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1. Introduction 

 Much recent research in economics, especially in monetary economics, has 

focused on issues involving analytical indeterminacy—multiplicity of stable rational 

expectations solutions—often in dynamic general equilibrium models based on 

optimizing behavior by individual agents.1  In this context, the recent appearance of 

major publications by Evans and Honkapohja (1999, 2001) has stimulated new interest in 

the concept of E-stability, developed by DeCanio (1979), Evans (1985, 1986, 1989), and 

Evans and Honkapohja (1992).2  The reason is that E-stability is very closely linked with 

least-squares learnability, and the latter is arguably a necessary property for a rational 

expectations solution to be plausible as an equilibrium for the model at hand.3  In their 

book, Evans and Honkapohja (henceforth, E&H) provide conditions for E-stability of a 

class of linear multivariate models, but the class in question might appear to be rather 

restricted in scope.  It is shown below, however, that the E&H specification is in fact 

quite broad, in the sense that essentially any model of the class analyzed by King and 

Watson (1998) or Klein (2000) can be represented in the implied form.  It follows that 

analytical results shown to hold for the E&H class are actually of quite broad 

applicability.  

 In the present paper, consequently, I draw upon results of E&H (1999, 2001) and 

McCallum (1998) to develop simple proofs of two useful propositions pertaining to this 

broad class of linear rational expectations (RE) models.  The first, Proposition P1, is that 
                                                 
1 In monetary economics such issues include indeterminacy under inflation forecast targeting (Woodford, 
1994; Bernanke and Woodford, 1997; King, 2000), deflationary traps (Benhabib, Schmitt-Grohe, and 
Uribe, 2001), the fiscal theory of the price level (Sims, 1994; Woodford, 1995; Cochrane, 1998; 
Kotcherlakota and Phelan, 1999; McCallum, 2001), and the validity of the “Taylor Principle” (Woodford, 
2003).  For a useful overview of several related points, see Bullard and Mitra (2002). 
2 Evans and Honkapohja (1999) is an extensive survey article in the Taylor-Woodford Handbook of Macro- 
economics, whereas their (2001) is a major treatise published by Princeton University Press. 
3 This position is developed on pp. 2-3, while Appendix A briefly reviews relevant concepts. 
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if a RE solution is determinate (unique dynamically stable), then it has the property of  

E-stability (and therefore least squares learnability).  The second proposition, P2, is that 

there exist various cases with a multiplicity of stable4 solutions in which the one based on 

the decreasing-modulus ordering of the system’s eigenvalues is E-stable.  Furthermore, it 

is a simple matter to determine whether the requisite criteria for E-stability are satisfied.   

It should be stated clearly at the outset that all results presented here are based on 

the assumption that current values of endogenous variables are included in individuals’ 

information sets; if instead only lagged endogenous variables can be observed in the 

learning process then different E-stability and learnability results would be relevant.  

Analysis of a few particular problems in monetary economics involving the latter 

specification has been conducted in a well-known paper by Bullard and Mitra (2002)5 

while recent papers by Adam (2003) and Adam, Evans, and Honkapohja (2006) have 

emphasized that differing assumptions about information sets relevant for learning can 

lead to different conclusions.   

The position that learnability (and thus E-stability) should be regarded as a 

necessary condition for the relevance of a RE equilibrium begins with the presumption 

that individual agents must somehow learn the magnitudes of parameters describing the 

economy’s law of motion from observations generated by the economy; they cannot be 

endowed with such knowledge by magic.  Of course any particular learning scheme 

might be incorrect in its depiction of actual learning behavior.  But in this regard it is 

                                                 
4 Throughout, the unmodified word “stable” will refer to the presence or absence of dynamic stability of the 
rational expectations solution in question, not the learning process or the meta-time concept of E-stability. 
5 Bullard and Mitra (2002) obtain a result analogous to P1, under the current-information condition, for a 
particular three-variable model relating to monetary policy, whereas Evans and Guesnerie (2003) present 
the same result for cases in which A11 is nonsingular and Evans and Honkapohja (2003) for cases in which 
C = 0.  In none of these papers is broad applicability claimed. 
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important to note that the LS learning process in question assumes that (i) agents are 

collecting an ever-increasing number of observations on all relevant variables while (ii) 

the structure is remaining unchanged.  Furthermore, (iii) the agents are estimating the 

relevant unknown parameters (iv) with an appropriate estimator (v) in a properly 

specified model.  Thus if a proposed RE solution is not learnable by the process in 

question—the one to which the E&H results pertain—then it would seem highly 

implausible that it could prevail in practice.     

