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1. Introduction

Consider an open economy with a fixed exchange rate that suffers an unexpected

fiscal shock. This shock consists of an increase in government expenditures that

has to be financed with seignorage. When, if at all, should the fixed exchange rate

regime be abandoned? Further, suppose that, with some probability, a future fiscal

reform or a financial package from the International Monetary Fund (IMF) can

restore the sustainability of the fixed exchange rate regime. For how long should

policy makers wait for this scenario to materialize?

The decision to exit a fixed exchange rate regime is one of the most important

policy questions in open-economy macroeconomics. This importance was recently

illustrated by Argentina’s abandonment in early 2002 of its 10-year old “Convert-

ibility plan” that had tied the peso to the U.S. dollar at a one-to-one rate since

April 1991. Most analysts agree that fixing the exchange rate was an effective

strategy to eliminate runaway inflation. However, in the mid 1990s, as the fiscal

situation began to deteriorate, the question of whether Argentina should abandon

the fixed exchange rate began to surface with increasing frequency.1 The IMF

rescue packages in December 2000 and August 2001 bought Argentina some time.

But, in the end, the fixed exchange rate was abandoned in January 2002.

Economic theory offers surprisingly little guidance as to the optimal time to

exit a fixed exchange rate regime. The dominant paradigm for understanding

this exit is the model proposed by Krugman (1979) and Flood and Garber (1984),

which we refer to as the KFG model.2 This model makes two central assumptions.

The first assumption is that the root cause of the eventual abandonment of the

1See Mussa (2002) for a detailed analysis of Argentina’s lax fiscal policy during the mid 1990s.
2The original KFG model does not have microfoundations. However, several authors have

extended the KFG framework to models populated by optimizing representative agents. See,
for example, Obstfeld (1986a), Calvo (1987), Drazen and Helpman (1987), Wijnbergen (1991),
Burnside, Eichenbaum, and Rebelo (2001), and Lahiri and Végh (2003).
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fixed exchange rate is an unsustainable fiscal policy. The second assumption is

that the central bank follows an ad-hoc exit rule whereby the fixed exchange rate

regime is abandoned only when the central bank exhausts its foreign exchange

reserves and its ability to borrow.

To study the empirical plausibility of these two hypotheses, we collect in Table

1 data for 51 episodes in which regimes with fixed exchange rates were abandoned.

These abandonments are often called “currency crises.” Our episodes were selected

from an updated version of Kaminsky and Reinhart’s (1999) list of crisis episodes

according to the criteria outlined in Appendix 7.1. Table 1 reports the change

in the exchange rate in the month in which the fixed exchange rate regime was

abandoned, as well as the change in the exchange rate in the 12 months before and

after the abandonment.3 Table 1 also reports the rate of change in real government

spending in the three years prior to the crisis and the reserve losses that occurred

in the 12 months prior to the crisis.

We view the fiscal data in Table 1 as lending empirical support to the first KFG

assumption. There were increases in real government spending in the three years

prior to the abandonment of the peg in 80 percent (37 out of 46) of the episodes

for which we have fiscal data. Therefore, fiscal shocks are plausible suspects as

the root cause of the decision to abandon a fixed exchange rate.

We think that the reserve-loss data in Table 1 implies that the second KFG

assumption is empirically implausible. While the KFG model is not explicit about

the critical lower bound for international reserves (is it zero? is it negative?), it

is clearly in the spirit of the model that the monetary authority holds on to

the peg for as long as it can. So we would expect to see central banks exhaust

their international reserves before the fixed exchange rate is abandoned. Figure

3In some of the episodes included in Table 1 the exchange rate was not literally fixed, but
followed a crawling peg or fluctuated within a narrow band.
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1 depicts a histogram of the fraction of initial reserves lost during the 12 months

prior to the crisis. In 12 out of 51 episodes countries have non-positive reserve

losses (i.e., they gained reserves). In 38 out of the 51 episodes (or roughly 75

percent), reserve losses were less than 40 percent of initial reserves. While there

were cases in which the monetary authority was willing to lose a large amount

of reserves before devaluing, in most cases the peg was abandoned with plenty

of ammunition left in the central bank’s coffers. In other words, the monetary

authority chooses to devalue as opposed to being forced to devalue by literally

exhausting its reserves and its ability to borrow. We conclude that the KFG exit

rule, a critical component of the KFG model, is inconsistent with the empirical

behavior of reserves in countries that have abandoned fixed exchange rates. In

addition, and given that it assumes an exogenous exit rule, the KFG model is

unsuitable for understanding the decision to abandon a fixed exchange rate regime.

In this paper, we study the optimal exit from a fixed exchange rate regime.4

Our analysis is in the spirit of the literature on optimal monetary and fiscal

policy pioneered by Lucas and Stokey (1983). We argue that the assumption that

central bankers choose the optimal time to abandon the peg generates empirical

implications that are more plausible than those associated with the KFG exit

rule.5

Our analysis is based on a standard cash-in-advance small-open-economymodel,

extended to incorporate rational policy makers. We first consider the case where

4Authors such as Buiter (1987), Flood, Garber, and Kramer (1996), Lahiri and Végh (2003),
and Flood and Jeanne (2005) have studied whether it is feasible and/or optimal to delay the
abandonment of the fixed exchange rate regime (i.e., “defend the peg”) by borrowing or by
raising interest rates. While these models give the central bank a more active role than in the
original KFG model, they continue to assume that abandonment of the peg is governed by the
KFG rule.

5Second-generation models of speculative attacks introduce an optimizing central banker
(Obstfeld (1986b, 1996)). However, they assume that currency crises do not have a fiscal origin.
Instead, the crises are caused by the incentive to increase output via unexpected inflation in
Barro-Gordon type formulations.
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there are no costs of abandoning the peg. In this case it is optimal to abandon the

peg as soon as the fiscal shock occurs and without incurring any reserve losses.

This policy is optimal independently of the level of international reserves and of

whether the central bank faces a borrowing constraint.

We then consider the case in which there are costs of abandoning the peg.

These exit costs can reflect, for instance, output losses or the cost of bailing out

the banking system.6 We choose to abstract from the source of these costs and

simply assume that devaluing entails some fiscal and social cost. In this case

there is a certain threshold value for the fiscal shock beyond which it is optimal

to abandon immediately, incurring no reserve losses. For fiscal shocks lower than

this threshold, the optimal exit time is a decreasing function of the size of the

fiscal shock. In other words, the smaller the fiscal shock, the longer is the optimal

delay.

Intuitively, the optimal exit time results from the trade off between two factors.

For a given fiscal shock, delaying the abandonment of the peg reduces the present

discounted value of the cost of abandoning. However, a longer delay requires a

permanently higher level of inflation once the peg is abandoned. This increase

in the post-abandonment rate of inflation produces a larger intertemporal distor-

tion in consumption decisions. For large fiscal shocks, the cost of delaying (i.e.,

the larger intertemporal distortion) dominates because the gain from delaying is

bounded by the economy’s resources.

Some back-of-the-envelope calculations — based on our model, the fiscal data

in Table 1, and on empirical estimates of the cost of balance of payment crises —

suggest that an immediate abandonment should be at least as common as delayed

abandonment. Hence, unlike the KFG model, our model is capable of explaining

6See Kaminsky and Reinhart (1999) and Gupta, Mishra, and Sahay (2003) for evidence on
output and banking crises during currency crises.
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the many episodes illustrated in Table 1 in which pegs were abandoned with still

plenty of international reserves at the Central Banks’ disposal.

To study the theoretical robustness of our results, we then consider four ex-

tensions of the basic model: (i) time-varying exit costs, (ii) social, but non-fiscal,

costs of abandoning the peg, (iii) more general preferences, and (iv) the case in

which the exist cost depends positively on the fiscal shock itself. In every single

case, our main results go through which attests to the theoretical robustness of

the paper’s main message.

We then consider a stochastic version of our model in which the costs of aban-

doning arise endogenously. There are no fiscal or social exit costs but fiscal fun-

damentals are random. These fundamentals are governed by a stochastic process

that captures the idea that a fiscal reform is more likely to occur while the econ-

omy has a fixed exchange rate. In particular we assume that, while the exchange

rate is fixed, there may be a fiscal reform that restores the sustainability of the

fixed exchange rate.7 This reform arrives according to a Poisson process. Once

the economy abandons the fixed exchange rate regime, there is no hope of a fis-

cal reform and the initial fiscal shock must be financed with seignorage revenues.

There is thus an option value to maintaining the peg. In this context, the cost of

abandoning the peg consists in giving up this option value. We show that there

is a close connection, both formally and in terms of the properties of the opti-

mal exit time, between this model and our benchmark model. In the stochastic

model there is also a threshold value of the fiscal shock above which it is opti-

mal to abandon as soon as the fiscal shock occurs. For shocks with values below

this threshold, there is a negative relation between the size of the shock and the

optimal exit time.

7See Flood, Bhandari, and Horne (1989) and Rigobon (2002) for analyses that also emphasize
the link between fixed exchange rates and fiscal discipline.
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The paper proceeds as follows. In Section 2 we introduce the model. In Section

3 we derive the basic results for the deterministic case. In Section 4 we examine

the theoretical robustness of our results. In Section 5 we develop and solve the

stochastic version of the model. Section 6 concludes.

2. The Basic Model

Consider a standard optimizing small-open-economy model in which money is

introduced via a cash-in-advance constraint on consumption. All agents, including

the government, can borrow and lend in international capital markets at a constant

real interest rate r. There is a single consumption good in the economy and no

barriers to trade, therefore the law of one price holds, Pt = StP
∗
t , where Pt and P ∗t

denote the domestic and foreign price level, respectively. The exchange rate, St, is

defined as units of domestic currency per unit of foreign currency. For convenience

we assume that P ∗t = 1, therefore Pt = St.

