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1 Introduction 
 
Few pieces of environmental law have created as much controversy as the federal 

Endangered Species Act (ESA).  The ESA was passed in 1973 by large majorities in both 

houses of Congress, following discussion focused on such charismatic wildlife as bald eagles 

and grizzly bears.  Federal agencies were given a broad mandate to constrain activity likely to 

harm a species thought to be in danger of extinction, with minimal scope for cost-benefit 

analysis.  Little thought appears to have been given to issues that might arise when habitat is 

on private land, and the conservation of such habitat has turned out to be of critical 

importance—nine out of ten listed species are found on private land, and most have more than 

80% of their habitat on private land (Innes et al. 1998).  It is clear that any serious effort to 

achieve the ESA’s purpose of conserving “the ecosystems upon which endangered species 

and threatened species depend” must persuade numerous landowners, whether through 

coercion or contract, not to develop much of that habitat.   

This situation has led to numerous controversies over the years, both over species 

listings and the design of remedies.  These controversies have been well publicized in the 

affected region, serving as a warning to landowners that, if their land is likely to be valuable 

to the species in question, they may lose their development rights.  The result is an incentive 

to make the land less habitable to the species, as per a “scorched earth” approach or to 

exercise the development rights prematurely, which may also have the perverse impact of 

degrading the habitat the ESA seeks to protect. 

We believe that our study is the first to measure the extent to which landowners act to 

preempt regulation during the urban growth process, which is widely considered to be the 
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leading cause of habitat loss in the United States (NWF 2001).1  The empirical challenge in 

this case is especially thorny, since the preemptive act we seek to observe is a shift in the 

timing of development activities in which the landowner was likely to engage in any case – 

otherwise, there would be no motive for preemption.  Such a shift can, however, carry a 

considerable economic cost, and in some circumstances the landowner might not have opted 

to destroy the habitat had he observed how land prices actually evolved.  Preemptive 

development may also forestall the negotiation of conservation plans between landowners and 

government or private conservation groups.  

In this paper, we develop empirical strategies derived from our theory to measure 

preemptive development along an expanding urban fringe and apply them to the case of the 

Cactus Ferruginous Pygmy Owl near Tucson, Arizona.  Our identification strategy revolves 

around whether the plot of land was included as part of the owl’s designated critical habitat 

(CH).  Preemption in this case is measured by the difference between CH and non-CH land in 

the timing of development permit applications.   

Using data drawn from more than sixty thousand plots, we find that CH parcels were 

developed on average about a year earlier than similar non-CH parcels.  Alternative empirical 

analyses provide overall support to the proposition that CH parcels were developed earlier, 

indicative of preemption on a scale likely to matter for conservation and efficiency goals.  

Further support in favor of these findings is obtained in an empirical analysis of sales price 

data of undeveloped land.  Our hedonic land price model suggests that market prices for plots 

                                                 
1 We know of only two other studies examining whether agents respond to the ESA’s perverse incentives: a 
survey in which about one in four landowners admitted to managing land in such a way to discourage mouse 
colonies (Brook et al. 2003); and a forestry study which found that trees close to colonies of an endangered 
woodpecker that nests in old trees were harvested earlier than they otherwise would have been (Lueck and 
Michael 2003).  
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of land identified as likely CH parcels become depressed during the period of uncertainty 

before a designation is made.  Combining these insights with the fact that the ESA has been 

regarded by some scholars (Peltzman, 2004, p. 10) as “a colossal failure, having thus far 

produced a net recovery rate of under ½ percent (6 of 1300+) of listed species” points to the 

distinct possibility that the endangered species act is actually endangering, rather than 

protecting, species.   

While these empirical results are interesting in their own right, we view a major 

contribution of our study as methodological.  The methods we develop can be widely 

applied—from any particular economic environment that has the general sequential-move 

nature associated with agent interaction to the more narrow case of any restriction that is 

known to threaten a group of landowners but requires regulatory action before applying to any 

individual units.  Besides species conservation, the most important examples of the latter 

include “smart growth” and anti-sprawl laws, which often ban or limit land conversion on 

particular regions of the urban development frontier.  Furthermore, the underlying model 

permits comparison of such analyses across widely disparate times, locations, and types of 

development restriction.  Combined with field work designed to gather appropriate data, this 

approach is capable of yielding a substantial body of evidence from which the economic and 

environmental significance of land use policies in general can be measured.   

The remainder of our paper is organized as follows.  Section 2 presents a model of 

preemptive development in the context of a growing city.  Section 3 provides a brief 

description of the Endangered Species Act, and contains a description of the data.  Section 4 

summarizes the results of our econometric analysis.  Section 5 concludes.   
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2 Theoretical Model 
 
A landowner deciding whether to preempt a regulatory act weighs the benefits of 

preserving development rights against two types of loss.  The first loss is the extra interest 

paid because the investment is made somewhat earlier than would otherwise be the case.  The 

second loss is the result of uncertainty about future land values: it might turn out that the land 

was not worth developing after all, or not worth developing until a much later time than was 

expected when the preemption decision was made. 

Let r(t,z) denote the rent from a developed parcel with characteristic-vector z  at time 

t. (The dependence on z is suppressed in much of what follows).  Assume that landowners 

expect rent to follow a Geometric Brownian Motion (GBM) process with growth rate g and 

variance σ2 

 dr grdt rduσ= +  (1) 

where u is a standard Wiener process.2  The growth rate g corresponds to the most common 

expression for the growth of an asset value, as a percentage per year.  The variance parameter 

σ measures the extent to which a given day’s rent change is likely to depart from expectation.  

For σ=g, for example, developed land actually falls in value about 16% of the time, and just as 

often it rises by more than double the expected rate g. 

Note that the growth rate and variance parameters do not vary over land; this is 

intended to represent the time path of demand in a single urban housing market (Capozza and 

                                                 
2 In Appendix 3 we provide evidence that the growth of residential housing values in our sample is 
approximately GBM.   
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Helsley 1990).  Let ρ be the interest rate, and assume gρ > .3  At time t the expected 

discounted value of rents is 

 ( , )( , ) r tV t
gρ

=
−

zz  (2) 

which evolves according to  

 dV gdV duσ= + . (3) 

That is, V evolves according to geometric Brownian motion with the same parameters as r. 

V(t,z) is the price for which a parcel with characteristics z would sell at time t if it had 

already been developed.  For a landowner deciding when to develop, V is the termination 

value in an optimal stopping time problem.  Prior to development, the value F(t,z) of the land 

follows the Bellman equation    

 ( )1 1max ,F V C y E dF
dt ρ

⎧ ⎫⎛ ⎞= − +⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

 (4) 

where C is the cost of development, assumed constant over land and time, y is the income 

from undeveloped land, and E is the expectations operator.  Intuitively, this implies that the 

land is worth the greater of what you get by developing now or the expected discounted value 

of what it will be worth tomorrow undeveloped.  The analysis below will be conducted in 

terms of a simplification, the continuation-region Bellman equation, which holds up until the 

moment of development, and with y held at zero  

 ( )Fdt E dFρ = . (5) 

                                                 
3 Violation of this assumption leads to the case of no landowner ever building except, perhaps, preemptively.  
This is a general feature of option exercise problems: as long as the value of the underlying asset is growing 
faster than the interest rate, it is optimal to wait to invest. 
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Let D(t) be defined as equal to one if the owner has permission to develop, zero 

otherwise.  Assume that landowners believe the evolution of D is governed by a Poisson 

process 

 ( )
1

0 1
with probability dt

dD
with probability dt

π
π

⎧− ⎤⎪= ⎨ ⎥−⎪ ⎦⎩
 (6) 

evolving from initial condition ( )0 1D = .  The most important limitation to this assumption is 

its inconsistency with a political or bureaucratic process of known duration – i.e., the case in 

which it is known that development rights will be lost on a particular day or not at all.  It is 

straightforward to show that in such a case no landowner would act preemptively prior to the 

last day.  In the present case, there is no such known duration, but there are several roughly 

anticipatable breakpoints, the significance of which we discuss below. 

The right-hand side of (5) is an expectation over two sources of uncertainty: the 

possibility that development rights go to zero, and the stochastic growth of V.  The analysis is 

greatly simplified by assuming that land yields nothing until developed.4  Under this 

assumption, the loss of development rights will cause the land to be worthless, which implies 

F FD
∂ =∂ . Making use of this observation and Ito’s lemma,5 the expectation of dF is  

 ( )
2

2 2
2

1
2

F FE dF gV V F
V V

σ π
⎛ ⎞∂ ∂

= + −⎜ ⎟∂ ∂⎝ ⎠
.  

