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1 Introduction

The theoretical literature on statistical discrimination shares a common theme: equilibria exist in
which a group is discriminated against relative to another, even when groups are ex-ante identical
and employers have no psychic preference for either group. The question that has been hitherto
ignored, within these models, is what happens to the agents who overcome the initial adversity in
hiring and are assigned to a job within a firm. This paper addresses this question by formalizing the
following simple intuition. Suppose an employer has negative stereotypes about a particular group
(group A, say) and discriminates against them in her initial hiring practices, relative to another
group (group B) for whom she has more positive stereotypes. Then, conditional on being hired,
group A workers within the firm are relatively more talented than group B workers. This result
arises because group A workers in the firm were held to a more exacting standard in initial hiring,
relative to B’s. Employers may take this into account in their favor when they promote from within
the firm. Thus, although A’s are subjected to initial adversity, once hired, they may be more likely
to be promoted.! I refer to this as “belief-flipping” — being pessimistic about a group in general,
but optimistic about the successful members of that group.

The main result in this paper is a sufficient condition for “belief flipping” to arise in a dynamic
equilibrium of a simple two-stage job assignment game. Whether or not belief-flipping obtains is
driven by two effects: a talent effect and an investment effect. In standard (one-stage) models
of statistical discrimination, when an employer changes her hiring standards, this influences the
worker’s investment behavior (investment effect). In a dynamic model, an employer’s asymmetric
initial hiring standards also induce an endogenous talent effect in later stages of the game. The
talent effect is always positive; higher initial standards imply a more talented pool of workers in the
firm. The investment effect, however, may be positive or negative because there may be continued
discrimination in the promotion stage. If the investment effect is positive, belief-flipping will arise.
If the investment effect is negative, then the magnitude of the talent effect must outweigh that of
the investment effect. Careful attention to the details will highlight the following “rule of thumb:”
if a worker’s promotion stage wages and the employer’s profit margin on offered wages take on

intermediate values, belief-flipping can occur.

LOf course, this does not imply that the number of A’s that are promoted will be more than the number of B’s.

Or, that ex-ante expected welfare of A’s will be greater than B’s.



This result may seem innocuous. Technically, beliefs can flip in one-stage statistical discrim-
ination models if the game were to be trivially repeated twice, and group B, for example, was
discriminated against the first time the game was played relative to group A, and the second time
group A was discriminated against relative to group B. This type of crude argument, however, is (1)
not particularly interesting, given there is no link between the stages (i.e., employers cannot make
inferences about workers in later stages of their career, as a function of their previous play) and (2)
implicitly relies on an unspecified equilibrium selection mechanism that for some (ad hoc) reason
chooses to discriminate against Bs the first time the game is played and discriminate against As
the second time the game is played. In the model presented here, there is an explicit link between
the two periods that allows the employer to discern group specific characteristics about the workers
over time.

When belief-flipping occurs, who benefits from the employer’s discriminatory hiring practices
is unclear. The ex-ante expected payoff of the group who faces the initial discrimination is always
lower than the group who does not face this discrimination. Ex-post, however, workers who are
hired despite the employer’s animus towards their group benefit from the initial adversity. More
succinctly, B’s would prefer to be A’s before the initial hiring process, but conditional upon being
hired, they are happy to be B’s.

The seminal contributions to the statistical discrimination literature consist of Phelps (1972)
and Arrow (1973). Phelps (1972) assumes that the signal minorities emit is nosier, and therefore,
employers (rationally) discriminate against them in equilibrium. Arrow (1973) argues that employ-
ers can (rationally) discriminate against a group, even when they are ex-ante identical, and the
employer herself does not have taste-based group prejudice. He notes that when some employee
characteristics are endogenous, an employer’s a priori beliefs can be self-fulfilling. Two important
contributions in this literature are Coate and Loury (1993) and Moro and Norman (2004). Coate
and Loury (1993) provide a simple model of employer-worker interaction that captures the ideas
expressed in Arrow (1973), and then use the model to evaluate whether affirmative action policies
will eliminate statistical discrimination. Moro and Norman (2004) extend the model of Coate and
Loury (1993) to allow for endogenous wages; analyzing affirmative action in a competitive market.
The current model serves as a theoretical extension of Arrow (1973), that encompasses some aspects

of Coate and Loury (1993). To make the discussion reader-friendly, I adopt much of the language,



notation, and style of the original Coate and Loury (1993) paper.
2 A Dynamic Model of Statistical Discrimination

A. The Basic Building Blocks

Let there be one agent referred to as a worker and one agent referred to as an employer. Nature
moves first and assigns a type to the worker. This type, denoted ¢/, depicts the worker’s cost
of investing in each stage j, j € {h,p}, where ¢/ ~ U0,1], and c* = ¢ = c.? After observing
his cost, the worker makes a dichotomous hiring-stage investment decision, choosing to become
either “qualified” or “unqualified,” with no in-between. Then, nature distributes a signal 0"
{pass, fail, unclear} regarding the worker’s investment decision, where 6" € {pass, unclear} if the
worker invested and 8" € {fail, unclear} if not.

