), (2), and (6):

rtC1 D �t C utC1 (7)

xtC1 D � C Axt C vtC1 (8)

�tC1 D ˛ C ˇ�t CwtC1; (9)

3Strictly speaking, the arguments based on equations (3) and (5) apply when rtC1 denotes the total (real) stock
return, but they should hold to a close approximation also when rtC1 denotes the excess stock return, as used here. For
excess returns, Campbell (1991) shows that equation (3) has an additional term representing news about future interest
rates, and he estimates the variance of that term to be typically an order of magnitude smaller than the variances of
�C;tC1 and �E;tC1.
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The residuals in the system are assumed to be distributed identically and independently across t as
2
4

ut

vt

wt

3
5 � N

0
@
2
4

0

0

0

3
5 ;

2
4
�2

u �uv �uw

�vu ˙vv �vw

�wu �wv �2
w

3
5
1
A : (10)

We assume throughout that 0 < ˇ < 1 and that the eigenvalues of A lie inside the unit circle.

The predictive system is a version of a state-space model in which there is non-zero correlation

among all of the model’s disturbances.4 The predictive system nests the predictive regression

model discussed earlier when �t is perfectly correlated with b0xt , requiringwt D b0vt and A0b D
ˇb.5 In general, though, the predictors in xt are correlated with �t but do not capture it perfectly.

An extreme version of imperfect predictors occurs when there are no predictors, so that equation

(8) is absent from the system and the data include only returns. In fact, we will use that simplified

setting later in this section to illustrate some properties of the predictive system before moving on

to our principal setting in which the predictors are present.

The value of �t is unobservable, but the predictive system also implies a value for E.�t jDt / D
E.rtC1jDt /, where Dt denotes the history of returns and predictors observed through time t . Using

the Kalman filter, we find that this conditional expected return can be written as the unconditional

expected return plus linear combinations of past return forecast errors and innovations in the pre-

dictors. Specifically, if we define the forecast error for the return in each period t as

�t D rt � E.rt jDt�1/; (11)

then the expected return conditional on the history of returns and predictors is given by

E.rtC1jDt/ D E.r/C
1X

sD0

�
�s�t�s C � 0

svt�s

�
; (12)

where, in steady state,

�s D mˇs; (13)

�s D nˇs; (14)

and m and n are functions of the parameters in equations (7) through (10).6 When the predictors
4Harvey (1989) provides a textbook treatment of state-space models, including a brief discussion of the case with

non-zero correlations among all the disturbances. In the Appendix, we provide an independent treatment specific to
the system in (7) through (10). Studies that analyze the predictability of stock and bond returns using state space
models include Conrad and Kaul (1988), Johannes, Polson, and Stroud (2002), Ang and Piazzesi (2003), Brandt and
Kang (2004), Dangl and Halling (2006), Duffee (2006), and Rytchkov (2006).

5A0b D ˇb means that ˇ is an eigenvalue of A0 corresponding to the eigenvector b; one example is A D ˇI .
6In general, m and n are also functions of time, but as the length of the history in Dt grows long, they converge

to steady-state values that do not depend on t . That convergence is reached fairly quickly in the settings we consider.
We first present the steady-state expressions, for simplicity, but later employ the finite-sample Kalman filter as well.
The Appendix derives the functions m and n in finite samples as well as in steady state. The Appendix also shows (in
equation A54) that the finite-sample versions of m and n can be interpreted as the slope coefficients from the regression
of �t on rt and xt , respectively, conditional on the sample information at time t � 1.
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approach perfection, where wt D b0vt and A0b D ˇb, then m approaches zero and n approaches

b. At those limiting values, equation (12) becomes

E.rtC1jDt / D E.r/C b0
1X

sD0

Asvt�s

D E.r/C b0Œxt � E.x/�; (15)

which is identical to a C b0xt , the conditional mean given by the predictive regression. When the

predictors are imperfect, however, their entire history enters the conditional expected return, since

the weighted sum of their past innovations in equation (12) does not then reduce to a function of

just xt . Moreover, when the predictors are imperfect, the expected return depends also on the full

history of returns in addition to the history of the predictors.

It is also easy to establish that equation (12) implies a recursive representation for returns,

rtC1 D .1 � ˇ/E.r/C ˇrt C n0vt � .ˇ � m/�t C �tC1: (16)

This representation shows that in the absence of predictors (i.e., without the n0vt term), stock

returns follow an ARMA(1,1) process. The autocovariance of returns is then equal to

Cov.rt ; rt�k/ D ˇk�1
�
ˇ�2

� C �uw

�
; (17)

where �2
� D �2

w=.1 � ˇ2/ is the unconditional variance of �t . As a result, the serial correlation in

stock returns can be positive or negative, depending on the parameter values. The knife-edge case

of zero autocorrelation obtains for �uw D �ˇ�w=.�u.1 � ˇ2//.

2.3. Expected Return: The Role of �uw

A key feature of the predictive system, in addition to accomodating imperfect predictors, is

the ability to incorporate economically motivated prior beliefs about �uw , the correlation between

the unexpected return, ut , and the innovation in the expected return, wt . As discussed earlier, it

seems likely that �uw < 0. We find that incorporating such beliefs about �uw plays a key role in

computing expected returns and assessing the usefulness of various predictors.

As mentioned earlier, an extreme version of imperfect predictors occurs when there are no

predictors, so that Dt includes only the return history. This special case provides a simplified

setting in which to illustrate the critical role �uw can play in the relation between Dt and the

conditional expected return. With no predictors, the summation on the right-hand side of equation

(12) includes only the first term, so the conditional expected return is simply a weighted sum of past
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forecast errors in returns (thereby giving the Wold representation). We consider here an example

with the predictive R-squared—the fraction of the variance in rtC1 explained by �t —equal to

0.05, ˇ equal to 0.9, and four different values of �uw ranging from -0.99 to 0. Panel A of Figure

1 plots the values of �s.D mˇs/, the coefficient in equation (12) that multiplies the forecast error

�t�s . Not surprisingly, with ˇ D 0:9, the geometric rate of decay in the coefficients makes them

relatively small by lags of around 40 periods. More interesting is the role of �uw in determining

m. Differences in m across the values for �uw produce strikingly different behaviors for the �s’s.

The results in Figure 1 can be understood by noting that there are essentially two effects of

the return history on the current expected return. The first might be termed the “level” effect.

Observing recent realized returns that were higher than expected suggests that they were generated

from a distribution with a higher mean. If the expected return is persistent, as it is in this example

with ˇ D 0:9, then that recent history suggests that the current mean is higher as well. So the level

effect positively associates past forecast errors in returns with expected future returns. The second

effect, which might be termed the “change” effect, operates via the correlation between expected

and unexpected returns. In particular, suppose �uw is negative, as we suggest is reasonable. Then

observing recent realized returns that were higher than expected suggests that expected returns fell

in those periods. That is, part of the reason that realized returns were higher than expected is that

there were price increases associated with negative shocks to expected future returns and thus to

discount rates applied to expected future cash flows. So the change effect negatively associates

past forecast errors in returns with expected future returns. Overall, the net impact of the return

history on the current return depends on the relative strengths of the level and change effects.

The level and change effects can be mapped into the return autocovariance in (17). When �uw

is sufficiently negative, then ˇ�2
� < ��uw , returns are negatively autocorrelated, and the change

effect prevails. Also, m < 0 in that case, so the �s’s in (13) are negative. When ˇ�2
� > ��uw ,

returns are positively autocorrelated, the �s’s are positive, and the level effect prevails.

When �uw D 0, there is no change effect and only the level effect is present. For that case, the

�s’s in Figure 1 start at a positive value for the first lag, about 0.04, and then decay toward zero.

The level and change effects offset each other when �uw D �0:47 (this is the knife-edge case of

zero autocorrelation in equation (17)), or when the fraction of the variance in unexpected returns

explained by expected-return shocks, �2
uw , is about 22%. In that case, the �s’s plot as a flat line at

zero. This result is worth emphasizing: for �uw D �0:47, rational investors do not update their

beliefs about expected return at all, regardless of what realized returns they observe. The change

effect dominates when � D �0:85, where the �s’s start around -0.04 at the first lag, and it is even

stronger when � D �0:99, where the �s’s start around -0.08. Clearly, the correlation between
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expected and unexpected returns is a critical determinant of the relation between the return history

and the current expected return.

Since the forecast errors (�t ’s) in the above analysis are defined relative to conditional expec-

tations that are updated through time based on the available return histories, part of the effects of

past return realizations are impounded in those earlier conditional expectations. To isolate the full

effect of each past period’s total return, we can subtract the unconditional mean from each return,

defining �U
t D rt � E.r/, and then rewrite the conditional expected return in equation (12) as

E.rtC1jDt / D E.r/C
1X

sD0

�
!s�

U
t�s C ı0

svt�s

�
; (18)

where, again in steady state,

!s D m.ˇ � m/s (19)

ıs D n.ˇ � m/s: (20)

It can be verified that ˇ � m � 0. Panel B of Figure 1 plots the values of !s in the same no-

predictor example discussed above. The patterns are qualitatively similar to those in Panel A, in

that the !s’s are again positive and declining for �uw D 0, flat at zero for �uw D �0:47, and

negative and increasing for � D �0:85 and � D �0:99. In this representation, though, the rates of

geometric decay differ, since they depend on m, and returns at longer lags exert a greater relative

impact as �uw takes larger negative values.

In practice, the true unconditional mean E.r/ must be estimated. Consider again the no-

predictor case where, in equation (18), the summation on the right-hand side is truncated at

s D t � 1 and E.r/ is replaced by the sample mean, .1=t/
Pt

lD1 rl . Then, given ˇ and m (essen-

tially second-moment quantities), the estimated conditional expected return becomes a weighted

average of past returns,

OE.rtC1jDt / D
t�1X

sD0

�srt�s; (21)

where

�s D
1

t

 
1 �

tX

lD1

!l

!
C !s; (22)

and
Pt�1

sD0 �s D 1. The weights (�s’s) are plotted in Panel C of Figure 1 for t D 208, corresponding

to the number of quarters used in our empirical analysis. When �uw D 0, all past returns enter

positively but recent returns are weighted more heavily. In the �uw D �0:47 case, where the

level and change effects exactly offset each other, all of the weights equal 1=t , so the conditional

11



expected return is then just the historical sample average. For the larger negative �uw values, where

the change effect is stronger, the weights switch from negative at more recent lags to positive at

more distant lags (as the weights must sum to one). For example, when changes in expected returns

explain about 72% of the variance in unexpected returns (�uw D �0:85), the returns from the most

recent 10 years (40 quarters) contribute negatively to the estimated current expected return, while

the returns from the earlier 42 years contribute positively.

An additional perspective on the role of �uw is provided by the time series of conditional

expected returns plotted in Figure 2. In constructing these series, we maintain the no-predictor

setting presented above, with the same parameter values as in Figure 1. The unconditional mean

return E.r/ is set equal to the sample average for our 208-quarter sample period, and then, starting

from the first quarter in the sample, the conditional mean is updated through time using the finite-

sample Kalman filter applied to the realized returns data. As before, the level and change effects

exactly offset each other when �uw D �0:47, so the conditional expected return in that case is

simply the flat (dashed) line at the sample average for the period. The most striking feature of

the plot is that the expected return series for �uw D 0 (solid line) is virtually the mirror image of

the series for �uw D �0:85 (dash-dot line). For example, when �uw D �0:85, the conditional

expected return plots above the unconditional mean during much of the 1970’s and early 1980’s

by amounts that, quarter by quarter, correspond closely to the amounts by which the conditional

expected return plots below the unconditional mean when �uw D 0. Moreover, the differences

among the various series of conditional expected returns are large in economic terms, often several

percent per quarter. As before, we see that �uw plays a key role in estimating expected returns.