Substituting this into the continuation-region Bellman equation (5) and rearranging gives 

 ( )
2

2 2
2

1
2

F FF gV V
V V

ρ π σ∂ ∂
+ = +

∂ ∂
. (7) 

                                                 
4 This seems tenable in our sample, and it appears (but we have not proven) that the results we use are robust to 
sensible generalization (i.e., treating R as the rent differential between developed and undeveloped land). 
5 Ito’s lemma is the formula for the expected value of the differential of a function of a stochastic process. This 
version is discussed in Dixit and Pindyck (1994). 
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Thus, the risk of preemption acts very much like an increase in the discount rate. The 

only difference is that this added discount term disappears once the investment is made. That 

is, the rents, r, are discounted using only ρ to derive the time path of current value conditional 

on development, V; but to get F, the value prior to development, V is discounted with ρ+π.   

This second step is then exactly the classic investment timing problem first analyzed 

by MacDonald and Siegel (1986).  Dixit and Pindyck (1994: Ch. 4, Appendix B) derive 

sufficient conditions under which the solution to this problem can be characterized by a 

critical value *( )V t  such that development occurs the first time V = V*.  The assumptions 

already made are sufficient to ensure that those conditions are fulfilled (in particular, that 

there is no continuation payment, that the termination value is monotonic in V, and that the 

resolution of uncertainty on any given parcel is a one-time event).  That the threshold varies 

over time but not over z values will become clear below. 

Equation (7) is a second-order differential equation in F, subject to boundary 

conditions 

 ( ),0 0F =  (8) 

 * *(1, )F V V C= −  (9) 

 
*V

F D
V

∂
=

∂
 (10) 

Condition (8) follows from the observation that the geometric evolution of V implies that once 

it goes to zero, it stays at zero.  Condition (9) is known as the value matching condition and 

simply states that the value of undeveloped land on the day of development is the value after it 

is developed minus development cost.  
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Condition (10) is known as the smooth pasting condition, and the intuition behind it is 

somewhat more subtle.  Suppose that by waiting for V to rise to *V dV+  the value of the 

option would rise by more than dV.  Waiting would then increase the value of the unexercised 

option to a level above that of the exercised option, since the value matching condition 

requires that two values are equal at *V . Waiting another moment to invest would therefore be 

optimal, which would violate the definition of V*.  

From the general theory of differential equations, all solutions to (7) are linear 

combinations of exponentials in the two roots of the quadratic equation that results from 

plugging (1, )F V AV β= into (7), where A is any constant.  Denote these roots β1 and β2.  Dixit 

and Pindyck (1994) show, with an argument that is not changed by the presence of π, that 

β2<0.  This implies that the boundary condition F(1,0)=0 can be satisfied only if the 

coefficient of the β2 term equals zero (since 0 raised to a negative exponent cannot be a real 

number). 

The key constant governing the behavior of this system is thus the positive root 

 
2

1 2 2 2

1 1 2
2 2

g g ρ πβ
σ σ σ

+⎡ ⎤= − + − +⎢ ⎥⎣ ⎦
 (11) 

The value of the undeveloped land then follows 

 ( ) ( )( )1 1* *(1, )F V V V C V
β β−

= −  (12) 

and the threshold value is 

 * 1

1 1
V Cβ

β
=

−
. (13) 

It is clear from (11) that preemption risk increases β1, and since β1>1 (see (Dixit and 

Pindyck 1994), 5.2.A), (13) implies that any increase in β1 lowers V*.  In particular,  
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( )

1
2

* 1 2

2 2
1

1
2 0

1

g
V C

β
σ

π β σ

−
⎛ ⎞+ −⎜ ⎟∂ ⎝ ⎠= − <

∂ −
.   (14) 

This formally establishes the intuition motivating our study:  a higher perceived probability 

that development rights will be lost lowers the threshold value for conversion of land and 

leads to preemptive development of land.  

2.1 Implications for estimation  
 
In this section, we focus on how our theory structures the appropriate interpretation of 

the data and how particular matching estimators can lend insights into the evaluation.  

Because V follows a geometric Brownian motion process, the moment at which it is expected 

to be V* for the first time given V(t) is ( ) ( )( )*1 ln ln ,V V t z
g

⎡ ⎤−⎣ ⎦ .6  Therefore, the expected 

time of conversion changes with Δπ by (to a first-order approximation) 
*

*

1 V
gV

π
π

∂
Δ

∂
.  This 

shift is independent of the current value V(t,z), which means that preemption shifts the 

expected hitting time back by the same amount for all parcels, regardless of their z values.  

We refer to this hastening of development time as the “timeshift” due to preemptive 

development of land.  

The invariance of the timeshift is due to the geometric nature of the assumed housing-

value growth, and is orthogonal to the stochastic part of the GBM assumption.  This result is 

illustrated in 

                                                 
6 The distribution for the first hitting time under geometric Brownian motion was derived long ago and we 
borrow it from Bar-Ilan and Strange (1996) who cite Cox and Miller (1965).  We note for future reference that 
higher moments of the distribution of first hitting times have not, as far as we know, been derived analytically; 
however, simulation of this model indicates a lognormal distribution. 
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Figure 1, which shows the growth of V over time for a high-value parcel (with zH) and a low-

valued parcel (zL).  The two threshold values correspond to distinct levels of π. Because a 

geometrically growing value increases at a rate that is determined by its level, the lower-

valued parcel is rising at exactly the same speed when it reaches the lower threshold as was 

the high-valued parcel when it reached the same threshold much earlier.  Intuitively, this 

suggests that it takes the same amount of time for it to rise to the higher threshold associated 

with a lower π.  With a normal stochastic component, this equality holds in expectation. 

The invariance of the timeshift implies that it is inappropriate to measure preemption 

by including a π-proxy in any of the popular accelerated failure-time models.  In such models, 

a particular parametric form is assumed for the distribution of (in our case) development times 

and the control variables are assumed to hasten or slow the passage of time.  In the above 

model, the impact of π is additive, not multiplicative — metaphorically, this means that it 

does not increase the speed of a particular runner in the race, but gives that runner a head start.   

The other class of models commonly applied to duration data (i.e., data about the time 

elapsed until some event) is also inconsistent with our theory.  The maintained assumption in 

these models is that each independent variable has a multiplicative effect on the hazard 

function ( )tλ  – the instantaneous probability of development given that it has not yet 

occurred. 

In our model, the increase in V required to induce development at each t is * ( )V V t− .  

From the definition of geometric Brownian motion, the probability of such an increase during 

a small interval dt has normal cdf with mean gV and variance 2Vσ .  Therefore, conditional on 

not having been developed or subject to takings until time t, the instantaneous probability that 

a parcel will be developed is 
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( ) ( )( )
( ) ( )

( )
( )( )

( )

*

*

*

Pr

1

1

t dV V V t

V V t gV t
V t

V t g V
V t

λ

σ

σ

≡ > −

⎛ ⎞− −
= − Φ ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞+ −

= Φ ⎜ ⎟⎜ ⎟
⎝ ⎠

 (15) 

where Φ is the standard normal cdf.7  

A first-order approximation of the change in λ induced by a change in the takings 

probability of Δπ is  

 ( ) ( )( )
( )

* *1V t g V Vt
V t V

πλ φ
σ π σ

⎛ ⎞+ − ∂ Δ
Δ ≈ − ⎜ ⎟⎜ ⎟ ∂⎝ ⎠

. 

Letting ( )( )
( )

*1V t g V
w

V tσ
+ −

= , the ratio of the hazard under high risk of takings to that under 

low risk is 

 
( ) ( )

( )

*

*( )1

Vw w h w VV
w V

πφ
π σ π

σ π

∂ Δ
Φ − ∂∂ = − Δ

Φ ∂
 (16) 

where h(w) is the failure rate of the standard normal distribution.8   The hazard ratio will 

therefore be constant iff   

 ( ) ( ) *11 g VV h
V V

ξ
σ σ σ

+⎛ ⎞
≡ −⎜ ⎟

⎝ ⎠
 

is constant.  The standard normal failure rate has positive slope, however, and the slope is less 

than the failure rate itself -- i.e., h h′ <   (Evans et al., 1993).9  Therefore 

                                                 
7 The final equality, which is purely for convenience, exploits the symmetry of the standard normal density 
function. 
8 The failure rate is also called the hazard function, but we wish to reserve that term for λ. 
9 The standard normal failure rate is an upward curving function of its argument, near zero and with slope near 
zero at w=-3, rising to about 3.2 by w=3, with the slope asymptotically approaching 1. 
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 ( )
*

2

Vh h VV
V

ξ
σ

′−
′ = −  (17) 

is strictly negative in the neighborhood of V*.  

