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relationship (Pakes-Griliches 1980, and Hausman, Hall, and
Griliches, 1984) to a larger but shorter panel of firms.

Using both non-linear least squares and Poisson type models

to treat the problem of discreteness in the dependent variable
the paper tries to discern the lag structure of this relation-
ship in greater detail., Since the available time series are
short, two different approaches are pursued in trying to solve
the lag truncation problem: In the first the influence of the
unseen past is assumed to decline geometrically; in the second,
the unobserved past series are assumed to have followed a low
order autoregression. Nelther approach yvields strong evidence
of a long lag. The available sample, though numerically large,
turns out not to be particularly informative on this guestion.
It does reconfirm, however, a significant effect of R&D on
patenting (with most of it occurring in the first year or two)
and the presence of rather wide and semi-permanent differences

among firms in their patenting policies.
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Bronwyn H. Hall, 2Zvi Griliches, and Jerry A. Hausman

INTRODUCTION

In this paper we reexamine our earlier work on the rela-

tionship between R&D expenditures and patent applications

(Pakes-Griliches 1980, and Hausman, Hall and Griliches 1984)

using a‘larger sample and focusing primarily on trying to
characterize the lag structure of this relationship. Earlier
work had found a strong contemporanecus effect of R&D on patents
but was inconclusive as to whether there was a significant

lagged effect. Pakes and Griliches (1980), using the standard
fixed effects model, found evidence of a lag truncation effect

in the distributed lag of patents on R&D. That is, when they
controlled for permanent differences across firms in the propen-
sity to patent, the estimated coefficient on the last lag of

R&D which they considered (R&D expenditures of four years prior)
was significantly higher than the coefficients of more recent R&D.
Hausman, Hall and Griliches (1984) used a different functional
form (which took the discreteness of the patent data explicitly
into account) and found similar results for the random (uncor-
related) effects model but not in their conditiocnal fixed effects
version. When they conditioned their estimates on the total
number of patents received during the whole period, no coefficients

except for the contemporaneous R&D variable were statistically

significant either in the Poisson or negative binomial version.




Both studies used similar samples of about 120+ firms
with seven to eight years of patent data and twelve to thirteen
vears of R&D data. In the meantime, a larger sample had become
available (see Bound et al, 1982, and Cummins, Hall and Lader-
man 1983) and it was decided to try to investigate this question
anew. Unfortunately, although this larger sample yielded con-
sistent data for close to 750 firms, it is relatively short on
R&D data. While we have patent data for the years 1967-77, the
R&D data are available only back to 1972 for most of these firms
and back to 1970 for about half of them. Thus, we cannot really
tell whether there may be long delayed lag effects (longer than
four years or so). What we will be looking for is whether there
is a lag at all. The problem is complicated by our previous
finding of persistent individual firm differences in their pro-
pensity to patent. The need to allow for such individual effects
takes out much of the variance in the available short time series
on R&D énd makes it rather hard to distinguish between "firms
differ because of their past R&D history" and "firms just differ"

views of how these data were generated.

The other problem we have to deal with is the presence of
a large number of zeroes in our dependent variable, the number
pf patents applied for in a particular year. We have dealt with
this in two ways: (1) We use nonlinear least sguares with robust
standard errors on a model specified as P, = exp(ZpT log Rt_T) +

t

E This has the advantage of not requiring us to specify a

distribution for Epr but we are unable to obtain conditional
(fixed effect) estimates for this model due to its intrinsic
nonlinearity and the shortness of our panel. Therefore, (2) we
also chose to be explicit about the stochastic process generating

P and we estimated the comparable Poisson and negative binomial
versions of this relationship, including the conditional versions

(1)

of these models.