The paper’s outline is as follows.  In Section 2, it is demonstrated that the class of 

models used by E&H (2001) is broad enough to include the specifications of King-

Watson (1998) and Klein (2000).  Then Section 3 outlines the basic algebraic 

relationships upon which following results depend.  Section 4 develops relevant 

conditions for determinacy after which Section 5 demonstrates the validity of 

Propositions P1 and P2 and illustrates the latter with numerical examples.  There is a 

particular model discussed by E&H (1999, pp. 488-490; 2001, pp. 174-181) that might 

appear to constitute a counterexample to P1.  Consequently, that (valid) example is 

discussed in Section 6.  Finally, Section 7 provides a brief recapitulation.  

2. Model Specification 

 It will be convenient to work throughout with a model of the form 

(1) yt = A11 Etyt+1 + C yt-1 + D ut, 

where yt is a m×1 vector of endogenous variables, A11 and C are m×m matrices of real 

numbers, D is m×n, and ut is a n×1 vector of exogenous variables generated by a 

dynamically stable process 

(2) ut = R ut-1 + εt,  



 4

with εt a white noise vector.  It will not be assumed, even initially, that A11 is invertible.  

Accordingly, we are adopting the specification of Section 10.3 of Evans and Honkapohja 

(2001), for which E-stability conditions are reported on their p. 238.  Constant terms can 

be included in the equations of (1) by specifying one exogenous variable in ut to be a 

random walk whose innovation has mean zero and variance zero.  Then this component, 

say u1t, will satisfy u1t = u1t-1 and the constant-term magnitudes will be governed by 

elements of D.  

To show that a very wide variety of linear RE models can be written in form 

(1)(2), consider the formulation of King and Watson (1998) or Klein (2001), as exposited 

by McCallum (1998), as follows: 
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Here vt is an AR(1) vector of exogenous variables (including shocks) with stable AR 

matrix R while xt and kt are m1×1 and m2×1 vectors of non-predetermined and 

predetermined endogenous variables, respectively.  We assume without significant loss of 

generality that B11 is invertible6 and that G2 = 0.7  Then we define   yt = [xt’ kt’ xt-1’ kt-1’]’ 

and write the system in form (1) with ut = vt and the matrices given as follows: 
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6 For the system (3) to be cogent, each of the m1 non-predetermined variables must appear in at least one of 
the m1 equations of the first matrix row.  Then the diagonal elements of B11 will all be non-zero and to 
avoid inconsistencies the rows of B11 must be linearly independent.  This implies invertibility. 
7 If it is desired to include a direct effect of vt on kt+1, this can be accomplished by definition of an auxiliary 
variable (equal to vt-1) in xt (in which case vt remains in the information set for period t). Also, auxiliary 
variables can be used to include expectations of future values of exogenous variables. 
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This representation is important because it is well known that the system (3) permits, via 

use of auxiliary variables, any finite number of lags, expectational leads, and lags of 

expectational leads for the basic endogenous variables.  Also, any higher-order AR 

process for the exogenous variables can be written in AR(1) form.8  Thus we have shown 

that the Evans and Honkapohja (2001) formulation in their Section 10.3 is in fact rather 

general, although it does not pertain to asymmetric information models. 

3. RE Solutions 

   Following McCallum (1983, 1998), consider solutions to (1)(2) of the form 

(5) yt = Ω yt-1 + Γ ut. 

in which Ω is required to be real.  Then we have that Etyt+1 = Ω(Ωyt-1 + Γut) + ΓRut and 

straightforward undetermined-coefficient reasoning shows that Ω and Γ must satisfy 

(6) A11Ω2 − Ω + C = 0 

and 

(7) Γ = A11ΩΓ + A11ΓR + D. 

For any given Ω, (7) yields a unique Γ generically,9 but there are many m×m matrices 

that solve (6) for Ω.  Accordingly, the following analysis centers around (6). 

 If A11 were invertible, we could express (6) in the first-order form 

(8) 
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and proceed as in the well-known analysis of Blanchard and Khan (1980), which is based 

on the eigenvalues of the square matrix on the right-hand side of (8).  With A11 singular, 

                                                 
8 Binder and Pesaran (1995) show that virtually any linear model can be put in form (1), but in doing so 
admit a more general specification than (2) for the process generating the exogenous variables. 
9 Generically, I − R’⊗[(I − A11Ω)-1A11] will be invertible, permitting solution of (7) for vec(Γ).  
Invertibility of (I − A11Ω) is discussed and assumed below in Section 4. 