This result implies that if we have parcels of many different z values affected by the 

same π, the multiplication of the hazard will be less on those for which the hazard was already 

high.  These are the parcels with V very close to V*; they will therefore have lower ( )Vξ than 

parcels a bit less valuable.  The value 
*V π

π
∂

Δ
∂

, which multiplies ( )Vξ in (16), is the same for 

all parcels, and is negative.   

It is conceivable, of course, that the distribution of z values might be of just the sort to 

yield a standard duration model, but that seems a rather extreme coincidence on which to 

condition the analysis; hence we focus on four estimators suggested by our theory.10 

The most familiar of these four estimators is a double-bounded Tobit regression of 

days to development on the CH dummy variable and control variables – the censored-data 

equivalent of an ordinary least squares regression in raw time.  This model is incorrect for our 

problem in at least two senses, but we include it as a familiar analog to the less familiar 

approach discussed next.11  The second empirical approach is maximum-likelihood estimation 

                                                 
10 Nevertheless, we have explored some of the duration models that we show as inappropriate.  The estimated 
impacts are statistically significant and roughly consistent with our findings in most contexts.  These results are 
available upon request.   
11 The first problem is that the censoring mechanism maintains the assumption that unobserved development 
times are distributed normally, rather than lognormally; this could perhaps be dismissed by a central limit 
argument about the distribution over z-values, but to our knowledge no such argument has been developed. The 
second problem is that the feature of the data that prevents observations of development times prior to January 
1997 is not censorship, as Tobit assumes, but truncation.  That is, the development times are not coded as 
occurring at our zero date, they are simply unobserved.  In general, one would like to approach such a problem 
by constructing a likelihood reflecting incidental truncation on the left and censoring on the right, but since our 
goal is to provide a familiar analog to the less familiar approach discussed next, that would not be appropriate.  
We should note, however, that we inspected the results of Tobit regressions assuming no problem on the left side 
of the distribution; results were almost identical to those reported below.   
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of parameters derived directly from our theory, controlling for all other variables with a semi-

parametric matching method discussed in Appendix 1.  Under the assumptions already made, 

the distribution of development times is log-normal with a mean that depends on z and on 

whether the parcel is CH.  Identification of the parameter of interest requires that we further 

assume that the variance Dσ  of log development time is common across parcels. Then we 

have 

 ( ) ( )( )ln , DT H N zα μ σ−  (18) 
 

Now suppose that we match each parcel in the CH with a non-CH parcel that has the same z 

values.  Let *
0t  be the development time for a non-CH parcel and *

1t be the equivalent for the 

CH parcel.  We are not, in general, able to observe every t* value since development will 

continue beyond our sampling period, t+ (February 26, 2001).  From (18), however,  the 

likelihood of the sample is given by 

 

( ) ( ) ( )

( ) ( )

( ) ( )

0 1

0

1

0 1
0 1

,

0 1

0 1

ln ln
, | ,

ln ln
1

ln ln

t t t D

t t D

t t D

t t
p t t

t t

t t

α
α σ φ

σ

α
σ

α
σ

+

+

+

<

=

=

− +⎛ ⎞
= ⎜ ⎟

⎝ ⎠
⎛ ⎞− +⎛ ⎞

+ − Φ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞− +⎛ ⎞

+ Φ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

∑

∑

 (19) 

where t0 and t1 are the actual, observed times of development or censoring (the end of the 

sample period), and φ and Φ are the standard normal density and probability functions.  We 

will refer to maximization of (19) as the timeshift estimator. 

The Tobit and timeshift models yield estimates of days accelerated; our remaining two 

approaches do not, but provide alternative contexts in which to test the hypothesis of no 

difference between land classes.  Our third estimator is simply the count of permit 
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applications during designated intervals following potentially important events, again 

controlling for observable confounders by matching.  Matching also yields treatment and 

control samples of equal size, so simple counts are also frequency measures.  Our theory 

indicates that any such difference in counts should be interpreted as evidence of a change in 

Δπ at the start of the interval, or at most Δt days prior to the start (where Δt is the number of 

days by which Δπ hastens development – i.e. α in the timeshift estimator is an estimate of Δt).  

A persistent Δπ will shift as much development out of later intervals as into them.  

Our fourth, and final, measure is a rank-based statistic to compare the survival curves 

for each of two matched samples – i.e., for each date, the fraction of the sample that remains 

undeveloped.  Our model predicts that the survival curves for well-matched samples should 

diverge around the onset of treatment, and eventually stabilize parallel to one another in the 

horizontal (i.e., time) dimension. We test this in the most general way possible by examining 

the sample statistic corresponding to 1 0( )P t t< . Call this statistic μ. A traditional Wilcoxon 

test is based on  
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for some estimate of the variance of μ, V(μ).  Under the null hypothesis that the two survival 

curves are equal, Wχ has χ2  distribution with one degree of freedom.  

We present estimates of Wχ using a variance estimate derived under the assumption 

that permits are sought according to a logistic distribution of some monotonic transform of 

time. Such an assumption is necessary in order to deal with censoring, yet we should note that 

in our case the alternative assumption of an extreme value distribution produces qualitatively 

identical results.  In calculating bootstrap intervals, we focus directly on a straightforward 
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analog of the above μ adjusted for ties, the sample analog of 

1 0 1 0
1( ) ( )2P t t P t t< + = (Halperin et al. 1989).  No further distributional assumptions are 

required, because no variance estimate is needed. 

3 ESA Background and Data Description 
 
The exact consequences of designating land as CH remains one of the ESA’s “most 

contentious, ambiguous, and confusing concepts” (Bean and Rowland, 1997, p. 251).  Yet, 

Houck (1993, p. 1436) seems to summarize accurately the general public’s perception when 

he notes that “there is no doubt that critical habitat designations are a red flag to the 

development community and that community’s representatives in Congress.”  Because of the 

complexities of potential restrictions on development, we focus on the response of builders to 

the “red flag” revelation of information that might signal an increased probability of future 

restrictions to a landowner, rather than assume mechanistic legal or biological linkages.12  In 

this spirit, for our purposes, an important feature of the ESA is Section 9, which prohibits any 

individual from “taking” an endangered species.13  The only way to avoid liability under 

Section 9 is described in Section 10 of the ESA.  Section 10 requires individuals to obtain an 

incidental takings permit (ITP), which must be accompanied by a habitat conservation plan 

detailing how the proposed activity will affect the species, what steps will be taken to 

minimize such impacts, what alternatives that would not result in takings were considered, 

                                                 
12 Designation of critical habitat boundaries may be perceived as influencing the treatment of a parcel of land 
under many development restriction processes, including under potential habitat conservation plans.  
13 A “taking” is usually defined quite broadly, following the original elucidation of the Secretary of Interior, who, 
in 1975, declared that any significant environmental modification and degradation of habitat was included under 
the definition of a taking.  This general definition has survived judicial scrutiny in the Palila v. Hawaii 
Department of Land and Natural Resources case as well as the 1995 Supreme Court case Babbitt v. Sweet Home 
Chapter of Communities for a Great Oregon.  Furthermore, in the latter, the justices ruled that the actor’s intent 
is irrelevant. 
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etc.  Since penalties for violating the ESA depend on the violator’s state of knowledge (see, 

e.g., Bean and Rowland, 1997, p. 227-229), whether the land is within or outside CH 

boundaries might be critical in determining whether a violator can be held liable. 

In our case study, as in most endangered species cases, the endangered species was 

listed, and a proposed CH map was published, months before the CH went into effect, 

allowing landowners ample time to respond.  The Pygmy Owl was listed as an endangered 

species on March 10, 1997, with little scrutiny or local press coverage in Tucson, Arizona.  

