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1 Introduction

This paper constructs a general equilibrium search model to analyze the effects of fixed-term

employment contracts (or temporary contracts). These contracts were introduced in economies

with high employment protection levels in Europe and Latin America, as a way of giving firms

some type of flexibility in the process of hiring and firing workers. Fixed-term contracts stipulate

a period of time, typically between one and three years, during which workers can be dismissed at

very low or zero separation costs. If workers are retained beyond this period, standard separation

costs apply.

Since the introduction of fixed-term contracts during the 1980s, the fraction of workers hired

under this modality has expanded steadily in Europe, reaching more than 13 percent in 2000.

However, there are large cross-country differences in the scope and duration of fixed-term contracts.

For instance, some countries restrict these contracts to certain occupations and type of workers,

while others give them broad applicability. In this paper we focus on the case of Spain, because

in 1984 Spain substantially liberalized the applicability of temporary contracts at a time when

the country had one of the highest employment protection levels in Europe (see Cabrales and

Hopenhayn, 1997, and Heckman and Pages-Serra, 2000). From 1984 to 1991, the fraction of

workers with fixed-term contracts in Spain went from 11 percent to more than 30 percent, and

almost all the hiring in the economy was done under this form of contract (see Hopenhayn and

Garcia-Fontes, 1996).1

Figure 1, which is taken from Hopenhayn and Cabrales (1997), displays estimates for the one-

quarter transition probabilities from employment to unemployment during the six years before

and after the 1984 reform, as a function of the length of the employment spells. It shows that

the firing rates increased significantly after the reform and that a spike formed at an employment

duration of three years, which (not surprisingly) corresponds to the maximum fixed-term contract

length allowed by the reform. Thus, the introduction of fixed-term contracts appears to have

significant effects on worker reallocation. In fact, there is considerable agreement in the literature

1These reforms were partially undone during the 1990s, when the maximum length of the fixed-term contracts

was reduced from three years to one year, and the severance payments for ordinary indefinite-length contracts were

substantially reduced. However, even after this partial reversal, the fraction of workers under fixed-term contracts

stabilized at about 33 percent.
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that the main effects of introducing fixed-term contracts are a substantial increase in the flows

from unemployment to employment (i.e., a decrease in the average duration of unemployment),

and a significant increase in the flows from employment to unemployment (i.e., an increase in the

firing rate) as can be seen, for example, in the literature survey by Dolado et al. (2001). The net

effect of these two opposing forces on the unemployment rate is not clear, but the evidence seems

to indicate a small increase.

This paper analyzes the effects of fixed-term employment contracts using the equilibrium search

model of Alvarez and Veracierto (1999), which is a version of the Lucas and Prescott (1974) island

search model with undirected search and variable labor force participation. Production takes place

in a large number of locations (or islands). All islands operate the same decreasing returns to scale

technology but are subject to island-specific productivity shocks. Changes in the island-specific
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productivity shock give raise to changes in labor demand across locations. Moving a worker across

locations is costly: It requires one period during which the agent neither enjoys leisure nor works.

In addition, agents that search arrive randomly to one of the islands in the economy (i.e., search

is undirected). Workers that separate from their islands have to choose between two alternatives:

to work at home (i.e., to leave the labor force) or to search (i.e., to become unemployed). On

each island there are competitive labor markets. In addition, we assume that agents have access

to perfect insurance markets, so that firms maximize expected discounted profits and households

maximize expected discounted wages.

The employment protection system that we analyze is characterized by two parameters: the

firing tax τ and the length of the fixed-term contracts J . In particular, firms must pay a firing

tax τ when they reduce their employment of permanent workers (those that have a tenure level

equal to or greater than J) but are exempt from paying firing taxes on temporary workers (those

with a tenure level less than J). Because firing taxes depend on tenure, the state of an island is

described not only by its idiosyncratic productivity level but also by its distribution of workers

across tenure levels.

We consider two alternative (yet equivalent) concepts of competitive equilibrium: one with

spot labor markets and one with multiperiod employment relations. In the spot labor markets

equilibrium, workers and firms solve problems that are natural extensions of McCall’s search

model and Bentolila and Bertola’s firing costs model, respectively. This equilibrium concept has

two advantages: It can be easily related to the previous literature and it is simple to analyze. The

equilibrium with multiperiod employment relations is more complex but captures the nature of

fixed-term employment contracts in a much more realistic way.

In the spot labor market equilibrium, workers are differentiated by their tenure levels, partici-

pate in different labor markets, and receive different wages. Given the presence of tenure-dependent

firing costs, firms solve a modified (S,s) optimization problem. In turn, workers at each tenure

level face a standard search problem: They decide whether to stay on the island where they are

currently located or become non-employed. Both firms and workers take as given the island-level

law of motion for wages across tenure levels. At equilibrium, this island-level process must be

such that the island labor markets clear at each island-wide state. An economy-wide equilibrium

is completed by an invariant distribution across island states. This economy-wide distribution is

needed to describe the benefit of search and the aggregate demand for labor.
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If separation costs are a technological feature of the environment, a version of the first and

second welfare theorems holds for our competitive equilibrium. Conversely, if separation costs are

taxes rebated lump-sum to households (the most interesting case to consider), the welfare theorems

do not apply, but we can still use a modified version of the planning problem to characterize a

competitive equilibrium. In particular, we can break the economy-wide planning problem into

a series of island-wide planning problems, one for each island. Each of these island-wide social

planners solves a similar problem: to maximize the expected discounted value of output by deciding

how many workers to keep and take out from the island. In this problem, the island-wide planner

takes as given the constant flow U of new arrivals (this flow is independent of the characteristics

of the island because of the assumption of undirected search). The island’s planner also takes as

given the shadow value of returning a worker to non-employment. This shadow value is tenure

dependent, taking into account that the separation cost τ applies only to permanent workers.

While the state of this problem is the distribution of workers across tenure levels, which is a

J dimensional object, we show how to reduce it to a two-dimensional object: the number of

temporary workers and the number of permanent workers. We also show that the solution to

this control problem is characterized by two-dimensional sets of inaction, one set for each value of

the idiosyncratic productivity shock. Given the solution to the island-wide planning problem, the

economy-wide equilibrium is obtained by finding two unknowns: the equilibrium shadow value of

non-employment and the equilibrium number of agents that searches U .

We take the case with no fixed-term contracts and large firing costs as our benchmark case

and calibrate it to reproduce a stylized version of the Spanish economy before the 1984 reform.

We use this calibrated version to evaluate to what extent fixed-term contracts of different lengths

add flexibility to the labor market. For sufficiently large values of J , introducing fixed-term

contracts is equivalent to eliminating all separation costs, since workers never gain permanent

status. Thus, we address the question of the added flexibility by computing how much of the

gap between the firing-tax case and the laissez-faire case is closed when fixed-term contracts of

empirically reasonable length are introduced. We find that, even when the firing tax τ is small,

introducing temporary contracts of a short length (i.e., with a small J) sharply increases the

average firing rate and sharply decreases the average duration of unemployment. Nevertheless,

for firing taxes of about one year of average wages (the value that corresponds to Spain during

the 1980s), unemployment, productivity and welfare change smoothly with variations in J . For
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instance, moving to laissez-faire (i.e., introducing a large J) increases the unemployment rate 2.4

percent relative to the benchmark case. On the contrary, introducing fixed-term contracts of three

years duration (the length introduced by the 1984 Spanish reform) increases the unemployment

rate by only 1.25 percent relative to the benchmark case. Regarding welfare, we find that moving

to laissez-faire increases welfare by 2.5 percent (in perpetual consumption equivalent units) relative

to the benchmark case, while introducing fixed-term contracts of three years duration increases

welfare by only 1 percent relative to the benchmark case. We thus conclude that fixed-term

contracts of three years duration provide significant flexibility: They close about 50 percent of the

gap between the benchmark and laissez-faire cases.

Several papers have analyzed the effect of temporary contracts, such as Blanchard and Landier

(2001) and Nagypal (2002). The models that are more similar in spirit to our paper, however,

are Bentolila and Saint Paul (1992), Hopenhayn and Cabrales (1993), Aguiregabiria and Alonso-

Borrego (2004), and Alonso-Borrego et al. (2005), since they all study labor demand models with

dynamic adjustment costs. One difference between our model and the models in Bentolila and Saint

Paul (1992), Hopenhayn and Cabrales (1993), and Aguiregabiria and Alonso-Borrego (2004) is

that these papers consider partial equilibrium models (with exogenous wages) and do not consider

unemployment. The paper that is closest to ours is Alonso-Borrego et al. (2005), which performs

a general equilibrium analysis in a model with search frictions. However, there are important

differences due to the following assumptions. First, agents face incomplete markets. Second,

employment contracts are constrained to have a constant wage rate as long as the employment

relation lasts. Third, workers under temporary contracts are assumed to be less productive than

under ordinary contracts. Fourth, fixed-term contracts last only one model period. Some of these

assumptions are meant to provide realism but they substantially complicate the interpretation of

the results. For example, it is unclear to what extent the results depend on the rigid wage contracts

assumed.2 We believe that performing the analysis in an economy with efficient contracts, as our

paper does, provides easily interpretable results and a useful benchmark for evaluating deviations

from the complete markets case.

The paper is organized as follows. Section 2 describes the economy. Section 3 defines efficient

2The analysis in Alvarez-Veracierto (2001), on which Alonso and Borrego’s paper is based, suggests that rigid

wage contracts play a critical role in the results.
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allocations. Section 4 characterizes efficient stationary allocations. Section 5 considers the two

alternative notions of competitive equilibrium. Finally, Section 6 performs the computational

experiments. Seven appendices provide all the proofs and supporting material to the paper.

2 Description of the Economy

Production takes place in a continuum (measure one) of different locations, or “islands.” On each

island consumption goods are produced according to F (E, z), a neoclassical production function,

where E is employment and z is a productivity shock that takes values in the set Z. The process

for z is Markov with transition function Q (zt+1|zt), and realizations are i.i.d. across islands. We

let f (E, z) ≡ ∂F (E, z) /∂E and assume that f is continuous and strictly decreasing in E, strictly

increasing in z, and that

lim
E→0

f (E, z) =∞

where z ≡ min {z : z ∈ Z} .

There is a continuum of agents with mass equal toN . Agents participate in one of the following

three activities: work on an island, perform home production (or, equivalently, enjoy leisure), or

search. Non-employed agents, whom we sometimes refer to as “agents being at a central location,”

either work at home (enjoy leisure) or search for a job. If they work at home during the current

period, they start the following period as non-employed. If a non-employed agent searches in the

current period, she does not produce during the current period but arrives randomly to one of

the islands at the beginning of the next period. We assume that search is undirected, so the

probability of arriving to an island of any given type is given by the fraction of islands of that type

in the economy. An agent located on an island at the beginning of the period can decide whether

to stay on the island or become non-employed. If she stays, she works and starts the following

period in the same location.

We let Lt be the number of agents engaged in home production at time t, and Ut the fraction

engaged in search at time t. The period utility function for the household consuming ct units of

consumption goods and Lt units of leisure is the following:

u (ct, Lt) =
c1−γt − 1
1− γ

+ ωLt.

As it is well known, the linearity of leisure in household preferences can represent an economy with
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indivisible labor and employment lotteries, as in Rogerson (1988). To simplify the description

of the planner’s problem, we will focus in the case where consumption and leisure are perfect

substitutes, which is obtained by setting γ = 0. In this case we consider home production as an

alternative activity that produces ω consumption goods per period, and we let the household’s

utility function simply be given by

E0

∞X
t=0

βtct.

As we explain in Section 4, this assumption is without loss of generality, in the sense that there is

a simple mapping between stationary allocations with different values of γ.

Up to this point the environment is a modification of the equilibrium search model of Lucas

and Prescott (1974) that introduces household production and undirected search, as in Alvarez

and Veracierto (1999). We now introduce a tenure-dependent separation cost. In this section we

introduce this separation cost as being a technological feature of the environment. In Section 5

we show how to use the efficient allocation of this economy to construct an equilibrium where the

separation cost is a tax levied on firms and rebated to households in a lump-sum way.

The tenure-dependent separation cost works as follows: If an agent has worked for J or more

periods in a location, τ consumption goods are lost from the island’s production at the time that

that worker returns to the central location. If the worker returns to the central location after less

than J periods, no separation cost is incurred. In Section 5 we present an equilibrium concept

that shows that this tenure-dependent separation cost at the island level captures salient features

of the temporary employment contracts used in the real world.

3 Efficient Allocations: A Formal Definition

Since the separation cost depends on tenure levels, a description of an allocation must include the

distribution of workers by tenure on each island. We refer to workers with tenure j = 1, ..., J−1 in

a location as temporary workers and to those with tenure j ≥ J as permanent workers. Thus the

state of a location is given by its productivity shock z and a J dimensional vector T indicating the

number of workers with different tenure levels. In the sequential notation, locations are indexed by

their state at time t = 0, denoted by X = T0. We use zt = (z0, ..., zt−1, zt) for the history of shocks

of length t and index each location at time t by (zt,X), its history of shocks, and its initial state.
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The initial state of the economy is described by a distribution of locations across pairs (z0,X) and

by U−1, the number of agents that searched during t = −1. We let η (X|z0) be the fraction of

locations with state X conditional on z0, and q0 (z) the initial distribution of z0. We assume that

q0 equals the unique invariant distribution associated with the transition function Q. We denote

by qt (zt) the fraction of islands with history zt, which by the Law of Large Numbers satisfies

qt+1
¡
zt, zt+1

¢
= Q (zt+1|zt) qt

¡
zt
¢
.

We indicate the employment of agents with tenure j at a location (zt, X) by Ejt (z
t,X), for

j = 0, ..., J, zt ∈ Zt and t ≥ 0. Likewise, we denote by Sjt (zt,X) the separations, i.e., the number

of agents with tenure j that return to the central location.

Formally, we say that {Ejt, Sjt, Ut, Ht}, given η and U−1, is a feasible allocation if the following

conditions hold:

i) the island’s law of motion

Ej,t

¡
zt,X

¢
= Ej−1,t−1

¡
zt−1,X

¢
− Sj,t

¡
zt, X

¢
, j = 1, 2, ..., J − 1,

EJ,t

¡
zt,X

¢
= EJ−1,t−1

¡
zt−1,X

¢
+EJ,t−1

¡
zt−1,X

¢
− SJ,t

¡
zt, X

¢
,

E0,t
¡
zt
¢
= Ut−1 − S0,t

¡
zt, X

¢
,

Sj,t (z
t, X) ≥ 0 for t ≥ 0, zt ∈ Zt, X ∈ supp(η);

ii) the feasibility constraint for the labor market

Ut +
X
zt

X
X

JX
j=0

Ej,t

¡
zt, X

¢
qt
¡
zt
¢
η (X|z0) + Lt = N

Ut,Ht ≥ 0 for all t = 0, 1, ... ;

and iii) the initial conditions

Ej−1,−1 = Xj for j = 1, 2, ..., J − 1,

EJ−1,−1 +EJ,−1 = XJ ,

where E0,−1 = U−1.

The first constraint states that the number of employed workers of tenure j ≤ J−1 is given by

the number of workers of tenure j−1 that were employed on the island during the previous period
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minus the number of these workers taken out of the island during the current period. The second

constraint is analogous to the first constraint for workers of tenure J or higher. It differs from the

first one because we don’t keep track of workers of tenure j ≥ J separately (they are all lumped

together into tenure J). The third constraint says that the employment of tenure zero workers is

given by those just arrived to the island, minus the number of them taken out of the island. The

fourth constraint states that the sum of total unemployment, total employment, and agents out

of the labor force equals the population N. The fifth and sixth equations define Ej,−1 in terms of

the initial conditions Xj, for j = 1, ..., J .

Henceforth we define Tj,t (zt, X) as the number of workers of tenure j available at the beginning

of the period t on an island of type (zt, X), so that

Tj,t
¡
zt, X

¢
= Ej−1,t−1

¡
zt−1,X

¢
, j = 1, 2, ..., J − 1, (1)

TJ,t
¡
zt,X

¢
= EJ−1,t−1

¡
zt−1, X

¢
+EJ,t−1

¡
zt−1,X

¢
, (2)

T0,t
¡
zt
¢
= Ut−1 (3)

Hence condition i) in the definition of feasibility is equivalent to

Ej,t

¡
zt,X

¢
≤ Tj,t

¡
zt,X

¢
for all j.

With these objects at hand we can define a planning problem whose solutions characterize

the set of efficient allocations. We say that {Ejt, Sjt, Tj,t, Ut, Lt} is an efficient allocation if it

maximizes X
t

βt
X
zt

X
X

F

Ã
JX

j=0

Ej,t

¡
zt,X

¢
, zt

!
qt
¡
zt
¢
η (X|z0)

+
X
t

βtωLt − τ
X
t

βt
X
zt

X
X

SJ,t
¡
zt,X

¢
qt
¡
zt
¢
η (X|z0)

over all feasible allocations, given the initial conditions η and U−1.

Given initial conditions η, U−1, a feasible allocation {Ejt, Sjt, Tj,t, Ut, Lt} is stationary if

Ut, Lt and the cross sectional distribution ηt are constant over time, where ηt is given by

ηt+1 (K|z0) =
X
zt∈Zt

X
X

IK
¡
zt, X

¢
η0 (X|z0) qt

¡
zt
¢
Q (z0|zt) ,
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and IK is an indicator defined as

IK
¡
zt,X

¢
=

⎧⎨⎩ 1, if [T1,t (zt,X) , ..., TJ,t (zt,X)] ∈ K

0, otherwise

⎫⎬⎭
for all zt ∈ Zt, X ∈ supp(η), and Borel measurable K ⊂ RJ

+. Finally, we say that {L,U, η} is a

stationary efficient allocation if there is some efficient allocation
n
Êjt, Ŝjt, T̂j,t, Ût, L̂t

o
with initial

condition Û−1, η̂ which is stationary and for which

Û−1 = Ût = U, L̂t = L, and η̂t = η

for all t ≥ 0.

4 Characterization of Efficient Stationary Allocations

An efficient allocation is interior if agents are engaged in all three activities: search, home pro-

duction, and work. Our characterization of interior efficient stationary allocations consists on the

solution to two equations in two unknowns: (U, θ) , where U is unemployment and θ is the shadow

value of being non-employed. One equation states that the shadow value of search equals the

expected value of randomly arriving to an island next period, according to the invariant distrib-

ution. The second equation ensures that agents are indifferent between doing search and home

production. The first equation is quite complex- it involves solving a dynamic programing problem

and using the invariant distribution generated by its optimal policies. We refer to this dynamic

programing problem as the island planning problem.

The state of this problem is given by (T, z) , where T is a vector describing the number of

workers across tenure levels j = 1, 2, ..., J at the beginning of the period and z is the current

productivity shock. The island planner receives U workers with tenure j = 0 every period. The

planner decides how many workers to employ at each tenure level and returns workers to the

central location at a shadow value given by θ. The planner incurs a cost τ per worker with tenure
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J that is returned to the central location. Formally,

V (T, z;U, θ)

= max
{Ej}

(
F

Ã
JX
j=0

Ej, z

!
+ θ

Ã
[U −E0] +

JX
j=1

[Tj −Ej]

!
− τ [TJ −EJ ]

+β
X
z0

V (E0, E1, ..., EJ−2, EJ−1 +EJ , z
0;U, θ)Q (z0|z)

)
subject to 0 ≤ Ej ≤ Tj for j = 1, .., J and 0 ≤ E0 ≤ U. We let G (T, z;U, θ) be the optimal

employment decision and T 0 = A (T, z) the implied transition function with T 0j+1 = Gj (T, z) for

j = 0, ..., J − 2 and T 0J = GJ (T, z) +GJ−1 (T, z).