Next, the employer observes #" and makes a deterministic hiring decision: hire or reject. If
the worker is rejected, he exits the game and takes no further action. If the worker is hired, he
proceeds to the promotion stage. Between the hiring and promotion stages, the employer observes
the worker’s hiring-stage investment decision. If they are not qualified, and cost the firm profits, an
employer will not promote the worker. Thus, workers who do not invest in the hiring stage are not
eligible for a promotion regardless of their promotion stage signal. To keep things tractable, those
who invested in the hiring stage, but were not hired, are not eligible for re-entry in the promotion
stage.?

If the worker made the hiring-stage investment decision, then in the promotion stage he makes
another investment decision, choosing whether or not to be qualified for the promotion opportunity.
Then, nature distributes a noisy signal to the employer regarding the worker’s investment decision,
0P € {pass, fail, unclear}, where (as before) 07 € {pass, unclear} if the worker is qualified and
0P € {fail, unclear} if the worker is unqualified. After observing the signal, the employer makes a
promotion decision, deciding whether to promote the worker or leave him in the initial hiring stage

position.

?Ideally, one might want the cost to be correlated, but not perfectly. All the results go through if the correlation

between the costs in each stage is sufficiently high.
3These assumptions can be justified if some on-the-job-training is required for the promotion. Thus, those workers

who were passed over in the initial hiring stage, or did not invest in the initial hiring stage, do not have the necessary

skills for the promotion.



B. Payoffs

If the worker is hired, he receives a fixed payoff of 1 — ¢ if he chose to invest in the hiring stage
and is normalized to 1 if not. The employer’s net payoff for hiring a worker is normalized to 0 if the
worker is qualified and —1 < 0 if the worker is unqualified, given wages are paid while production
occurs. The payoff to the employer for rejecting the worker is zero.

In the promotion stage, the worker receives a payoff of A — ¢ if he is promoted and qualified
for the promotion, and A if he is promoted and not qualified, A > 1. If the worker is not promoted,
but invested in the hiring stage, then he stays in the same job and receives a payoff of 1 in the
promotion stage. The employer receives a payoff of & — A > 0 if she promotes a worker who is
qualified in the promotion stage, and —A\ if she promotes an unqualified worker. If the employer
chooses not to promote a worker who was qualified in the hiring stage, she again receives a payoff
of 0. If she hires an unqualified worker in the hiring stage, and thus receives negative payoff, then
she receives a payoff of zero for the promotion stage. The final payoff to each agent is the sum of

the payoffs in each period with no discounting.
C. Strategies

Without loss of generality, the worker’s strategy can be represented by cut-off points, (ch*, cp*) ,
such that the worker will invest in the hiring stage if ¢ < ¢™, and conditional on being hired
and making the investment in the hiring stage, invests in the promotion stage if ¢ < ¢’*, where
(ch*, cp*) € [o, 1]2. A strategy for the employer is an assignment decision in the hiring and promotion
stages.4

When optimizing, an employer will hire (resp. promote) a worker if they observe a passing
signal and reject a worker if they observe a failing signal. When the signal is ambiguous, the
hiring/promotion decision is more complicated. Let p, (resp. p,) denote the probability that a

worker receives an unclear test score when he is qualified (resp. unqualified), and let 1/ € [0, 1]

4Formally, the worker’s strategy consists of a pair of functions (investment decisions) I" : [0,1] — {0,1}, where
I" is known as the worker’s hiring-stage investment function, and I? : {0,1} x [0,1] — {0,1} where I? is known
as the worker’s promotion-stage investment function. The employer’s strategies also consist of a pair of functions
(hiring/promotion decisions) Al {pass, fail, unclear} — {0,1}, where A" is known as the employer’s initial hiring
function, and AP : 0" € {0,1} x {pass, fail, unclear} — {0,1} ,where AP is known as the employer’s promotion

function.



denote the probability that the employer hires (resp. promotes) a worker in stage j, when she
observes an unclear test result.” An employer is said to be “liberal” (u/ = 1) towards a group, in

stage 7, if she gives them the “benefit of the doubt” and conservative (47 = 0), in stage j, if not.
D. Ezxpected Payoffs

Let 7/ € [0, 1] denote the employer’s prior belief that the worker is qualified for stage j € {h,p} .
Expected payoffs for the employer are functions of her beliefs and the signal she observes. Specif-
ically, given 7/ and observed signal 6/, she formulates a posterior probability, denoted ¥ (7rj, ¢’ )

(using Bayes’s rule), that the worker is qualified in stage j,j € {h,p}.