2.4. Predictive System vs. Predictive Regression

Predictive systems have interesting implications for the predictive regression,

rtC1 D a C b0xt C etC1: (23)

This regressions’s coefficients and residual variance can be computed from the parameters of the

predictive system in equations (7) through (10), and we exploit that ability in comparing predictive

regressions and predictive systems.7 The predictive-system parameters can also be used to compute

the residual autocovariance,

Cov.et ; etC1/ D ˇ.�2
� � V 0

x�V �1
xx Vx�/C �uw � V 0

x�V �1
xx �vu

D ˇVar.�t jxt /C Cov.ut ; wt � b0vt /: (24)

7For example, b can be computed from the system’s parameters as b D V �1
xx Vx� , where Vxx is given in the

Appendix in equation (A16), Vx� D .IK � ˇA/�1�vw , and IK is a K � K identity matrix.
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With imperfect predictors, Var.�t jxt / > 0, wt ¤ b0vt , and Cov.et; etC1/ is generally non-zero.8

This serial correlation in the residuals complicates the calculation of standard errors in the predic-

tive regression approach.

Ferson, Sarkissian, and Simin (2003) make a similar point when the predictor is “spurious,”

or uncorrelated with expected return. Their setting is a special case of (7)–(9) with one predictor

and a diagonal covariance matrix in (10).9 In specifying a diagonal covariance matrix for the

disturbances, they assume not only that the predictor is spurious but also that the innovations in

expected return are uncorrelated with unexpected returns (i.e., �uw D 0). In this special case, we

see from (24) that Cov.et ; etC1/ D ˇ�2
�. Ferson et al. do not report this expression but do find,

using simulations, that the positive residual serial correlation can substantially affect inference in

predictive regressions. Duffee (2006) also uses simulations to make a related point in the context

of bond predictability.

In contrast to a predictive regression, the predictive system allows us to conduct finite-sample

inferences that explicitly incorporate predictor imperfection. The predictive system also produces

more precise inferences about expected returns. To demonstrate this, we compare the explanatory

powers of the system and the regression for a broad range of parameter values. Specifically, we

compare the R2 in the regression of rtC1 on xt for the predictive regression with the R2 in the

regression of rtC1 on E.rtC1jDt / � E.�t jDt / for the predictive system. The ratio of these R2

values when rtC1 is the dependent variable is the same as when �t is the dependent variable,

R2.rtC1 on xt/

R2.rtC1 on E.�t jDt//
D

R2.�t on xt /

R2.�t on E.�t jDt //
; (25)

since each of the R2 values in the latter ratio is equal to its corresponding value in the first ratio

multiplied by Var.rtC1/=Var.�t/. The parameters in equations (7) through (10) can be used to

obtain the covariance matrix of �t and xt and thereby the R2 in the regression of �t on xt ,

R2
1 D

VarŒE.�t jxt /�

Var.�t /
: (26)

As shown in the Appendix, we can solve analytically for the steady-state value of Var.�t jDt /,

which allows us to compute the R2 in the regression of �t on E.�t jDt / as

R2
2 D

VarŒE.�t jDt/�

Var.�t/
D 1 �

Var.�t jDt/

Var.�t /
: (27)

The ratio on the right-hand side of equation (25) is then computed as R2
1
=R2

2
. Note that this R2

ratio cannot exceed one because xt 2 Dt . In other words, the predictive system always produces

8If the predictors are perfect, Var.�t jxt/ D 0 and wt D b0vt , so Cov.et ; etC1/ is then zero.
9The objectives of Ferson et al. differ from ours. For example, they do not use this multiple-equation setting to

estimate expected return or to examine its dependence on lagged returns and predictors.
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a more precise estimate of �t than the predictive regression, simply because it uses more informa-

tion. The smaller the R2 ratio, the larger the advantage of using the predictive system.

Table II reports R2
1
=R2

2
under various possible combinations of parameters in the single-predictor

case. We use the same values for the true predictive R2 and �uw as before but we now let ˇ take

not only the value of 0:9 but also 0:97, and we do the same for A. Note that 0.97 is closer to the

quarterly sample autocorrelations of predictors such as the dividend yield. Finally, we let �vw ,

the correlation between vt and wt , range from 0.1 to 0.9. The parameter combinations given do

not uniquely determine R2
1
=R2

2
, so for each combination Table II reports that ratio’s minimum and

maximum values as well as its mean, computed as the equally weighted average across values from

-1 to 1 for the partial correlation of ut and vt given wt .

Table II shows that the R2 ratio can take essentially any value in its admissible range of .0; 1/,

but some interesting patterns emerge. The degree of imperfection in the predictor is low when �vw

is high and when �t and xt have similar autocorrelations (ˇ � A). The relative explanatory power

of the predictive regression should be the highest in those cases and, indeed, when �vw D 0:9

and ˇ D A .D 0:9/, R2
1
=R2

2
ranges from 0.81 to 1.0 and is relatively insensitive to �uw . With

more imperfection in the predictor, the relative performance of the predictive regression can fall

substantially. Even maintaining �vw D 0:9 but letting ˇ and A assume different values, 0.9 versus

0.97, results in R2
1
=R2

2
dropping below 0.70, sometimes considerably so. In other words, simply

having a predictor whose persistence departs from that of the true expected return by what might

seem a rather modest degree is sufficient to place the predictive regression at a distinctly greater

disadvantage in terms of explanatory power.

Figure 3 compares the R2’s from predicting rtC1 using the predictive system, the predictive

regression, and the ARMA(1,1) model in equation (16). The four panels correspond to the values

f0; 0:3; 0:6; 0:9g for �vw , the conditional correlation between �t and the single predictor xt . In

all four panels, ˇ D A D 0:9, and the true predictive R2 (from the regression of rtC1 on �t ) is

0.05. We consider two values of �uv , “high” and “low”, which correspond to partial correlations

between ut and vt given wt of �uvjw D 0:9 and �uvjw D �0:9, respectively.

Since all three approaches compared in Figure 3 use only information observable at time t ,

they all produce R2’s smaller than 0.05. The R2 from the predictive regression rises from 0 to 0.04

as �vw rises from 0 to 0.9 across the four panels. This increase is intuitive: as �t and xt become

more highly correlated, the predictive regression becomes more useful in predicting returns. The

predictive regression R2 is invariant to �uw . In contrast, the R2 from the ARMA(1,1) model,

which summarizes the usefulness of past returns in predicting future returns, is heavily influenced

by �uw . When �uw D �0:47, this R2 is zero: past returns contain no information about future
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returns because the level and change effects cancel out, as explained earlier. For �uw ¤ �0:47,

stock returns are serially correlated and the ARMA(1,1) R2 is positive; in fact, it can be higher

than the predictive regression R2. For example, when �vw D 0:3 and �uw … .�0:74;�0:13/, past

returns are more useful than xt in predicting rtC1. The highest R2’s are invariably achieved by

the predictive system. In all four panels of Figure 3, there exist unique values of �uw at which the

system is no more useful than the regression or ARMA(1,1), but for all other values of �uw , the

system’s R2 is higher. This is not surprising since the system uses more information than the other

two approaches.

In short, Table II and Figure 3 show that when the predictors are imperfect, the conditional

expected returns delivered by the predictive system are often considerably more precise than those

from the predictive regression. The comparison of the explanatory powers of the two approaches

has thus far been conducted with parameter values taken as given. In the next section, we com-

pare the predictive system with the predictive regression in settings in which all parameters are

estimated from the data, with or without economically motivated priors.

3. Empirical Analysis

In this section we use the predictive system to conduct an empirical analysis of return predictability.

We first discuss identification issues and use the system to estimate expected returns via maximum

likelihood. Then we turn to the main analysis, which takes a Bayesian approach.

3.1. Identification and Maximum Likelihood Estimation

We have discussed how an important feature of the predictive system is its ability to incorporate

economically motivated prior beliefs about parameters such as �uw . In the absence of any priors or

parameter restrictions, not all of the parameters in equations (7) through (10) are identified. Of the

parameters in the covariance matrix in (10), denoted by ˙ , only˙vv is identified just by the data.

Identifying the remaining elements requires additional information about at least one of them. We

can nevertheless obtain estimates of conditional expected returns using equations (8) and (16). The

parameters in these equations are identified and can be estimated using, for example, maximum

likelihood. Recall that equation (16) follows directly from the steady-state representation of the

predictive system’s conditional expected return in equation (12). As the length of the sample

grows, estimates of the parameters in (16) and thus (12) will converge to values that do not depend

on prior beliefs about the parameters in the predictive system (as long as those priors do not strictly
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preclude such values). Therefore, after observing a sufficiently long sample, prior beliefs about

�uw , for example, will not impact forecasts of future returns. (Our actual sample is evidently not

long in that sense, as prior beliefs about �uw exert a substantial effect on estimates of expected

returns.) On the other hand, given the lack of full identification of ˙ , prior beliefs about �uw will

matter even in large samples when making inferences about the correlation between the predictors

and the true unobservable expected return �t .

Figure 4 plots the time series of expected returns obtained via maximum-likelihood estimation

of the predictive system (equations (8) and (16)) as well as the expected-return estimates obtained

from OLS estimation of the predictive regression. Panels A and B display results with a single

predictor, either the dividend yield or CAY. In Panel C, those variables are combined with the

bond-yield variable in the three-predictor case. First, observe that the fluctuation of the expected

return estimates seems too large to be plausible. In Panel B, for example, expected returns range

from -5% to 8% per quarter, and the range is even wider in Panel C. Later on, we obtain smoother

time series of �t by specifying informative prior beliefs. Second, observe that although the series

of estimated expected returns exhibit marked differences across the three sets of predictors, the

differences between the predictive-regression estimates and the predictive-system estimates for a

given set of predictors are much smaller.10

3.2. Bayesian Approach

We develop a Bayesian approach for estimating the predictive system. This approach has several

advantages over the frequentist alternatives such as the maximum likelihood approach. First, the

Bayesian approach allows us to specify economically motivated prior distributions for the param-

eters of interest. Second, it produces posterior distributions that deliver finite-sample inferences

about relatively complicated functions of the underlying parameters, such as the correlations be-

tween �t and xt and the R2s from the regression of rtC1 on �t . Finally, it incorporates parameter

uncertainty as well as uncertainty about the path of the unobservable expected return �t .

We obtain posterior distributions using Gibbs sampling, a Markov Chain Monte Carlo (MCMC)

technique (e.g., Casella and George, 1992). In each step of the MCMC chain, we first draw the pa-

rameters .�;A; ˛; ˇ;˙/ conditional on the current draw of f�t g, and then we use the forward filter-

ing, backward sampling algorithm developed by Carter and Kohn (1994) and Frühwirth-Schnatter

(1994) to draw the time series of f�t g conditional on the current draw of .�;A; ˛; ˇ;˙/. The

10We also estimate expected returns from the predictive system under diffuse priors (the discussion of prior beliefs
follows later in the text). We find that the resulting estimates (not plotted here) behave similarly to both the OLS
estimates from the predictive regression and the maximum likelihood estimates from the predictive system.
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details are in the Appendix.

We impose informative prior distributions on three quantities:

1. The correlation �uw between unexpected returns and innovations in expected returns,

2. The persistence ˇ of the true expected return �t ,

3. The predictive R2 from the regression of rtC1 on �t .

These prior distributions are plotted in Figure 5.

The key prior distribution is the one on �uw . We consider three priors on �uw , all of which are

plotted in Panel A of Figure 5. The “noninformative” prior is flat on most of the .�1; 1/ range,

with prior mass tailing off near ˙1 to avoid potential singularity problems. The “less informative”

prior imposes �uw < 0 in that 99.9% of the prior mass of �uw is below zero. As shown in Panel

B, this prior implies a relatively noninformative prior on �2
uw , with most prior mass between 0 and

0.8. Finally, the “more informative” prior on �uw is specified such that the implied prior on �2
uw has

99.9% of its mass above 0.5, with a mean of about 0.77. Since �2
uw is the R2 from the regression

of unexpected returns on shocks to expected returns, it represents the fraction of market variance

that is due to news about discount rates (see equation (4)). Therefore, the more informative prior

reflects the belief that at least half of the variance of market returns is due to discount rate news.

This belief is motivated by the evidence of Campbell (1991), Campbell and Ammer (1993), and

others who show that aggregate market returns are driven mostly by discount rate news.

