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Linear-quadratic (LQ) optimal-control problems have been the subject of an ex-

tensive literature.1 General characterizations of their solutions and useful numerical

algorithms to compute them are now available, allowing models with fairly large state

spaces, complicated dynamic linkages, and a range of alternative informational as-

sumptions to be handled.2 And the extension of the classic results of the engineering

control literature to the case of forward-looking systems of the kind that naturally

arise in economic policy problems when one allows for rational expectations on the

part of the private sector has proven to be fairly straightforward.3

An important question, however, is whether optimal policy problems of economic

interest should take this convenient form. It is easy enough to apply LQ methodology

if one specifies an ad hoc quadratic loss function on the basis of informal consider-

ation of the kinds of instability in the economy that one would like to reduce, and

posits linear structural relations that capture certain features of economic time series

without requiring these relations to have explicit choice-theoretic foundations, as in

early applications to problems of monetary policy.4 But it is highly unlikely that the

analysis of optimal policy in a DSGE model will involve either an exactly quadratic

utility function or exactly linear constraints.

We shall nonetheless argue that LQ problems can usefully be employed as ap-

proximations to exact optimal policy problems in a fairly broad range of cases. Since

an LQ problem necessarily leads to an optimal decision rule that is linear, the most

that one could hope to obtain with any generality would be for the solution to the

LQ problem to represent a local linear approximation to the actual optimal policy

— that is, a first-order Taylor approximation to the true, nonlinear optimal policy

rule. In this paper we present conditions under which this will be the case, and show

how to derive an LQ approximate problem corresponding to any member of a general

class of optimal policy problems.

The conditions under which the solution to an LQ approximate problem will yield

a correct local linear approximation to optimal policy are in fact more restrictive

than might be expected, and than some of the literature on numerical methods for

1Important references include Bertsekas (1976), Chow (1975), Hansen and Sargent (2004),
Kendrick (1981), Kwakernaak and Sivan (1972), and Sargent (1987). See Kendrick (2005) for an
overview of the use of LQ methods in economics.

2For numerical algorithms see, among others, Amman and Kendrick (1999), Gerali and Lippi
(2005), Hansen and Sargent (2004), and Söderlind (1999).

3See, e.g., Backus and Driffill (1986) for a useful review.
4Notable examples include Kalchbrenner and Tinsley (1975) and Leroy and Waud (1977).
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the analysis of DSGE models has suggested.5 In particular, it does not suffice that

the objective and constraints of the exact problem be continuously differentiable a

sufficient number of times, that the solution to the LQ approximate problem imply a

stationary evolution of the endogenous variables, and that the exogenous disturbances

be small enough (though each of these conditions is obviously necessary, except in

highly special cases). An approach that simply computes a second-order Taylor-series

approximation to the utility function and a first-order Taylor-series approximation

to the model structural relations in order to define an approximate LQ problem —

what we shall call “naive LQ approximation” — may yield a linear policy rule with

coefficients very different from those of a correct linear approximation to the optimal

policy in the case of small enough disturbances, as the example of optimal dynamic

tax policy considered in Benigno and Woodford (2006) shows.6

Nonetheless, it is quite generally possible to construct an alternative quadratic

objective function — one that also represents a correct local second-order approx-

imation to expected utility under any feasible policy, but that does not imply the

same linear characterization of optimal policy when used as the objective for an LQ

problem — which will result in a correct local LQ approximation. The approach that

we use is essentially the one introduced by Fleming (1971), and used by Magill (1977)

to derive a local LQ approximation to a continuous-time multi-sector optimal growth

model. Here we extend the work of Fleming and Magill by showing how a similar

method can be used in the context of discrete-time dynamic optimization problems of

the kind that typically arise in the literatures on optimal monetary and fiscal policy,

and showing how the method can be extended to the case where some of the struc-

tural relations are forward-looking, as is almost inevitably the case in optimal policy

problems.7

In section 1, we first explain the problem with naive LQ approximation in the

context of a simple static optimization problem, and introduce the general idea of

our alternative approach. We offer additional comparisons there of the approach that

we propose to other possible approaches to the local characterization of optimal pol-

5This is stressed by Judd (1999, pp. 507-508), who recommends the use of alternative perturba-
tion techniques for the local characterization of optimal policy.

6The same problem can also result in incorrect welfare rankings of alternative simple policies, as
discussed by Kim and Kim (2003, 2006).

7See also Levine et al. (2006) for another discussion of how our method compares to that of
Fleming and Magill.
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icy. In section 2, we then show how the method can be applied to a general class of

dynamic optimization problems with forward-looking constraints. Section 3 discusses

the general algebraic form of the first- and second-order conditions for optimality in

the LQ approximate problem. Section 4 shows how the quadratic objective for stabi-

lization policy derived in section 2 can also be used to compute welfare comparisons

between alternative sub-optimal policies, in the case that the stochastic disturbances

are small enough. Finally, section 5 discusses applications of the general method

described here and concludes.

1 Pitfalls of Naive LQ Approximation

Here we explain why naive LQ approximation is generally inadequate, in the context

of a simple static optimization problem that allows us to the explain the issues in

terms of simple multivariate calculus. We then compare a variety of possible responses

to the problem, including the one that we favor.

1.1 Static Analysis

Suppose that we wish to find the policy y(ξ) that maximizes an objective U(y; ξ),

where y is an n-vector of endogenous variables and ξ is a vector of exogenous distur-

bances; we assume that U is at least twice continuously differentiable with respect

to the arguments y. Suppose furthermore that the possible outcomes y that can be

achieved by policy in any state of the world ξ are those values consistent with the

structural equations

F (y; ξ) = 0, (1.1)

where F is a vector of m functions (for some m < n), again each at least twice

continuously differentiable. We assume that m < n so that there is at least one

direction in which it is possible for the outcome y to be varied by policy. We might

suppose that y is determined by equations (1.1) together with an additional set of

n−m equations of the form

G(y; i, ξ) = 0, (1.2)

where i is a vector of n−m instrument settings (or control variables); but the nature

of the additional equations (1.2) does not matter for our conclusions below, as long
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as the derivative matrices [
DyF

DyG

]
, DiG

are of full rank when the partial derivatives are evaluated at the point around which

we conduct our local analysis.

Now let ȳ be the outcome under an optimal policy in the case that ξ = 0; that is,

it maximizes U(y; 0) subject to the constraints F (y; 0) = 0.8 A second-order Taylor

series expansion of U , computed at values (ȳ; 0) of the arguments, is then given by

U(y; ξ) = Ū + DyU · ỹ + D
ξ
U · ξ +

1

2
ỹ′D2

yyU · ỹ +

1

2
ξ′D2

ξξU · ξ + ỹ′D2
yξU · ξ +O(||ξ||3)

= DyU · ỹ +
1

2
ỹ′D2

yyU · ỹ + ỹ′D2
yξU · ξ + t.i.p. +O(||ξ||3), (1.3)

where we introduce the notation ỹ ≡ y − ȳ, Ū ≡ U(ȳ; 0), and the several matrices of

partial derivatives are each evaluated at (ȳ; 0). The expression “t.i.p.” refers to terms

that are independent of the policy chosen (such as the constant term and terms that

depend only on the exogenous disturbances); the form of these terms is irrelevant

in obtaining a correct ranking of alternative policies. Finally, ||ξ|| is a bound on

the vector of disturbances ξ. In stating that the residual is of order O(||ξ||3) in the

amplitude of the disturbances, we assume that y − ȳ = O(||ξ||). This condition will

hold, in the case of any policy that makes y(ξ) continuously differentiable,9 as long

as y(0) = ȳ. We shall restrict our analysis to policies that satisfy the latter property,

i.e., that bring about ȳ in the case that there are no disturbances.10

A naive LQ approximation of this problem can then be obtained by replacing the

exact objective U(y; ξ) by the quadratic objective

UQ(y; ξ) ≡ DyU · ỹ +
1

2
ỹ′D2

yyU · ỹ + ỹ′D2
yξU · ξ, (1.4)

8Note that we must compute our local approximations to the objective and constraints around
this optimal point if there is to be any hope that consideration of these local approximations alone
can correctly identify the optimal policy rule even in the case that ξ is small.

9In the case that y(ξ) is determined by a vector of instrument settings through structural re-
lations of the form (1.2), y(ξ) will be continuously differentiable near ξ = 0 as long as the rank
conditions stated in the previous paragraph are satisfied, and the policy rule i(ξ) is itself continu-
ously differentiable.

10Note that by assumption, the optimal policy rule belongs to this class of rules.
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and replacing the exact constraints (1.1) by their linearized form,

DyF · ỹ + DξF · ξ = 0. (1.5)

The question that we wish to consider is whether the solution to this problem —

that is, the policy yLQ(ξ) that maximizes UQ(y; ξ) subject to the constraints (1.5)

— represents at least a correct local linear approximation to the true optimal policy

yopt(ξ). That is, we wish to determine whether

yopt(ξ) = yLQ(ξ) +O(||ξ||2) (1.6)

in the case of small enough disturbances.

In fact, the regularity conditions stated thus far do not suffice to guarantee this.

The policy that maximizes the naive quadratic objective (1.4) subject to the linearized

constraints (1.5) satisfies linear first-order conditions

DyU + ỹ′D2
yyU + ξ′D2

ξyU + λ′DyF = 0, (1.7)

where λ (a function of ξ) is the vector of Lagrange multipliers associated with the

constraints. The naive LQ-optimal policy yLQ(ξ) is then obtained by solving the

system of equations consisting of (1.5) and (1.7) for y and λ as linear functions of ξ.

The solution yopt(xi) to the exact policy problem instead satisfies the nonlinear

first-order conditions11

DyU(y; ξ) + λ′DyF (y; ξ) = 0 (1.8)

along with (1.1). A correct local approximation to the solution to these equations can

be obtained (using the implicit function theorem) by linearizing equations (1.1) and

(1.8) around the unperturbed solution y(0) = ȳ. The linearization of equations (1.1)

is given by (1.5), as above, but the linearization of the first-order conditions (1.8) is

given by

DyU + ỹ′D2
yyU + ξ′D2

ξyU + λ′DyF + λ̄I [ỹ
′D2

yyF
I + ξ′D2

ξyF
I ] = 0, (1.9)

where λ̄ ≡ λ(0) is the vector of multipliers when there are no shocks. Here we use

tensor notation as in Judd (1999, chap. 14), omitting the summation sign ΣI ; the

11Here we assume that the solution to the first-order conditions is indeed the optimum, though
this need not be true if the constraint set is non-convex.
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index I ranges over the m constraints. Hence the correct linear approximation to

yopt(ξ) is obtained by solving the system of equations consisting of (1.5) and (1.9) for

y and λ as linear functions of ξ. Because the two final terms on the left-hand side of

(1.9) are missing in (1.7), the naive method will generally yield incorrect coefficients

for the linear policy rule.

The problem is that a linear approximation of the structural equations (1.5) suf-

fices to indicate the possible ways in which it is possible for y to vary in response to

ξ, to first order in the amplitude of the disturbances ξ, but this is not generally a

sufficiently accurate characterization of outcomes under a given policy to allow an ap-

proximate evaluation of the objective U that is accurate to second order. In general,

second-order contributions to the solution for y(ξ) under a given policy rule make

second-order contributions to the level of U associated with that rule; and even when

||ξ|| is arbitrarily small, these second-order contributions to U need not be negligible

relative to the other second-order contributions that are taken account of when one

evaluates UQ using a local linear approximation to y(ξ).12

In fact, in the case of any given outcome y(ξ) associated with a (sufficiently

differentiable) policy, a second-order Taylor series expansion of U(y(ξ); ξ) can be

written in the form

U(y(ξ); ξ) = UQ(yL(ξ); ξ) + DjU [ξ′D2
ξξy

j · ξ] + t.i.p. +O(||ξ||3), (1.10)

where UQ is again the naive quadratic objective defined in (1.4),

yL(ξ) ≡ ȳ + Dξy · ξ

is a local linear approximation to y(ξ), and in the second term on the right-hand

side, we again use tensor notation. Here we have simplified using the fact that the

derivatives Dξy must satisfy

DyF ·Dξy + DξF = 0,

in order for yL to represent a solution to the linearized structural relations (1.5).

Estimation of the level of welfare associated with the given policy using UQ(yL)

omits the second-order contributions from the second term on the right-hand side of

(1.10). These are second-order contributions to U resulting from second-order terms

12See Woodford (2002; 2003, sec. 6.1) and Sutherland (2002) for further discussion.
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in the Taylor expansion of y(ξ), that exist to the extent that the gradient vector DyU

has non-zero elements. When these additional terms are non-zero, alternative policies

cannot be correctly ranked, even to second order in the amplitude of the disturbances,

simply on the basis of a local linear characterization of equilibrium outcomes under

those policies.

1.2 Responses to the Problem

Several approaches have been taken in the literature to computing a correct local

linear approximation to optimal policy, that (at least under certain circumstances)

avoid the problem just expounded with a naive LQ approximation. We briefly discuss

some of these before presenting our own proposed solution.

(1) The naive LQ approach yields a correct local characterization of optimal policy

in the case that the constraints (1.1) are exactly linear). If they are, the use of the

linearized equations (1.5) involves no error, and the problem discussed above does

not arise. In the case of our static example above, linear constraints imply that

D2
yyF

I , D2
ξyF

I = 0

for each I, so that equations (1.9) are equivalent to (1.7). Thus the problem with

naive LQ approximation is not that the objective functions in optimal policy problems

are not exactly quadratic, but rather that the constraints are almost never exactly

linear.

Even in the case of a policy problem with nonlinear constraints, it may be pos-

sible to obtain a problem with purely linear constraints through a suitable change

of variables. This is the approach used in Kydland and Prescott (1982) to obtain

a valid LQ approximation. The (nonlinear) production function is substituted into

the utility function to express utility as a function of the paths of hours, capital,

and investment spending; the only remaining constraint is the exactly linear rela-

tion between investment spending and the dynamics of the capital stock. After this

transformation of their planning problem, a second-order Taylor series expansion of

the derived objective function yields an LQ planning problem, the solution to which

is a correct linear approximation to the solution to the original planning problem.