ﬂqu

m . leen

In particular, ¥ (Wj,pass) =1, U (ﬁj,fail) =0, and ¥ (Wj,unclear) =
these posterior probabilities, the employer’s expected payoff for promoting a worker with an unclear
signal is

U (7P unclear) (. — X) — [1 — W (7P, unclear)] \. (1)

Let V(7P) denote the employer’s expected value of participation in the promotion stage, where
V(nP) =aP (1= p,) (= A) + P [pa? (= A) — p, (1 —7P) A . (2)
The employer’s expected payoff for hiring a worker who emits an unclear signal is then
v (7rh, unclear) V(nP) — [1 - v (7rh, unclearﬂ . (3)

Recall, the expected payoff for rejecting a worker in the hiring stage is normalized to zero.

The worker’s expected payoff is a function of the hiring and promotion thresholds set by the
employer, the probability that he is promoted if he emits an unclear signal (u?), the wages paid,
and his cost. Let R,» (c) denote the worker’s expected return in the promotion stage, where

Ry (c) = max {pq [P+ (L= pP)] + (1= pg) A= ¢ py [P A+ (1 — pP)] + (1 — pu)} N

invest do not invest

To ensure that the incentive to invest in the promotion stage is larger when an employer is liberal

(relative to a conservative employer), we assume p, > p,,.

5 Allowing the precision of the testing technology to differ in the hiring and promotion stages is a straightforward

extension. All derivations with this extension are available from the author upon request.



In the hiring stage, expected payoffs depend on the worker’s expectation of facing liberal /conservative
employment standards in the hiring and promotion stages, the wages paid in each stage, and his

investment costs. The worker’s ex-ante expected payoffs can be written succinctly as

invest do not invest

max {pq,uh(l + R () + (1—p,) A+ Rw () —c;  ul'p, } : (5)

E. Equilibrium

In multi-stage models, information in the first stage influences behavior in the subsequent
stages. In this model, the first stage only influences the second stage through ¢**. Therefore, once
we find ¢™*, this model is similar to Coate and Loury (1993) with a simple adaptation of payoffs
for the employer and the worker to account for three job levels instead of two, and the possibility
of endogenous asymmetric cost distributions in the promotion stage.

In any equilibrium, 7 will depend on the employer’s beliefs in each stage j (7rj ) I signify
this by writing p* (7", 77) and pP* (7", 7P), which represent the equilibrium probabilities that
a worker gets hired or promoted when he emits an unclear signal. Let ¢ (,uh, pP) and cP* (pP)
represent the worker’s equilibrium cost cut-off points as a function of the employer he expects to

face and define mappings ®" : [0,1]* = [0,1] and ®” : [0,1]* = [0, 1] such that

O (", 7P) = M (W (a7, P (7", 7))

P (P (x", 7))
el (wh, 7P), b (mh, )"

P (7h, 7P) =

Definition 1 For a given ©"*

7Pt = QP (gl P).

, an equilibrium in the promotion stage is a belief, wP*, satisfying

This definition of equilibrium implies that an employer’s negative (resp. positive) beliefs are
confirmed in equilibrium vis-a-vis a self confirming feedback loop. Suppose that the employer
begins with beliefs 7/* and 7P* (7"* fixed for this thought experiment). These beliefs induce the
employer to promote workers with unclear test results with probability uP (7", 7P). Expecting this,

the worker calculates ¢”* (uP) and invests if and only if his cost are less than the cut-off. To confirm

P (P (v wP))

the employer’s promotion stage beliefs, 7P* = T

. It is straightforward to verify that



the investment cost cut off in the promotion stage (cP*) is no more than the cost cut-off in the

hiring stage (¢"*). In addition, I make the following simplifying assumption.

Assumption 1 I will focus on equilibria in which cP* < .6

For transparency, I have concentrated thus far on a one group (or multiple groups for which the
employer has identical beliefs) model in the discussion of equilibrium. When multiple equilibrium
exists, there can be discriminatory treatment — one group is held to a more exacting hiring standard
because of an employer’s relatively pessimistic beliefs.

I begin the equilibrium characterization with the worker’s equilibrium behavior. The worker
will invest in the promotion stage if and only if the cost of the investment is less than the net
benefit, which is comprised of two quantities: the net return from being promoted (A — 1) and
the increased probability of promotion due to investing. The worker’s expectations over the latter
quantity depends on how he expects to be treated if he emits an unclear signal. Formally, the net
benefit of investment in the promotion stage can be derived by subtracting the first term from the
second term in the max operator found in (4), disregarding c¢. The worker who is just indifferent
between investing and not investing in the promotion stage has a cost cﬁ’; that is equal to the net
benefit, where as a matter of notational convenience, ch; = ¢ (uP).

