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1 Introduction

The problem of optimal asset allocation is of great importance both in the
theory as well as in the practice of finance. Since the seminal work of
Markowitz (1952) scholars and practitioners have looked at the issue of how
much money should an investor optimally allocate to different assets or as-
set classes. The single period model of Markowitz (1952) was extended to
a multiperiod setting by Samuelson (1969) and then to continuous time by
Merton (1969, 1971). The traditional approach assumes that all assets can
be traded at all times. This paper is concerned with optimal asset allocation
in a continuous time model when one asset cannot be traded.

Typical examples of assets in which trading is problematic include human
wealth, housing and a proprietorship. When the asset allocation problem is
solved without taking into account the existence of these “illiquid”assets the
allocation is certainly suboptimal. Consider the following example.a Two
individuals with the same wealth, the same preferences and the same hori-
zon would invest in the same portfolio using the traditional asset allocation
framework. However, if one of the individuals is a stock broker with his
human wealth highly correlated with the stock market, and the other is a
tenured university professor with his human wealth independent of the stock
market, it would be reasonable to expect that they would have different
allocations. This is the problem we address in this paper.

There are many definitions of illiquid assets. To make the problem
tractable, in this paper we assume that illiquidity prevents the trading of
the asset over the time horizon we consider (though this time horizon could
become infinite). The illiquid asset, however, provides a liquid ”dividend”
that is related to the level of an observable state variable associated with the
illiquid asset. In the case of human wealth the dividend could be labor in-
come, in the case of housing the dividend could be the housing services, and
in the case of a proprietorship it could be distributed profits from the busi-
ness. The uncertainty that drives the illiquid asset cannot be fully diversified
in the market. Since the asset is not traded, the state variable associated
with the illiquid asset can not be interpreted as a price. In the finite horizon
case this state variable becomes the price of the asset only at the terminal
date.

We assume that the agent in endowed with a given amount of the illiquid
asset and with some liquid wealth which can be allocated in a market where
there are two liquid assets: a risky asset and a risk free asset. The main point
of this paper is that the allocations to the two liquid assets and consumption

aThis example was presented by Robert Merton in a talk in Verona, Italy in June 2003.
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will critically depend on the endowment and characteristics of the illiquid
asset, in addition to the preferences and liquid wealth of the agent.

In the process of establishing the optimal allocation to the liquid assets we
also derive the value that the agent assigns to the illiquid asset. As expected,
the value that the agent assigns to the illiquid asset will always be lower than
the value it would have if it were traded. Moreover, this value depends not
only on the level of the state variable associated with the illiquid asset, but
also on the preferences of the agent.

The problem of asset allocation in the presence of illiquid assets has been
the subject of intense research in the finance literature since the late 60’s.
Recognizing the complexity of the subject simplifying assumptions have been
introduced to make the problem tractable.

Among non tradable assets, human wealth is certainly the most relevant
source of risk in the individual allocation problem which is difficult to insure
or diversify. Bodie, Merton and Samuleson (1992) consider a long horizon in-
vestor with a riskless stream of labor income and show that an investor with
riskless non tradable human wealth should tilt his financial portfolio toward
stocks relative to an investor who owns only tradable stock. Jagannathan
and Kocherlakota (1996) show that this advice is economically sound as long
as the human wealth is relatively uncorrelated with stock returns. Zeldes
(1989) performs a numerical study of a discrete time model of optimal con-
sumption in the presence of stochastic income. Koo (1995) and Heaton and
Lucas (1997) introduce risky labor income and portfolio constraints in an
infinite horizon portfolio choice problem and, using a numerical simulation,
focus on how the presence of background risks from sources such as labor,
influences consumption and portfolio choice. Both papers find that investors
hold most of their financial wealth in stocks. Koo (1995) shows numeri-
cally that an increase in the variance of permanent income shocks decreases
both the optimal portfolio allocation to stocks and the consumption labor
income ratio of power utility investors. In a discrete time framework Viceira
(2001) considers an approximate solution and finds that positive correlation
between labor income innovations and unexpected financial returns reduces
the investor’s willingness to hold liquid risky asset because of its poor prop-
erties as an hedge against unexpected declines in labor income. Consistently,
Heaton and Lucas (2000) find that entrepreneurs have significantly safer port-
folios of financial assets than other investors with similar wage and wealth.
Campbell and Viceira (2002) provide a comprehensive discussion of the em-
pirical testing and of the economic implications of including human wealth
in the household portfolio choice problem. Dybvig and Liu (2004) consider
a lifetime consumption/investment model with endogenous retirement date.
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Wang (2006) provides a complete discussion of the consumption choices of
an agent with human and liquid wealth under the assumption of exponential
utility function.

A related literature deals with portfolio choice in the presence of assets
which cannot be traded. To our knowledge the first treatment is due to Myers
(1972, 1973) which solves the static version of the problem. In a dynamic con-
text, the problem we solve can be seen as the limit of large transaction costs
of the Grossmann and Laroque (1990) model for illiquid durables. Svens-
son and Werner (1993) provide a treatment with exponential preferences.
Longstaff, Liu and Kahl (2003) formulate and provide a numerical solution
to the optimal dynamic allocation problem of an investor with power utility
whose portfolio includes a stock which cannot be sold. Among the possible
sources of background risk in household portfolios, housing is certainly one
important asset class that is relatively illiquid and undiversified. Analyz-
ing risk and return is however complicated because of the unobservable flow
of consumption of housing services. Flavin and Yamashita (1998) consider
housing both as an asset and as a source of consumption, and obtain the
optimal portfolio allocations by simulation.

There is a large strand of the literature in stochastic optimization which
addresses the continuous time portfolio allocation problem in incomplete
markets both with the direct partial differential equation approach and with
the martingale-measure duality approach. Duffie, Fleming, Soner and Za-
riphopolou (1997) study an asset allocation problem for an investor which
maximizes HARA utility (with relative risk aversion coefficient smaller than
1) from consumption in a market composed by a risky and a riskless asset and
receives an income which cannot be replicated by other securities. This study
proves existence, uniqueness and regularity of the value function, while the
optimal consumption path and the allocation strategy are implicitly specified
throughout a feedback expression. Koo (1998) analyzes the same problem in
the presence of constraints.

The stochastic optimization problem we discuss is strictly related to the
utility based pricing of contingent claims whose underlying assets are non
traded. Most of these references, Davis (1999), Detemple and Sundaresan
(1999), Teplà (2000), Hobson and Henderson (2002), Henderson (2002) and
Musiela and Zariphopolou (2004a)), assume that the agent has exponential
preferences and no consumption and dividends.