However, the circumstances under which a transformation of this kind can be found

are fairly special.13
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(2) The naive LQ approach also yields a correct local characterization of optimal

policy in the case that one expands around a point ȳ at which the gradient vector

DyU(ȳ; 0) = 0. In this case the second term on the right-hand side of (1.10) is equal

to zero under any policy, and UQ(yL) correctly ranks alternative policies, to second

order. Similarly, since in this case the constraints (1.1) do not bind in the absence

of shocks, λ̄ = 0, and again conditions (1.9) reduce to (1.7). This is why an LQ

approximation can be used to characterize optimal policy in the model of Rotemberg

and Woodford (1997).14

In some cases, an appropriate change of variables may result in this condition

holding. In the case of Rotemberg and Woodford, the gradient vector would be non-

zero if one were to expand in terms of consumption and hours, the “direct” arguments

of the utility function. But they use the (nonlinear) production function to solve for

hours of each variety as a function of sectoral output, and the market-clearing relation

to solve for consumption of each differentiated good as a function of output, obtaining

an expression for utility as a function of the quantities produced of the various goods;

and the gradient with respect to each of these quantities is zero, in the case that they

consider. But even with the change of variables, the method is applicable only if the

flexible-price equilibrium allocation of resources is efficient, which need not be the

case, owing for example to market power or tax distortions (Benigno and Woodford,

2005a). This last observation is itself an important practical limitation, and in more

complex examples it may not be easy to find a suitable change of variables.

(3) A correct local linear approximation to optimal policy can often be obtained

by deriving the exact first-order conditions for (Ramsey) optimal policy using exact

specifications of the objective and constraints, and then log-linearizing the non-linear

stochastic difference equations obtained in this way, as illustrated in the derivation of

equations (1.9) above. This method has been used extensively in the recent literature

on optimal monetary and fiscal policy by authors such as King and Wolman (1999),

Khan et al. (2003) and Schmitt-Grohé and Uribe (2004b). The method will generally

yield a correct result as long as the optimal equilibrium, in the case of small enough

13Kydland and Prescott’s “time-to-build” approach to modelling capital adjustment costs is nec-
essary in order for the constraint to be exactly linear in their case, and hence important for the
validity of the numerical method that they use to characterize equilibrium dynamics, though they
do not comment on this. Standard convex adjustment costs, for example, would result in a nonlinear
constraint.

14The conditions for the validity of this approach are further discussed in Woodford (2002).
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exogenous shocks, remains forever near a deterministic steady state, around which

first-order conditions are log-linearized.15 It is also straightforward to obtain higher-

order local characterizations of optimal policy, through a higher-order perturbation

expansion of the first-order conditions.

A disadvantage of this approach, however, is that while it allows a solution for

optimal policy, it does not provide a convenient way of ranking sub-optimal policies.

An LQ approximation, if valid (as in either of the two cases just described), also

provides a simple way of evaluating arbitrary policies, as long as they are not too far

from optimal: one obtains an approximate characterization of the outcome under the

policy by solving the linearized model equations (constraints), and then evaluates the

quadratic loss function under the resulting linear dynamics. (The method should cor-

rectly rank policies, in the case of small enough shocks, as long as they are consistent

with the steady state around which the local approximations are computed – or more

generally, as long as they are close enough to consistency with it.) This is important,

insofar as in models of a complexity that would allow them to be used in quantitative

policy analysis, the fully optimal (Ramsey) policy is almost certainly too complex to

represent a practical policy proposal, and the welfare losses associated with a simpler

policy may be quite small. The comparative evaluation of simple policy rules, within

families of rules too restrictive to include the optimal policy, is accordingly a prime

goal of quantitative analyses of stabilization policy.

Another disadvantage is that solution of a local linear approximation to the first-

order conditions does not guarantee that the solution is even locally an (approximate)

optimum, as second-order conditions for the optimal policy problem may fail, as

discussed further below in section 3, and in the context of a specific example in

Benigno and Woodford (2005a). In the case of a valid LQ approximation, this issue

is automatically settled (i.e., a local optimum is guaranteed) if the quadratic loss

function is convex, which requires only that one check an algebraic property of the

weighting matrix.16

15In general, the equilibrium resulting from the optimal Ramsey policy is time-invariant, even in
the absence of stochastic disturbances, only if one adds certain constraints on initial outcomes to
the standard, “unconstrained” Ramsey problem. These are discussed further in section 2.1 below.
This issue must be confronted by any local approximation method that characterizes optimal policy
using linear equations with constant coefficients.

16Of course, one could check the second-order conditions for an optimum as part of the pertur-
bation analysis of the exact Ramsey problem; but this seems seldom to be done in the literature
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(4) Alternatively, the problem noted above would be eliminated if we evaluate

(1.3) using a second-order approximation to the equilibrium evolution y(ξ) under any

given policy rule, rather than a mere linear (or log-linear approximation). A second-

order approximation to y(ξ) can be computed by applying perturbation techniques

to the system of equations consisting of (1.1) and (1.2), where the latter equation(s)

specify the policy that is to be evaluated. Methods for executing computations of

this kind in the case of general classes of forward-looking equation systems are now

widely available,17 and have been used in many recent numerical analyses of optimal

policy (e.g., Schmitt-Grohé and Uribe, 2004c).

This approach, however, has the disadvantage that it does not make it easy to find

even an approximate characterization of fully optimal policy, as one has to compute

a second-order approximation to the equilibrium dynamics implied by each candidate

policy rule individually. One can approximate the optimal rule within a particular

parametric family, by searching over a grid of parameter values, at each element of

which one evaluates welfare; in practice, in such studies attention is restricted to

low-dimensional families of simple rules. An LQ approach, when valid, instead allows

one to determine which form of rule is optimal. And while the fully optimal rule is

not likely to be of interest as a practical policy proposal, as noted above, computing

it is nonetheless valuable as a source of insight into which types of simple rules are

most likely to be nearly optimal.

Hence there would remain important advantages of an LQ approach, were a valid

approximation of this form possible outside the restrictive cases already mentioned.

Here we show how a valid LQ approximation can be derived, for a much more general

class of policy problems.

(5) In the approach that we recommend, a quadratic loss function is derived that

differs (in general) from UQ, but that nonetheless represents a valid second-order

approximation to U, in the case of the outcomes associated with any possible policy.

That is, we seek a quadratic function Û(y; ξ) with the property that

U(y; ξ) = Û(y; ξ) +O(||ξ||3) (1.11)

on Ramsey policy, and would in any event involve computing essentially the same matrices as are
required to derive our LQ approximation, as is discussed further below.

17See, e.g., Jin and Judd (2002), Kim et al. (2003), and Schmitt-Grohé and Uribe (2004a). The
DYNARE project at CEPREMAP has been especially important in making these techniques widely
available to macroeconomic researchers.
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in the case of any values of the arguments satisfying (1.1) and such that y − ȳ =

O(||ξ||). The fact that we require (1.11) to hold only for values of y that can be

achieved by some policy, rather than for all values of y near enough to ȳ, means

that Û need not coincide with UQ, despite Taylor’s theorem. Among the variety of

possible quadratic approximations Û with this property, we furthermore seek one that

is purely quadratic, i.e., with zero coefficients on the linear terms. Then DyÛ = 0,

and (1.11) can be evaluated to second-order accuracy using only a first-order accurate

approximation to y(ξ) under the policy rule of interest. Hence the LQ problem of

maximizing the quadratic objective Û(y; ξ) subject to the linear constraints (1.5)

represents a valid local approximation to the original policy problem, and the linear

policy that solves this LQ problem represents a correct local linear approximation of

the optimal policy yopt.

The key to finding an approximate objective with these properties is to use a

second-order Taylor series approximation to the constraints (1.1) to replace the linear

terms in (1.3) with purely quadratic terms;18 while the resulting function is not even

locally equivalent to UQ, it is equivalent in the case of all outcomes consistent with

equations (1.1) that are near enough to ȳ. While this method (like the one just dis-

cussed) relies upon computing a second-order approximation to the model structural

relations, the second-order approximation need be used only once, in determining the

coefficients of the quadratic objective Û , rather than having to be used again each

time one seeks to evaluate the welfare associated with yet another candidate policy.

We can illustrate the method in the case of the static problem considered above.

A second-order approximation to the structural relations (1.1), of the same form as

the approximation (1.3), implies that

DyF
I · ỹ = −1

2
ỹ′D2

yyF
I · ỹ − ỹ′D2

yξF
I · ξ + t.i.p. +O(||ξ||3)

in the case of any (y; ξ) satisfying (1.1). The fact that ȳ is an optimal policy when

the disturbances are zero implies that

DyU = −λ̄
′
DyF, (1.12)

18A similar method is used by Sutherland (2002) to compute correct second-order approximations
to welfare under alternative policies. However, his second-order approximation is computed for a
particular parametric class of policies, while we derive a quadratic loss function that yields a correct
welfare measure for any feasible policy.
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where λ̄ is a vector of Lagrange multipliers associated with the constraints (1.1) in

the case of zero disturbances.It then follows that

DyU · ỹ = −λ̄IDyF
I · ỹ

=
1

2
λ̄I ỹ

′D2
yyF

I · ỹ + λ̄I ỹ
′D2

yξF
I · ξ + t.i.p. +O(||ξ||3).

We can then use this expression to substitute for the term DyU ·ỹ in (1.3), yielding

U(y; ξ) =
1

2
ỹ′[D2

yyU

+λ̄ID
2
yyF

I ] · ỹ + ỹ′[D2
yξU + λ̄ID

2
yξF

I ] · ξ + t.i.p. +O(||ξ||3).

This is an approximation of the form (1.11), where

Û(y; ξ) ≡ 1

2
ỹ′[D2

yyU + λ̄ID
2
yyF

I ] · ỹ + ỹ′[D2
yξU + λ̄ID

2
yξF

I ] · ξ. (1.13)

Use of the corrected quadratic objective (1.13) solves the problems associated with

the use of UQ discussed above. For example, the policy that maximizes (1.13) subject

to the linearized constraints (1.5) satisfies linear first-order conditions of precisely the

form (1.9). Hence this linear policy will represent a correct linear approximation to

the optimal policy yopt(ξ). The objective (1.13) can also be used to correctly rank

alternative policies (none of which need be fully optimal), as long as these policies

imply that y(0) = ȳ. 19

We have remarked above that an advantage of an LQ approximation (when valid)

is that it makes it straightforward to verify that the solution to the LQ problem

represents at least a local welfare maximum, by checking the second-order conditions

for optimality. In our static example, the quadratic objective (1.13) is strictly concave

in y if and only if the matrix of coefficients

D2
yyU + λ̄ID

2
yyF

I (1.14)

is negative definite. In this case, the solution to the (linear) first-order conditions

represents a global maximum of Û . Because our approximation is valid only locally,

this only implies that the solution to the LQ problem approximates a local welfare

19Kim and Kim (2006) illustrate how the method expounded here can be used, for example, to
correctly rank alternative policies with regard to international risk-sharing, in an example where
naive LQ analysis sometimes gives an incorrect ranking.
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maximum of the exact problem. Of course, under method (3) above, it would also

have been possible to verify that the solution to the first-order conditions (1.8) rep-

resents a local maximum — and hence that the solution to the linearized conditions

approximates a local maximum — by checking for local concavity in y of the La-

grangian

L(y; ξ; λ) ≡ U(y; ξ) + λF (y; ξ)

associated with the exact policy problem. This would involve checking for negative

definiteness of the matrix Lyy(ȳ; 0; λ̄);20 but this is just the matrix (1.14). Thus in

order to check the second-order conditions under this method, one would have to

compute the coefficients of the LQ objective function in any event. Recognizing that

these define a quadratic approximation to the policy objective has the advantage of

not only allowing one to compute a linear approximation to the solution to the first-

order conditions for optimal policy and to verify the second-order conditions, but also

providing a criterion with which to rank suboptimal policies.

The type of correct LQ approximation that we discuss here is not unknown to the

economics literature; in an important early application of this method, Magill (1977)

derives a correct LQ approximation to a multi-sector stochastic optimal growth model

(in which, unlike the case treated by Kydland and Prescott, the constraints are not

linear), using results due to Fleming (1971) in the literature on optimal control. These

results are not directly applicable to the class of problems of interest to us (and fre-

quently encountered in the literature on optimal stabilization policy), however, for

two reasons: we work in discrete time, and we allow for forward-looking constraints

(the equilibrium relations of a macro model derived from optimizing private-sector

behavior), rather than assuming purely backward-looking evolution equations as in

the standard (engineering) theory of optimal control. However, as we show here,

a straightforward extension of the method to the kind of problems frequently en-

countered in the literature on optimal stabilization is possible, allowing a valid LQ

approximation of a fairly general class of discrete-time optimal policy problems.

20Note that strict negative definiteness also implies that the matrix must be non-singular; this
is the condition required for the first-order conditions (1.8) to have a determinate solution. Hence
if one checks the second-order conditions, determinacy of the solution is guaranteed, as one would
expect if each solution must be a local maximum in this case.
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2 LQ Approximation of a Problem with Forward-

Looking Constraints

We now consider a general dynamic optimal policy problem. Suppose that the policy

authority wishes to choose the evolution of a state vector {yt} for t ≥ t0 to maximize

an objective of the form

Vt0 ≡ Et0

∞∑
t=t0

βt−t0π(yt, ξt), (2.1)

where 0 < β < 1 is a discount factor, the period objective π(y, ξ) is a concave function

of y, and ξt is a vector of exogenous disturbances. The evolution of the endogenous

states must satisfy a system of backward-looking structural relations

F (yt,ξt; yt−1) = 0 (2.2)

and a system of forward-looking structural relations

Etg(yt, ξt; yt+1) = 0, (2.3)

that both must hold for each t ≥ t0, given the vector of initial conditions yt0−1.

Conditions of the form (2.2) allow current endogenous variables to depend on

lagged states; for example, these relations could include a technological relation be-

tween the capital stock carried into the next period, current investment expenditure,

and the capital stock carried into the current period.21 Conditions of the form (2.3)

instead allow current endogenous variables to depend on current expectations regard-

ing future states; for example, these relations could include an Euler equation for the

optimal timing of consumer expenditure, relating current consumption to expected

consumption in the next period and the expected rate of return on saving.22 While

the most general notation would allow both leads and lags in all of the structural

equations, supposing that there are equations of these two types will make clearer

21The next period’s capital stock and the current investment expenditure would both be elements
of yt; the vector ξt could include a random disturbance to investment adjustment costs.

22Current consumption and the current period ex-post return on saving in the previous period
would both be elements of yt; the vector ξt could include a random disturbance to the impatience
to consume. Note that without loss of generality we may suppose that the vector ξt includes all
information available in period t regarding future exogenous disturbances.
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the different types of complications arising from the two distinct types of intertempo-

ral linkages. We shall suppose that the number nF of constraints of the first type each

period plus the number ng of constraints of the second type is less than the number

ny of endogenous state variables each period, so that there is at least one dimension

along which policy can continuously vary the outcome yt each period, even the past

and expected future evolution of the endogenous variables. A t0−optimal commit-

ment (the standard Ramsey policy problem) is then the state-contingent evolution

{yt} consistent with equations (2.2)–(2.3) for all t ≥ t0 that maximizes (2.1).