On November 14 of that year, protests were held and lawsuits filed against the Amphitheater 

school district in Tucson which was proposing to build a new high school on a site thought to 

be valuable habitat for the pygmy owl.  Local newspapers subsequently began major coverage 

of the issue.  The proposed CH boundaries, which are depicted in Figure 2, were drafted by 

the U.S. Fish and Wildlife Service and presented to the public on December 30, 1998.  

Official designation occurred more than seven months later, on August 11, 1999.14  The CH 

designation displayed in Figure 2 covers roughly 1.2 million acres and was based on the 

biological requirements of the species.15   

3.1  Data 
 
                                                 

14 In our figures and tables, these dates are referred to as Listing (List), Protests (Pro), Map, and Final 
respectively. 
15 In practice, the boundaries designated were unchanged from the draft boundaries presented during the hearings 
(U.S. Department of the Interior, Fish and Wildlife Service 1999).  This outlines the status quo when our data 
were generated.  Later, however, an Arizona District Court vacated the critical habitat designation, citing 
deficiencies in the economic analysis.  There will soon be a proposed rule issued in response to the court's order.  
Before the final publication of the CH designation, the Department of the Interior will evaluate the economic 
impact of the CH designation and may exclude parts of it for economic and other considerations.  The new 
proposal covers more area than the 1999 CH designation, but less of it is private land.  The reader should bear in 
mind that, if such a reversal is anticipated, landowner incentives to preemptively develop land are considerably 
less than otherwise would be the case.  A landowner with perfect foresight would preemptively develop only if 
she had been otherwise planning to develop during the two and a half years following August 1999; otherwise, it 
would potentially pay more to wait to preemptively develop the land during the new window of opportunity 
opened by the reversal. 
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Of more than 300,000 parcels in Pima County, Arizona, 62,379 constitute the sample 

analyzed herein (58,706 non-CH and 3,673 CH parcels).  This lower figure was obtained 

because all parcels that were already developed prior tom our sample period were removed, in 

the belief that loss of development rights, and therefore the motivation for preemption, is 

largely limited to land on which nothing has yet been built.  A parcel was thus removed from 

the sample if the Pima County Assessor's office recorded non-zero value of improvements at 

the start of 1997.  The partitioning of the land into parcels corresponds to records maintained 

by the county’s Department of Transportation and Planning and Zoning Office.  Parcels are of 

various sizes and shapes and are the units in which building permits are requested.  For each 

parcel, we identified the date that a construction permit was sought; this is our measure of 

development timing.16  

The variables used to correct for differences between CH and non-CH parcels consist 

of an “ecological” and an “economic” group.  The former variable type includes aspects of 

landscape topology calculated from maps – elevation, slope, and aspect (the compass 

direction a slope faces) – as well as soil type, plant coverage, hydrological class, plant cover, 

satellite measures of greenness in 1996, and USDA estimates of suitability for twelve types of 

habitat.  These were taken from the U.S. Geological Survey and the U.S. Department of 

Agriculture, and are measured on a fairly coarse grid.   

Most of the economic data are from the 1990 Census and are measured on an even 

coarser grid – the block or block group.  These data consist of mean commute time to work, 

rental rate, population, housing vacancy, median home value, median rent, unemployment 

                                                 
16 According to the permit database, the vast majority of permits applied for are awarded, and construction 
begins soon after the permit award date.  An interesting analysis would be to estimate whether in- and out-of-
state landowners reacted similarly.  We reserve this examination for another occasion. 
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rates, and mean salary.  Also included in the economic data are distances to amenities and 

disamenities identified from the county land-use maps – golf courses, prisons, highways, 

parks, and downtown areas --  and for these data each parcel has its own value.  The distance 

calculated is to the nearest example of each entity. 

Actual regressions were run on the principal components derived separately from 

ecological and economic variables.  Ten components from ecological variables and nine from 

the economic variables are used in the results presented, capturing about 99% of the variance 

in the data (a more detailed explanation of our data collection is contained in Appendix 2). 

Over our time period, construction permits were issued to 1,409 of the 3,673 CH 

parcels, and to 16,028 of the 58,706 non-CH parcels.  If the plots were identical, this statistic 

alone would provide interesting evidence, since the proportions are quite uneven.  More 

compelling, however, is an examination of the temporal development rates across CH and 

non-CH parcels.  Consider Figures 3a and 3b, which provide development rates across CH 

and non-CH parcels around events likely to raise fears among owners of habitat land.  Trends 

in Figure 3a for non-CH reveal that construction permits were roughly stationary—around 

325 permits during our time period.  There is little evidence of a large and meaningful effect 

of the various events in these data.   

Alternatively, Figure 3b, which plots construction permits on CH parcels, shows a 

sharp increase in permits just prior to final designation of the habitat area on August 11, 1999:  

from December 1998 to just before August 11, 1998, permit applications tripled, whereas they 

slightly decreased for non-CH parcels over this same time period.   

While these data provide compelling insights, such a comparison of the treatment and 

control groups might be misleading.  CH parcels are somewhat higher in altitude and 
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considerably less steep than surrounding land.  And, CH parcels are in wealthier parts of the 

region—the Census tracts within which CH parcels lie have average salaries more than twice 

as high and median housing values about 30 percent higher than other tracts; and the assessed 

values of the tracts are about 10 percent higher for CH parcels.  Parcels outside the CH area 

are roughly twice the size of those within, and the USDA classifies CH land as significantly 

more suitable for wildlife requiring open land.  Furthermore, CH land is predominantly 

(>90%) of the hydrological class B, a classification representing the best-drained regions.17  

Thus, it is possible that certain observable variables affect which units get treated and the 

outcome of interest.  This potential nuance motivates us to consider the empirical models 

derived theoretically above.  

4 Empirical Results 

4.1 Preliminary: Some aspects of the matching procedure 
 
In the empirical models below we make use of the entire data set and various matched 

samples.  To obtain the matched pairs we first estimate a probit regression model to predict 

CH status, and then match each CH parcel to the non-CH parcel with the closest predicted 

probability of being CH (known as the “propensity score”).18  By matching every CH parcel 

with a non-CH parcel, we obtain the “Nearest Neighbor” sample identified by the tag “NN” 

below.  Other more narrowly defined samples are formed by restricting the match to parcels 

with propensity scores that are sufficiently similar and that are near to one another 

                                                 
17 For the matching estimators discussed below, this component of difference was dealt with by removing from 
the sample all the tracts that were not class B. 
18 Empirical results based on propensity score matching are typically preceded by a discussion of the probability 
model used to generate the propensity scores.  In the present case, substantial multicollinearity required that 
these models be estimated on principal components (see Appendix 1), which renders the coefficient estimates 
uninteresting.  Hence, discussion is omitted, but we make the results available upon request.   
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geographically.  Of course, the purpose of matching is to develop a “balanced” sample – that 

is, one in which the distribution of covariates is similar in the CH and non-CH sub-samples; 

this two-dimensional criterion was found to yield balance superior to that achieved with 

propensity score matching alone.  Thus, we provide several estimates from samples with 

propensity scores not more than X% apart and locations not more than X thousand 

international feet apart, identified by “PX GX” below.  The use of the same X for the 

geometric and propensity bandwidths was decided upon after initial exploration indicated that 

no great improvement in balance statistics was available using different bandwidths  

The only matched sample that can be said truly to have “passed” a balance test 

consists of pairs that had propensity scores separated by no more than 1%, and were within 

1000 feet of each other.  As the matching criteria become more liberal, the number of matched 

pairs rises and the balance deteriorates (see Table 1a).  In the case of NN matching, which by 

construction matches all CH parcels, the hypothesis of equal first moments between CH and 

non-CH samples could be rejected for any of the 26 control variables at the p < .10 level.  

Therefore, in addition to the simple comparison of CH and matched non-CH sub-samples, we 

consider regression-adjusted estimates in which the variables that were not balanced by that 

criterion (p < .10) are included as covariates together with a CH dummy in a suitable model of 

development timing.  

Finally, note that we provide for most estimates two confidence intervals.  The first, 

based on standard analytic formulae, would be correct if the matching were perfect – i.e., if 

the non-CH parcels were identical to the CH parcels.  These are almost certainly too narrow. 

The second, which is omitted if the first showed no significant impact, is based on bootstrap 
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replications of the entire data-processing sequence.  These are likely too wide.  A more 

detailed discussion of these points is provided in Appendix 1. 