 6

however, we proceed as follows.  In place of (8), we write 
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in which the first row reproduces the matrix quadratic (6).  Let the 2m×2m matrices on 

the left and right sides of (9) be denoted A and B, respectively.  Then instead of focusing 

on the eigenvalues of A-1B, which does not exist when A11 is singular, we instead solve 

for the (generalized) eigenvalues of the matrix pencil [B − λA], alternatively termed the 

(generalized) eigenvalues of B with respect to A (e.g., Uhlig (1999)).  Thus instead of 

diagonalizing A-1B, we use the Schur generalized decomposition, which serves the same 

purpose.  Specifically, the Schur generalized decomposition theorem establishes that 

there exist unitary matrices Q and Z such that QBZ = T and QAZ = S with T and S 

triangular.10  Then eigenvalues of the matrix pencil (B −λA) are defined as tii/sii. Some of 

these eigenvalues may be “infinite,” in the sense that some sii may equal zero.  This will 

be the case, indeed, whenever A11 and therefore A are of less than full rank since then S 

is also singular.  All of the foregoing is true for any ordering of the eigenvalues and 

associated columns of Z (and rows of Q).  For the present, let us focus on the 

arrangement that places the tii/sii in order of decreasing modulus.11  

 To begin the analysis, premultiply (9) by Q.   Since QA = SH and QB = TH, 

where H ≡ Z-1, the resulting equation can be written as  

(10) 11

21

S
S



 22

0
S





11

21

H
H





12

22

H
H





2 Ω
 Ω 

   = 11

21

T
T



 22

0
T





11

21

H
H





12

22

H
H



 I

 Ω
 
 

. 

                                                 
10 Provided only that there exists some λ for which det[B − λA] ≠ 0. See Klein (2000) or Golub and Van 
Loan (1996). 
11 The discussion proceeds as if none of the tii/sii equals 1.0 exactly.  If one does, the model can be adjusted, 
by multiplying some relevant coefficient by (e.g.) 0.9999.  
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The first row of (10) reduces to 

(11) S11(H11Ω + H12)Ω = T11(H11Ω + H12). 

Then if H11 is invertible the latter can be used to solve for Ω as 

(12) Ω = −H11
-1

 H12 = −Η11
−1(−Η11Ζ12Ζ22

−1) = Ζ12Ζ22
−1, 

where the second equality comes from the upper right-hand submatrix of the identity  

HZ = I, provided that H11 is invertible, which we assume without significant loss of 

generality.12 13 

  As mentioned above, there are many solutions Ω to (6).  These correspond to 

different arrangements of the eigenvalues, which result in different groupings of the 

columns of Z and therefore different compositions of the submatrices Z12 and Z22.  Here, 

with the eigenvalues tii/sii arranged in order of decreasing modulus, the diagonal elements 

of S22 will all be non-zero provided that S has at least m non-zero eigenvalues, which we 

assume to be the case.14  For any solution under consideration to be dynamically stable, 

the eigenvalues of Ω must of course be smaller than 1.0 in modulus.  To evaluate them in 

terms of the ratios tii/sii, note that with Ω given by (12), the second row of (10) becomes 

(13) S22(H21Ω + H22)Ω = T22(H21Ω + H22), 

or 

(14)  S22(H22 − Η21Η11
−1H12)Ω = T22(H22 − Η21Η11

−1H12). 

The latter, by virtue of the lower right-hand submatrix of HZ = I, is equivalent to 

(15)  S22Ζ22
−1Ω = T22Z22

-1. 
                                                 
12 This invertibility condition, also required by King and Watson (1998) and Klein (2000), obtains except 
for degenerate special cases of (1) that can be solved by simpler methods than considered here. Note that 
the invertibility of H11 implies the invertibility of Z22, given that H and Z are unitary.   
13 Note that it is not being claimed that all solutions are of the form (12). 
14 From its structure it is obvious that A has at least m nonzero eigenvalues so, since Q and Z are 
nonsingular, S must have rank of at least m.  This necessary condition is not sufficient for S to have at least 
m nonzero eigenvalues, however; hence the assumption.   
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Therefore we have the result 

(16) Ω = Z22S22
-1T22Z22

-1 

so Ω has the same eigenvalues as S22
-1T22.  The latter is triangular, moreover, so the 

relevant eigenvalues are the m smallest of the 2m ratios tii/sii (given the decreasing-

modulus ordering).  For dynamic stability, the modulus of each of these ratios must then 

be less than 1.  [In many cases, some of the m smallest moduli will equal zero.] 