2.1 A Recursive Policy Problem

As is well-known, the presence of the forward-looking constraints (2.3) implies that

a t0−optimal commitment is not generally time-consistent. If, however, we suppose

that a policy to apply from period t0 onward must be chosen subject to an additional

set of constraints on the acceptable values of yt0 , it is possible for the resulting pol-

icy problem to have a recursive structure. As discussed in Benigno and Woodford

(2003, 2005a), we wish to choose initial pre-commitments regarding yt0 that are self-

consistent, in the sense that the policy that is chosen subject to these constraints

would also satisfy constraints of exactly the same form in all later periods as well.

The required initial pre-commitments are of the form

g(yt0−1, ξt0−1; yt0) = ḡt0 , (2.4)

where ḡt0 may depend on the exogenous state at date t0. Note that we assume the

existence of a pre-commitment only about those aspects of yt0 the anticipation of

which back in period t0 − 1 should have been relevant to equilibrium determination

then; there is no need for any stronger form of commitment in order to render optimal

policy time-consistent.

We are thus interested in characterizing the state-contingent policy {yt} for t ≥ t0

that maximizes (2.1) subject to constraints (2.2) – (2.4). Such a policy is optimal from

a timeless perspective if ḡt0 is chosen, as a function of predetermined or exogenous

states at t0, according to a self-consistent rule.23 This means that the initial pre-

23See Giannoni and Woodford (2002), Woodford (2003, chap. 7), or Benigno and Woodford
(2005a) for further discussion.

15



commitment is determined by past conditions through a function

ḡt0 = ḡ(ξt0 ,yt0−1), (2.5)

where yt is an extended state vector;24 this function has the property that under

optimal policy, given this initial pre-commitment, the state-contingent evolution of

the economy will satisfy

g(yt−1, ξt−1; yt) = ḡ(ξt,yt−1) (2.6)

in each possible state of the world at each date t ≥ t0 as well. Thus the initial

constraint is of a form that one would optimally commit oneself to satisfy at all

(subsequent) dates.

Let V (ḡt0 ; yt0−1, ξt0−1, ξt0) be the maximum achievable value of the objective (2.1)

in this problem.25 Then the infinite-horizon problem just defined is equivalent to a

sequence of one-period decision problems in which, in each period t ≥ t0, a value of

yt is chosen and state-contingent one-period-ahead pre-commitments ḡt+1(ξt+1) (for

each of the possible states ξt+1 in the following period) are chosen so as to maximize

π(yt, ξt) + βEtV (ḡt+1; yt, ξt, ξt+1), (2.7)

subject to the constraints

F (yt,ξt; yt−1) = 0,

g(yt−1, ξt−1; yt) = ḡt,

Etḡt+1 = 0,

given the values of ḡt, yt−1, ξt−1, and ξt, all of which are predetermined and/or exoge-

nous in period t. It is this recursive policy problem that we wish to study; note that

24The extended state vector may include both endogenous and exogenous variables, the values
of which are realized in period t or earlier. For the sake of concreteness, we assume below that
the evolution of the extended state vector, given the evolution of the vectors yt and ξt, is given by
a recursion of the form (2.8), and we assume that the elements of both yt and ξt are among the
elements of yt.

25We assume, to economize on notation, that the exogenous state vector ξt evolves in accor-
dance with a Markov process. Hence ξt summarizes not only all of the disturbances that affect the
structural relations at date t, but all information at date t about the subsequent evolution of the
exogenous disturbances. This is important in order for a time-invariant value function to exist with
the arguments indicated.
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it is only when we consider this problem (as opposed to the unconstrained Ramsey

problem) that it is possible, in general, to obtain a deterministic steady state as an

optimum in the case of suitable initial conditions, and hence only in this case that we

can hope to approximate the optimal policy problem around such a steady state.26

The solution to the recursive policy problem just defined involves a choice of the

following period’s pre-commitment ḡt+1 of the form

ḡt+1 = g∗(ξt+1; ḡt, yt−1, ξt−1, ξt),

where g∗ is a time-invariant function. The initial pre-commitment (2.5) is then self-

consistent if

g∗(ξt+1; ḡ(ξt,yt−1), yt−1, ξt−1, ξt) = ḡ(ξt+1, ψ(ξt, yt,yt−1))

for all possible values of ξt+1, ξt, yt, and yt−1, where ψ(·) is the vector of functions in

the system of identities

yt = ψ(ξt, yt,yt−1) (2.8)

that describe the evolution of the extended state vector. Note that this implies that

equation (2.6) is satisfied at all times.

2.2 A Correct LQ Local Approximation

As in the static problem treated in the previous section, our method involves a local

approximation to both the objective and the constraints, near an optimal policy for

the case of zero disturbances. We furthermore assume both an initial state yt0−1

and initial pre-commitments ḡt0 such that the optimal policy in the case of zero

disturbances is a steady state, i.e., such that yt = ȳ for all t, for some vector ȳ. (More

precisely, our calculations below assume that both yt0−1 and ḡt0−1 are close enough

to being consistent with this steady state.) In order to define this steady state, we

must consider the nature of optimal policy in the exact problem just defined.

26In the literature on Ramsey policy, one sometimes sees approximate characterizations of optimal
policy computed by log-linearizing around a steady state that Ramsey policy approaches asymptot-
ically in the absence of random disturbances. But in such a case, there is no guarantee that the
approximate characterization would be accurate even in the case of arbitrarily small disturbances,
as Ramsey policy need not be near the steady state except asymptotically.
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The first-order conditions for the exact policy problem can obtained by differen-

tiating a Lagrangian of the form

Lt0 = Vt0 + Et0

∞∑
t=t0

βt−t0
[
λ′tF (yt, ξt; yt−1) + β−1ϕ′t−1g(yt−1, ξt−1; yt)

]
, (2.9)

where λt and ϕt are Lagrange multipliers associated with constraints (2.2) and (2.3)

respectively, for any date t ≥ t0, and we use the notation β−1ϕt0−1 for the Lagrange

multiplier associated with the additional constraint (2.4). This last notational choice

allows the first-order conditions to be expressed in the same way for all periods.

Optimality requires that the joint evolution of the processes {yt, ξt, λt, ϕt} satisfy

Dyπ(yt, ξt) + λt
′DyF (yt, ξt; yt−1) + βEtλt+1

′Dy̌F (yt+1, ξt+1; yt)

+Etϕt
′Dyg(yt, ξt; yt+1) + β−1ϕt−1

′Dŷg(yt−1, ξt−1; yt) = 0 (2.10)

at each date t ≥ t0, where Dy denotes the vector of partial derivatives of any of the

functions with respect to the elements of yt, while Dŷ means the vector of partial

derivatives with respect to the elements of yt+1 and Dy̌ means the vector of partial

derivatives with respect to the elements of yt−1.

An optimal steady state is then described by a collection of vectors (ȳ, λ̄, ϕ̄) sat-

isfying

Dyπ(ȳ, 0) + λ̄
′
DyF (ȳ, 0; ȳ) + βλ̄

′
Dy̌F (ȳ, 0; ȳ)

+ϕ̄′Dyg(ȳ, 0; ȳ) + β−1ϕ̄′Dŷg(ȳ, 0; ȳ) = 0, (2.11)

F (ȳ, 0; ȳ) = 0, (2.12)

g(ȳ, 0; ȳ) = 0. (2.13)

We shall suppose that such a steady state exists, and assume (in the policy problem

with random disturbances) an initial state yt0−1 near ȳ — more precisely, such that

yt0−1 − ȳ = O(||ξ||) — and an initial pre-commitment such that ḡt0 = O(||ξ||) as

well.27 Once the optimal steady state has been computed, we make no further use

of conditions (2.10); our proposed method does not require that we directly seek to

solve these equations.

Instead, we now consider local approximations to the objective and constraints

near an optimal steady state. We can compute a second-order Taylor expansion of

27Note that the steady-state value of ḡ is equal to g(ȳ, 0; ȳ) = 0.
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the period objective function π, obtaining an expression of exactly the form (1.3).

Substituting this into (2.1), we obtain the approximate objective

Vt0 = Et0

∞∑
t=t0

βt−t0

[
Dyπ · ỹt +

1

2
ỹ′tD

2
yyπ · ỹt + ỹ′tD

2
yξπ · ξt

]
+ t.i.p. +O(||ξ||3). (2.14)

This would be used as the quadratic objective in what we have called the “naive” LQ

approximation. Under our alternative approach, we must substitute purely quadratic

terms for the linear terms Dyπ · ỹt in this sum.

A similar second-order Taylor series approximation can be written for each of the

functions F k. It follows that

∞∑
t=t0

βt−t0λ̄
′
F (yt, ξt; yt−1) =

∞∑
t=t0

βt−t0
{

λ̄
′
[DyF · ỹt + Dy̌F · ỹt−1]

+λ̄k

[
1

2
ỹ′tD

2
yyF

k · ỹt + ỹ′tD
2
yξF

k · ξt + ỹ′t−1D
2
y̌ξF

k · ξt

+
1

2
ỹ′t−1D

2
y̌y̌F

k · ỹt−1 + ỹ′tD
2
yy̌F

k · ỹt−1

]}

+t.i.p. +O(||ξ||3)

=
∞∑

t=t0

βt−t0
{

λ̄
′
[DyF + βDy̌F ] · ỹt

+
1

2
λ̄k

[
ỹ′tD

2
yyF

k · ỹt + 2ỹ′tD
2
yξF

k · ξt + 2βỹ′tD
2
y̌ξF

k · ξt+1

+βỹ′tD
2
y̌y̌F

k · ỹt + 2ỹ′tD
2
yy̌F

k · ỹt−1

]}

+t.i.p. +O(||ξ||3). (2.15)

Using a similar Taylor series approximation of each of the functions gi, we corre-

spondingly obtain

∞∑
t=t0

βt−t0−1ϕ̄′g(yt−1, ξt−1; yt) =
∞∑

t=t0

βt−t0
{
ϕ̄′[Dyg + β−1Dŷg] · ỹt

+
1

2
ϕ̄i

[
ỹ′tD

2
yyg

i · ỹt + 2ỹ′tD
2
yξg

i · ξt + 2β−1ỹ′tD
2
ŷξg

i · ξt−1

+β−1ỹ′tD
2
ŷŷg

i · ỹt + 2β−1ỹ′tD
2
ŷyg

i · ỹt−1

]}

+t.i.p. +O(||ξ||3). (2.16)
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It then follows from constraints (2.2)–(2.4) that in the case of any admissible policy,28

β−1ϕ̄′ḡt0 = Et0

∞∑
t=t0

βt−t0 [λ̄
′
F (yt, ξt; yt−1) + β−1ϕ̄′g(yt−1, ξt−1; yt)]

= Et0

∞∑
t=t0

βt−t0
{

[λ̄
′
(DyF + βDy̌F ) + ϕ̄′(Dyg + β−1Dŷg)] · ỹt

+
1

2
λ̄k

[
ỹ′tD

2
yyF

k · ỹt + 2ỹ′tD
2
yξF

k · ξt + 2βỹ′tD
2
y̌ξF

k · ξt+1

+βỹ′tD
2
y̌y̌F

k · ỹt + 2ỹ′tD
2
yy̌F

k · ỹt−1

]

+
1

2
ϕ̄i

[
ỹ′tD

2
yyg

i · ỹt + 2ỹ′tD
2
yξg

i · ξt + 2β−1ỹ′tD
2
ŷξg

i · ξt−1

+β−1ỹ′tD
2
ŷŷg

i · ỹt + 2β−1ỹ′tD
2
ŷyg

i · ỹt−1

]}

+t.i.p. +O(||ξ||3), (2.17)

where we have used (2.15) and (2.16) to substitute for the F and g terms respectively.

We can write this more compactly in the form

β−1ϕ̄′ḡt0 = Et0

∞∑
t=t0

βt−t0

{
Φ · ỹt +

1

2

[
ỹ′tH · ỹt + 2ỹ′tRỹt−1 + 2ỹ′tZ(L)ξt+1

]}

+t.i.p. +O(||ξ||3), (2.18)

where

Φ ≡ λ̄
′
[DyF + βDy̌F ] + ϕ̄′[Dyg + β−1Dŷg],

H ≡ λ̄k[D
2
yyF

k + βD2
y̌y̌F

k] + ϕ̄i[D
2
yyg

i + β−1D2
ŷŷg

i],

R ≡ λ̄kD
2
yy̌F

k + ϕ̄iβ
−1D2

ŷyg
i,

Z(L) ≡ βλ̄kD
2
y̌ξF

k + (λ̄kD
2
yξF

k + ϕ̄iD
2
yξg

i) · L + β−1ϕ̄iD
2
ŷξg

i · L2.

Using (2.11), we furthermore observe that29

Φ = −Dyπ.

28Note that we here include (2.4) among the constraints that a policy must satisfy. We shall
call any evolution that satisfies (2.2)–(2.3) a “feasible” policy. Under this weaker assumption, the
left-hand sides of (2.17) and (2.18) must instead be replaced by β−1ϕ̄′g(yt0−1, ξt0−1; yt0).

29This is the point at which our calculations rely on the assumption that the steady state around
which we compute our local approximations is optimal.
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With this substitution in (2.18), we obtain an expression that can be solved for

Et0

∞∑
t=t0

βt−t0Dyπ · ỹt,

which can in turn be used to substitute for the linear terms in (2.14). We thus obtain

an alternative quadratic approximation to (2.1),30

Vt0 =
1

2
Et0

∞∑
t=t0

βt−t0
[
ỹ′tQ · ỹt + 2ỹ′tRỹt−1 + 2ỹ′tB(L)ξt+1

]
+ t.i.p. +O(||ξ||3), (2.19)

where now

Q ≡ D2
yyπ + H,

B(L) ≡ Z(L) + D2
yξπ · L. (2.20)

Since (2.19) involves no linear terms, it can be evaluated (up to a residual of order

O(||ξ||3)) using only a linear approximation to the evolution of ỹt under a given policy

rule.

It follows that a correct LQ approximation to the original problem is given by

the problem of choosing a state-contingent evolution {ỹt} for t ≥ t0 to maximize the

objective

V Q
t0 (ỹ; ξ) ≡ 1

2
Et0

∞∑
t=t0

βt−t0
[
ỹ′tA(L)ỹt + 2ỹ′tB(L)ξt+1

]
(2.21)

subject to the constraints that

C(L)ỹt = ft, (2.22)

EtD(L)ỹt+1 = ht (2.23)

for all t ≥ t0, and the additional initial constraint that

D(L)ỹt0 = h̃t0 , (2.24)

where now

A(L) ≡ Q + 2R · L, (2.25)

30Here we include ḡt0 among the “terms independent of policy.” If we consider also policies
that are not necessarily consistent with the initial pre-commitment, the left-hand side of (2.19) is
more generally equal to Vt0 + β−1ϕ̄′g(yt0−1, ξt0−1; yt0). This generalization of (2.19) is used in the
derivation of equation (4.3) below.
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C(L) ≡ DyF + Dy̌F · L, (2.26)

ft ≡ −DξF · ξt,

D(L) ≡ Dŷg + Dyg · L, (2.27)

ht ≡ −Dξg · ξt,

h̃t0 ≡ ht0−1 + ḡt0 .