The employer will promote the worker only if one of the following conditions hold: (1) she
observes a passing score or (2) she observes an unclear score and her prior beliefs are sufficiently
optimistic. The equilibrium determination of beliefs, in the promotion stage, involves a trunca-
tion of the first period distribution function.” For ¢ < ¢, the conditional distribution function

Chh*. Without loss of generality, we can
C

(conditional on having cost less than ¢**) can be written as

restrict our attention to workers that have ¢ < ¢"*.8 Finally, using the definition of equilibrium,

5This is assumption is for analytical convenience, as it allows one to simplify the workers investment criterion in
the hiring stage, by ridding ourselves of the “max” terms in the worker’s promotion stage expected return (Ry»(c)),
and does not alter any results. Further, any generalization of the testing technology that satisfies the no shifting
support property will only yield equilibrium in which Assumption 1 holds. If we were not to concentrate on equilibria
in which ¢?* < ¢"*, there would be two additional cases to check in Proposition 1, which are available from the author

upon request.
"If the noisy test score and costs are both functions of ability, then the distribution function is more complicated.
8 This is made plausible by the assumption that if the worker does not invest in the hiring stage, he cannot invest

in the promotion stage.



we know the employer’s beliefs in the promotion stage are a function of the employment standards

in both stages via the process described here.

Definition 2 An equilibrium of the game is a pair of beliefs (ﬂ'h*, 7rp*) satisfying T = & (xh*, 7P*)

and TP* = QP (g 1P¥).

In any equilibrium of the game, the worker invests in the hiring stage if and only if his cost is

b and ¢ must be such that the worker with this cost is just indifferent between

less than c
investing and not investing in the hiring stage. The worker’s hiring-stage investment criterion can
be interpreted as the net benefit of investing in the hiring stage plus the expected continuation
payoff of being in the promotion stage (R,» (c)). When the employer is liberal (resp. conservative)
in the promotion stage, I write Rj (¢) (resp. Rg(c)). Formally, the investment criterion in the
hiring stage can be derived by subtracting the second term from the first term of the max operator
in (5).

One can think of an employer as having one of four strategies: conservative-conservative
(C-C) [(u", uP) = (0,0)] , conservative-liberal (C-L) [(1", u?) = (0,1)], liberal-conservative (L-C)
[(uh,/ﬁ’) = (1,0)], or liberal-liberal (L-L) [(uh,up) = (1,1)] , depending on p and pP. In what
follows, equilibria are characterized for these four types of employers ((u", u?) € {0, 1}?), indepen-

dently. For the sake of space, I analyze employers who play C-L and L-C strategies in the main

text, since this is central to my contribution.”
3 “Belief-Flipping”

Suppose there exist two workers, one black and one white say, and the employer formulates her
beliefs based solely on the workers’ group identity. One-stage models of statistical discrimination
assume that blacks play the conservative equilibrium and whites the liberal. In a two-stage model,
then, it is feasible that the black worker will play the C-L equilibrium and the white worker the
L-C equilibrium. That is, an employer may believe that a random black worker in the population
is less likely to be qualified, but a black worker who is successful in obtaining a job is actually more

talented.

Derivations of the sufficient conditions for C-C and L-L equilibria to exist are available from the author upon

request.



Consider the following thought experiment: suppose the employer believes that the white worker
is more qualified in the hiring stage than the black worker. Because of these beliefs, the firm
sets a liberal hiring standard for the white worker (,uh = 1) and a conservative standard for the
black worker (p? =0). This implies that the black worker is less probable to make the initial
costly investment (holding the promotion threshold fixed), which will confirm the employer’s initial
hiring-stage beliefs. Conditional upon being hired, however, the black worker is more talented
(lower costs) on average than the white worker. The difference is represented by an upward shift
in the worker’s promotion-stage investment function, which is a result of being held to a more
exacting standard in the initial hiring process. Thus, in the promotion stage, it seems plausible
that the employer should have relatively more optimistic beliefs about the black worker, relative
to the white worker. Unfortunately, however, this is not necessarily correct. If the whites play
the L-L equilibrium and blacks play the C-C equilibrium, beliefs will not flip because there is
continued statistical discrimination in the promotion stage. Understanding when the beliefs will or
will not flip is a subtle issue. There are two competing forces: (1) because of the initial adversity,
blacks are relatively more talented than whites, conditional upon being hired (talent effect); and (2)
blacks may have little incentive to invest in the promotion stage if they believe that employers will
continue to discriminate (since the net investment function is single peaked). The key is under what
conditions will the talent effect be strong enough to overcome any possible negative stereotypes in
the promotion stage.

The next several results develop conditions under which C-L and L-C equilibrium exist and

establish when belief flipping occurs. All technical proofs can be found in the Appendix.