4. Determinacy 

Let us henceforth refer to the solution under the decreasing-modulus ordering as 

the MOD solution.  Now suppose that the MOD solution is stable.  For it to be the only 

stable solution, there must be no other arrangement of the tii/sii that would result in a Ω 

matrix with all eigenvalues smaller in modulus than 1.0.  Thus each of the tii/sii for   

i = 1,…, m must have modulus greater than 1.0, some perhaps infinite.  Is there some 

m×m matrix whose eigenvalues relate cleanly to these ratios?  Yes, it is the matrix 

 F ≡ (I − A11Ω)-1A11, which appears frequently in the analysis of Binder and Pesaran 

(1995, 1997).15  Regarding this F matrix, we now wish to show that, for any ordering 

such that H11 is invertible, including the MOD ordering, we have the equality 

(17) H11 F H11
-1 = T11

-1S11, 

which implies that F has the same eigenvalues as T11
-1S11.  In other words, we shall show 

that the eigenvalues of F are the same, for any given arrangement of the system’s 

eigenvalues, as the inverses of the values of tii/sii for i = 1, …, m.  For this proof, note 

first that the upper left-hand submatrix of QA = SH is Q11A11 = S11H11 so we have16 

(18) Q11A11H11
-1 = S11.   

                                                 
15 Invertibility of [I − A11Ω] and T11 will be discussed shortly.  
16 Recall that H11 is required to be invertible. 
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Now postmultiply by H12, and recall that Ω = −H11
-1H12, to obtain 

(19) −Q11A11Ω = S11H12 = Q12, 

where we use the upper right submatrix of QA = SH.  Then since Q11 + Q12 = T11H11 

(from the upper right submatrix of QB = TH), we obtain −Q11A11Ω = T11H11 − Q11 so it 

follows that  

(20) Q11[I − A11Ω] = T11H11. 

 Thus we have  

(21) Q11 = T11H11[I − A11Ω]-1, 

provided that [I − A11Ω] is invertible. 

 With respect to that invertibility, the analyses of Evans and Honkapohja (2001), 

Binder and Pesaran (1995, 1997), and others proceed under the presumption that [I − A11Ω] 

is nonsingular, but without any explicit justification.  Binder and Pesaran (1997, fn. 4) 

observe that invertibility of [I − A11Ω] does not require the invertibility of A11 and state that 

they have found no cases of a singular [I − A11Ω] matrix in any well specified model.   

But can one develop any general result?  In that regard, note from (20) that the rank of  

[I − A11Ω]  must be m if the rank of T11H11 is m, since rank(Q11[I − A11Ω]) ≤ 

min[rank(Q11), rank([I − A11Ω])].  Also, the same argument can be made in the opposite 

direction so the nonsingularity of T11 and [I − A11Ω] go hand in hand.  I have not been 

able to develop a general proof of nonsingularity for I − A11Ω, but it seems clear that if 

A11Ω were by chance to have some eigenvalue exactly equal to 1.0, that condition could 

be eliminated by making some arbitrarily small adjustment to elements of A11 or C.  For 

practical purposes, then, there would seem to be no significant loss of generality from 

adoption of the usual invertibility assumption.   
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 Consequently, we can substitute (21) into (18) and premultiply by T11
-1 to obtain 

(22) H11[I − A11Ω]-1A11H11
-1 = T11

-1 S11. 

Therefore, F = [I − A11Ω]-1A11 has the same eigenvalues as T11
-1S11.  Under the MOD 

ordering these are the inverses of the first (largest) m of the eigenvalues of the system’s 

matrix pencil, as we set out to show.  Accordingly, for solution (12) to be the only stable 

solution, all the eigenvalues of the corresponding F must be smaller than 1.0 in modulus.  

This result, stated in different ways, is well known from Binder and Pesaran (1995), King 

and Watson (1998), and Klein (2000), and is an important generalization of one result of 

Blanchard and Khan (1980) for a model with nonsingular A11. 

 To this point we have established notation for models of form (1) and have shown 

that the existence of a unique stable solution requires that all eigenvalues of the defined 

Ω matrix and the corresponding F must be less than 1.0 in modulus.  It will be convenient 

to express that condition as follows: all λΩ < 1 and all λF < 1. 