2.3 An Equivalent Lagrangian Approach

In the case that the objective (2.21) is concave,31 the first-order conditions associated

with the LQ problem just defined characterize the solution to that problem. Here

we show that these linear equations also correspond to a local linear approximation

to the first-order conditions associated with the exact problem, i.e., the modified

Ramsey policy problem defined in section 2.1, and hence that the solution to the LQ

problem represents a local linear approximation to optimal policy from a timeless

perspective.32

As already noted, the first-order conditions for the exact policy problem are ob-

tained by differentiating the Lagrangian Lt0 defined in (2.9). This yields the system of

first-order conditions (2.10). The linearization of these first-order conditions around

the optimal steady state is in turn the set of linear equations that would be ob-

tained by differentiating a quadratic approximation to Lt0 around that same steady

state. Hence we are interested in computing such a local approximation, for the case

in which yt − ȳ, λt − λ̄, and ϕt − ϕ̄ are each of order O(||ξ||) for all t. (Here the

steady-state values of the Lagrange multipliers λ̄, ϕ̄ are again given by the solution

to equations (2.11) – (2.13).)

We may furthermore write the Lagrangian in the form

Lt0 = L̄t0 + L̃t0 ,

where

L̄t0 = Vt0 + Et0

∞∑
t=t0

βt−t0
[
λ̄
′
F (yt, ξt; yt−1) + β−1ϕ̄′g(yt−1, ξt−1; yt)

]
,

31The algebraic conditions under which this is so are discussed in the next section.
32See also Levine et al. (2006) for a similar discussion of the equivalence between our approach

and the Lagrangian approach.
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L̃t0 = Et0

∞∑
t=t0

βt−t0
[
λ̃
′
tF (yt, ξt; yt−1) + β−1ϕ̃′t−1g(yt−1, ξt−1; yt)

]
,

λ̃t ≡ λt − λ̄, ϕ̃t ≡ ϕt − ϕ̄.

We can then use equations (2.14) and (2.17) to show that the local quadratic approx-

imation to L̄t0 is given by33

L̄t0 = V Q
t0 + t.i.p. +O(||ξ||3).

In addition, the fact that λ̃t, ϕ̃t are both of order O(||ξ||) means that a local quadratic

approximation to the other term is given by

L̃t0 = Et0

∞∑
t=t0

βt−t0
[
λ̃
′
tF̃ (yt, ξt; yt−1) + β−1ϕ̃′t−1g̃(yt−1, ξt−1; yt)

]
+O(||ξ||3),

where F̃ and g̃ are local linear approximations to the functions F and g respectively.

Hence the local quadratic approximation to the complete Lagrangian is given by

Lt0 = V Q
t0 + Et0

∞∑
t=t0

βt−t0
[
λ̃
′
tF̃ (yt, ξt; yt−1) + β−1ϕ̃′t−1g̃(yt−1, ξt−1; yt)

]

+t.i.p. +O(||ξ||3). (2.28)

But this is identical (up to terms independent of policy) to the Lagrangian for the LQ

problem of maximizing V Q
t0 subject to the linearized constraints. Hence the first-order

conditions obtained from this approximate Lagrangian (which coincide with the local

linear approximation to the first-order conditions for the exact problem) are identical

to the first-order conditions for the LQ problem, and their solutions are identical as

well.

3 Characterizing Optimal Policy

We now study necessary and sufficient conditions for a policy to solve the LQ problem

of maximizing (2.21) subject to constraints (2.22) – (2.24). The Lagrangian for this

33It is worth noting that this equality holds in the case of all feasible policies, whether or not the
policy is consistent with the initial pre-commitment (2.4). This is important for our discussion of
the welfare evaluation of suboptimal policies in section 4.
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problem is given by

LQ
t0 =

1

2

{
Et0

∞∑
t=t0

βt−t0
[
ỹ′tA(L)ỹt + 2ỹ′tB(L)ξt+1 + 2λ̃

′
tC(L)ỹt

+2β−1ϕ̃′t−1D(L)ỹt

]
}

.

(Note that this is just (2.28), omitting the terms independent of policy and those

of third or higher order.) Differentiation of the Lagrangian then yields a system of

linear first-order conditions

1

2
Et{[A(L) + A′(βL−1)]ỹt}+ Et[B(L)ξt+1]

+Et[C
′(βL−1)λ̃t] + β−1D′(βL−1)ϕ̃t−1 = 0 (3.1)

that must hold for each t ≥ t0 under an optimal policy. (Here we use the notation

X ′ for the transpose of a matrix X.) These conditions, together with (2.22) – (2.24),

form a linear system to be solved for the joint evolution of the processes {ỹt, λ̃t, ϕ̃t}
given the exogenous disturbance processes {ξt} and the initial conditions ỹt0−1 and the

initial pre-commitment ḡt0 (or ĥt0). This type of system of linear stochastic difference

equations is easy to solve using standard methods.

Let H be the Hilbert space of (real-valued) stochastic processes {ỹt} such that

Et0

∞∑
t=t0

βt−t0 ỹ′tỹt < ∞. (3.2)

In terms of the rescaled state variables

ŷt = β
t−t0

2 ỹt, (3.3)

we see that H is simply the space of stationary (square-summable) processes. We

are interested in solutions to the LQ problem that satisfy the bound (3.2) because it

guarantees that the objective V Q is well-defined (and is generically required for it to

be so). Of course, our LQ approximation to the original problem is only guaranteed

to be accurate in the case that ỹt is always sufficiently small; hence a solution to the

LQ problem in which ỹt grows without bound, but at a slow enough rate for (3.2)

to be satisfied, need not correspond (even approximately) to any optimum (or local

optimum) of the exact problem. In this section, however, we take the LQ problem at
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fact value, and discuss the conditions under which it has a solution, despite the fact

that we may only be interested in bounded solutions.

Introducing correspondingly rescaled Lagrange multipliers {λ̂t, ϕ̂t} as well, the

system of necessary conditions for an optimum consisting of (2.22), (2.23) and (3.1)

can be written in the matrix form

Et[M(L,L−1)zt] = xt (3.4)

where

M(L,L−1) ≡




0 0 C(β1/2L)

0 0 β−1/2L−1D(β1/2L)

C ′(β1/2L−1) β−1/2LD′(β1/2L−1) 1
2
[A(β1/2L) + A′(β1/2L−1)]


 ,

zt ≡




λ̂t

ϕ̂t

ŷt


 ,

and xt is a vector of (correspondingly rescaled) exogenous disturbances known in

period t. Conditions (3.4) must be satisfied for all t ≥ t0.

As usual, the existence of a unique square-summable solution {zt} to this system

(corresponding to a solution {ỹt} ∈ H) for given initial conditions zt0−1 and a square-

summable forcing process {xt} depends on the roots of the characteristic polynomial

associated with the equation system. The characteristic polynomial is given by34

∆(z) ≡ det[zM(z−1, z)] = 0. (3.5)

The condition required (generically) for a unique square-summable solution is that

equation (3.5) have exactly n roots such that |z| < 1, where n = nF + ng + ny is

the dimension of the square matrix M . This condition is satisfied in our case, under

the important proviso that (3.5) have no roots with a modulus exactly equal to 1.

34It follows from condition (i) of Lemma 2, stated below, that in the case of any concave problem,
the function ∆(z) defined here is not identically equal to zero. We shall restrict our attention to
problems satisfying this condition, for reasons discussed below. Hence (3.5) is a polynomial equation
with a set of isolated (possibly complex) roots.
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And while this last condition is far from innocuous,35 we show below that it must be

satisfied in the case of a concave problem, which is the only case in which a solution to

the first-order conditions (even if one exists) will correspond to an optimum. Hence

we may restrict our attention to problems in which it is satisfied.

Note that the matrix operator M has the symmetry property

M(L,L−1) = M(L−1, L)′. (3.6)

It follows from this that in the case of any z 6= 0 satisfying (3.5), z−1 is also a solution.

Hence the non-zero roots occur in reciprocal pairs. Under the assumption that there

are no roots such that |z| = 1, it follows that there must be exactly k roots with

|z| < 1 and k roots with |z| > 1, for some 0 ≤ k ≤ n, while the other roots (if any)

are all equal to zero. It also follows from (3.6) that if λj is the smallest power of

λ with a non-zero coefficient in the polynomial (3.5), then λ2n−j will be the largest

power of λ with a non-zero coefficient (and indeed these two coefficients will be the

same). Hence we must have j = n − k, so that there are exactly n − k roots equal

to zero. We then observe that there are exactly n roots with |z| < 1, which is the

condition for a determinate solution.

It follows that there exists a unique solution of the form36

[
ϕ̂t

ŷt

]
= T

[
ϕ̂t−1

ŷt−1

]
+ Ψ(β1/2L)ξ̂t, (3.7)

where T is a stable matrix, the eigenvalues of which correspond to the roots |z| < 1

of (3.5), and Ψ(L) is a lag polynomial of order 1, because one lag of the disturbances

35One might think that in a generic problem there should be no roots with modulus exactly equal
to 1. However, as we show in the next paragraph, the roots of (3.5) necessarily occur in reciprocal
pairs. It is possible for the 2k non-zero roots to correspond to k − 1 roots with modulus less than
1, the k − 1 reciprocals of these, and a pair of complex roots with modulus exactly equal to 1
that are reciprocals of one another. In such a case, a small perturbation of the model parameters
will necessarily result in nearby coefficients for the matrices in (3.5), but still possessing the same
symmetry property, so that there will continue to be a complex pair with modulus exactly equal to
1.

36In writing the solution in this form, we use the fact that {ξt} is assumed to be a Markov process,
and assume furthermore that it has a linear law of motion, so that conditional expectations Etξt+j

can all be written as linear functions of ξt. In the case that the disturbance processes are not linear,
the final term in (3.7) is instead a nonlinear function of ξt, and if the disturbances are not Markovian,
the solution must be written as a function of the conditional expectations Etξt+j for j ≥ 0. In all
cases, the solution is linear in the conditional expectations.
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appears in (3.1). The solution does not depend on λ̂t−1, because equations (3.1)

do not. Moreover, we can similarly solve for λ̂t as a linear function of ϕ̂t−1, ŷt−1,

and ξt, but we do not need this equation in order to solve for the dynamics of the

state variables {ŷt} under optimal policy. Equations (3.7) can be solved for ϕ̂t0 and

ŷt0 given initial conditions ϕ̂t0−1 and ŷt0−1; and then one can solve these equations

recursively, computing the state-contingent values of ϕ̂t and ŷt in any period once the

state-contingent values for the previous period have been computed.

This method allows us to obtain a unique square-summable solution to the first-

order conditions (3.1) corresponding to any assumed values for the initial multipliers

ϕ̂t0−1. These multipliers are not given, and must themselves be solved for; but we seek

a solution that also satisfies (2.24). Let d(ϕ̂t0−1, ŷt0−1, ξ̂t0) be the value of D(L)ỹt0

implied by the solution for ŷt0 given in (3.7). Then the initial multipliers ϕ̂t0−1

associated with the initial pre-commitment are those that satisfy the equation

d(ϕ̂t0−1, ŷt0−1, ξ̂t0) = h̃t0 . (3.8)

Equation (3.8) together with (3.7) allows us to determine the state-contingent evo-

lution {ỹt} that simultaneously satisfies the constraints (2.22) – (2.24) and the first-

order conditions (3.1).

The fact that the matrix T is stable (has all eigenvalues with modulus less than

1) implies that the process {ŷt} that solves these equations will be bounded if the

rescaled disturbance processes {ξ̂t} are bounded. However, this is consistent with

growth in the original state variables ỹt to grow at a rate as large as β−t/2, and if

they do, the state variables yt will eventually, with high probability, be far from the

steady-state values ȳ around which we have computed our local approximations, and

hence our local approximations may not be at all accurate as a characterization of

optimal policy. However, if the largest of the k roots of (3.5) inside the unit circle

has a modulus |z| < β1/2, then the eigenvalues of T all have a modulus less than β1/2,

and T̃ ≡ β−1/2T is also a stable matrix. We can then write (3.7) equivalently as

[
ϕ̃t

ỹt

]
= T̃

[
ϕ̃t−1

ỹt−1

]
+ Ψ(L)ξt, (3.9)

and the fact that T̃ is stable implies that {ỹt} will be bounded if the disturbances

{ξt} are bounded. In this case, a sufficiently small bound on the amplitude of the
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exogenous disturbances will imply that the solution to the first-order conditions re-

mains forever in an arbitrarily small neighborhood of the steady state, so that our

local approximations should be highly accurate.

The first-order conditions (3.1) are easily shown to be necessary for optimality,

but they are not generally sufficient for optimality as well; one must also verify that

second-order conditions for optimality are satisfied. (In the case of an LQ problem,

satisfaction of the second-order conditions implies global, and not just local, optimal-

ity; so we need not check any further conditions. But because our LQ problem is

only a local approximation to the original policy problem, a global optimum of the

LQ problem still may only correspond to a local optimum of the exact problem.) We

next consider these additional conditions.

Let us consider the subspace H1 ⊂ H of sequences ψ ∈ H that satisfy the con-

straints

C(L)ψt = 0 (3.10)

EtD(L)ψt+1 = 0 (3.11)

for each date t ≥ t0, along with the initial commitments

D(L)ψt0 = 0, (3.12)

where we define ψt0−1 ≡ 0 in writing (3.10) for period t = t0 and in writing (3.12).

This subspace is of interest because if a process ỹ ∈ H satisfies constraints (2.22) –

(2.24), another process ŷ ∈ H with ŷt0−1 = ỹt0−1 satisfies those constraints as well if

and only if ŷ − ỹ ∈ H1. We may now state our main result.

Proposition 1 For {ỹt} ∈ H to maximize the quadratic form (2.21), subject to the

constraints (2.22) – (2.24) given initial conditions ỹt0−1 and ḡt0, it is necessary and

sufficient that (i) there exist Lagrange multiplier processes37 ϕ̃, λ̃ ∈ H such that the

processes {ỹt, ϕ̃t, λ̃t} satisfy (3.1) for each t ≥ t0; and (ii)

V Q(ψ) ≡ V Q
t0 (ψ; 0) =

1

2
Et0

∞∑
t=t0

βt−t0 [ψ′tA(L)ψt] ≤ 0 (3.13)

for all processes ψ ∈ H1, where in evaluating (3.13) we define ψt0−1 ≡ 0. A process

{ỹt} with these properties is furthermore uniquely optimal if and only if

V Q(ψ) < 0 (3.14)

37Note that ϕ̃t is also assumed to be defined for t = t0 − 1.
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for all processes ψ ∈ H1 that are non-zero almost surely.