Proposition 1 There exists a set of parameters {a,@cr,\cr}, such that if a € |a,acr] and

A < Acp a C-L equilibrium exists.

Proposition 2 There exists a set of parameters {arc, Arc}, such that if « < arc and A < Apc

an L-C equilibrium exists.

Propositions 1 and 2 provide conditions under which C-L and L-C equilibrium exist; independent
of each other. For a C-L equilibrium to exist, one must have intermediate values of both a and
A. If a is too large, firms receive profit (net of wages) that is high enough for them to incur more

risk in promoting workers who emit unclear signals. There is little incentive for them to remain

10



conservative in the promotion stage. If « is too small, the opposite logic holds. The final condition
involves the worker’s gross wages in the promotion stage, A. If A is too small, few workers will find
it worthwhile to invest in the promotion stage — investing at a rate too low to sustain the employers
optimistic promotion stage beliefs. If A is too large, forward looking workers will invest in both
stages in sufficient numbers to ensure that the employer is best to be liberal in both stages. The
upper bound condition on A is implicit in the conditions on «.

Proposition 2 provides conditions in the same spirit for L-C equilibria. For an L-C equilibrium
to exist, a cannot be too large (provides incentives for employers to be liberal in the promotion
stage) and A cannot be too large (workers would invest in sufficient amounts to sustain liberal
employers).

Belief-flipping occurs when all the conditions above are jointly satisfied. This is the subject of

our main result.

Corollary 1 There exists a set of parameters {a, @cr, @Lc, AoL, ALc } such that if a € [a, min {@cr, @rc}]

and X\ < min{Acr, Ao}, then a C-L and an L-C' equilibrium coeist.

The key parameters to understand belief flipping are A and «; the gross return to workers of
being promoted and the profit margin on offered wages. If the profit margin is too small (a ~ A),
employers gain little from promoting its workers. As such, they are less likely to take risks, causing
them to be conservative in the promotion stage. Conversely, if the profit margin is too large, the
opposite is true — promoting qualified workers yields a substantial return and employers prefer to
be liberal in the promotion stage. Intermediate values of « allow the possibility that an employer
may be conservative or liberal in the promotion stage.

An identical argument establishes that A must also take on intermediate values. If X is too
small, workers will not invest in the promotion stage in sufficient amounts to sustain an employers
optimistic beliefs. If A is too big, workers will have too much incentive to invest and the employer’s
best response will be to set liberal standards. Intermediate values on o and A leave open the

possibility that both C-L and L-C equilibrium can coexist.

A. An Ezample
In this section, we solve a simple example of an equilibrium with belief-flipping. For the purposes

of this example, let p, = .8, p, = .4, A =3, a = 3.25.

11



The timing of events is as follows. First, nature distributes the cost of investment to each
worker. Observing their cost, the worker makes their investment decision. Given the parameters

above, the expected payoff to the worker in the promotion stage is:

Ry (c) = max{.8[3,up +(1=pP)]+.6—c.43uP+(1—pP)+ .6} .

invest do not invest

Thus, R (¢) and Ry (¢) can be written as:

Ry (c):max{?)c; 1.8 }

invest do not invest

Ro(@)=max {14 0

invest do not invest

And, " =1.2 > ¢ = .4. Similarly, the hiring stage expected payoff is:

max {.S,uh(l +Ruw(c)+2(0+Ruw(c) —c;  4u" } ;

invest do not invest
08:’1 = .56 and c?:’b =1.6.

Therefore, the fraction of workers that choose to invest in both stages is:
7 =1 and 7P = 4 in the L-C equilibrium, and
7" = .56 and 7P = 1 in the C-L equilibrium.
To check that these constitute an equilibrium, we must ensure that if an employer is liberal
(resp. conservative) in stage j, they want (resp. do not want) to hire a worker who emits an unclear
signal.

Recall V(7P) denotes the employer’s expected value of participation in the promotion stage,

where

V(rP) =P (1= p,) (= A) + P [pn? (= A) — p, (1 —7P) A . (6)

An employer is liberal in the hiring stage only if
Y <7Th, unclear) V(nP) — [1 -v <7Th, unclearﬂ > 0. (7)
Inputting the parameters from the candidate L-C equilibrium, it is easy to verify that inequality

(7) holds if & > A, which is true by definition.

12



Similarly, an employer is conservative in the hiring stage only if
v (ﬁh, unclear) V(nP) — [1 -v (ﬁh, unclearﬂ <0. (8)

Note that in the candidate C-L equilibrium,

Thp, 56(.8)
U (7" unel = g = - = .7179.
(” une e‘”) Tpg+ (L —7") py  56(8) + 44(4)
Thus inequality (8) holds if:
2820
V™) = 7

which can be shown by plugging the equilibrium parameters into equation 6.
Finally, we must ensure that employers in a C-L (resp. L-C) equilibrium promote (resp. do not
promote) workers with unclear promotion stage signals.