Campbell (1991) uses a vector-autoregressive approach to decompose unexpected stock market

returns into components due to cash flow shocks, �C;tC1, and discount rate shocks, �E;tC1, as in

our equation (3). He considers two subperiods, 1927–1951 and 1952–1988. Since our sample

begins in 1952, we can use Campbell’s results from the 1927–1951 period as one source of prior

information. Based on quarterly data (which we use in our empirical work), Campbell estimates

in his Table 2 that �.�E;tC1/ > �.�C;tC1/ in 1927–1951, meaning that discount rate news is more

important than cash flow news in explaining the variance of stock market returns.11 The same table

also reports estimates of the variance of �E;tC1, �2
�E

, and its covariance with �C;tC1, �.�C ; �E/,

both as fractions of �2
u , from which the implied estimates of �.utC1; �E;tC1/ can be computed as�

�.�C ; �E/=�
2
u � �2

�E
=�2

u

�
=
�
��E

=�u

�
. Given equation (4), we interpret these values as implied

estimates of �uw . For the 1927–1951 period, Campbell’s results imply values of �uw ranging from

11Note that this result makes the condition in (5) hold trivially since �.�C;tC1; �E;tC1/ < 1. Moreover, Campbell
obtains negative estimates of �.�C;tC1; �E;tC1/ for the 1927–1951 period, which again makes the condition in (5)
hold trivially independent of �.�E;tC1/=�.�C;tC1/. Campbell’s empirical results from a sample period that predates
our sample therefore provide further support to the prior belief that �uw < 0.
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-0.67 to -0.87 across three different specifications. In 1952–1988, the implied estimates of �uw

range from -0.92 to -0.94, and in the full sample, 1927–1988, they range from -0.71 to -0.86. The

implied estimates of �2
uw range from 0.50 to 0.74 in 1927–1988, from 0.44 to 0.76 in 1927–1951,

and from 0.84 to 0.88 in 1952–1988. The estimates of �2
uw implied by the evidence of Campbell

and Ammer (1993) in their Table III range from 0.86 to 0.91. All of these estimates seem to be in

line with the more informative prior on �uw in Figure 5.

Note that putting a prior on �uw presents a technical challenge. We do not impose the standard

inverted Wishart prior on the covariance matrix˙ because such a prior would be informative about

all elements of˙ , not only about �uw , and we see no economic reason to be informative about the

variance of vt or about its covariances with the other error terms. Instead, we build on Stambaugh

(1997) and form the prior on ˙ as the posterior from a hypothetical sample that contains more

information about the covariance between ut and wt than about the other covariance elements of

˙ . The details are in the Appendix.

In addition to putting a prior on �uw , we also impose a prior belief that the conditional expected

return �t is stable and persistent. To capture the belief that �t is stable, we impose a prior that the

predictive R2 from the regression of rtC1 on �t is not very large, which is equivalent to the belief

that the total variance of �t is not very large. The prior on the R2, which is plotted in Panel C of

Figure 5, has a mode close to 1%, most of its mass is below 5%, and there is very little prior mass

above 10%. To capture the belief that �t is persistent, we impose a prior that ˇ, the slope of the

AR(1) process for �t , is smaller than one but not by much.12 The prior on ˇ, which is plotted in

Panel D of Figure 5, has most of its mass above 0.7 and there is virtually no prior mass below 0.5.

We do not impose a prior belief that �t > 0. Although such a belief is reasonable under a fully

rational view, we do not wish to preclude the possibility that some of the variation in �t is driven

by investor sentiment. The prior distributions on all other parameters (�;A; ˛, and most elements

of ˙) are noninformative.

3.3. Explanatory Advantage of the Predictive System

In Section 2.4., we show in a theoretical setting that a predictive system produces more precise

estimates of expected return than a predictive regression. In this section, we quantify the advantage

of the predictive system empirically. The sample period is 1952 Q1 – 2003 Q4, as before.

Recall that our theoretical comparison of the explanatory powers of the predictive system and

12Ferson, Sarkissian, and Simin (2003, footnote 2) discuss several reasons to believe expected return is persistent.
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the predictive regression is based on the ratio of two R2’s in equation (25) and that, the smaller

the R2 ratio, the larger the advantage of using the predictive system. Table III shows the posterior

means and standard deviations of the R2 ratios for four different priors and four different sets of

predictors. First, observe that the posterior means of the R2 ratios are all comfortably lower than

one, ranging from 0.08 to 0.86 across the 16 cases, and from 0.46 to 0.70 when all three predictors

are used jointly. This result shows that the theoretical explanatory advantage of the predictive

system extends to our empirical setting. Second, the R2 ratios are sensitive to the prior on �uw .

For example, with the bond yield as the single predictor, the R2 ratio is estimated to be 0.73 under

the diffuse prior. When we impose the prior belief that �uw is negative, the R2 ratio declines to

0.34 under the less informative prior and then further to 0.08 under the more informative prior. In

other words, under the prior that more than half of the market variance is due to discount rate news,

the expected return estimates from the predictive system are about 12.5 times more precise than

those from the predictive regression. For the dividend yield, we observe the opposite pattern—the

R2 ratio increases from 0.28 to 0.59 to 0.81 for the same priors. The opposite patterns result from

the opposite effects that the prior on �uw has on the adequacy of xt as a predictor in the two cases,

as we will see later.

The predictive system produces more precise expected return estimates because it uses more

information, not only the most recent predictor values but also their lags and the full history of

asset returns. One way to analyze this additional information is to examine the coefficients �s

and �s from equation (12), which capture the influence of past unexpected returns and predictor

innovations on the estimate of expected return. Figure 6 plots the first 30 lags of �s and �s . Both

coefficients decay as the number of lags increases, by construction, but they are mostly nontrivially

different from zero at the first 10-20 quarterly lags. Both coefficients also depend on the prior for

�uw , as expected.

Another way of comparing the predictive system with the predictive regression is to compare

their estimates of the slope coefficient b from the predictive regression. Figure 7 plots the pos-

terior distributions of b computed under three scenarios. The dashed line is the posterior of b

computed from the predictive regression under no prior information. This posterior has a Student t

distribution whose mean is equal to the maximum likelihood estimate (MLE) of b (Zellner, 1971,

pp. 65–67). The dashed line thus represents “conventional inference” on predictability. The other

two lines in Figure 7 plot the implied posteriors of b computed from the predictive system.13 The

dotted line corresponds to the prior that is noninformative about �uw but informative about the

13Although b does not play an explicit role in the predictive system, its value can be computed from the system’s
parameters, as shown in footnote 7. Posterior draws of b can thus be constructed from the posterior draws of the
underlying parameters. We construct the posteriors of several other quantities such as �s in the same manner.
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process for �t (i.e., ˇ and R2). In all three panels of Figure 7, the dotted line is substantially

different from the dashed line, which means that imposing the prior that�t is stable and persistent

significantly affects the inference about predictability. Put differently, in the standard predictive

regression approach, which does not impose such a prior, the estimates of �t are more variable or

less persistent or both (recall Figure 4). In addition, the dotted line is shifted toward zero compared

to the dashed line, which means that the prior belief that �t is stable and persistent weakens the

evidence of predictability. Finally, the solid line corresponds to the prior that is informative not

only about the process for �t but also about �uw . The prior on �uw clearly affects the inference

about predictability. For example, consider Panel A, in which the single predictor is the bond yield.

Whereas the traditional inference (dashed line) would conclude with almost 100% certainty that

the bond yield is a useful predictor (b > 0), the system-based inference with the more informative

prior on �uw (solid line) concludes no such thing because almost half of the posterior mass of b

is below zero. This prior also slightly weakens the predictive power of CAY but it strengthens the

predictive power of the dividend yield.

3.4. How Imperfect Are Predictors?

The predictive system also allows us to learn about the correlation between the expected return

�t and one or more predictors. Since �t is not observed, the manner in which one learns about

such correlations merits some discussion. Consider, for simplicity, the case of a single predictor xt

whose autocorrelation A is equal to ˇ. The unconditional correlation between the expected return

and the predictor, �x�, is then equal to �vw , the conditional correlation.14 By virtue of the fact that

the correlation matrix for .ut vt wt/ must be non-negative definite, it is readily verified that

�vw D �uv�uw C ��; where �2
�

� .1 � �2
uv/.1 � �2

uw/: (28)

In other words, even though correlations are not transitive (two correlations don’t imply the third),

they become nearly transitive when at least one of them approaches ˙1. Our priors for �vw and �uv

are noninformative. The data reveal information about �uv in that with only modest predictability

in returns, the value of �uv is close to that of �rv, which can be estimated from the series of rt

and xt .15 Information about �uw enters largely through the prior. When the prior is concentrated

14More generally,

�x� D �vw

�
.1 � ˇ2/.1 � A2/

.1 � ˇA/2

� 1
2

;

so that �2
x� � �2

vw.
15When the predictive R2 is low, �2

ru D .1 � R2/ is close to one, and equation (28) then implies that �uv is well
approximated by �rv.
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on large negative values, then the likely values of �� in (28) are small, so the prior information

about �uw and the sample information about �uv get combined to provide information about �vw .

Alternatively, if the data indicate that �uv is close to ˙1 (e.g., in Table I, �uv � �0:9 when the

predictor is the dividend yield), then again �� is likely to be small, so that �uv and �uw are again

jointly informative about �vw .

Inferences about the degrees to which the various predictors analyzed here can capture the

unobservable true expected return �t are summarized in Figures 8 through 10. We report results

for three predictive systems, in which the predictors are the dividend yield alone (Figure 8), the

bond yield alone (Figure 9), and the dividend yield, bond yield, and CAY together (Figure 10).

Panel A of each figure plots the posterior distribution of the R2 from the regression of�t on xt .

This R2 is assumed to be one in a predictive regression, but its posterior in the predictive system

has very little mass at values close to one. In all three figures, the R2s larger than 0.8 receive very

little posterior probability and the values larger than 0.9 are deemed almost impossible, regardless

of the prior. This evidence suggests that none of the three sets of predictors are likely to be perfectly

correlated with �t .16

The R2 also depends on the prior for �uw in an interesting way. In Panel A of Figure 8, becom-

ing increasingly informative about �uw shifts the posterior of the R2 to the right, with the mode

shifting from about 0.3 under the noninformative prior to about 0.6 under the more informative

prior. This makes sense – since the dividend yield exhibits a highly negative contemporaneous

correlation with stock returns, imposing a prior that �t also possesses such negative correlation

makes the dividend yield more closely related to �t . Exactly the opposite happens in Panel A of

Figure 9, where becoming increasingly informative about �uw shifts the posterior of the R2 to the

left so that its mode is close to zero under the more informative prior. This makes sense as well

because the bond yield is positively correlated with stock returns (Table I). In Panel A of Figure

10, becoming increasingly informative about �uw shifts the posterior to the right again. The rea-

son is that the set of predictors includes the dividend yield and CAY, both of which are negatively

correlated with contemporaneous returns.

Panel B of each figure plots the posterior of the predictive R2 from the regression of rtC1 on

�t . Putting a more informative prior on �uw increases the R2 in Figures 8 and 9 and decreases it

in Figure 10, but these effects are relatively small. Since we put a fairly informative prior on the

predictive R2 (see Panel C of Figure 5), the posterior is not dramatically different from the prior

16Note that even if xt were perfectly correlated with �t in population, the posterior of their correlation would have
nontrivial mass below one in any finite sample. Since we always observe finite samples, we always perceive imperfect
correlation between xt and �t .
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in any of the three figures.

The remaining panels of each figure plot the posteriors of the partial correlations between

each predictor and �t , both conditional (�vw) and unconditional (�x�). (Partial correlations are

correlations that control for the presence of other predictors.) These correlations are all well below

one and they are quite sensitive to the prior on �uw . As we become increasingly informative about

�uw , we perceive the dividend yield to be more highly correlated with �t (Figure 8) and the bond

yield to be less highly correlated with �t (Figure 9). For CAY in Figure 10, the prior does not

affect �vw much but it increases �x�. Among the three predictors in Figure 10, the bond yield

exhibits the lowest partial correlations with �t under the more informative prior. For example,

almost a third of the posterior distribution for �x� is below zero and the posterior mode is only

about 0.2. The dividend yield and CAY exhibit substantially higher �x�’s, with posterior modes of

about 0.7, and their conditional correlations �vw are even slightly higher.