The proof is given in the Appendix. The case in which the stronger condition

(3.14) holds — i.e., the quadratic form V Q(ψ) is negative definite on the subspace

H1 — is the one of primary interest to us, since it is in this case that we know that

the process {ỹt} represents at least a local welfare maximum in the exact problem.

In this case we can also show that pure randomization of policy reduces the welfare

objective (2.21), and hence is locally welfare-reducing in the exact problem as well,

as is discussed further in Benigno and Woodford (2005a).

We can furthermore establish a useful characterization of the algebraic condi-

tions under which the second-order conditions (3.14) are satisfied. In stating these

conditions, we shall assume that

rank

[
C(L)

D(L)

]
= nF + ng. (3.15)

This condition must hold in order for the constraints (2.22) – (2.23) to include neither

any redundant constraints nor any constraints that are inconsistent in the case of

generic forcing processes {ft, ht}.

Lemma 2 Suppose that regularity condition (3.15) holds. Then the second-order

condition for the previous optimization problem is satisfied — i.e., (3.14) is satisfied

by all processes ψ ∈ H1 that are non-zero almost surely — if and only if (i) every

northwest principal minor of the bordered Hermitian matrix

M̄(θ) ≡ M(e−iθ, eiθ) (3.16)

of order p > 2(nF + ng) has the same sign as (−1)p−nF−ng for all −π ≤ θ ≤ π; and

(ii) in the case that ng > 0, J11, the ng × ng upper left block of the matrix

J ≡
∞∑

j=1

T ′j[S ′(A0 + A′
0)S + β1/2T ′S ′A1S + β1/2S ′A′

1ST ]T j (3.17)

is negative definite, i.e., , for each 1 ≤ p ≤ ng, the northwest principal minor of

J of order p has the same sign as (−1)p. Here A0, A1 are the matrices such that

A(L) = A0 + A1L, and

S ≡ [0 I]
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is the ny × (ng + ny) matrix that selects the last ny elements of a vector of length

ng + ny, and T is the matrix in (3.7).

The proof of this lemma is also given in the Appendix. Note that because we assume

that ny > nF + ng, condition (i) of this lemma necessarily implies that the the

determinant of M̄(θ), the principal minor of order p = n, must have the same sign

for all θ. Hence there can be no root of ∆(z) of the form z = eiθ, which is to say,

no root for which |z| = 1. Thus as mentioned earlier, our maintained assumption in

solving the first-order necessary conditions (3.4) follows from one of the second-order

necessary conditions. The fact that condition (i) implies that we can solve the system

(3.4), as discussed above, also allows us to define the matrix J that is used in stating

condition (ii).

The fact that condition (ii) is needed in addition to condition (i) in order to ensure

that we have a concave problem indicates an important respect in which the theory

of LQ optimization with forward-looking constraints is not a trivial generalization

of the standard theory for backward-looking problems.38 (Condition (i) is instead a

direct generalization of the condition given in Telser and Graves (1972) for the case of

a deterministic, backward-looking LQ problem.) It also shows that the second-order

conditions for a stochastic problem are more complex than they would be in the case of

a deterministic policy problem (again, unlike what is true of purely backward-looking

LQ problems). Because of our assumption of an initial pre-commitment (2.24), the

deterministic LQ problem corresponding to the one considered here would be one of

choosing a sequence {ỹt} for t ≥ t0 to maximize V Q
t0 (ỹ; ξ) subject to the constraints

that

C(L)ỹt = ft, D(L)ỹt = h̃t

for all t ≥ t0, where {ξt, ft, h̃t} are specified deterministic sequences and ỹt0−1 is

given as an initial condition. This deterministic problem is a standard backward-

looking problem of the kind treated in the optimal control literature, and hence the

characterization of the second-order conditions given in Telser and Graves (1972) is

applicable. In fact (as shown in the Appendix), the required condition is simply

condition (i) of Lemma 2.

38In some cases, condition (i) is both necessary and sufficient for concavity, even in the presence of
forward-looking constraints. The problem treated in Benigno and Woodford (2005a) is an example
of this kind.
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But this is not generally a sufficient condition to guarantee that (3.14) is satisfied,

in the presence of forward-looking constraints (2.23), if policy randomization is al-

lowed.39 Because constraints (2.23) need hold only in expected value, random policy

may be able to vary the paths of the endogenous variables (in some states of the

world) in directions that would not be possible in the corresponding deterministic

problem, and this makes the algebraic conditions required for (3.14) to hold more

stringent.

A simple example may clarify this point. Suppose that yt has two elements,

and that the only constraint on what policy can achieve is a single, forward-looking

constraint

Et[δỹ1t − ỹ1,t+1] = 0 (3.18)

for all t ≥ t0, where δ < β−1/2. (The path of {ỹ2t} can be freely chosen, subject to

the bound (3.2).) An initial pre-commitment specifies the value that ỹ1,t0 must have.

In the corresponding deterministic problem, constraint (3.18) implies that one must

have

ỹ1,t+1 = δỹ1t

for each t ≥ t0, and this, together with the pre-commitment, uniquely determines

the entire path of the sequence {ỹ1t} that must be brought about by deterministic

policy. Hence the second-order condition for the deterministic problem requires only

that the objective be a concave function of the path of {ỹ2t}. But if random policies

are considered, it is also possible for {ỹ1t} to evolve in accordance with any law of

motion

ỹ1,t+1 = δỹ1t + εt+1,

where {εt} is any martingale difference sequence with a suitable bound on its asymp-

totic variance; in this simple example, the set of possible evolutions {ỹ1t} is inde-

pendent of the evolution chosen for {ỹ2t}. Whether randomization of the path of

{ỹ1t} can increase the value of the policy objective obviously depends on terms in the

objective involving the path of {ỹ1t} (including cross terms), and not just the terms

39Our remarks here apply even in the case that the “fundamental” disturbances {ξt} are purely de-
terministic; what matters is whether policy may be contingent upon random events. As is discussed
further in Benigno and Woodford (2005a), when the second-order conditions fail to hold, policy
randomization can be welfare-improving, even when the random variations in policy are unrelated
to any variation in fundamentals.
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involving the path of {ỹ2t}. Hence the conditions required for a concave optimization

problem are more stringent in this case.40

4 Welfare Evaluation of Alternative Policy Rules

We have argued that another advantage of our approach is that it can be used not

only to derive a linear approximation to a fully optimal policy commitment, but also

to compute approximate welfare comparisons between alternative rules (neither of

which may be fully optimal), that will correctly rank these rules in the case that

random disturbances are small enough. Because empirically realistic models are in-

evitably fairly complex, a fully optimal policy rule is likely to be too complex to

represent a realistic policy proposal; hence comparisons among alternative simple

(though suboptimal) rules are of considerable practical interest. Here we discuss how

this can be done.

We do not propose to simply evaluate (a local approximation to) expected dis-

counted utility Vt0 under a candidate policy rule, because the optimal policy locally

characterized above (i.e., optimal policy “from a timeless perspective”) does not max-

imize this objective; hence ranking rules according to this criterion would lead to the

embarrassing conclusion that there exist policies better than the optimal policy. (We

could, of course, define “optimal policy” as the policy that maximizes Vt0 ; but this

would result in a time-inconsistent policy recommendation, as noted earlier.) Thus

we wish to use a criterion that ranks rules according to how close they come to solving

the recursive policy problem defined in section 2.1, rather than how close they come

to maximizing Vt0 .

Of course, if we restrict our attention to policies that necessarily satisfy the initial

pre-commitment (2.4), there is no problem; our optimal rule will be the one that

maximizes Vt0 , or (in the case of small enough shocks) the one that maximizes V Q
t0 .

But simple policy rules are unlikely to precisely satisfy (2.4); thus in order to be able

to select the best rule from some simple class, we need an alternative criterion, one

that is defined for all policies that are close enough to being optimal, in a sense that

is to be defined. At the same time, we wish it to be a criterion the maximization of

which implies that one has solved the constrained optimization problem defined in

40In the Appendix, we illustrate the application of conditions (i) and (ii) of Lemma 2 to this
example.
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section 2.1.

Our Lagrangian characterization of optimal policy suggests such a criterion. The

timelessly optimal policy from date t0 onward — that is, the policy that maximizes

Vt0 subject to the initial constraint (2.4) in addition to the feasibility constraints

(2.2)–(2.3) — is also the policy that maximizes the Lagrangian

V mod
t0

≡ Vt0 + β−1ϕ′t0−1g(yt0−1, ξt0−1; yt0), (4.1)

where ϕt0−1 is the vector of Lagrange multipliers associated with the initial constraint

(2.4). This is a function that coincides (up to a constant) with the objective Vt0 in

the case of policies satisfying the constraint (2.4), but that is defined more generally,

and that is maximized over the broader class of feasible policies by the timelessly

optimal policy. Hence an appropriate criterion to use in ranking alternative policies

is the value of V mod
t0

associated with each one. This criterion penalizes policies that

fail to satisfy the initial pre-commitment (2.4), by exactly the amount by which a

previously anticipated deviation of that kind would have reduced the expected utility

of the representative household.

In the case of any policy that satisfies the feasibility constraints (2.2)–(2.3) for all

t ≥ t0, we observe that

V mod
t0

= L̄t0 + β−1ϕ̃′t0−1g(yt0−1, ξt0−1; yt0)

= V Q
t0 + β−1ϕ̃′t0−1g̃(yt0−1, ξt0−1; yt0) + t.i.p. +O(||ξ||3)

= V Q
t0 + β−1ϕ̃′t0−1Dŷg · ỹt0 + t.i.p. +O(||ξ||3).

This suggests that in the case of small enough shocks, the ranking of alternative

policies in terms of V mod
t0

will correspond to the ranking in terms of the welfare

measure

Wt0 ≡ V Q
t0 + β−1ϕ̃′t0−1Dŷg · ỹt0 . (4.2)

Note that in this derivation we have assumed that ỹt = O(||ξ||). This will be true

in the equilibrium associated with any (sufficiently differentiable) policy rule that

is consistent with the optimal steady state in the absence of random disturbances.

We shall restrict attention to policy rules of this kind. Note that while this is an

important restriction, it does not preclude consideration of extremely simple rules;

and it is a property of the simple rules of greatest interest, i.e., those that come closest

to being optimal among rules of that degree of complexity.
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In expression (4.1), and hence in (4.2), ϕt0−1 is the Lagrange multiplier associ-

ated with constraint (2.4) under the optimal policy. However, in order to evaluate

Wt0 to second-order accuracy, it suffices to have a first-order approximation to this

multiplier. Such an approximation is given by the multiplier ϕ̃t0−1 associated with

the constraint (2.24) of the LQ problem. Thus we need only solve the LQ problem,

as discussed in the previous section — obtaining a value for ϕ̃t0−1 from equation

(3.8) — in order to determine the function Wt0 . Moreover, we observe that in this

solution, ϕ̃t0−1 = O(||ξ||). Thus a solution for the equilibrium evolution {ỹt} under

a given policy that is accurate to first order suffices to evaluate the second term

in (4.2) to second-order accuracy. Hence Wt0 inherits this property of V Q
t0 , and it

suffices to compute a linear approximation to the equilibrium dynamics {ỹt} under

each candidate policy rule in order to evaluate Wt0 to second-order accuracy. We can

therefore obtain an approximation solution for {ỹt} under a given policy by solving

the linearized structural equations (2.22)–(2.23), together with the policy rule, and

use this solution in evaluating Wt0 . In this way welfare comparisons among alter-

native policies are possible, to second-order accuracy, using linear approximations to

the model structural relations and a quadratic welfare objective.

Moreover, we can evaluate Wt0 to second-order accuracy using only a linear ap-

proximation to the policy rule. This has important computational advantages. For

example, if we wish to find the optimal policy rule from among the family of simple

rules of the form it = φ(yt), where it is a policy instrument, and we are content to

evaluate V mod
t0

to second-order accuracy, then it suffices to search over the family of

linear policy rules41

ı̃t = f ′ỹt,

parameterized by the vector of coefficients f. There are no possible second-order (or

larger) welfare gains resulting from nonlinearities in the policy rule.

It is important to note that these conclusions obtain only because we evaluate

welfare taking into account the welfare losses that would result from a violation of

the initial pre-commitment if it were to have been anticipated. Some would prefer

to evaluate alternative simple policy rules by computing the expected value of Vt0

41Here we restrict attention to rules that are consistent with the optimal steady state, so that the
intercept term is zero when the rule is expressed in terms of deviations from steady-state values.
Note that a rule without this property will result in lower welfare, in the case of any small enough
disturbances.
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(rather than V mod
t0

) associated with each rule (e.g., Schmitt-Grohé and Uribe, 2004c).

As noted above, this alternative criterion is one under which the optimal rule from

a timeless perspective can be dominated by other rules, a point stressed by Blake

(2001) and Jensen and McCallum (2002), among others. The alternative criterion is

also one that cannot be evaluated to second-order accuracy using only a first-order

solution for the equilibrium evolution under a given policy. For a general feasible

policy — consistent with the optimal steady state, but not necessarily consistent

with the initial pre-commitment (2.4) — we can show that42

Vt0 = V Q
t0 − β−1ϕ̄′Dŷg · ỹt0 + t.i.p. +O(||ξ||3). (4.3)

The first term on the right-hand side of this expression is purely quadratic (has zero

linear terms), but this is not true of the second term, if the initial pre-commitment

is binding under the optimal policy. Evaluation of the second term to second-order

accuracy requires a second-order approximation to the evolution {yt} under the policy

of interest; there is thus no alternative to the use of higher-order perturbation solution

methods as illustrated by Schmitt-Grohé and Uribe, and nonlinear terms in the policy

rule generally matter for welfare.43

In expression (4.2), the value of the multiplier ϕ̃t0−1 depends on the economy’s

initial state and on the value of the initial pre-commitment ḡt0 . If we assume a self-

consistent constraint (2.5), the solution to (3.8) is given by a linear function44

ϕ̃t0−1 = ϕ∗(yt0−1), (4.4)

42Here we use the more general form of (2.19) mentioned in footnote 29.
43Thus welfare comparisons of the kind proposed by Blake (2001), Jensen and McCallum (2002), or

Sauer (2006), in which the implications of a policy rule are computed using the structural equations
of a canonical log-linearized New Keynesian model and welfare is evaluated using the canonical
quadratic loss function, cannot be justified as representing a quadratic approximation to the expected
utility of the representative household in a micro-founded model with Calvo price adjustment. The
welfare criterion proposed here can instead be computed using the usual log-linearized structural
equations, as is discussed further in Benigno and Woodford (2005a, sec. 5).