It is intuitive to see that if U is the economy-wide efficient unemployment level and θ is the

economy-wide shadow value of non-employment, the employment decisions of the island planners’

problem recover the economy-wide efficient employment decisions. To see why, notice that each

island faces the same value for U, since search is undirected, and the same value of θ, since workers

are identical once they leave the island and arrive to the central location.

As stated above, the shadow value of non-employment is equal to the discounted expected

value of randomly arriving (with zero tenure) to an island under the invariant distribution. To

find the shadow value of workers with tenure zero at each island, we define the problem of an

island’s planner that faces a flow of unemployed workers equal to Û for one period but that reverts

to the constant flow U thereafter:

V̂
³
T, z; Û , θ

´
(4)

= max
Ej

(
F

Ã
JX

j=0

Ej, z

!
+ θ

Ãh
Û −E0

i
+

JX
j=1

[Tj −Ej]

!
− τ [TJ −EJ ]

+ β
X
z0

V (E0, E1, ..., EJ−2, EJ−1 +EJ , z
0;U, θ)Q (z0|z)

)

subject to 0 ≤ Ej ≤ Tj for j = 1, .., J and E0 ≤ Û . Using this problem we define the value of an

extra zero-tenure worker in a location with state (T, z) as:

λ (T, z;U, θ) =
∂V̂

³
T, z; Û , θ

´
∂Û

|Û=U (5)

where ∂V̂ /∂Û is a subgradient of V̂ (in the case it is not differentiable). The next theorem gives

a characterization of the stationary efficient allocations.
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Theorem 1 . Let (U, θ) be an arbitrary pair. Let V (·;U, θ) be the solution of the island planning

problem, and let G (·;U, θ) , λ (·;U, θ) be the the associated optimal policies and shadow value for

zero-tenure workers, respectively. Suppose that:

i) μ (·;U, θ) is a stationary distribution for the process (T, z) with transition functions given by

Q (z0|z) for z0 and A (T, z) for T 0;

ii) the value of search σ is given by

σ = β

Z
λ (T, z ;U, θ)μ (dT × dz ;U, θ) ;

iii) the number of agents engaged in home production L satisfies

L = N − U −
Z "

JX
j=0

Gj (T, z ;U, θ)

#
μ (dT × dz ;U, θ) ≥ 0;

iv) the labor force participation decisions are optimal, in the sense that

θ = max {σ, ω + βθ} ,

0 = L [θ − ω − βθ] .

Finally, define η (T, z) = μ (T |z) as the distribution of T conditional on z. Then {L,U, η} is an

efficient stationary allocation.

Conditions (i) and (ii) have been explained above. Condition (iii) defines the number of agents

doing home production as total population minus the sum of unemployment and employment and

states that home production must be nonnegative. The first equation in condition (iv) states that

the value of non-employment must be the best of two alternatives: the value of search, which is

σ, and the value of doing home production during the current period and being non-employed

the following period, which is ω + βθ. The second equation in condition (iv) is a complementary

slackness condition for home production.

Theorem 1 implies that characterizing efficient stationary allocations is reduced to solving

two equations in two unknowns and checking that an inequality is satisfied. Given an arbitrary

pair (U, θ), the functions V (·, U, θ), G(·, U, θ), λ(·, U, θ), and the distribution μ(·, U, θ) can be
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found using standard recursive techniques. Defining σ(U, θ) and L(U, θ) as the left-hand sides of

conditions (ii) and (iii), respectively, the two equations that U and θ must satisfy are:

θ = max {σ (U, θ) , ω + βθ}

0 = L (U, θ) [θ − ω − βθ] .

and the inequality that must be satisfied is that L (U, θ) ≥ 0. A consequence of this simple

characterization is that Theorem 1 can be used for constructing a computational algorithm and

establishing the existence and uniqueness of a stationary efficient allocation.

The households’ optimality condition when γ > 0 and the allocation is interior (i.e., one with

a strictly positive amount of time dedicated to leisure and a strictly positive amount of search) is

to equate the marginal rate of substitution with the flow value of search:

ω

u0 (c)
= (1− β)σ, (6)

where c is aggregate consumption. In such interior equilibrium the value of search is equal to the

value of non-employment (i.e., σ = θ).

4.1 Island Planning Problem

We now turn to the analysis of the island planning problem, which is at the center of our char-

acterization. We start by analyzing the derivatives of V , which can be shown to be differentiable.

The standard proof by Benveniste and Scheikman does not apply because the optimal choice of

E is not interior. In Appendix A we construct an alternative proof and find expressions for the

derivatives of V . Intuitively, the marginal value of an additional worker of tenure j is given by

the sum of two terms. The first term is the expected discounted sum of the marginal product of

labor over periods in which no worker of the same cohort has ever been sent back to the central

location. The second term is the expected discounted shadow value (net of any separation costs)

the first time that a worker of the same cohort is sent back to the central location. Formally, for

Tj > 0, ∂V (T, z) /∂Tj = V ∗j (T, z) , where V
∗
j is defined as follows. Denote the current date by

0 and define the stopping time nj as the first date s at which the number of workers with current

tenure j is reduced. We let E∗i,s be the optimal employment level s periods from now of workers

with tenure level i, and Ti,s be the begining-of-period number of workers s periods from now with
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tenure level i, so that

nj = first date s at which E∗min{J, j+s},s < Tmin{J, j+s},s.

Now we are ready to define V ∗j (T, z) as:

V ∗j (T, z) =
∞X
s=0

βsE0

"
f

Ã
JX
i=0

E∗i,s, zs

!
|nj > s

#
+ (7)

E0 [β
nj θ]−E0 [β

nj τ |nj ≥ J ]

This implies that if some workers of tenure j are sent back, i.e., if Ej = Gj (T, z) < Tj, then the

marginal value of all workers of this tenure level is V ∗j (T, z) = θ for j ≤ J − 1 and is equal to

θ − τ for j = J.

In Appendix A we show the following three properties of the solution to the island planning

problem.

First, we show that if Tj > 0, then ∂V (T, z) /∂Tj ≥ θ for j ≤ J and ≥ θ − τ for j = J , since

the planner always has the option of sending workers back to the central location (Propositions

10 and 13).

Second, it is easy to see that if some permanent workers are fired, i.e., if EJ = GJ (T, z) <

TJ , then all the temporary workers must have been fired, i.e., Ej = Gj (T, z) = 0 for all j =

0, ..., J − 1. A policy with this property saves on the separation cost τ , which is incurred only by

the permanent workers (Proposition 11).

Third, the first workers to be fired are the temporary workers with the longest tenure (Propo-

sition 5). The intuition for this property is that, while all workers are perfect substitutes in

production, these workers are the closest to becoming subject to the separation cost τ . Thus this

policy saves on potential separation costs. In an economy where all island planners have followed

this policy in the past and a constant flow U of tenure j = 0 workers has arrived to each island

every period, the states T in the ergodic set take a particular form. Formally, the ergodic set is a

subset of E , which is given by

E =
n
T ∈ [0, U ]J−1 ×R+ : T = (U, ..., U, Tj, 0, ..., 0, TJ) , for some j : 1 ≤ j ≤ J − 1

o
(8)

This property is extremely important: It allows us to reduce the dimensionality of the endogenous

state of the island planning problem from J to 2. The next section analyzes the resulting simplified

island planning problem.
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4.2 Simplified Island Planning Problem

States for the island planning problem T that belong to E can be described by two numbers: t, the

total number of temporary workers (workers with tenure less or equal to J), and p, the number

of permanent workers (workers with tenure greater than J ). We use this feature to consider the

island planning problem with a simplified state (t, p, z). In this simplified problem, the choices are

employment of temporary workers et and employment of permanent workers ep. The law of motion

for the endogenous state is:

t0 = U + et −max {et − (J − 1)U, 0} and p0 = ep +max {et − (J − 1)U, 0} (9)

The number of temporary workers next period t0 is equal to the number of temporary workers

employed during the current period et plus the arrival of new workers U , minus the temporary

workers that will become permanent next period, max {et−(J − 1)U, 0}. Likewise, the number of

permanent workers next period p0 is equal to the number of permanent workers employed during

the current period ep plus the temporary workers that will become permanent next period. The

island planner’s value function v : [U, J · U ]×R+×Z → R satisfies the following Bellman equation:

v (t, p, z) = max
et,ep,t0,p0

{F (et + ep, z) + θ [t− et] + (θ − τ) [p− ep]

+β

Z
v (t0, p0, z0)Q (z, dz0)

¾
subject to

0 ≤ et ≤ t, 0 ≤ ep ≤ p,

and the law of motion (9).

Formally, v is related to V for states T ∈ E as follows:

v (T1 + T2 + ...+ TJ−1, TJ , z) = V (T1, T2, ..., TJ−1, TJ , z) .

Since v and V are closely related and V is concave, then v is concave in (t, p), even though the

graph of the feasible set for this problem is not convex. From the definition of v and the properties

of V , we have that v is differentiable with respect to t for all t > 0 that are not integer multiples

of U, and differentiable with respect to p for all p > 0. Thus, for all (t, p, z) with p > 0

∂v (t, p, z)

∂p
=

∂V (T, z)

∂TJ
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and for all t that can be written as t = (j − 1)U + Tj with Tj ∈ (0, U),

∂v (t, p, z)

∂t
=

∂V (T, z)

∂Tj
.

At the points t given by t = j × U for some j = 1, ..., J − 2, the right derivative of v with respect

to t is ∂V/∂Tj, and its left derivative is ∂V/∂Tj+1.

The main result of this section is a characterization of the optimal policy. The optimal

policy is defined by a two-dimensional set of inaction I(z). For each z, the optimal policy

(et (t, p, z) , ep (t, p, z)) is to stay in the set of inaction I (z) or otherwise move to its boundary,

as explained below. The boundary of the set of inaction is described by two continuous functions,

p̂ and t̂ defined in p̂ : Z → R+ and t̂ : R+ × Z → [0, J · U ] . The function t̂ is decreasing in

p and hits zero at a value of p ≤ p̂ (z) . The function t̂ is the boundary of the set of inaction for

the values t that are strictly positive. Formally, these functions define the set of inaction I (z) as

follows:

Definition 2 For each z ∈ Z,

I (z) =
©
(t, p) ∈ [0, J · U ]×R+ : p ≤ p̂ (z) , and t ≤ t̂ (p, z)

ª
(10)

The optimal policy is as follows: if p ≤ p̂ (z) and the state is outside the set of inaction

I (z), temporary workers are fired until the boundary of I (z) is hit, with no change in permanent

workers. If p > p̂ (z) , all temporary workers are fired, and permanent workers are fired to hit

p̂ (z) . Formally,

et (t, p, z) = min
©
t, t̂ (p, z)

ª
,

ep (t, p, z) = min {p, p̂ (z)}

Figure 2 illustrates the typical shape of the set of Inaction (for a given value of z).

The threshold p̂ (z) solves

θ − τ = f (p̂ (z) , z) + β

Z
∂v

∂p
(U, p̂ (z))Q (z, dz0)

That is, p̂ is the lowest number of permanent workers for which the marginal value of a permanent

worker is equal to θ − τ and, thus, any additional permanent worker would be returned to the

central location.
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Figure 2:
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Given (p, z), the function t̂ (p, z) is defined as the lowest number of temporary workers t for

which the marginal value of a temporary worker is equal to θ and, thus, any additional temporary

worker would be returned to the central location. The function t̂ (p, z) solves

θ = f
¡
t̂ (p, z) + p, z

¢
+ β

Z
∂v

∂t

¡
t̂ (p, z) + U, p

¢
Q (z, dz0)

for t̂ (p, z) ≤ (J − 1)U and

θ = f
¡
t̂ (p, z) + p, z

¢
+ β

Z
∂v

∂p

¡
JU, p+ t̂ (p, z)− (J − 1)U

¢
Q (z, dz0)

for t̂ (p, z) ∈ ((J − 1)U, JU ]. To simplify the exposition we have written these expressions assum-

ing that v is differentiable. If v is evaluated at integers multiples of U (where v is not differentiable),

the expressions would have to be rewritten in terms of the subgradients of v.

The intuition for why the frontier of the set of inaction, given by t̂, is decreasing in p is that

temporary and permanent workers are perfect substitutes in production. Indeed, it can be shown

that t̂ is strictly decreasing for values of p such that t̂ (p, z) is not an integer multiple of U. At

the points on which t̂ is an integer multiple of U , this function can be flat: At these points the

function v may not be differentiable, as explained above. While all these properties are quite

intuitive, the proofs are involved because of the non-differentiability of v. Appendix B provides a

formal derivation of these results.

5 Competitive Equilibrium

The representative household has a continuum of members that share their employment risks.

Given the perfect consumption pooling at the household level, each household member seeks to

maximize her own expected discounted earnings regardless of risk.3

In what follows it will be useful to think of each island as a separate economy and define

an “island-level equilibrium,” taking as given the flow of new workers to the island, U , and the

value to a worker of leaving the island, θ. The resulting equilibrium decision rules at the island

level define an invariant distribution across island states, which together with U and θ must

3An equivalent specification would be to identify each household with one individual and introduce complete

markets and employment/search lotteries, as in Prescott and Rios-Rull (1992). However, this alternative would

require introducing additional notation.
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satisfy certain conditions to constitute an “economy-wide equilibrium.” These conditions are that

the consumption market clears, the labor market clears, and the marginal rate of substitution

between consumption and leisure equals the flow value of search.

In this section we describe two notions of island-level equilibrium: one with spot labor markets

(SLM) and one with multiperiod employment relations (MER). The SLM specification has two

advantages: 1) It makes a straightforward connection with the island planning problem, and 2) it

is closely related to the standard McCall search model (on the workers’ side) and to the Bentolila

and Bertola firing costs model (on the firms’ side). The advantage of the MER specification is

that it captures the nature of fixed-term employment contracts in a much more realistic way.

Appendix C gives a formal definition of a SLM equilibrium, relates it to the island planning

problem of Section 3 and characterizes the behavior of equilibrium wages. Appendix D provides

a similar analysis for a MER equilibrium.

In this section and most of appendices D and E we assume that γ = 0 (so that consumption

and leisure are perfect substitutes) and that the separation cost τ is a feature of the technology

(as opposed to a tax rebated lump-sum to households). The first assumption is used to simplify

the description of an equilibrium. The second is used to show that the first and second welfare

theorems hold. The general case in which γ ≥ 0 and τ is a tax, together with an algorithm for its

computation, is described at the end of Appendix C.

5.1 Spot Labor Markets

In an SLM equilibrium, firms and workers participate in competitive labor markets on each island.

Wages are indexed by j, the workers’ tenure on the island and by (T, z), the island-wide state.

As in the previous sections, a permanent worker is defined as having tenure j ≥ J on the island.

Whenever a firm decreases its employment of permanent workers, it must pay a separation cost

τ per unit reduction. Notice that it is the tenure at the island level, as opposed to the tenure

at the firm level, that determines if a worker separation is subject to the separation cost τ . This

unrealistic assumption affords tractability by allowing a descentralization with spot labor markets.

The reason is that, since the separation costs are at the island level, workers are not tied to the

firms that hire them.

In an SLM equilibrium, a worker located on an island at the begining of the period solves a
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very simple problem: whether to stay on the island, receive the wage rate corresponding to her

tenure level and start the following period with a higher tenure level, or to leave, in which case

she can either search or engage in home production. This problem also applies to workers who

have just arrived at an island (i.e., with zero-tenure level). Moreover, in equilibrium searchers

contact an island in proportion to its frequency in the invariant distribution. Hence, the problem

for searchers is the same as in the classical McCall search model, except that wages depend on

tenure levels and the wage distribution is endogenous.

The problem for a firm in an SLM is similar to the one studied by Bertola and Bentolila

(1990): Firms take the stochastic process for wages as given, behave as if they could hire and fire

any number of workers at these wages, and are subject to a cost τ per reduction of employment.

One difference is that in our formulation the separtion cost τ applies only to workers with tenure

j ≥ J on the island, as opposed to all workers. Another difference is that the process for wages

at the island level is endogenously determined: The process for the island-level equilibrium wages

must be such that the demand for labor equals its supply at each tenure level and island-wide

state.

Since workers and firms take competitive wages as given, the equilibrium pattern of wages

across tenure levels must induce firms and workers to follow the employment adjustments described

in Figure 2. Proposition 36 in Appendix C shows that there are three equilibrium levels of wages

in a given location: one level for temporary workers with tenures j = 0, ..., J − 2, a second level

for workers that are about to become permanent, i.e., those with tenure J − 1, and a third level

for permanent workers, i.e., those with tenure J or higher. Temporary workers with tenures

j = 0 to j = J − 2 are paid their marginal productivity. Wages of workers with tenure J − 1, i.e.,

those that would become permanent if they were to work during the current period, are (weakly)

smaller than their marginal productivity. Wages of permanent workers are (weakly) higher than

those with tenure J−1. This wage pattern is consistent with the Spanish evidence as described in

Aguirregabiria and Alonso-Borrego (2004). Their regressions indicate that the wages of permanent

workers are higher than the wages of temporary workers even after controling for firm-specific

experience, age, sex, education, and industry effects (Table 5 in Aguirregabiria and Borrego, 2004,

reports this difference to be 9.1 percent).
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5.2 Multiperiod Employment Relations

In the previous sections the separation cost τ applied to workers with tenure j ≥ J at the island

level, which allowed for a simple competitive structure with spot labor markets. In this section

we introduce an alternative and more realistic definition of a competitive equilibrium, where

separation costs are determined by the tenure of workers at the firm level. This specification

ties workers with firms and, hence, requires long-term contracts to achieve efficiency. In fact, we

will argue that the competitive equilibrium with long-term contracts and tenure at the firm level

supports the same equilibrium allocation as the spot labor market concept of the previous section.

This is an important result: There is no loss of realism in specifying that the relevant tenure for

temporary contracts is at the island level rather than at the firm level.

To obtain this equivalence result certain restrictions on the type of temporary contracts allowed

for are needed. However, this is not a weakness of the model: These restrictions resemble those

observed in actual countries. Indeed, since temporary contracts are often introduced with the

purpose of increasing flows out of unemployment, their implementation typically includes eligibility

clauses. An example is the Spanish reform of 1984, which significantly broadened the scope of

fixed-term contracts but specified that workers had to be registered as unemployed to be eligible

for temporary employment contracts (see the Appendix in Cabrales and Hopenhayn, 1997). In

Portugal temporary contracts could only be used by new firms, or by firms hiring long-term

unemployed or first-time job seekers (see Table 1 in Dolado et al., 2001). Another example is the

recently approved and later withdrawn CPE (“first employment contract”) legislation in France.

This type of contract would have allowed an employer to dismiss a worker younger than 25 during

the first two years of the contract, provided that he had never been employed at the time of his

hiring

To incorporate this type of elegibility restriction we assume that only workers that searched

during the previous period (i.e., that were unemployed) can be hired under temporary contracts. If

a firm hires a worker that was employed somewhere else on the island during the previous period,

the worker immediately becomes subject to regular firing taxes. In this scenario, the market

structure would have to be changed to accommodate the fact that workers would try to exploit

the bargaining power that they would gain by staying in a same firm. To avoid this, we assume

that firms and workers participate in island-wide competitive markets for binding, long-term,
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state-contingent, wage contracts at the time of the hiring. Below we offer an informal description

of the equilibrium using long-term contracts. Appendix D provides a formal treatment.

In this decentralization, firms and workers trade state contingent contracts in competitive labor

markets, specifying the periods of time that the worker will supply labor to the firm as a function

of the sequence of productivity shocks zt. Since employment must be continuous over time, each

contingent contract is effectively reduced to a stopping time specifying the time of separation.

When the realized sequence of productivity shocks triggers a separation, the worker can choose

to offer a new stopping time to the market or to leave the island and receive the outside value θ.

Each stopping time has its own price, which is taken as given by firms and workers.

There are two types of workers on the island: “incumbent” workers and “newly arrived” workers.