The basic model that we will use in estimating and inter-

preting our various results is
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where the expected value of the number of patents applied for by
firm i in year t (and ultimately granted) depends on the past

history of its R&D expenditures (Xi = log Ri ), on permanent ob-

servable firm characteristics s %such as zize, measured by the
net book value of its capital in 1972, and industrial specializa-
tion), unmeasured permanent differences in their propensities to
patent K and changes in the overall average propensity to
patent from year to year (across all firms) dt. The error
structure associated with different ways of estimating (1) will
be discussed below. The main difference between various methods
of estimation will be in the treatment of zeroes, the extent to
which they recognize the intrinsic discreteness of the data, and
the weight that they give to different observations. Since

these issues were treated extensively in our previous papers, we
shall allude to them only briefly as we go along. The main prob-
lem that we shall be dealing with in this paper is the lack of a
long enough history on past R&D expenditures which will not allow
us to estimate this model fully in an unconstrained fashion. To
get somewhere we shall have to make strong assumptions either
about the structure of the g's as the lag increases or about
the structure of the unseen past Xx's. Before we elaborate
further on this, it will prove useful to rewrite (1) in greater
detail and introduce the notion of the 1 matrix (Chamberlain

1980 and 1982) which symmarizes the available (linear) informa-

tion on the relationship between the dependent variable and all
the available x's,




ITI. THE MODELS

For ease of exposition, let us concentrate first on the
(log) linear version of our model.
(2)

= B x.,L + B + ... +z.. + 0., + e

17%it-1 it i it
where the x's correspond now to the available information on
past R&D expenditures while the Z s represent the impact of
the past (presample) unobserved history of the x's as of time
t. To simplify the exposition, we suppress the discussion of

the other terms (firm characteristics and time dummies) in this

section. Yip = log Pi+ is the dependent variable and et is
a random error (sampling or specification) distributed indepen-
dently of the x's. Both Z it and a; are unobserved and may

be correlated with the included x's. If they are, the g's
in (2) cannot be estimated consistently without making some
additional assumptions and/or transformations. If there were
no  zZ,y., the g2's could be estimated consistently (barring
other problems such as errors in variables) from the “"within”
part of the samples, from deviations around each firm's own
means. We shall focus instead, at first, on the case where the
zZj+ are indeed important and the ®, are either absent or in-

dependent of the x's. Even in this case (no or uncorrelated
' 1

i it

to be able to identify the B's.Two classes of assumptions can be

a.'s), we shall need to make strong assumptions about the =z
used for this purpose, and we shall explore them both. The
first assumes that the contribution of past history decays geo-
metrically, at least after a few free terms in the lag structure.

T.e.,
(3) = B.X + R,Ix + Ax +A2x + ] 4+ e
Yit = Po¥it 11%5¢-1 it-2 it-3" " i
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where X:q is the first available x (that is, we are assuming
that we have available at least one lagged value of x) and Z;
is the impact of the uncbserved past history of the x's as of
the initial first period, whose importance declines at the rate

(1-A) over time. Now, if we had only three cross-sections we

could rewrite {(3) as

2 2
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Since z, is unobservable, estimating the observed part
of these equations (separately for each cross-section or jointly)
will result in biased coefficients, but the biases will be re-
lated and it may prove possible to unscramble them.

Instead of treating each of these cross-sections asymet-
rically, as implied by (3'), consider estimating a symmetric

system, where each of the y's depends on all the available x's:

(4) Yiz = T33¥33 * 73Xyt omyXyy *om3p¥ig t Vi3

+
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The resulting coefficients, the n's, summarize all the
available information about the (linear) relationship between

v's and of the x's in our sample. What is the expectation of

these T's ? To derive this, let us first define the projec-

tion of the excluded zi on all the available x's:
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where E* 1is the wide sense expectation operator and the &'s
are the projection or auxiliary equation coefficients, co-
efficients that summarize the relationship between the excluded
z and all the available x's. Given (5), it is easy to see

that the expectation of the estimated T's is equal to

2 2 2 2 2 o
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and the twelve available w's depend on only seven unknown

parameters (2 B's, 4 &8's, and A). This matrix is in fact

heavily constrained. For example,
= T m = T T = T 7t
A 23/ M3 20’ "10 30”20
and it is obvious how one would recover the #8's. In practice,

this set of equations is estimated jointly, imposing the non-
linear constraints across egquations. We shall use the non-

linear analogs of the SUR procedure in TSP to estimate such

models, allowing for arbitrary serial correlation of the eit's
across time. This approach includes, as a special case, the
(2)

"random effects," uncorrelated ui's case,

If we had just ui's and no zi's (e.g. » = 0), and the

a's were correlated with the x's, then by a similar argument

(7) E*(ai]xop..,x3) = m'x




and the associated 1 matrix would he
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This is the pure fixed (or correlated) effects case, which could
also be estimated consistently from the "within" dimension of

theldata (in the linear case).