44One might suppose that the value of the multiplier should also depend on ξt0, as ḡt0 does in
general. But the form of the last constraint in the recursive problem (2.7) implies that in the solution
to this problem, ḡt+1(ξt+1) is chosen so that the value of the multiplier ϕt associated with the initial
pre-commitment in the continuation problem is independent of the state ξt+1, though it may depend
on ξt. If the initial pre-commitment at date t0 is chosen in a self-consistent way, it also has this
property.
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the algebraic form of which is discussed in the Appendix. Then we can write45

Wt0 = W (ỹ;yt0−1) ≡ V Q
t0 + β−1ϕ∗(yt0−1)

′Dŷg · ỹt0 . (4.5)

This gives us an expression for our welfare measure purely in terms of the history

and subsequent evolution of the extended state vector.

Let us suppose that we are interested in evaluating a policy rule r that implies an

equilibrium evolution of the endogenous variables of the form46

yt = φr(yt−1, ξt). (4.6)

Then given this solution for the evolution {yt}, we can evaluate (4.5), obtaining

Wt0 = Wr(yt0−1, ξt0).

We can do this for any rule r of the assumed type, and hence we can define an

optimization problem

max
r∈R

Wr(yt0−1, ξt0) (4.7)

in order to determine the optimal rule from among the members of some family of

rules R.

However, the solution to problem (4.7) may well depend on the initial conditions

yt0−1 and ξt0 for which Wt0 is evaluated.47 This leads to the possibility of an unap-

pealing degree of arbitrariness of the choice that would be recommended from within

some family of simple rules, as well as time inconsistency of the policy recommenda-

tion: a rule chosen at date t0 on the ground that it solves problem (4.7) need not be

found to also solve the corresponding problem at some later date, though the calcu-

lation at date t0 assumes that rule r is to be followed forever. One way of avoiding

this might be to assume that one should choose the rule that would be judged best

in the case of initial conditions consistent with the optimal steady state, whether the

45In writing the function W (·), and others that follow, we suppress the argument ξ, as the evolution
of the exogenous disturbances is the same in the case of each of the alternative policies under
consideration.

46This assumption that yt depends only on the state variables indicated is without loss of gener-
ality, as we can extend the vector yt if necessary in order for this to be so.

47This is not a problem if the family of rules R includes a fully optimal rule r∗, since the same
rule r∗ solves the problem (2.7) for all possible values of the initial conditions. But the result can
easily depend on the initial conditions if we restrict attention to a family of suboptimal rules.
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economy’s actual initial state is that one or not;48 that is, one would choose the rule

that solves the problem

max
r∈R

Wr(ȳ, 0).

This choice would not be time-inconsistent, but the choice is still an arbitrary one.

In particular, the decision to evaluate Wr assuming initial conditions consistent with

the steady state — when in fact the state of the economy will fluctuate on both sides

of the steady-state position — favors rules r for which Wr is a less concave function

of the initial condition.

The criterion that we find most appealing is accordingly to integrate over a dis-

tribution of possible initial conditions, rather than evaluating Wr at the economy’s

actual state at the time of the choice, or at any other single state (such as the opti-

mal steady state). Suppose that in the case of the optimal policy rule r∗, the laws

of motion (2.8) and (4.6) imply that the evolution of the extended state vector {yt}
is stationary.49 In this case, there exists a well-defined invariant (or unconditional)

probability distribution µ for the possible values of yt under the optimal policy.50

Then we can define the optimal policy rule within some class of simple rules R as the

one that solves the problem

max
r∈R

Eµ[W̄r(yt)], (4.8)

where51

W̄r(yt) ≡ EtWr(yt, ξt+1). (4.9)

Because of the linearity of our approximate characterization of optimal policy, the cal-

culations required in order to evaluate Eµ[Wr] to second-order accuracy are straight-

forward; these are illustrated in Benigno and Woodford (2005a, sec. 5).

The most important case in which the method just described cannot be applied

is when some of the elements of {yt} possess unit roots, though all elements are at

48This approach is proposed by Schmitt-Grohé and Uribe (2004c), though they use Vt0 rather
than V mod

t0 as the criterion to be maximized.
49Benigno and Woodford (2005a) provide an example of an optimal monetary stabilization policy

problem in which this is case.
50We discuss the computation of the relevant properties of this invariant measure in the Appendix.
51Recall that we assume that the exogenous disturbance process {ξt} is Markovian, and that

ξt is included among the elements of yt. Hence yt contains all relevant elements of the period t

information set for the calculation of this conditional expectation.
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least difference-stationary (and some of the non-stationary elements may be cointe-

grated).52 We can in this case decompose the extended state vector as

yt = yt
tr + yt

cyc,

where

yt
tr ≡ lim

T→∞
Et[yT − (T − t)γ]

is the Beveridge-Nelson (1981) “trend” component, using the notation γ ≡ E[∆y] for

the vector of unconditional means of the first differences, and the “cyclical” compo-

nent yt
cyc will still be a stationary process. Moreover, the evolution of the cyclical

component as a function of the exogenous disturbances under the optimal policy will

be independent of the assumed initial value of the trend component (though not of

the initial value of the cyclical component). It follows that we can define an invariant

distribution µ for the possible values of yt
cyc under the optimal policy, that is inde-

pendent of the assumed value for the trend component. Then for any assumed initial

value for the trend component yt0−1
tr, we can define the optimal policy rule within

the class R as the one that solves the problem

max
r∈R

Ωr(yt0−1
tr) ≡ Eµ[W̄r(yt0−1)], (4.10)

a generalization of (4.8).53

It might seem in this case that our criterion is again dependent on initial con-

ditions, just as with the criterion (4.7) proposed first. But in fact one can show

that

Ωr(yt0−1
tr) = Ω1(yt0−1

tr) + Ω2
r, (4.11)

where the first component is the same for all rules of the kind that we consider,

while the second component is independent of the initial condition yt0−1
tr. Hence

the criterion (4.10) establishes the same ranking of alternative rules, regardless of the

initial condition.

52Benigno and Woodford (2003) provide an example of an optimal stabilization policy problem in
which the LQ approximate problem has this property. In this example, the unit root is associated
with the dynamics of the level of real public debt, which display a unit root under optimal policy
for the same reason as in the classic analysis of optimal tax smoothing by Barro (1979) and Sargent
(1987, chap. XV).

53In the case that all elements of yt are stationary, yt
tr is simply a constant, and all variations in

yt correspond to variations in yt
cyc. In this case, (4.10) is equivalent to the previous criterion (4.8).
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We can show this as follows. In accordance with our previous discussion, we

restrict attention to a class of rules R with the property that each rule in the class

implies convergence to the same long-run values of the state variables as under optimal

policy, in the absence of stochastic disturbances. Because we analyze the dynamics

under a given policy using a linearized version of the structural relations, certainty-

equivalence obtains, and it follows that the limiting behavior (as T → ∞) of the

long-run forecast Et0 [yT] must also be the same under any rule r ∈ R, given the

initial conditions yt0−1. Thus given these initial conditions, the decomposition of the

initial extended state vector into components yt0−1
tr and yt0−1

cyc is the same under

any rule r ∈ R. Hence all elements of the vector

zt0−1 ≡




1

yt0−1
tr

yt0−1
cyc




are given as initial conditions, independent of the choice of policy rule.

In the case of the evolution {ỹt} implied by any policy rule r, let us furthermore

consider the decomposition

ỹt = ȳt + y†t ,

where {ȳt} is the deterministic sequence

ȳt ≡ Et0−1ỹt

and y†t is the component of ỹt that is unforecastable as of date t0 − 1. Then if we

evaluate

W̄ (ỹ; zt0−1) ≡ Et0−1W (ỹ;yt0−1, ξt0)

under this evolution, we find that

W̄ (ỹ; zt0−1) = W̄ (ȳ; zt0−1) + W̄ (y†; zt0−1). (4.12)

Here all the cross terms in the quadratic form have conditional expectation zero

because ȳ is deterministic while y† is unforecastable.

Moreover, under any rule r, the value of y†t is a linear function of the sequence of

unexpected shocks between periods t0 and t, that is independent of the initial state.

(This independence follows from the linearity of the law of motion (4.6), under the
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linear approximation that we use to solve for the equilibrium dynamics under a given

policy rule.) Hence the second term on the right-hand side of (4.12),54

W̄ (y†; zt0−1) = Et0−1V
Q
t0 (y†; ξ),

is independent of the initial state zt0−1 as well. (Let W̄ 2
r denote the value of this

expression associated with a given rule r.)

Instead, the value of ȳt will be a linear function of zt0−1, again as a result of

the linearity of (4.6). And in our LQ problem with a self-consistent initial pre-

commitment, the function (4.4) is linear as well. It follows that the first term on the

right-hand side of (4.12) is a quadratic function of zt0−1,

W̄ (ȳ; zt0−1) = z′t0−1Xrzt0−1,

where the subscript r indicates that the matrix of coefficients Xr can depend on the

policy rule that is chosen. If we furthermore partition the extended state vector

zt =

[
z1

t

z2
t

]
, z1

t ≡
[

1

yt
tr

]
, z2

t ≡
[

yt
cyc

]
,

and partition the rows and columns of the matrix Xr conformally, then we observe

that

Eµ[W̄ (ȳ; zt0−1)] = z1′
t0−1Xr,11z

1
t0−1 + Eµ[z2′Xr,22z

2], (4.13)

using the fact that Eµ[z2] = 0.

Finally, we observe that under any rule r, the linearity of the law of motion (4.6)

implies that conditional forecasts of the evolution of the endogenous variables take

the form

Et0−1yT = ytr
t0−1 + (T + 1− t0)γ + BT+1−t0yt0−1

cyc,

where the sequence of matrices {Bj} may depend on the rule r, but the first two

terms on the right-hand side (the terms linear in the elements of z1
t0−1 as opposed to

the elements of z2
t0−1) are the same for all rules. Using this solution for the sequence

ȳ to evaluate W̄ (ȳ; zt0−1), we find that the matrix of coefficients Xr,11 in (4.13) is

independent of r, and so can be denoted simply X11. Thus if we integrate (4.12) over

the invariant distribution µ, we obtain

Eµ[W̄r(yt0−1)] = z1′
t0−1X11z

1
t0−1 + Eµ[z2′Xr,22z

2] + W̄ 2
r ,

54Here the expected value of the second term on the right-hand side of (4.5) vanishes because of
the unforecastability of y†t0 .
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which is precisely a decomposition of the asserted form (4.11). This proves that the

criterion (4.10) establishes the same ranking of alternative rules, regardless of the

initial condition.

5 Applications

The approach expounded here has already proven fruitful in a number of applications

to problems of optimal monetary and fiscal policy. Benigno and Woodford (2005a)

use this method to derive an LQ approximation to the problem of optimal monetary

stabilization policy in a DSGE model with monopolistic competition, Calvo-style

staggered price-setting, and a variety of exogenous disturbances to preferences, tech-

nology, and fiscal policy. Unlike the method used by Rotemberg and Woodford (1997)

and Woodford (2002), the present method is applicable even in the case of (possi-

bly substantial) distortions even in the absence of shocks, owing to market power or

distorting taxes. The quadratic stabilization objective obtained is of the form

−1

2
Et0

∞∑
t=t0

βt−t0
[
qππ2

t + qy(Ŷt − Ŷ ∗
t )2

]
, (5.1)

where πt is the inflation rate between periods t − 1 and t, Ŷt is the log deviation of

aggregate real output from trend, Ŷ ∗
t is a target level of output that depends purely on

the exogenous real disturbances, 0 < β < 1 is the representative household’s discount

factor, and the weights qπ, qy are functions of model parameters (both positive if

steady-state distortions are not severe). The single linear constraint corresponds to

the familiar “new Keynesian Phillips curve,”

πt = κ[Ŷt − Ŷ ∗
t ] + βEtπt+1 + ut, (5.2)

where κ > 0 is a function of model parameters and the “cost-push” term ut is a linear

function of the various exogenous real disturbances.

The resulting LQ problem is of a form that has already been extensively studied in

the literature on optimal monetary stabilization policy,55 and so the ways in which the

parameterization of the objective and constraint shape the character of optimal policy

is well understood once the problem is stated in this form. The analysis in Benigno

55See, e.g., , Clarida et al. (1999) and Woodford (2003, chap. 7).
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and Woodford (2005a), however, explains the microeconomic determinants of these

factors. For example, it provides an interpretation of the “cost-push” disturbances

that play a crucial role in familiar discussions of the tradeoffs between inflation and

output stabilization, and shows that the cost-push effects of most types of shocks are

larger the more distorted is the economy’s steady state; and it explains the relative

weight that should be assigned to the output-gap stabilization objective, showing that

this need not be positive in the case of a sufficiently distorted economy. (Indeed, if

distortions are severe, the quadratic objective can fail to be concave, so that a small

amount of policy randomization can be welfare-improving.) Benigno and Woodford

(2005b) extend the analysis to the case in which both wages and prices are sticky,

obtaining a generalization of (5.1) in which a third quadratic loss term appears,

proportional to squared deviations of nominal wage inflation from zero. This shows

that the analysis by Erceg et al. (2000) of the tradeoff between stabilization of wage

inflation and price inflation applies also to economies with distorted steady states,

though the policy tradeoffs are complicated by the presence of cost-push terms that

do not appear in those authors’ analysis of the case of an undistorted steady state.

An important limitation of the LQ method of Rotemberg and Woodford (1997),

that restricts attention to cases in which the utility gradient is zero in the steady state,

is that it cannot easily be applied to analyses of optimal policy for open economies;

for in an open economy, domestic production and consumption cannot be equated,

and the marginal utility associated with a change in either individually will inevitably

be non-zero in any reasonable case. The method proposed here instead allows LQ

analyses of optimal policy also in the case of open economies.

Benigno and Benigno (2006) analyze policy coordination between two national

monetary authorities which each seek to maximize the welfare of their own country’s

representative household, and show that it is possible to locally characterize each

authority’s aims by a quadratic stabilization objective. Previous LQ analyses of

policy coordination have often assumed an objective of the form (5.1) for each national

authority, but with the nation’s own inflation rate and output being the arguments

in each case. Benigno and Benigno instead show that household utility maximization

would correspond to a quadratic objective for each authority with terms penalizing

fluctuations in both domestic and foreign inflation (but with different weights on the

two terms for the distinct national authorities), and similarly with terms penalizing

fluctuations in both domestic and foreign output (again with different weights in
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the case of the two authorities). They also show that each authority’s stabilization

objective should contain a term penalizing departures of the terms of trade from a

“target” level (that depends on exogenous disturbances), and show how both the

weight placed on this additional objective and the nature of variation in the terms

of trade “target” depend on underlying micro-foundations. De Paoli (2004) similarly

shows how the analysis of Benigno and Woodford (2005a) can be extended to a

small open economy, requiring the addition of a terms-of-trade (or real-exchange-

rate) stabilization objective to the two terms shown in (5.1).