Our results are based on the duality approach pioneered by Cox and
Huang (1989), He and Person (1991), and Karatzas et al. (1991). He and
Pages (1993) and El Karoui and Jeanblanc (1998) deal with a constrained ver-
sion of the problem when labor income risk can be diversified in the market.
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When the agent receives an uninsurable random endowment the mathemati-
cal formulation of the stochastic control problem becomes difficult. Existence
results under very general conditions on the price processes and on the utility
function have been obtained by Cuoco (1997) attacking directly the primal
problem, while exact results on the duality approach have been established
by Cvitanic, Schachermayer and Wang (2001) in the case of maximization of
utility from terminal wealth and extended by Karatzas and Zitkovic (2003)
to the problem with intertemporal consumption and constraints.

As far as we are aware, our paper contains the first analytical solution to
this problem when the agent has power utility of consumption and terminal
wealth. The analytical solution obtained allows us to quantify the impact
of the assets characteristics and the agent preferences on optimal asset al-
location and consumption. In particular, we show that the higher is the
correlation between the liquid and the illiquid asset, the lower will be the
allocation to the risky liquid asset. So, in the example given above the pro-
fessor would optimally invest a higher proportion of his liquid wealth in the
risky liquid asset than the stock broker. Since the human wealth of the stock
broker is highly correlated with the stock market, and his human wealth is
non tradable, he will tend to invest a smaller fraction of his liquid wealth in
the market portfolio.

The analysis of the optimal consumption out of liquid assets shows that
the agent will make his consumption decision looking not only at his liquid
wealth but taking into account also his illiquid wealth. The computation
of the elasticity of consumption with respect to liquid and illiquid wealth
shows that for an agent with constant relative risk aversion the propensity to
consume out of liquid wealth will be always larger than out of illiquid wealth.

Moreover, the solution provides the expression for the stochastic discount
factor that the agent uses for his/her private valuation of the illiquid asset.
The procedure reduces to risk neutral valuation for the liquid assets, while the
risk adjustment for valuing illiquid assets is found to be state dependent. The
optimal value function of the allocation/consumption problem determines the
analytical expression of the risk adjustment as a function of the liquidity state
variable, the preferences of the investor and the volatility of the non-traded
source of risk.

The paper is organized as follows. In Section 2 we introduce the economic
setting and its mathematical formulation, in Section 3 we provide the ana-
lytical solution to the Hamilton Jacobi Bellman equation. Section 4 provides
a discussion of the optimal consumption and allocation policies. Section 5
derives the stochastic discount factor that the agent will use in the private
valuation of the illiquid asset. In Section 6 we analyze the sensitivity of
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the control policies to different parameters and Section 7 concludes. The
Appendix contains the proofs and some technical results.

2 Economic setting

Consider a continuous time economy where prices evolve stochastically in a
filtered probability space {Ω,F ,P} supporting a two dimensional Brownian
motion (W 1

t ,W 2
t ) where F = {Ft}t≤T and Ft represents the augmented fil-

tration generated by all the information reflected in the market up to time t
and P is the objective probability measure. All the processes will be assumed
to be adapted to F . We fix a final time horizon T , the epoch at which the
non traded (illiquid) asset becomes tradable and can be consumed.

The market is composed of three assets:

• The risk free bond Bt, whose dynamics is:

dBt = rBtdt t ≤ T

where r is the continuously compounded risk free interest rate which,
for simplicity, we assume to be constant.

• A traded liquid risky asset St, whose dynamics is:

dSt

St

= αdt + σdW 1
t t ≤ T

where α (> r)is the continuously compounded expected rate of return
on the risky liquid asset, and σ is the continuous standard deviation of
the rate of return.b

• An illiquid risky asset Ht (no trading is allowed until time T , when it
can be consumed), whose dynamics is:

dHt

Ht

= (µ− δ)dt + η
(
ρdW 1 +

√
1− ρ2dW 2

)
t ≤ T (1)

where µ is the continuously compounded total expected rate of return
on the risky illiquid asset, δ is the liquid continuous rate of dividend
paid by the illiquid asset, η is the continuous standard deviation of the

bFor simplicity we assume that the liquid risky asset pays no dividends, but the analysis
would be the same if the asset paid a continuous dividend
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rate of return, and ρ is the correlation coefficient between the dynamics
of the liquid and the illiquid risky asset.c

Since the illiquid asset Ht cannot be traded at any time t < T , it repre-
sents the level of a state variable associated with the illiquid asset, i.e. the
process which generates the random cashflows: δHt at time t < T and HT

at time T . At time T , the state variable, HT , becomes equal to the price of
the illiquid asset.

We assume that the investor has time additive separable preferences and
maximizes a CRRA utility from consumption and final wealth. The intertem-
poral optimization problem of the agent is then given by:

sup
(π,c)∈A(l,h,t)

U (t, c, W π,c
T )

U (t, c,W π,c
T ) : = EP

t

[∫ T

t

e−κ(u−t)Uγ (cu) du + βe−κ(T−t)Uγ (W π,c
T )

]

with Uγ (x) =
x1−γ

1− γ
for x > 0, Uγ (x) = −∞ for x ≤ 0,

The set of admissible plans with initial liquid wealth l, and initial level
of the illiquid state variable h, A (l, h, t), is defined as the set of ad-
missible consumption-allocation plans (c, π). 1 The consumption stream,
c ≡ (cτ )t≤τ≤T , specifies the agent’s consumption rate of liquid assets, while

the allocation strategy π =
(
πS

τ , πB
τ

)
t≤τ≤T

denotes the dollar amounts in-
vested in the risky and riskless liquid assets at any time τ between t and T .
Assume that at time t the agent holds an amount of liquid wealth l > 0, and
a nominal amount of illiquid asset Ht = h ≥ 0, then (c, π) is admissible if
there exists a strategy π which finances a consumption stream c i.e.

Lt = l, (2)

Lτ = πS
τ + πB

τ , t ≤ τ ≤ T

and the dynamics of liquid wealth is: 2

dLτ = (rLτ + δHτ − cτ ) dτ + πS
τ

(
dSτ

Sτ

− rdτ

)
.