Assuming both the presence of =z (A # 0) and correlated
a's would produce a II matrix which would be a mixture of (8)
and (6) and strain the identification potential of the data to
its limit. With a larger number of cross-sections such a model
might be estimable in principle but did not appear to be identifi-
able from the data available to us.

One should note two other possible estimation approaches
to such a model. 1In the presence of the ai's one may be

tempted to first difference, with the result that (3') becomes

(9) dy3 = Bodx3 + Bldx2 + ABldxl + A(x-1)z + de3
dy2 = Bodx2 + Bldxl + (A-1)z + de2
where dxt = Xt - xt—l and the associated I matrix is
{,' - — o
* =
(10) E* (1) [Ac3+30 A, +By Aoy +AB,
<3 PR C tBy

where the «c¢'s are the coefficients in the projection of
(A-1) 2z on the dx's. While this model is identified (W3l/ﬂ2l =),




the c¢'s are unlikely to be well defined (since there may be
little correlation between the level variable =z and the sub-
sequent dx's) and an attempt to estimate all the coefficients

jointly may experience severe convergence problems.

An alternative approach would take advantage of the geomet-
ric nature of the lag structure, and use lagged values of the

dependent variable to solve out the unobserved zi'

S. Using

the lagged dependent variables formulation would introduce both
an errors-in-variables problem (since Ye_o1 proxies for 2z sub-
ject to the e 1 error) and a potential simultaneity problem
due to their correlation with the ai's {(even if the a's are not
correlated with the x's). Instruments are available, however,
in the form of past y's and future x's and thus such a system
might be estimable along the lines outlined by Bhargava and

Sargan (1983).

We do not pursue this line further here because we will
be interested in estimating the nonlinear versions of our model,
where neither the first difference or the lagged dependent vari-
able option is available. In the nonlinear case, the first
difference approach is equivalent to taking ratios, which founders
on the presence of zeroes in our data. The lagged dependent
variable approach is also not operational since the instrumental
variable approach does not work for variables which are intrin-
sically nonlinear [i.e., there is no simple way to instrument
the (yt_l-et_l)A variable]. We shall return to this point
further on, when we show that even though we cannot estimate A
consistently, we can test the hypothesis * = 0 using Lagrange
Multiplier methods.

While the I matrix approach can be used also in the non-
linear context, it does require stronger assumptions to assure
consistency. In particular, we shall have to assume the joint

normality of the 2, and X, - That is, using {5) we can write

(11) z = 8'X + n




and rewrite {l1) as

(12) yit = e(8+6)|xi+ni + €ip = [e(B+6)'X_ﬂeni + €t

For non-linear least squares procedures to be consistent under

such circumstances we must assume independence between the n

i
and the x's. Non-correlation, which follows from the projection

implicit in (l11l) is not enough.

The preceding used constraints placed on the lag distribu-
tion of the past history of the x's to achieve identification.
Another approach to identificatioﬁ in such models is based on
assumptions about the past history of the x's and does not
require specific assumptions about the functional form of the
lag distribution (see Pakes and Griliches 1982). Let us return

to {3), free up the B8's, and forget the a's for a moment:

(13) |
Yy = 80x3 + lez + Ble + B3x0 ; + B4x_l + e,

Y, = BoXp * ByXy + Boxg  F Bax_g * BuX_ 5t &y

Yy = BoXp * ByXg o+ Box ) ¥ BaX o+ Byx gt €

where for illustrative purposes, we have assumed a five term lag

distribution with x_,; -3

unobserved past history of the x's. The basic assumption that

through x constituting the relevant
we shall make here is that the x's are generated by a relatively
simple autoregressive (AR) process. If, for example, x's follow
a first order AR, then in the projection of each of the unseen

x's on all the available x's

*
(14) E (x_T|x0...x3
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only the coefficient of x., will be non-zero, since the partial

0
correlation of X_, with Xis given xo, is zero for all
T >0 and t > 0. The T matrix for this case is thus
* =
{15} E* (1) 80 Bl 62 83+g164
0 % By BotdB3ta,8,

| ... .
and the first three £'s can be estimated consistently, leaving
the last column of T free. If we had assumed that the x's
are AR(2), we would be able to identify only the first two

f's and would have to leavethe last two columns of I free. (3)

Following Chamberlain, the basic procedure in this type of

models is first to estimate the unconstrained version of the

I matrix, derive its correct variance-covariance matrizx allowing
for the heteroscedasticity introduced by our having thrust the
parts of the a; or z, which are uncorrelated with the x's into
the random term (using the formulae in Chamberlain 1982, or

White 1980), and then impose and test the constraints implied by

the specific version deemed relevant.