Before the fiscal shock occurs at time t = 0−, the exchange rate is fixed at a

level S. For t < 0 the economy has a sustainable fixed exchange rate regime and

the government can satisfy its intertemporal budget constraint without resorting

to seignorage. At t = 0 the economy suffers a ‘fiscal shock’: an increase in

government spending that must be financed with seignorage revenues. Generating

these revenues requires abandoning the fixed exchange rate regime at some point in

time. Denote by T the time at which the fixed exchange rate regime is abandoned.

We wish to solve for the optimal value of T , which we denote by T ∗.

2.1. Households

The representative household maximizes its lifetime utility, V , which depends on

its consumption path, ct:

V ≡
Z ∞

0

ln(ct)e
−ρtdt. (2.1)
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The discount factor is denoted by ρ. The household’s flow budget constraint is:

∆bt = −(Mt −Mt−)/St,

ḃt = rbt + y − ct − ṁt − εtmt,
if t ∈ J ,
if t /∈ J .

(2.2)

Throughout the paper a dot over a variable represents the derivative of that

variable with respect to time. Here bt denotes the household’s holdings of foreign

bonds that yield a real rate of return of r, and y is a constant, exogenous, flow of

output. The variable mt represents real money balances, defined as mt =Mt/Pt,

where Mt denotes nominal money holdings. The variable εt denotes the rate of

devaluation, which coincides with the inflation rate, εt = Ṗt/Pt = Ṡt/St. To

simplify, we assume that r = ρ.

As in Drazen and Helpman (1987), equation (2.2) takes into account the pos-

sibility of discrete changes in bt and Mt at a finite set of points in time, J . Below

we see that this set contains t = 0 and the time at which the peg is abandoned,

T . These jumps are defined as ∆bt ≡ bt− bt− , where bt− represents the limit from

the left. Since at any point in time after t = 0, the total level of real financial

assets cannot change discretely, bt− +mt− = bt+mt.8 At time t = 0−, just before

the household’s time zero decisions are made, agents hold an amount b0− in real

bonds. Their holdings of nominal money balances are M0− and their real money

balances are therefore m0− =M0−/S.

Consumption is subject to a cash-in-advance constraint:

mt ≥ ct. (2.3)

Since we only consider environments in which the nominal interest rate is positive,

equation (2.3) always holds with equality.

8At t = 0 the total level of real financial assets may change discretely due to an unanticipated
jump in the exchange rate, which changes the value of real money balances from M0−/S to
M0−/S0.
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The flow budget constraint, (2.2), together with (2.3) and the transversality

condition, lim
t→∞

e−rtbt = 0, implies the following intertemporal budget constraint:

b0− + y/r =

Z ∞

0

cte
−rtdt+

Z ∞

0

(ṁt+ εtmt)e
−rtdt+

X
j∈J

e−rj(Mj−Mj−)/Sj. (2.4)

This budget constraint can be further simplified by using the cash-in-advance

constraint and imposing the condition that lim
t→∞

e−rtmt = 0:9

b0− +
M0_

S0
+ y/r =

Z ∞

0

ct(1 + r + εt)e
−rtdt. (2.5)

This expression makes clear that, as is typical of cash-in-advance models, the

effective price of consumption is given by 1 + r + εt.

The first-order condition for the household’s problem is:

1/ct = λ (1 + r + εt) , (2.6)

where λ is the Lagrange multiplier associated with (2.5).

2.2. Government

The government collects seignorage revenues and carries out expenditures, gt. To

simplify, we assume that government spending yields no utility to the representa-

tive household. The government’s flow budget constraint is given by:

∆ft = (Mt −Mt−)/St,

ḟt = rft − gt + ṁt + εtmt,
if t ∈ J ,
if t /∈ J ,

where ft denotes the government’s net foreign assets. This flow budget constraint,

together with the condition lim
t→∞

e−rtft = 0, implies the following intertemporal

budget constraint for the government:

f0− +

Z ∞

0

(ṁt + εtmt)e
−rtdt+

X
j∈J

e−rj(Mj −Mj−)/Sj = Γ0−, (2.7)

9This condition is always satisfied in equilibrium since (2.3) holds as an equality.
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where, by definition, Γ0− is the present value of government spending:

Γ0− ≡
Z ∞

0

gte
−rtdt.

If the peg is abandoned at time zero the jump in the money supply (M0−M0−)

is controlled by the central bank through its choice ofM0. In contrast, if the peg is

abandoned at T > 0, the jump in the money supply (MT −MT−) is endogenously

determined. Under perfect foresight the path for the exchange rate has to be

continuous for all t > 0 to rule out arbitrage opportunities. This requirement

implies that in equilibrium the household reduce its money holdings at time T in

anticipation of the higher inflation rate for t ≥ T .

2.3. Equilibrium Consumption

Combining the household’s and government’s intertemporal constraints (equa-

tions (2.5) and (2.7), respectively), we obtain the economy’s aggregate resource

constraint:

b0− + f0− + y/r =

Z ∞

0

cte
−rtdt+ Γ0−. (2.8)

This constraint implies that the present value of output plus the total net foreign

assets in the economy must equal the present value of consumption and govern-

ment expenditures.

2.4. A Sustainable Fixed Exchange Rate Regime

Before time zero, the economy is in a sustainable fixed exchange rate regime, so

agents expect ε to be permanently zero. Sustainability of the peg requires that

the government’s net foreign assets be sufficient to finance the present value of

government expenditures. This requirement condition for t = 0− is:

f0− = Γ0−.
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In the fixed exchange rate regime, equations (2.3) and (2.8) imply that consump-

tion and real balances are given by:

c0− = y + rb0− , (2.9)

m0− = c0− .

Using the household’s intertemporal constraint we can write consumption before

time zero as:

c0− =
ra0− + y

1 + r
, (2.10)

where a0− ≡ b0− +M0_ /S0− .

2.5. Optimal Monetary Policy

Suppose that at time zero there is an unanticipated increase in the present value

of government expenditures from Γ0− to Γ0 and that this increase in expenditure

must be financed with seignorage. Clearly, the peg has to be abandoned at some

point because Γ0 cannot be intertemporally financed with ε = 0. When is the

optimal exit time? Throughout the paper we focus on the perfect commitment

solution to this question.

After the fiscal shock takes place the aggregate constraint for the economy is:

b0− + y/r =

Z ∞

0

cte
−rtdt+∆Γ, (2.11)

where ∆Γ = Γ0 − Γ0− represents the increase in the present value of government

expenditures. Suppose that the government could finance this extra expenditure

with lump sum taxes. Consumption would be constant over time at a level:

c0 = c0− − r∆Γ.

Since∆Γ > 0, the new level of consumption is lower than before. The economy has

the same resources as before the fiscal shock, so the rise in government spending
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has to be accommodated by a fall in private consumption. The corresponding

fall in real money balances occurs through a fall in the nominal money supply at

t = 0.

The government can replicate the lump sum taxes outcome by either expanding

the money supply at a constant rate from t = 0 on, by printing money at t = 0,

or by combining these two strategies. Suppose that the government abandons the

fixed exchange rate regime at time zero, keepsM0 =M0− , and expands the money

supply at a constant rate ε such that the government budget constraint is satisfied:Z ∞

0

(ṁt + εtmt)e
−rtdt = ∆Γ.

Since the central bank abandons the fixed exchange rate regime as soon as news

about the fiscal shock arrives, there are no losses of reserves. Private agents are

not given a chance to trade their money balances for foreign reserves at the fixed

exchange rate S before the devaluation occurs. The adjustment in the level of

real balances occurs through a jump in the exchange rate, rather than through a

discrete fall in the nominal money supply at time zero. The aggregate resource

constraint (2.11) implies that consumption is equal to c0. The cash-in-advance

constraint implies that the new level of real balances is m0 = c0. This monetary

policy is optimal since it replicates the outcome that can be achieved under lump

sum taxes.

The fall in real balances from c0− to c0 is associated with a jump in the exchange

rate from S to:

S0 = Sc0−/c0. (2.12)

The constant level of money growth is given by: ε = r∆Γ/c0 > 0. So from time

zero on the currency depreciates at rate ε.

There is another optimal policy which consists of abandoning the peg at time

zero and printing enough money to finance the new government spending. In this

11



case the resource constraint of the government is given by: (M0−M0−)/S0 = ∆Γ.

Printing money at time zero amounts to taxing existing real balances and is there-

fore equivalent to lump sum taxes. Since all the seignorage revenue is collected at

time zero, this policy implies a higher rate of instantaneous depreciation at time

zero than that given by (2.12):

S0 =
Sc0−

c0− − (1 + r)∆Γ
.

Any combination of the two policies discussed above, expanding the money

supply at a constant rate from time zero on and printing money at time zero, is

also optimal. Thus, there are multiple ways for monetary policy to achieve the

optimal outcome but all these policies require that the fixed exchange rate be

abandoned at time zero.

Abandoning the peg at time T > 0 yields a lower level of welfare than the

policies just discussed. To show this result we use the following proposition.10

Proposition 2.1. Once the fixed exchange rate regime is abandoned at time

T > 0, it is optimal to expand the money supply at a constant rate, ε. So the

optimal path for money growth, conditional on abandonment at time T , is:

εt = 0, for 0 ≤ t < T , (2.13)

εt = ε, for t ≥ T .