At time T the investor will consume his total wealth, W π,c
T = LT +HT which

includes the liquid wealth, LT , and the illiquid wealth, HT .

cSince human wealth will enter in the state equation for liquid wealth equation only
through dividends, the dividend plays exactly the same role of a stochastic income for
the agent. For this reason, our allocation problem can be considered as the finite horizon
counterpart of an allocation problem in the presence of an uninsurable stochastic income.
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3 Solution of the stochastic optimization

problem

We search for the value function defined by:

V (l, h, t) := sup
(π,c)∈A(l,h,t)

U (t, c, W π,c
T ) (3)

The Hamilton Jacobi Bellman (HJB) equation corresponding to the above
stochastic optimization problem can be written as:

0 = Vt (l, h, t) +
1

2
σ2h2Vhh (l, h, t) + (rl + δh) Vl (l, h, t) (4)

+ (µ− δ) hVh (l, h, t) + max
πS

G
[
πS

]
+ max

c≥0
H [c]

G [π] =
1

2

(
πS

)2
σ2Vll (l, h, t) + πSηρσhVlh (l, h, t) + (α− r) πSVl (l, h, t)

H [c] = −cVl (l, h, t) +
c1−γ

1− γ

when l, h > 0. With boundary condition:

V (l, h, T ) = βUγ (LT + HT )

The optimal allocation and consumption strategies will be obtained in feed-
back form solving:

c∗ (l, h, t) = arg max
c≥0

H (c) (5)

= Vl (l, h, t)−1/γ

πS
∗ (l, h, t) = arg max

πS
G

(
πS

)

= −α− r

σ

Vl (l, h, t)

Vll (l, h, t)
− ηρ

σ
h
Vlh (l, h, t)

Vll (l, h, t)

3.1 Homogeneity transformation

In order to reduce the number of state variables in the HJB equation from
two to one we conjecture that the value function that solves eq. (4) has the
form:

V (l, h, t) = e−κth1−γV (z, t) (6)

z = l/h
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and verify that we obtain a single variable HJB equation for the reduced
value function V (z, t). Inserting the expression (6) in (4) and performing
the maximizations in (5) we obtain that V (z, t), z > 0, has to obey:

0 = Vt (z, t) + K1V (z, t) + K2zVz (z, t)−K3
(Vz (z, t))2

Vzz (z, t)
+ (7)

+K4z
2Vzz (z, t) + F (Vz (z, t))

where:

F (x) = −xb

b
+ δx b = 1− 1

γ

with boundary condition:

V (z, T ) = βUγ (1 + zT ) , zT = LT /HT

and where the coefficients are given by:

K1 = −κ + (µ− δ) (1− γ)− 1

2
(1− γ) γη2

K2 = − (µ− δ) + r + (α− r)
ηρ

σ
+ γη2

(
1− ρ2

)

K3 =
1

2

(
(α− r)

σ
− ηργ

)2

K4 =
1

2
η2

(
1− ρ2

)

Since this equation is highly non linear we use a duality transformation to
solve it.

3.2 Duality Transformation

In order to solve the above HJB equation for V (z, t) we need consider a
change of variables: we introduce the dual value function for the consumption
investment problem, Ṽ (y, t), which is related to V (z, t) by the transform: 3

Ṽ (y, t) := max
z∈R+

{V (z, t)− zy} (8)

At optimality the first order condition, y = Vz (z, t), provides a one to one
relation between the level of the dual variable y and the level of the state
variable in the direct problem z. The new variable y can be interpreted as a
marginal utility level rescaled by a factor h−γ.
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Now we show that the HJB for V (z, t) implies an HJB also for the dual

value function Ṽ (y, t). Differentiating the above convex duality relation (8),
at optimality, the following relations between the derivatives of V (z, t) and

Ṽ (y, t) hold:

y = Vz (z, t) , Ṽy (y, t) = −z, Vzz (z, t) = − 1

Ṽyy (y, t)
(9)

where the arguments y and z are related by the optimality condition y =
Vz (z, t) and the last equation is obtained from the first two relations as
follows:

Vzz (z, t) =
dVz (z, t)

dz
= − dy

dṼy (y, t)
= − 1

Ṽyy (y, t)

Direct substitution of these relations in the HJB equation (7) for V (z, t)

implies that Ṽ (y, t) is determined by the (convex dual) HJB differential
equation:

0 = Ṽt (y, t) + K1Ṽ (y, t)− (K1 + K2) yṼy (y, t) + K3y
2Ṽyy (y, t) + (10)

−K4

(
Ṽy (y, t)

)2

Ṽyy (y, t)
− yb

b
+ δy

with boundary conditions:

Ṽ (y, T ) = −β1/γ yb

b
+ y

Notice that given the solution for Ṽ (y, t), the direct value function V (z, t)
is recovered through the inverse transform:

V (z, t) = min
y∈R+

{
Ṽ (y, t) + zy

}
(11)

and the level of the state variable z is related to that of the dual state variable
y by:

z (y, t) := −Ṽy (y, t)

3.3 Series expansion solution of the dual HJB

The HJB (10) is a quasi linear equation and remarkably we will be able to
characterize its solution in terms of a series expansion. We guess a solution
of the form: 4

Ṽ (y, t) = y1− 1
γ

{
B0 (t) +

∞∑
n=1

y
n
γ Bn (t)

}
(12)
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It is easy to show that the first term corresponds exactly to the Merton
solution in complete markets.

The solution is thus completely specified by the computation of the coef-
ficients {Bn (t)}n∈N. The boundary conditions will be:

B0 (T ) = −β1/γ

b
,

B1 (T ) = +1,

Bn (T ) = 0 n ≥ 2,

The explicit computation of the coefficients can be performed inserting
the formal expansion (12) in the HJB equation (10) and requiring that the

equivalent equation (for Ṽyy (y, t) 6= 0 ):

0 =
[
Ṽt (y, t) + K1Ṽ (y, t)− (K2 + K1) yṼy (y, t) + K3y

2Ṽyy (y, t)
]
y2Ṽyy (y, t)

+ F (y) y2Ṽyy (y, t)−K4y
2
(
Ṽy (y, t)

)2

is verified at any order.
In the Appendix we show the result that after the insertion of the expres-

sion (12) the HJB equation becomes equivalent to a system of linear ODE
with respect to time which uniquely determine the coefficients {Bn (t)}n∈N.