Note that it is quite likely (in the context of longer T)
that the test will reject all the constraints at conventional
significance levels. This indicates that the underlying hypothe-
sis of stability over time of the relevant coefficients may not
really hold. Nevertheless, one may still use this framework to
compare among several more constrained versions of the model to
see whether the data indicate, for example, that "if you believe

in a distributed lag model with fixed weights, then two terms

are better than one."
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ITT. DATA AND RESULTS

The data we use are an extract from a larger and longer
panel of firms in U.S. manufacturing drawn from the Compustat
{(Standard and Poor 1980). This dataset was assembled and com-
bined with patent data from the Office of Technology Assessment
and Forecasting at the NBER and is described in Bound et al
(1984) and Cummins, Hall, and Laderman (1882). The original
universe from which our sample comes consisted of approximately
2700 firms in the manufacturing sector in 1976, and included
almost all of the firms which report R&D expenditures to the
Bureau of Census-NSF R&D survey.

Our sample of firms was chosen from this universe by re-
gquiring that data on sales, gross capital, market value (value
of common stock), and R&D be available for all years from 1972
through 1977 with no large jumps during that period. A jump
is defined as an increase in capital stock or employment of more
than 100 percent or a decrease of more than 50 percent. This
test was not applied unless the change in employment was greater
than 500 employees or the changs in capital stock was dJreater
than two million dollars. We also removed six firwms wnicn had
abnormally small R&D values (less than $10,000) in one of the
years; The number of firms remaining in the sample after these
cuts was 738, with a size distribution heavily tilted toward the
larger firms in our original universe. Table 1 shows the selec-
tivity of this sample with respect to size and indicates that
although we have only a quarter of our original sample of firms,
most of those lost were either smaller or were not R&D-doing
{(and reporting) firms. Our coverage of the larger R&D firms
is almost complete, and our sample includes 95 percent of the

R&D dollars expended by the manufacturing sector in 1976.

- Table 2 exhibits the characteristics of our remaining sample
of firms, both the 738 firms with R&D between 1972 and 1977 and a

subset of firms with a longer R&D history back to 1970. Quantiles
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are shown in order to give some indication of the skewness of
the data: for example, median sales for this sample in 1976 was
177 million dollars, while mean sales was 979 million dollars.
The subset of firms with a longer R&D history consists of some-
what larger firms and is more heavily tilted toward the scienti-
fic sector. Even for this sample of relatively R&D-intensive
firms, we find that over 20 percent of the firms applied for
zero patents in 1976 and that more than half applied for less
than five. This confirms our impression that the patents
variable in this data must be treated in a way which correctly
reflects its relative imprecision at small values. Previous
experience with estimation of the patents eqﬁation in the

cross section (Bound et al 1982) has shown us that slope co-
efficient estimates may not be robust to changes in the way in
which we specify the error in the egquation {(and the weighting

which is implied by such specification).

Bound et al found that estimates of the elasticity of
patenting with respect to R&D at the average R&D in the sample
varied from .35 to 2, depending on the choice of specification:
log linear, Poisson, negative binomial, or nonlinear least
squares (exXp(xXb)). This difference was greatly attenuated when
the firms were divided into two groups, those with R&D budgets
larger than two million dollars and those with smaller R&D budgets.
In the present paper, the problem is not as severe, for two
reasons: first, our sample is more heavily weighted toward the
firms in the larger group (approximately 50 percent have R&D
greater than two million, rather than 20 percent). Second, we
have chosen to estimate a linear relationship between the log of
patents and the log of R&D rather than the quadratic one in the
previous paper. In addition, we present standard errors for the
nonlinear least sguares estimates which are computed without
assuming anything about the disturbances except that they are

additive and mean zero. That is, we assume that the model exp(Xb)
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is correct but we let the data tell us the form of the hetero=
skedasticity. The formulas used are based on those of Eicker=

White-Chamberlain.