Another advantage of the fact that the present method applies to economies with

a distorted steady state is that it can be used to analyze optimal tax smoothing when

only distorting taxes are available as sources of government revenue, after the fashion

of Barro (1979) and Sargent (1987, chap. XV), and allows the theory of tax smooth-

ing to be integrated with the theory of monetary stabilization policy. Benigno and

Woodford (2003) extend the analysis of Benigno and Woodford (2005a) to the case of

an economy with only distorting taxes, and show that the problem of choosing jointly

optimal monetary and fiscal policies can also be treated within an LQ framework that

nests standard analyses of tax smoothing (with flexible prices, so that real effects of

monetary policy are ignored) and of monetary policy (with lump-sum taxes, so that

fiscal effects of monetary policy can be ignored) as special cases. Notably, they find

that allowing for tax distortions introduces no additional stabilization goals into the

quadratic objective (5.1). Instead, the benefits of tax smoothing are represented by

the penalty on squared departures of equilibrium output from its “target” level; tax

variations can increase the average size of this term, because of the effects of the level

of distorting taxes on equilibrium output (which occur due to a “cost-push” effect of

tax rates in the generalized version of the constraint (5.2)). Benigno and De Paoli

(2005) extend this analysis to treat optimal monetary and fiscal policy in a small

open economy, while Ferrero (2005) analyzes optimal monetary and fiscal policy in a

monetary union with separate national fiscal authorities.

All of the analyses just mentioned involve fairly simple DSGE models, in which it

is possible to derive the coefficients of the LQ approximate policy problem by hand.

In the case of larger (and more realistic) models of the kind that are now being esti-

mated for use in practical policy analysis, such calculations are likely to be tedious.

Nonetheless, it is an advantage of our method that it is straightforward to apply it

even to fairly complex models and fairly general specifications of disturbances. Al-
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tissimo et al. (2005) describe computer code that executes the calculations explained

above, for a general nonlinear problem with an arbitrary number of state variables,

and demonstrate its application to two important extensions of the work described

above, an analysis of optimal monetary policy in the presence of non-trivial frictions

of the kind that result in a transactions demand for money, and an analysis of opti-

mal monetary policy for the empirical model of Smets and Wouters. We believe that

the availability of this code will make it practical to apply these methods to a wide

variety of other models of interest to policy institutions.
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A Appendix: Proofs and Derivations

A.1 Proposition 1

Recall that H is the Hilbert space of (real-valued) stochastic processes {ỹt} such that

Et0

∞∑
t=t0

βt−t0 ỹ′tỹt < ∞, (A.1)

andH1 ⊂ H is the subspace of sequences ψ ∈ H that satisfy the additional constraints

C(L)ψt = 0 (A.2)

EtD(L)ψt+1 = 0 (A.3)

for each date t ≥ t0, along with the initial commitments

D(L)ψt0 = 0, (A.4)

where we define ψt0−1 ≡ 0 in writing (A.2) for period t = t0 and in writing (A.4).

Proposition 1 For {ỹt} ∈ H to maximize the quadratic form (2.21), subject to the

constraints (2.22) – (2.24) given initial conditions ỹt0−1 and ḡt0, it is necessary and

sufficient that (i) there exist Lagrange multiplier processes56 ϕ̃, λ̃ ∈ H such that the

processes {ỹt, ϕ̃t, λ̃t} satisfy (3.1) for each t ≥ t0; and (ii)

V Q(ψ) ≡ V Q
t0 (ψ; 0) =

1

2
Et0

∞∑
t=t0

βt−t0 [ψ′tA(L)ψt] ≤ 0 (A.5)

for all processes ψ ∈ H1, where in evaluating (A.5) we define ψt0−1 ≡ 0. A process

{ỹt} with these properties is furthermore uniquely optimal if and only if

V Q(ψ) < 0 (A.6)

for all processes ψ ∈ H1 that are non-zero almost surely.

56Note that ϕ̃t is also assumed to be defined for t = t0 − 1.
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Proof: We have already remarked on the necessity of the first-order conditions

(i). To prove the necessity of the second-order condition (ii) as well, let {ỹt} ∈ H,

and consider the the perturbed process

ŷt = ỹt + ψt (A.7)

for all t ≥ t0−1, where {ψt} belongs to H1 and we define ψt0−1 ≡ 0. This construction

guarantees that if the process {ỹt} satisfies the constraints (2.22) – (2.24), so does

the process {ŷt}.
We note that

V Q
t0 (ŷ; ξ) = V Q

t0 (ỹ; ξ) +
1

2
Et0

∞∑
t=t0

βt−t0 [ψ′tA(L)ỹt + ỹ′tA(L)ψt + 2ψ′tB(L)ξt+1]

+
1

2
Et0

∞∑
t=t0

βt−t0 [ψ′tA(L)ψt].

The second term on the right-hand side is furthermore equal to

1

2
Et0

∞∑
t=t0

βt−t0ψ′t ·
{
[A(L) + A′(βL−1)]ỹt + 2B(L)ξt+1

}

= −Et0

∞∑
t=t0

βt−t0ψ′t ·
{

C ′(βL−1)λ̃t + β−1D′(βL−1)ϕ̃t−1

}

= −Et0

∞∑
t=t0

βt−t0
{

λ̃
′
tC(L)ψt + β−1ϕ̃′t−1D(L)ψt

}
,

where we use the first-order conditions (3.1) to establish the first equality, and con-

ditions (3.10) – (3.12) to establish the final equality.

Thus for any feasible process ỹ and any perturbation (A.7) defined by a process

ψ belonging to H1,

V Q
t0 (ŷ; ξ) = V Q

t0 (ỹ; ξ) + V Q(ψ). (A.8)

It follows that if there were to exist any ψ ∈ H1 for which V Q(ψ) > 0, the plan ỹ

could not be optimal. But as this is true regardless of what plan ỹ may be, (A.5) is

necessary for optimality. Furthermore, if there were to exist a non-zero ψ for which

V Q(ψ) = 0, it would be possible to construct a perturbation ŷ (not equal to ỹ almost

surely at all dates) that would achieve an equally high level of welfare. Hence the
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stronger version of the second-order conditions (A.6) must hold for all ψ not equal to

zero almost surely, in order for {ỹt} to be a unique optimum.

One easily sees from the same calculation that these conditions are also sufficient

for an optimum. Let {ỹt} be a process consistent with the constraints of the LQ

problem. Then any alternative process {ŷt} that is also consistent with those con-

straints can be written in the form (A.7), where ψ is some element of H1. If the

first-order conditions (3.1) are satisfied by the process {ỹt}, we can again establish

(A.8). Condition (A.5) then implies that no alternative process is preferable to {ỹt},
while (A.6) would imply that {ỹt} is superior to any alternative that is not equal to

ỹ almost surely.

A.2 Lemma 2

Lemma 2 The second-order condition for the previous optimization problem is sat-

isfied — i.e., (A.6) is satisfied by all processes ψ ∈ H1 that are non-zero almost surely

— if and only if (i) every northwest principal minor of the bordered Hermitian matrix

M̄(θ) ≡ M(e−iθ, eiθ) (A.9)

of order p > 2(nF + ng) has the same sign as (−1)p−nF−ng for all −π ≤ θ ≤ π; and

(ii) in the case that ng > 0, J11, the ng × ng upper left block of the matrix

J ≡
∞∑

j=1

T ′j[S ′(A0 + A′
0)S + β1/2T ′S ′A1S + β1/2S ′A′

1ST ]T j (A.10)

is negative definite, i.e., , for each 1 ≤ p ≤ ng, the northwest principal minor of

J of order p has the same sign as (−1)p. Here A0, A1 are the matrices such that

A(L) = A0 + A1L, and

S ≡ [0 I]

is the ny × (ng + ny) matrix that selects the last ny elements of a vector of length

ng + ny, and T is the matrix in (3.7).

Proof: (1) We first show that (A.6) is equivalent to the negative definiteness

of a corresponding quadratic form defined for deterministic sequences. Let H̄ be

47



the Hilbert space of complex-valued ny-vector sequences {ψ̄t}, with the respective

complex conjugate {ψ̄†t}, such that

∞∑
t=t0

βt−t0(ψ̄
†′
t )ψ̄t < ∞. (A.11)

It will sometimes be convenient to associate with any sequence {ψ̄t} in H̄ a rescaled

sequence {ψ̂t} defined by

ψ̂t = β
t−t0

2 ψ̄t (A.12)

for each t ≥ t0. In this alternative representation, H̄ corresponds to the space of

sequences {ψ̄t} such that
∞∑

t=t0

ψ̂
†′
t ψ̂t < ∞,

so that it is clear that H̄ is a Hilbert space. Moreover, let H̄1 be the subspace of H̄
consisting of sequences that in addition satisfy

C(L)ψ̄t = 0 (A.13)

D(L)ψ̄t+1 = 0 (A.14)

for all t ≥ t0,
57 where in the interpretation of condition (A.13) at date t0 we use the

definition

ψ̄t0−1 ≡ 0. (A.15)

Then we shall establish that (A.6) holds for all (real-valued) stochastic processes

{ψt} ∈ H1 that are not equal to zero at all times almost surely, if and only if

V̄ Q(ψ̄) ≡ 1

4

∞∑
t=t0

ψ̂
†′
t [A(β

1
2 L) + A′(β

1
2 L−1)]ψ̂t < 0 (A.16)

for any complex-valued (deterministic) sequences {ψ̄t} ∈ H̄1 that are not equal to

zero at all times. (Here we have written the definition of V̄ Q in terms of the ψ̂

representation of any sequence ψ̄, in order to make it clear that the quadratic form is

Hermitian, and as a preparation for application of the results of Telser and Graves,

1972. Again we use (A.15) in the definition (A.16).)

57Note that in the definition of the subspace H̄1, we do not require that a condition analogous to
(A.4) be satisfied.
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Note that in the case of a real-valued deterministic sequence {ψ̄t}, (A.16) can

equivalently be written in the form

V̄ Q(ψ̄) =
1

2

∞∑
t=t0

βt−t0ψ̄
†′
t A(L)ψ̄t < 0. (A.17)

This is then obviously just the second-order condition (A.6) for the special case of a

deterministic sequence. Condition (A.16) is an extension of the quadratic form V̄ Q

to complex-valued sequences, in a way that implies that V̄ Q(ψ̄) is real-valued even

when ψ̄ is complex-valued. The statement of condition (A.16) in terms of a quadratic

form defined for complex-valued sequences allows us to apply the results set out in

Telser and Graves (1972).

(2) We begin by showing that (A.6) holding for all nonzero elements of H1 implies

that (A.16) must hold for all nonzero elements of H̄1. We show this by contradiction.

Suppose instead that that there exists a sequence of vectors {ψ̄t} ∈ H̄1, not equal to

zero at all dates, for which (A.16) does not hold. If a complex-valued vector sequences

of this kind exist, we can also find a real-valued vector sequence. For any ψ̄ ∈ H̄1

can be written as

ψ̄ = ψ̄
re

+ iψ̄
im

,

where ψ̄
re

, ψ̄
im

are real-valued sequences, and it can be shown that ψ̄
re

, ψ̄
im

are both

real-valued elements of H̄1. Furthermore, one observes that given the symmetry of

the quadratic form defined in (A.16),

V̄ Q(ψ̄) = V̄ Q(ψ̄
re

) + V̄ Q(ψ̄
im

).

Then as by hypothesis V̄ Q(ψ̄) ≤ 0, it follows that V̄ Q ≤ 0 for at least one of the

real-valued sequences as well. Thus we may assume without loss of generality that ψ̄

is a real-valued sequence.

Then we can define a real-valued sunspot process ψt0 = 0, and ψt = σt0+1ψ̄t−1 for

all t ≥ t0 + 1, where σt0+1 is an independently distributed sunspot variable, realized

at date t0 + 1, and taking the value -1 or 1, each with probability 1/2. Then the

process {ψt} satisfies (A.1), is not almost surely equal to zero at all times, satisfies

(A.2)–(A.3) for all t ≥ t0, and satisfies (A.4), but is such that the left-hand side of

(A.6) is greater than or equal to zero. Thus (A.6) would not hold for all processes

ψ ∈ H1. It follows that if (A.6) holds for all nonzero elements of H1, (A.17) must

hold for all nonzero complex-valued sequences ψ̄ ∈ H̄1.
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(3) Conversely, one can also show that (A.17) holding for all nonzero elements

of H̄1 implies that (A.6) must hold for all nonzero elements of H1. Let any process

ψ ∈ H1 be decomposed as

ψt =

t−t0∑
j=0

ψ
(j)
t ,

where ψ
(0)
t ≡ Et0ψt and ψ

(j)
t ≡ Et0+jψt − Et0+j−1ψt, for each j ≥ 1. Note that this

implies that ψ
(j)
t = 0 for all t0 ≤ t < t0 + j, and that the entire sequence {ψ(j)

t } is

known with certainty at date t0 + j. It then follows that

Et0ψtψ
′
t−k =

t−t0−k∑
j=0

Et0ψ
(j)
t ψ

(j)′
t−k (A.18)

for any 0 ≤ k ≤ t− t0, from which it follows that if the process {ψt} satisfies (A.1),

the process {ψ(j)
t } must also satisfy (A.1), for each j ≥ 0. This in turn implies that

for any j, the sequence of values {ψ(j)
t } for t ≥ t0 + j conditional upon reaching a

particular state of the world58 ht0+j at date t0 + j satisfies (A.11) almost surely.59

Now for any j ≥ 0 and any possible state of the world ht0+j, let us define the

sequence ψ̄
(j)

(ht0+j) by ψ̄
(j)
t = ψ

(j)
t+j for all t ≥ t0, where the value of ψ

(j)
t+j is the

one conditional on that state of the world in period t0 + j. Then the fact that (by

hypothesis) the process ψ satisfies (A.2)–(A.3) for all t ≥ t0 implies that the se-

quence ψ̄
(j)

(ht0+j) satisfies (A.13) and (A.14). Thus for each j ≥ 0, the sequence

ψ̄
(j)

(ht0+j) belongs almost surely to H̄1. Furthermore, there exists at least one j for

which ψ̄
(j)

(ht0+j) is not almost surely equal to zero.

It then follows from (A.18) that

V Q(ψ) =
∞∑

j=0

βjEt0V̄
Q(ψ̄

(j)
(ht0+j)), (A.19)

where (as each sequence ψ̄
(j)

is real-valued) V̄ Q is defined as in (A.17). Since by

hypothesis (A.16) holds for all non-zero elements of H̄1, (A.17) also holds for all non-

zero real-valued elements of that space. Thus V̄ Q(ψ̄
(j)

(ht0+j)) ≤ 0 for each j and

58Here we identify a state of the world by the history ht0+j ≡ (ξt0+1, . . . , ξt0+j) associated with
it.