An “incumbent” is a worker that has been previously employed by some firm on the island. A

“newly arrived” worker is a worker that has just arrived at the island for the first time. The

stopping times sold by different types of workers differ in terms of the separation costs involved.

In particular, the stopping times sold by “newly arrived” workers are subject to the separation

cost τ only if the separation occurs after J periods (the length of the trial periods in the fixed-

term contracts). On the contrary, the stopping times sold by “incumbents” are always subject

to the separation cost τ . Since the stopping times sold by the different types of workers are

different commodities, they have, in general, different prices. Intuitively, a stopping time sold by

an “incumbent” worker will have a lower price than the same stopping time sold by a “newly

arrived” worker to compensate firms for the potentially higher separation costs.

Taking prices as given, firms decide how many stopping times of each type to purchase from

the different types of workers. Their objective is to maximize the expected present value of their

profits, net of separation costs.

Despite the unusual commodities traded and the indivisibility in the supply of contracts, the

competitive equilibrium considered is standard and, hence, the welfare theorems hold. The equi-

librium allocation can then be characterized as the solution to a social planner’s problem. In this

problem, the planner chooses stopping times for “incumbents” and “newly arrived” workers taking

into account that the separation cost τ applies to “incumbent” workers in every separation, but

that it applies to “newly arrived” workers only in separations that take place after J periods of

employment.

A brief analysis of the planner’s problem will help us to understand the equivalence between
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this type of equilibrium and the SLM equilibrium of the previous section. To start with, note

that the social planner will never want to separate a “newly arrived” worker and rehire him as

an “incumbent” before the trial period for the fixed-term contracts is over. The reason is that

being rehired as an “incumbent” makes the worker liable to separation costs, while maintaining his

“newly arrived” status saves on separation costs during the trial period. Also, the social planner

will never want to separate a “newly arrived” worker after the trial period is over and rehire him

under an “incumbent” contract because this entails incurring the separation cost τ without any

benefit. As a consequence, the planner will choose the stopping times for “newly arrived” workers

in such a way that they separate only to leave the island (and receive the value θ). This means

that the social planner will never use “incumbent” workers. Being left with only “newly arrived”

workers, the planner’s problem is formally identical to the island planning problem described in

Section 4. This has an important implication: The allocation obtained in the MER equilibrium

(with tenure at the firm level) is identical to the one obtained in the SLM equilibrium (with tenure

at the island level). Moreover, the price of a stopping time sold by a “newly arrived” worker in

the MER equilbrium must be equal to the expected discounted value of the spot wages obtained

by a “newly arrived” worker in the SLM equilibrium.

6 Computational Experiments

In this section we evaluate to what extent the introduction of temporary contracts adds flexibility

to the labor market. To this end we consider as a benchmark the case where J = 1 and τ > 0 and

calibrate it to an economy with high separation taxes and no temporary contracts similar to the

Spanish economy prior to the 1984 reform.4 Once the benchmark economy (hereafter referred to

as the “firing-tax” case) is parameterized , we compute competitive equilibriums under temporary

employment contracts of different lengths (i.e., with different values for J) and evaluate their

effects.

For comparison purposes we also compute the equilibrium allocation under zero separation

taxes, which we refer to as the “laissez-faire” case. This is an interesting case to consider because

4When J = 1, the dismissal of anyone that has worked, even for one period, triggers the separation tax

τ > 0. Thus, there are no temporary workers in this case.
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the equilibrium allocation with temporary employment contracts of long duration coincides with

the equilibrium allocation under laissez-faire. The reason is quite simple: With a large enough J ,

firms can perfectly replicate their laissez-faire employment levels by using only temporary workers.

Given this property, we address the question of how much flexibility the temporary contracts

generate by computing what fraction of the gap between the firing-tax and laissez-faire cases is

closed when temporary contracts of different length J are introduced.

We note that in the laissez-faire case, which is obtained by setting τ = 0, the value of J and

the tenure levels of different workers are immaterial because temporary and permanent workers

become perfect substitutes. This implies that, while total employment is uniquely determined, the

hiring and firing rates across the different tenure levels are undetermined. Despite this, we choose

to focus on the employment adjustments obtained as the limit when τ → 0 (or equivalently, when

τ is arbitrarily small). This is useful because it helps emphasize the types of adjustments that

temporary contracts lead to even in the case in which they are totally unimportant.

Calibration

We calibrate our model to the Spanish economy prior to the 1984 reform, an economy with

high separation costs and no temporary contracts (i.e., with high τ and J = 1). The value for τ is

selected to reproduce the expected discounted dismissal cost when a worker is hired for the first

time, a measure proposed by Heckman and Pages-Serra (2000). Appendix E shows that a value

of τ equal to one year of average wages is needed to reproduce this measure under the pre-1984

Spanish regime.

We use α = 0.64 for the curvature parameter in the production function F (E, z) = zEα, which

roughly corresponds to the labor share. This choice implicitely assumes that all other factors, such

as capital, are fixed across locations. Since we use a quarterly time period, we choose β = 0.96 to

generate an annual interest rate of 4 percent.

For the idiosyncratic shocks z, we use a discrete Markov chain approximation to the following

AR(1) process:

log z0 = ρ log z + σε,

where ε is a standard normal. We choose the values of ρ and σ so that the unemployment rate

is just above 6.75 percent and the duration of unemployment is just above one year. The exact

values that we use are ρ = 0.955 and σ2 = 0.075, which correspond to a discrete approximation
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that uses six truncated values for z, so that the absolute value of ε never exceeds two standard

deviations. The quarterly firing rate (total separations divided by employment) is 1.77 percent

(Garcia-Fontes and Hopenhayn, 1996, estimate a firing rate of 1.84 percent per quarter for the

years 1978-1984). Our choices are meant to capture the situation in Spain before the 1984 reform.

The reason why we chose a lower unemployment rate and a lower duration of unemployment than

those observed in Spain is that we are abstracting from the unemployment insurance system.5

We consider different values of γ. In each case we pick the value of ω so that labor force

participation equals 65 percent for the benchmark case.6 The rest of the parameters are the same

for each pair (γ, ω).

Experiments

We compute equilibriums under different values of J , the length of the temporary contracts,

and compare them with the benchmark and laissez-faire cases. Since these two cases correspond

to J = 1 and J = ∞, respectively, these comparisons allow us to determine what fraction of the

total potential gains in labor market flexibility is realized by different temporary contracts lengths.

When F is Cobb-Douglass and τ is proportional to average wages, a number of statistics become

independent of the intertemporal substitution parameter 1/γ.7 In particular, the unemployment

rate, the average duration of unemployment, and the firing rates are the same in all cases. For this

reason, we start by describing the effects of temporary contracts on this set of statistics. Without

loss of generality we set γ = 0. This is the simplest case to interpret because consumption and

leisure become perfect substitutes and, as a consequence, the equilibrium value of θ must be equal

to ω/ (1− β), a parameter independent of policy.

In Figures 3-5, equilibrium values are reported as a function of the length of the temporary

5In Alvarez and Veracierto (1999) we analyzed the effects of introducing unemployment insurance benefits into

the model with firing taxes. Introducing UI benefits of the magnitude of those in Spain increases the unemployment

rate by more than 10% and more than doubles its average duration (see section “UI benefits, firing subsidies, firing

taxes and severance payments” and Table 5 of Alvarez and Veracierto, 1999).

6The different combinations of (γ, ω) are: (0, 1.3047) , (1/2, 1.0739) , (1, 0.883) and (8, 0.058) . With γ =

0, there are no income effects, since preferences are linear. With γ = 1, income and substitution effects of a

permanent increase in wages cancel. With γ = 8, the income effect is much higher, so that the uncompensated

labor supply elasticity is lower, similar to the values estimated by Nickell (1997).

7Henceforth, all experiments will take τ as being proportional to average wages.
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contracts J and depicted under the “general equilibrium” label. Observe that the “general equi-

librium” values for J = 1 correspond to the benchmark case with firing taxes and no temporary

contracts. Laissez-faire values are reported under the “laissez-faire” label. In addition, to illus-

trate the role of general equilibrium effects in generating differences between the benchmark J = 1

and the laissez-faire cases, a third set of values is reported under the “partial equilibrium” label.

For each J > 1, these are the values associated with the solution to the island planner’s problem

when the U and θ that the planner takes as given are the ones from the benchmark case. Observe

that any differences between the “partial” and “general” equilibrium schedules must be due to

equilibrium effects on U , since θ is fixed when γ = 0. Also observe that U will always be higher

in the “general equilibrium” case than in the “partial equilibrium” case. The reason for this is

that with J > 1 there are fewer restrictions to labor mobility. This increases the shadow value

of an additional worker at every island and induces a larger fraction of the population to search.

For similar reasons, the equilibrium value of U will always be increasing with J . A consequence

of this is that for 1 < J < ∞, the equilibrium value of U will always lie between the benchmark

and laissez-faire cases.
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Figure 3 shows the effects on the unemployment rate ur = U/(U + E). We see that the

unemployment rate increases with the length of the temporary contracts J and is almost 2.5

percent higher in the laissez-faire case than in the benchmark J = 1 case. With temporary

contracts of three years duration (J = 12), the unemployment rate is 1.3 percent points higher

than in the benchmark case. Temporary contracts of this length, which are similar to those

introduced by the 1984 Spanish reform, are thus able to close about half of the gap with the

laissez-faire case.8 Figure 3 also shows that the equilibrium effects on U are crucial for generating

the higher unemployment rates: The effects on the unemployment rate are non-monotonic and

small in the partial equilibrium case.9

To better understand the effects on the unemployment rate (Figure 3) it is helpful to decompose

them into firing rate effects (Figure 4) and average duration of unemployment effects (Figure 5).

Figure 4 shows the effects on the firing rate fr, defined as total firing over total employment.

Recall that for the laissez-faire and the partial equilibrium cases, the values of U and θ are the

same across all J. As it should be expected, the firing rates for laissez-faire are higher than the ones

for the partial equilibrium case for all values of J. Notice that the firing rates in these two cases

are increasing in J, with a large jump at J = 2. To understand this pattern we concentrate on the

laissez-faire case where the employment on each island stays constant. Recall that we compute

employment by tenure in the laissez-faire case as the limit for an equilibrium with τ → 0. The

increase in the firing rate helps to avoid the (arbitrarily small) separation tax. The firing rate

jumps between J = 1 and J = 2 because, with J = 2, the temporary workers with longest tenure

are fired and replaced by newly arrived workers. This reshuffling cannot be done with J = 1. The

smooth increase in the firing rate with J is due to the fact that with higher J , firms can accumulate

a larger proportion of their work force as temporary workers. With this larger proportion, if they

need to decrease total employment they can do so at the same time that they hire newly arrived

8In the data the relationship between unemployment and temporary contracts is not as clear. However, Dolado

et al. (2001) survey the literature and conclude that the introduction of temporary contracts in Spain had a

“neutral or slightly positive effect on unemployment.”

9These partial equilibrium effects are consistent with previous findings in the literature. The island planner

problem is similar to the standard problem of a firm facing firing costs (except that its hiring is bounded above

by the arrival of new workers U) and we know at least since Bentolila and Bertola (1990) that the effects of firing

costs on average employment are ambiguous in that setting.
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workers. Notice that the pattern of firing rates as a function of J for the partial equilibrium

case where the separation costs are substantial (one year of average wages) is the same as in the

laissez-faire case, with essentially zero firing taxes.
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The value for the firing rate in the general equilibrium case lies in between the value for the

partial equilibrium case and the one for the laissez-faire case, and it gets closer to the one for the

laissez-faire case as J increases. Since in general equilibrium firms receive a higher flow of newly

arrived workers (i.e., a higher U), they can engage more in the replacement of temporary workers

with high tenure for newly arrived workers to save on separation costs.

The quarterly firing rate for the general equilibrium case goes from 1.77 percent for J = 1 to

5.1 percent for J = 12, roughly similar to the values for Spain before and after 1984: Garcia-Fontes

and Hopenhayn (1996) estimate quarterly firing rates of 1.84 percent during the six years prior to

the extension of temporary contracts and 4.8 percent for the six years after. The model slightly

overestimate these effects, since comparing the effect in the model for J = 1 with J = 12 does not

correspond exactly to Spain before and after 1984 – before 1984 some temporary contracts were

allowed, as we explain below.
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Figure 5 shows the average duration of unemployment d, defined as (1/fr) ur / (1− ur). The

three cases display similar values. There is a large drop in the average duration between the

benchmark case and J = 2. This is the result of the increase in hiring of newly arrived workers, as

explained in the case of Figure 4. Since d is similar for the three cases, the effects on unemployment

are accounted by the behavior of firing rates discussed above. Notice that, as opposed to the

jumps at J = 2 for the firing rate and average duration of unemployment, the increase in the

unemployment rate for the general equilibrium is smooth (compare Figure 3 with Figures 4 and

5). This is because for J = 2, the sharp decrease in the average duration of unemployment

coincides with a sharp increase in the firing rate.
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Figure 6 displays the fraction of permanent workers in total employment for the general equi-

librium and laissez-faire cases. The fraction of permanent workers is higher for the general equi-

librium case than for the laissez-faire case, since in the general equilibrium case firms retain more

permanent workers to avoid the high separation cost. Nevertheless, the fraction of permanent

workers is very similar in the two cases. Notice also that as J increases, the fraction of permanent

30



workers decreases steadily. For J = 12, which corresponds to temporary contracts of three years,

33 percent of workers are in temporary contracts. In Europe in the 1990s, the fraction of workers

with temporary contracts increased steadily over time to about 12 percent, reaching its highest

value in Spain; there this fraction went from 11 percent before 1984 to an average of 33 percent

during the 1990s.
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Notice that the patterns displayed in Figures 5 and 6 for the average duration of unemployment

and the share of permanent workers in total employment are similar to the ones found in Spain

after the mid-1980s and have typically being interpreted as evidence that temporary contracts

play an important role. However, in our model similar patterns are obtained for τ equal to

one year of average wages as well as for τ arbitrarily small, which shows that by itself, large

changes in turnover do not necesarilly entail large changes in welfare relevant variables, such

as employment, unemployment, aggregate consumption and productivity. We obtain this result

under the extreme assumption that workers with different tenure are perfect substitutes. Under a

different specification, such as on-the-job learning, this result will not be obtained. In particular,
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if the effect of on-the-job learning is large enough, a small separation cost may have a very small

effect on turnover rates. Nevertheless, we interpret the spike in Figure 1 for tenure of about three

years, as evidence that the effects of separation taxes are not completely outweighed by learning.10

We leave the examination of a model that incorporates both features for future work.

Figure 7 shows the behavior of employment for the general equilibrium case for different values

of γ. As J increases, there are both income and substitution effects. The substitution effect is

due to the fact that as J increases, firms have more flexibility and thus working in the market

is more attractive, i.e., the equilibrium value of θ increases. The income effect is due to the fact

that the economy is more productive. For low values of γ, the substitution effect dominates and

thus aggregate employment increases with J . For high values of γ, the income effect dominates

and thus aggregate employment decreases with J.
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10With on-the-job learning and firing costs, if the effect of learning is strong enough, it will not be optimal for

the firm to fire first the temporary workers with higher tenure. In this case, the spike at the end of the fixed-term

contracts shown for Spain in Figure 1 will not obtain.
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Figure 8 displays the welfare cost of temporary contracts of different lengths. This figure plots

the extra perpetual consumption flow needed to make the representative household indifferent

between living in the economy with temporary contracts of length J and living in the laissez-faire

economy. This calculation compares the stationary equilibrium of the two economies and hence

does not take into account the transition after a change in policy. For the same J, the welfare

cost is higher for smaller γ, since in this case there is more substitution between consumption and

leisure. For J = 1, Figure 8 shows the welfare cost of firing taxes, which are about 2.5 percent.

This number is similar to the one found by Hopenhayn and Rogerson (1993) and Veracierto (2001).

As J increases the welfare cost decreases: It goes from about 2.5 percent for a contract length of

one quarter and decreases smoothly with J until a value of 1 percent for a contract length of three

years, or J = 12. Thus, even if some characteristics of the allocation (such as employment in Figure

7) do not converge monotonically to their laissez-faire values as J increases, the welfare cost, which

in a sense takes all the relevant features into consideration, does converges monotonically.
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An important quantitative finding of this paper is that introducing temporary employment
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contracts of three-year length provides 50 percent as much flexibility as moving to laissez-faire.

We focus on two statistics: the unemployment rate, which summarizes labor reallocation, and

welfare, which summarizes overall effects. The differences in these statistics between the laissez-

faire case (τ = 0) and the benchmark case (J = 1, τ > 0) measure the flexibility that can be

gained by a labor market reform that achieves the first-best allocation. We found that a labor

market reform that replaces the benchmark firing taxes with temporary contracts of three-year

length (J = 12, τ > 0) closes about 50 percent of those differences.

This result holds for two different parameterizations of the economy, in addition to the baseline

calibration. The first one has low separation taxes, with τ of half the value used so far (τ = 1/2

year of average wages). This case is interesting because, as explained in Appendix E, we set the

model firing taxes to the value of separation taxes that include transfers from firms to workers

(severance payments), but a fraction of these transfers could potentially be undone by private

contracting between firms and workers. The second parameterization has a linear production

function (α = 1, so F (E, z) = z E ). This case is interesting because we use a production

function where labor is the only mobile factor, and hence the labor share and its returns to scale

cannot be separately identified. If there were other factors besides labor that were mobile across

locations (such as capital), the degree of decreasing returns would be much lower. For each of the

two additional cases, we recalibrate the economy with firing taxes (J = 1) to the same observations

as before, introduce temporary contracts of three-year length (J = 12 ), and evaluate the effects

on the unemployment rate and welfare. Rows 1—3 and 5-6 of Table 1 report the values for the

unemployment rate and welfare for each of the cases. Rows 4 and 7 report the fraction of the

gap (i.e., the difference in the statistics between the benchmark and laissez-faire cases) that the

introduction of the temporary contracts closes. Rows 4 and 7 show that, in all cases, a labor

market reform that replaces firing taxes with temporary contracts of three-year length achieves

more than 40 percent of the potential welfare gains of labor market reform and more than 50

percent of the increase in the unemployment rate.
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Table 1

Baseline Low firing tax Linear F

τ = 1, α = .64 τ = .5 , α = .64 τ = 1, α = 1

(1) Unempl. rate F.T. 6.75% 6.76 % 6.72%

(2) Unempl. rate T.C. 8.02% 7.30% 9.54%

(3) Unempl. rate L.F. 9.10% 7.79% 12.16%

(4) % Gap Unempl. rate 54 % 52 % 52 %

(5) Welfare cost F.T. 2.28% 0.70% 8.4%

(6) Welfare cost T.C. 1.0% 0.28% 3.7%

(7) % Gap Welfare 44 % 40 % 44 %

F.T. stands for firing taxes (τ > 0, J = 1); T.C. stands for temporary contracts (τ > 0, J = 12); and

L.F. stands for “laissez-faire” (τ = 0). Welfare cost is the consumption equivalent relative to laissez-faire

for γ = 1. Row (4) = [(2)-(1)] /[ (3)-(1)] and (7) = (6)/(5). τ is measured in years of economy-wide,

average wages.
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This document contains 7 appendices:
Appendix A: Analysis of the Island Planning Problem.
Appendix B: Analysis of the Simplified Island Planning Problem.
Appendix C: Analysis of Spot Labor Market (“SLM”).
Appendix D: Analysis of Multiperiod Employment Relations (“MER”): Binding
contracts and tenure at the firm level (a formal description).
Appendix E: Calibration of τ .
Appendix F: Proofs.
Appendix G: Definition of Auxiliary Competitive Equilibrium (“ACE”).
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Appendix A: Analysis of the Island Planning Problem

Consider the problem of the planner of an island that receives U workers per period and that starts with workers
(T1, T2, ..., TJ−1, TJ) where Ti is the number of workers with tenure i = 1, 2, ..., J. Define E as the set of possible
workers tenure profiles, E = [0, U ]

J−1 ×R+. The planners value function V : E × Z solves

H [V ] (T1, T2, ..., TJ−1, TJ , z) (11)

= max
{Ei}Ji=0

(
F

Ã
JX
i=0

Ei, z

!
+

J−1X
i=0

θ [Ti −Ei] + (θ − τ) [TJ −EJ ]

+β

Z
V (E0, E1, ..., EJ−2, EJ−1 +EJ , z

0)Q (z, dz0)

¾
subject to

0 ≤ E0 ≤ U,

0 ≤ Ei ≤ Ti for i = 1, 2, ..., J.