Table 3 presents estimates of the nonlinear least sguares

model,

+
t ) +e

(16) P, = exp (EBT log R, _. P
The estimates are obtained using the seemingly unrelated regression
(SUR) method. Specifically, we estimate the covariance of the
disturbances, £ , using residuals computed from the unconstrained
I matrix, and then use this estimate as weights when computing all
the constrained models. This is a special case of generalized

least squares, and the objective function is

(17) 0(8) = e8) (¢ x 1)L e(p)

where e 1is the "stacked" vector of residuals from the model

of equation (16). This method allows for a free correlation over
time for each firm, although it implicitly assumes that these
correlation patterns are the same from firm to firm in estimating
. When we compute the standard errors for our estimates, we

do not impose this assumption; each observation (firm) is weighted
by its own residuals and their cross products, which allows for

the possible hetercoskedasticity across firms.

The first two rows of Table 3 present estimates of our most

general model of section 2, given by equation (3). First we
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estimate a version with X equal to zero, which implies no R
coefficients after the first two, and then we give the version
with A free. ©Note that this model is fit within the context
of "random” rather than "correlated" firm effects, since the
high degree of correlation in our XxX's over time would make it
difficult to discern both a decaying lag structure and an effect
which has fixed coefficients with the x's over time. The
correlated effects question is addressed in the fourth row of
the table where, in addition to contemporaneous R&D and R&D lag-
ged once, we included all years of R&D with the same coefficients
in each equation. The estimated lag coefficients do not change
that much although the total effect drops from about .4 to .33,
and a test of significance of the correlated effects yields an
insignificant xz (6} = 4.4, using robust standard errors.
Accordingly, we feel reasonably confident that leaving out the

correlated effects should not bias our results too much.

In fact, as can be seen in row 2, the model with geometric
decay on the lag coefficients after the first two is preferred.
The coefficient decays rather rapidly, 50 percent each year, but
it is estimated with considerable imprecisicon, s¢o this result also
should not be taken too seriously. As we saw in section 2,
another way to ask the same questions is to model the past his-
tory of the x's, rather than of the coefficients. Although
there 1s some evidence that an AR(1l) process might do just as
well, we choose to model them as an AR(2) process to be on the
conservative side. Then the 11 matrix to be estimated has its
last two rows free due to correlation of the first two X's with
the left ocut x's, Otherwise, it has free lag coefficients on
the diagonals and above, and zeroces below. The results for this
version are given in row 3 of Table 3, and show not much evidence

in the data of a lag longer than about two years.

There are several findings of interest in Table 3. First,

the estimated total elasticity of patents with respect to R&D
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expenditures is fairly stable across different versions, 0.33
to 0.43, except for the full model with geometric decay on

the lag coefficients. 1In this model it rises to .51, suggest-
ing that there is something, although it is small, in the firm's
history of R&D expenditures that matters for patenting. Second,
it appears that the effect of R&D peaks after one year. Even

in the geometric lag case, the estimated average lag of patents
applied for behind R&D expenditures is only one and one half years.
Third, it is difficult to tell whether there is any significant
lag beyond the first two years. In both the AR(2) case and the
geometric lag model, the additional terms are at best only mar-

ginally significant.

To check on these conclusions, especially the last, we
have redone the same computations for the half of our sample
(N = 394) where we have data on R&D for two additional past years,
1970 and 1971. These results are shown in Table 4 and are incon-
clusive. The finding that correlated effects do not matter very
much seems to hold up in these data (compare rows 1 and 4 again,
and note that the goemetric decay model estimates almost the
same total effect with a better fit). However, the total contri-
bution of the lags beyond the first year in the X free model is
small (about .13) and in the AR({2) version it is negative,

albeit with large standard errors.

We turn next to the results of estimating the Poisson and
negative binomial versions of our models. The advantage of these
models is that they take explicitly into account the non-negativ-
ity and discreteness of our data. Moreover, the‘conditional
versions of these models allow us to estimate a fixed effects
model, something that we could not do easily with the nonlinear

least squares estimates discussed in the previous section. ©On

the other hand, because they are significantly more expensive to
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compute and more complicated to manipulate, we cannot really
explore all the alternative hypotheses about the lag structure

in their framework.