59Here the “almost surely” refers to the ex ante probability distribution over possible states of
the world at date t0 + j.
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each possible state of the world, and the inequality is strict in the case of those j and

those states ht0+j (which must include states that occur with positive probability at

at least one date) for which ψ̄
(j)

(ht0+j) 6= 0. Thus the sum on the right-hand side of

(A.19) must be negative, from which it follows that ψ satisfies (A.6), as was to be

proven.

(4) Our problem thus reduces to a search for necessary and sufficient conditions

under which (A.16) must be satisfied by all nonzero complex-valued sequences ψ̄ ∈
H̄1. We begin by considering the simpler problem of establishing conditions under

which (A.16) holds for all nonzero sequences ψ̄ ∈ H̄2, where H̄2 is the subspace of

H̄1 consisting of those sequences that also satisfy (A.14) for t = t0 − 1, again under

the definition (A.15). Since H̄2 is a proper subspace of H̄1, necessary conditions for

this problem are also necessary for the problem of interest to us, though sufficient

conditions are not necessarily sufficient.

The space H̄2 can alternatively be described as the subspace of H̄ consisting of

all sequences that satisfy (A.13) and

D(L)ψ̄t = 0 (A.20)

for all t ≥ t0. These are the purely backward-looking constraints of a standard optimal

control problem, and we can apply the results of Telser and Graves (1972). (Condi-

tion (3.15) implies that the constraints of this backward-looking problem satisfy the

regularity condition assumed by Telser and Graves.)

Using the transformation (A.12), the objective V̄ Q can be alternatively defined as

in (A.16), and the constraints (A.13) and (A.20) written in the form

C(β1/2L)ψ̂t = 0,

D(β1/2L)ψ̂t = 0

for all t ≥ t0. Then by Theorems 5.1 and 5.3 of Telser and Graves, the second-order

condition for the deterministic optimal control problem with these backward-looking

constraints is satisfied — i.e., (A.16) is satisfied by all non-zero complex-valued

sequences ψ̄ ∈ H̄2 — if and only if every northwest principal minor of the bordered

Hermitian matrix

M∗(θ) ≡




0 0 C(β
1
2 e−iθ)

0 0 D(β
1
2 e−iθ)

C ′(β
1
2 eiθ) D′(β

1
2 eiθ) 1

2
[A(β

1
2 e−iθ) + A′(β

1
2 eiθ)]
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of order p > 2(nF + ng) has the same sign as (−1)p−nF−ng for all −π ≤ θ ≤ π.

The matrix M∗(θ) differs from M̄(θ), defined in (A.9), only that in M̄(θ) the

middle block of rows have each been multiplied by β−1/2eiθ, and each of the middle

block of columns have been multiplied by β−1/2e−iθ. The first change multiplies each

principal minor by a factor (β−1/2eiθ)ng , but the second change multiplies each of them

by a factor (β−1/2e−iθ)ng , so that the net effect is a multiplication by β−ng , regardless

of the value of θ. Hence the signs of the principal minors of M∗(θ) are the same as

those of the principal minors of M̄(θ), for all θ, and the condition just stated holds

if and only if condition (i) of the lemma holds. Hence condition (i) is necessary and

sufficient for (A.16) to be satisfied by all nonzero complex-valued sequences ψ̄ ∈ H̄2.

(5) It has been shown that condition (i) is a necessary condition for (A.16) to be

satisfied by all nonzero complex-valued sequences ψ̄ ∈ H̄1. It remains to be shown

that condition (ii) is also necessary, and that the two conditions are jointly sufficient.

In the remainder of our discussion, we shall suppose that condition (i) holds, and

establish that condition (ii) is then both necessary and sufficient.

For any complex vector ng-vector µ, let us define60

Z(µ) ≡ sup
ψ̄∈H̄1

V̄ Q(ψ̄) s.t. D(0)ψ̄t0 = µ. (A.21)

In the case that µ = 0, the constraint set for this problem is just the subspace H̄2.

It then follows from section (4) that (given condition (i)) Z(0) = V̄ Q(0) = 0. We

wish to find conditions under which, in addition, Z(µ) < 0 for all µ 6= 0; for this is

equivalent to saying that (A.16) is satisfied by all nonzero ψ̄ ∈ H̄1.

The LQ optimization problem (A.21) is of the same form as the one treated in

part (4), except for the different value for the vector of constants µ. The conditions

for concavity of the problem are the same, and hence are satisfied under condition (i).

It follows that Z(µ) is finite, and that the maximizing sequence ψ̄(µ) is given by the

solution to the first-order conditions. The first-order conditions for this problem are

also independent of the value of µ, and in fact they are again given by (3.4) for each

t ≥ t0, with the following modifications: we now omit the conditional expectation

(since the problem is deterministic); ψ̂t replaces ŷt in the definition of the vector zt;

60It is easily shown that the set of sequences ψ̄ ∈ H̄1 consistent with any given initial value µ is
non-empty. If there is no upper bound on the value of V̄ Q on this set, the value of Z(µ) is defined
to be +∞.
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and xt = 0 for all t ≥ t0. Under condition (i), we again have a unique solution to

the first-order conditions satisfying the bound (A.11), for a given initial Lagrange

multiplier ϕ̂t0−1. And once again the solution is given by the iterative application of

(3.7), with ψ̂t replacing ŷt, setting ξ̂t = 0 each period, and starting from the initial

value ψ̂t0−1 = 0 and the arbitrary initial value for ϕ̂t0−1. Note that the methods used

previously apply equally in the case that the initial vector ϕ̂t0−1 is complex-valued,

in which case the solutions for the endogenous variables are also complex-valued; this

will occur if and only if µ is complex-valued in (A.21).

Thus the maximizing sequence ψ̂(µ) (which can be rescaled to give ψ̄(µ)) is given

by

ψ̂t(µ) = ST t+1−t0

[
I

0

]
ϕ̂(µ)

for all t ≥ t0. Here S is the selection matrix defined in the statement of the lemma,

T is the matrix in (3.7), and ϕ̂(µ) is the value of the multiplier ϕ̂t0−1 associated with

the constraint indexed by µ in the problem (A.21), which is to say, it is the function

implicitly defined by

d(ϕ̂, 0, 0) = µ,

where d(·) is the same function as in (3.8). Substituting this solution for ψ̂(µ) into

(A.16), we obtain

Z(µ) = V̄ Q(ψ̄(µ))

=
1

4
ϕ̂(µ)†′J11ϕ̂(µ),

where J11 is the upper left block of the matrix J defined in (A.10). Since the range

of ϕ̂(µ) is the entire space Cng , and ϕ(µ) = 0 if and only if µ = 0, we observe that

Z(µ) < 0 for all (complex-valued) µ 6= 0 if and only if the real-valued ng × ng matrix

J11 is negative definite, which is condition (ii) of the lemma.

Thus conditions (i) and (ii) are both necessary and sufficient for Z(µ) to be non-

positive for all µ and negative for all µ 6= 0, and hence for (A.16) to be satisfied by

all nonzero ψ̄ ∈ H̄1. This establishes the lemma.

Example: Suppose that yt has two elements, that the objective of policy is to

maximize

Et0

∞∑
t=t0

βt−t0 ỹ′tAỹt, (A.22)
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where A is a symmetric 2 × 2 matrix, and that the only constraint on what policy

can achieve is a single, forward-looking constraint

Et[δỹ1t − ỹ1,t+1] = 0 (A.23)

for all t ≥ t0, where δ < β−1/2. There are no exogenous disturbances, but the expec-

tations appear because we wish to consider the possibility of (arbitrarily) randomized

policies. We assume an initial pre-commitment of the form

ỹ1,t0 = 0, (A.24)

which can be shown to be self-consistent, insofar as the optimal policy (when one

exists) under this constraint involves ỹ1t = 0 for all t.

In the case that policy is restricted to be deterministic, the constraint completely

determines the path of {ỹ1t}; the only (perfect foresight) sequence consistent with the

initial pre-commitment and the forward-looking constraint is the one in which ỹ1t = 0

for all t ≥ t0. The problem then reduces to the choice of a sequence {ỹ2t}, constrained

only by the bound (3.2), so as to maximize the objective. This is obviously a concave

problem if and only if ỹ′Aỹ is a concave function of ỹ2 when we set ỹ1 = 0. This in

turn is true if and only if A22 < 0; the other elements of A are irrelevant.

If instead we allow random policies, the condition just derived is no longer suf-

ficient for concavity (though still necessary). One easily sees that the problem is

concave if and only if A is a negative definite matrix. This is obviously a sufficient

condition (as it implies that (A.22) is concave for arbitrary sequences). To show that

it is also necessary, suppose instead that it is not true. Then there exists a vector

v 6= 0 such that v′Av ≥ 0. The process {ỹt} generated by the law of motion

ỹt = δỹt−1 + vεt

starting from the initial condition ỹt0 = 0, where {εt} is a (scalar-valued) martingale-

difference sequence, satisfies (3.2) and the constraints (A.23)–(A.24), but implies a

non-negative value for (A.22). Hence the problem is concave if and only if A is a

negative-definite matrix. This requires that A22 < 0, but involves the other elements

of the matrix as well; in particular, it requires in addition that the determinant of A

be positive.
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Let us examine how these results compare with the conditions stated in Lemma

2. In this example,

M(L,L−1) =




0 β−1/2L−1(1− β1/2δL) 0

β−1/2L(1− β1/2δL−1) A11 A12

0 A21 A22


 ,

so that

det M̄(θ) = −β−1(1− 2β1/2δ cos θ + βδ2)A22. (A.25)

Because nF +ng = 1 and n = 3, condition (i) of the lemma involves only the principal

minor of order p = 3, which is the determinant of the entire matrix M̄(θ), and this

is required to be positive for all θ. Since the expression in parentheses in (A.25) is

positive for all θ, the determinant has the sign of −A22, and condition (i) is satisfied if

and only if A22 < 0. As just shown, this is necessary and sufficient for the concavity of

the problem stated above in the case that only deterministic policies are considered,

but it is not sufficient in the case that randomized policies are allowed.

The first-order conditions for the above optimization problem are

A11ỹ1t + A12ỹ2t − δϕt + β−1ϕt−1 = 0,

A21ỹ1t + A22ỹ2t = 0

for all t ≥ t0. The unique solution consistent with initial condition ỹt0−1 = 0 (and a

given value for ϕt0−1) and satisfying the bound (A.11) is given by61

ỹ1t = −A22

|A| (β−1 − δ2) δt−t0ϕt0−1,

ỹ2t =
A21

|A| (β−1 − δ2) δt−t0ϕt0−1

for all t ≥ t0. It follows that the upper left element of the matrix defined in (A.10) is

equal to

J11 = (β−1 − δ2)
A22

|A| ,

and (given that A22 < 0 as a result of condition (i)) condition (ii) holds if and only

if |A| > 0. This together with the condition that A22 < 0 implies that A is negative

61It is obvious that the first-order conditions have no determinate solution unless |A| 6= 0. We
assume this in writing the solution for ỹt here; the condition is in fact implied by the algebraic
expression for condition (ii) that we derive.
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definite. Thus conditions (i) and (ii) of Lemma 2 are equivalent to the condition that

A be negative definite, which as shown above is indeed a necessary and sufficient

condition for concavity of the problem when one allows for policy randomization.

A.3 Computing ϕ∗ and the Invariant Measure µ

Given that the equilibrium dynamics under optimal policy are given by a law of mo-

tion of the form (3.9), a specification ϕ̃t0−1 = ϕ∗(yt0−1) of the initial pre-commitment

is self-consistent if the function ϕ∗(·) is such that

[I 0] Z(ϕ∗(yt−1), ỹt−1, ξt, ξt−1) = ϕ∗(ψ(ξt, [0 I] Z(ϕ∗(yt−1), ỹt−1, ξt, ξt−1), yt−1))

(A.26)

for all possible (yt−1, ξt), where

Z(ϕ̃t−1, ỹt−1, ξt, ξt−1) ≡ T̃

[
ϕ̃t−1

ỹt−1

]
+ Ψ(L) ξt

and ψ(·) is the function introduced in (2.8) that defines the evolution of the extended

state vector. In this definition, T̃ is the matrix and Ψ(L) the matrix polynomial in

(3.9).

An example of a specification that is self-consistent in this sense would be the

function

ϕ∗(y) ≡ [I 0 0] y, (A.27)

where the identities that define the extended state vector are given by

ψ(ξt, ỹt,yt−1) ≡




[I 0] Z(ϕ∗(yt−1), ỹt−1, ξt, ξt−1)

ỹt

ξt


 . (A.28)

Equation (A.27) identifies the function ϕ∗(·) referred to in equation (4.5) in the text.

We turn to a discussion of the invariant distribution µ over possible initial con-

ditions, that is required in order to compute the proposed welfare criterion (4.10).

Because Ēr(·) is a quadratic function, we only need to compute the unconditional

mean and variance-covariance matrix of yt
cyc. Let the dynamics of the exogenous

disturbances be given by a law of motion of the form

ξt = Θξt−1 + Λεt,

56



where Θ and Λ are matrices of constant coefficients, and {εt} is an i.i.d. vector of

innovations, with mean zero and a variance-covariance matrix given by the identity

matrix. Then under definition (A.28) of the extended state vector, and an initial

pre-commitment implying an initial lagged Lagrange multiplier given by the function

defined in (A.27), the evolution of the extended state vector under optimal policy is

given by the law of motion

yt = Σyt−1 + Ξ εt (A.29)

for all t ≥ t0, starting from the initial condition yt0−1, where

Σ ≡
[

T̃ Ψ0Θ + Ψ1

0 Θ

]
, Ξ ≡

[
Ψ0Λ

Λ

]
.

(Here we use the notation Ψ(L) ≡ Ψ0 + Ψ1L.) We are interested in the invariant

distribution for the cyclical component yt
cyc of the extended state vector under the

law of motion (A.29).

Under this law of motion, the trend component of the extended state vector is

given by yt
tr = Pyt, where P is the matrix62

P ≡ lim
j→∞

Σj,

and the cyclical component is correspondingly given by yt
cyc = [I − P ]yt. It then

follows that the law of motion for the cyclical component is

yt
cyc = Σyt−1

cyc + [I − P ]Ξ εt. (A.30)

We note furthermore that (A.30) describes a jointly stationary set of processes, since

the matrix Σ is stable on the subspace of vectors z of the form z = [I −P ]y for some

vector y.63 Hence there exist a well-defined vector of unconditional means and an

unconditional variance-covariance matrix V. The unconditional means are all zero,

while the matrix V is given by the solution to the equation system

V = ΣVΣ′ + [I − P ]ΞΞ′[I − P ′].

This determines the properties of the invariant distribution µ that are required in

order to compute the welfare criterion (4.10).

62Under the assumption (made in the text) that the extended state vector is difference-stationary,
this limit must be well-defined.

63When restricted to this subspace, the operator Σ has eigenvalues consisting of those eigenvalues
of T and Θ that are less than one in modulus.
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