An employer’s expected payoff for promoting a worker with an unclear signal is
U (7P unclear) (a — A) — [1 — W (7P, unclear)] A.

An employer will be liberal only if

U (7P unclear) (« — A) — [1 — U (7P, unclear)] A > 0.

Plugging in the parameters of our example (i.e. 7P = 1), the above inequality holds if & > A, which
is true by definition.

An employer will be conservative in the promotion stage only if

U (7P, unclear) (o — ) — [1 — ¥ (7P, unclear)| A <0,
= 57 (a— ) —.43X =.1425 - 1.29 < 0.
Thus, our candidate equilibrium is verified and belief-flipping occurs.
B. Some Suggestive Evidence on Belief-Flipping

There have been no direct empirical studies or simulations of multiple-stage statistical discrim-

ination models'”, although there is empirical evidence to support such models.

0There is recent work on empirical estimation of one-stage statistical discrimination models. See for example

Moro (2003) and Altonji and Pierret (2001).

13



Booth et al. (1998), using the British Household Panel Survey (BHPS), concluded that women
in Britain are less likely than men to be hired, but are promoted at a higher rate. The BHPS is
a nationally representative random sample of households in Britain.!! The data consists of the
first five waves of the BHPS, 1991-95. Over the data period, full-time male workers had only a 9.2
percent chance of receiving a promotion each year, whereas, there was an 11.6 percent chance for
full-time females. They used a simple ordered Probit model to predict the probability of promotion,
based on gender. Similar to this, Groot and Maansen van den Brink (1996), using the first two
waves of the BHPS, distinguish between jobs that have promotion possibilities and “dead-end jobs.”
They show that women are less likely to be in jobs that allow promotion, but once in a job with
promotion potential, are just as likely as men to be promoted. The main difference between Groot
et. al. (1996) and Booth et. al. (1998) is that the latter deletes part-time workers and includes
workers who receive promotions in outside firms, to account for the probability of selection bias.'?

This empirical evidence provides a brief line of argument in support of the empirical content of
belief-flipping,'? but by no means is meant to be proof that the model is correct. Further empirical

estimation of the model and the prevalence of belief-flipping is left for future work.
4 ‘Welfare Implications

The standard interpretation of one-stage models of statistical discrimination is that multiple equi-
libria exist, and blacks play the bad (negative beliefs-high employment threshold) equilibrium and
whites the good. In this setup, blacks receive lower expected payoffs because of the discrimina-
tory nature of equilibria. This, however, masks the interesting welfare implications that arise in
multiple stage models. Assume Proposition 1 holds, and assume blacks play the C-L equilibrium,
and whites the L-C equilibrium. In this case, blacks are discriminated against relative to whites
in the hiring stage, and whites are discriminated against relative to blacks in the promotion stage.
Thus, contrary to the standard interpretation of one-stage models, who suffers more from the em-

ployer’s discriminatory hiring practices is unclear.'* Consider six types of workers: black II (invest

UFor a complete description of the data, see Taylor (1996).
2 These studies and their use of the BHPS are more applicable (for testing Proposition 1) than US data because

firms in Britain are not subjected to affirmative action constraints which could substantially alter equilbria.
13GQee also Hersch and Viscusi, 1996.
"Of course, the welfare analysis here is subject to the critique that wages are exogenous. Endogenizing wages,

however, will not likely add much to the main point.
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in both stages), white II, black IN (invest in the hiring stage but not in the promotion stage), white
IN, black N (non-investors in the hiring stage), and white N. For a given worker, his “type” will
depend on the equilibrium played. It is straightforward to verify that both white and black Ns
(non-investors in the hiring stage) prefer a liberal hiring standard, given their payoff is p,, > 0 if
they face a liberal hiring standard and zero if not, irrespective of the promotion stage assignment
standard. If whites face an L-C employer and blacks a C-L employer, it is plausible that the black
Ns will be upset, and fight for anti-discrimination policies that will enable them to have a liberal
hiring standard like whites, while the white Ns are happy to play the L-C equilibrium. Interestingly,
all blacks should prefer this change.

Proposition 3 The ex-ante expected payoff of any worker is higher in a C-L equilibrium than an

L-C equilibrium, whenever they exist.

This result shows that, before the hiring process begins, blacks prefer to play the white equi-
librium. The intuition is transparent. For blacks to prefer the white equilibrium, the following
inequality must hold:

(1=pg) [L+ Ri(c)] > 1+ Ro(c),

the left hand side of which is decreasing in p,. The conditions of our main proposition, however,
require that p, be sufficiently large. Proposition 3 demonstrates that the two conditions cannot

both be satisfied.

Ex-post, however, things are quite different.