The fixed point of H gives the stationary version of the island planning problem stated in Definition 38.

Proposition 3 H maps concave functions into concave ones.

We use the following notation for subgradients. Let G : X → R be a concave function. We use ∂G (x) to denote
its subgradient at x (if it is clear the value of x from the context we simply use ∂G ). In our case X ⊂ Rn, we use
∂Gxi (x) for i = 1, 2, ..., n (and ∂Gxi when it is clear) to denote the projection of ∂G (x) into the subspace of the
x0is. Abusing notation, we use Gxi (x) (and Gi when it is clear) to denote a generic element of ∂Gxi (x) , so that
Gxi (x) ∈ ∂Gxi (x) .
The next proposition gives a useful result, ordering the subgradients of V

Proposition 4 Consider a function V satisfying

VT1 ≥ VT2 ≥ · · · ≥ VTJ−1 ≥ VTJ , (12)

VT1 ≤ VTJ + τ (13)

for all z and T > 0, where ¡
VT1 , VT2 , . . . , VTJ−1 , VTJ

¢
∈ ∂V (T, z) .

Then,

H [V ]T1 ≥ H [V ]T2 ≥ · · · ≥ H [V ]TJ−1 ≥ H [V ]TJ , (14)

H [V ]T1 ≤ H [V ]TJ + τ (15)

for all z and T > 0, where ³
H [V ]T1 ,H [V ]T2 , . . . ,H [V ]TJ−1 ,H [V ]TJ

´
∈ ∂H [V ] (T, z) .

Intuitively it follows from the assumption that workers are perfect substitutes and from the fact that τ > 0.
The following proposition and corollaries are important to characterize the solution of the problem and reduce

its dimensionality.

Proposition 5 Let V satisfy (12). Then the policies for H [V ] satisfy the following. Let E = (E0, E1, ..., EJ−1,EJ) ∈
[0, U ]J × R+ be feasible given T . Consider an alternative Ẽ =

³
Ẽ0, Ẽ1, ..., ẼJ−1,ẼJ

´
such that: i) it is feasible for

T , ii)
J−1X
j=0

Ej =
J−1X
j=0

Ẽj and EJ = ẼJ ,

and iii) there is a j0 such that Ẽj ≥ Ej for all j ≤ j0 ≤ J − 1 and that Ẽj = 0 for all j, j0 < j ≤ J − 1. Then Ẽ is
weakly preferred to E.
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Corollary 6 The optimal policy can be chosen with the following property:
(*) If Ej < Tj for some j, 1 ≤ j ≤ J − 1, then Ej0 = 0 for all j0 : j < j0 ≤ J − 1.

The following corollary states that the ergodic set is a subset of E , which is given by equation (8).

Corollary 7 If T ∈ E and T 0 is given by the optimal policy

T 0 = (T 01, T
0
2, ..., T

0
J) = (E0, E1, ..., EJ−2, EJ−1 + EJ)

then T 0 ∈ E.

The next set of results establish that the fixed point V = H [V ] is differentiable and its derivatives are indeed
given by V ∗j in equation (7). The results in the next three lemmas and two propositions are analogous to standard
manipulations of first order conditions, except for the fact that V may not be differentiable.
Let define the function R̂ (E, z) , as follows: R̂ : RJ+1

+ × Z → R

R̂ (E, z) = F

Ã
JX
i=0

Ei, z

!
− θ

J−1X
i=0

Ei − (θ − τ)EJ

+β

Z
V (E0, E1, . . . , EJ−2, EJ−1 +EJ , z

0)Q (z, dz0) .

The first lemma shows a standard saddle-type result for the problem defining H [V ] .

Lemma 8 Let V be concave. Fix T, z and let

H [V ] (T, z) = max
E

n
R̂ (E, z) + θ̂T : 0 ≤ E ≤ T

o
, (16)

E (T, z) = argmax
E

n
R̂ (E, z) : 0 ≤ E ≤ T

o
.

Then
θ̂ + λ∗ = (H [V ]0 ,H [V ]1 , ...,H [V ]J) ∈ ∂H [V ] (T, z)

if and only if λ∗ is a Lagrange multiplier, i.e.

R̂ (E∗, z) + λ (T −E∗) ≥ R̂ (E∗, z) + λ∗ (T −E∗) (17)

≥ R̂ (E, z) + λ∗ (T −E)

for all non-negative E, λ, where θ̂ = (θ, ..., θ, θ − τ) , E∗ = E (T, z) and U = T0.

Notice that since R̂ is concave and the restrictions are linear, E (T, z) solves problem (16) if and only if there is a
saddle (E∗, λ∗) as in equation (17) -see, for example, “Analytical Method in Economics”, Takayama, Theorem 2.9-.
The next lemma shows the Kuhn-Tucker conditions for this problem.

Lemma 9 Let V be concave. A necessary and sufficient condition for E∗ = {E∗i }
J
i=0 to solve

E∗ ∈ argmax
E

R̂ (E, z) s.t. 0 ≤ E ≤ T

given T, z, and there exists a
n
R̂i

oJ
i=0
∈ ∂R̂ (E∗, z) such that (E∗, λ∗) is a saddle where

λ∗i = R̂∗i . (18)

Given our previous results we can now write the analogous to the Euler equations.
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Proposition 10 Let V be concave. Fix T, z. Then, 0 ≤ E∗ ≤ T is an optimal choice given T, z if and only if for all

{H [V ]i (T, z)}
J
i=0 ∈ ∂H [V ] (T, z) , there is a

n
R̂i

oJ
i=0
∈ ∂R̂ (E∗, z) such that

H [V ]i (T, z) = R̂i (E
∗, z) + θ for i = 0, . . . , J − 1

R̂i (E
∗, z) ≥ f

Ã
JX
i=0

E∗i , z

!
− θ

+β

Z
Vi+1

¡
E∗0 , . . . , E

∗
J−2, E

∗
J−1 +E∗J , z

0¢Q (z, dz0)
with = if E∗i > 0

R̂i (E
∗, z) ≥ 0,

0 = (H [V ]i (T, z)− θ) (Ti −E∗i ) , and

H [V ]J (T, z) = R̂J (E
∗, z) + θ − τ ,

0 = (H [V ]J (T, z)− (θ − τ)) (TJ −E∗J) ,

R̂J (E, z) ≥ f

Ã
JX
i=0

E∗i , z

!
− (θ − τ)

+β

Z
VJ
¡
E∗0 , . . . , E

∗
J−2, E

∗
J−1 +E∗J , z

0¢Q (z, dz0)
with = if E∗J > 0

R̂J (E
∗, z) ≥ 0

where we let U = T0.
The following proposition shows that if some permanent workers are fired then all temporary workers must have

been fired.

Proposition 11 E∗J < TJ ⇒ E∗i = 0 for every i 6= J.

The next lemma shows that employment is bounded below, and hence marginal productivity is bounded above.

Lemma 12 There is an e > 0 such that for all T, z

JX
i=0

Ei (T, z) ≥ e > 0.

By this lemma, the solution for V ∗j in equation (7) is well defined because f
³PJ

i=0E
∗
i,s, zs

´
is uniformly bounded.

Proposition 13 Let V be the fixed point of H. Assume that U > 0. Then V is differentiable with respect to Ti when
Ti > 0.
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Appendix B: Analysis of the Simplified Island Planning Problem

The planner’s value function v : [0, J · U ]×R+ × Z has to satisfy the functional equation h:

h [v] (t, p, z) (19)

= max
et,ep

{F (et + ep, z) + θ [t− et] + (θ − τ) [p− ep]

+β

Z
v (t0, p0, z0)Q (z, dz0)

¾
subject to

0 ≤ et ≤ t,

0 ≤ ep ≤ p,

and where the law of motion is given by

t0 = min {U + et, JU}
p0 = ep +max {U + et − JU, 0}

Proposition 14 Consider V and v such that

v (T1 + T2 + ...+ TJ−1, TJ , z) = V (T1, T2, ..., TJ−1, TJ , z) (20)

for all (T1, T2, ..., TJ−1, TJ) ∈ E. Then

h [v] (T1 + T2 + ...+ TJ−1, TJ , z) = H [V ] (T1, T2, ..., TJ−1, TJ , z) (21)

for all (T1, T2, ..., TJ−1, TJ) ∈ E.

Lemma 15 Assume that V satisfies (12). Consider T and T̂ and V such that

T1 + T2 + ...+ TJ−1 = T̂1 + T̂2 + ...+ T̂J−1 and TJ = T̂J . (22)

for any T̂ ∈ E and T ∈ E then
H [V ] (T, z) ≤ H [V ]

³
T̂ , z

´
.

Proposition 16 Let v be the function corresponding to V as in (20) defined for T ∈ E. Assume that V (·, z) is
concave, and V satisfies (12). Then h [v] (·, z) is concave in t, p.

Remark 17 The previous proposition is not obvious since the feasible set of the problem defined by the right hand
side of h [v] in (19) is not convex.

We now introduce the R, which is the objective function being maximized in h [v] . The “derivatives” of R are
used to define the functions t̂ and p̂.

Definition 18 Given v, define R (et, ep, z) as

R (et, ep, z) = F (et + ep, z)− θet − (θ − τ) ep

+β

Z
v (U +min {et, (J − 1)U} , et + ep −min {et, (J − 1)U} , z0)Q (z, dz0)

Consider an island planner with no temporary workers (t = 0) and a given z. The quantity p̂ (z) is the number of
permanent workers that leaves the island’s planner indifferent between firing “one” permanent worker and keeping
all p̂ (z) of them.

Definition 19 Let R be defined as in definition (18). For each z define p̂ (z) , such that

0 ∈ ∂Rep (0, p̂ (z) , z) .
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Consider an island planner with 0 < p < p̂ (z) , so it does it not want to fire any permanent worker for that z. The
quantity t̂ (p, z) is the number of temporary workers that leaves the island’s planner indifferent between firing “one"
transitory worker and keeping all t̂ (p, z) of them. Formally:

Definition 20 Let R be defined as in definition (18). For each p, z define t̂ (p, z) as follows:
(i) if Ret > 0 for all Ret ∈ ∂Ret (U · J, p, z), then t̂ (p, z) = J · U,
(ii) if Ret < 0 for all Ret ∈ ∂Ret (0, p, z) , then t̂ (p, z) = 0,
(iii) otherwise t̂ (p, z) solves 0 ∈ ∂Ret

¡
t̂ (p, z) , p, z

¢
.

The remaining of this appendix shows that p̂, t̂ exist, they are unique, and t̂ is decreasing in p. The proofs are
complicated by the fact that R is not differentiable.

Proposition 21 Let v be given by V as in (20). Assume that V is concave and satisfies (12). The function R (·, z)
is strictly concave.

Define M : [0, U · J ]→ R+ as
M(et) ≡ min {et, (J − 1)U}

notice that

ep +max {et − (J − 1)U, 0}
= ep + et −min {et, (J − 1)U}
= ep + et −M (et) .

Remark 22 It is standard to show that h [v] is increasing in t, p and z if v has these properties.

Remark 23 Assume that V satisfies (12) and (13). Let v be defined as in (20). Denote by ∂h [v] the subgradient
of h [v] (t, p, z) when v is considered as a function of t and p. A corollary of Proposition (14) and Proposition (4) is
that

h [v]p ≤ h [v]t ≤ h [v]p + τ ,

for all
³
h [v]t , h [v]p

´
∈ ∂h [v] (t, p, z) .

Proposition 24 Fix t, p, z. Assume that V satisfies (12), (13), and is concave. Define v as in (20). Let
³
h [v]t , h [v]p

´
∈ ∂h [v] (t, p, z). Then h [v]p ≥ θ − τ . Moreover, there exists a p̄ (z) such that for all p ≥ p̄ (z) and t, h [v]p = θ − τ
for any h [v]p ∈ ∂h [v]p (t, p, z) .

Given v define

b (et, ep, z) ≡
Z

v (U +M (et) , et + ep −M (et) , z
0)Q (z, dz0)

as a function of et and ep and z. Let ∂B be its subgradient with respect to (et, ep) .

Lemma 25 Define v as in (20). Assume that v is concave and satisfies

vp ≤ vt ≤ vp + τ ,

for all t, p, z. Fix any z, et, ep. Let
¡
bet , bep

¢
∈ ∂b (et, ep, z) . Then

bep ≤ bet ≤ bep + τ .

Let ∂R (et, ep, z) be the subgradient of R when considered as a function of (et, ep).

Lemma 26 Assume that v is concave and satisfies

vp ≤ vt ≤ vp + τ ,

for all t, p, z. Fix any z, et, et. For all
¡
Rep , Ret

¢
∈ ∂R (et, ep, z)

Rep ≥ Ret + τ (1− β) .
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Corollary 27 Let ep, et be the optimal choice of employment for Problem (19). If ep < p and t > 0, then et = 0. If
this were not true, i.e. if ep < p and et > 0, then Rep = Ret = 0, which contradicts Lemma 26.

Lemma 28 Let v be given by V as in (20), assume that V is concave and satisfies (12). Let R be defined as in
definition (18).
For each z there is a unique p̂ satisfying (19). Moreover, 0 < p̂ (z) < p̄ (z) < +∞.

Using the concavity of R and strict concavity of F we define t̂ as follows.

Lemma 29 Let v be given by V as in (20), assume that V is concave and satisfies (12). Let R be defined as in
definition (18).
Then for each (p, z) , 0 < p < p̂ (z) , there exists a unique t̂ that satisfies (20).

Proposition 30 Assume that V is concave and satisfies (12) and (13). Let v be given by V as in (20). Assume,
without loss of generality that v is concave in (t, p). Then,
i) The optimal decision rules of h [v] are described by the set of Inaction for R as

et (t, p, z) = min
©
t, t̂ (p, z)

ª
,

ep (t, p, z) = min {p, p̂ (z)}

for all t, p, z.
ii) H [V ] is concave, and satisfies (12) and (13).
iii) h [v] and H [V ] satisfy (20), and h [v] is concave.

Lemma 31 Let V be concave, and satisfy (12) and (13). Let v be defined as in (20). Let p̂, t̂ and I be defined as
in (18), (19), and equation (10), respectively. Then, the subgradients of h [v] are as follows:
If t 6= iU for i = 1, 2, .., J − 1, then h [v] (t, p, z) is differentiable with respect to t.
If (t, p) ∈ Int (I (z)):

h [v]t (t, p, z) = f (t+ p, z) + β

Z
bet (t, p, z

0)Q (z, dz0) > θ,

If (t, p) ∈ Int
³
I (z)

C
´
:

h [v]t (t, p, z) = θ > f (t+ p, z) + β

Z
bet (t, p, z

0)Q (z, dz0) ,

If (t, p): t = t̂ (p, z) < JU : £
h [v]t (t, p, z) , h̄ [v]t (t, p, z)

¤
=
£
θ, f (t+ p, z) + βb̄et (t, p, z)

¤
Definition 32 We say that ∂vt (t, p, z) is decreasing in p if it satisfies the following property. If p < p0, define
v0t, v̄

0
t, vt and v̄t satisfying h

v0t, v̄
0
t

i
= ∂vt (t, p

0, z) ,

and £
vt, v̄t

¤
= ∂vt (t, p, z) .

Then
v0t ≤ vt and v̄0t ≤ v̄t

Notice that if v is differentiable at (t, p, z), this property simply says that ∂v (t, p, z) /∂t is decreasing in p.

Lemma 33 . Let V be concave, and satisfy (12) and (13). Let v be defined as in (20). Assume that the subgradient
of vt is decreasing in p, i.e. it satisfies definition (32). Let t̂ (p, z) be defined as in (19) for the optimal rule that
attains the right hand side of h [v] . Then, the subgradient of h [v]t is decreasing in p too, i.e. it satisfies definition
(32) and t̂ (p, z) is weakly decreasing in p.

Finally

Proposition 34 Let v be the fixed point of h. Let t̂ be defined as in definition (18). Then t̂ (p, z) is decreasing in p.
Moreover, if t̂ is not a multiple of U, then t̂ is strictly decreasing in p.
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Appendix C: Analysis of Spot Labor Markets (“SLM”)

Current wages across tenure levels are given by

w (T, z) = (w0 (T, z) , w1 (T, z) , ..., wJ−1 (T, z) , wJ (T, z)) ,

a function of the island-wide state (T, z). The law of motion for wages can then be obtained from the island-wide
equilibrium employment rule and the associated law of motion for the island-wide state. The equilibrium employment
rule is denoted by

G (T, z) ≡ (G0 (T, z) , G1 (T, z) , ..., GJ−1 (T, z) ,GJ (T, z)) .

The law of motion for the endogenous state T 0 = A (T, z) is then given by

A (T, z) = (G0 (T, z) , G1 (T, z) , ..., GJ−2 (T, z) , GJ−1 (T, z) +GJ (T, z)) .

The problem for a worker with tenure j on an island of state (T, z) is to decide whether to become non-employed
or stay and work. Becoming non-employed entails a value given by θ. By staying, the worker receives a wage rate
wj during the current period and gains tenure min {j + 1, J} for the following period. We denote the value function
for a j-tenure worker in a (T, z)-island as Wj (T, z). This value function must solve

Wj (T, z) = max

½
θ, wj (T, z) + β

Z
Wmin{j+1,J} (A (T, z) , z

0)Q (z, dz0)

¾
for all (T, z) and j = 0, ..., J.
The value function B (p;T, z) of a firm that employed p permanent workers during the previous period on an

island with state (T, z) solves:

B (p;T, z)

= max
{gj≥0}Jj=0

⎧⎨⎩F

⎛⎝ JX
j=0

gj , z

⎞⎠− JX
i=0

wj (T, z) gj − τ max {p− gJ , 0}

+β
X
z0

B (gJ + gJ−1; A (T, z) , z
0)Q (z|z0)

)

The optimal decision rule is denoted by
gj = mj (p;T, z) ,

for 0 ≤ j ≤ J , describing the optimal employment level at each tenure j. For future reference, notice that B (p;T, z) is
decreasing in p, since having employed more permanent workers in the previous period makes the firm subject to
higher potential separation costs. Thus, provided that B is differentiable, −τ ≤ ∂B/∂p ≤ 0, and ∂B/∂p = −τ if
some permanent workers are fired, i.e. if gJ = mJ (p;T, z) < p.
A spot labor market equilibrium (SLM) is given by numbers {θ, U, σ} and functions {w, G, B, m, W} that satisfy

the following conditions:
i) Given wages w (·) , employment G (·) , and the law of motion A (·), the representative firm is representative

mj (TJ ;T, z) = Gj (T, z) ,

for all (T, z) and all 0 ≤ j ≤ J ;
ii) Given wages w (·) , employment G (·) and law of motion A (·) , the decision of the representative worker is repre-
sentative

Wj (T, z) > θ ⇒ Gj (T, z) = Tj , for j > 0 and

W0 (T, z) > θ ⇒ G0 (T, z) = U,

and if Gj (T, z) > 0, then

Wj (T, z) = wj (T, z) + β

Z
Wmin{J,j+1} (A (T, z) , z

0)Q (z, dz0) ;
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iii) The law of motion A defines an invariant distribution μ across states (T, z) as follows

μ (D, z0) =
X
z∈Z

"Z
{T,z: A(T,z)∈D}

μ (dT × z)

#
Q (z0|z) ;

iv) Feasibility in the labor market is satisfied

N − U −
Z

G (T, z)μ (dT × dz) ≥ 0, U ≥ 0,

v) The value of search σ and the value of becoming non-employed θ satisfy

σ = β

Z
W0 (T, z)μ (dT × dz) , θ = max {ω + βθ, σ} ; and

vi) The labor force participation decision is optimal

0 =

∙
N − U −

Z
G (T, z)μ (dT × dz)

¸
[θ − ω − βθ]

0 = U [θ − σ] .