We now show that any positive ε generates an intertemporal distortion on

consumption. The value of ε has to satisfy the government’s intertemporal budget

constraint, (2.7), which can be written as:

e−rTε

r

MT

ST
= ∆Γ+

M0− −M0

S
+

M0 −MT

S
e−rT . (2.14)

10To prove this proposition solve the planner’s problem for an economy with no cash-in-
advance constraint. Then it is possible to show that the cash-in-advance economy with constant
ε can replicate the solution to the planner’s problem. See Rebelo and Xie (1999) for details of
a closed economy version of this result.
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The term (M0− −M0)/S + [(M0 −MT )/S]e
−rT represents the net reserve losses

incurred by the government as the household rearranges its money balances while

the exchange rate is fixed in response to the changes in the path for inflation.

The first-order condition for the household’s problem, (2.6), implies that con-

sumption is constant within the subperiods 0 < t < T and t ≥ T . Let us denote

by c1 and c2 the level of consumption in the periods 0 < t < T and t ≥ T , respec-

tively. Using equations (2.9), (2.11), and the cash-in-advance constraint, (2.3), we

can show that independently of the form of the momentary utility function and

the value of T , the net reserve loss incurred by the government is given by:

(M0− −M0)/S + [(M0 −MT )/S]e
−rT = r∆Γ. (2.15)

Using this result, we can rewrite the government budget constraint (2.14) as:

e−rTε

r

MT

ST
= ∆Γ(1 + r). (2.16)

This equation implies that ε > 0. The first-order condition for the household’s

problem, (2.6), implies that c2 < c1. Since the present value of resources that are

available for consumption is independent of T , this non-flat path of consumption

results in lower welfare compared to the case where the peg is abandoned at time

zero.

The net reserve loss described in (2.15) is a cost that the government incurs

when the abandonment of the fixed exchange rate regime is delayed. However,

since this cost represents a transfer from the government to households it is not a

cost to the economy as a whole. As a result this cost does not affect the optimal

exit time. The next section considers the case in which there are social costs

associated with the abandonment of the peg.
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3. Exit Costs

In this section we introduce costs of abandoning the fixed exchange regime into our

model. We assume that when the fixed exchange rate is abandoned the government

incurs a fiscal cost of φ which also represents a social loss for the economy as a

whole. This exit cost can be given several interpretations. First, it can reflect a

fall in output and tax revenues following the abandonment of the peg. Second,

since banking crises are typically a by-product of currency crises (see Kaminsky

and Reinhart (1999)), these costs can stem from bailing out domestic banks.11

Third, these costs can result from bailing out foreign creditors. A devaluation

can make it optimal for domestic firms to default on foreign loans that had been

guaranteed by the government. In these circumstances a devaluation creates a

fiscal liability for the government.12

We proceed by setting up the Ramsey problem, starting with the condition

that guarantees that the Ramsey solution is implementable as a competitive equi-

librium.

3.1. The Implementability Condition

We need to distinguish between two cases: T = 0 and T > 0. If the fixed

exchange rate is abandoned at T = 0, the government sets a constant, positive

rate of devaluation ε0 from time zero onwards. Given this policy, consumption is

constant over time at a level we denote by c̄,

c̄ =
ra0 + y

1 + r + ε0
, (3.1)

11In the model proposed by Burnside, Eichenbaum and Rebelo (2004) the fact that banks
are guaranteed by the government makes it optimal for them to use forward currency markets
to increase their exposure to exchange rate risk. As a result, these banks go bankrupt when a
devaluation occurs, creating a fiscal liability for the government.
12We develop this interpretation in a previous version of this paper, available upon request.
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where a0 ≡ b0−+M0−/S0. We assume, without loss of generality, that the exchange

rate remains constant (S0 = S) when the abandonment occurs at time zero. This

assumption implies that a0 = a0− . Solving for ε0, we obtain:

ε0 =
ra0 + y

c̄
− (1 + r). (3.2)

This equation is the implementability condition when T = 0.

The optimal path for εt, given that the peg is abandoned at T > 0, is given

by equation (2.13) in Proposition 2.1. The consumer’s first-order condition (2.6)

implies that the levels of consumption within each subperiod (0 < t < T and

t ≥ T ) are constant. We denote these constant levels of consumption by c1 for

0 < t < T and c2, for t ≥ T . Using this notation, we can rewrite the household’s

intertemporal constraint (2.5) as:

a0 + y/r =
c1(1 + r)

r
(1− e−rT ) +

c2(1 + r + ε)

r
e−rT . (3.3)

Since equation (2.6) implies that c1(1 + r) = c2(1 + r+ ε), the values of c1 and c2

are given by:

c1 =
ra0 + y

1 + r
, (3.4)

c2 =
ra0 + y

1 + r + εT
. (3.5)

Equation (3.4) has two implications. First, c1 is determined by the household’s

problem (recall that a0 = a0−) so it is not a choice variable for the Ramsey planner.

Second, c1 is equal to c0− (see (2.10)).

Equation (3.5) is the implementability condition for the case of T > 0, which

can be re-written as:

εT =
ra0 + y

c2
− (1 + r). (3.6)

Equation (3.5) implies that, as T tends to zero, c2 converges to c̄ (recall (3.1)).
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3.2. Government’s Budget Constraint

We can write the government’s budget constraint, (2.7), as:

ε0
MT

ST

1

r
= ∆Γ+ φ+

M0− −M0

S
, if T = 0, (3.7)

εT
MT

ST

e−rT

r
= ∆Γ+ φe−rT +

M0− −M0

S0
+

M0 −MT

ST
e−rT , if T > 0. (3.8)

The exit cost, φ, is included in this constraint since it is a fiscal cost that the

government incurs at time T . Using the cash-in-advance constraint, (3.2), and

(3.6) we can rewrite the government’s budget constraint as:

c0− − c̄

r
= ∆Γ+ φ, T = 0, (3.9)

e−rT

r
(c0− − c2) = ∆Γ+ φe−rT . T > 0. (3.10)

Since, as T → 0, c2 → c̄, constraint (3.9) converges to (3.10) as T tends to zero.

3.3. The Ramsey problem

The Ramsey planner chooses {c2, T} to maximize the household’s lifetime utility,
(2.1), which can be rewritten as,

V =
log(c1)

r
(1− e−rT ) +

log(c2)

r
e−rT .

This maximization is subject to the household’s intertemporal constraint, (3.3),

the government’s intertemporal constraint, (3.10), the implementability condition,

(3.6), and a non-negativity constraint on T .

The Ramsey problem is continuous in T . This continuity property holds at

T = 0, since both the objective and the constraints converge to the T = 0 case as

T → 0.
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For conceptual clarity, we distinguish between c2 and c̄. However, c̄ is simply

the value of c2 when T = 0, so the planner only chooses c2. The first-order

condition with respect to c2 can be written as:13

1

c2
= λ. (3.11)

The Kuhn-Tucker condition with respect to T is given by:

log(c1)− log(c2) + λ[rφ− (c1 − c2)] ≤ 0, T ≥ 0, (3.12)©
log(c1)− log(c2) + λ[rφ− (c1 − c2)]

ª
T = 0.

The optimal exit time is characterized by the following proposition, which includes

the case of φ = 0 discussed in the previous section as a special case.

Proposition 3.1. The optimal exit time, T ∗, is given by:

Low ∆Γ High ∆Γ
Optimal Exit Time ∆Γ < c1/er ∆Γ ≥ c1/er

Low φ (0 ≤ φ ≤ φ∗) T ∗ = 0 T ∗ = 0

Intermediate φ (φ∗ < φ < φ∗∗) T ∗ > 0 T ∗ = 0

High φ (φ ≥ φ∗∗) T ∗ = 0 T ∗ = 0

Proof. See Appendix 7.2.

According to this proposition, delaying is optimal only when the fiscal shock

is low (∆Γ < c1/er) and φ takes on an intermediate value. In all other cases, it

13To obtain this condition we divide both sides of the first-order condition with respect to c2

by e−rT . This term is different from zero since T must be finite. Otherwise, given that ∆Γ > 0,
the government’s intertemporal constraint is violated.
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is optimal to abandon immediately. To understand the intuition underlying this

result it is useful to rewrite the Kuhn-Tucker condition, (3.12), using (3.11), as:

log

µ
c1

c2

¶
−
µ
c1

c2
− 1
¶

| {z }
cost of delaying

+
rφ

c2|{z}
benefit of delaying

≤ 0. (3.13)

Since c2 < c1 the term labeled “cost of delaying” is always negative. This cost

results from the intertemporal distortion introduced by delaying the abandonment

of the peg: inflation is zero until time T > 0 and positive from time T on. The

benefit of delaying is the flow saving, rφ, relative to post-crisis consumption,

c2. This benefit results from reducing the present discounted value of the cost

of abandonment. It is important to emphasize that admissible values of φ are

bounded from above since c2 must be positive. Formally, around T = 0, φ <

c1/r −∆Γ (see Appendix 7.2 for details).

When ∆Γ ≥ c1/er, the intertemporal distortion introduced by delaying is so

large that it dominates the benefit of delaying for any admissible φ. To understand

this result intuitively, rewrite equation (3.13) as:

log

µ
c1

c2

¶
+ 1 +

c1

c2

µ
rφ

c1
− 1
¶
≤ 0. (3.14)

Since φ < c1/r, the coefficient on c1/c2 is negative. For a given φ, as ∆Γ increases

c2 converges to zero, while c1 remains constant. As a result, c1/c2 becomes arbi-

trarily large and the left hand side of (3.14) converges to −∞. Put differently,
the fact that the flow saving of delaying is bounded relative to c1 explains why

the distortion associated with delaying dominates and immediate abandonment is

optimal.