Overall, Figures 8 through 10 show that our predictors are imperfectly correlated with �t and

that the inference about this correlation is substantially affected by the prior beliefs about �uw .

Prior beliefs informed by economic principles strengthen the predictive power of the dividend

yield and CAY but they weaken the predictive power of the bond yield.

3.5. Estimates of Expected Return

Figure 11 plots the time series of expected returns estimated by three different approaches. The

dashed line plots the fitted values from the predictive regression. These traditional expected return

estimates seem too volatile to be plausible, as we also observed in Figure 4. For example, in Panel

C, which includes all three predictors, expected returns range from -6% to 9% per quarter. Not

surprisingly, imposing the prior that �t is stable and persistent (dotted line) produces smoother

expected return estimates. Adding the more informative prior on �uw (solid line) further smoothes

the expected return estimates: in Panel C, they range from -1.5% to 3.5% per quarter. The infor-

mative priors have substantial effects on expected returns not only in Panel C but also in Panel B in

which CAY is the single predictor: while the regression-fitted values range from -5.5% to 7.5% per

quarter, the solid line ranges from -1.5% to 2.5%. Only in Panel A, in which the dividend yield is

the single predictor, the effect of the prior is relatively mild. The reason is that the regression-fitted

values in Panel A are already fairly smooth and negatively correlated with stock returns.

While eyeballing the expected return estimates seems informative, we also compute measures

summarizing their differences. Table IV compares five different series of expected return estimates.

The first is the series of fitted values from the predictive regression, and the others are produced
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by four different approaches to estimating the predictive system. One of the latter approaches

estimates the predictive system by MLE, while the other three impose the prior that�t is stable and

persistent but differ in their prior on �uw (noninformative, less informative, more informative). We

compare the five series of expected return estimates in three different ways: pairwise correlations,

mean absolute differences, and average utility losses. The utility losses are computed for a mean-

variance investor allocating between the market and the T-bill who knows the variance of market

returns but must estimate the market’s expected return. The investor’s risk aversion is such that the

optimal portfolio is fully invested in the market, on average. We compute the investor’s certainty

equivalent loss resulting from holding a portfolio that is optimal under a different approach for

estimating expected returns. For example, the 0.15% per quarter average utility loss in the first row

of Panel A is suffered by an investor who wants to estimate expected return in the predictive system

by MLE but is forced to use the fitted values from the predictive regression. Finally, the three

panels consider three different sets of predictors: the dividend yield, CAY, and the two predictors

combined with the bond yield.

Panel A of Table IV shows that when the dividend yield is the single predictor, the expected

return estimates are fairly similar across the five estimation approaches, confirming the evidence

from Panel A of Figure 11. No average utility loss exceeds 0.15% per quarter, no mean absolute

difference is larger than 0.55% per quarter, and all correlations exceed 84.5%. We also observe

that imposing informative priors makes the system-based estimates closer to the regression-based

estimates. For example, the utility losses fall monotonically from 0.15% to 0.03% as move from

column two to column five in the first row of Panel A.

The differences across the five approaches are substantially larger in Panel B where we use

CAY to predict returns. For example, compare the system-based estimates obtained by MLE versus

the more informative prior. The mean absolute difference in expected returns is 1.65% per quarter

and the average certainty equivalent loss from using one estimate in place of the other is 1.40% per

quarter. Both quantities are highly economically significant. In Panel C, where we use all three

predictors, the differences across the five approaches are even larger. For the same comparison as

earlier in this paragraph, the mean absolute difference in expected returns is 1.80% per quarter and

the average certainty equivalent loss is 1.49% per quarter.

In all three panels, the smallest differences are obtained for the noninformative versus the less

informative prior on �uw . No average utility loss exceeds 0.06% per quarter, no mean absolute

difference is larger than 0.37% per quarter, and all correlations exceed 95.4%. However, moving

from the less informative to the more informative prior on �uw can produce sizeable differences in

expected returns. For example, the mean absolute difference in Panel C is 1.46% per quarter and
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the average utility loss is 0.84% per quarter.

To sum up, when we use the dividend yield as the single predictor, the system-based expected

return estimates are close to the regression-based estimates. In all other cases, the system and the

regression generate substantially different expected returns, and the system-based estimates are

significantly affected by the prior on �uw .

3.6. Variance Decomposition of Expected Return

In the predictive regression approach, expected return �t is modeled as an exact linear function

of the predictors in xt . In a predictive system, however, the data provide additional information

about �t because the lagged values of unexpected returns and predictor innovations also enter the

expected return estimates (see Section 2.2.). In this section, we decompose the variance of �t to

assess the relative importance of the various sources of information in a predictive system.

First, we rewrite the AR(1) processes for xt and �t in equations (8) and (9), respectively, as

moving average processes with an infinite number of lags:

xt D Ex C
1X

iD0

Aivt�i (29)

�t D Er C
1X

iD0

ˇiwt�i; (30)

where Er � E.rt/ and Ex � E.xt/. Then we project wt linearly on ut and vt :

wt D Œ�wu �wv �

�
�2

u �uv

�vu ˙vv

��1 �
ut

vt

�
C �t D  uut C vvt C �t : (31)

Substituting for wt from equation (31) into equation (30), we obtain

�t D .Er �  vEx/C  vxt C u

1X

iD0

ˇiut�i C v

1X

iD0

�
ˇiIK � Ai

�
vt�i C

1X

iD0

ˇi�t�i; (32)

where K is the number of predictors and IK is a K � K identity matrix. Equation (32) shows

how the lagged values of unexpected returns ut�i and predictor innovations vt�i affect �t in the

presence of the current predictor values in xt . Based on this equation, we can decompose the

variance of �t into the components due to xt , fusgs�t , and fvsgs�t . See the Appendix for details.

Table V reports the posterior means and standard deviations of the R2s from the regressions of

�t on xt (column 1), �t on xt and fusgs�t (column 2), and �t on xt and fus; vsgs�t (column 3).
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We consider four sets of predictors xt : the dividend yield, bond yield, CAY, and the combination

of all three predictors. For each set of predictors, we estimate the predictive system under three

different priors. All three priors assume that �t is stable and persistent but they differ in their

degree of informativeness about �uw .

First, note that xt never accounts for more than 63% of the variance of �t and that it can

account for as little as 3% of this variance. In contrast, xt combined with fus; vsgs�t can account

for as much as 95% of the variance of �t , and those components account for more than 80% of the

variance in 10 of the 12 cases in Table V. The most striking effect obtains for the bond yield, for

which adding fus; vsgs�t to xt increases the R2 from 0.03 to 0.95. It seems clear that a predictive

regression, which uses only xt to predict returns, does not use the data as effectively as a predictive

system, which also uses fus; vsgs�t in addition to xt .

The R2’s in Table V are substantially affected by the prior on �uw . For example, consider the

first columns of Panels A and B. Under the noninformative prior on �uw , both the dividend yield

and the bond yield explain about a third of the variance of �t . As we become more informative

about �uw , this fraction increases from 0.34 to 0.40 to 0.57 for the dividend yield, but it decreases

from 0.33 to 0.24 to 0.03 for the bond yield. These opposite patterns reflect the opposite signs of

the correlations between stock returns and the two predictors, as explained earlier.

The lagged unexpected returns fusgs�t contain a significant amount of information about �t

beyond that included in xt . When fusgs�t is added to xt in estimating �t , the R2’s increase

by anywhere between 7% and 83%. For example, under the more informative prior on �uw , the

R2 increases from 0.03 to 0.86 for the bond yield, from 0.53 to 0.87 for CAY, and from 0.63 to

0.85 when fusgs�t is added to all three predictors. The lagged predictor innovations fvsgs�t also

contain useful information about �t . When fvsgs�t is added to xt and fusgs�t , the R2’s increase

by between 1% and 41%. The smallest increases, of 1% to 5%, obtain for the dividend yield, while

the largest increases, of 9% to 41%, obtain for all three predictors combined.

To summarize, the past values of unexpected returns and predictor innovations contain use-

ful incremental information about the current expected return. This information is used by the

predictive system but not by the standard predictive regression.

4. Conclusions

Unlike a predictive regression, a predictive system accommodates imperfect predictors as well as

the prior belief that expected and unexpected returns are negatively correlated. When predictors
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are imperfect, expected returns conditional on available data depend not only on the most recent

values of those predictors but also on lagged returns and lags of the predictors. Recent lagged re-

turns receive a negative weight when prior beliefs attribute a significant portion of the variance in

unexpected returns to changes in expected returns. The prior for the correlation between expected

and unexpected returns can also have a substantial effect on inferences about a predictor’s corre-

lation with expected return. The lags of returns and predictors often account for a large fraction

of the variation in conditional expected returns when the predictors are imperfect. We observe

economically significant differences across estimates of conditional expected returns, not only for

predictive regressions versus predictive systems but across different specifications of priors within

predictive systems as well.

Our initial exploration of predictive systems could be extended in many directions. We are

intentionally noninformative about the degree of imperfection in a predictor, but one could instead

incorporate an informative prior belief about a predictor’s correlation with expected return. The

latter approach is likely to be preferable when inference is less the objective than is producing the

best forecast given one’s own prior judgment. The predictive system is formulated as a one-period-

ahead model, but it can deliver conditional expected returns for longer horizons as well. It could

be interesting to investigate whether, when predictors are imperfect, observations of long-horizon

returns can provide additional insight into the properties of expected returns, such as their persis-

tence. We assume that the conditional mean return follows an AR(1) process, but it would also

make sense to consider more complicated processes. For example, if the mean were allowed to

have not only a slow-moving persistent component but also a higher-frequency transient compo-

nent, the bond yield, which is not very persistent, might be inferred to be more highly correlated

with the conditional mean. We also assume that the return variance is constant, but one could al-

low it to be time-varying, potentially in a manner correlated with expected return (e.g., Brandt and

Kang, 2004). We consider three predictors but it would also be interesting to examine the degrees

of imperfection in various other predictors that have been proposed in the literature.17 We ana-

lyze predictability in U.S. stock market returns, but it would also be interesting to apply predictive

systems to international markets (e.g., Ferson and Harvey, 1993).

It could also be useful to expand the predictive system to incorporate cash flow news. We

have argued that the innovation in the expected return should be negatively correlated with the

unexpected return, but if one could account for the portion of the latter that is correlated with cash

flow news, the remaining portion would be driven entirely by news about expected return. These

issues are beyond the scope of this paper but they merit more attention. See Cochrane (2006) and

17See, for example, Ferson and Harvey (1991), Lamont (1998), Lewellen (1999), Ang and Bekaert (2006), Santos
and Veronesi (2006), etc.
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Rytchkov (2006) for recent analyses of the interaction between return predictability and cash flow

predictability.

One might ask whether the predictive system produces out-of-sample forecasts with lower

mean squared error (MSE) than a simpler approach such as a predictive regression or just the sam-

ple average.18 A Bayesian investor with a quadratic (MSE) loss function would prefer a forecast

that combines his priors and the available data to estimate the conditional expected return based

on the correct model. The correct model, when estimated using a finite sample, tends to produce

out-of-sample MSEs higher than those from estimates of simpler models when the true degree of

predictability is not sufficiently high, as discussed by Clark and West (2004, 2005) and Hjalmars-

son (2006). Thus, a simple comparison of out-of-sample MSEs would not speak directly to the

question of whether the predictive system is the right model from the investor’s perspective. That

question, one of model selection, is beyond the scope of this study but could be an interesting area

for future research. Clark and West (2004, 2005) develop frequentist tests based on out-of-sample

statistics, and it could be interesting to pursue model selection issues for predictive systems.

18Goyal and Welch (2003, 2005) and Campbell and Thompson (2005), among others, investigate the abilities of
predictive regressions and sample averages to forecast stock returns out of sample.

27



Appendix.