4.2 Estimates of timeshift  
 
In Table 1 we present measures of preemptive acceleration in the natural unit, days of 

difference between CH and non-CH plots.  The first column in Table 1 consists of two-sided 

Tobit models using the entire sample, which are maximum likelihood estimates of 0β in  
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where t is the time of the first permit application in days from start of observation, CH is a 

dummy variable equal to one if the land is inside the CH area (shaded portions of Figure 2), 

and , 1, 2,...,19iPC i =  are the principal components described above.  We include three 

distinct time frames in the rows of the table:  in the top row, Full, t-=0 and t+=1516, the final 

day of observation; in Pre-map we explore from t-=0 to t+=727, the day the map was published 

(December 1998); and in Post-map, t-=727, t+=1516.  Maximum likelihood 95% confidence 

intervals are in parentheses; for comparison to later matching results, we also present non-

parametric bootstrap intervals.  

The remaining three columns are from maximization of the likelihood function (19) 

with the variance parameter σ set to 500 or 1000 for two of the matched samples.19  The final 

                                                 
19 Results with σ left free could not be obtained because the likelihood function increases monotonically in σ. 
However, under the maintained assumptions of fixed σ and perfect matching, these estimates differ significantly 
from zero and have the expected sign. 
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column in Table 1 provides timeshift estimates for the NN sample.  The estimates that are to 

be favored a priori—two timeshifts from the well-balanced sample P1G1—indicate 

preemptive acceleration of nearly one year (272-326 days in the post-map), and slightly 

greater than one year (331-485 days in the Tobit full sample model), respectively.  A few 

remarks are in order about the implications of these results.  First, preemption of one year 

corresponds to approximately 2% of the sample habitat.  Second, the analysis of price data in 

Appendix 2 indicates a growth rate of about 1-3% quarterly, with a standard deviation of 

about the same magnitude.  The lower end of these growth rates seems quite improbable, 

given the perception that home values were appreciating rapidly (although this should not be 

seen in light of exceptions formed since 2000).  Erring, therefore, on the high side and 

rounding, assume that we have growth rates and variance parameters of about 0.1 in annual 

units.  Interest rates at the time were in the 7-9% range.  Simulations based on our theory 

using these parameters indicate that a one year shift in permitting time is consistent with a 

perceived differential in the fear of losing development rights ( πΔ ) of about 0.2% per year.  

4.3 Rank-based tests of significance of timeshift 
 
As an alternative estimator, consider rank-based tests for the equality of the CH and 

non-CH survival curves in the matched samples, which are presented in Table 2.  Recall that 

these tests depend only on the order in which parcels were developed, ignoring the precise 

length of each interval between development dates.  The tests are thus insensitive to variations 

in the overall development rate – i.e., whether development was occurring steadily, or 

accelerating, or had a peak of activity.   

The first two columns in Table 2 provide the actual number of permit applications 

observed in each category and a predicted development number, where the prediction is the 
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sum over all time periods of the number of parcels still awaiting their first permit and the 

sample-wide (i.e., CH and non-CH) rate of permit application.  The main value of these 

numbers is that they provide an indication of which set of parcels correspond to the earlier 

developments, which cannot be deduced from the Wilcoxon χ2.   

In each case it is the CH parcels that are developed more than predicted, consistent 

with our theory of preemption:  the Wilcoxon χ2  statistic reported in the third column is 

significant at all levels in each case except the small (75 pair) sample P1G1 and during the 

pre-map phase in P10G10.  In the final column, parallel statistics are presented for the 

ordering of residuals from Cox proportional hazard regressions on all the unbalanced 

variables in each of the larger matched sets.20  Empirical results are nearly identical to those of 

the unadjusted tests, indicating that in this context the assumption that covariate influences on 

timing are orthogonal to the treatment effect is not more restrictive than the assumption that 

those influences act to multiply the hazard.  In terms of hypothesis tests, the only difference is 

that the pre-map impact for P10G10 is now significant at the p < .05 level. 

Frequency of permit application in designated intervals  
 
A complement to the rank-based tests is an analysis of the counts of the numbers of 

parcels in and out of the CH for which permits were sought in each time period (see Table 1a 

in Appendix 1).  These figures suggest that while the best-matched sample does not provide 

evidence of preemptive development, it is immediately obvious that such a narrow test lacks 

power.  For example, some of the larger samples in Table 1a suggest significant differences 

exist.  But, the unbalanced nature of the regressors renders such estimates speculative.   

                                                 
20  The Cox model is the most general proportional hazards model, and nests most of the popular fully parametric 
duration models. 
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We address this matter with probit estimates of the CH-dummy coefficients from 

Probit21 regressions including all of the control variables not balanced at the 90% level in each 

matched sample; that is, these are maximum likelihood estimates of 0β  in 
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where Φ is the standard normal cumulative density function.  The interval dummies offer an 

alternative way to calculate the significance of preemptive development to thwart 

conservation goals.   

For parsimony, we suppress these results but note that they are much weaker and 

considerably noisier compared to preemption measures in Tables 1 and 2.  Yet, the NN probit 

estimates show an increased probability of about 6%; the P10G10 shows a 40% increase.  

These estimates provide an idea of the range of these calculations, and highlight that these 

point estimates of preemption are in the broad range of those implied by the timeshift 

estimates.  

4.4 Impact of CH status on the price of undeveloped land 
The incentives are wrong here. If a rare metal is on my property the value of my 
land goes up. But if a rare bird is on my property the value of my property goes 
down.  --Sam Hamilton, former U.S. Fish and Wildlife Service administrator for 
Texas 

 
In our theoretical model there are two reasons why one parcel might be developed 

earlier than another: a difference in π or a difference in z.  Thus far, we have examined 

strategies to control for the influence of z, and have found evidence that CH designation 

introduced a π differential.  As a robustness check of these results, we examine an alternative 

                                                 
21  Logit regression adjustments were also performed, yielding the same pattern of likelihood-based significance. 
The logit, however, turned out to be a much inferior fit to the data; among other things, it often failed to 
converge under resampling.  
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data set in which the two sources of difference in development timing should be sharply 

distinguished.  Parcels developed earlier due to their z values should sell for higher prices than 

less desirable plots; parcels developed earlier due to preemption motives should sell for less 

than those under lower regulatory risk.  

We collected data on approximately 7,000 sales of parcels that were undeveloped 

during the entire time period and regressed the log of sale price per acre on the CH dummy, 

time dummies, the 19 principal components of controls, and the interaction of time and CH 

status dummies.  The estimated coefficient on the interaction of the CH and post-map dummy 

variables is of the greatest interest.  If we are observing preemption, then we expect a negative 

coefficient.  If all of our results are due simply to insufficient control for CH land being more 

valuable, the estimated coefficient should be zero, since the CH dummy variable alone will 

capture the linear impact of that difference.  And, if our strongest evidence, which is from 

increasing development differentials after the map was published, is actually due to an 

increase in the development value of unobserved features of the CH regions that occurred at 

about the same time, the coefficient should be positive. 

Empirical results are presented in Table 3; time is divided only into pre- and post-map 

intervals in the right-most column, corresponding to the sort of sharp treatment on with which 

most of our analysis above was conducted.  We find that the coefficient of interest is negative 

and statistically significant at conventional levels, indicating that undeveloped land fell in 

value by about 22% if it was within the critical habitat boundaries.  To our best knowledge, 

this is the first empirical estimate of such an influence, but it corresponds to our theoretical 

model and extant intuition, as per the Hamilton quote beginning this section.  When time is 

divided more finely, as in column 1 of Table 4, none of the interaction terms is significant, but 
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those corresponding to after the map was published remain negative and statistically 

significant jointly at conventional levels. 

In sum, our estimates all point to the importance of offsetting behavior among 

landowners.22  While an entire analysis of the proper counterfactual to answer whether these 

offsets have entirely undone (or more than undone) the spirit of ESA’s intended effects is 

beyond the scope of this study, basic success rates of the ESA suggest that it is a distinct 

possibility.  When the ESA was passed, there were 119 species listed; since 1973, 40 species 

per year have been added to the list (Peltzman, 2004).  A large portion of these 1,300 species 

that had been listed have their habitat on private lands, forcing regulators to rely heavily on 

private landowners.  The recovery process has not gone well by any measure, as Peltman 

(2004) calculates that only 6 of the 1,300+ species have been recovered by the ESA.  Our 

exploration provides empirical estimates that shed light on reasons for this low recovery rate.  