When ∆Γ < c1/er, the intertemporal distortion imposed by abandoning the

peg for some T > 0 is smaller and therefore the decision comes down to a trade-off

between the costs and benefits of delaying. Clearly, if φ = 0, there are no benefits
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from delaying and immediate abandonment is optimal. For small values of φ, the

benefits are small relative to the intertemporal distortion that needs to be imposed

and immediate exit is still optimal. There is some threshold level of φ, φ∗, beyond

which the benefit of delaying becomes large enough to warrant a delayed exit. For

values of φ larger than φ∗∗, that is values of φ close to the maximum admissible

value, both the cost of delaying and the benefit of delaying become arbitrarily

large but the cost of delaying dominates. The intuition is the same as the one

just discussed. As φ increases, c1 remains constant and c2 converges to zero. As a

result, c1/c2 becomes arbitrarily large and the right hand side of (3.14) converges

to −∞. Hence, there is a value of /φ, φ∗∗ beyond which the right hand side of
(3.14) is negative and it is optimal to abandon at T = 0.

The optimal time to exit the peg is independent of the initial level of foreign

reserves. Hence, the KFG rule of exiting only when reserves are exhausted is

in general suboptimal. Our model is thus consistent with the evidence provided

in the introduction that many countries exit the fixed exchange regime without

having exhausted their reserves.

The table in proposition 3.1 shows that delaying the abandonment and incur-

ring some reserve losses is optimal in only one out of six possible cases. However,

the proposition says nothing about the empirical relevance of each of the six

cases. We now provide some back-of-the-envelope calculations to illustrate the

predictions of our model for T ∗ using empirically-plausible values of the cost of

abandoning (φ) and the fiscal shock (∆Γ). While admittedly crude, these calcula-

tions shed light on how often it is optimal to abandon immediately. The choice of

values for for φ and ∆Γ is admittedly difficult, forcing us to make some stark con-

nections between the model and reality. For the fiscal shock we focus our attention

on the 37 episodes underlying Table 1 for which there was a positive increase in

government spending during the three years before the crisis. We compute ∆Γ
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by assuming that there is a once-and-and-for-all increase in (annual) government

spending equivalent to the (geometric) average of the increase in the three year

period before the crisis. For example, for the Argentinean crisis of June 1970,

the increase in real government spending during the three years prior to the crisis

was 15.9 percent. The corresponding geometric average is 5.0 percent per year.

Assuming that the annual real interest rate is four percent, a once-and-for-all in-

crease of 5.0 percent in government spending implies a present discounted value

of 131.1 percent. Hence ∆Γ takes the value 1.311. We follow the same procedure

for each of the other 36 episodes.

We choose values of φ based on the existing literature. Using a sample of

195 crises in 91 countries, Gupta, Mishra, and Sahay (2003) compute empirical

estimates of the output costs entailed by currency crises. They report that the

average output fall that can be attributed to crisis episodes in the 1970s, 1980s, and

1990s is, respectively, 3.0, 1.1, and 0.8 percent. Hutchinson and Neuberger (2001)

focus exclusively on emerging markets and examine 51 crises in 24 countries over

the period 1975-1997. They conclude, controlling for other factors, that a crisis

leads to output falls of between five and eight percent. Based on these studies,

we consider values of φ ranging from one to eight percent. Table 2 reports the

percentage of cases (among the 37 episodes of Table 1) for which T ∗ = 0. For

example, for φ = 0.01, T ∗ = 0 for 59 percent of the cases and T ∗ > 0 for the

remaining 41 percent. For φ = 0.08 immediate abandonment is optimal in eight

percent of the cases.14

14In these calculations we assume that the elasticity of intertemporal substitution is 0.30 to
be consistent with the estimates in Reinhart and Vegh (1995).
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Table 2

T ∗ for various values of φ
φ

0.01 0.03 0.05 0.08
T ∗ = 0 59 27 14 8
T ∗ > 0 41 73 86 92

We thus conclude that the model predicts immediate abandonment for a broad

range of values of φ, which is consistent with the evidence shown above indicat-

ing that many countries have abandoned exchange rate pegs with still plenty of

international reserves in their coffers.15

3.4. Properties of the Optimal Policy

We can now analyze how the values of T ∗, post-abandonment inflation, and reserve

losses depend on φ and ∆Γ for the admissible range of parameter values. Formal

proofs are relegated to Appendices 7.3 and 7.4.

Figure 2 shows the behavior of the optimal values of T , ε, and the reserve

loss as a function of φ for a small fiscal shock (∆Γ < c1/er). Panel A shows

the behavior of the optimal exit time. Up to φ = φ∗, the optimal solution is

to abandon immediately. In the region in which T ∗ > 0, the value of T ∗ is a

non-monotonic function of φ. For values of φ larger than φ∗∗, it again becomes

optimal to abandon immediately.

Panel B of Figure 2 shows the behavior of the optimal inflation rate. For T = 0

we proceed as in (2.16) and use (2.9) and (3.9) to write ε0 and c̄ as

ε =
r(1 + r)

c2
(∆Γ+ φ), (3.15)

c̄ = rb0− + y − r(∆Γ+ φ). (3.16)
15Of course, even when T ∗ > 0 there are many cases in which the reserve losses are small.

Hence, the cases of immediate abandonment constitute a lower bound for instances of abandon-
ment with small or no reserve losses.
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It follows from (3.15) and (3.16) that, for T = 0, the rate of inflation is an

increasing function of φ. This property also holds for T ∗ > 0. As Panel B

illustrates, the rate of inflation is an increasing function of φ for all admissible φ

values.

Finally, Panel C in Figure 2 illustrates the behavior of the loss of reserves

at the time of abandonment. This loss is equal to c1 − c2. However, since c1

is independent of T and φ, the reserve loss when T ∗ > 0 depends only on the

behavior of c2. The reserve loss is an increasing function of φ. When T ∗ = 0 there

are no reserve losses.

Figure 3 illustrates the behavior of T , ε, and the loss of reserves as a function

of the fiscal shock for a given value of φ.16 Panel A shows that, when T ∗ > 0, the

optimal exit time is a decreasing function of the fiscal shock. In other words, the

larger the fiscal shock the sooner it is optimal to abandon the peg. Intuitively, a

larger fiscal shock requires a higher inflation rate once the peg is abandoned, which

imposes a larger intertemporal distortion. As a result, it is optimal to abandon

earlier to reduce the intertemporal distortion. When the value of the fiscal shock

reaches ∆Γ∗(≡ c1/er), it becomes optimal to abandon immediately.

The rate of inflation after the regime is abandoned does not depend on ∆Γ

whenever T ∗ > 0. This property reflects two opposing forces that cancel each

other out. First, for a given T , a larger fiscal shock tends to increase the inflation

rate. Second, since T ∗ falls as the fiscal shocks increases, the inflation rate falls. In

this case of logarithmic preferences, these two effects exactly cancel each other out.

When it is optimal to abandon immediately (i.e., for ∆Γ ≥ ∆Γ∗), the inflation

rate is an increasing function of the fiscal shock. This property follows from (3.15)

and (3.16). When ∆Γ = 0, it is not optimal to abandon the peg and hence the

16The given value of φ is (c1/r)(1 − 2/e). As shown in Appendix 7.4, the Kuhn-Tucker
condition is exactly equal to zero for this value of φ.

22



optimal inflation rate is zero.

We conclude by discussing the effects of introducing a borrowing constraint

on the government. To simplify we consider the case in which government expen-

diture is constant at a level g0− before the fiscal shock and at a level g0 > g0−

after the fiscal shock. Suppose that there is a binding borrowing constraint that

dictates that ft ≥ f̄ . It can be shown that lifetime utility, V , is an increasing

function of T for values of T below the optimal. Once the regime is abandoned,

ft becomes constant, ft = fT for t ≥ T . The value of fT is a decreasing func-

tion of T . Thus, whenever T ∗ > 0, a borrowing constraint forces the economy to

abandon the fixed exchange rate regime before T ∗. In this situation we can think

of central bankers as following the KFG model, since they maintain the regime

for as long as possible and, at the time of abandonment, exhaust their ability to

borrow. However, in general, appealing to the presence of a borrowing constraint

does not justify the KFG exit rule since, when T ∗ = 0, borrowing constraints have

no impact on the decision to exit the fixed exchange rate.

4. Model Extensions

In order to assess the theoretical robustness of our key results, we explore in this

section several extensions of the basic model analyzed in Section 3.

4.1. Time-varying Exit Costs

Here we consider the case in which the exit cost, φ, varies over time. On one hand,

the exit cost can decline over time if postponing the abandonment of the peg

gives firms time to prepare for the change in regime by changing prices or hedging

exchange rate risk. On the other hand, the costs associated with a currency crisis

can increase with the post-crisis rate of inflation. To simplify we assume that φt
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grows at a constant rate δ that can be positive or negative:

φt = φeδt. (4.1)

Here φt is the cost of abandoning the peg at time t, φ is a positive constant, and

δ is the rate at which the cost changes over time.

The consumer’s problem remains the same as in Section 3. The government’s

new budget constraint is:

e−rT

r
(c0− − c2) = ∆Γ+ φe−(r−δ)T , T ≥ 0. (4.2)

The first-order condition for the Ramsey problem, (3.11), remains valid and the

Kuhn-Tucker condition is given by:

log

µ
c1

c2

¶
−
∙
c1

c2
− 1− (r − δ)φeδT

c2

¸
≤ 0. (4.3)

The following proposition generalizes the results in Proposition 3.1.