This system of ODE can be solved iteratively and provides the expression
for the dual value function. Then we can state the following:

Proposition 1 The HJB (10) is solved by:

Ṽ (y, t) = y1− 1
γ

{
B0 (t) +

∞∑
n=1

y
n
γ Bn (t)

}

with:

B0 (t) =

{
exp [a0 (T − t)]

(
β1/γ +

1

a0

)
− 1

a0

}(
−1

b

)

B1 (t) = exp [a1 (T − t)]

(
1 +

δ

a1

)
− δ

a1

Bn (t) = −K4

∫ T

t

ean(s−t)f (n) (s) ds n ≥ 2

where f (n) (s) is given in eq.(23) of the Appendix and can be determined
recursively in terms of the functions {Bk (t)}k=1,..,n−1. The coefficients ai are

11



given by: 5

a0 = K1 − (K2 + K1) b + K3

(
b2 − b

)−K4b/ (b− 1)

a1 = 2K4/ (b− 1)−K2

an = K1 − (K2 + K1 − 2K4/ (b− 1)) Cn +
(
K3 + K4/ (b− 1)2) Dn n ≥ 2

Cn = b + n/γ, Dn = Cn (Cn − 1) , b = 1− 1

γ

Proof. The proof of the proposition is given in the Appendix. ¥
Now that we have succeeded in finding a solution to the dual problem

we can determine the solution for the primal through (11) and finally using
relation (6) we obtain the value solution to the original problem we addressed
(4). 6

4 Analysis of optimal consumption and allo-

cation policies

Having solved for the value function it is easy to proceed to determine the
optimal consumption and asset allocation using equations (5). To provide
for a better understanding of the solution obtained and to be able to relate
our results to those existing in the current literature, we introduce a repre-
sentation that allows us to get a better intuition of how the agent ’values’
his illiquid wealth and how his decisions are related to it.

4.1 Marginal valuation of the illiquid asset

The marginal utility based value of the illiquid asset p is defined as the liquid
amount at which the investor would be willing to sell an infinitesimal amount
ε of the illiquid asset at time t and is defined by:

V (l, h + ε, t) ≈ V (l + pε, h, t) + O
(
ε2

)

Vh (l, h, t) = pVl (l, h, t)

p : =
Vh (l, h, t)

Vl (l, h, t)

The homogeneous representation of the value function, eq.(6), jointly with
eqs.(24) in the Appendix show that p is a function of the state variable
z = l/h and its expression in terms of the reduced value function V (z, t) is
given by:

p (z, t) = (1− γ)
V (z, t)

Vz (z, t)
− z
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Figure 1: Marginal utility based price as a function of the ratio 1/z = h/l.

In the case that the illiquid asset is private equity, the marginal utility based
value of the illiquid asset p (z, t) corresponds to the minimum price the agent
would be willing to receive in order to sell an infinitesimal amount of the
private equity.

For the purpose of comparing our analysis with the existing literature, in
particular with Merton (1971) it is useful to define:

w (l, h, t) = l + p (z, t) h = h (z + p (z, t)) (13)

w (l, h, t) would be the equivalent total liquid wealth if the agent would value
his illiquid holding at the marginal value p (z, t). Following Koo (1998) we
refer to w (l, h, t) as implicit total wealth. Note that since p (z, t) is a function
of z the total value that the investors assigns to the illiquid asset will be
different from p (z, t) h. In Section 5 we return to this issue.

To gain insight into the results obtained we illustrate our findings through
a numerical example. Consider an investor with an horizon of 20 years, a
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coefficient of risk aversion of γ = 3, and β = 1 who is allocating funds to a
liquid risky asset with an expected rate of return of α = 0.08 and volatility
σ = 0.15. In addition he holds an illiquid risky asset with a drift µ = 0.07
and volatility η = 0.20. Even though the illiquid asset can not be traded,
it pays a liquid dividend yield of δ = 0.05. Finally, there is a liquid riskless
asset with a constant interest rate r = 0.03. In the illustration we consider
as liquidity state variable h/l, the proportion of illiquid wealth per unit of
liquid wealth within the range of parameters where the nominal proportion
of illiquid wealth varies from 0 to 5 times the liquid holdings of the agent.
In Table I we report the parameters we used in the illustration.

Table I

T α σ µ η ρ δ r κ γ β
20 0.08 0.15 0.07 0.2 0.2 0.05 0.03 0.05 3 1

Figure 1 shows the marginal utility based value as a function of liquid-
ity expressed as the proportion of illiquid wealth per unit of liquid wealth,
1/z = h/l, for the parameters given in Table I. When h → 0, p converges to
a constant implying that the investor would be willing to sell at this price
his total illiquid wealth, which at this point becomes an infinitesimal frac-
tion of liquid one (in Section 5 we compute this price). Increasing h/l, p
decreases monotonically, hence the more illiquid the agent, the less valuable
is an infinitesimal share of his illiquid wealth. When h/l → ∞, p also con-
verges to a constant, which is the price the investor would be willing to sell
an infinitesimal amount of his illiquid wealth when his liquid holdings are
vanishing.

4.2 Optimal consumption over wealth ratio

For purposes of comparison it is useful to define the consumption over implicit
total wealth ratio as:

q :=
c∗ (l, h, t)

w (l, h, t)

where c∗ (l, h, t) = Vl (l, h, t)−1/γ is the expression for optimal consumption
obtained maximizing eqs.(5). An easy verification shows that also q is inde-
pendent of h and is a function of z and t only.

In the appendix we prove that the value function can be expressed in
terms of q (z, t) and w (l, h, t) as:

V (l, h, t) = q−γ (z, t)
w (l, h, t)1−γ

1− γ
(14)
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Figure 2: Consumption over implicit total wealth 1/z = h/l

This representation shows that for a fixed value of the state variable z the
value function assumes the standard Merton form, where w (l, h, t) is now the
implicit valuation of the agent total wealth. Similarly, a liquidity constrained
investor will consume a fraction q (z, t) of his implicit total wealth. In Figure
2 we show the value of q as a function of liquidity 1/z = h/l for the parameters
given in Table I. The limit value of q (z, t) when h → 0 is given by the optimal
consumption over wealth ratio when all wealth is liquid (Merton 1971) and
is given by:

qMert =
(
m−1

(
emT − 1

)
+ β1/γemT

)

m =
κ

γ
− r

(
1− 1

γ

)
− 1

2

(
α− r

σ

)2 (
1

γ
− 1

γ2

)

Notice that the value of q (z, t) remains finite (although not constant) as the
liquid wealth goes to zero, implying that the agent will consume a fraction
of its implicit total wealth, even if he can consume only the liquid asset.