5 Conclusions 
 
Whether the Endangered Species Act is having its desired effect clearly depends on 

the response of landowners and developers.  The prospect that these agents will view aspects 

of the Act as a threat to their development rights and respond by developing preemptively 

opens up the possibility that the Act could actually endanger the same species it is purporting 

to protect.  This paper offers an estimation of the likelihood of that possibility.  We develop 

theory and offer a menu of theory-driven empirical models to measure preemptive 

development in response to critical habitat designation. 

                                                 
22 In this light, our estimates complement the original automobile safety work of Peltzman (1975) and more 
recent work of Acemoglu and Angrist (2001), who examine the Americans with Disabilities Act. 
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We estimate that land designated as critical habitat was developed about a year sooner 

than similar land not so designated.  These estimates highlight the vast extent to which 

landowners view critical habitat designation as a threat to development rights and act to 

exercise those rights before regulation abrogates them.  While our species potentially covers a 

large land area, such a result provides the first evidence that this component of the ESA could 

effectively seal the fate for species occupying a small area.  This result is made even stronger 

when one considers that every theoretically permissible approach to the data yields insights 

consistent with preemptive land development.  The policy implication is perhaps stronger than 

it would first appear.  Under the letter of the law, critical habitat designation on private land 

provides, in most cases, no statutory protection to the species beyond that enjoyed on other 

land.  Thus, even a tiny preemptive response may indicate that this particular aspect of the law 

is quite harmful to the species it seeks to protect. 

Besides providing the first set of empirical estimates of what may be the most 

widespread form of preemption, we view a major contribution of the paper to be 

methodological.  The methods herein apply to a wide variety of economic decisions that 

involve a sequential move process within a principle-agent relationship.  More narrowly, the 

estimators speak to a wide variety of land-use restrictions contemplated on the fringe of 

growing cities.  Beyond the development of such new estimators, one important lesson has 

been learned which should be considered by future researchers in this particular area of study.  

These data, although merged from public records gathered for disparate purposes, and largely 

measured on spatially lumpy units, appear to be adequate for our purposes.  This insight 

should provide a degree of confidence to others that well developed parsimonious models can 

be estimated with even the coarse land use data that are publicly available.    
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Figure 1: Invariance of timeshift to z 
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Figure 2:  Critical Habitat Area 
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Figure 3a:  Monthly permits (Pima County) outside of critical habitat  
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Figure 3b:  Monthly permits inside of critical habitat 
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Table 1: Measures of preemptive acceleration in days 
Sample Tobit Full 

Sample 
Timeshift σ=500 

P1G1 
Timeshift 

σ=1000 P1G1 
Timeshift 
σ=500 NN 

Full 288 
(228-347) 
[221-347] 

248 
(229-267) 

[NA] 

273 
(231-315) 

[NA] 

2788 
(2675-2901) 

[NA] 
Pre-map 300 

(250-349) 
[245-346] 

NA NA 808 
(NA) 
[NA] 

Post-map 408 
(331-485) 
[323-496] 

299 
(272-326) 

[NA] 

317 
(260-374) 

[NA] 

1568 
(1447-1689) 

[NA] 
Controls P.C. None None None 

95% confidence intervals from maximum likelihood in parentheses, from non-parametric bootstrap distribution 
in square brackets. NA means not available, indicating extreme estimator instability. 

 

Table 2: Wilcoxon tests of equality of survivor functions in selected matched samples 

 APPLICATION DATE COX RESIDUAL 
Sample  Events Predicted Wilcoxon χ2 Wilcoxon χ2 
P1G1 

 
non-CH 

CH 
26 
29 

27.5 
27.5 

0.07 
p≈0.763 

Pre-map non-CH 
CH 

9 
10 

9.54 
9.46 

0.06 
p≈0.8020 

Post-map non-CH 
CH 

17 
19 

17.95 
18.05 

0.02 
p≈0.8951 

 

P5G5 
 

non-CH 
CH 

65 
360 

234.11 
190.89 

258.60 
p≈0.0000 

260.92 
p≈0.0000 

Pre-map non-CH 
CH 

8 
56 

27.36 
26.64 

27.88 
p≈0.0000 

28.01 
p≈0.0000 

Post-map non-CH 
CH 

57 
314 

206.75 
164.25 

232.54 
p≈0.0000 

235.01 
p≈0.0000 

P10G10 non-CH 
CH 

263 
576 

436.29 
402.71 

123.64 
p≈0.0000 

186.08 
p≈0.0000 

Pre-map non-CH 
CH 

141 
148 

146.13 
142.87 

0.44 
p=0.5803 

3.92 
p≈0.0478 

Post-map non-CH 
CH 

122 
428 

290.17 
259.83 

196.23 
p≈0.0000 

239.09 
p≈0.0000 

NN non-CH 
CH 

519 
1343 

984.5 
877.5 

265.53 
p≈0.0000 

260.24 
p≈0.0000 

Pre-map non-CH 
CH 

272 
417 

347.15 
341.85 

34.57 
p≈0.0000 

10.31 
p≈0.0013 

Post-map non-CH 
CH 

247 
926 

637.35 
535.65 

509.60 
p≈0.0000 

 

542.59 
p≈0.0000 

Terms in square brackets are bootstrap 90% confidence intervals. 
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Table 3: Hedonic regressions on CH Location Dummy and Time Interval Dummy 

 ln($/Acre) ln($/Acre) 

CH location 0.855838** 

(0.204682) 
0.884948** 

(0.097543) 

List-prot -0.27961** 
(0.080044) 

 

Interaction with CH 
location 

-0.07491 
(0.265221) 

 

Prot-map -0.43512** 

(0.074627) 
 

Interaction with CH 
location 

0.083693 
(0.233004) 

 

Map-CH -0.48089** 

(0.078323) 
 

Interaction with CH 
location 

-0.11414 
(0.254996) 

 

Post-CH -0.48579** 
(0.073588) 

 

Interaction with CH 
location 

-0.22019 
(0.236046) 

 

Post-map  -0.16261** 

(0.036718) 

Interaction with CH 
location 

 -0.22165* 

(0.131315) 

OLS standard errors in parentheses 
* Statistically significant at 90% level 
**Statistically significant at 95% level 
Pre-listing is omitted time category in first column, pre-map in second. 
19 principal components were also included in both regression models. 



 36

Appendix 1:  Matching 
 
In any study focused on the impact of a single dummy variable (or “treatment”), the 

ideal approach is to apply the treatment to a randomly selected fraction of the sample.  When 
the data are not from a completely randomized experiment this is impossible, and anything 
that affects both which units get treated and the outcome of interest biases the estimate of the 
effect of treatment.  Additional information about the sample (i.e., other variables) can be 
used to mitigate this bias in one of two ways.  The tactic most familiar to econometricians is 
multivariate regression of the outcome on the treatment dummy and control variables. The 
coefficient on the treatment dummy then measures the effect of interest under the maintained 
assumption that all the control variables affect the outcome in the way assumed by the 
regression model, such as linearly, quadratically, or logarithmically.  

Another approach is to discard part of the sample, selecting treatment and control 
groups in a way that mimics randomization of treatment.  The objective is that the observable 
covariates have the same distribution in the two groups, in which case they are said to be 
perfectly “balanced”.  If all the covariates took on only a few discrete values, and if there were 
plenty of non-CH parcels, we could construct a perfectly balanced control group by matching 
each CH parcel to an identical non-CH parcel.  With continuous data this is impossible, and 
since we have many variables it is not even possible to find for most treated units a control 
that is nearby (i.e., a “curse of dimensionality”).   

We therefore adapt a procedure known as “propensity score” matching (Rosenbaum 
and Rubin, 1983).  This procedure involves first estimating a model in which CH status is 
assumed to depend on the observed covariates.  The predicted probability of being in CH (the 
“propensity score”) is then used to match CH and non-CH parcels.  This approach has been 
widely used to measure the impact of program participation on labor market outcomes (see, 
e.g., Heckman et al. 1997) and is expanding rapidly to other measurement problems (e.g., List 
et al., 2003).  