In parts of the Appendix, we work with a generalized version of the predictive system with
more than one asset, so that rt , xt , and �t are all vectors. In those parts, we maintain the usual
convention that matrices are denoted by uppercase letters, so we replace ˇ by B, the � ’s by the
corresponding˙ ’s, etc.

We restate the predictive system from equations (7) through (9) here in the multi-asset case:

rtC1 D �t C utC1 (A1)

xtC1 D � C Axt C vtC1 (A2)

�tC1 D ˛ C B�t CwtC1; (A3)

with the disturbances distributed identically and independently across t as
2
4

ut

vt

wt

3
5 � N

0
@
2
4

0

0

0

3
5 ;

2
4
˙uu ˙uv ˙uw

˙vu ˙vv ˙vw

˙wu ˙wv ˙ww

3
5
1
A : (A4)

Let D0 denote the null information set, so that the unconditional moments are given as
2
4

rt

xt

�t

3
5 jD0 � N

0
@
2
4

Er

Ex

Er

3
5 ;
2
4

Vrr Vrx Vr�

Vxr Vxx Vx�

V�r V�x V��

3
5
1
A : (A5)

Let zt denote the vector of the observed data at time t ,

zt D
�

rt

xt

�
: (A6)

Denote the data we observe through time t as Dt D .z1; : : : ; zt/, and note that our complete data
consist of DT . Also define

Ez D
�

Er

Ex

�
; Vzz D

�
Vrr Vrx

Vxr Vxx

�
; Vz� D

�
Vr�

Vx�

�
: (A7)

From the above we obtain

Er D .I � B/�1˛ (A8)

Ex D .I � A/�1� (A9)

Vrr D V�� C˙uu (A10)

Vxx D AVxxA0 C˙vv (A11)

V�� D BV��B0 C˙ww (A12)

Vrx D V�xA0 C˙uv (A13)

V�x D BV�xA0 C˙wv (A14)

V�r D BV�� C˙wu (A15)
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and equations (A11), (A12), and (A14) can be written in explicit form as19

vec .Vxx/ D ŒI � .A ˝ A/��1vec .˙vv/ (A16)

vec .V��/ D ŒI � .B ˝ B/��1vec .˙ww/ (A17)

vec .V�x/ D ŒI � .A ˝ B/��1vec .˙wv/: (A18)

Drawing the time series of �t

To draw the time series of the unobservable values of �t conditional on the current parameter
draws, we apply the forward filtering, backward sampling (FFBS) approach, originally developed
by Carter and Kohn (1994) and Frühwirth-Schnatter (1994). See also West and Harrison (1997,
chapter 15).

Filtering

The first stage follows the standard methodology of Kalman filtering. Define

at D E.�t jDt�1/ (A19)

bt D E.�t jDt/ (A20)

et D E.zt j�t ;Dt�1/ (A21)

ft D E.zt jDt�1/ (A22)

Pt D Var.�t jDt�1/ (A23)

Qt D Var.�t jDt / (A24)

Rt D Var.zt j�t ;Dt�1/ (A25)

St D Var.zt jDt�1/ (A26)

Gt D Cov.zt ; �
0
t jDt�1/ (A27)

Conditioning on the (unknown) parameters of the model is assumed throughout but suppressed in
the notation for convenience. First note that

�0jD0 � N.b0;Q0/; (A28)

where b0 D Er and Q0 D V��,
�1jD0 � N.a1;P1/; (A29)

where a1 D Er and P1 D V��, and

z1jD0 � N.f1;S1/; (A30)

where f1 D Ez and S1 D Vzz. Note that

G1 D Vz� (A31)

19The solutions employ the well-known identity vec .DFG/ D .G0 ˝ D/vec .F /.
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and that
z1j�1;D0 � N.e1;R1/; (A32)

where

e1 D f1 C G1P �1
1 .�1 � a1/ (A33)

R1 D S1 � G1P �1
1 G0

1: (A34)

Combining this density with equation (A29) using Bayes rule gives

�1jD1 � N.b1;Q1/; (A35)

where

b1 D a1 C P1.P1 C G0
1R�1

1 G1/
�1G0

1R�1
1 .z1 � f1/ (A36)

Q1 D P1.P1 C G0
1R�1

1 G1/
�1P1: (A37)

Continuing in this fashion, we find that all conditional densities are normally distributed, and we
obtain all the required moments for t D 2; : : : ;T :

at D ˛ C Bbt�1 (A38)

Pt D BQt�1B0 C˙ww (A39)

ft D
�

bt�1

� C Axt�1

�
(A40)

St D
�

Qt�1 C˙uu ˙uv

˙vu ˙vv

�
(A41)

Gt D
�

Qt�1B0 C˙uw

˙vw

�
(A42)

et D ft C Gt P
�1
t .�t � at/ (A43)

Rt D St � Gt P
�1
t G0

t (A44)

bt D at C Pt.Pt C G0
tR

�1
t Gt /

�1G0
t R

�1
t .zt � ft / (A45)

D at C G0
tS

�1
t .zt � ft/ (A46)

Qt D Pt .Pt C G0
t R

�1
t Gt/

�1Pt : (A47)

The values of fat ; bt ;Qt ;Pt g for t D 1; : : : ;T are retained for the next stage.

Sampling

Let

�t D

2
4

rt

xt

�t

3
5 : (A48)

We wish to draw .�0; �1; : : : ; �T / conditional on DT . The backward-sampling approach relies on
the Markov property of the evolution of �t and the resulting identity,

p.�0; �1; : : : ; �T jDT / D p.�T jDT /p.�T �1j�T ;DT �1/ � � � p.�1j�2;D1/p.�0j�1;D0/: (A49)
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We first sample �T from p.�T jDT /, the normal density obtained in the last step of the filtering.
Then, for t D T � 1;T � 2; : : : ; 1; 0, we sample �t from the conditional density p.�t j�tC1;Dt /.
(Note that the first two subvectors of �t are already observed and thus need not be sampled.) To
obtain that conditional density, first note that

�tC1jDt � N

0
@
2
4

bt

� C Axt

atC1

3
5 ;

2
4

Qt C˙uu ˙uv Qt B
0 C˙uw

˙vu ˙vv ˙vw

BQt C˙wu ˙wv PtC1

3
5
1
A ; (A50)

�t jDt � N

0
@
2
4

rt

xt

bt

3
5 ;

2
4

0 0 0

0 0 0

0 0 Qt

3
5
1
A ; (A51)

and

Cov.�t ; �
0
tC1jDt / D

2
4

0 0 0

0 0 0

Qt 0 Qt B
0

3
5 : (A52)

Therefore,
�t j�tC1;Dt � N.ht ;Ht /; (A53)

where

ht D

2
4

rt
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2
4

0 0 0

0 0 0

Qt 0 Qt B
0

3
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2
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3
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The mean and covariance matrix of �t are taken as the relevant elements of ht and Ht .

Expected returns and past values

In this section, we derive the equations (12), (18), and (21). We still work in the general case
in which rt is a vector of returns rather than a scalar. Therefore, to continue denoting matrices by
uppercase letters, we replace m by M , n by N , � by �, � by ˚ , ı by �, ! by ˝, and � by K.

Below, we express the vector of conditional expected returns, bt D E.rtC1jDt /, as a function
of past returns and predictors. Denote

ŒMt Nt � � Pt .Pt C G0
tR

�1
t Gt /

�1G0
tR

�1
t D G0

tS
�1
t ; (A54)
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so that, from equation (A45), for t > 1,

bt D at C ŒMt Nt �.zt � ft/

D ˛ C Bbt�1 C ŒMt Nt �

�
rt � bt�1

xt � � � Axt�1

�

D .I � B/Er C .B � Mt /bt�1 C Mtrt C Ntvt ; (A55)

or
bt � Er D B.bt�1 � Er/C Mt.rt � bt�1/C Ntvt : (A56)

For t D 1, we obtain

b1 � Er D M1.r1 � b0/C N1v1;

where v1 denotes x1 � Ex . Repeated substitution for the lagged values of .bt � Er/ gives

bt D Er C
tX

sD1

�s.rs � bs�1/C
tX

sD1

˚svs; (A57)

where

�s D Bt�sMs (A58)

˚s D Bt�sNs : (A59)

That is, the expected return conditional on data observed through period t can be written as the
unconditional mean Er plus a linear combination of past return forecast errors, �s D rs � bs�1,
plus a linear combination of past innovations in the predictors. This is equation (12) in the text.

The current conditional expected return bt can be rewritten so that past forecast errors are
replaced by returns in excess of the unconditional mean Er . To do so, modify equation (A55)
slightly as

bt � Er D .B � Mt /.bt�1 � Er /C Mt .rt � Er/C Ntvt (A60)

so that repeated substitution for the lagged values of .bt � Er/ then yields

bt D Er C
tX

sD1

˝s.rs � Er/C
tX

sD1

�svs (A61)

where

˝s D
�
.B � Mt/.B � Mt�1/ � � � .B � MsC1/Ms for s < t

Ms for s D t
(A62)

�s D
�
.B � Mt/.B � Mt�1/ � � � .B � MsC1/Ns for s < t

Ns for s D t
(A63)

That is, bt is then equal to the unconditional mean return Er plus linear combinations of past
returns in excess of Er and past innovations in the predictors. This is equation (18) in the text.
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If Er is replaced by the sample mean, .1=t/
Pt

lD1 rl , in equation (18), then the estimate of bt

becomes

Obt D
tX

sD1

Ksrs C
tX

sD1

�svs; (A64)

where

Ks D
1

t

 
I �

tX

lD1

˝l

!
C˝s; (A65)

and
Pt

sD1 Ks D I . This is a generalized version of equation (21) in the text.

In the rest of the Appendix, we discuss the special case (implemented in the paper) in which
we predict the return on a single asset, so that rt is a scalar. This simplification turns �t , ˛, and
B into scalars as well. Therefore, we now turn back to the notation from the text in which B is
replaced by ˇ and the relevant˙ ’s by � ’s.

Drawing the parameters

This section describes how we obtain the posterior draws of all parameters conditional on the
current draw of the time series of �t .

Prior distributions

First, we discuss the prior on .�;A; ˛; ˇ/. We require both xt and �t to be stationary, so that
all eigenvalues of A must lie inside the unit circle and ˇ 2 .�1; 1/. Apart from this restriction,
our prior is noninformative about A but informative about ˇ, ˇ � N.0:99; 0:152/ (see Figure
5). We reparameterize the model to replace the intercepts � and ˛ by the unconditional means
of �t and xt , which we denote by E� and Ex, respectively. The equations (8) and (9) then read
xtC1 D Ex CA.xt �Ex/CvtC1 and �tC1 D E� Cˇ.�t �E�/CwtC1. This reparameterization
allows us to increase the speed of convergence of our MCMC chain by putting a mildly informative
prior on E�, E� � N. N�; �2

E�
/, centered at the sample mean return with a large prior standard

deviation of 1% per quarter. We use a noninformative prior for Ex, Ex � N.0; �2
Ex

IK / with a
large �Ex

. All four parameters, A, ˇ, E�, and Ex , are independent a priori.

The prior on˙ is informative about the 2 � 2 submatrix˙11 � Œ�2
u �uwI�wu �

2
w� but noninfor-

mative about the elements of ˙ that involve v (i.e., ˙vv; �vu; �vw). Such a prior on ˙ is obtained
as a posterior when a noninformative prior is updated with a hypothetical sample in which there
are T0 observations of .u; w/ but only S0 � T0 observations of v. We choose T0 equal to one
fifth of the sample size, which makes the prior on ˙11 quite informative (five times less informa-
tive than the actual sample). We choose S0 D K C 3, where K is the number of predictors used
(K D 1 or 3), which makes the prior on the elements of ˙ that involve v virtually noninformative
(as informative as a sample of only K C 3 observations).

We obtain this latter prior by changing variables from (˙vv; �vu; �vw) to the slope C and the
residual covariance matrix ˝ from the regression of vt on .ut; wt /. We put a normal-inverted-
Wishart prior on C and ˝: ˝ � IW .S0

Ő
0;S0 � 1/ and vec .C /j˝ � N. Oc0;˝ ˝ .X 0

0
X0/

�1/,
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where Ő
0, Oc0, and X 0

0X0 represent the estimates from a hypothetical sample of S0 observations.
We choose a very small value for S0, as explained above. In addition, we choose a hypothetical
sample in which the right-hand side variable is much less volatile than the residuals. Both choices
help make the prior on C and˝ noninformative.