Proposition 4 The ex-post expected payoff of a worker who invests in both stages and emits a
clear signal in the hiring stage is higher in a C-L equilibrium than an L-C equilibrium, whenever

they exist.

Proposition 4 shows that, while blacks initially prefer to play the white equilibrium, some are
better off having endured the adversity. The fraction of workers who benefit from discrimination

can be written as
h
ol (1= pq) -
The fraction that continue to prefer the white equilibrium is:
(1= (1= pg)) + pycts-
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From these conditions, one can intuit that blacks are more likely to benefit from adversity when
the noise associated with the initial stage test score is relatively precise. Otherwise, they are never
hired in a C-L equilibrium and the employer does not have the opportunity to update his beliefs.
To get an idea of the magnitudes involved, using the parameters in the example above, roughly

11% of the blacks playing the C-L equilibrium benefit from discrimination.
5 Concluding Remarks

The qualitative properties of one-stage statistical discrimination models can be misleading, as they
mask the rich predictions obtained in dynamic models. In particular, I have shown that in a
dynamic model of statistical discrimination beliefs can flip in equilibrium (Proposition 1). In light
of this, welfare implications are unclear. The ex-ante payoff of a worker is unambiguously larger
under an L-C equilibrium relative to a C-L equilibrium. Ex-post, however, a non-trivial fraction of
the group who was discriminated against initially benefits from the initial discrimination.

These findings are significant for several reasons. First, they are unique to dynamic environ-
ments. Second, they show that if the difference in the employer’s beliefs and hiring practices are
purely a result of statistical discrimination, then some agents who have been discriminated against
may benefit in later stages. Specifically, for some it may be tough to get hired, but once hired, it is
easy to get promoted. This suggests some strife among agents within the same group in this model,
and provides a way of distinguishing statistical discrimination from other forms of discrimination.

Future work can be pursued along several dimensions. The most straightforward, perhaps, being
the analysis of labor market policies such as affirmative action in a dynamic model. Multi-staged
models allow one to investigate questions involving the optimal timing of affirmative action over
the life-cycle. Finally, a thorough empirical understanding of the implications of belief-flipping is of
particular interest. This will require detailed firm-level data on applicant pools, individuals hired,

and promotions within the firm.
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6 Appendix: Proofs

Before proving our main results, we establish two Lemmas which greatly simplify the characteriza-
tion of equilibrium.

Let Wi hop denote the employer’s equilibrium beliefs as a function of u”, P, where, for example,
7%70 denotes an employer’s equilibrium beliefs about workers in stage j, when he is conservative in
both stages. Similar to the promotion stage, a worker with an unclear test result in the hiring stage
also gets the benefit of the doubt if the employer is sufficiently optimistic about his group. And,
let 77/ denote the equilibrium belief that makes an employer indifferent between hiring/promoting

and not in stage j, when she observes an unclear signal.

Lemma 2 In any equilibrium the following inequalities must hold for all (,uh,,up) e {0,1}*: (1)
p*

CSLP < %\gwp, if the employer is conservative in the hiring stage, (2) % < 7P if the employer is
n',0

conservative in the promotion stage, (3) c’f:Lp > %’f e U the employer is liberal in the hiring stage,

and (4) c—ilé— > 7P, if the employer is liberal in the promotion stage.
phi1

Proof. Consider (1). Suppose by way of contradiction that there exists an equilibrium in which
Cfﬂp > %’5, v+ By definition of %’5, urs if c’(}jﬂ) > %3, ur»> then workers are investing in sufficient amounts
to make it optimal for the employer to set a liberal hiring standard, which is a contradiction.
Inequality (2) through inequality (4), in the lemma, are derived analogously. m

This leads to the following result.

Lemma 3 In any equilibrium, one of the following inequalities must hold:

ey -
a< |2 A2 1] +1
Pq \ % ]

if the employer is conservative in the promotion stage, or

e ]
a>M |2 LE—1)+1
Pq \ A ]

if the employer is liberal in the promotion stage, and one of the following inequalities must hold:

Pu | 1
V(ﬂ-g,up) S p_q [ Tk - 1]
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if the employer is conservative in the hiring stage, or

Pu | 1
V(ﬂjillp) Z p_q [ e 1]

if the employer is liberal in the hiring stage.

Proof. From Lemma 2 we know that in the promotion stage, one of the following must be true in

Dk cp*
o1 . C, A A . . . A . 1 . o, .
equilibrium, fh)— < 7P or c—hl— > 7P, Substituting in for 7° and using the equilibrium condition
h h
wn'v,0 p,1
D* . oy .
ih* = 7wP*, these inequalities can be rewritten as

Ap
p* U
T <
W0 = Npy + py (@ = N)

and
Ap.
ﬂ.p* > u
WAL= Apy + pg (a0 = X)

respectively. Using some algebraic manipulation, one can rewrite these inequalities, respectively, as

_ , -
a< A <&) e — 1] +1
Pq Tur 0 i

_ X ;
a> A <p—“) — —1]+1
Pq Tur 1 i

and

Further, we know that in the hiring stage, one of the following must hold: c’f:Lp > %]f,#p or CSLP <
h

%87 up- Substituting in for %u}% o vields
p
C}ll::w > “ »
Pyt PV (Wl’up>
and
CSLP S O,

Py + PV (Wg’up>
Finally, solving out for V'(-) produces the desired result. m

Proof of Proposition 1.

