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Introduction 

Testing the efficiency of a given portfolio has long been an important topic in empirical 

asset pricing. The Capital Asset Pricing Model (CAPM, Sharpe, 1964) implies that a market 

portfolio should be mean variance efficient. Multiple-beta asset pricing models such as Merton 

(1973) imply that a combination of the factor portfolios is minimum variance efficient (e.g., 

Chamberlain, 1983; Grinblatt and Titman, 1987). The consumption CAPM implies that a 

maximum correlation portfolio for consumption is efficient (Breeden, 1979). More generally, 

stochastic discount factor models imply that a maximum correlation portfolio for the stochastic 

discount factor is minimum variance efficient (e.g., Hansen and Richard, 1987).  

Classical efficiency tests, as studied by Gibbons (1982), Jobson and Korkie (1982), 

Stambaugh (1982), MacKinlay (1987), Gibbons, Ross and Shanken (1989) and others, ask if a 

tested portfolio lies “significantly” inside a sample mean variance boundary.  These studies form 

the boundary from fixed-weight combinations of the tested asset returns. However, many studies 

in asset pricing now condition on predetermined variables to model conditional expected returns, 

correlations and volatility, and portfolio weights may be functions of the predetermined 

variables. This paper considers tests of portfolio efficiency in the presence of such conditioning 

information.  

Recent studies using conditioning information expand the set of returns by including a 

specific collection of ad-hoc “dynamic strategies” based on the information. For example, the 

“factors” or assets’ returns may be multiplied by lagged instruments, as in Shanken (1990), 

Hansen and Jagannathan (1991), Cochrane (1996), Jagannathan and Wang (1996) or Ferson and 

Schadt (1996). This “multiplicative” approach corresponds to dynamic strategies whose portfolio 

weights are linear functions of the lagged instruments. In this paper we develop tests of 

efficiency where the dynamic strategies include all possible portfolios formed from a given set 
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of returns, with weights that may be any well-behaved function of the given conditioning 

information. This expands the set of portfolio returns to the maximum possible extent, thereby 

using the conditioning information efficiently. 

Our paper contributes more to the literature than the specific efficiency tests.  We develop a 

new framework for testing asset pricing theories in the presence of conditioning information.  

Our framework uses the concept of “unconditional” efficiency as defined by Hansen and Richard 

(1987).  We refer to this concept, using more descriptive language, as efficiency with respect to 

the information, Z.  We develop the framework by analogy to well-known results for testing 

portfolio efficiency when conditioning information is ignored.  Along the way, we present 

generalizations for a number of classical results. 

The primary empirical motivation for our refinement of the way conditioning variables are 

employed is to use the information efficiently.  This is important in view of recent evidence 

calling into question the usefulness of standard lagged instruments, once bias and sampling 

errors are accounted for (e.g. Ghysels (1997), Carlson and Chapman (2000), Goyal and Welch 

(2003, 2004), Simin (2003), Ferson, Sarkissian and Simin, 2003).  Another motivation is 

tractability.  In a multiplicative approach, with N asset returns and L lagged instruments, a NL x 

NL covariance matrix must be inverted.  In our approach the matrices are N x N.  The third 

motivation is robustness.  As discussed below, our approach should be robust to certain 

misspecifications.  We find that the multiplicative approach, using standard instruments and 

adjusting for sampling errors, typically has no more ability to reject models than tests that ignore 

the conditioning information altogether.  Our tests that use the same information efficiently 

perform better.  We find that the new tests can reject efficiency in settings where traditional tests 

do not. 
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The rest of the paper is organized as follows. Section 1 further motivates tests of minimum 

variance efficiency with respect to conditioning information and presents the main ideas. Section 

2 develops the tests.  The data are described in Section 3 and section 4 presents the empirical 

results. The robustness of the results is addressed in Section 5. Section 6 concludes the paper.  

 

1. Asset Pricing, Portfolio Efficiency and Conditioning Information 

Empirical work in asset pricing is often motivated by the fundamental valuation equation: 

 

 { } 111 =++ ttt ZRmE , (1) 

where Rt+1 is an N-vector of test asset gross returns, Zt is the conditioning information, a vector 

of observable instrumental variables in the public information set at time t, mt+1 is a stochastic 

discount factor, and 1 is an N-vector of ones. Most asset pricing models imply a specification for 

the stochastic discount factor.  