15



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

1/z=h/l

π/
l A

llo
ca

tio
n 

to
 li

qu
id

 r
is

ky
 a

ss
et

 o
ve

r 
liq

ui
d 

w
ea

lth

r=0.03,α=0.08,σ=0.15,µ=0.07,η=0.2,γ=3,δ=0.05,χ=0.05,T=20

Figure 3: Fractional allocation to the risky liquid asset as a function of
1/z = h/l.

4.3 Optimal allocation strategy

The optimal allocation is obtained by performing the maximization in (5).
Then, expressing the value function in terms of the reduced value function
V (z, t), the optimal allocation to the risky liquid asset can be written as:

πS =

[
(α− r)

σ2

(
1

R (z, t)

)
− ηρ

σ

(
γ

R (z, t)
− 1

)]
l (15)

where R (z, t) is defined as:

R (z, t) = −zVzz (z, t)

Vz (z, t)
(16)

Figure 3 shows the fraction of liquid wealth allocated to the liquid risky asset.
When h/l = 1/z → 0, R (z, t) converges to the risk aversion parameter γ,
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Figure 4: Allocation to the liquid risky asset per unit of illiquid wealth as a
function of the 1/z = h/l.

hence the first term in eq.(15) becomes Merton’s (1971) , while the second
term, the intertemporal hedging component induced by the presence of the
illiquid asset, disappears. When h/l → ∞, R (z, t) → 0 d therefore when
the agent has a very small amount of liquid wealth, he will invest a large
fraction of his liquid holdings in the risky asset in order to diversify the risk
induced by the illiquid asset. Figure 4 shows the absolute (dollar) amount
invested in the liquid risky asset while keeping constant the nominal value
invested in the illiquid asset. Since γ > 1 and marginal utility is diverging
for h/l →∞, the dollar allocation decreases and converges to 0 when l → 0,
while it diverges when l →∞.

dThe convergence to this limit has been numerically verified and occurs for h/l >> 5.
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Figure 5: Risk adjustment over the non traded source of risk as a function
of 1/z = h/l

5 The stochastic discount factor

The dual approach that we take allows us to compute the Stochastic Discount
Factor (SDF) that the investor uses to optimally value liquid and illiquid
assets.

In the continuous time model we are considering the no arbitrage condi-
tion implies the existence of a set of Stochastic Discount Factors (SDF), ξτ ,
such that price at time t of a liquid asset that pays a cash flow XT at time
T is given by:

Xt =
1

ξt

EP
t [ξT XT ] (17)

where EP
t denotes the conditional expectation at time t under the measure

P. Without loss of generality we can assume that the evolution of the SDF
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is described by the diffusion:

dξτ

ξτ

= µSDF dτ + σSDF
1 dW 1

τ + σSDF
2 dW 1

τ (18)

Then imposing the condition that eq.(17) hold for the riskless asset and
the risky liquid asset we obtain µSDF = −r and σSDF

1 = − (α− r) /σ. The
presence of an illiquid asset that depends on a source of risk which cannot be
diversified trading in the liquid market implies that the SDF will depend also
on W 2

τ while leaving σSDF
2 undetermined. Note that any choice of σSDF

2 will
determine a different risk adjusted processes for cash flows whose evolution
depend on the risk source W 2

τ and therefore to different valuations of the
illiquid asset.

As discussed in Teplà (2000) and in He and Pearson (1991, Th.7, pg.287)
the martingale duality approach to stochastic portfolio optimization pro-
vides, under suitable technical assumptions, a feedback formula for the opti-
mal σSDF

2 which the agent uses to value the illiquid asset. In the following
proposition we extend their result to our framework:

Proposition 2 At time t the (indirect) marginal utility of liquid wealth λ =
Vl (l, h, t) is related to the reduced dual variable y by:

λ = yhγ

Since at optimality the current marginal utility of consumption equals the
indirect marginal utility of liquid wealth, the process for the marginal utility
of consumption can be expressed as λξτ , τ ≥ t and the evolution of the SDF
is given by equation (18).
The optimal risk adjustment σSDF

2 on the unspanned source of risk W 2
t is

given by:

σSDF
2 (y, t) =

(
γ − R̃ (y, t)

)
η

(
1− ρ2

)1/2
(19)

where R̃ (y, t) be defined as:

R̃ (y, t) = − Ṽy (y, t)

yṼyy (y, t)

Hence at optimality the agent will privately value liquid and illiquid cash flows
using the SDF:

dξτ

ξτ

= −rdτ − α− r

σ
dW 1

τ −
(
γ − R̃

(
λξτH

−γ
τ , τ

))
η

(
1− ρ2

)1/2
dW 2

τ

where the process for the Hτ is given by eq.(1)
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Proof. The proof of this proposition is reported in the Appendix. ¥
The above result provides the private valuation formula for the cash flows

deriving from the illiquid asset:

ĥt =
1

ξt

EP
t

[
ξT HT +

∫ T

t

ξτδHτdτ

]

The price given by the private valuation corresponds to the price at which
the portfolio including the position in the illiquid asset is an optimal uncon-
strained allocation for the agent.

Notice that writing the expression for R̃ (y, t) in terms of the primal state
variable z we get

R (z, t) = R̃ (y (z, t) , t) = −zVzz (z, t)

Vz (z, t)

which allows us to express the risk adjustment σSDF
2 as a function of the liq-

uidity of the agent. In Figure 5 we plot the risk adjustment σSDF
2 per unit of

unspanned volatility η (1− ρ2)
1/2

. In fact unspanned volatility η (1− ρ2)
1/2

can be considered as a measure of market incompleteness, the larger it is the
more important the role of non-marketed risks. For a fixed level of unspanned
volatility, we can immediately relate σSDF

2 to the risk aversion of the agent.
When h/l → 0, R (z, t) → γ, thus σSDF

2 → 0 and the agent will value his
illiquid holdings ignoring the non-traded risk. In the limit when σSDF

2 = 0
only market risks are valued and the corresponding (marginal) value of the
illiquid asset will be:

ĥ
σSDF
2 =0

t = ht

[
e−ν(T−t) + δν−1

(
1− e−ν(T−t)

)]

ν = −
(

µ− ηρ
(α− r)

σ
− δ − r

)

This point corresponds to the h/l = 0 limit in Figure 1.
When the agent liquid holdings become small and h/l → ∞ then

R (z, t) → 0, thus σSDF
2 → γη (1− ρ2)

1/2
. This upper bound for σSDF

2

is reached when the agent only owns the illiquid asset and corresponds to
the risk adjustment on the unspanned source of risk required for the agent
to optimally hold only the illiquid asset (see Gerber and Shiu 2000).