The next theorem establishes the first and second welfare theorems for this economy and provides a partial
characterization of the SLM equilibrium.

Theorem 35 Welfare Theorems and equilibrium characterization:
i) Let {U, θ,w,G,B,m,W, μ} be a spot labor market equilibrium (SLM). Then, there is an island planner value
function V, for which {V,G,U, θ, μ} is an stationary efficient allocation.
ii) Conversely, let {V,G,U, θ, μ} be a stationary efficient allocation. Then, there are wages and value functions {w,
B, m, W} for which {U, θ, w,E,B,m,W, μ} is a spot labor market equilibrium (SLM).
iii) The functions B,W and V related as in i) and ii) satisfy

Wj (T, z) = ∂V (T, z) /∂Tj for j = 0, ..., J − 1 (23)

∂B (TJ , T, z) /∂p+WJ (T, z) = ∂V (T, z) /∂TJ

The reasons for the equivalence in i) and ii) are the same as in the Prescott and Mehra (1980) result about
equivalence between SLM equilibrium and efficient allocations. Our set up does not directly maps into theirs, so in
Appendix F we offer a constructive proof of i) and ii).
Condition iii) is obtained by comparing the first order conditions for the planning problem with the optimality

conditions for the workers and firms in the spot labor market equilibrium (SLM). These conditions give some intuition
on how prices decentralize the efficient allocation. Recall that ∂V/∂Tj is the shadow value of a tenure j worker in
the island planning problem. Condition iii) says that the shadow value of an extra temporary worker for the planner
is the same as the equilibrium value function Wj . Instead the shadow value of a permanent worker for the planer,
∂V/∂Tj , is lower than the equilibrium value function for a worker WJ . This difference is exactly the shadow value of
an extra permanent worker for the firm, ∂B/∂p, which, due to the separation cost, is a number between −τ and 0.
The next proposition gives a partial characterization of equilibrium wages.

Proposition 36 Let {U, θ, w,G,B,m,W, μ} be a spot labor market equilibrium (SLM). Without loss of generality,
the equilibrium wage w can be chosen to satisfy
a) for all j = 0, 1, ..., J − 2

wj (T, z) = f

Ã
JX
i=0

Gi (T, z) , z

!
,

b) for all j = 0, 1, ..., J − 2

wj (T, z)− βτ ≤ wJ−1 (T, z) ≤ wj (T, z)

wj (T, z)− βτ ≤ wJ (T, z) ≤ wj (T, z) + τ

wJ−1 (T, z) ≤ wJ (T, z) ≤ wJ−1 (T, z) + τ
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and if EJ (T, z) < TJ :
wJ−1 (T, z) ≤ wj (T, z) < wJ (T, z) ,

c) and the equilibrium value function W for workers can be chosen so that they satisfy:

W0 (T, z) ≥ W1 (T, z) ≥ · · · ≥WJ−1 (T, z)

WJ (T, z) ≥ WJ−1 (T, z) .

The proof of Proposition 36 follows, essentially, from the analysis of the first order conditions of the firm problem.
Appendix F contains a joint proof of Theorem 35 and Proposition 36.
Stationary Equilibrium with separation taxes and γ > 0, and computational algorithm
In an equilibrium when the separation cost τ is a tax rebated lump-sum to households and γ > 0, aggregate

consumption is given by

c =

Z
F

⎛⎝ JX
j=0

Gj (T, p) , z

⎞⎠μ (dT × dz) (24)

Given this change, the equilibrium allocation can be described by {V,G,U, θ, μ} , where V is the value function
and G the optimal policy for the island planning problem for (U, θ) , and where μ is the invariant distribution for
{(T, z)} generated by (G,Q) such that:
a) The value of search is generated by V̂ , μ

σ = β

Z ⎡⎣∂V̂
³
T, z; Û , θ

´
∂Û

|Û=U

⎤⎦ μ (dT × dz ;U, θ)

where V̂ is defined in terms of V as in (4); and
b) The marginal condition (6) holds with aggregate consumption given by (24).
We define the equilibrium in terms of the objects of an stationary efficien allocations because it provides an

algorithm for its computation: a) and b) can be regarded as two equations in two unknowns, (U, θ) . Alternatively
we could have define the equilibrium using the objects in the firms and workers problems, so that W0 (T, z) would

have taken the place of ∂V̂
³
T, z; Û , θ

´
/∂Û in a). Using the arguments in Theorem 35, it is easy to show that the

two definitions would have been equivalent.
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Appendix D: Analysis of Multiperiod Employment Relations (“MER”): Binding contracts and
tenure at the firm level (a formal description)

There are competitive markets on the island. At each date t, history zt, the set of commodities traded is S (zt). A
commodity s ∈ S(zt) is a stopping time indicating the time at which a worker will be dismissed under each possible
continuation sequence z∞t+1 = {zt+1, zt+2, ...} following the history zt. Formally, S(zt) is the set of all functions

s
¡
zt; z∞t+1

¢
: Z∞ → {t+ 1, t+ 2, ...,∞}

satisfying

s
¡
zt; z∞t+1

¢
= k ⇒ s

¡
zt; ẑ∞t+1

¢
= k,

for all ẑ∞t+1 such that: {zt+1, zt+2, ..., zk} = {ẑt+1, ẑt+2, ..., ẑk} .

When a worker arrives for the first time to the island at date t, history zt, he is a “newly arrived” worker and can
supply only one stopping time in the set S (zt). The worker cannot supply a new stopping time before the previous
stopping time is actually executed, i.e. before the worker is separated from his previous employer. The first time
that the worker separates he becomes an “incumbent” worker for the rest of his stay on the island. An “incumbent”
worker at date t, history zt, can also supply one stopping time in the set S(zt) as long as he has no outstanding
stopping time from a previous sale. “Newly arrived” workers and “incumbent” workers sell different commodities,
though. The stopping time sold by an “incumbent” worker at date t, history zt, entails a cost τ at date s

¡
zt; z∞t+1

¢
,

for every possible realization z∞t+1. On the contrary, the stopping time sold by a “newly arrived” worker at date t,
history zt, entails a cost τ at date s

¡
zt; z∞t+1

¢
, only if the realization z∞t+1 is such that s

¡
zt; z∞t+1

¢
≥ t+ J .

Each stopping time, being a different commodity, has a different price associated with it. We express the price of
the stopping times traded at date t, history zt, in terms of the final consumption good at that time and event, and
denote them for each s ∈ S (zt) by PA (zt, s) and P I (zt, s) for the “newly arrived” and “incumbent” stopping times,
respectively. Workers and firms take the prices PA (zt, s) and P I (zt, s) for all t ≥ 0, zt ∈ Zt, and s ∈ S (zt) as given.
The problem of an “incumbent” worker at date t, history zt, if she has no outstanding stopping times, is the

following:

I
¡
zt
¢
= max

½
θ, max

s∈S(zt)

©
P I
¡
zt, s

¢
+E

£
βs−t I (zs)

¤ª¾
(25)

where the expectation is taken with respect to all possible realizations z∞t+1 = {zt+1, zt+2, ...}, conditional on zt.
This equation states that an incumbent worker can choose to leave the island, obtaining θ, or sell the stopping time
s ∈ S (zt) that provides the highest value. A stopping time s ∈ S (zt) provides P I (zt, s) units of the consumption
good during the current period and the value I (zs) of being an incumbent worker at the (random) stopping time s.
Observe that, since the worker maximizes the present expected value of his earnings, equation (25) implicitly assumes
linear preferences.11

The problem of a “newly arrived” worker at time t state zt is given by

A
¡
zt
¢
= max

½
θ, max

s∈S(zt)

©
PA

¡
zt, s

¢
+E

£
βs−t I (zs)

¤ª¾
.

This problem is analogous to the “incumbent” worker problem, except that the “newly arrived” worker faces a
different price for the stopping time that she sells and becomes an “incumbent” worker at the end of the stopping
time (i.e. she changes its type).
We let NA (zt, s) be the quantity of newly arrived workers hired with contract s ∈ S (zt) at date t, history

zt. Likewise, we let NI (zt, s) be the quantities of incumbent workers hired with contract s ∈ S (zt) at date t, history
zt. The firm chooses NA (zt, s) and N I (zt, s) for every zt and s ∈ S (zt) to maximize expected discounted profits,
taking as given the prices PA (zt, s) and P I (zt, s), and the fact that the stopping times of the different types of
workers entail potentially different separation costs at termination. Without loss of generality, we assume that the
firm never employed any worker previous to t = 0. This will have no consequence in the analysis given our focus on
steady state equilibria.
The problem of the representative firm is the following:

max
NA,NI

X
t=0

X
zt∈Zt

βt

⎡⎣F (nt ¡zt¢ , zt)− X
s∈S(zt)

¡
PA

¡
zt, s

¢
NA

¡
zt, s

¢
+ P I

¡
zt, s

¢
NI

¡
zt, s

¢¢
− Tt

¡
zt
¢⎤⎦μt ¡zt¢

11The linear preferences assumption in this ”island-economy” is justified by the existence of perfect insurance markets in the original
economy.
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subject to:

nt
¡
zt
¢
=

tX
i=0

⎧⎪⎨⎪⎩
X

s∈S(zi0): s[zi0;(zti+1,z∞t+1)] > t, for every z∞t+1

£
NA

¡
zi, s

¢
+N I

¡
zi, s

¢¤⎫⎪⎬⎪⎭ (26)

Tt
¡
zt
¢
= τ

t−1X
i=0

⎧⎪⎨⎪⎩
X

s∈S(zi0): s[zi0;(zti+1,z∞t+1)] = t, for every z∞t+1

NI
¡
zi, s

¢⎫⎪⎬⎪⎭ (27)

+τ
t−JX
i=0

⎧⎪⎨⎪⎩
X

s∈S(zi0): s[zi0;(zti+1,z∞t+1)] = t, for every z∞t+1

NA
¡
zi, s

¢⎫⎪⎬⎪⎭
where zij in equations (26) and (27) denotes the partial history {zj , zj+1, ..., zi−1, zi} embodied in zt. The firm
maximizes the expected discounted value of profits, which are given by output minus the purchase of the stopping
times supplied both by “newly arrived” and “incumbent” workers, minus separation costs. The employment of the
firm at date t, history zt, is given by equation (26). This equation says that total employment is the sum of all the
workers, both “newly arrived” and “incumbents”, that were hired between periods zero and t and have been never
fired along the history zt. Equation (27) describes the separation costs at time and event zt as the sum of two terms.
The first term is the sum of all “incumbent” workers that have been hired between periods 0 and t− 1, which have
been contracted to separate at date t if event zt took place. The second term is the sum of all “newly arrived”
workers that have been hired between periods 0 and t− J , which have been contracted to separate at date t if event
zt took place. Observe that those “newly arrived” workers that have been hired between periods t− J +1 and t− 1
and separate at date t and event zt are not included in equation (27) because they separate during the trial period
stipulated by the fixed term contracts and, thus, are not subject to separation costs.
The market clearing conditions are as follows. If NA (zt, s) > 0 at some time t and event zt and some s ∈ S(zt),

then
A
¡
zt
¢
= PA

¡
zt, s

¢
+E

£
βs−t I (zs)

¤
Also, X

s∈S(zt)
NA

¡
zt, s

¢
< U ⇒ A

¡
zt
¢
= θ.

The conditions for “incumbent” workers are similar. If NI (zt, s) > 0 at some time t and event zt and some
s ∈ S(zt), then

I
¡
zt
¢
= P I

¡
zt, s

¢
+E

£
βs−t I (zs)

¤
.

Also, X
s∈S(zt)

N I
¡
zt, s

¢
< XI

¡
zt
¢
⇒ I

¡
zt
¢
= θ,

where XI (zt) is the number of “incumbent” workers available for hiring at the beginning of time t and event zt,
which is given by:

XI
¡
zt
¢
=

t−1X
i=0

⎧⎪⎨⎪⎩
X

s∈S(zi0): s[zi0;(zti+1,z∞t+1)] = t, for every z∞t+1

£
N I

¡
zi, s

¢
+NA

¡
zi, s

¢¤⎫⎪⎬⎪⎭ (28)

Finally, the hiring of each type of workers cannot exceed the amount initially available:X
s∈S(zt)

NA
¡
zt, s

¢
≤ U (29)

X
s∈S(zt)

NI
¡
zt, s

¢
≤ XI

¡
zt
¢

(30)

Observe that the supply of stopping time is indivisible: Workers can only supply one stopping time s ∈ S(zt), only
in the case that the worker has no previous outstanding stopping time. However, the linear preferences assumed,
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together with the convex production possibility set of the firm, guarantee that the welfare theorems hold. The
competitive allocation is then obtained as the solution to the social planner’s problem, which is to maximize

X
t=0

X
zt∈Zt

βt

⎡⎣F (nt ¡zt¢ , zt) + θ

⎛⎝U −
X

s∈S(zt)
NA

¡
zt, s

¢⎞⎠
+ θ

⎛⎝XI
¡
zt
¢
−

X
s∈S(zt)

N I
¡
zt, s

¢⎞⎠− Tt
¡
zt
¢⎤⎦μt ¡zt¢

subject to equations (26), (27), (28), (29) and (30).
A few remarks are in order. Clearly, the social planner will never want to separate a “newly arrived” worker

and rehire him as a an “incumbent” before the trial period for the fixed-term contracts is over. The reason is that
being rehired as “incumbent” makes the worker liable to separation costs, while maintaining his “newly arrived”
status saves on separation costs during the trial period. Also, the social planner will never want to separate a “newly
arrived” worker after the trial period is over and rehire him under an “incumbent” contract because this entails
incurring the separation cost τ without any benefit. As a consequence, the planner will choose the stopping times
for “newly arrived” workers in such a way that they separate only when they are to leave the island (and receive the
value θ). This means that NI (zt, s) = 0 for every zt and every s ∈ S (zt).
Being left with only “newly arrived” workers, the planner’s problem is formally identical to the island planning

problem described in Section 4.1.12 This has an important implication: The competitive equilibrium with long-term
contracts and tenure at the firm level described in this appendix is equivalent to the competitive equilibrium with spot
labor contracts and tenure at the island level described in Appendix C. Moreover, for every zt and s ∈ S(zt) such that
NA (zt, s) > 0, the price PA (zt, s) must be equal to the expected discounted value of the spot wages obtained (in the
equilibrium with spot labor contracts and tenure at the island level) by a worker that arrives to the island at time t and
event zt, and follows the employment plan described by the stopping time s. Hence, A (zt) =W0 (T (z

t,X) , zt) , where
T is defined by equations (1)-(3) and the Pareto optimal employment process {Et}. Given this property, an economy-
wide equilibrium can be constructed from the island-level competitive equilibrium described thus far in the same
way as it is done in the “spot labor market” competitive equilibrium described in Appendix C.

12 In particular, it is identical to the problem of an island’s planner endowed with no worker of positive tenure at t = 0.

xiii



Appendix E: Calibration of τ .

Heckman and Pages-Serra (2000) propose to summarize employment protection policies into a single statistic.
The measure they use is the expected discounted cost at the time that a worker is hired of dismissing that worker in
the future. Their index I is given by

I =
TX
t=1

βtδt−1 (1− δ)
n
bt + aSjt + (1− a)Sut

o
where T is the maximum tenure consider in the index, β a time discount factor, δ is the survival rate (probability of
remaining employed next period if employed during the current period), bt is wage earned during the advance notice
period for a worker of tenure t, Sjt is the severance payment to a worker of tenure t if the dismissal is classified as
“justified” (i.e. “fair” or “objective”), and Sut is the severance payment to a worker of tenure t if the dismissal is
“not justified”.
Heckman and Pages-Serra (2000) use a year as the time period, and the following values: β = 0.92 (an 8 percent

interest rate), δ = 0.88 (a turnover rate of 12 percent, based on data for the US), a value of T of 20 years, and
for Spain they advocate to use a = 0.2 for the period before 1997, based instead on the information on Bertola,
Boeri and Cazes (2000), ”Employment protection, the case of Industrialized countries: the case for new indicators”,
International Labor Review, 139(1):2000. Heckman and Pages-Serra (2000) compute their job security index for
Spain in the late nineties. Since we calibrate our model to the period before the broadening in the applicability of
temporary contracts, we recompute their index for the policies in place before the 1984 reform. We use the following
values:
- bt : one month of wages for tenure 1 and 2 and 3 months for higher tenure (from Chapter 2 of OECD Labor

Outlook, 1999, Table 2.2 )
- a : 0.2 (since their argument applies prior to 1984)
- Sjt : 2/3 months per year up to a maximum of 12 months (from Chapter 2 of OECD Labor Outlook, 1999,

page 96)
- Sut : 1 1/2 months per year up to a maximum of 42 months (from Chapter 2 of OECD Labor Outlook, 1999,

page 101).
We consider two cases. Case 1: With these choices for bt, a, Sut and Sjt , and using the values for β and δ used

by Heckman and Pages-Serra (2000), we obtain that prior to 1984 I equals to 0.42 as a fraction of annual average
wages. Case 2: if instead we use β = 0.96, which is the value we use in our paper, and δ = 0.93, which is closer to
the one for Spain prior to 1984 according to Hopenhayn and Cabrales (1997), we obtain a value of I prior to 1984 of
0.56 as a fraction of annual wages.
Finally, since in our benchmark case the firing taxes do not depend on the tenure of the workers, we select the

value of τ so that the value of the index above will give the value we calibrate for Spain prior to the reform. This
value solves the equation:

I =
TX
t=1

βtδt−1 (1− δ) τ = τ (1− δ)β
1− (βδ)T

1− βδ

or

τ = I
1− βδ

(1− δ) β
³
1− (βδ)T

´
The value of τ that corresponds to the first case is 0.74, and to the second case is 0.98 of annual wages. We think
that for our purposes the choices of the second case better reflect the situation prior to 1984 in Spain and hence we
calibrate the model to τ equivalent to one year of average wages.
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Appendix F: Proofs

Proof of Theorem 1. To show this theorem we characterize the competitive equilibrium of a particular
decentralization of the economy. Since the first welfare theorem holds, characterizing this equilibrium gives us a
characterization of the efficient allocations. We call this equilibrium “auxiliary competitive equilibrium” or “ACE”
for short. See Appendix G below for a definition of the ACE. The characterization of a stationary ACE coincides
with conditions i) to iv) of Theorem 1.
We start by providing some of the necessary conditions that an ACE must satisfy.

Lemma 37 Let {θt, λt (zt,X) , Ej,t (z
t,X) , Tj,t (z

t,X) , Sj,t (z
t,X) , Ut, Lt; all t, zt, j,X} be an ACE. Then, there

is sequence {σt} where σt is the value of search at t, for which:
i) without loss of generality, θt (zt,X) = θt,
ii)

σt = β
X
X

X
zt+1

λt+1
¡
zt+1,X

¢
η (X|z0) qt

¡
zt
¢

θt = max {ω + βθt+1, σt}
0 = Lt [θt − ω − βθt+1]

and
iii) for all zt,X,

θt ≤ λt
¡
zt,X

¢
,

0 =
£
λt
¡
zt,X

¢
− θt

¤ £
T0,t

¡
zt,X

¢
−E0,t

¡
zt,X

¢¤
.