These models were described in detail in our earlier paper
(Hausman, Hall, Griliches 1984) and we shall summarize only their
main features here: The log likelihood function for the Poisson

model is given by

(18) log L = I Z [yitl - exp(XitB) + Yitxitﬁ]

and its conditicnal version is

N T T |
(19) log L = izl tgl Yig loglszl expiX; -X. )8l
L ]

The Poisson estimates differ from the Nonlinear Least
Squares ones reported in Tables 3 and 4 primarily by the weight-
ing scheme used. The reported NLS estimates are unweighted,
weighting implicitly the numerically larger deviations of the
larger firms more than those of small firms. The Poisson esti-
mates assume that the variance of the disturbances is proportional
to the expected value of patents and weight the observations
accordingly. The negative binomial version of the model general-

izes the Poisson model by allowing for an additional source of

variance above that due to pure sampling error. The logarithm
of the likelihood for this model is
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X.. 8 X.. B

(20) log L = } Z{log re % + Yiy) = log T (e 1t
it
X.,B X.,B
- log F(yit+l) + e 1t log 8- (e it +y t) log(l+6)}
ith
where & 1is the variance parameter (Vyit = e /8). The

conditional version of this model conditions on the total number

of patents applied for by the firm in all years:

: Kief Xief
(21) log L =7 {7 log r(e I 4y, )-log I'(e 't )-log T (y, +1)}
i Lt 1t 1t
XiB XjB
+ log T'(Ze )+ log T(Zy, +1)- log T (ZIe + Iy..)
t g 1t t ¢ Lt

We estimate all these models using standard maximum likelihood

techniques.

Since these models differ only by their distributional as-
sumptions and not by the specification of the expected value they
should all yield roughly the same results unless the basic speci-
fication of the model is wrong. In fact, it can be shown (see
Gourieroux, Monfort, and Trognon 1981) that the NLS estimates
are consistent even if the true distribution is Poisson and the
Poisson estimates are consistent even if the true distribution
is the negative binomial. Because they make different assump-
tions about the variance structure they do yield different esti-

mates of standard errors, even in the case of similar coefficients.

Table 5 gives the major results of such computations. The
first half of this table corresponds to the model estimated in
our earlier paper and includes a time-R&D interaction in a search
for possible changes in the "fecundity" of R&D over time. In

general this interaction is not significant both because of the

rather short period examined, the six years of 1972-77, and




18

because there may not have been any systematic changes in the

R&D coefficient over this period.(S) The second half of Table

5 corresponds to the models examined in Tables 3 and 4, with
patents being a function of current and lagged R&D expenditures,
but allowing also for permanent differences across firms in their
patenting propensities. The results are rather similar except
that in this format the first R&D coefficient is higher than the
second and the estimated sum of the coefficients is somewhat

lower in the Poisson case, although not in the negative binomial.

We turn now to the question whether there is any evidence
for additional lags within this framework and we try to use the
information contained in the lagged vy's, past patenting levels,
to infer something about the importance of the unseen past. If
the lag structure were geometric after the first two terms then
we could solve out equation (3) for the missing y's and sub-

stitute for them. However, what is needed here is the

Y
true “inde; ialue" of y,_;, not its observed value which is
subject to significant sampling error. While in the usual linear
or log-linear models one could get around this by using instru-
mental wariables, here, because of the intrinsic nonlinearity of
(y—e)A this does not really work. We turn, therefore, to a
Lagrange Multiplier test of the hypothesis that Yi_1 belongs

in the equation. The test itself is outlined in Appendix A.

Tt is based on the computed residuals from the conditional Poisson
model. These residuals, which are computed assuming that Yt—l
does not enter into the model, are then regressed on log yt—l

The coefficient in this regression should be zero if the null
hypothesis is indeed correct. Since Ye_1 is subject to sampling
error, the resulting regression coefficient may be attenuated

and one may wish to use an instrumental variable estimation pro-
cedure here which is ncw consistent since the coeffi-

cient enters .linearly in this equation. We use log Y., as an
instrument, assuming that all the relevant serial correlation

(6)

has been taken care of by the estimated fixed effects.
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The results of such computations are guite clear. For the

equation reported in column 5 of Table 5, the estimated coeffi-

cient is .041 with an estimated t-ratio {(using robust standard
errors) of .16 . Using an instrumental variable estimator the
same numbers are .02 and .07 respectively. Thus, there is

no evidence that there is any additional serial correlation or
lagged x's effect left after one allows for permanent differ-

ences in the patenting propensity across firms.