6 Sensitivity analysis

Figure 6 and Figure 7 analyze the consumption choices of the agent as a
function of his liquidity for different times to the final horizon. If no illiquid
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Figure 6: Consumption over liquid wealth ratio as a function of h/l = 1/z
for different times to liquidation

asset is held by the agent, h/l = 0, and the standard Merton consumption
over wealth ratio is recovered in both plots. Figure 6, which considers the
consumption per unit of liquid wealth as a function of h/l, shows that an
increase in the proportion of the illiquid asset held by the agent will increase
his consumption almost linearly. In Figure 7 we consider consumption per
unit of total implicit wealth. It shows that consumption over implicit total
wealth ratio has little variation and it converges to a constant as h/l → ∞.
Note that consumption increases as the final horizon is approached.

If we interpret the illiquid asset as human wealth (the discounted value of
future labor income) then our findings can be related to the recent results in
the consumption literature (see e.g. Wang (2006) and the references therein).
In particular, under the more realistic assumption of constant relative risk
aversion preferences for the agent, we can analyze and provide analytical
support for both the standard and generalized Friedman (1957) Permanent
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Figure 7: Consumption over implicit total wealth ratio as a function of h/l =
1/z for different times to liquidation

Income Hypotheses (PIH) as defined in Wang (2006). Within this framework,
the state variable z determines the fraction of financial wealth (cumulative
savings) to human wealth. Assume that the agent values his (implicit) total
wealth w (l, h, t) according to formula (13). Then according to PIH, the
agent will consume a constant fraction of w (l, h, t). Our model supports this
prediction. In fact Figure 7 shows that the ratio of consumption to implicit
total wealth has little variation with respect to the liquidity state of the agent
as measured by h/l and converges to a constant for h/l sufficiently large.

Moreover, the difference between the elasticity of consumption with re-
spect to the liquid and to the illiquid wealth can be expressed in terms of
the function R (z, t):

l

c∗ (l, h, t)

∂c∗ (l, h, t)

∂l
− h

c∗ (l, h, t)

∂c∗ (l, h, t)

∂h
=

R (z, t)

γ
> 0 (20)
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Figure 8: Fractional allocation to the risky liquid asset as a function of
z = l/h for different levels of correlation ρ

which shows that the propensity to consume out of financial wealth will be
always larger than out of ”human wealth”. This is the generalized PIH as
discussed in Wang (2006). The difference decreases from 1 to 0 as liquidity
decreases. When the agent has little or zero savings (financial wealth) he will
mostly consume out of his wage, hence out of human wealth.

Figure 8 analyzes the allocation to the risky liquid asset per unit of liquid
wealth as a function of liquidity, for different values of the correlation between
the liquid and the illiquid asset returns. Note that when we increase h the
total wealth of the investor increases also. From the figure we see that the
allocation to the liquid risky asset increases for negative correlation and also
for moderately positive correlation as well, while for high correlation this
allocation decreases. For sufficiently low correlation the diversification effect
of having the illiquid asset (even if it cannot be traded) increases the optimal
allocation to the liquid risky asset, even to the point of borrowing at the
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risk free asset to invest in the liquid risky asset. Only when the correlation is
sufficiently high and the diversification effect of holding the illiquid risky asset
diminishes, does the optimal allocation to the liquid risky asset decreases
when h/l increases. This analysis indicates that the professor, with his labor
income having low correlation with the risky asset (stock market), should
invest more in the risky asset than the stock broker, who has a wage highly
correlated with the market.

7 Summary and conclusions

We study the problem of optimal asset allocation in the presence of an illiquid
asset. The illiquid asset cannot be traded, but it generates a liquid dividend
that can be consumed or invested in liquid assets. This liquid dividend has
many interpretations depending on the nature of the illiquid asset. An impor-
tant application is when the illiquid asset is human wealth and the dividend
is labor income. There is a vast literature in economics and finance trying
to understand the effect of stochastic labor income on optimal consumption
and asset allocation. We obtain closed form solution to this problem in the
case of time separable power utility of consumption and terminal wealth.

An important by-product of our analysis is that we derive a valuation
procedure for liquid and illiquid assets. In particular, we are able to compute
the value that the agent assigns to the illiquid asset, that is, the shadow price
of illiquidity. The framework allows, given the preferences of the investor,
to value any contingent claim on the illiquid asset or on both the liquid and
illiquid asset.

The approach we develop can also be used to solve the optimal asset
allocation problem in the presence of borrowing and short selling constraints
as discussed in general terms by He and Pages (1993) and Cuoco (1997). In
particular, it would be interesting to study the effect that these constraints
have on the value that the agent assigns to his illiquid asset.

Perhaps the most challenging extension of our analysis is market equilib-
rium. If the risky liquid asset is the market portfolio, and the illiquid asset
of each agent in the economy is its human wealth, the aggregation problem
involves heterogeneous valuations of human wealth holdings of all the agents
in the economy. The possibility of asymmetric information effects raises the
issue of the impact of moral hazard and adverse selection on such market
equilibrium.
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8 Appendix

8.1 Proof of Proposition 1: Series expansion solution
of the dual HJB

We will show that after the insertion of eq.(12), the HJB equation (10) be-
comes equivalent to a system of linear ODE with respect to time.

8.2 The zero order term

Identifying the terms proportional to yb in the HJB and observing that(
y ∂

∂y

)
yb = byb, we immediately obtain that (10) implies the following ODE

for B0 (t):

d

dt
B0 (t) = −a0B0 (t)− 1

b

B0 (T ) = −β1/γ

b

where

a0 =

(
K1 − (K2 + K1) b + K3

(
b2 − b

)−K4
b2

b2 − b

)

=

(
r +

κ− r

γ
− 1

2

(1− γ)

γ2

(
(α− r)

σ

)2
)

< 0
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this term corresponds to the standard Merton solution which would be exact
in absence of the illiquid asset. This equation is a linear non homogenous
ODE and can be explicitly solved:

B0 (t) =

{
exp [a0 (T − t)]

(
β1/γ +

1

a0

)
− 1

a0

}(
−1

b

)

8.3 First order term

Repeating the procedure for the terms proportional to δy we get an ODE for

d

dt
B1 (t) = −a1B1 (t) + δ

B1 (T ) = +1

where:

a1 = (2γK4 −K2)

= −
(
+ (α− r)

ηρ

σ
− (µ− δ − r)

)
< 0

and correspondingly the solution will be

B1 (t) = exp [a1 (T − t)]