Suppose that the employer is a C-L employer, and sets u" = 0 and p? = 1. Expecting this,
cgj"l =[1—p, 2+ p,(A—1)] and ¢ = [1 — p,] (A — 1) respectively. By definition, an equilibrium
exists only if

" (7 77) = chy = [1= p,] 2+ pu (A= 1)] = 73
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and

& L—pJOA-1)
q)p(w Wp) iy [L—p] R+p,(A—1)] = o

By Lemma 2, 7% <7, and 7} > 7", which is the desired result.

Recall, the necessary and sufficient conditions for a C-L equilibrium are

wP* [17pu] (Ai 1) > 7P
o= [1_pq][2+pu()‘_1>]_

778*1 = [1 - pq] [2 + Pu ()‘ - 1)] S %8,1

Using Lemma 2 and inequality 9, we know

Pu [1_pq][2+pu()‘_1)]_
O‘ZA[(%) ( T-pJ( 1) 1)“

Using inequality 10 and substituting in for %&1, and V (), yields

(a2 = pu (1= ) A< <p )

1
[1*pq] [2+pu(>‘71)] _1]

casar (8) 1 Ty, o)
a >~ - - * * =QcrL
pq [1 - pq] [2 + Pu ()‘ - 1)] 81 Trg,l

1 —1>
We must ensure that (o ]2 tpu T 1>0=

Q.E.D.

Proof of Proposition 2:

(**)

(***)

Suppose that the employer is an L-C employer, and sets u" = 1 and p? = 0. Expecting this,

the worker calculates ¢y = 2 — p, and ¢f* = [1— p,] (A —1). By definition, an equilibrium exists

only if
" (Whﬂfp) =dh=2-p, =7

and

_ Cp* [17pu]()‘71) ___px
() = e S T TR T

By Lemma 2, nf > 7??70 and 77, < 7P, which is the desired result.
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The necessary and sufficient conditions of an L-C equilibrium are:

o= 2 <7

and

hx ~h
T0 = 2= Pu=T1p

Using Lemma 3, we know

Pu 2= Pu
O‘“[pq([l—pqm-n 1)“

=anc
However, we must ensure that 2y >0=
[lqu]()‘fl)
9 _
A< T Pu gy = ALc
[1 - pq]
Q.E.D.

Proof of Corollary 1

(****)

(FHEK)

Using the definitions of a,@cr, @rc, Acr, and Apc defined in Propositions 1 and 2 establishes

the result. Q.E.D.
Proof of Proposition 3

Consider three types of workers: Ns (those who do not invest in the hiring stage), INs (those

who invest in the hiring stage and not the promotion stage), and IIs (those who invest in both

stages).

The payoff to an N worker under a C-L equilibrium is 0. Under an L-C equilibrium, his payoff

is p, > 0, thus he prefers an L-C equilibrium.

The payoff to an IT worker under a C-L equilibrium is:
(I—p)A+Ri(c)]=(1—p,) [1+A1—(]
The payoff to an II worker under an L-C equilibrium is:
[1+ Ro(0)] = [1+py+ (1= py) A =]

This boils down to:

(1—p,) Q=c)<1—c+p,
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Finally, we must show that INs prefer an L-C equilibrium to a C-L equilibrium whenever they
both exist. Suppose, by way of contradiction, that INs preferred C-L equilibrium to L-C equilibrium.
Then, the following inequality must hold:

(L1=py) [1+Ri(c)] =1+ Ry (c) (11)
= (1—p,) [1+pA+1—p,]>2 (12)
Rearranging terms produces:
W

which contradicts the conditions of proposition 1. Q.E.D.

Proof of Proposition 4

The expected payoff of an II worker who emits passing signals in both stages is
1+A—2c

under a C-L or L-C equilibrium. Thus, they are indifferent. If they receive a passing signal in the

hiring stage and an unclear in the promotion stage, their payoff is
1+A—c¢

under a C-L equilibrium and

2—c¢

under an L-C equilibrium. Thus, they strictly prefer the former.
A similar calculation will confirm that IN workers who receive a passing signal in the hiring
stage and an unclear signal in the promotion stage strictly prefer a C-L equilibrium over an L-C

equilibrium. And, those who receive a pass, fail are indifferent. Q).F.D.
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