The prior on ˙11 is inverted Wishart, ˙11 � IW .T0
Ȯ

11;0;T0 � K � 1/. The prior mean
of �2

u is set equal to 95% of the sample variance of market returns, and the prior mean of �2
w is

obtained from the total variance of �t under the assumption that ˇ D 0:97. These assumptions
lead to a prior for the R2 from the regression of rtC1 on �t that we find plausible (see Figure 5).
To be able to put different priors on �uw while keeping the same prior on �2

u and �2
w, we adopt

a hyperparameter approach in which the off-diagonal element of Ȯ
11;0 is unknown. Specifically,

denoting the .i; j / element of Ȯ
11;0 by Mij , for i D 1; 2 and j D 1; 2, we assume that M11

and M22 are known but M12 is an unknown hyperparameter with a uniform prior distribution
on the interval .�c

p
M11M22; c

p
M11M22/. Under this specification, the prior mean of �uw is

approximately uniformly distributed as U.�c; c/. For all three priors on �uw , we specify c D
�0:90 and we vary c as follows: 0.9 for the noninformative prior, -0.35 for the less informative
prior, and -0.87 for the more informative prior. These choices produce the priors on �uw plotted in
Figure 5.

Posterior distributions

Drawing .�;A; ˛; ˇ/ given˙

After changing variables from .�; ˛/ into .Ex;E�/, the equations (8) and (9) can be written as

�
xtC1

�tC1

�

„ ƒ‚ …
qtC1

�
�

A 0

0 ˇ

�

„ ƒ‚ …
L1

�
xt

�t

�

„ ƒ‚ …
qt

�
�

IK � A 0

0 1 � ˇ

�

„ ƒ‚ …
L2

�
Ex

E�

�

„ ƒ‚ …
Ex�

D
�
vtC1

wtC1

�
;

where the covariance matrix of the residuals is ˙.vw/ �
�
˙vv �vwI�wv �

2
w

�
. The prior for Ex� is

Ex� � N
�
Ex�0

;Vx�0

�
;

where Ex�0
� .0 N�/0 and Vx�0

�
h
�2

Ex
IK 0I 0 �2

E�

i
. Since both the prior and the likelihood are

normally distributed, the full conditional posterior distribution of Ex� is also normal,

Ex�j� � N
�

QEx�; QVx�

�
; (A66)

where QVx� D .V �1
x�0

CTL0
2˙

�1
.vw/

L2/
�1 and QEx� D QVx�

h
V �1

x�0
Ex�0

C L0
2˙

�1
.vw/

PT
tD1.qtC1 � L1qt/

i
.

Let xk � .xk
2 ; : : : ;x

k
T /

0 denote the .T � 1/� 1 vector of realizations of predictor k in periods
2; : : : ;T , for k D 1; : : : ;K. Also, let x.l/ denote the .T � 1/ � K vectors of realizations of all K

predictors in periods 1; : : : ;T � 1. Similarly, let � � .�2; : : : ; �T /
0 and �.l/ � .�1; : : : ; �T �1/

0,
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and let Exk be the k-th element of Ex . Denote

z D

0
BBB@

x1 � �T �1Ex1

:::

xK � �T �1ExK

� � �T �1E�

1
CCCA ; Z D

0
BBB@

x.l/ � �T �1E0
x 0 0 0

0
: : : 0 0

0 0 x.l/ � �T �1E0
x 0

0 0 0 �.l/ � �T �1E�

1
CCCA ;

where �T �1 is a .T � 1/� 1 vector of ones, the dimensions of z are Œ.T � 1/.K C 1/�� 1, and the
dimensions of Z are Œ.T � 1/.K C 1/�� .K2 C 1/. Then we can write the equations (8) and (9) as

z D Zb C errors ;

where b D .vec .A0/0 ˇ/0 and the covariance matrix of the error terms is ˙.vw/ ˝ IT �1. The prior
distribution on b is given by

b � N .b0;Vb0
/ � 1b2S ;

where b0 and Vb0
are chosen as explained earlier and 1b2S is equal to one when xt and �t are

stationary and zero otherwise. Let OVb D
h
Z 0.˙�1

.vw/
˝ IT �1/Z

i�1

and Ob D OVbZ 0.˙�1
.vw/

˝IT �1/z.

The full conditional posterior distribution of b is then given by

bj� � N
�

Qb; QVb

�
� 1b2S ; (A67)

where QVb D .V �1
b0

C OV �1
b
/�1 and Qb D QVb

�
V �1

b0
b0 C OV �1

b
Ob
�

. We obtain the posterior draws of b

by making draws from N
�

Qb; QVb

�
and retaining only draws that satisfy b 2 S . The posterior draws

of A and ˇ are constructed from the posterior draws of b from the definition b D .vec .A0/0 ˇ/0.

Drawing ˙ given .�;A; ˛; ˇ/

Recall that we change variables from ˙ D
�
�2

u �uv �uwI�vu ˙vv �vwI�wu �wv �
2
w

�
to the set

of .˙11;C;˝/, where ˙11 � Œ�2
u �uwI�wu �

2
w �, and C and ˝ are the slope and the residual

covariance matrix from the regression of v on .u; w/.

The prior for ˙11 is conditional on the hyperparameter M12. This hyperparameter can be
drawn from its full conditional posterior density, p.M12j�;Dt/, which is given by

p.M12j˙11/ / j Ȯ
11;0j

T0�K�1

2 exp

�
�

T0

2
tr.˙�1

11
Ȯ

11;0/

�
; M12 2 .�c

p
M11M22; c

p
M11M22/;

(A68)
where M12 is the .1; 2/ element of Ȯ

11;0. Although this is not a density of a well known distri-
bution, we can make posterior draws of M12 easily. We approximate this density by a piecewise
linear function, using a fine (250-point) grid on the interval .�c

p
M11M22; c

p
M11M22/. For a

random draw z � U.0; 1/, we find the points on the grid whose cumulative probability densities
are immediately above and below z, and we compute the value of M12 by linear interpolation.

Conditional on M12 , we have the matrix Ȯ
11;0 in the prior distribution for ˙11. In addition,

conditional on .�;A; ˛; ˇ/, we have the sample of the residuals .ut ; vt ; wt/, t D 1; : : : ;T . Let Y1;T
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denote the T � 2 matrix of Œut wt �, let Y2;T denote the T � K matrix of vt , and let X D Œ�T Y1;T �.
The sample estimates from the regression of Y2;T on Y1;T are given by OC D .X 0X /�1X 0Y2;T ,
Ő D .Y2;T � X OC /0.Y2;T � X OC /=T , and Ȯ

11 D Y 0
1;T

Y1;T =T . The posterior of ˙11 has an
inverted Wishart distribution:

˙11j� � IW .T0
Ȯ

11;0 C T Ȯ
11;T C T0 � K � 1/: (A69)

In addition, let VC D .X 0
0X0 C X 0X /�1, QC D VC

h
.X 0

0X0/ OC0 C .X 0X / OC
i
, Qc D vec . QC /, and

D D OC 0
0X 0

0X0
OC0 C OC 0X 0X OC � QC 0V �1

C
QC . The posterior of˝ has an inverted Wishart distribution:

˝j� � IW .S0
Ő

0 C T Ő C D;T C S0 � 1/; (A70)

and the conditional posterior of c D vec .C / is normal:

cj˝; � � N. Qc;˝ ˝ VC /: (A71)

Given the posterior draws of .˙11;C;˝/, we construct the remaining (non-˙11) elements of˙ as
follows: Œ�vu �vw � D C2˙11 and ˙vv D ˝ C C2˙11C 0

2, where C D .C1 C2/
0.

Our inference is based on 25,000 draws from the posterior distribution. First, we generate a
sequence of 76,000 draws. We discard the first 1,000 draws as a “burn-in” and take every third
draw from the rest to obtain a series of 25,000 draws that exhibit little serial correlation. The
posterior draws of the relevant quantities such as �uw , �x�, R2.�t on xt /, R2.rtC1 on �t /, etc.
are constructed easily from the posterior draws of the basic parameters in the model.

The R2 ratios.

The numerator of the R2 ratio in equation (25) is computed as

R2.�t on xt / D
Var.E.�t jxt //

Var.�t/
D

Var.E.�t/C V�xV �1
xx .xt � E.xt///

Var.�t/
D

V�xV �1
xx V 0

�x

V��

;

(A72)
where Vxx, V��, and Vx� are given in equations (A16), (A17), and (A18), respectively.

The denominator of the R2 ratio in equation (25) is computed as

R2.�t on Dt / D
Var.E.�t jDt //

Var.�t /
D

Var.�t /� Var.�t jDt //

Var.�t/
D 1 �

Qt

V��

; (A73)

where Qt is given in equation (A47). We replace Qt by its steady-state value, Q, which can be
shown to be equal to a solution of a quadratic equation:

Q D

q
�2

1
� 4�2 � �1

2
; (A74)

�1 D .1 � ˇ2/.�2
u � �uv˙

�1
vv �vu/C 2ˇ.�uw � �wv˙

�1
vv �vu/ � .�2

w � �wv˙
�1
vv �vw/

D .1 � ˇ2/Var.ujv/C 2ˇCov.u; wjv/� Var.wjv/
�2 D .�uw � �wv˙

�1
vv �vu/

2 � .�2
u � �uv˙

�1
vv �vu/.�

2
w � �wv˙

�1
vv �vw/

D Cov.u; wjv/2 � Var.ujv/Var.wjv/ < 0
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The value of Q is also used in computing the steady-state values of Mt and Nt from equation
(A54), denoted by mt and nt in the scalar case:

m D .ˇQ C Cov.u; wjv//.Q C Var.ujv//�1 (A75)

n D .�wv � m�uv/˙
�1
vv : (A76)

Variance decomposition of expected return.

In equation (32), the conditional expected return �t depends on three time-varying variables:

1. C1 D xt , the current predictor values
2. C2 D

P1
iD0 ˇ

iut�i , an infinite sum of current and lagged unexpected returns
3. C3 D

P1
iD0

�
ˇiIK � Ai

�
vt�i , an infinite sum of current and lagged predictor innovations ,

plus an error term. In the variance decomposition in Table V, we consider regressions of �t on
various subsets of .C 1;C 2;C 3/. Let C denote a given subset of .C 1;C 2;C 3/. The R2 from the
regression of �t on C is equal to

R2.�t on C / D
V 0

�C V �1
C V�C

V��

: (A77)