(
1 +

δ

a1

)
− δ

a1

8.4 N-th order correction

Now we derive the ODE for the coefficient BN (t) using a recursive procedure.
First of all notice that:

y
∂

∂y
yb+n/γ =

(
b +

n

γ

)
yb+n/γ = Cny

b+n/γ

y2 ∂

∂y2
yb+n/γ =

[(
b +

n

γ

)2

−
(

b +
n

γ

)]
yb+n/γ = Dny

b+n/γ

then inserting the trial solution in the ODE system we obtain:

0 =

{ ∞∑
n=0

[∂Bn (t) /∂t + (K1 − (K2 + K1) Cn + K3Dn) Bn (t)] yb+n/γ + F (y)

}

{ ∞∑
n=0

DnBn (t) yb+n/γ

}
−K4

{ ∞∑
n=0

CnBn (t) yb+n/γ

}2
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and collecting the terms of the same order we get that the coefficient of the
m− th order term (y)2b+m/γ m ≥ 2 will be:

m∑
n=0

Dm−nBm−n (t) [∂Bn (t) /∂t + (K1 − (K2 + K1) Cn + K3Dn) Bn (t)] +

−K4

m∑
n=0

Cm−nBm−n (t) CnBn (t)

In order to satisfy the HJB equation each of these coefficients has to be equal
to 0. Elementary algebra shows that if we consider the equation for the
coefficients up to order N , {Bn (t)}n=0,...N , then the equation to be satisfied
by BN (t) is given by:

0 = [∂BN (t) /∂t + [K1 − (K2 + K1) CN + K3DN ] BN (t)]

−K4

N∑

m,l=0

MN+1,m+1Gm+1,l+1vl+1

B0 (T ) = −1/b, B1 (T ) = 1, Bn (T ) = 0 2 ≤ n ≤ N

where:

M = (Tp)−1

Tpm+1,l+1 = Dm−lBm−l (t) , m ≥ l Tpm+1,l+1 = 0, m < l, dim T = N + 1

Gm+1,l+1 = Cm−lBm−l (t) , m ≥ l Gm+1,l+1 = 0, m < l, dim G = N + 1

vl+1 = ClBl, l = 0, .., N

The matrices we introduced are called “Toeplitz matrices”. These lower
triangular matrices are characterized by the property that its elements are
constant along diagonals e.g.

Tp =




D0B0 (t) 0 0
D1B1 (t) D0B0 (t) 0
D2B2 (t) D1B1 (t) D0B0 (t)




The inverse of a Toeplitz matrix will also be a lower triangular Toeplitz
matrix.

This system of equations is highly non linear due to the last term. A cru-
cial property coming from the triangularity of the matrices is the following:
the ODE equation for the highest order coefficient BN (t), given the coeffi-
cients {Bn (t)}n=0,...,N−1 is a linear equation; in fact at level N the equation
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will be:

0 = [∂BN (t) /∂t + (K1 − (K2 + K1) CN + K3DN) BN (t)]

−K4

N∑

m,l=0

MN+1,m+1Gm+1,l+1vl+1

and extracting from the last summation the terms which contain BN we get:

0 = ∂BN (t) /∂t−K4f
(N) (t) +[

K1 −
(

K2 + K1 − 2K4

b− 1

)
CN +

(
K3 − K4

(b− 1)2

)
DN

]
BN (t)

f (N) (t) =
N∑

m=0

N∑

l=0

M∗
N+1,m+1G

∗
m+1,l+1v

∗
l+1 (21)

M∗ = (Tp∗)−1 ,

(Tp)∗N+1,1 = 0, (Tp)∗m+1,n+1 = (Tp)m+1,n+1 (m,n) 6= (N, 0)

G∗
N+1,1 = 0, G∗

m+1,n+1 = Gm+1,n+1 (m,n) 6= (N, 0)

v∗N+1 = 0, v∗l+1 = vl+1 l 6= N

Then the linear ODE to be solved is:

∂BN (t) /∂t = −aNBN (t) + K4f
(N) (t)

BN (T ) = 0

where

aN =

[
K1 −

(
K2 + K1 − 2K4

b− 1

)
CN +

(
K3 − K4

(b− 1)2

)
DN

]
(22)

and

f (N) (t) =
N∑

m=0

N∑

l=0

M∗
N+1,m+1G

∗
m+1,l+1v

∗
l+1 (23)

The general solution to this equation will be:

BN (t) = −K4

∫ T

t

eaN (s−t)f (N) (s) ds
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8.5 Computation of partial derivatives

Vt (l, h, t) = −κe−κth1−γV (z, t) + e−κth1−γVt (z, t) (24)

V (l, h, t) = e−κth1−γV (z, t)

Vl (l, h, t) = e−κth−γVz (z, t)

Vll (l, h, t) = e−κth−γ−1Vzz (z, t)

Vh (l, h, t) = e−κth−γ [(1− γ) V (z, t)− zVz (z, t)]

Vhh (l, h, t) = e−κth−γ−1
[−γ (1− γ) V (z, t) + 2γzVz (z, t) + z2Vzz (z, t)

]

Vlh (l, h, t) = −e−κth−γ−1 [γVz (z, t)− zVzz (z, t)]

8.6 Proof of equation (14)

If we define q as:

q :=

[
(1− γ) V (l, h, t)

h1−γ (z + p (z, t))1−γ

]−1/γ

homogeneity of V implies that q is a function of z and t only, hence we can
represent V (l, h, t) and V (z, t) as:

V (l, h, t) = q (z, t)−γ w (l, h, t)1−γ

1− γ

V (z, t) = eκtq (z, t)−γ (z + p (z))1−γ

1− γ

By eq.(5) optimal consumption is given by:

c∗ (l, h, t)−γ = Vl (l, h, t) = e−κth−γVz (z, t)

and by the definition of p (z, t) :

Vz (z, t) = (1− γ)
V (z, t)

z + p (z)
= eκtq (z, t)−γ (z + p (z))−γ

hence the consumption over wealth ratio will be defined by:

c∗ (l, h, t)

w (l, h, t)
=

(e−κtVz (z, t))
−1/γ

z + p (z)

=

(
q (z, t)−γ (z + p (z))−γ)−1/γ

z + p (z)

= q (z, t)
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8.7 Proof of equation (15)

The maximization in eqs.(5) yields the risky allocation formula:

− Vl (l, h, t)

Vll (l, h, t)

α− r

σ2
− hVlh (l, h, t)

Vll (l, h, t)

ηρ

σ

and applying eqs.(24) we obtain:

[
α− r − γηρσ

σ2

(
− Vz (z, t)

Vzz (z, t)

)
− ηρ

σ
z

]
h

and using the definition of R (z, t) we conclude.