Proposition 4.1. If δ ≥ r, it is optimal to abandon at T = 0 for any value of

∆Γ > 0. If δ < r the optimal exit time, T ∗, is given by:

Low ∆Γ High ∆Γ

Optimal Exit Time ∆Γ < c1

r

³
e
δ−r
r − δ

r

´
− δ ∆Γ ≥ c1

r

³
e
δ−r
r − δ

r

´
− δ

Low φ (0 ≤ φ ≤ φ∗) T ∗ = 0 T ∗ = 0

Intermediate φ (φ∗ < φ < φ∗∗) T ∗ > 0 T ∗ = 0

High φ (φ ≥ φ∗∗) T ∗ = 0 T ∗ = 0

Proof. See Appendix .

When δ = r, the present discounted value of the exit cost is independent of

T , so there is no benefit from delaying. If δ > r, delaying increases the present
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discounted value of the exit cost. In both of these cases it is optimal to abandon

right away. When δ < r, delaying reduces the present discounted value of the exit

costs, so delaying can be optimal.

To illustrate the effect of different values of δ, Figure 4 plots T ∗ as a function of

the fiscal shock (∆Γ) for three values of δ (δ = 0, δ = 0.03, and δ = −0.03).17 The
δ = 0 case is the case studied in Section 3. When δ is negative (δ = −0.03), the
threshold value of ∆Γ beyond which it is optimal to abandon right away is larger

than that for the δ = 0 case. The opposite is true when δ is positive (δ = 0.03).

The intuition for these results can be explained using equation (4.3), which

can be rewritten as:

log

µ
c1

c2

¶
−
µ
c1

c2
− 1
¶

| {z }
cost of delaying

+
(r − δ)φeδT

c2| {z }
benefit of delaying

≤ 0. (4.4)

For δ = 0, this condition reduces to (3.13). The cost of delaying is the same as

before. The benefit of delaying captures the flow saving, now given by (r− δ)φeδT

which, in light of (4.1), can also be written as (r − δ)φt. Compare the δ = 0 case

with the δ < 0 case. When δ < 0 — and for a given φt — the flow saving from

delaying for an additional moment is higher for the δ = 0 case. This effect calls for

an additional delay. However, a negative δ implies that, all else equal, the current

cost of devaluing, φeδT , is smaller than it would be in the δ = 0 case. By making

the flow saving smaller, this effect calls for a smaller delay. For small values of T

(and in particular around T = 0), the first effect dominates, which implies that the

threshold value beyond which it is optimal to abandon immediately is a decreasing

function of δ, as illustrated in Figure 4 (notice that the threshold is the largest

for δ = −0.03 and the smallest for δ = 0.03). When comparing δ = −0.03 and
δ = 0, this first effect continues to dominate up to the value of ∆Γ corresponding

17Parameter values for Figure 4 are r = 0.037, a0 = −0.35, y = 1, and φ = 0.002.
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to point A in Figure 4. Below this point the second effect dominates and, for a

given fiscal shock, T is smaller for δ = −0.03 than for δ = 0.
Figure 5 illustrates the effects of the parameter δ on T ∗ as a function of the cost

of abandonment, φ.18 The threshold of φ below which it is optimal to abandon

immediately is the largest for δ = 0.03 and the lowest for δ = −0.03. Intuitively,
around T = 0, the higher is δ the lower is T for a given φ since the benefits of

delaying — given by (r − δ)φ — are lower.19

4.2. The Exit Cost is Not a Fiscal Cost

So far we have assumed that the exit cost φ is both a fiscal cost and a social cost.

One could think that the fiscal nature of the exit cost drives our main results since

delaying the abandonment reduces the exit cost that has to be financed by the

fiscal authority. To show that our results do not depend on the exit cost being a

fiscal cost, we briefly discuss a version of the model presented in Section 3 in which

the cost of abandonment, θ, is a reduction in the endowment of the economy, but

does not enter the government’s budget constraint. This cost can be interpreted

as a loss in output that occurs when the peg is abandoned.

The only modification to the model in Section 3 is in the household’s intertem-

poral constraint which is now:

b0− +
M0_

S0
+

y

r
− θe−rT =

Z ∞

0

ct(1 + r + εt)e
−rtdt. (4.5)

Here y/r − θe−rT is the present discounted value of the endowment net of the

cost of abandoning the peg. Households take T as given, so they view θe−rT as

exogenous to their decisions. However, the Ramsey planner takes the exit cost

into account.
18Parameter values are the same as for Figure 4 except that now the fiscal shock, ∆Γ, is set

to 0.3.
19Although not shown in Figure 5, T ∗ eventually begins to fall and becomes zero for larger

values of φ, as in Figure 2, Panel A.
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The main complication introduced by this formulation is that the Ramsey

planner’s problem is not continuous in T at time zero. This property results from

the fact that c1 depends on T since the term θe−rT affects the household budget

constraint. Therefore, c1 is a choice variable for the Ramsey planner when T > 0

but not when T = 0. This difficulty forces us to solve the model numerically. We

compute T ∗ analytically assuming that T ∗ > 0 and comparing the value of V

associated with this solution with the value of V for T ∗ = 0.

We verified that our main results hold for a wide range of parameters. Panel

A of Figure 6 shows that T ∗ falls with the fiscal shock until, once the fiscal shock

is large, it is optimal to abandon immediately. Panel B shows T ∗ as a function of

the cost of abandonment, θ. As in the model of Section 3, it is optimal to abandon

immediately for small values of θ. Beyond a certain threshold, the optimal time

of abandonment is an increasing function of θ.20

Intuitively, even though θ is not a fiscal cost, it has fiscal repercussions. An

increase in φ reduces c2, which is the tax base for the post-crisis inflation tax.

Increasing T raises household wealth, and hence c2, which increases tax revenues

for a given post-crisis inflation rate. This effect needs to be traded-off against the

fact that delaying implies a higher post-crisis devaluation rate and hence a larger

intertemporal distortion.

4.3. Non-unitary Elasticity of Intertemporal Substitution

Up to this point, we have assumed that momentary utility is logarithmic. Here

we consider the more general case in which utility is given by:

V ≡
Z ∞

0

c
1−1/σ
t − 1
1− 1/σ e−ρtdt, (4.6)

20Although not shown in the figure, for higher values of θ, T ∗ falls because the intertemporal
distortion becomes arbitrarily large and dominates the benefit of delaying.
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where σ > 0 denotes the elasticity of intertemporal substitution. When σ is

different from one the Ramsey planner’s problem is discontinuous at T = 0 because

the level of consumption before abandonment (c1) differs from the initial level of

consumption (c0−). Therefore we solved the model numerically.

The results that we obtain for a very wide range of parameters are consistent

with the results discussed in Section 3 for the logarithmic case. As an illustration,

Figure 7 depicts the value of T ∗ as a function of the fiscal shock for σ = 0.5,

σ = 1, and σ = 2.21 As in the logarithmic case, there is a a threshold value

of the fiscal shock beyond which T ∗ = 0. When T ∗ > 0 the value of T ∗ is a

decreasing function of the fiscal shock. In terms of comparing the effects of the

intertemporal elasticity of substitution on T ∗, note that when all solutions are

interior, the lower the intertemporal elasticity of substitution, the larger the T ∗

for a given fiscal shock. However, beyond a certain threshold, T ∗ = 0 for any of

the three cases.

The intuition behind the results illustrated in Figure 7 is as follows. When the

intertemporal elasticity of substitution is low the fact that the rate of inflation

is higher after T introduces a smaller distortion into the consumer’s intertem-

poral consumption choice. For this reason T ∗ is higher than in the logarithmic

case. Conversely, a higher intertemporal elasticity of substitution implies that

consumers are more sensitive to a given distortion, so it is optimal to delay less.

Figure 8 illustrates the model’s results for the optimal time of abandonment

as a function of the exit cost, φ. We can see that the qualitative nature of our

previous results remains unchanged. There is a certain threshold value of φ below

which T ∗ = 0. Above this threshold, T ∗ is an increasing function of φ. Although

not shown in the figure, the non-monotonicity discussed in the previous section

holds for very large values of φ. Finally, notice that the value of T ∗ depends on

21The parameters are identical to those we use in the construction of Figure 4.
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the elasticity of intertemporal substitution. For a given value of φ, the smaller

is the intertemporal elasticity of substitution, the higher is T ∗. Intuitively, for a

given φ, the lower is the intertemporal elasticity of substitution, the smaller the

impact on utility of a given rate of post-crisis inflation. Hence, it is optimal to

delay more.

In sum, allowing for non-unitary elasticity of intertemporal substitution does

not alter the qualitative nature of the results. The quantitative differences that

emerge are due to the fact that the lower is the willingness of consumers to substi-

tute over time, the smaller are the effects of intertemporal distortions. Therefore,

lower elasticities of intertemporal substitution imply higher values of T ∗.

4.4. The Exit Cost Increases with the Fiscal Shock

So far we have assumed that the exit cost is independent of the fiscal shock.

However, one could imagine scenarios in which the exit cost depends positively

on the fiscal shock. We now analyze this case and show that our main results

continue to hold.

Suppose that the cost of abandoning the peg is given by:

φt = φ0 + α∆Γ,

for some α > 0. For simplicity, we analyze the case in which φ0 = 0. When

φ0 > 0, the same results go through since the presence of a positive cost of exiting

when ∆Γ = 0 reinforces the results described below.