In our case, superior balance was found to result if the propensity matching was 
complemented by a limitation on the geographic distance between parcels.23 Although this 
decision was made purely on the basis of ex post balance diagnosis, it might have been 
suggested a priori as a way to take maximum advantage of the spatial correlation inherent in 
much of the data – i.e., the fact that neighboring parcels have very close distances to important 
amenities and disamenities, and often identical values for data measured at the census block or 
similar level. Restricting the matches to geographic neighbors also mitigates bias due to 
unobserved spatially correlated variables, the variation of which is not well captured in our 
data. 

When it is not possible to achieve acceptable balance terms of all covariates, a hybrid 
of the regression and matching approaches is used:  first match, then regress the outcome 
variable on the treatment dummy and those covariates that remain most imbalanced.  In our 
case, we report both unadjusted differences and regression adjusted results using all covariates 

                                                 
23 To assess balance, we examined the simple difference in first moments for each variable, as well as histograms 
and kernel density plots allowing visual assessment of higher moments.  No attempt has been made to assess 
balance in terms of more than one variable simultaneously. Probit-based propensity models were found to 
perform consistently better than logit or linear-probability models.    
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for which t-statistics reject equality of means between CH and matched control parcels at a 
10% level. 

Since the matching process itself involves estimation, analytic confidence intervals are 
too narrow.  We therefore report both analytic intervals, which measure confidence 
conditional on perfect matching, and (non-parametric) bootstrap intervals.  The idea behind 
bootstrapping is to sample with replacement from the data repeatedly, recalculating the 
statistics of interest each time. The confidence intervals are then bound by corresponding 
percentiles of the distribution of the statistics so calculated.  If in fact the observed data are 
independent observations, this procedure yields distributions approaching those that would be 
achieved by independent sampling of the underlying universe – i.e., those that form the basis 
of ideal frequentist intervals and hypothesis tests.24  

Data gathered from a geographic region are not, in fact, independent, which is one 
reason why the analytic intervals are also reported and should not be ignored.25 At the very 
least, our data are weakly dependent because they constitute much of a finite sample. Further, 
one might reasonably argue that what we are in fact observing is a single realization of a 
process spread over space – which is what the timeshift estimator assumes. In the case of a 
low-order autocorrelation process in a time series, the non-parametric bootstrap can greatly 
overestimate the variance of the simple estimator of the mean value (Davis and Hinkley 
2003). The analogy to spatial autocorrelation is straightforward.  

It is not always clear that reported bootstrap intervals are calculated as they should be. 
The ideal is to replicate every step of data processing that could possibly vary across samples. 
The only sense in which we fall short of this ideal is that we removed from consideration 
parcels of drainage classes that are extremely rare in the CH (see below). After drawing each 
sample, we calculated a sample-specific propensity score; eliminated parcels for which any 
variable took on a value outside the common-support region (i.e., the set of values bound by 
smaller of the treated and control maxima and the greater of the two minima); determined 
which variables required regression adjustment; and calculated the several measures of 
preemption outlined in the previous section. And all of this was done with a ballpoint pen on 
legal pads; it’s amazing we survived. 

To summarize and add a few details: we first remove parcels outside the common 
support region, then run a probit regression to predict CH status.  We then match each CH 
parcel to the non-CH parcel with closest predicted probability of being CH.  This gives the 
“Nearest Neighbor” sample identified by the tag “NN” in the text.  Other samples are formed 
by restricting the matching to those with propensity scores not more than X% apart and 
locations not more than X thousand international feet apart, identified by “PX GX”.26  The use 
of the same X for the geometric and propensity bandwidths was decided upon after initial 
exploration indicated no great improvement in balance statistics was available using different 

                                                 
24 There are by now many excellent treatments of the bootstrap, but Effron (1979) remains a good starting point 
for those seeking a more thorough discussion.  See also Meeker (1998) and Davison and Hinkley (2003) for 
recent discussions.  
25 The analytic intervals also assume independence, but the bias resulting from violation of this assumption is 
likely exaggerated in the bootstrap. Intuitively, bootstrap samples that pick up several replications from each of 
set of autocorrelated observations will exaggerate the frequency of values associated with those observations. 
See Lahiri (1992) for a case in which this is intuition is backed by proof.  
26   In the latter cases, the matching was done with replacement, although the nearest neighbor matched sample 
was created without replacement. This incongruity was accidental; preliminary exploration indicated that 
keeping or dropping matched controls makes almost no difference.   
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bandwidths. The timeshift, interval counts, regression adjustments to interval counts, and 
rank-based tests of survival curve similarity were all calculated on each of these matched 
samples, and a double-bounded Tobit regression was run on the whole sample.  Non-
parametric bootstrap intervals were calculated for most estimators, but this step was omitted 
for those which gave no preliminary evidence  of preemption; for the timeshift estimator, 
which was simply too unstable to generate meaningful numbers in many replications; and for 
the a regression adjustment to the rank-based tests, which yield results very close to the 
unadjusted data. 

Table 1a provides a data summary.  In Table 1a, we include all of the relevant time 
frames that might be of interest.  The features of the matching scheme relevant to the problem 
at hand appear at the bottom of Table 1a.  The only matched sample that can be said truly to 
have “passed” any balance test is P1G1 (columns two and three).  The “P1”, recall from 
Appendix 1, implies that these pairs had propensity scores separated by no more than 1%, and 
the “G1” means they were within 1000 feet of each other.  Thus, this sample consists of pairs 
of parcels adjacent to the CH boundary, discarded if their propensity scores were not quite 
close.  There are 75 such pairs.  The balance test they passed is reported in the bottom row, as 
the zero under “Ill-balanced controls”.  This zero means that for no covariate could the 
hypothesis of identical means between CH and non-CH be rejected at the 10% level by a 
traditional t-test.  

As the matching criteria become more liberal, the number of matched pairs rises and 
the balance deteriorates, as one would expect.  In the case of the nearest-neighbor matching, 
which by construction matches all 3332 CH parcels, the hypothesis of equal first moments 
between CH and non-CH samples could be rejected for any of the 26 control variables at the 
10% level.  The regression adjustments below make use of all the variables being used in this 
last row. 

One further point requires mention as an indication of non-representative sampling. 
The matching process seems to pick up a disproportionate number of the parcels for which 
permits were sought: nearly half of the best matched sample (72 of 150) and more than a 
fourth of all the others.  In the region as a whole, only 13% of parcels were the subject of 
permits during observation. 
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Table 1a: Development Permit Applications During Designated Intervals 
Interval 
(# days) 

P1G1 P5G5 P10G10 NN 

 CH NCH CH NCH CH NCH CH NCH 

Pre list 
(67) 

1 
(0.25-5.4) 

1 
(0.25-5.4) 

8 
(3.5-15.7)

[0-7] 

1 
(0.03-5.6)

[0-4] 

15 
(8.4-24.7)

[4-19] 

3 
(0.6- 8.8) 
[0-21.4] 

28 
(18.6-40)
[15-38] 

8 
(3.4-15.7) 

[1-38] 
List-prot 

(249) 
0 

(0-3.6) 
1 

(0.25-5.4) 
16 

(9.2-25.9)
[0-15] 

1 
(0.03-5.6)

[0-5] 

64 
(49.5-81)
[23-75] 

52 
(39- 68) 
[3.6-193] 

120 
(100-143)
[82-138] 

105 
(86-127) 
[35-571] 

Prot-map 
(411) 

11 
(5.7-18.6) 

8 
(3.4-15) 

20 
(12.3-31)

[7-24] 

6 
(2.2– 13)
[3-56.55] 

65 
(50.4- 82)
[27.6-74] 

91 
(74-111) 
[6-199] 

266 
(236-298)
[203-298]

159 
(136-185) 
[109-399] 

All above 
(Pre-map) 

(6.4-19.7) (4.9-17.4) (23.7-47)
[7-46] 

(3.5-15.7)
[3-66] 

(122-168)
[55-168] 

(124-170) 
[10-413] 

(377-453)
[299-474]

(242-305) 
[145-1008] 

Map-final 
(224) 

9 
(4.2-16.2) 

5 
(1.6 -11) 

60 
(46.2-76)
[8.45-67] 

2 
(0.24-7.2)
[3-74.1] 

147 
(125-171)
[68-161] 

46 
(33.8-61) 
[10-327] 

404 
(368-443)
[335-437]

104 
(85-126) 
[60-329] 

Post-final 
(565) 

14 
(7.9 - 22) 

20 
(12.8-29) 

254 
(228-280)
[21-268] 

55 
(41.8-71)

[3-65] 

280 
(250-311)
[54-302] 

81 
(65-100) 
[9-405] 

522 
(481-565)
[477-564]

143 
(121-168) 
[84-254] 

N Matched 75 798 1534 3332 

N Permits 72 425 847 1862 
Ill -

balanced 
Controls 

4 
0 

11 
5 

21 
20 

26 
26 

90% confidence intervals based on binomial distribution in parentheses; from percentiles of bootstrap 
replications in square brackets.  Number out of 26 possible control variables on which t-tests reject equality 
between samples at 50% and 10%. 
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Appendix 2: More details on data collection 
 
We integrated databases from several sources to develop a Geographical Information 

Systems (GIS) dataset that represents parcel specific development and habitat status as well as 
the date of the first construction permit awarded for each parcel during our study period.  
Parcels in this dataset were spatially linked to data representing factors that may impact parcel 
rental rate and habitat value.  