8.8 Proof of Proposition 2

The proof is an immediate consequence of He and Pearson (1991) Th.7
and similar to Proposition 1 in Teplà (2000). Th.7 states the following:
let l (λ, h, t) be the liquid wealth considered as a function of h, t and
λ = Vl (l, h, t), the conjugate variable of l, then following feedback repre-
sentation for the the volatility of the SDF, i.e. optimal risk adjustment on
W 2

t , v∗, holds:

v∗ (λ, h, t) =
hlh (λ, h, t)

λlλ (λ, h, t)
η

(
1− ρ2

)1/2

Since we apply duality to the reduced value function V (z, t), and to the
rescaled liquid wealth z = l/h, it is straightforward to prove that homogeneity
implies the relation: λ = yh−γ. In terms of reduced variable y and h, the
feedback formula for v∗ will be:

v∗ (λ (y, h) , h, t) =

[
γ − l (λ (y, h) , h, t)

yly (λ (y, h) , h, t)

]
η

(
1− ρ2

)1/2

Since l (λ (y, h) , h, t) = hz (y, t) where z (y, t) = −Ṽy (y, t) then we can con-
clude that:

σSDF
2 (y, t) = v∗ (y, 1, t) =

(
γ − Ṽy (y, t)

yṼyy (y, t)

)
η

(
1− ρ2

)1/2

and (19) holds.
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8.9 Proof of equation (20)

Optimal consumption is given by (5) hence: c∗ (l, h, t) = Vl (l, h, t)−1/γ. In
terms of the state variables h, z and t we have:

l (h, z, t) = hz

c (l (z, h, t) , h, t)∗ = hVz (z, t)−1/γ

Then the elasticity of consumption w.r.t liquid wealth can be written as:

l (z, h, t)

c∗ (l (z, h, t) , h, t)

∂c∗ ((z, h, t) , h, t)

∂l (z, h, t)
=

zh

hVz (z, t)−1/γ

∂
(
hVz (z, t)−1/γ

)

∂z

∂z

∂l (z, h, t)

+
l

hVz (z, t)−1/γ

∂
(
hVz (z, t)−1/γ

)

∂h

∂h

∂l (z, h, t)

which equals

l

c∗ (l, h, t)

∂c∗ (l, h, t)

∂l (l, h, t)
= −1

γ

zVzz (z, t)

Vz (z, t)
+

h

c∗ (l, h, t)

∂c∗ (l, h, t)

∂h

hence by eq.(16) we can conclude:

l

c∗ (l, h, t)

∂c∗ (l, h, t)

∂l
− h

c∗ (l, h, t)

∂c∗ (l, h, t)

∂h
=

R (z)

γ
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Notes

1. Cuoco (1997) provides necessary conditions for the existence of an optimal
solution to the present stochastic optimization problem, provided that the
set of admissible strategies is restricted by the following technical conditions
on the processes:

(c,W ) ∈ C =

{
ct ≥ 0 a.s. Ft-adapted,

∫ T

0
|ct| dt < +∞, t ≤ T

W π,c
T = HT + Lπ,c

T ≥ 0 a.s. W π,c
T ∈ L2 (FT )

}

while the set of admissible strategies
(
πB

t , πS
t

)
has to obey:

∫ T

0

∣∣πB
∣∣ rdt +

∫ T

0

∣∣πS
∣∣ αdt +

∫ T

0

∣∣πS
∣∣2 σ2dt < ∞.

2. Notice that when γ > 1 these requirements are sufficient to guarantee
that, starting with strictly positive liquid wealth, it will never be optimal
to reach negative liquid wealth. This is suggested by the following informal
argument: suppose on the contrary that a negative position in liquid wealth
is possible, then there would be a small but non vanishing probability for
the final total wealth to be negative but this is prevented by the fact that
marginal utility is diverging at zero total wealth.

3. A large strand of mathematical literature has concentrated on establish-
ing existence and regularity of the solution to the stochastic optimization
problem of the consumption-investment problem, see e.g. Cuoco (1999),
Karatzas and Zikovic (2003). We focus on the computational approach to
solve the PDE equation and do not provide verification theorems, proofs of
existence and regularity of the HJB solutions. For this reason we consider
the regularity conditions of the value function as working hypotheses; in
particular we conjecture that the primal (dual) value function is concave and
increasing (convex and decreasing) with continuous first and second order
derivatives which never vanish in the domains x > 0, y > 0. In the numerical
implementation these hypotheses have been checked on the truncated series
solution, which has been considered valid only in the effective domains
where these conditions apply.

4. This expression for the function Ṽ (y, t) has been derived using a scaling
argument for the infinite horizon situation T = ∞: since h affects the opti-
mization problem only through the dividend, then it is easy to observe that
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the transformation δ → δ
α
, h → αh, for fixed price appreciation of the illiquid

asset, leaves the optimization problem unaffected (the same argument can
be easily extended to the finite horizon case). This implies that:

Ṽ (y, t) = y1−1/γφ
(
δy1/γ

)

where φ (x) is usually called ”scaling function”. It is typical in the analysis
of critical phenomena and renormalization, see e.g. Stanley (1999), to
assume that the scaling function is an analytical function of its argument.
Further mathematical research, is needed in order to provide a rigorous
analysis of the convergence properties of the series

5. The (transversality) conditions on the coefficients a0 < 0 and a1 < 0 are
required in order to exclude bubbles and ensure the existence of a stable
limit T →∞
6. Pointwise convergence of the function series expansion (12) implies that
for a given y∗ the numerical series is convergent. From the numerical point
of view this implies that the summation of the truncated series becomes
largely independent from the truncation order for sufficiently large number
of terms. On the other hand our main hypothesis that φ (x) is analytic,
implies that we can define the analytic continuation of the function series
expansion (12) outside of its domain of convergence. In order to obtain a
better evaluation of φ we consider the analytic continuation of the series (12)
as defined in terms of its Borel Transform, see e.g. Whittaker and Watson
(1990), then we use it to analyze the behavior of φ. We consider the solution
acceptable in the domain where our working hypotheses on differentials of
the value functions are verified. Inspection of numerical results show that the
approximation to the analytical function fails above a given ymax (below the
corresponding zmin) with a sharp transition. These approximation problems
arise in correspondence to a minimum level zmin which is usually of order 0.1.
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