An alternative way of asking this gquestion is to look at
the half of our sample where we have data on two more years of
lagged R&D, back to 1970. This is shown in the last part of
Table 5, where we see that including two more lagged logR terms
in the conditional Poisson and negative binomial models neither
improves the fit nor results in statistically significant coef-
ficients. The conclusion remains the same: allowing for fixed
effects it is not possible to estimate longer lag effects of
R&D in these data. The significant effect that one can observe

occurs in the first year or two.

There are at least two reasons for our failure to discern
clear evidence of a longer lag structure from our data. First,
the effects we are looking for are relatively small (relative
to our ability to estimate them). Assume, for a moment, that
the true total long run elasticity of patenting with respect
to RsD expenditures is 1. We estimate that about .4 of it
occurrs in the first two years and associate it with applied |
research and development expenditures. The effects of basic
research take much longer, are more random, and hence are
"smeared" over a longer period. Say that the rest of the effect,
0.6, is distributed over the next eight years. Then the average
coefficient that we are looking for is .07, which is about the
order of standard errors of such coefficients in our data. That

is, the effect we are looking for is below the resolution power

of our data.
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The second related reason has to do with the properties
of the R&D series in the real world. By and large, different.
firms have roughly constant (over a six year horizon) R&D
budgets, which change from year to year, but largely randomly
from the point of view of the sample as a whole. The first five
serial correlation coefficients of log R., are estimated (using
the MaCurdy (1982) approach) to be .99, .99, .96, .95 and .97
respectively, while the comparable serial correlations of the
first differences are -.05, -.02, .01, .06; all not signifi-
cantly different from zero. That is, we cannot reject the

hypothesis that log R, follows a random walk. This should

t
make it clear why we cannot estimate much of a lag structure
without having a long history of data. There may be effects
from the unseen past but we cannot learn about it from the ob-

served present if it is largely uncorrelated with it.

Iv. CODA

We should not close this paper on the usual note of the
failure of the data to live up to our econometric expertise.
Even though we have not been able to elucidate the R&D to
patents lag structure better, our overall findings are guite
interesting, showing a persistent significant effect of R&D on
patenting and rather wide and semi-permanent differences across
firms in their patenting policies. The later finding provides
the challenge for further and different style research: trying
to understand how and why firms differ in their responses to the

technological environment they find themselves in.




Table 1

Sales Number in Number in Coverage
76 Cross Section Sample

All R&D>0 All R&D>0
less than $1M 73 33 1 .014 .03
$1M-10M 548 293 21 .038 .07
$10M-100M 1102 579 261 .24 .45
$100M-1B 669 415 304 .45 .73
$1B-10B 204 167 141 .69 .84
more than $10B 12 11 10 .83 .91
Total 2608 1498 738 .28 .49

1976 R&D Expenditures
in 1976 dollars

Sales 76 Cross section Sample Coverage
less than $1M 3.0 0.9 .30
$1M-10M £65.3 5.3 .08
$10M-$100M 525.2 266.3 .51
$100M-1B 2354.1 2067.7 .88
S1B-$10B 7830.6 7696.9 . 98
more than $10B 4593.2 4529.2 .99

Total 15,371.3 14,566.3 .95




Table 2

Key Variables in 1976

738 Firms !394 Firms

Variable Min 1st Q Median 3rd Q Max ' Median
sales ($M) .6 57 177 674 49,000 238
R&D (SM) .02 .69 2.2 9.7 1,256 3.5
Patents 0 1 3 14 798 4
Fraction with .22 ' .21

zero patents
Fraction in

scientific sector .34 | .40

Notes to Table 2

All dollars are millions of 1976 dollars.

The scientific sector is defined as firms in the drug, computer,

scientific instrument, chemical, and electric component indus-

tries.
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Notes to Table 5

The values in the table are the estimated coefficients of the

respective variables and their standard errors (in parenthe-

sis).

"Fixed Effects" -- Conditional estimates, conditional on the
observed sum of patents for the period as a whole (for each

firm). See Hausman, Hall and Griliches 1984, for more detail.