A common approach to testing an asset pricing model is to examine necessary conditions of 

(1) using a method like the Generalized Method of Moments (GMM, see Hansen, 1982). For 

example, multiplying both sides of (1) by the elements of Zt and then taking the unconditional 

expectations leads to a multiplicative approach: 

 ( ){ } { }tttt ZEZRmE ⊗=⊗++ 111 . (2) 

Equation (2) asks the stochastic discount factor to “price” the dynamic strategy payoffs, 

1t tR Z+ ⊗ , on average, where { }tZE ⊗1  are the average prices. However, the multiplicative 

approach in Equation (2) captures only a portion of the information in Equation (1).  

Equation (1) is equivalent to the following holding for all bounded integrable functions f(.): 

 ( )[ ]{ } { })(111 tttt ZfEZfRmE =++ . (3) 



4 

Clearly, Equation (2) is a special case of (3), which may be seen by stacking (3) while taking 

( )tf Z  to be each of the instruments in turn. Thus, Equation (2) asks the stochastic discount 

factor to price only a subset of the strategies allowed by Equation (3). 

In this paper we develop tests of asset pricing models based on the following version of 

Equation (3): 

 { } 11)(':)(1)(' 11 =∀=++ ttttt ZxZxRZxmE . (4) 

Equation (4) uses all portfolio weight functions x(Z) in place of the general functions in Equation 

(3), subject only to the restrictions that the weights are bounded integral functions that sum to 

1.0.   Equation (4) follows by multiplying (1) by the elements of the portfolio weight vector 

( )x Z  and summing, using the fact that the weights sum to 1.0, then taking the unconditional 

expectation.1 

While studies of conditional asset pricing typically use Equation (2), our objective is to 

move to Equation (4). There are several strong motivations. The first is to use the information in 

tZ  efficiently. The intuition is that if we ask the model to price a larger set of dynamic strategies, 

a smaller set of 1tm + ’s can do the job, so the tests will be able to reject more models.  Equation 

(4) requires the asset pricing expression to hold for all portfolio strategies using tZ , whereas 

Equation (2) is restricted to the particular ad hoc strategy in which tZ  is used multiplicatively. 

                                                 

1 Because of the portfolio weight restriction, Equation (4) is an implication of, not equivalent to (3). However, 
in practice (4) is unlikely to leave out much, compared with (3). In Equation (4), the portfolio weights almost 
always to sum to 1.0 at each realization of Z. In equation (3), since both sides of the equation may be arbitrarily 
scaled by a constant, the unconditional expectation of the portfolio weights sums to 1.0 without loss of generality 
(see Abhyankar, Basu and Stremme, 2002). Restricting to weights that almost always sum to 1.0 in Equation (4) 
allows us to work with portfolio returns and portfolio efficiency concepts, as opposed to asset prices and payoffs. 
Working with prices and payoffs, it would be necessary in any event, to normalize the prices to achieve stationarity 
for empirical work.  
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The second motivation for using Equation (4) is tractability. While it may seem difficult to 

work in the infinite-dimensional space of all possible x(Z), closed-form solutions in Ferson and 

Siegel (2001) provide tractable expressions from which we construct the tests. Implementing the 

solutions with N test assets requires NxN covariance matrices, whereas the multiplicative 

approach requires us to invert matrices with the dimension of (R⊗ Z). 

The third motivation for our approach is potential robustness. Ferson and Siegel (2001) 

show that the expressions we use in our tests are likely to be robust to extreme observations. 

Ferson and Siegel (2003) apply these expressions to the Hansen-Jagannathan (1991) bounds and 

find evidence of robustness in that setting.  Bekaert and Liu (2004) argue that equation (4) is 

inherently robust to misspecifying the conditional moments of returns. The intuition is that with 

misspecified moments, the “optimal” x(Z) derived by Ferson and Siegel (2001) and used in our 

tests, is suboptimal.  However, it remains a valid, if now ad-hoc, dynamic strategy. Thus the tests 

may sacrifice power, but remain valid.  The key to obtaining these advantages is the relation of 

Equation (4) to the concept of minimum variance efficient portfolios.  