The parcel specific dataset was based on the Pima County Department of 
Transportation (DOT) GIS database of geo-referenced parcel polygons. The data were 
provided in the state-plane coordinate system and international survey feet were the basic unit 
of distance.  The official critical habitat of the pygmy owl was also supplied as a GIS 
coverage by the DOT.  We set a dummy variable (OWL) for each parcel within the critical 
habitat.  A parcel level dataset with the dates of all of the 58,644 construction permits 
awarded from January 1, 1997 through February 26, 2001 was provided by the County 
Planning and Zoning office.  We identified the earliest construction permit associated with 
each parcel and linked the permit dates to the parcel dataset using parcel-id.  

We grouped parcels according to when (and if) the first construction permit was 
awarded for that parcel.  The Pima County Assessor's office provided an assessed value and 
zoning parcel database frozen as of the beginning of 1997, the start of the study period.  We 
linked these to the parcel database using parcel-id. The assessed value of improvements on 
parcels was used as to determine if a parcel had been developed prior to the study.  All parcels 
that had a positive value for assessed improvements were considered developed and removed 
from the dataset.  Some parcels were subdivided following the 1996 dataset so they could not 
be directly linked using parcel ID.  Those parcels were assumed to have zero assessed 
improvements.  This left the number of parcels that were classified as undeveloped at the 
beginning of the dataset at 111,763. The Pima County Assessor’s office also provided data on 
all sales from January 1, 1997 to January 1, 2001.  Sales data included the price and the date 
of the sale, and were linked to the parcels through the parcel ID number.  There were 
approximately 100,000 sales.  We removed sales with prices below 100 dollars or above 10 
million dollars.  We assume that these 195 outlier sales are not governed by the same 
processes as the rest of the dataset. 

These operations yielded the base dataset, providing explicit habitat status, 
construction permit timing, and development status of each parcel.  We proceeded to 
supplement this dataset with covariates selected from other GIS datasets to represent factors 
that could impact the rental rate and habitat value of the parcel.  

The DOT GIS dataset included information from other county agencies, such as 
Planning and Zoning, and the County Assessors Office which provided ownership, school 
districts, incorporation status, and MLS market area.  Dummy variables were set for the 
regions (E, N, NE, NW, PE, PFW, PNW, PS, PSW, S, SE, SW, W, XNE, XSW, XW, and NO 
MARKET for land falling outside of the market areas).  The central (downtown Tucson) 
region was not included to prevent over-specification.  

Fields indicating census tract, blockgroup, and block were included in the parcel 
dataset.  We linked parcels to short and long form 1990 census data using the block group of 
the parcel.  Census fields we used to control for rental rates included population, population 
per square mile, number of households, population 65 and over, single father households, 
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single mother households, number of housing units, number of vacant units, number of owner 
occupied homes, median home value, median residential rent, workforce, unemployed, 
average minutes of commute time to work, and average salary.  

The county GIS dataset also included the locations of parks, golf courses, prisons, 
modern cultural features, and highways.  For computational feasibility, we grouped parcels by 
census block and then calculated distances to the nearest park, golf course, prison, modern 
cultural feature, and highway.  The distance to downtown (Tucson City Hall) was also 
calculated.  Units were in international feet, due to the projection of the parcel dataset.  

Owner's names, addresses, and zip codes were provided with the parcel dataset.  For 
parcels with a valid zip code for the owner's mailing address, we set dummy variables to 
indicate if the owner lived within Pima county and within Arizona.  We also calculated 
distances (in International Feet) from Tucson City hall to the centroid of the owner's zip code.  

We linked two spatial datasets representing environmental and topological 
characteristics to the parcel database.  Because not all of these data were available for the 
entire county, parcels in the western side of the county were dropped from the dataset.  Since 
the western side of the county is very sparsely populated, this operation reduced the number 
of parcels only slightly.  It reduced the total number of parcels to 338,684 and the number of 
initially undeveloped parcels to 109,819.  

We associated the data to the parcels by identifying the polygon or grid cell that the 
centroid of the parcel was within.  All coverages were projected to the coordinate system of 
the parcels and all calculations were done in that coordinate system.  

We calculated topology using a grid of elevation data developed by the USGS EROS 
Data Center and obtained from the University of Arizona ARIA image server.  In the state-
plane projection, each grid cell was a 98.446 foot square (resolution was 30.0 meters in the 
original projection).  Elevation was reported in meters.  We used the elevation dataset to 
calculate slope (in degrees) and aspect (in compass degrees).  

Additional environmental variables were obtained from the USDA STATSGO soil 
GIS coverage.  In this coverage, map units were delineated in irregular polygons according to 
soil type and environmental characteristics.  We used several STATSGO fields.  The surface 
texture (SURFTEX) field was included, as was the percentage of plant cover (PLANTPCT).  
We also utilized soil water permeability categories (HYDGRP), which ranged from A (fastest 
draining) to D (slowest draining) and the USDA estimates of qualitative habitat quality 
(WLGRAIN, GRASS, HERB, HARD, CONIF, SHRUB, WETPLT, SHLWAT, OPEN, 
WOOD, WET, RANGE).  

Because parcel level data was supplemented with GIS and census datasets using 
census boundaries, grid cells, or map polygons, a single spatial data observation from a given 
dataset is shared across all of the parcels within the geographic extent of the observation.  

Upon completion of the database integration, we exported the GIS database into 
tabular form, with variables indicating habitat status, initial development status, timing of 
construction permits, local characteristics that could impact parcel rents, and local 
characteristics linked to habitat value.  
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Appendix 3: Is GBM a reasonable assumption?   
 
The quarterly housing price index taken from the Office of Federal Housing Enterprise 

Oversight for Pima County provides evidence of a GBM process at work.  Consider the 
following analysis.  If the GBM assumption is approximately correct, then we should find an 
upward curvature in the graph of average home prices or rents against time.  If it holds 
exactly, then regression of the change in price from one period to the next on the level of the 
same price will yield the same results with and without a constant term (and with and without 
power terms for the level), and will exhibit multiplicative heteroskedasticity.  Finally, the 
distribution of percentage change in price divided by price. 

The price index since 1986 is shown in Figure 3a, together with a purely geometric 
(i.e., non-stochastic) growth curve with the growth rate estimated from the post-1986 data, 
located to intersect the actual data at the mid-year.  As would be the case with geometric 
Brownian growth, departures from this path persist for a few years, but are eventually 
countered by random events in the opposite direction. Data from earlier periods displays 
similar growth curvature, but more noise.  Inset into Figure 3a is the density of percentage 
change in price smoothed with an Epanechnikov kernel.  As with a normal distribution, the 
preponderance of the density is characterized as a symmetrical, unimodal function.  The tails 
are too long for a normal distribution, however.   

Regression of the change in price on price level since 1986 excluding a constant term 
yields an estimate for g of 0.011 ± 0.0009 (± denotes White’s robust standard error).  This is 
the growth rate used for the comparison curve.  Adding a constant term doubles the growth 
rate estimate to 0.022, and the constant term is significant (-1.18 ± 0.47).  Using the data from 
1975-present yields about the same growth rate with no constant term (0.013 ± 0.002), but 
with a constant term the estimate of g falls to 0.003 ± 0.009.  The addition of a squared price 
term leaves the coefficient on price roughly equivalent, but the coefficient is estimated much 
less precisely (.0113 ± .0131).   
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Figure 3a: Evidence on fit of GBM model to greater Tucson housing values 

 
 