The proof of this Lemma follows directly from the linearity of the problem of firms type II.
This Lemma shows, among other things, that the value to a firm type I of reallocating (firing) a worker does

not depend on the characteristic of the island, so that θt does not depend on (zt,X) and the value of search σt is
related to the value of “selling” (assigning) a worker to a different island randomly, i.e. in proportion to the number
of islands of each type.
We will show that the ACE allocation can be obtained by solving a particular dynamic programing problem given

two numbers (θ, U) , and by checking two appropriate equilibrium conditions. We develop this characterization in a
sequence of results.
The solution of the dynamic programing problem will give the equilibrium quantities chosen by firms type I

and the equilibrium prices λt (zt,X). This problem has the interpretation of the maximization problem solved for
a coalition of firms type I that are endowed with a flow U = {Ut}∞t=0 of newly arrived workers. We refer to this
problem as the “island planning problem”, i.e. the problem of a planner in charge of the island employment decision
by tenure. The planner chooses how many workers to employ at each tenure level and how many to send back,
obtaining θt for each of them, net of the cost τ .

Definition 38 Let Vt : RJ
+ × Z ×R∞+ → R

Vt (T1, ...TJ ; zt,U)

= max
Ej ,j=0,...J

{ F

⎛⎝ JX
j=0

Ej , zt

⎞⎠
+

JX
j=0

[Tj −Ej ] θt − τ [TJ −EJ ]

β
X

zt+1∈Z
Vt+1 (E0, ..., EJ−1 +EJ ; zt+1,U) }Q (zt+1|zt) }

subject to

T0 = Ut

Ej ≤ Tj j = 0, 1, ..., J.

where U = {Ut; all t ≥ 0} ∈ R∞+ .
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The next Lemma links the island planning problem with the equilibrium quantities chosen by firms type I and
the prices {λt} .

Lemma 39 Let
©
θ∗t , λ

∗
t (z

t,X) , E∗j,t (z
t,X) , T ∗j,t (z

t,X) , S∗j,t (z
t,X) , U∗t , L

∗
t ; all t, z

t, j,X
ª
be an auxiliary com-

petitive equilibrium given initial conditions U∗−1, η
∗ (X|z0). Define V̂t for {U∗t , θ∗t }, and let Êj,t (T, z) be its optimal

policy. Then,
©
E∗j,t (z

t,X)
ª
solves Vt for all the initial conditions X, i.e.

Êj,t

¡
T ∗t
¡
zt,X

¢
, zt
¢
= E∗j,t

¡
zt,X

¢
for all t, zt,X

and
λ∗t
¡
zt,X

¢
= ∂Vt

¡
T ∗t
¡
zt,X

¢
, zt;U

∗¢ for all t, zt,X
where ∂Vt (T, zt;U

∗) is and element of the subgradient of Vt
¡
T, zt;

©
U∗0 , ..., U

∗
t−1, ·, U∗t+1, ...

ª¢
with respect to U∗t .

The proof of this Lemma follows from comparing the island planning problem with the problem of firms type I
in a competitive equilibrium, and from the definition of a subgradient.
The next Lemma gives the characterization of an ACE.

Lemma 40 . Let some arbitrary initial distribution η∗ (X|z0) be given. Let also some arbitrary sequence {U∗t , θ∗t :all
t} be given. Let Êj,t (T, z) be the optimal policy of the island planning problem in condition (38) defined for
{U∗t , θ∗t } . Define

©
E∗j,t

ª
as

E∗j,t
¡
zt,X

¢
= Êj

¡
T ∗t
¡
zt,X

¢
, zt
¢

where T ∗t,j has been generated by
n
Ê
o
and the initial condition X, i.e.

T ∗0,j = Xj

T ∗t,j
¡
zt,X

¢
= Êj−1

¡
T ∗t−1

¡
zt−1,X

¢
, zt−1

¢
for j = 1, ..., J − 1

T ∗t,J
¡
zt,X

¢
= ÊJ−1

¡
T ∗t−1

¡
zt−1,X

¢
, zt−1

¢
+ ÊJ

¡
T ∗t−1

¡
zt−1,X

¢
, zt−1

¢
and let ∂V

t (T, zt;U
∗) be an element of the subgradient of Vt

¡
T, zt;

©
U∗0 , ..., U

∗
t−1, ·, U∗t+1, ...

ª¢
with respect to U∗t .

i) Define
©
λ∗t+1

ª
as

λ∗t
¡
zt,X

¢
= ∂Vt

¡
T ∗t
¡
zt,X

¢
, zt;U

∗¢ .
ii) Define the value of search {σt} as

σt = β
X
zt+1

X
X

λ∗t+1
¡
zt+1,X

¢
qt+1

¡
zt+1

¢
η∗ (X|z0) for all t.

iii) Define {L∗t } as
L∗t = N − U∗t −

X
zt

X
X

E∗j,t
¡
zt,X

¢
qt
¡
zt
¢
η∗ (X|z0) ≥ 0 for all t.

iv) Suppose that the following optimal labor force participation conditions are satisfied

θ∗t = max
©
σt, ω + βθ∗t+1

ª
,

L∗t [θt − ω + βθt+1] = 0

for all t. Then
©
θ∗t , λ

∗
t (z

t,X) , E∗j,t (z
t,X) , T ∗j,t (z

t,X) , S∗j,t (z
t,X) , U∗t , L

∗
t ; all t, z

t, j,X
ª
is an auxiliary competi-

tive equilibrium (ACE) given the initial conditions U∗−1 and η
∗.

The proof of this Lemma follows by construction, the definition of competitive equilibrium, and the properties of
the island planning problem defined in (38).
Since the first welfare theorem holds for this economy, the characterization of the allocation for an ACE in the

previous Lemma applies to the efficient allocations.
Now we define a stationary ACE in terms of the objects used our previous characterization of the ACE.
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Definition 41 We say that the ACE {θt, λt, Lt, Ut, Ejt, Sjt}, for an initial measure η, is a stationary equilibrium if
there are constants, θ, U, L, and functions, E∗j : R

J+1
+ × Z → R, j = 0, ..., J , λ∗ : RJ+1

+ × Z → R, for which

θt = θ, all t

Ut = U, all t

Lt = N, all t

Ei,t

¡
zt,X

¢
= E∗j

¡
Tt
¡
zt,X

¢
, zt
¢
, all t, zt

λt
¡
zt,X

¢
= λ∗

¡
Tt
¡
zt,X

¢
, zt
¢
, all t, zt

and where defining T 0j : R
J+1
+ × Z → R as

T 00 (T, z) = U,

T 0j (T, z) = E∗j−1 (T, z) for j = 1, ..., J − 1,
T 0J (T, z) = E∗J (T, z) +E∗J−1 (T, z)

and letting μ be an invariant distribution of the joint process (T, z) , with transition given by (T 0,Q), we have

η (T |z) ζ (z) = μ (T, z)

where ζ (z) is the invariant distribution of z.

Finally, since a stationary ACE is a particular type of ACE, then by the previous application of the first welfare
theorem, the stationary version of conditions i) to iv) in Lemma 40 characterizes a stationary efficient allocation.
Since the stationary version of conditions i) to iv) in Lemma 40 coincide with conditions i) to iv) of Theorem 1, we
have finished its proof.

Proof of Proposition 3 The proof is standard, so we omit it.

Proof of Proposition 4 We first show that (15) holds. Consider two states T > 0 and T 0 > 0, where T 0 is
obtained from T by increasing the number of workers with tenure J by δ and by decreasing the number of workers
with tenure 1 by δ:

T 0j = Tj for j = 2, ..., J − 1
T 01 = T1 − δ and T 0J = TJ + δ

It suffices to show that there is a feasible policy for T 0 that produces a reduction in total payoff at most by τ and
thus

H [V (T 0, z)]−H [V (T, z)] ≥ −τ .
To establish this, consider two cases, depending on whether in the original plan more than δ workers with tenure 1
were fired or not. Let δ be a positive number smaller than T1/2. In the case where more than δ workers with tenure
1 were fired, reduce the firing of workers with tenure 1 by δ and increase the firing of workers with tenure J by
δ. Then there is a reduction in current payoff of τ , and no change in the future state. In the second case, let

1

δ
(H [V (T 0, z)]−H [V (T, z)])

≥ 1

δ
βE

h
V
³
Ẽ0, ..., ẼJ−2, ẼJ−1 + ẼJ , z

0
´
|z
i

−1
δ
βE [V (E0, ..., EJ−2, EJ−1 +EJ , z

0) |z]

where

Ẽj = Ej for j = 2, ..., J − 1
Ẽ1 = E1 − δ

ẼJ = EJ + δ
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which is feasible given the stated assumptions. Thus using the properties of directional derivatives and subgradients
of concave functions

lim
δ→0

1

δ
V
³
Ẽ0, ..., ẼJ−2, ẼJ−1 + ẼJ , z

0
´
− V (E0, ..., EJ−2, EJ−1 +EJ , z

0)

= min
(V1,...,VJ)∈∂V

{(VJ − V1) (E0, ..., EJ−2, EJ−1 +EJ , z
0)}

= −τ + min
(V1,...,VJ)∈∂V

{(VJ − V1) (E0, ..., EJ−2, EJ−1 +EJ , z
0) + τ}

= −τ + min
(V1,...,VJ)∈∂V

½
lim
ε↓0
(VJ − V1) (E0 + ε, ..., EJ−2 + ε,EJ−1 +EJ + ε, z0) + τ

¾
= −τ + lim

ε↓0
min

(V1,...,VJ )∈∂V
{(VJ − V1) (E0 + ε, ..., EJ−2 + ε,EJ−1 +EJ + ε, z0) + τ}

≥ −τ

where we use theorem 24.4, page 233, of Rockafellar (1997) which shows that the graph of ∂f is closed for a concave
function on Rn, the hypothesis that (13) holds for all subgradients with T > 0, and where we denote

(VJ − V1) (E0, ..., EJ−2, EJ−1 +EJ , z
0)

≡ VJ (E0, ..., EJ−2, EJ−1 +EJ , z
0) + τ − V1 (E0, ..., EJ−2, EJ−1 +EJ , z

0) .

Finally since for all subgradients

H [V ]J (T, z)−H [V ]1 (T, z) ≥ lim
δ→0

1

δ
(H [V (T 0, z)]−H [V (T, z)]) ,

then
H [V ]J (T, z)−H [V ]1 (T, z) ≥ −τ .

The argument to show that (14) holds follows a similar argument, where we let

T 0j = Tj + δ and T 0j+1 = Tj+1 − δ

for j = 1, ..., J − 1.

Proof of Proposition 5 Replacing any policy by one with these properties can not decrease output but can
decrease the separation cost τ .

Proof of Lemma 8. Let λ∗ be a Lagrange multiplier, then λ∗ (T −E∗) = 0. Consider T 0, and E0 = E (T 0, z),
then

H [V ] (T, z)− θ̂T

= R̂ (E (T ) , z)

≥ R̂ (E (T 0) , z) + λ∗ (E (T )−E (T 0))

≥ R̂ (E (T 0) , z) + λ∗ (T − T 0)

= H [V ] (T 0, z)− θ̂T 0 + λ∗ (T − T 0)

thus θ̂ + λ∗ is a subgradient of H [V ] . Let θ̂ + λ∗ be a subgradient of H [V ] (T, z). Since workers can always be sent
back and get θ̂, then λ∗ ≥ 0. Also,

H [V ] (T, z) = H [V ] (E∗, z) + θ̂ [T −E∗]

for E∗ = E (T, z). Then, by definition of subgradient

θ̂ [T −E∗] = H [V ] (T, z)−H [V ] (E∗, z) ≥
³
θ̂ + λ∗

´
(T −E∗)

or
0 = R̂ (T, z)− R̂ (E∗, z) ≥ λ∗ (T −E∗)

but E∗ ≤ T so λ∗ (T −E∗) = 0. This equality, together with the definition of a subgradient, implies that λ∗ is a
Lagrange multiplier.
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Proof of Lemma 9. Let (E∗, λ∗) be a saddle satisfying (18). Then, by Theorem 2.9 in Takayama, E∗ is optimal.
Let E∗ be optimal. Then, by Theorem 2.9 in Takayama there are λ∗ ≥ 0 such that (E∗, λ∗) is a saddle. It remains
to show that λ∗i = R̂∗i for some subgradient. From the definition of a saddle,

R̂ (E∗, z) + λ∗ (T −E∗) ≥ R̂ (E, z) + λ∗ (T −E)

or
R̂ (E∗, z) ≥ R̂ (E, z) + λ∗ (E∗ −E) .

which is the definition of a subgradient.

Proof of Proposition 10. Let E∗ be optimal. Take any {H [V ]i (T, z)}
J
i=0 ∈ ∂H [V ] (T, z) . By Lemma 8 λ∗ is

a Lagrange multiplier, where
{H [V ]i (T, z)}

J
i=0 = λ∗ + θ̂.

By Lemma (9), λ∗i = R̂∗i for some subgradient. Then R̂i ≥ 0, and

0 = R̂∗i (Ti −E∗i ) = (H [V ]i (T, z)− θ) (Ti −E∗i ) .

Let {H [V ]i (T, z)}
J
i=0 ∈ ∂H [V ] (T, z), and let R∗i be a subgradient of R̂

∗ evaluated at some 0 ≤ E∗ ≤ T such
that the above conditions are satisfied. Define λ∗ as

λ∗ = {H [V ]i (T, z)}
J
i=0 − θ̂ = {R∗i }

J
i=0

where the last equality follows from the assumed properties. We will show that (E∗, λ∗) is a saddle. From the above
conditions,

0 = λ∗i (Ti −E∗i )

Hence,
R̂ (E∗, z) + λ (T −E∗) ≥ R̂ (E∗, z) + λ∗ (T −E∗) , for every λ ≥ 0

Since, by the above conditions, λ∗ is a subgradient of R̂∗ evaluated at 0 ≤ E∗ ≤ T , it follows that

R̂ (E, z) ≤ R̂ (E∗, z) + λ∗ (E −E∗) , for every E

Hence,
R̂ (E∗, z) + λ∗ (T −E∗) ≥ R̂ (E, z) + λ∗ (T −E) , for every E

so that E∗ is optimal.
If E∗i > 0,

R̂i (E
∗, z) = f

Ã
JX
i=0

E∗i , z

!
− θ

+β

Z
Vi+1

¡
E∗0 , . . . , E

∗
J−2, E

∗
J−1 +E∗J , z

0¢Q (z, dz0)
follows since ∂ (g + h) (x) = ∂g (x) + ∂h (x) (see Rockafeller, Theorem 23.8), and F is differentiable with derivative
f . When E∗i = 0, the subgradient of F is any number greater than f, and hence the previous expression holds with
inequality.

Proof of Proposition 11. From Proposition 10 and E∗J < TJ we have that

H [V ]J (T, z) = f

Ã
JX
i=0

E∗i , z

!
+ β

Z
VJ
¡
E∗0 , . . . , E

∗
J−2, E

∗
J−1 +E∗J , z

0¢Q (z, dz0) = θ − τ .

Suppose that E∗i > 0. Then,

H [V ]i (T, z) = f

Ã
JX
i=0

E∗i , z

!
+ β

Z
Vi+1

¡
E∗0 , . . . , E

∗
J−2, E

∗
J−1 +E∗J , z

0¢Q (z, dz0)
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Therefore,

H [V ]i (T, z)−H [V ]J (T, z) = β

Z £
Vi+1

¡
E∗0 , . . . , E

∗
J−2, E

∗
J−1 +E∗J , z

0¢
− VJ

¡
E∗0 , . . . , E

∗
J−2, E

∗
J−1 +E∗J , z

0¢¤Q (z, dz0)
If i = J − 1 it follows that H [V ]i (T, z) = H [V ]J (T, z) = θ − τ . But from Lemma 8, H [V ]i (T, z) ≥ θ.
If i < J − 1 it follows that

H [V ]i (T, z)− θ + τ = β

Z £
Vi+1

¡
E∗0 , . . . , E

∗
J−2, E

∗
J−1 +E∗J , z

0¢
− VJ

¡
E∗0 , . . . , E

∗
J−2, E

∗
J−1 +E∗J , z

0¢¤Q (z, dz0)
≤ βτ

where the inequality follows from equations (14) and (15).
Therefore,

H [V ]i (T, z) ≤ θ − (1− β) τ

But from Lemma 8, H [V ]i (T, z) ≥ θ..

Proof of Lemma 12. By contradiction , for all e > 0, there is a T, z such that

JX
i=0

Ei (T, z) ≤ e,

Take e < U such that
f (e, z) > θ.

where z = min {z : z ∈ Z} . Since T0 = U > 0, E0 (T, z) < T0. From 10

0 = [H [V ]0 (T, z)− θ] [T0 −E0]

thus
H [V ]0 (T, z) = θ

but
H [V ]0 (T, z) = R̂0 (E

∗, z) + θ

so R̂0 (E∗, z) = 0. Since

0 = R̂0 (E
∗, z) ≥ f

Ã
JX
i=0

E∗i , z

!
− θ

+β

Z
V1
¡
E∗0 , . . . , E

∗
J−2, E

∗
J−1 +E∗J , z

0¢Q (z, dz0)
> β

Z
V1
¡
E∗0 , . . . , E

∗
J−2, E

∗
J−1 +E∗J , z

0¢Q (z, dz0)
≥ 0.

Proof of Proposition 13. Let T, z be such that Ti > 0. Assume that
©
E∗j,s

ª
is optimal. Take a subgradient

Vi (T, z) = H [V ]i (T, z) .
First consider the case where E∗i,s = 0. Then

[H [V ]i (T, z)− θi (s)]
£
Ti,s −E∗i,s

¤
= 0

and its unique solution is H [V ]i (T, z) = θi (s) , provided that Ti,s > 0. Thus, as an special case, if E∗i,0 = 0, θi (0) is
the derivative of V.
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Now consider the case where E∗i,s > 0. We use the formula in Proposition 10 and replace its value repeatedly,
solving it forward until τ̂ j = s, the first time that for this cohort, employment is smaller than the number of workers
present at the location. Since E∗i,s > 0 at each iteration

H [V ]i (T, z) = f

Ã
JX
i=0

E∗i , z

!

+β

Z
Vi+1

¡
E∗0 , . . . , E

∗
J−2, E

∗
J−1 +E∗J , z

0¢Q (z, dz0) .
Notice that in this case, we argue above that Vi = θi (s) . Thus, we find that the unique solution for H [V ]i (T, z) is
V ∗i (T, z). Hence the subgradient is unique, and thus V (T, z) is differentiable.

Proof of Proposition 14 By Proposition 5 and its corollaries, h [v] = H [V ] in E .

Proof of Lemma 15 If follows directly from the definition of E and the assumed property (12).

Proof of Proposition 16. Take (t1, p1) and (t2, p2) and consider their convex combination (tλ, pλ) = (λt1 +
(1− λ) t2, λp1 + (1− λ) p2). Let the unique corresponding elements in E for (t1, p1) and (t2, p2) be T1 and T2.
Consider Tλ = λT1 + (1− λ)T2, which is not necessarily on E. Let T̂λ be the unique element in E that corresponds
to Tλ. Note that (tλ, pλ) satisfies

tλ =
J−1X
j=1

T̂λ and pλ = T̂J .

Then,

λh [v] (t1, p1, z) + (1− λ)h [v] (t2, p2, z)

= λH [V ] (T1, z) + (1− λ)H [V ] (T2, z)

≤ H [V ] (Tλ, z)

≤ H [V ]
³
T̂λ, z

´
= h [v] (tλ, pλ, z) ,

where the first equality follows from Proposition 14, the first inequality follows from concavity of V and Proposition
3 , the second inequality follows from Lemma 15, and the last equality follows from Proposition 14.