5. E-Stability 

 For the model specification given in (1)(2) above, Evans and Honkapohja (2001, 

p. 238) present necessary and sufficient conditions for E-stability (with our information 

assumption) of any specified solution.  In terms of our notation, these conditions are that 

the eigenvalues of the three following matrices all have real parts less than 1.0:17 

 

(23a) F ≡ (I − A11Ω)-1A11 

(23b) [ (I − A11Ω)-1C]’ ⊗ F 

(23c) R’ ⊗ F. 
                                                 
17 The notation here is related to that of Evans and Honkapohja (2001) as follows: A11 = β, C = δ, D = κ, R 
=  ϕ, Ω = b.  With our treatment of constant terms, (23a) is a special case of (23c). 
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From equation (6) it follows readily that (I − A11Ω)-1C = Ω.  Therefore, matrix (23b) can 

be written as Ω’ ⊗ F.  Furthermore, it is a standard result (Magnus and Neudecker, 1988, 

p. 28) that the eigenvalues of a Kronecker product are the products of the eigenvalues of 

the relevant matrices (e.g., the eigenvalues of Ω’ ⊗ F are the products λΩλF). 

 It is therefore immediately apparent that any unique stable solution, since it 

requires that all λΩ < 1 and all λF < 1, implies that conditions (23a) and (23b) hold.  

Also, since λF < 1, condition (23c) holds provided that all λR ≤ 1, which we have 

assumed by specifying that (2) is dynamically stable.  Therefore we have a proof of the 

following proposition: 

 (P1) Consider solutions of form (5) to models of form (1)(2) with 2m×2m 

 matrices A and B defined in equation (9).  Assume, as in King and Watson (1998) 

 and Klein (2000), that there exists some λ for which det[B − λA] ≠ 0 and that H11 

 defined in (10) is invertible.  Also, assume that that S has at least m non-zero 

 eigenvalues and that [I − A11Ω] is invertible.  Then if there exists a determinate 

 solution, it will have the property of E-stability.   

This result is of special significance since Evans and Honkapohja (2001, p. 238) show 

that E-stability plus dynamic stability for models of form (1)(2) together imply least-

squares learnability in real time. 18 

 Now let us consider cases with multiple stable solutions of form (12), implying 

that some λF > 1 for whatever eigenvalue arrangement—i.e., whatever particular RE 

solution—is specified.  We focus attention on the MOD solution, with the eigenvalues 

                                                 
18 George Evans has mentioned to me that the univariate model yt = µ + aEt-1yt + ut, with ut white noise, is 
determinate with solution yt = µ(1−a)-1 + ut for all a but is E-stable only for a < 1.  It will be shown in 
Section 6 that, despite appearances, this is not a counterexample to proposition P1. 



 12

arranged in order of decreasing modulus.  If some λF has real part greater than 1, then by 

(23a) E-stability cannot obtain.  But if all eigenvalues for which λF > 1 are real and 

negative (i.e., λF  < −1), or are complex with real parts less than 1, then the condition 

pertaining to (23a) would be satisfied.  Furthermore, with the MOD ordering it is the case 

that all λΩ < 1/λF so all λΩλF < 1.   But λΩλF= λΩλF ≥ Re(λΩλF) so 

(23b) is invariably satisfied.  Thus in these cases the MOD solution will be E-stable 

unless there is some eigenvalue of R that is such that the real part of some λRλF product is 

greater than 1.  In the case of real values, that would require an eigenvalue of R that is 

negative and is fairly large.  Accordingly, it is clear that there is a substantial range of 

cases for which the MOD solution is E-stable; this is our second proposition:  

 (P2) Consider the model of (P1) with matrices Ω and F, as defined in (12) and 

 (23) for the MOD ordering of the generalized eigenvalues of the matrix pencil  

 [B − λA], having eigenvalues λΩ and λF.  Then there exist non-empty open sets of 

 parameter values for which some λF < −1, so indeterminacy prevails, 

 but for which conditions (23) are satisfied so the MOD solution is E-stable.19 

There seems to be no further general result of obvious usefulness, but in any practical 

application, it is a simple matter to determine whether the relevant conditions obtain.  

This can be explained as follows. 