The matrix VC , the covariance matrix of C , is pieced together from

Var.C1/ D Vxx

Var.C2/ D �2
u .1 � ˇ2/�1

vec .Var.C3// D
�
.1 � ˇ2/�1IK2 � .IK � ˇA/�1 ˝ IK � IK ˝ .IK � ˇA/�1C

C .IK2 � A ˝ A/�1
�

vec .˙vv/

Cov.C1, C2/ D .IK � ˇA/�1�vu

Cov.C2, C3/ D
�
.1 � ˇ2/�1IK � .IK � ˇA/�1

�
�vu

vec .Cov.C1, C30// D
�
IK ˝ .IK � ˇA/�1 C .IK2 � A ˝ A/�1

�
vec .˙vv/;

and V�C , the vector of covariances between�t and C , is built from

Cov.�t ;C10/ D 	vVar.C1/C	uCov.C1, C2/0 C 	vCov.C1, C30/0

Cov.�t ;C2/ D 	uVar.C2/C 	vCov.C1, C2/C 	vCov.C2, C3/

Cov.�t ;C30/ D 	vVar.C3/C	vCov.C1, C30/C 	uCov.C2, C3/0:
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Figure 1. The effect of lagged returns on E.rtC1jDt / when no predictors are used. Panel A plots
�s, the coefficients on lagged forecast errors (�t�s D rt�s � E.rt�s jDt�s�1/) in E.rtC1jDt /. Panel B
plots !s , the coefficients on lagged total returns in E.rtC1jDt /. Panel C plots �s , the weights on lagged
total returns in E.rtC1 jDt/ when the unconditional mean return is estimated by the sample mean over the
previous 208 quarters (which is the length of the sample used in subsequent analysis). No predictors are
used in the predictive system. The steady-state values of all coefficients are plotted. The different lines
correspond to different values of �uw , the correlation between expected and unexpected returns. The mean
reversion coefficient in the AR(1) process for the conditional expected return�t is set equal to ˇ D 0:9. The
predictive R2—the fraction of variation in rtC1 than can be explained by �t —is set equal to R2 D 0:05.
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Figure 2. The equity premium E.rtC1 jDt/ from the predictive system with no predictors. This figure
plots the time series of the quarterly equity premium estimated for four different values of �uw , the correla-
tion between expected and unexpected returns. The mean reversion coefficient in the AR(1) process for the
conditional expected return �t is set equal to ˇ D 0:9. The predictive R2—the fraction of variation in rtC1

than can be explained by �t—is set equal to R2 D 0:05. The parameters represent quarterly values.
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Figure 3. Predictive R2’s. Each panel plots the R2’s from three approaches to predicting stock returns rtC1

using information observable at time t . The approaches are: the predictive regression of rtC1 on a single
predictor xt (solid line), the ARMA(1,1) model that uses the full history of past returns but no predictor
data (dotted line), and the predictive system, which uses the full history of returns and predictor realizations
(dashed and dash-dot lines). The dashed (dash-dot) line corresponds to a “low” (“high”) value of �uv, which
represents the value obtained when the partial correlation between ut and vt givenwt equals �uvjw D �0:9

(0.9). The conditional correlation between �t and xt , �vw , ranges from 0 in Panel A to 0.9 in Panel D. In
all four panels, ˇ D A D 0:9, and the true predictive R2 (from the regression of rtC1 on �t ) is 0.05.
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Figure 4. The equity premium: Regression vs. system with no prior information. This figure plots the
time series of the quarterly equity premium estimated in two different environments. The dashed line plots
the OLS fitted values from the predictive regression of rtC1 on the given predictor(s). The dotted line plots
the maximum likelihood estimates of E.rtC1jDt / from the predictive system. In Panel A, the estimation
uses one predictor, dividend yield. In Panel B, the single predictor is CAY. In Panel C, three predictors are
used: dividend yield, CAY, and the bond yield. The sample period is 1952Q1–2003Q4.
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Figure 5. Prior distributions. Panel A plots three prior distributions for the correlation between expected
and unexpected returns, �uw . The noninformative prior (dotted line) is flat between -0.9 and 0.9, with
tails fading away as �uw approaches ˙1. The less informative prior (dashed line) has 99.9% of its mass
below zero (�uw < 0). The more informative prior (solid line) has 99.9% of its mass below -0.71, so that
�2

uw > 0:5 (i.e., unexpected changes in the discount rate explain over half of the variance of unexpected
market returns). Panel B plots the corresponding implied priors on �2

uw . Panel C plots the prior on the
predictive R2 from the regression of returns rtC1 on expected returns �t . Panel D plots the prior on the
slope coefficient ˇ in the AR(1) process for �t . All parameters correspond to quarterly data.
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Figure 6. Coefficients on lagged forecast errors and predictor innovations in E.rtC1jDt /. Panels A,
C, and E plot steady-state values of �s, the coefficients on lagged forecast errors in the expression for the
conditional expected return. Panels B, D, and F plot steady-state values of �s, the coefficients on lagged
predictor innovations. Panel headings indicate which predictors are used in the predictive system. The four
lines in each panel represent four different prior distributions on �uw , the correlation between expected and
unexpected returns. The solid line represents the “more informative” prior on �uw (�uw < �0:71), the
dashed line is the “less informative” prior on �uw (�uw < 0), the dotted line is the “noninformative” prior
on �uw; and the dash-dot line is the “diffuse” prior that is noninformative about all parameters in the model
(not only about �uw). The sample period is 1952Q1–2003Q4.
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Figure 7. Posterior distributions of slope coefficients from predictive regressions. We estimate both the
predictive system and the predictive regression with three predictors: the bond yield, dividend yield, and
CAY. The dashed line plots the posteriors from the standard predictive regression of rtC1 on xt under the
diffuse prior. The dotted line plots the implied posteriors constructed from the results of the predictive sys-
tem under the “noninformative” prior on �uw . The solid line plots the implied posteriors from the predictive
system under the “more informative” prior on �uw (�uw < �0:71). To facilitate comparisons across panels,
all predictors are scaled to have unit variance. The sample period is 1952Q1–2003Q4.
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Figure 8. Posterior distributions for one predictor: Dividend yield. The three lines in each panel
represent three different prior distributions. The solid line represents the “more informative” prior on �uw

(�uw < �0:71), the dashed line is the “less informative” prior on �uw (�uw < 0), and the dotted line is
the “noninformative” prior on �uw . Panel A plots the posterior of the fraction of variation in the expected
return �t that can be explained by the predictors xt . Panel B plots the posterior of the predictive R2. Panel
C plots the posterior of the conditional correlation �vw between the dividend yield and �t . Panel D plots
the posterior of the unconditional correlation �x� between the dividend yield and �t . The sample period is
1952Q1–2003Q4.
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Figure 9. Posterior distributions for one predictor: Bond yield. The three lines in each panel rep-
resent three different prior distributions. The solid line represents the “more informative” prior on �uw

(�uw < �0:71), the dashed line is the “less informative” prior on �uw (�uw < 0), and the dotted line is the
“noninformative” prior on �uw . Panel A plots the posterior of the fraction of variation in the expected return
�t that can be explained by the predictors xt . Panel B plots the posterior of the predictive R2. Panel C plots
the posterior of the conditional correlation �vw between the bond yield and �t . Panel D plots the posterior
of the unconditional correlation�x� between the bond yield and�t . The sample period is 1952Q1–2003Q4.
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Figure 10. Posterior distributions for three predictors: Bond yield, dividend yield, and CAY. The
three lines in each panel represent three different prior distributions. The solid line represents the “more
informative” prior on �uw (�uw < �0:71), the dashed line is the “less informative” prior on �uw (�uw < 0),
and the dotted line is the “noninformative” prior on �uw. Panel A plots the posterior of the fraction of
variation in the expected return �t that can be explained by the predictors xt . Panel B plots the posterior of
the predictive R2. Panels C, E, and G plot the posteriors of the conditional partial correlation �vw between
the given predictor and �t . Panels D, F, and H plot the posteriors of the unconditional partial correlation
�x� between the given predictor and �t . The sample period is 1952Q1–2003Q4.
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Figure 11. The equity premium: Regression vs. system with prior information. This figure plots the
time series of the quarterly equity premium estimated in three different environments. The dashed line plots
the OLS fitted values from the predictive regression of rtC1 on the given predictor(s). The dotted line plots
the posterior means of E.rtC1jDt / from the predictive system under the “noninformative” prior on �uw . The
solid line plots the posterior means of E.rtC1 jDt / from the predictive system under the “more informative”
prior on �uw (�uw < �0:71). In Panel A, the estimation uses one predictor, dividend yield. In Panel B, the
single predictor is CAY. In Panel C, three predictors are used: dividend yield, CAY, and bond yield. The
sample period is 1952Q1–2003Q4.
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Table I
Predictive Regressions

This table summarizes the results from predictive regressions rt D a C b0xt�1 C et , where xt D � C Axt�1 C vt . rt

denotes quarterly excess stock market returns and xt�1 denotes the predictors (listed in the column headings) lagged
by one quarter. The table reports the estimated slope coefficients Ob, the correlation Corr.et ; b

0vt / between unexpected
returns and shocks to expected returns, and the R2 from the predictive regression. The OLS t-statistics are given
in parentheses “( )”. The t-statistic of Corr.et ; b

0vt / is computed as the t-statistic of the slope coefficient from the
regression of the sample residuals Oet on Ob Ovt . The p-values associated with all t-statistics and R2s are computed by
bootstrapping and reported in brackets “[ ]”.

Bond Yield Dividend Yield CAY Corr.et ; b
0vt/ � 100 R2 � 100

Panel A. 1952 Q1 – 2003 Q4

2.716 21.735 4.231
(3.024) (3.204) [0.002]
[0.001] [0.001]

1.153 -91.887 2.252
(2.184) (-33.506) [0.059]
[0.057] [1.000]

1.704 -53.556 7.292
(4.035) (-9.124) [0.000]
[0.000] [1.000]

2.573 1.028 1.346 -35.635 11.777
(2.902) (1.966) (3.139) (-5.487) [0.000]
[0.003] [0.058] [0.003] [1.000]

Panel B. 1952 Q1 – 1977 Q4

6.385 25.079 7.080
(2.801) (2.629) [0.007]
[0.004] [0.008]

2.658 -96.531 7.003
(2.785) (-37.522) [0.015]
[0.014] [1.000]

3.028 -47.663 15.024
(4.267) (-5.503) [0.000]
[0.000] [1.000]

3.489 1.345 2.129 -53.153 17.975
(1.490) (1.349) (2.534) (-6.369) [0.000]
[0.090] [0.177] [0.012] [1.000]

Panel C. 1978 Q1 – 2003 Q4

2.073 22.624 3.931
(2.053) (2.357) [0.047]
[0.020] [0.011]

0.784 -88.194 1.273
(1.152) (-18.989) [0.423]
[0.409] [1.000]

1.165 -56.949 4.122
(2.104) (-7.031) [0.045]
[0.037] [1.000]

2.203 0.755 0.968 -18.619 8.828
(2.197) (1.101) (1.734) (-1.923) [0.053]
[0.023] [0.313] [0.118] [0.967]
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Table II
Explanatory Power of the Predictive Regression Relative to the Predictive System:

Theoretical Results

This table shows the ratios of two R-squareds, R2
1
=R2

2
. A ratio smaller than one indicates that the predictive system

estimates �t more precisely than the predictive regression does. The smaller the ratio, the larger the advantage of
using the predictive system. R2

1
, computed as the R-squared from the regression of the true expected return �t

on a given predictor, summarizes the usefulness of the predictive regression in estimating �t . R2
2
, computed as

1�Var.�t jDt/=Var.�t/ where Dt contains all historical returns and predictor realizations, summarizes the usefulness
of the predictive system in estimating�t . The table reports the mean, minimum, and maximum of the possible values
of R2

1
=R2

2
under the model parameters specified. �uw is the correlation between expected and unexpected returns, �vw

is the correlation between the residuals of the AR(1) processes for �t and the predictor, ˇ and A are the first-order
autocorrelations of �t and the predictor, respectively. The values are computed under the assumption that �t explains
5% of the variance in realized returns.