The consumer’s problem remains the same as in Section 3. The Kuhn-Tucker

condition for the Ramsey planner becomes:

log

µ
c1
c2

¶
−
µ
c1
c2
− 1
¶

| {z }
cost of delaying

+
rα∆Γ

c2| {z }
benefit of delaying

≤ 0. (4.7)
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This equation is analogous to equation (3.13). We now show that, as in the case

discussed in Section 3, there is a threshold value of the fiscal shock beyond which

it is optimal to abandon immediately.

Proposition 4.2. For any given α > 0, there is a threshold value of ∆Γ, ∆Γ∗,

such that for any ∆Γ ≥ ∆Γ∗, it is optimal to abandon immediately.

Proof. See Appendix 7.6.

For a sufficiently large fiscal shock, both the cost and benefit of delaying be-

come arbitrary large, but the former dominates and hence it is optimal to abandon

right away. The intuition parallels the discussion following equation (3.13) in Sec-

tion 3. In other words, the key is that the flow saving is bounded relative to c1

and, hence, for large fiscal shocks, the cost of delaying dominates and immediate

abandonment is optimal.

We also show in Appendix 7.7 that when the solution is interior the optimal

T is a decreasing function of the fiscal shock. In sum, even in this case in which

the cost of exiting increases with the fiscal cost, we obtain the same qualitative

results as in Section 3.

5. Stochastic Fiscal Reform

In sections 3 and 4 we study the optimal monetary policy in models where there are

both fiscal and social costs of abandoning the fixed exchange rate regime. We now

consider an economy where these costs are absent but where government spending

is stochastic. As in the previous sections, we assume that before time zero the

fixed exchange rate regime was sustainable, so the government’s net foreign assets

were sufficient to finance the present value of government spending. At time zero

the economy learns that the present value of government spending has increased

by ∆Γ. The new element introduced in this section is that while the exchange
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rate is fixed (after time zero but before the peg is abandoned) there can be a

reduction in government spending that makes the peg, once again, sustainable.

This expenditure reduction occurs according to a Poisson process with arrival

rate λ. If the peg is abandoned, the increase in government spending becomes

permanent and has to be financed with seignorage revenues. There is thus an

option value of holding on to the peg. This formulation captures in a simple way

the idea that a fixed exchange rate regime exerts pressure on the fiscal authorities

to enact reforms to make the peg sustainable. This pressure disappears once the

exchange rate floats. An alternative interpretation is that the country can receive

a bailout transfer from abroad that pays for the increase in government spending

and renders the peg sustainable. This external bailout arrives according to a

Poisson process.

The size of the fiscal reform or of the external bailout that has to occur to

make the fixed exchange rate regime sustainable depends, naturally, on the path

of government spending. If the reform occurs at time t the present value of

government spending from time t on has to be reduced to a value Γt given by:

Γt = f0e
rt − ert

Z t

0

gse
−rsds. (5.1)

Expression (5.1) implies that if there has been no new spending between time zero

and time t all that is necessary to make the peg sustainable is to cancel the plans

for new government spending in the future. However, if new spending has already

taken place in the time interval up to time t the government needs to reduce the

present value of government spending below its level before the fiscal shock.

The optimal policy reduces to choosing the time T at which the fixed exchange

rate regime is abandoned, if a fiscal reform has not in the meantime materialized.

A higher value of T makes a fiscal reformmore likely. However, the longer the hori-

zon T , the larger the intertemporal consumption distortion that the government
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has to introduce if reform does not occur.

The Time When Reform Occurs We start by characterizing the case in

which a fiscal reform has just occurred making the fixed exchange rate sustainable.

Consumption is constant and its level, which we denote by c∗, can be computed

using the household’s budget constraint:

b+ y/r = c∗/r + (c∗ −m).

Here b and m denote the levels of net foreign assets and real balances that house-

holds had in the period where the reform took place. The term (c∗−m) represents
the jump in real balances that occurs when agents learn that the fixed exchange

rate regime has become sustainable. Lifetime utility is given by:

V ∗(b+m) =
log [(rb+ rm+ y)/(1 + r)]

r
.

The t ≥ T Regime Suppose that we have reached time T and a reform has

not occurred. The fixed exchange rate regime is abandoned and the growth rate

of money rises to a level ε such that the government’s intertemporal resource

constraint is satisfied. Consumption is constant at a level which we denote by c2.

This level can be computed using the household’s budget constraint:

b+ y/r = c2(1 + ε)/r + (c2 −m), (5.2)

where (c2−m) represents the jump in real balances that takes place at time T in

response to a permanent increase in inflation from zero to ε. Using (5.2) to solve

for c2, we can compute lifetime utility at time T :

V (b+m,T ) =
log [(rb+ rm+ y)/(1 + r + ε)]

r
. (5.3)
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The value function (5.3) bears a simple relation with the value function associated

with the reform regime:

V (b+m,T ) = V ∗(b+m)− log(p)
r

,

where p is given by

p ≡ 1 + r + ε

1 + r
. (5.4)

The fact that r = ρ and that inflation is constant means that for any time

period t ≥ T the value function coincides with V (b+m,T ):

V (b+m, t) = V (b+m,T ) for t ≥ T .

The Regime for t ≤ T and No Reform The optimality equation for the

household’s problem during this period is:

rV (b+m, t) = max
c1
{log(c1) + V2(b+m, t) +

[r(b+m) + y − c1(1 + r)]V1(b+m, t) +

λ[V ∗(b+m)− V (b+m, t)]}.

The first order condition with respect to consumption (c1) is:

1/c1 = V1(b+m, t)(1 + r).

It is easy to verify that the value function has the form:

V (b+m, t) =
log [(rb+ rm+ y)/(1 + r)]

r
− e−(λ+r)(T−t) log(p)

r
. (5.5)

This equation has a simple interpretation. Consider first an economy in which

a fiscal reform has no chance of occurring (λ = 0) and which will switch to the

floating regime with certainty at time T . Since utility declines by log(p)/r at time

T lifetime utility at time t would be:

log [(rb+ rm+ y)/(1 + r)]

r
− e−r(T−t) log(p)

r
. (5.6)
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Our value function is similar to (5.6) but the discount factor applied to log(p)/r

incorporates λ to reflect the fact that there is an ongoing probability of a fiscal

reform until time T .

5.1. Optimal Monetary Policy

At time zero, when the economy learns that there has been an increase in the

present value of government spending, the lifetime utility of the household declines

from V ∗(b+m) to V (b+m, 0) (given by equation (5.5)).

The central bank chooses T , the maximum length of time that it is optimal

to wait for a fiscal reform to occur. If the economy reaches time T > 0 without

a fiscal reform, the central bank has to print money to satisfy the government’s

intertemporal budget constraint. Since it is optimal to choose a constant growth

rate of money, the government’s present value resource constraint is:

εc2

r
e−rT + (c1 −m0−) + (c

2 − c1)e−rT = ∆Γ. (5.7)

There are no stochastic elements in this equation. This constraint is only relevant

when the economy reaches time T without a fiscal reform, in which case all un-

certainty has been resolved. Since the economy is in a sustainable fixed exchange

rate regime at t = 0−, m0− = c1. Using this fact, and the equation c2 = c1/p

together with (5.4) we can rewrite (5.7) as:

p =
c1/r

c1/r −∆ΓerT
. (5.8)

This equation defines p as a function of T .

The optimal policy can be characterized by maximizing V (b+m, 0), given by

(5.5), subject to (5.8). T ∗ is given by:

log

µ
c1

c2

¶
−
µ
c1

c2
− 1
¶
+

λ

r + λ

r∆ΓerT

c2
≤ 0, (5.9)
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which holds with equality whenever T ∗ > 0. Equation (5.9) is similar to the one

that characterizes the case in which the exit cost is increasing with the fiscal shock

(see equation (4.7). The term erT reflects the fact that as time passes the size of

the fiscal reform has to increase in order to restore the sustainability of the fixed

exchange rate.

The optimal abandonment time is characterized by the following proposition.

Proposition 5.1. For every finite positive value of λ there is a threshold value

for the present value of government spending, Γ∗, such that for Γ0 > Γ∗ it is

optimal to abandon the peg at time zero (T = 0), while for Γ0 ≤ Γ∗ it is optimal

to delay abandoning the peg (T ≥ 0). The value of Γ∗ is increasing in λ.

Proof: See Appendix 7.8.

The intuition for this proposition is similar to that of the case in which the

exit cost is increasing with the fiscal shock. Take φ as given and evaluate (5.9)

for T = 0:

log

µ
c1

c2

¶
+ 1 +

c1

c2

µ
λ

r + λ

r∆Γ

c1
− 1
¶
≤ 0, (5.10)

If (5.10) takes on a negative value it is optimal to choose T = 0. Since the fiscal

cost cannot exceed the wealth of the economy, r∆Γ < c1, and the coefficient on

c1/c2 is negative. For a given φ, as ∆Γ increases c2 converges to zero, while c1

remains constant. As a result, c1/c2 becomes arbitrarily large and the left-hand

side of (5.10) converges to −∞.22 Since the flow saving of delaying is bounded
relative to c1, the cost of delaying dominates and immediate abandonment is

optimal for large values of ∆Γ. The fact that Γ∗ is increasing in λ is also intuitive:

it means that when the reform arrival rate is higher the range of fiscal shocks for

which it is optimal to delay abandoning the peg is larger.
22It should be clear that in this case T = 0 is the global optimum. In order for c2 to be

positive it must be the case that ∆ΓerT < c1/r, so for any T > 0 the left-hand side of (5.9)
converges to −∞.
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6. Conclusion

Versions of the Krugman-Flood-Garber currency crisis model are widely used to

study the abandonment of fixed exchange rate regimes. This class of models

assumes that the central bank follows a mechanical exit rule: a peg is abandoned

if and only if international reserves reach a critical lower bound. From a positive

standpoint the KFG rule is at odds with many episodes in which the central bank

has plenty of international reserves at the time of abandonment. From a normative

standpoint our analysis suggests that the KFG rule is suboptimal.