 Suppose that it has been found, in a practical application, that the model at hand is 

one in which there is more than one stable solution.  For simplicity, let us assume that 

there are two stable solutions.  Let λi = tii/sii be the ith system eigenvalue, with the one 

                                                 
19 Examples are provided, for the univariate model yt = α + aEtyt+1 + cyt-1 + ut, by region II of the figure on    
p. 203 of E&H (2001).  There the parameters satisfy a+c < −1, a < −0.5, c > −0.5, and ac < 0.25. Also see 
the examples that follow below in this section. 
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with largest modulus listed first, as λ1.  Then it is the case that λm, λm+1, …, λ2m all have 

moduli smaller than 1.  Our discussion focuses on λm and λm+1.  For E-stability it is 

necessary according to (23a) and (23b) that Re(1/λm) < 1 and that all Re(λΩ/λm) < 1.  To 

observe whether these conditions obtain, all that is required is to have the computational 

program being used display the system eigenvalues, λ1, …, λ2m, which can then be 

multiplied and their values inspected.20  Also necessary for E-stability is that all the 

products λR(1/λm) must have real parts smaller than 1.  

 From this discussion it follows that there cases exist in which there is more than 

one stable solution but with the MOD solution being E-stable and the other stable 

solution(s) being E-unstable (and thus unlearnable).  Then our argument, that learnability 

is a necessary condition for a RE equilibrium to be plausible, would suggest that despite 

indeterminacy there is only one plausible contender for the economically relevant 

solution.  In such cases, accordingly, indeterminacy would not necessarily imply any 

problem for real-world applications.21 

 To illustrate the existence of various possibilities, consider the univariate model 

(24) xt = a1Etxt+1 + a2Etxt+2 + cxt-1 + ut 

with ut being white noise.22  To put this into the format of equation (1), define a second 

endogenous variable qt equal to Etxt+1 so that yt = [xt  qt]’ and then consider (1) with 

                                                 
20 Since some of the eigenvalues will in many models be “infinite” in principle, it is typically necessary to 
have the values expressed in scientific notation.  For computations, model form (3) will usually be used, 
rather than (1), but the eigenvalues that are non-zero and finite will be the same.   
21 This point is of importance for deciding whether indeterminacy of an analytical solution is of policy 
relevance.  It should be emphasized, however, that it is not being claimed that the MOD solution is always 
E-stable or that there are no cases in which two or more solutions are both stable and E-stable.  Also, no 
claim is being made with respect to possible sunspot solutions such as those discussed in Chapter 12 of 
E&H (2001) and several recent contributions; only solutions of form (5) are being considered. 
22 This example was usefully suggested by a referee. 
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(25)  1 2
11

a  a
A  

1    0
 

=  
 

      
c   0

C = 
0   0

 
 
 

      
1

D = 
0

 
 
 

. 

First suppose that a1 = −1.5, a2 = −0.2, and c = 0.4.  This specification gives rise to the 

system eigenvalues −6.71, −1.07, 0.279, and 0.000 so there is a unique determinate and 

learnable solution.  Change a2 to 0.05, however, and the eigenvalues become 30.64, 

−0.926, 0.282, and 0.000.  In this case there are two stable solutions, but only the MOD 

solution is E-stable and learnable since for the other stable solution one λF equals 1/0.282 

> 1 thereby violating requirement (23a).  Next change c to −0.1, however, and the 

eigenvalues become 30.65, −0.532, −0.123, and 0.000, in which case only the MOD 

solution is learnable because the other fails condition (23b)..  Continuing in this way it 

can be found that if we have a1 = 1.5, a2 = −0.05, and c = 0.1 then the eigenvalues are 

29.3, 0.557, 0.122, and 0.000 so there are two stable solutions but neither is learnable 

whereas if c is changed to −0.1 the eigenvalues are 29.3, 0.773, −0.0883, and 0.000 so 

there are two stable solutions but only the non-MOD solution is learnable.    

 Some readers may wonder about the relationship between the MOD solution and 

the solution termed MSV, for “minimum state variable,” by McCallum (1983, 1998, 

1999).  These two concepts are defined differently, the latter being the solution of form 

(5) that results when the eigenvalue ordering in equations (10)-(12) is such that each of  

the final m eigenvalues approaches zero as the elements of the C matrix approach zeros.23  

(The precise condition in this statement is that C is replaced in the model by αC and α is 

taken to approach 0.)  In many applications the MOD and MSV solutions will coincide, 

as noted by McCallum (1998, p. 146), but there are exceptions (when m > 1), as 
                                                 
23 Thus the MSV solution as defined by McCallum (1983, 1999) is a unique special case of those solutions 
termed “MSV” by Evans and Honkapohja (2001).  This is noted by E&H (2001, pp. 194, 212).  
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conjectured by Uhlig (1999, p. 46).24    

6. A Special Case 

 At first glance, one might doubt the validity of proposition P1 on the basis of the 

demonstration by E&H (2001, pp. 174-181; 1999, pp. 488-492) that the univariate model  