�uw D 0 �uw D �0:473 �uw D �0:85 �uw D �0:99

�vw Mean Min Max Mean Min Max Mean Min Max Mean Min Max

Panel A. ˇ D 0:9; A D 0:97

0.1 0.034 0.007 0.045 0.524 0.182 0.696 0.026 0.010 0.031 0.009 0.007 0.009

0.2 0.131 0.028 0.181 0.527 0.183 0.696 0.099 0.033 0.125 0.035 0.028 0.037

0.3 0.271 0.063 0.407 0.531 0.184 0.696 0.208 0.064 0.281 0.079 0.063 0.084

0.4 0.404 0.112 0.678 0.538 0.185 0.696 0.329 0.112 0.495 0.139 0.111 0.149

0.5 0.487 0.174 0.696 0.549 0.191 0.696 0.436 0.175 0.659 0.215 0.174 0.233

0.6 0.537 0.251 0.696 0.565 0.253 0.696 0.516 0.251 0.696 0.305 0.251 0.335

0.7 0.574 0.342 0.696 0.588 0.342 0.696 0.573 0.342 0.696 0.406 0.341 0.453

0.8 0.612 0.446 0.696 0.617 0.446 0.696 0.616 0.446 0.696 0.513 0.446 0.571

0.9 0.652 0.564 0.696 0.653 0.564 0.696 0.653 0.564 0.696 0.618 0.564 0.668

Panel B. ˇ D 0:9; A D 0:9

0.1 0.049 0.010 0.065 0.753 0.262 1.000 0.037 0.015 0.045 0.013 0.010 0.013

0.2 0.188 0.040 0.260 0.757 0.263 1.000 0.142 0.048 0.179 0.050 0.040 0.053

0.3 0.389 0.091 0.585 0.763 0.264 1.000 0.298 0.092 0.403 0.113 0.090 0.120

0.4 0.580 0.161 0.974 0.773 0.265 1.000 0.472 0.161 0.711 0.200 0.160 0.214

0.5 0.700 0.251 1.000 0.788 0.275 1.000 0.626 0.251 0.946 0.309 0.250 0.334
0.6 0.771 0.361 1.000 0.812 0.363 1.000 0.741 0.361 1.000 0.438 0.360 0.481

0.7 0.825 0.491 1.000 0.844 0.492 1.000 0.823 0.491 1.000 0.583 0.490 0.651

0.8 0.878 0.640 1.000 0.886 0.641 1.000 0.885 0.640 1.000 0.736 0.640 0.820

0.9 0.936 0.810 1.000 0.938 0.810 1.000 0.938 0.810 1.000 0.888 0.810 0.959

Panel C. ˇ D 0:97; A D 0:9

0.1 0.017 0.007 0.020 0.051 0.022 0.063 0.501 0.273 0.684 0.433 0.371 0.495

0.2 0.066 0.028 0.080 0.182 0.061 0.251 0.603 0.386 0.696 0.605 0.541 0.659

0.3 0.145 0.063 0.181 0.332 0.102 0.531 0.625 0.434 0.696 0.652 0.600 0.689

0.4 0.247 0.112 0.322 0.444 0.139 0.683 0.633 0.460 0.696 0.670 0.628 0.695

0.5 0.360 0.174 0.503 0.515 0.179 0.696 0.638 0.477 0.696 0.679 0.643 0.696

0.6 0.464 0.251 0.660 0.561 0.252 0.696 0.641 0.490 0.696 0.684 0.654 0.696

0.7 0.547 0.341 0.696 0.594 0.342 0.696 0.645 0.499 0.696 0.687 0.661 0.696

0.8 0.607 0.446 0.696 0.623 0.446 0.696 0.650 0.508 0.696 0.689 0.667 0.696

0.9 0.651 0.564 0.696 0.655 0.564 0.696 0.662 0.565 0.696 0.690 0.673 0.696
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Table III
Explanatory Power of the Predictive Regression Relative to the Predictive System:

Empirical Results

This table shows the posterior means and standard deviations (the latter in parentheses) of the ratios of two R-squareds,
R2

1
=R2

2
. A ratio smaller than one indicates that the predictive system estimates �t more precisely than the predictive

regression does. The smaller the ratio, the larger the advantage of using the predictive system. R2
1
, computed as the

R-squared from the regression of the true expected return �t on the given predictors, summarizes the usefulness of
the predictive regression in estimating�t . R2

2
, computed as 1 � Var.�t jDt /=Var.�t / where Dt contains all historical

market returns and predictor realizations, summarizes the usefulness of the predictive system in estimating �t . The
resuts are reported for four different prior distributions on �uw, the correlation between expected and unexpected re-
turns. Four sets of predictors are considered: dividend yield, bond yield, CAY, and all three predictors combined. The
sample period is 1952Q1–2003Q4.

Predictors

Dividend Yield Bond Yield CAY All 3 Predictors

Diffuse 0.28 0.73 0.86 0.59
Prior (0.17) (0.23) (0.16) (0.30)

Noninformative 0.50 0.44 0.61 0.46
Prior on �uw (0.27) (0.25) (0.27) (0.22)

Less Informative 0.59 0.34 0.73 0.50
Prior on �uw (0.22) (0.20) (0.23) (0.22)

More Informative 0.81 0.08 0.64 0.70
Prior on �uw (0.19) (0.08) (0.22) (0.19)
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Table IV
Comparing Estimates of Expected Return.

This table compares the time series of the posterior means of E.rtC1jDt/ obtained in five different environments:
(1) Predictive regression: OLS fitted values
(2) Predictive system: Maximum likelihood estimates
(3) Predictive system: Noninformative prior about �uw

(4) Predictive system: Less informative prior about �uw

(5) Predictive system: More informative prior about �uw

The priors in (3)-(5) are informative about the persistence and volatility of �t . The correlations between the quarterly
series of the posterior means of E.rtC1jDt/ are reported in italics below the main diagonal of each left-panel 5 � 5

matrix. Above the main diagonal of the same matrix are the mean absolute differences between the posterior means
of E.rtC1jDt / in percent per quarter. Each right-panel 5 � 5 matrix reports the average utility losses, in percent per
quarter, of a mean-variance investor who is forced to hold a suboptimal portfolio of the stock market and a risk-free
T-bill: a portfolio that is optimal under the beliefs in the given row when the true beliefs are in the given column.
(For example, the (2,5) cell of the 5 � 5 matrix reports the certainty equivalent loss of an investor who has the more
informative prior but is forced to hold the portfolio that is optimal under the maximum likelihood estimates.) The risk
aversion is chosen such that there is no borrowing or lending given the sample mean and variance of market returns.
The sample period is 1952Q1-2003Q4.

Correlation (%) n Mean Abs Diff (%) Average Utility Loss (%)

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

Panel A. Predictor: Dividend Yield

(1) 0.55 0.44 0.41 0.29 0 0.15 0.09 0.07 0.03
(2) 84.55 0.48 0.45 0.47 0.15 0 0.13 0.11 0.11
(3) 90.47 87.51 0.06 0.27 0.09 0.13 0 0.00 0.03
(4) 92.42 89.36 99.78 0.22 0.07 0.11 0.00 0 0.02
(5) 97.67 90.47 95.81 97.41 0.03 0.11 0.03 0.02 0

Panel B. Predictor: CAY

(1) 0.59 1.13 1.22 1.60 0 0.16 0.57 0.65 1.13
(2) 95.15 1.23 1.32 1.65 0.16 0 0.72 0.86 1.40
(3) 86.28 87.33 0.37 0.96 0.57 0.70 0 0.06 0.39
(4) 96.88 95.75 95.43 0.63 0.64 0.83 0.06 0 0.16
(5) 89.71 88.20 59.38 80.11 1.09 1.34 0.38 0.16 0

Panel C. Predictors: Dividend Yield, CAY, Bond Yield

(1) 1.27 1.33 1.27 1.60 0 0.74 0.82 0.74 1.19
(2) 84.30 1.33 1.33 1.80 0.75 0 0.92 0.88 1.49
(3) 80.38 80.68 0.14 1.51 0.80 0.88 0 0.01 0.94
(4) 82.30 81.75 99.79 1.46 0.72 0.84 0.01 0 0.84
(5) 83.42 79.08 80.75 84.00 1.19 1.45 0.96 0.87 0
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Table V
Variance Decomposition of Expected Return.

This table reports the posterior means and standard deviations (the latter in parentheses) of the R2s from the regressions
of the market’s expected excess return�t on its selected components. The first column of each panel, labeled xt , shows
the fraction of variance of �t that can be explained by the set of predictors listed in the panel heading. Four sets of
predictors are considered: the dividend yield, bond yield, CAY, and the combination of all three of these predictors.
The second column of each panel, labeled xt ; fusgs�t , shows the fraction of variance of �t that can be explained
jointly by the predictors and by the innovations to stock market returns ut ;ut�1;ut�2; : : :. The third column, labeled
xt ; fus; vsgs�t , shows the fraction of variance of �t that can be explained jointly by the predictors, by the innovations
to stock market returns ut ;ut�1;ut�2; : : :, and by the innovations to the predictors vt ; vt�1; vt�2; : : :. For each set of
predictors, the predictive system is estimated under three different priors, which are described in the row labels. The
sample period is 1952Q1-2003Q4.

Components of Expected Return Components of Expected Return

xt xt , fusgs�t xt , fus; vsgs�t xt xt , fusgs�t xt , fus ; vsgs�t

Panel A. Dividend Yield Panel B. Bond Yield

Noninformative 0.34 0.43 0.48 0.33 0.64 0.83
Prior on �uw (0.20) (0.21) (0.21) (0.21) (0.21) (0.13)

Less Informative 0.40 0.49 0.53 0.24 0.73 0.86
Prior on �uw (0.18) (0.18) (0.18) (0.17) (0.16) (0.11)

More Informative 0.57 0.80 0.81 0.03 0.86 0.95
Prior on �uw (0.15) (0.06) (0.06) (0.03) (0.05) (0.04)

Panel C. CAY Panel D. All Three Predictors

Noninformative 0.50 0.59 0.81 0.42 0.49 0.90
Prior on �uw (0.22) (0.22) (0.12) (0.20) (0.22) (0.07)

Less Informative 0.60 0.70 0.83 0.46 0.55 0.90
Prior on �uw (0.20) (0.17) (0.10) (0.20) (0.22) (0.07)

More Informative 0.53 0.87 0.92 0.63 0.85 0.94
Prior on �uw (0.18) (0.07) (0.05) (0.17) (0.12) (0.04)
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Frühwirth-Schnatter, Sylvia, 1994, Data augmentation and dynamic linear models, Journal of Time
Series Analysis 15, 183–202.

Goyal, Amit and Ivo Welch, 2003, Predicting the equity premium with dividend ratios, Manage-
mente Science 49, 639–654.

Goyal, Amit and Ivo Welch, 2005, A Comprehensive look at the empirical performance of equity
premium prediction, Review of Financial Studies, forthcoming.

Hjalmarsson, Erik, 2006, Should we expect significant out-of-sample results when predicting stock
returns?, Working paper, Board of Governors of the Federal Reserve System.

Harvey, Andrew C., 1989, Forecasting, structural time series models and the Kalman filter (Cam-
bridge University Press, Cambridge, UK).

Jansson, Michael, and Marcelo J. Moreira, 2006, Optimal inference in regressions with nearly
integrated regressors, Econometrica 74, 681–714.

55



Johannes, Michael, Nicholas Polson, and Jon Stroud, 2002, Sequential optimal portfolio perfor-
mance: Market and volatility timing, Working paper, Columbia University.

Jones, Christopher S., and Jay Shanken, 2005, Mutual fund performance with learning across
funds, Journal of Financial Economics 78, 507–552.

Kandel, Shmuel, and Robert F. Stambaugh, 1996, On the predictability of stock returns: An asset
allocation perspective, Journal of Finance 51, 385–424.

Keim, Donald B., and Robert F. Stambaugh, 1986, Predicting returns in the stock and bond mar-
kets, Journal of Financial Economics 17, 357–390.

Kothari, S.P., Jonathan Lewellen, and Jerold B. Warner, 2005, Stock returns, aggregate earnings
surprises, and behavioral finance, Journal of Financial Economics, forthcoming.

Lamont, Owen, 1998, Earnings and expected returns, Journal of Finance 53, 1563–1587.

Lettau, Martin, and Sydney C. Ludvigson, 2001, Consumption, aggregate wealth, and expected
stock returns, Journal of Finance 56, 815–849.

Lettau, Martin, and Sydney C. Ludvigson, 2005, Expected returns and dividend growth, Journal
of Financial Economics 76, 583–626.

Leroy, Stephen F. and Richard D. Porter, 1981, The present-value relation: Tests based on implied
variance bounds, Econometrica 49, 555–574

Lewellen, Jonathan, 1999, The time-series relations among expected return, risk, and book-to-
market, Journal of Financial Economics 54, 5–43.

Lewellen, Jonathan, 2004, Predicting returns with financial ratios, Journal of Financial Economics
74, 209–235.

Mankiw, N. Gregory, and Matthew D. Shapiro, 1986, Do we reject too often?: Small sample
properties of tests of rational expectations models, Economics Letters 20, 139–145.

Menzly, Lior, Tano Santos, and Pietro Veronesi, 2004, Understanding predictability, Journal of
Political Economy 112, 1–47.

Nelson, Charles R., Myung J. Kim, 1993, Predictable stock returns: the role of small sample bias,
Journal of Finance 48, 641–661.
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