Proof of Proposition 21. First define

R̂ (E, z) = F

⎛⎝ JX
j=0

Ej , z

⎞⎠− θ
J−1X
j=0

Ej − (θ − τ)EJ

+β

Z
V (U,E0, . . . , EJ−2, EJ−1 + EJ , z

0)Q (z, dz0) .

Since V and F are concave, then R̂ is concave. Now take
¡
eit, e

i
p

¢
for i = 1, 2 and consider

¡
eλt , e

λ
p

¢
= (λe1t +

(1− λ) e2t , λe
1
p+(1− λ) e2p). Let the unique corresponding elements to

¡
eit, e

i
p

¢
in [0, U ]J ×R+ that satisfies property

(*) in Corollary 6 be denoted by Ẽi for i = 1, 2. Define Eλ = λẼ1 + (1− λ) Ẽ2. Note that

J−1X
j=0

Eλ
j = eλt and EJ = eλp .

Define Ẽλ as the unique element in [0, U ]J ×R+ that satisfies property (*) and such that

J−1X
j=0

Eλ
j =

J−1X
j=0

Ẽλ
j and EJ = ẼJ .
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Then

λR
¡
e1p, e

1
t , z
¢
+ (1− λ)R

¡
e2p, e

2
t , z
¢

= λR̂
³
Ẽ1, z

´
+ (1− λ) R̂

³
Ẽ2, z

´
≤ R̂

¡
Eλ, z

¢
≤ R̂

³
Ẽλ, z

´
= R

¡
eλp , e

λ
t , z
¢
,

where the first equality follows from construction of Ẽi and since by assumption v and V satisfy (20), the first
inequality follows from the concavity of R̂, the second inequality follows by assumption (12) and Proposition 5 and
its corollaries, and the last equality follows from the same argument as the one in Proposition 14.

Proof of Proposition 24 Define the operator h̄ as

h̄ [v] (t, p, z) = max
0≤et,0≤ep

{F (et + ep, z) + θ [t− et] + (θ − τ) [p− ep] +

+β

Z
v (U +M (et) , ep + et −M (et) , z

0)Q (z, dz0)

¾
Comparing this problem with (19) the constraints et ≤ t and ep ≤ p were removed, hence

h [v] (t, p, z) ≤ h̄ [v] (t, p, z) .

The optimal policies et, ep do not depend on t and p, thus the function h̄ [v] is linear with derivatives

h̄ [v]p (t, p, z) = θ − τ

h̄ [v]t (t, p, z) = θ

for all t, p, z. By concavity of h [v] ,

h [v] (t, 0, z) ≤ h [v] (t, p, z) + h [v]p (0− p) or

h [v] (t, p, z) ≥ h [v]p p+ h [v] (t, 0, z)

where
³
h [v]t , h [v]p

´
∈ ∂h [v] (t, p, z) . Rearranging and using the linearity of h̄ [v] :

h [v]p p+ h [v] (t, 0, z) ≤ h [v] (t, p, z) ≤ h̄ [v] (t, p, z) = h̄ [v] (t, 0, z) + [θ − τ ] p

for all p. Thus by monotonicity of h [v] and h̄ [v] on t :

h [v]p (t, p, z) p+ h [v] (0, 0, z) ≤ h̄ [v] ((J − 1)U, 0, z) + [θ − τ ] p

sup
t∈[0,U(J−1)]

h [v]p (t, p, z) p+ h [v] (0, 0, z) ≤ h̄ [v] ((J − 1)U, 0, z) + [θ − τ ] p

Hence

lim
p→∞

inf
h [v] (0, 0, z)− h̄ [v] (U (J − 1) , 0, z)

p

= 0 ≤ lim inf
p→∞

Ã
[θ − τ ]− sup

t∈[0,U(J−1)]
h [v]p (p, t, z)

!
or

lim
p→∞

sup

"
sup

t∈[0,U(J−1)]
h [v]p (p, t, z)

#
≤ θ − τ .

On the other hand, for the original problem (19), for (p0, t, z), a feasible policy for p ≥ p0 is to set e0p = ep (p0, t, z) ,
in which case each additional unit of p yields θ − τ . Hence the right derivative of h [v] (t, p0, z) is greater or equal
than θ − τ . Since h [v] is concave, then h [v]p (t, p0, z) ≥ θ − τ for all (t, p0, z).
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Combining the two inequalities, for large enough p, h [v]p (p, t, z) = θ − τ for all t.

Proof of Lemma 25. Consider two cases. First et < (J − 1)U . In this case M (et) = et, which implies that

b (et, ep, z) =

Z
v (U + et, ep, z

0)Q (z, dz0) ,

thus

bet =

Z
vtdQ,

bep =

Z
vpdQ

where
(vt, vp) ∈ ∂v (U + et, ep, z

0)

for the corresponding elements. Second, if et > (J − 1)U,

b (et, ep, z) =

Z
v (JU, ep + et − (J − 1)U, z0)Q (z, dz0) ,

thus

bet =

Z
vpdQ,

bep =

Z
vpdQ.

Since, by assumption,
vp ≤ vt ≤ vp + τ ,

we have shown the required result, except for the case where et = (J − 1)U. This case follows by continuity, since
the graph of the subgradient of a concave function is closed (Rockafellar, 1997, Theorem 24.4, page 233).

Proof of Lemma 26. By definition of R :

Rep = f (et, ep, z)− (θ − τ) + βbep ,

Ret = f (et, ep, z)− θ + βbet

where ¡
bet , bep

¢
∈ ∂b (et, ep, z) .

Then
Rep −Ret = τ + β

£
bep − bet

¤
≥ τ (1− β)

where the inequality follows from the previous lemma.

Proof of Lemma 28. The existence of p̂ follows by the concavity of R with respect to p, the Inada conditions
on F , and from Proposition 24, which shows that vp = θ − τ for large p. The uniqueness of p follows by the strict
concavity of F . That p̂ < p̄ follows from concavity of R with respect of ep and Lemma 26.

Proof of Lemma 29 The existence and uniqueness of t̂ follows from the strict concavity of R.

Proof of Proposition 30 It follows from the definition of t̂, p̂ and various of the previous results.

Proof of Lemma 31. The first statement follows by considering the case where T ∈ E so that there is a
i ∈ {1, 2, ..., J − 1} and Ti such that

T1, ..., TJ = (U, .., U, Ti, 0, ..., 0, TJ)

for Ti ∈ (0, U)
V (U, ..., U, Ti, ..., 0, TJ) = v ((i− 1)U + Ti, TJ) for all Ti ∈ (0, U)
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Thus
Vi (U, ..., U, Ti, ..., 0, TJ) = vt ((i− 1)U + Ti, TJ) for i = 1, 2, ..., J − 1.

The second and third claim follows from the form of the optimal decision rules, i.e. the definition of the range of
inaction and the strict concavity of R. The third follows since, for t ≥ t̂ (p, z) it is feasible to fire any extra temporary
workers, so that we know the right derivative of h [v] with respect to t.

Proof of Lemma 33. First we establish that t̂ (p, z) is decreasing in p. Then we use this result, to show that
h [v]t is decreasing in p.
By definition of t̂,

0 ∈ Ret

¡
t̂ (p, z) , p, z

¢
for the case where 0 < t̂ < JU. The main idea is to show that Ret (t, p, z) is decreasing in p, and then use that, by
concavity, Ret (t, p, z) is decreasing in t.
The subgradient Ret is given by

Ret (t, p, z) = f (t+ p, z)− θ + βbet (t, p, z)

where b (t, p, z) is given by

b (t, p, z) =

Z
v (U +min {t, U (J − 1)} , t+ p−min {t, U (J − 1)} , z0)Q (z, dz0)

We can then write b by cases as

b (t, p, z) =

Z
v (U + t, p, z0)Q (z, dz0) if t ≤ U (J − 1)

b (t, p, z) =

Z
v (UJ, t+ p− U (J − 1) , z0)Q (z, dz0) for t ≥ U (J − 1)

and hence its subgradients are

bet (t, p, z) =

Z
vt (U + t, p, z0)Q (z, dz0) if t < U (J − 1)

bet (t, p, z) =

∙Z
vp (UJ, p, z

0)Q (z, dz0) ,

Z
v̄t (UJ, p, z

0)Q (z, dz0)

¸
if t = U(J − 1)

bet (t, p, z) =

Z
vp (UJ, t+ p− U (J − 1) , z0)Q (z, dz0) for t > U (J − 1)

Now we are ready to show that Ret (t, p, z) is strictly decreasing in p. Consider first the case where t < U (J − 1) . In
this case the result follows from the hypothesis that vt is decreasing in p and f strictly concave. Consider the case
where t > (J − 1)U. In this case the result follows from the concavity of v, so that vp is decreasing, and the strict
concavity of f. Finally, for the case where t = (J − 1)U, we combine the previous two arguments for the right and
left derivatives.
Having established that Ret (t, p, z) is strictly decreasing in p, then it follows that t̂ is decreasing in p since Ret is

decreasing in t by concavity of R.
The cases where t̂ = UJ or t̂ = 0 are similar.
Now we turn to show that h [v]t is decreasing in p.We consider three cases. First, let (t, p) ∈ Int (I (z)) . In this

case,

h [v]t (t, p, z) = f (t+ p, z) + βbet (t, p, z)

= Ret (t, p, z) + θ

and thus h [v]t is decreasing in p since, as shown above, Ret (t, p, z) is decreasing in p. In the case where (t, p) ∈
Int

³
I (z)

C
´
, then h [v]t = θ, and hence h [v] is differentiable, and its derivative constant, so that it is weakly

decreasing in p. Finally, consider the case where (t, p, z) is such that t = t̂ (p, z) . As shown above, t̂ is weakly
decreasing in p, thus for p0 > p, t ≥ t̂ (p0, z) . Also, the subgradient of h [v]t is£

h [v]t (t, p, z) , h̄ [v]t (t, p, z)
¤
=
£
θ, f (t+ p, z) + βb̄et (t, p, z)

¤

xxiv



If t̂ (p0, z) = t̂ (p, z) , then, using the expression for the left derivative of h [v]t , it follows since f is concave and,
as shown above, bet is decreasing in p. If t̂ (p0, z) < t̂ (p, z) , then, it must be that the point

¡
t̂ (p, z) , p0, z

¢
is in the

interior of the complement of the range of inaction, and thus h [v]t
¡
t̂ (p, z) , p0, z

¢
= θ. Thus h [v]t has decreased in

this case too, since the subgradient has collapsed to its right derivative.

Proof of Proposition 34. That t̂ is decreasing in p follows from using Lemma 33. Notice that starting with
V 0 = 0 and v0 = 0 satisfies all the hypothesis of this lemma. Since all these properties are preserved in the limit,
they hold for the fixed point. To see that t̂ is strictly decreasing, consider first the case where t < U (J − 1) . In this
case it follows from the fact that in a neighborhood of those points v (t+ U, p, z0) is differentiable with respect to t,
satisfies

θ = f
¡
t̂ (p, z) + p, z

¢
+ β

Z
vt
¡
t̂ (p, z) + U, p, z0

¢
Q (z, dz0) ,

is decreasing in p, and f is strictly decreasing. A similar argument holds when t > U (J − 1) , where

θ = f
¡
t̂ (p, z) + p, z

¢
+ β

Z
vp
¡
JU, p+ t̂ (p, z)− JU, z0

¢
Q (z, dz0) .

Proof of Theorem 35 and Proposition 36 (Appendix C).
To prove the theorem it is convenient to define a sequential economy that corresponds to the island planning

problem taking as given U, θ. This economy has a firm whose problem corresponds to the one of the firm with value
function B in the recursive competitive equilibrium (RCE) and a family whose problem has solution that gives the
workers value function W in the RCE.
I) We define this economy in a standard Arrow-Debreu sequential way. This definition allows to use the first and

second welfare theorems to link the allocation that solves the sequential island planning problem with an allocation
that solves the firms and workers problem in the island economy as well as with the equilibrium wages w.
The commodities for the sequential island economy with initial state (X, z0) is given by processes for employment

by tenure E and consumption C

(E,C) =
©
Ct

¡
zt
¢
, Ejt

¡
zt
¢
: j = 0, ..., J, zt ∈ Z

ª
.

We use gjt to denote the labor choice of the firms in a sequential island problem. We use the ht and st for hiring
and firing of permanent workers. The net output of firms is to produce the following date t history zt amount of
consumption good

F

⎛⎝ JX
j=0

gjt
¡
zt
¢
, zt

⎞⎠− τ st
¡
zt
¢
. (31)

The choices of g for the firms are subject to the restrictions that gj,−1 (z−1) = Xj for j = 0, ..., J, the law of motion
for the permanent workers

gJt
¡
zt
¢
= gJt−1

¡
zt−1

¢
+ gJ−1t−1

¡
zt−1

¢
− st

¡
zt
¢
+ ht

¡
zt
¢
, (32)

and the non-negativity constraints for hiring and firing

st
¡
zt
¢
≥ 0 , ht

¡
zt
¢
≥ 0, gjt

¡
zt
¢
≥ 0

for all j = 0, ..., J, zt, t ≥ 0.
We use e to denote the labor choice and c the consumption choice of the household in the sequential island

problem. This household “owns” as an endowment a stream of U unemployed workers per period, that arrives to the
island every period. The household is risk neutral in terms of consumption ct (z

t) . Its decision is to assign a worker
to work on the island or permanently work outside the island, which gives value θ per worker, in units of the final
good. The utility function of the household is X

t=0

X
zt

βtQ
¡
zt|z0

¢
×

×

⎡⎣ct ¡zt¢+ θ

⎛⎝J−1X
j=0

£
ej−1t−1

¡
zt−1

¢
− ejt

¡
zt
¢¤
+
£
eJt−1

¡
zt−1

¢
+ eJ−1t−1

¡
zt−1

¢
− eJt

¡
zt
¢¤⎞⎠⎤⎦ .
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The household is subject to the following restrictions:

ej,−1 (z−1) = Xj for j = 0, ..., J

and for all t, zt, non-negative ejt is subject to:

e0,t
¡
zt
¢
≤ U, (33)

ejt
¡
zt
¢
≤ ej−1t−1

¡
zt−1

¢
for j = 1, 2, ..., J − 1

eJt
¡
zt
¢
≤ eJt−1

¡
zt−1

¢
+ eJ−1t−1

¡
zt−1

¢
.

Market clearing for the sequential economy is given by

ejt
¡
zt
¢
= gjt

¡
zt
¢

ct
¡
zt
¢
= F

Ã
JX
i=0

git
¡
zt
¢
, zt

!
− τst

¡
zt
¢

for all j = 0, ...., J, and all t, zt. Prices in this sequential island economy are given by intertemporal consumption
prices, Pt (X, zt) and wages by tenure wjt (X, zt) in terms of date t, history zt consumption goods. Given the
household preferences for consumption we impose

Pt
¡
X, zt

¢
= βtQ

¡
zt|z0

¢
.

With these prices the problem of the firm is to maximize profits, i.e.

B0 (xJ ,X, z0)

= max
{g}

X
t=0

βt
X
zt

⎡⎣F ³X gjt
¡
zt
¢
, zt

´
−

JX
j=0

gjt
¡
zt
¢
wjt

¡
X, zt

¢
− τst

¡
zt
¢⎤⎦Q ¡zt|z0¢

subject to
gJ−1 = xJ ,

and the laws of motion for s, h and g. Let βtξt (z
t)Q (zt|z0) be the multiplier of the restriction (32). The first order

conditions for the firm’s problem are:

f
³X

gjt
¡
zt
¢
, zt

´
− wjt

¡
X, zt

¢
≤ 0

for j = 0, ..., J − 2 with equality if gjt (zt) > 0. For j = J − 1

f
³X

gjt
¡
zt
¢
, zt

´
− wJ−1t

¡
X, zt

¢
+ β

X
zt+1

ξ̂t+1
¡
zt, zt+1

¢
Q (zt+1|zt) ≤ 0

with equality if gJ−1t (zt) > 0. For j = J

ξ̂t
¡
zt
¢
= f

⎛⎝ JX
j=0

gjt
¡
zt
¢
, zt

⎞⎠− wJt

¡
X, zt

¢
+ β

X
zt+1

ξ̂t+1
¡
zt, zt+1

¢
Q (zt+1|zt) (34)

if gJt (zt) > 0. The first order conditions for ht (zt) is

ξ̂t
¡
zt
¢
≤ 0

with equality if ht (zt) > 0. The first order conditions for st (zt) is

−τ − ξ̂t
¡
zt
¢
≤ 0

with equality if st (zt) > 0. Equation (32) thus gives:

gJ,t−1
¡
zt−1

¢
+ gJ−1,t−t

¡
zt−1

¢
> gJ,t

¡
zt
¢
then ξ̂t

¡
zt
¢
= −τ
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gJ,t−1
¡
zt−1

¢
+ gJ−1,t−t

¡
zt−1

¢
< gJ,t

¡
zt
¢
then ξ̂t

¡
zt
¢
= 0.

Now we turn to the household problem in a sequential island economy. Letting βtQ (zt|z0) ν̂j,t (zt) be the Lagrange
multiplier for (33), the first order conditions for the household problem are equivalent to

Wjt

¡
X, zt

¢
= max

⎧⎨⎩θ, wjt

¡
X, zt

¢
+ β

X
zt+1

Wj+1t+1

¡
X, zt, zt+1

¢
Q (zt+1|zt)

⎫⎬⎭ ,

for j = 0, ..., J − 1 and

WJt

¡
X, zt

¢
= max

⎧⎨⎩θ, wJt

¡
X, zt

¢
+ β

X
zt+1

WJt+1

¡
X, zt, zt+1

¢
Q (zt+1|zt)

⎫⎬⎭
where

Wjt

¡
X, zt

¢
= v̂jt

¡
X, zt

¢
+ θ

with slackness
ejt
¡
zt
¢
< ej−1t−1

¡
zt−1

¢
then Wjt

¡
X, zt

¢
= θ,

and ejt (z
t) > 0,

Wjt

¡
X, zt

¢
= wjt

¡
X, zt

¢
+ β

X
zt+1

Wj+1t+1

¡
X, zt, zt+1

¢
Q (zt+1|zt)

for j = 0, ..., J − 1 and analogously for j = J.
To see why this is the case, write the Lagrangian of the household problem asX

t=0

βt
X
zt

Q
¡
zt|z0

¢
×

⎧⎨⎩
JX
j=0

ejt
¡
zt
¢
wjt

¡
X, zt

¢
+

θ

⎛⎝J−1X
j=0

£
ej−1t−1

¡
zt−1

¢
− ejt

¡
zt
¢¤
+
£
eJ t−1

¡
zt−1

¢
+ eJ−1t−1

¡
zt−1

¢
− eJt

¡
zt
¢¤⎞⎠

+ν̂0t
¡
zt
¢ £
U − e0t

¡
zt
¢¤
+

+
J−1X
j=1

ν̂jt
¡
zt
¢ £
ej−1t−1

¡
zt−1

¢
− ejt

¡
zt
¢¤
+ ν̂jt

¡
zt
¢ £
eJ−1t−1

¡
zt−1

¢
+ eJt−1

¡
zt−1

¢
− eJt

¡
zt
¢¤⎫⎬⎭

The first order conditions for this problem are as follows. For ejt (zt) :

wjt

¡
X, zt

¢
−
¡
θ + ν̂jt

¡
zt
¢¢
+ β

X
zt+1

¡
θ + v̂j+1 t+1

¡
zt, zt+1

¢¢
Q (zt+1|zt) ≤ 0

with = if ejt (zt) > 0 for j = 0, 1, ..., J − 1 and

wJt

¡
X, zt

¢
−
¡
θ + ν̂Jt

¡
zt
¢¢
+ β

X
zt+1

¡
θ + v̂J t+1

¡
zt, zt+1

¢¢
Q (zt+1|zt) ≤ 0

with = if eJt (zt) > 0.
The slackness conditions are: if ejt (zt) < ej−1t−1

¡
zt−1

¢
then ν̂jt (z

t) = 0 for j = 0, ..., J − 1, and if eJt (zt) <
eJ−1t−1

¡
zt−1

¢
+ eJ−1t−1

¡
zt−1

¢
then ν̂Jt (z

t) = 0.
To compare a competitive equilibrium with the planning problems it helps defining a sequential island planning

problem. In this problem the planner maximizes the expected discounted value of net output (31) subject to the
feasibility constraints (32) and (33). This is the sequential version of the recursive island planning problem. Let
V0 (X, z0) be the value attained by this planning problem.
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Let βtξt (z
t)Q (zt|z0) be the multiplier of the constraint (32) and βtνjt (z

t)Q (zt|z0) the multiplier of the con-
straints (33). The first order conditions for the sequential island planning problem are equivalent to:

θ + νjt
¡
zt
¢
= max

⎧⎨⎩θ, f
³X

Ejt

¡
zt
¢
, zt

´
+ β

X
zt+1

¡
θ + vj+1 t+1

¡
zt, zt+1

¢¢
Q (zt+1|zt)

⎫⎬⎭
with νjt (z

t) = 0 if Ejt (z
t) < Ej−1t−1

¡
zt−1

¢
and

θ + νjt
¡
zt
¢
= f

³X
Ejt

¡
zt
¢
, zt

´
+ β

X
zt+1

¡
θ + vj+1 t+1

¡
zt, zt+1

¢¢
Q (zt+1|zt)

if Ejt (z
t) > 0 for j = 0, .., J − 2. For j = J − 1 we have

θ + νJ−1t
¡
zt
¢

= max

⎧⎨⎩θ, f
³X

Ejt

¡
zt
¢
, zt

´
+ β

X
zt+1

¡
θ + vJ t+1

¡
zt, zt+1

¢
+ ξt+1

¡
zt, zt+1

¢¢
Q (zt+1|zt)

⎫⎬⎭
with vJ−1t (z

t) = 0 if EJ−1t (z
t) < EJ−1t−1

¡
zt−1

¢
, and

θ + νJ−1t
¡
zt
¢

= f
³X

Ejt

¡
zt
¢
, zt

´
+ β

X
zt+1

¡
θ + vJ t+1

¡
zt, zt+1

¢
+ ξt+1

¡
zt, zt+1

¢¢
Q (zt+1|zt)

if EJ−1t (z
t) > 0. For j = J we have

θ + νJt
¡
zt
¢
+ ξt

¡
zt
¢

= max

⎧⎨⎩θ, f
³X

Ejt

¡
zt
¢
, zt

´
+ β

X
zt+1

¡
θ + vJ t+1

¡
zt, zt+1

¢
+ ξt+1

¡
zt, zt+1

¢¢
Q (zt+1|zt)

⎫⎬⎭
with vJt (z

t) = 0 if EJt (z
t) < EJt−1

¡
zt−1

¢
+EJ−1t−1

¡
zt−1

¢
, and

θ + νJt
¡
zt
¢
+ ξt

¡
zt
¢

= f
³X

Ejt

¡
zt
¢
, zt

´
+ β

X
zt+1

¡
θ + vJ t+1

¡
zt, zt+1

¢
+ ξt+1

¡
zt, zt+1

¢¢
Q (zt+1|zt)

if EJt (z
t) > 0.

To see why this is the case, write the Lagrangian for the planning problem as:

V0 (X, z0) = max
{E}

X
t=0

βt
X
zt

Q
¡
zt|z0

¢
×

n
F
³X

Ejt

¡
zt
¢
, zt

´
− τSt

¡
zt
¢

+θ

⎛⎝J−1X
j=0

£
Ej−1t−1

¡
zt−1

¢
−Ejt

¡
zt
¢¤
+
£
EJ t−1

¡
zt−1

¢
+EJ−1t−1

¡
zt−1

¢
−EJt

¡
zt
¢¤⎞⎠

+ν0t
¡
zt
¢ £
U −E0t

¡
zt
¢¤
+

J−1X
j=1

νjt
¡
zt
¢ £
Ej−1

¡
zt−1

¢
−Ejt

¡
zt
¢¤

+νJt
¡
zt
¢ £
EJ−1t−1

¡
zt−1

¢
+EJt−1

¡
zt−1

¢
−EJt

¡
zt
¢¤

ξt
¡
zt
¢ £
−EJt

¡
zt
¢
+EJt−1

¡
zt−1

¢
+EJ−1t−1

¡
zt−1

¢
− St

¡
zt
¢
+Ht

¡
zt
¢¤ª

The first order conditions are:

f
³X

Ejt

¡
zt
¢
, zt

´
− θ − νjt

¡
zt
¢
+ β

X
zt+1

¡
θ + vj+1 t+1

¡
zt, zt+1

¢¢
Q (zt+1|zt) ≤ 0

xxviii



with equality if Ejt (z
t) > 0,

f
³X

Ejt

¡
zt
¢
, zt

´
− θ − νJ−1t

¡
zt
¢
+

β
X
zt+1

¡
θ + vJ t+1

¡
zt, zt+1

¢¢
Q (zt+1|zt) + β

X
zt+1

ξt+1
¡
zt, zt+1

¢
Q (zt+1|zt) ≤ 0

with equality if EJ−1t (z
t) > 0,

f
³X

Ejt

¡
zt
¢
, zt

´
− θ − ξt

¡
zt
¢
− νJt

¡
zt
¢
+

β
X
zt+1

¡
θ + vJ t+1

¡
zt, zt+1

¢¢
Q (zt+1|zt) + β

X
zt+1

ξt+1
¡
zt, zt+1

¢
Q (zt+1|zt) ≤ 0

with equality if EJt (z
t) > 0.

The first order condition for Ht (z
t) is

ξt
¡
zt
¢
≤ 0

with equality if Ht (z
t) = 0. The first order condition for St (zt) is

−τ − ξt
¡
zt
¢
≤ 0

with equality if St (zt) > 0.

(II) We now show i), the first welfare theorem, and iii). We start with an island RCE {w,W,B,G} . Pick
an arbitrary state (T, z) = (X, z0) in the support of μ. We construct the sequential competitive equilibrium with
(X, z0) as initial condition as follows. Let wages be:

wjt

¡
X, zt

¢
= wj

¡
Dt−1 ¡X, zt−1

¢
, zt
¢
.

and let multipliers and employment be

θ + v̂jt
¡
X, zt

¢
= Wj

¡
Dt−1 ¡X, zt−1

¢
, zt
¢

ejt
¡
X, zt

¢
= Gj

¡
Dt−1 ¡X, zt−1

¢
, zt
¢

where

Dt
¡
X, zt

¢
= G (T, zt) for (35)

T =
¡
U,Dt−1

0

¡
X, zt−1

¢
, ...,Dt−1

J−2
¡
X, zt−1

¢
,Dt−1

J−1
¡
X, zt−1

¢
+Dt−1

J

¡
X, zt−1

¢¢
and

D−1 (X, z0) = X

It is immediate to verify that {e, ν̂} solves the first order conditions for the household problem in a sequential island
equilibrium, and hence it solves the household problem. For future reference we define

Wj0 (X, z0) = ν̂j0 (z0,X) + θ.

Define the Lagrange multiplier and employment for the firms problem as:

ξ̂t
¡
X, zt

¢
= Bp

¡
Dt−1
J

¡
X, zt−1

¢
,Dt−1 ¡X, zt−1

¢
, zt
¢

gjt
¡
X, zt

¢
= Gj

¡
Dt−1 ¡X, zt−1

¢
, zt
¢

It is immediate to verify that
n
g, ξ̂
o
solves the first order conditions for the firm’s problem in an sequential island

competitive equilibrium, and hence it solves the firm’s problem. Let B0 be the value of the firm in the sequential
island CE. For future reference, from the envelope theorem, we have

∂B0 (xJ ,X, z0) /∂xJ = ξ̂0 (X, z0)

evaluated at xJ = XJ .
By the first welfare theorem applied to the sequential island economy, {e} = {g} is a Pareto optimal allocation,

and hence solves the sequential island planning problem. By inspection, the Lagrange multipliers {ξt, νjt} that
satisfy the first order conditions for the sequential planning problem are identical to the Lagrange multipliers for the
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firm’s problem
n
ξ̂t

o
and the Lagrange multipliers {ν̂jt} for the households problem in the sequential competitive

equilibrium. >From these first order conditions:

W ∗j0 (X, z0) = ν̂j0 (z0,X) + θ = νj0 (z0,X) + θ = ∂V0 (X, z0) /∂Xj

for j = 0, ..., J − 1 and

WJ0 (X, z0) + ∂B0 (xJ ,X, z0) /∂xJ = ν̂J0 (X, z0) + θ + ξ̂0 (X, z0)

= νJ0 (X, z0) + θ + ξ0 (X, z0) = ∂V0 (X, z0) /∂XJ

evaluated at xJ = XJ . The allocation described by G is, by hypothesis, recursive, so it solves the recursive island
planning problem with initial condition (X, z0). Repeating this argument for each initial condition (X, z0) we show
that

V0 (T, z) = V (T, z) ,

B0 (TJ , T, z) = B (TJ , T, z) ,

Wj0 (T, z) = Wj (T, z)

for all (T, z.) Hence we have shown the first welfare theorem for the recursive representation of the island problem,
and that (23), condition iii) of the theorem, holds.
(III). We now show ii), the second welfare theorem, and condition iii) of Theorem 35. We start with a solution

of the recursive planning problem, ν (T, z) and ξ (T, z) which, by the envelope theorem, satisfy

∂V (T, z)

∂Tj
= θ + νj (T, z) .

for j = 0, ..., J − 1, and
∂V (T, z)

∂TJ
= θ + νJ (T, z) + ξ (T, z)

If there were more than one pair νJ , ξ for a given T, z, select the one that only depends on (T, z). From the principle
of optimality, the solution to the recursive island problem V is the same as the value function for the sequential
island problem V0, so that V (T, z) = V0 (T, z).
Choose any initial state (X, z0) to be used as initial condition to the sequential island problem. Define

νjt
¡
X, zt

¢
= νj

¡
Dt−1 ¡X, zt−1

¢
, zt
¢

ξt
¡
X, zt

¢
= ξ

¡
Dt−1 ¡X, zt−1

¢
, zt
¢

Ejt

¡
X, zt

¢
= G

¡
Dt−1 ¡X, zt−1

¢
, zt
¢

where Dt−1 is defined as in (35) using the optimal decision rule from the recursive planning problem. By comparing
the first order conditions for the recursive island planing problem with the first order conditions for the sequential
island planning problem, it can be seen that {Et, νjt, ξt} so defined solve the first order conditions for the sequenctial
island planning problem. Next define wages as follows:

wjt

¡
X, zt

¢
= f

⎛⎝ JX
j=0

Ejt

¡
zt,X

¢
, zt

⎞⎠ (36)

for j = 0, 1, 2, ..., J − 2; for j = J − 1 let

wJ−1t
¡
X, zt

¢
= f

⎛⎝ JX
j=0

Ejt

¡
X, zt

¢
, zt

⎞⎠+ β
X
zt+1

ξt+1
¡
X, zt, zt+1

¢
Q (zt+1|zt) ; (37)

finally, for j = J

wJt

¡
X, zt

¢
= f

⎛⎝ JX
j=0

Ejt

¡
X, zt

¢
, zt

⎞⎠− ξt
¡
X, zt

¢
+ β

X
zt+1

ξt+1
¡
X, zt, zt+1

¢
Q (zt+1|zt) . (38)
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The function B0 (xJ ,X, z0) is defined as the solution to the firm’s problem for wages wjt in the sequential island
equilibrium. Given wages wjt, the functions Wjt are defined as:

Wjt

¡
X, zt

¢
= νjt

¡
X, zt

¢
+ θ (39)

for j = 0, ..., J.
Define the candidate multipliers for the sequential firm problem as ξ̂t = ξt. Given wages wjt, and multipliers ξ̂t, it

is easy to verify that the allocation gjt = Ejt, and its implied {st, ht} solve the first order conditions for the firms in
the sequential island economy. To verify this, one uses the first order conditions for the island planning problem in
the island sequential economy. From the envelope condition it is immediate that

∂B0 (xJ ,X, z0) /∂xJ = ξ̂0 (X, z0)

where xJ = XJ .
Define the candidate multipliers for the sequential household problem v̂jt = vjt. Given wages wjt and multipliers

v̂jt, it is easy to verify that the allocation ejt = Ejt solves the first order conditions for the household’s problem in
the sequential island economy. To verify this, use the first order conditions for the island planner problem in the
sequential island economy.
Thus we have established that the sequential allocation constructed out of the solution of the recursive island

planning problem from an initial state (X, z0) can be decentralized as a sequential island competitive equilibrium.
Finally, we define the elements of the recursive island competitive equilibrium as follows:

wj (X, z0) = wj0 (X, z0) ,

Wj (X, z0) = Wj0 (X, z0) ,

B (XJ ,X, z0) = B0 (XJ ,X, z0)

By repeating this construction for all (X, z0) in the support of μ, we construct the functions w,W and B. These
functions constitute a RCE since they are constructed from the sequential island competitive equilibrium.
>From the previous arguments we have:

∂V (T, z)

∂Tj
= θ + νj (T, z) = θ + vj0 (z, T ) (40)

= θ + ν̂j0 (z, T ) =Wj0 (T, z) .

for j = 0, ..., J − 1 and

∂V (T, z)

∂TJ
= θ + νJ (T, z) + ξ (T, z) = θ + νJ0 (, z) + ξ0 (z, T ) (41)

= θ + ν̂J0 (z, T ) + ξ̂0 (z, T ) =WJ0 (T, z) +
∂

∂xJ
B0 (TJ , T, z) ,

and thus condition iii) is satisfied.
(IV) We establish condition (b) of Proposition 36. Since in (II) and (III) we have shown the first and second

welfare theorems, we can, without loss of generality, start with an efficient allocation and examine the equilibrium
wages w that we constructed in (III), equations (36), (37) and (38). The multiplier ξ ∈ [−τ , 0] and ξt (X, zt) = −τ if
St (z

t) > 0, i.e. if permanent workers are being fired. Thus, the inequalities in (b) follow from these definitions and
the properties of ξ.
(V). We establish condition c) of Proposition 36. Since in (II) and (III) we have shown the first and second

welfare theorems, we can, without loss of generality, start with an efficient allocation and examine the equilibrium
value function for workers W that we constructed in (III), equation (39). Using equations (40), (41) we have that

∂V (T, z)

∂Tj
= Wj (T, z) , for j = 0, ..., J − 1

∂V (T, z)

∂TJ
= WJ (T, z) + ξ (T, z) .

In Proposition (4) we have shown that
VT1 ≥ VT2 ≥ · · · ≥ VTJ−1 ,
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Thus
W1 ≥W2 ≥ · · · ≥WJ−1.

Finally since W is part of an equilibrium, it satisfies

WJ−1 (T, z) = wJ−1 (T, z) + βE [WJ (A (T, z) , z
0) |z]

WJ (T, z) = wJ (T, z) + βE [WJ (A (T, z) , z
0) |z]

and since we have already established (c), wJ ≥ wJ−1, and thus we have WJ−1 ≤WJ . This finishes the proof of V.
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Appendix G: Definition of Auxiliary Competitive Equilibrium (“ACE”)

This appendix defines the auxiliary competitive equilibrium (ACE) used in the proof of Theorem 1. There are
two types of firms, type I and II, and families. There are as many markets to “buy” and “sell” workers as islands of
type (X, zt).
Preferences of the family.
The families own all firms of both type and consume final consumption goods. They are risk neutral, and discount

future at rate β. X
t

βt
X
zt

Ct

¡
zt
¢
qt
¡
zt
¢

“Labor” is allocated initially to the two types of firms.
To simplify the notation we anticipate that, given the risk neutrality of households, the price for final goods sold

at date t, state zt, is βtqt (zt) .
Problem of firms type I.
There is a continuum of firms type I on each island of type X that “buys” workers from a central location at price

λt (z
t, Z) . They start at period t = 0 with a profile of workers given by their type X. Workers that are “bought” in

this period are given tenure j = 0. They operate the technology F . If they sale workers to the central location, they
obtain a price θt (zt,X) . If they “sale” workers with tenure J or higher at the island level, they loose τ per worker.
The sequence problem for firms type I who “buy” workers at price λt, sell them at price θt, and also pay the

separation cost τ , is the following:
For each (X, z0), they maximize:

X
t=0

βt
X
zt

⎧⎨⎩F

⎛⎝ JX
j=1

Ej,t

¡
zt,X

¢
, zt

⎞⎠− T0,t
¡
zt,X

¢
λt
¡
zt,X

¢⎫⎬⎭ qt
¡
zt
¢

(42)

+
X
t=0

βt
X
zt

⎧⎨⎩
JX
j=0

£
Tj,t

¡
zt,X

¢
−Ej,t

¡
zt,X

¢¤
θt
¡
zt,X

¢
−
£
TJ,t

¡
zt,X

¢
−EJ,t

¡
zt,X

¢¤
τ

⎫⎬⎭ qt
¡
zt
¢

by choice of {Ejt, Tjt}t≥0 subject to to the technological constraints in hiring and firing:

Ej,t

¡
zt,X

¢
≤ Tj,t

¡
zt,X

¢
for j = 0, 1, .., J

Tj,t
¡
zt,X

¢
= Ej−1,t−1

¡
zt−1,X

¢
for j = 1, 2, ..., J − 1

TJ,t
¡
zt,X

¢
= EJ−1,t−1

¡
zt−1,X

¢
+EJ,t−1

¡
zt−1,X

¢
,

given initial conditions
Tj,0

¡
z0,X

¢
= Xj for j = 1, 2, ..., J.

Problem of firms type II.
There is a continuum of firms type II that sells workers to each island, subject to the undirected search technology,

and buys them back from islands. Firms also operate the home production technology. “Purchases” are denoted by
Sjt (z

t,X) with price θt (zt,X) and “sales” are denoted by Yt (zt,X) with price λt (zt,X).
The sequence problem for firms type II that produce home goods and reallocate workers is the following:
For each (X, z0), they maximize:X

t

βtωLt +
X
t

βt
X
zt

X
X

Yt
¡
zt,X

¢
λt
¡
zt,X

¢
η (X|z0) qt

¡
zt
¢

(43)

−
X
t

βt
X
zt

X
X

⎡⎣ JX
j=0

Sj,t
¡
zt,X

¢⎤⎦ θt ¡zt,X¢ η (X|z0) qt ¡zt¢
by choice of {Yt, Sjt, Ut}t≥0 subject to the undirected search technology, so that they cannot sell different quantities
to different islands, which is written as

Ut−1 = Yt
¡
zt,X

¢
for all t, zt,X,
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and the flow constraint stating that workers ”bought” can be allocated to either increase the stock producing at
home or to search:

Ut + Lt − Lt−1 ≤
X
x

X
zt

JX
j=0

Sjt
¡
zt,X

¢
η (X|z0) qt

¡
zt
¢
for all t,

where U−1 and L−1 are given.
Market clearing.
For final goods:

τ
X
x

X
zt

£
TJ,t

¡
zt,X

¢
−EJ,t

¡
zt,X

¢¤
qt
¡
zt
¢
η (X|z0) + Ct

= Ltω +
X
x

X
zt

F

⎛⎝ JX
j=1

Ej,t

¡
zt,X

¢
, zt

⎞⎠ qt
¡
zt,X

¢
η (X|z0) ;

for the market of new (tenure j = 0) workers:

Ut−1 = T0,t
¡
zt,X

¢
for all t, zt,X;

for the market of incumbent (tenure j > 0) workers:

Sj,t
¡
zt,X

¢
= Ej,t

¡
zt,X

¢
− Tj,t

¡
zt,X

¢
for all j, t, zt,X.
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