£n bkv72 -- logarithm of the net book value of plant and equip-

ment in 1972. A measure of size.

Sci. Sect. -- a dummy variable for "scientific sector" firms
(consisting of firms in the drug, computer, scientific instru-

ment, chemical, and electric component industries.)




FOOTNOTES

*Prepared for the Conference on Quaﬁtitative Studies of R&D in
Industry, Paris, September 9-10, 1983. We are indebted to the
National Science Foundation (PRA 81-08635) and the National
Bureau of Economic Research Program on Productivity and Tech-
nical Change for financial support. Elizabeth S. Laderman

provided extremely able research assistance.

1. Note that nonlinear least squares is consistent even if Pt
is distributed as Poisson or Negative Binomial and the Poisson
estimates are consistent even if the true distribution is Negative
Binomial. See Gourieroux, C., A. Monfort and A. Trognon, 1981,

and Hausman, Hall, and Griliches 1984.

2. The procedure we use is not fully efficient since we do not
take into account in the estimation the possible heteroscedasti-
city across i introduced by the projection of z on x and
inclusion of the remainder in the new disturbance. (See Chamber-
lain 1982 for more detail.) We do, however, allow for such
heteroscedasticity in computing our standard errors using formulae
based on White 1980.

3. If the stochastic process generating the x's can be assumed
to be stable over time, efficiency could be improved by estimating
the g's jointly with the R's. See Pakes-Griliches 1982 for more

discussion on this.

4. For comparison purposes with subseguent models, this one is esti-
mated with the 1972 parameters left free and the &'s starting
only from 1973 on.

5. The year constants do decline in 1976 and 1977 but this

reflects the truncated property of our data. They are based on




total patents granted up to the end of 1979 and hence do not
include some of the patents applied for in 1976 and 1977 to be
granted after 1979. The year dummies decline by 7 and 21 per-
ceﬁt respectively, relative to 1973-75, which is very close to
the estimated decline in coverage: 4 and 21 percent respectively.

(See Appendix Table 1.)

6. Here we define Yy = Py * .33 to avoid the zerces problem

in Py




Appendix Table 1

The Distribution of Patents Applied for
by Date Granted: 1970 - 1977

Total in
Year of Years later Current
Application 0 1 2 3 4 5+ Panel
1969 0 11 66 20 2 1 100
1970 0 18 62 17 2 1 100
1971 0 18 64 16 1 1 100
1972 0 30 60 8 1 1 100
1973 1 43 47 7 1 1 100
1974 2 48 43 5 1 1 100
1975 2 49 41 6 1 1 99
1976° 3 46 42 5 * * 96
1977 1 41 37 * * * 79

Based on a sample of 100,000 patents from the 1969-79 OTAF tape
on patents granted.

*
Not computable
“Estimated




APPENDIX

In this appendix we develop a Lagrange Multiplier (LM)
test for the presence of a lagged dependent variable in a
Poisson type model. Since exponential models can always be
written in generalized least squares form, we write the model

which we wish to test as

X. B+uo,
_ it i _A

(A-1) Yig = € Zit-1 T Fig
where Zit-l is the "true" value of the lagged dependent vari-
able, egual to Yit-1 ~ €it-1 - Because we do not observe =z
and it enters nonlinearity into the equation, we cannot estimate
(A.1l) directly by instrumental variables. Instead we estimate
equation (A.l) under the null hypothesis A= 0.

X, B+a.

it 1
. ., = + .

(a.2) ylt € E1t
and we do an LM test for A = 0.

The gradient of the sum of squares function (likelihood

function) for equation (A.l) with respect to » is

X., B+a, 3

os )

(A.3) = (e *t 1 (log =z,

ar it-1 )

“ie-17 it
Therefore, an approximate LM test is to take the estimated re-

siduals from equation (A.2) and to do least squares with weights
oXithHai

¢ On the egquatioén:




(A.4) €i¢ = © (log vy, o) + v,

The test is a significance test on the estimated coefficient

Pl

@. We estimate equation (A.5) by instrumental variables to take

account of the possible errors in variables problem, which arises

from the fact that we use log Y{t-3 Trather than log 2., .,

Yiee1 = (Zipog * €pop)-
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