We characterize the optimal exit strategy in a model in which the fixed ex-

change rate regime has become unsustainable due to an unexpected increase in

the present value of government spending. We show that when there are no exit

costs it is optimal to abandon immediately. When there are exit costs, the optimal

abandonment date is a decreasing function of the size of the fiscal shock. For large

fiscal shocks immediate abandonment is optimal.

So far we have studied a basic monetary model where the only impact of

inflation is that it distorts intertemporal consumption allocations. This analysis

provides us with a point of departure to study richer environments in which tax

revenue and the cost of financing public debt are endogenous and where monetary

policy affects the level of economic activity.
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7. Appendices

7.1. Episode selection

Our original sample consists of the 96 currency crisis episodes identified in Kamin-

sky and Reinhart (1999) and updates. Since the selection criteria used by Kamin-

sky and Reinhart is based on a weighted average of reserve losses and changes in

the exchange rate, we choose a sub-sample based exclusively on changes in the

exchange rate. We choose those episodes in which the devaluation in the month

of abandonment is at least 10 percent and that meet one of the following criteria:

1. There was a fixed exchange rate (or a negative rate of change in the exchange

rate) for at least 12 months before the devaluation.

2. Devaluation in the 12 months following and including the month of aban-

donment is at least twice as large as the devaluation in the previous 12

months.

These criteria are used to exclude countries where 10 percent devaluation are

recurrent events.

7.2. Proof of Proposition 3.1

This appendix contains the proofs of Proposition 3.1. We first outline some pre-

liminary steps. The starting point is the Kuhn-Tucker condition (??), reproduced

below for convenience:

log

µ
c1

c2

¶
−
∙µ

c1

c2
− 1
¶
− rφ

c2

¸
≤ 0. (7.1)

We now express this condition as a function solely of parameters, using the gov-

ernment budget constraint, (3.10):

log

µ
c1

c1 − r(erT∆Γ+ φ)

¶
−
∙µ

c1

c1 − r(erT∆Γ+ φ)
− 1
¶
− rφ

c1 − r(erT∆Γ+ φ)

¸
≤ 0.
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To simplify notation, let:

p(T, φ,∆Γ) ≡ c1

c1 − r(erT∆Γ+ φ)
,

pφ =
rp2

c1
.

Then define:

Ψ(T, φ,∆Γ) ≡ log(p)− (p− 1) + rφp

c1
. (7.2)

Hence,

Ψφ =
pφ
c1
(c1 − φr − 2rerT∆Γ).

We need to impose bounds on φ and ∆Γ to ensure that c2 is positive (recall that

c1 is exogenous). Equation (3.10) implies:

c2 = c1 − r(erT∆Γ+ φ) > 0.

For a given ∆Γ, φ is bounded by:

φ <
c1

r
− erT∆Γ. (7.3)

For a given φ, ∆Γ is bounded by:

∆Γ < e−rT
µ
c1

r
− φ

¶
.

We consider two sub-cases:

1. ∆Γ > c1/2r

2. c1/er ≤ ∆Γ ≤ c1/2r
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Case 1: ∆Γ > c1/2r. Notice that:

Ψφ =
pφ
c1
¡
c1 − φr − 2rerT∆Γ

¢
.

Evaluate this expression at T = 0 to obtain:

Ψφ =
pφ
c1
¡
c1 − φr − 2r∆Γ

¢
< 0,

since ∆Γ > c1/2r. Hence, ∆Γ > c1/2r is a sufficient condition for Ψφ < 0.

Case 2: c1/er ≤ ∆Γ ≤ c1/2r. In this case, notice that Ψφ becomes zero for a

value of φ which we denote by φmax. This value is given by:

φmax =
c1

r
− 2∆Γ.

For further reference, we evaluate p at φmax:

p(0, φmax,∆Γ) ≡ c1

c1 − r (∆Γ+ φmax)
,

p(0, φmax,∆Γ) ≡ c1

r∆Γ
.

Using this expression we evaluate Ψ at φmax:

Ψ(0, φmax,∆Γ) = log (p)− (p− 1) + rφmaxp

c1
,

Ψ(0, φmax,∆Γ) = log [p(0, φmax,∆Γ)]− 1.

Hence:

Ψ(0, φmax,∆Γ = c1/er) = 0

Ψ(0, φmax,∆Γ > c1/er) < 0

The solution is T ∗ = 0. It is a boundary solution for ∆Γ = c1/er and a corner

solution for ∆Γ > c1/er.

We now consider the case of small fiscal shocks.
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We denote the two roots by φ∗ and φ∗∗, with φ∗ < φ∗∗.

Notice that if ∆Γ < c1/er, then:

p(0, φmax,∆Γ) ≡ c1

r∆Γ
> e.

This inequality implies that:

Ψ(0, φmax,∆Γ < c1/er) > 0.

Since we know that Ψ(0, 0,∆Γ < c1/er) < 0, by continuity it follows that φ∗

exists. To establish existence of the second root, φ∗∗, we now show that the limit

of Ψ(T, φ,∆Γ) as φ approaches the upper bound given in (7.3) is −∞. This limit
is given by:

lim
φ−→ c1

r
−∆Γ

Ψ(T, φ,∆Γ) = log (p)− (p− 1) + rφp

c1
.

Since p −→ ∞ as φ −→ c1

r
−∆Γ, we need to collect terms in p to evaluate the

resulting coefficient:

lim
φ−→ c1

r
−∆Γ

Ψ(T, φ,∆Γ) = 1 + log (p) + p

µ
−1 + rφ

c1

¶
.

The coefficient on p is always negative because, from (7.3), φ < c1/r. Hence, the

limit is −∞.

7.3. Behavior of T , ε, and Reserve Loss as a Function of φ.

Behavior of T. Take as given ∆Γ ∈ (0, c1/er) and consider the ranges

for φ (established above) for which the solution for T is interior. In that case,

Ψ(T ∗, φ,∆Γ) = 0 implicitly defines T ∗ as a function of φ:

φ =
c1

rp
(p− 1− log p) . (7.4)
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Hence:

dT

dφ
=

Ψφc
1

pT r∆ΓerT
,

where the behavior of Ψφ has been derived above. Hence, T is an increasing

function of φ for φ ∈ [φ∗, φmax) and a decreasing function for φ ∈ [φmax, φ∗∗). For
all other values of φ, the value of T ∗ = 0, as established above. Figure 2, Panel

A, shows T ∗ as a function of φ.

Behavior of ε For the range of interior solutions, it follows from (7.4) that:

dε

dφ
=

r(1 + r)p2

c1 log(p)
> 0.

When T ∗ = 0, ε is also an increasing function of φ, as follows from (3.15) and

(3.16). Figure 2, Panel B, illustrates the optimal ε as a function of φ. Clearly, at

φ = φ∗ = φ∗∗, this function need not be differentiable.

Behavior of loss of reserves By definition, the reserve loss at T is equal

to c1 − c2. Since c1 is independent of both T and φ, we just need to check the

behavior of c2 as a function of φ for interior solutions (naturally, for T = 0, the

reserve loss is zero). Since c2 = c1/p, it follows that:

dc2

dφ
= − c1

p2(1 + r)

dε

dφ
< 0.

Hence, the reserve loss is an increasing function of φ when the solution is interior

(see Figure 2, Panel C).

7.4. Behavior of T , ε, and the Loss of Reserves as a Function of ∆Γ

Behavior of T We now derive the behavior of the optimal values of T , ε,

and the loss of reserves as a function of ∆Γ for a given φ ∈ (φ∗, φ∗∗). As shown
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above, the solution is interior for ∆Γ ≤ c1
er
. In this range, setting (7.2) to zero

yields:

dT

d∆Γ
= −p∆Γ

pT
< 0.

lim
∆Γ→0

T = ∞.

For any ∆Γ ≥ c1
er
, the solution is T = 0, as shown above. In Figure 3, and without

loss of generality, the given value of φ has been taken to be φ = c1

r
(1− 2

e
). It can

be checked that Ψ[ c
1

r
(1− 2

e
); c1

er
] = 0 and hence in Panel A, T (∆Γ∗ = c1

er
) = 0.

Behavior of ε Consider now the behavior of the optimal value of ε as a

function of ∆Γ. Since the RHS of (7.4) is a strictly increasing function of p,

it follows that, when the solution is interior, the optimal value of p (and hence

ε) is fully determined by φ and is therefore independent of ∆Γ. Hence, for

0 < ∆Γ < c1
er
, the optimal ε does not depend on ∆Γ.23 For ∆Γ ≥ c1

er
, T ∗ is zero.

It then follows from (3.15) and (3.16) that ε is an increasing function of ∆Γ. (See

Panel B in Figure 3.)

Behavior of the loss of reserves Finally, consider the reserve loss (≡
c1− c2). Clearly, for ∆Γ ≥ c1

er
, the reserve loss is zero since the peg is abandoned

right away. For 0 < ∆Γ < c1
er
, the reserve loss equals c1(p − 1)/p > 0. Since p

is independent of ∆Γ when the solution is interior, then the reserve loss is also

independent of ∆Γ in this range.