(24) xt = µ + aEt-1xt + wt, 

with wt white noise, is determinate for all values of a (assuming a ≠ 1) but is E-stable 

only for a < 1.  This result is not a counter-example to our proposition P1, however, for 

the E&H analysis presumes that current values of xt are not included in agents’ 

information sets for expectation formation in t whereas our proposition pertains to models 

in which such xt values are included.  To show explicitly that our proposition does refer 

to this case, we write (24) as follows: 

(25) t

t

x
k

 
 
 

  = 
0
1





  
0
0





t t 1

t t 1

E x
E k

+

+

 
 
 

 + 
0
0





  
a
0





t 1

t 1

x
k

−

−

 
 
 

 + 
  1

0    0
µ 

 
  t

1
w

 
 
 

. 

The (determinate) solution, which is xt = µ(1−a)-1 + wt, satisfies 

(26) t

t

x
k

 
 
 

 = 
0
0





  
a
0





t 1

t 1

x
k

−

−

 
 
 

 + 
1

                1
(1 a)     0−

µ 
 µ −  t

1
w

 
 
 

.  

The matrix denoted F = [I − A11Ω]-1A11 is then found from   

A11Ω = 
0
1





  
0
0





0     a
0     0

 
 
 

 = 
0
0





  
0
a





  and  [I − A11Ω]-1 = 
1
0





  
1

     0
(1 a)−


− 

 to be 

F = 
1

0
(1 a)−


 −

  
0
0





, so its eigenvalues are 0 and 0.  Thus Ω’ ⊗ F and R’⊗ F also have only 

zero eigenvalues, and the conditions for E-stability are met regardless of the magnitude of a. 

 If, by contrast, the information set in t does not include xt, then the conditions for E-

                                                 
24 For an explicit example, see McCallum (2004). 
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stability analogous to (23) are, as given by E&H (2001, p. 245), that the eigenvalues of the 

following matrices all have real parts less than 1.0: 

(27a) A11(I + Ω) 

(27b) Ω’⊗A11 + I ⊗A11Ω 

(27c) R’⊗A11 + I ⊗A11Ω 

In the case at hand the first of these matrices equals 
0    0
1     a

 
 
 

, which has the eigenvalues 0 

and a.  Therefore, a < 1 is a necessary condition for E-stability, as in the univariate analysis 

of E&H (2001, pp. 174-181).  But under the information assumption of the present paper, 

that condition is not operative.  Analysis for the case in which current endogenous variables 

are not in the information set is of considerable interest, of course, but is a major 

undertaking and will not be considered in the present paper.25 

 Some analysts might suggest that the appearance of Et-1xt in the example’s structural 

equation would imply that the relevant information set for learning would necessarily 

exclude xt, but that position seems incorrect; the specification of information sets available 

for expectation formation in period t is a different matter from the specification of what 

period’s expectations influence the determination of variables in t.  The lack of any 

necessary connection becomes apparent if one asks, “what is the appropriate information set 

if the model includes (for example) both Et-1xt and Etxt+1?”  Evidently, either information 

assumption is possible.  Such models are only briefly mentioned in E&H (2001, pp. 205-

206) and E&H (1999, pp. 500-501), but one example is considered more fully in Evans 

                                                 
25 A referee has noted that the referenced E&H analysis assumes that wt is also absent from the information 
set for t.  This is correct, and points to the desirability of considering conditions relevant for such cases in 
general, but does not affect the crucial point at issue here, i.e., the E-stability result for the present example 
under our information assumption. 
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(1989) where it is assumed that the information set for learning does not include current 

values of endogenous variables.  Examples of this type play a prominent role in the 

discussions of McCallum (1999) and Adam, Evans, and Honkapohja (2006).      

7. Conclusion 

 This paper’s argument begins with the presumption that learnability, which 

usually goes hand-in-hand with E-stability, is a necessary condition for a RE solution to 

be plausible.  It then considers a class of linear models for which Evans and Honkapohja 

(2001) have derived conditions for E-stability.  That class is shown to be quite broad, as it 

includes essentially all models of the form used by King and Watson (1998) and Klein 

(2000), which permits any number of lags, leads, and lags of leads.  The paper’s first 

proposition is that, if current-period information is available in the E-stability/learning 

process, determinacy is a sufficient condition for E-stability—a result not previously 

noted for any general setting.  Determinacy is not a necessary condition, however; our 

second proposition is that there exist cases in which there is more than one stable solution 

yet the (unique) solution based on the decreasing-modulus ordering of the system’s 

eigenvalues is E-stable.  If in such a case the other stable solution(s) are not E-stable, then 

the condition of indeterminacy may not be important for practical issues.       
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Appendix A 

 

 Here the objective is briefly to provide an introductory review of the concepts of 

E-stability and LS learnability.  Let us do so within the context of a flexible univariate 

model studied by E&H (2001, p. 201) and many others, which we write as 

(A1) yt = α + aEtyt+1 + cyt-1 + ut, 

where ut = ρut-1 + εt with ρ< 1 and εt being white noise.  With this specification, the 

usual “fundamentals” RE solution is of the form 

(A2) yt = φ0 + φ1yt-1 + φ2ut, 

but suppose that agents do not “initially” know the exact values of the φj parameters.  If at 

any date t the agents’ prevailing belief is that their values are φ0(n), φ1(n), and φ2(n)—

where n indexes iterations—so that the perceived law of motion (PLM) is  

(A3) yt = φ0(n) + φ1(n)yt-1 + φ2(n)ut, 

then the implied unbiased expectation of yt+1  will be 

(A4) φ0(n) + φ1(n)yt + φ2(n)ρut. 

Using this last expression in place of Etyt+1 in (A1)—which implies that we have 

temporarily abandoned RE—gives  

(A5) yt = α + a[φ0(n) + φ1(n)yt + φ2(n)ρut] + cyt-1 + ut 

or, rearranging, 

(A6) yt = [1−aφ1(n)]-1 [α + aφ0(n) + aφ2(n)ρut + cyt-1 + ut]  

as the system’s actual law of motion  (ALM).  Now imagine a sequence of iterations from 

the PLM to the ALM.  Writing the left-hand side of (A6) in the form (A3), that is, as 

φ0(n+1) + φ1(n+1)yt-1 + φ2(n+1)ut, for iteration n+1 then implies that  
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(A7a) φ0(n+1) = [1 − aφ1(n)]-1[α + aφ0(n)] 

(A7b) φ1(n+1) = [1 − aφ1(n)]-1c 

(A7c) φ2(n+1) = [1 − aφ1(n)]-1[aφ2(n)ρ + 1]. 

The issue, then, is whether iterations defined by the difference equations (A7) are such 

that the φj(n) converge to the φj values in an expression of form (A2) as n → ∞ .  If they 

do, then that solution (A2) is said to be iteratively E-stable.  Evans (1986) found that in 

several prominent and controversial examples the MSV solution is iteratively E-stable. 

 On the basis of results by Marcet and Sargent (1989), Evans (1989) and Evans 

and Honkapohja (1992) switched attention to E-stability without the “iterative” 

qualification, defined as follows.  Conversion of equations (A7) to a continuous form, 

appropriate as the iteration interval approaches zero,26 results in 

 (A8a) dφ0(n)/dn = [1 − aφ1(n)]-1[α + a φ0(n)] − φ0(n) 

(A8b) dφ1(n)/dn = [1 − aφ1(n)]-1c − φ1(n) 

(A8c) dφ2(n)/dn = [1 − aφ1(n)]-1[a φ2(n)ρ + 1] − φ2(n). 

If the differential equation system (A8) is such that φj(n) → φj for all j, the solution (A2) 

is E-stable.27  An important feature of this continuous version of the iterative process is 

that it is intimately related to an adaptive learning process that is modeled as taking place 

in real time.28 For most models of interest, that is, values of parameters analogous to the 

φj in (A2) that are estimated by LS regressions on the basis of data from periods t−1, t−2, 

…, 1 and used to form expectations in period t, will converge to the actual values in (A2) 

                                                 
26 There is also a positive speed-of-adjustment coefficient in each of equations (8), but its magnitude is 
irrelevant for the convergence issue so is usually (as here) set equal to 1.  See, e.g., Evans (1989, p. 299).  
27 Throughout the paper we are discussing weak E-stability, rather than the more demanding concept of 
strong E-stability.  For the distinction, see E&H (2001, pp. 41-42). 
28 The E-stability process is itself conceived of as taking place in notional time (meta time). 
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as time passes if equations (A8) converge to those values and (A2) is dynamically stable 

(non-explosive).  Also, such convergence will not occur if equations (A8) do not 

converge.  Thus E-stability and LS learnability typically go hand in hand.  This result, 

which is discussed extensively by Evans and Honkapohja (1999, 2001), is useful because 

it is technically much easier, in many cases, to establish E-stability than to establish LS 

learnability, whereas the latter concept is the more fundamental in terms of solution 

plausibility.      
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