7.5. Proof of Proposition 4.1

We start with expression (4.3) and proceed in exactly the same way as in Propo-

sition 3.1 (see Appendix 7.2).

23For ∆Γ = 0, the optimal ε is zero since T ∗ =∞, i.e. the peg will never be abandoned.
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7.6. Proof of Proposition 4.2

The starting point is the Kuhn-Tucker condition (4.7). Using c2 = c1−r∆Γ
¡
erT + α

¢
and defining p as

p(T,∆Γ) ≡ c1

c1 − r∆Γ (erT + α)
, (7.5)

we can rewrite condition (4.7) as

Ψ(T,∆Γ) ≡ log(p)− (p− 1) + rα∆Γp

c1
. (7.6)

We will proceed by showing that Ψ(0,∆Γ) takes an inverted-U shape form and has

one zero root for some value of ∆Γ, denoted by ∆Γ∗. Hence, for any ∆Γ ≥ ∆Γ∗,

it will be optimal to abandon immediately.

It follows from (7.6) that Ψ(0, 0) = 0. Further, by differentiating (7.6) with

respect to ∆Γ, it follows that

dΨ

d∆Γ

¯̄̄̄
∆Γ=0

=
rα

c1
> 0,

which indicates that Ψ is an increasing value of ∆Γ for small values of ∆Γ.

We now evaluate Ψ(0,∆Γ) as ∆Γ approaches its maximum admissible value.

For c2 to be positive, we need to impose the condition that c1 > r∆Γ
¡
erT + α

¢
.

For T = 0, this condition becomes

∆Γ <
c1

r (1 + α)
, (7.7)

which, for a given α > 0, imposes an upper bound on the value of ∆Γ. We now

take the limit of Ψ(0,∆Γ) as ∆Γ tends to c1/[r (1 + α)]. From (7.5) evaluated at

T = 0, it follows that, since c1 is given, p→∞ as ∆Γ→ c1/[r (1 + α)]. Hence:
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lim
∆Γ→ c1

r
1

(1+α)

Ψ(0,∆Γ) = lim
p→∞

p

µ
rα∆Γ

c1
− 1
¶
= −∞,

since, from (7.7), it follows that

rα∆Γ

c1
<

α

1 + α
< 1.

Since we know that Ψ(0,∆Γ) increases for small values of ∆Γ, it follows by con-

tinuity that Ψ(0,∆Γ) reaches some maximum value and then decreases, crossing

the horizontal axis for some value ∆Γ∗. Hence, for any value of ∆Γ > ∆Γ∗, there

is a corner solution (and, for ∆Γ = ∆Γ∗ we have a boundary solution).

7.7. Proof that T is a decreasing function of ∆Γ

To show this, set equation (7.6) equal to zero and differentiate with respect to T

and ∆Γ to obtain:

dT

d∆Γ
= −

p∆Γ

³
1−p
p
+ r

c1
α∆Γ

´
+ r

c1
αp

pT
³
1−p
p
+ r

c1
α∆Γ

´ , (7.8)

where

pT = p2
r∆ΓerT

c1
> 0, (7.9)

p∆Γ = p2
r(erT + α)

c1
> 0. (7.10)

Using (7.5), we can simplify (7.8) to read:

dT

d∆Γ
= −p∆Γ

pT
− αp

pT∆ΓerT
< 0,

which shows that, for interior solutions, T is a decreasing function of the fiscal

shock.
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7.8. Proof of Proposition 5.1

Equation (5.9) can be re-written as:

K(p) ≡ (1− p)r + (r + λ) log(p) ≤ 0.

It is useful to define the function K(p) as:

K(p) ≡ (1− p)r + (r + λ) log(p).

This function is concave and for λ > 0 it intersects the x-axis twice, at p = 1 and

at a value of p greater than 1 which we denote by p∗. The maximum value of K is

achieved for p = (r + λ)/r. To check whether T = 0 is optimal we can set T = 0

in (5.8) to compute the value of p that would be consistent with the government

budget constraint if the peg was abandoned immediately. We denote this value of

p by p0:

p0 =
c1/r

c1/r − (∆Γ+m0− − c1)
.

Using the fact that b0−+ m0− + y/r = c1(1 + r)/r we can rewrite this expression

as:

p0 =
c1/r

b0− + y/r −∆Γ
.

We can then use this expression for p0 to evaluate the Kuhn-Tucker condition. If

K(p0) < 0, T = 0 is optimal, otherwise T > 0 is optimal. The variable p0 is an

increasing function of ∆Γ which takes the value 1 when ∆Γ = 0 (in this case there

is no expenditure shock at time zero and the regime continues to be sustainable).

The value of p0 converges to infinity as ∆Γ → b0− + y/r. This limiting value of

∆Γ is such that government spending exhausts all the resources of the economy.

Define ∆Γ∗ as the value of ∆Γ such that p0 = p∗. Then for ∆Γ > ∆Γ∗, K(p0) < 0

so it is optimal to abandon immediately. For ∆Γ < ∆Γ∗, K(p0) > 0 and T ∗ > 0.

Finally, it is easy to see that p∗ is an increasing function of λ. This property

implies that ∆Γ∗ is also an increasing function of λ.
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Change in Change in
Loss Change exch. rate exch. rate

Change in of in real gov 12 months 12 months
exch. rate reserves spending before after

Country Date (in %) (in %) (in %) (in %) (in %)
Argentina Jun 70 14.3 7.3 15.9 0.0 17.7

Jun 75 160.0 75.6 3.9 100.0 1,301.7
Feb 81 11.3 53.3 35.7 22.1 393.6
Apr 89 386.7 15.8 34.0 200.0 29,324.8
Jan 02 40.1 45.9 13.7 0.0 232.2

Bolivia Nov 82 358.3 -33.3 24.0 76.2 358.3
Nov 83 155.1 -32.1 36.8 358.3 2,483.4
Sep 85 1421.3 24.1 -29.9 1,282.2 2,605.7

Brazil Feb 83 38.6 50.8 -16.4 104.8 292.3
Jul 89 42.6 -19.1 106.8 680.4 3,917.2

Oct 91 38.7 11.9 -17.1 452.0 1,276.6
Jan 99 64.1 34.1 24.4 8.3 48.0

Chile Set 72 66.6 60.4 NA 0.0 900.0
Dec 74 28.2 66.2 NA 100.0 400.0
Jun 82 19.1 15.6 20.4 0.0 62.4

Finland Oct 82 13.7 16.9 16.0 8.2 16.7
Sep 92 16.3 10.1 33.3 -8.3 50.4

Indonesia Nov 78 50.6 3.6 12.6 0.0 51.1
April 83 37.8 54.1 27.3 7.8 42.3
Sep 86 44.3 8.9 9.5 1.2 44.9

Israel Nov 74 42.9 24.1 NA 0.0 66.7
Nov 77 47.6 -11.1 NA 23.0 78.6
Oct 83 31.5 2.3 NA 119.2 530.2

Malaysia Aug 97 12.4 15.8 15.1 5.4 57.2
Mexico Sep 76 58.7 39.0 16.8 0.0 82.9

Feb 82 67.7 27.7 82.7 13.8 277.6
Dec 94 54.4 75.0 13.2 10.8 121.8

Norway May 86 12.2 -3.5 20.5 -22.1 -3.6
Peru Jun 76 44.4 54.5 17.8 16.3 73.4

Oct 87 25.9 49.2 6.3 13.9 1,473.3
Sep 88 657.6 42.8 -17.5 107.6 10,719.9

Philippines Feb 70 46.7 -29.9 15.0 0.3 63.3
Oct 83 27.3 80.7 0.4 26.6 63.6
Jul 97 15.4 7.4 17.1 0.7 59.5

Spain Feb 76 11.3 0.4 2.3 6.3 15.1
Jul 77 22.0 15.7 -9.4 2.5 13.2

Sweden Aug 77 11.5 13.4 20.0 -2.0 3.7
Oct 82 18.2 -5.7 13.9 12.3 24.3
Nov 82 18.8 -49.7 13.5 -5.4 41.1
Nov 84 17.7 -38.8 21.2 0.0 15.3
July 97 24.3 23.2 33.9 1.7 64.1

Turkey Aug 70 65.1 -84.1 17.8 0.0 65.1
Jan 80 100.0 28.0 -9.4 40.0 155.0
Mar 84 21.2 53.3 3.7 98.8 126.3
Feb 01 36.1 6.4 58.7 21.2 93.0

Uruguay Mar 72 99.6 -119.4 14.1 0.0 241.1
Nov 82 38.7 37.4 44.1 18.4 176.3

Venezuela Feb 84 74.4 -40.0 -19.0 0.2 74.4
Dec 86 93.3 37.2 13.5 0.0 93.3
Mar 89 154.3 35.7 -9.8 0.0 197.3
Dec 95 70.6 22.1 -3.2 0.0 178.1

Source: Authors' calculations based on data from International Financial Statistics.

      Table 1.  Currency Crises Episodes



Figure 1. Histogram of Reserve Losses 
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Figure 2. Optimal policy as a function of cost of abandoning
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Figure 3. Optimal policy as a function of the fiscal shock
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Figure 4: Optimal T as a function of the fiscal shock for different values of δ 
 
 
 

 
 
 

Figure 5: Optimal T as a function of the exit cost for different values of δ 
 
 

 



Figure 6: The exit cost is not a fiscal cost 
 
 
 

 



Figure 7: Optimal T as a function of the fiscal shock for different values of σ 
 

 
 
 
 

Figure 8: Optimal T as a function of the fiscal shock for different values of σ 
 

 