 

A. Stochastic Discount Factors and Portfolio Efficiency 

Minimum variance efficient portfolios are those which have minimum variance among 

portfolios with the same mean return.  Stochastic discount factor models are related to portfolio 

efficiency because a specification for the stochastic discount factor indicates a portfolio that 

should be minimum-variance efficient. Consider first the special case where there is no 

conditioning information, and the asset pricing equation is 1)( =mRE . The following results are 

well known. Given portfolio return Rm, there exists a stochastic discount factor of the form 

mbRam += , if and only if Rm is minimum variance efficient. An example is the classical CAPM 

of Sharpe (1964), as discussed by Dybvig and Ingersoll (1982).  There exists a stochastic 
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discount factor that is linear in a k-vector of benchmark returns or “factors,” BB RBAm:R ′+= , 

if and only if some combination of the factor returns is minimum variance efficient. This is the 

case of an exact k-factor beta pricing model, as discussed by Grinblatt and Titman (1987), 

Shanken (1987), and Ferson and Jagannathan (1996). Finally, if the stochastic discount factor is 

a fixed function of observable data and parameters: ( , )m m X= θ , a portfolio that maximizes the 

squared correlation with ( , )m X θ  must be minimum variance efficient. Examples include the 

consumption-based model of Lucas (1978) and Breeden (1979), and its more recent 

generalizations. See Ferson (1995) for a review of these results.  

We extend these examples to the context of Equation (4). We show that a specification of 

the stochastic discount factor implies that particular portfolios are minimum variance efficient 

with respect to the information Z, as defined below. Using Equation (4), we then develop tests of 

the hypothesis that a portfolio is efficient in this sense.  

 

B. Portfolio Efficiency with Respect to Conditioning Information 

We first define efficiency with respect to the information, Zt. Consider a portfolio of the N 

test assets in 1tR + , where the weights that determine the portfolio at time t are functions of the 

information, tZ . The gross return on such a portfolio with weight ( )tx Z , is ( ) 1t tx Z R +′ . The 

restrictions on the portfolio weight function are that the weights must sum to 1.0 (almost surely 

in Zt), and that the expected value and second moments of the portfolio return are well defined. 

Consider now all possible portfolio returns that may be formed, for a given set of test asset 

returns Rt+1 and given conditioning information, Zt. This set determines a mean-standard 

deviation frontier, as shown by Hansen and Richard (1987). This frontier depicts the 

unconditional means versus the unconditional standard deviations of the portfolio returns. A 
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portfolio is defined to be efficient with respect to the information Zt, if and only if it is on this 

mean standard deviation frontier. 

Proposition 1:  Given N test asset gross returns, Rt+1, a given portfolio with gross return , 1p tR +  

is minimum-variance efficient with respect to the information Zt if and only 

if Equation (5) is satisfied (equivalently, Equation (6) is satisfied) for all 

11)Z('x:)Z(x tt =  almost surely, where the relevant unconditional 

expectations exist and are finite: 

 ( ) ( ), 1 1p t t tVar R Var x Z R+ +′ ≤      if   ( ) ( ), 1 1p t t tE R E x Z R+ +′ =        (5) 

 ( ) ( )1 0 1 1 , 1;t t t t p tE x Z R Cov x Z R R+ + +′ ′   = γ + γ    . (6) 

Equation (5) states that , 1p tR +  is on the minimum variance boundary formed by all possible 

portfolios that use the test assets and the conditioning information. Equation (6) states that the 

familiar expected return - covariance relation from Fama (1973) and Roll (1977) must hold with 

respect to the efficient portfolio. In Equation (6), the coefficients 0γ  and 1γ  are fixed scalars that 

do not depend on the functions x(.) or the realizations of tZ .  

 

C. Efficiency with Respect to Information and Stochastic Discount Factors 

Most asset pricing models specify some function for the stochastic discount factor. As a 

special case, linear factor models say that m is linear in one or more factors. Proposition 2 shows 

that when there is conditioning information, Z, testing linear stochastic discount factor models in 

Equation (4) amounts to testing for the efficiency of a portfolio of the factors with respect to Z.  

Proposition 2:  Given {Rt+1, Zt} and a stochastic discount factor mt+1 such that Equation (4) 

holds, then if 1t,B1t R'BAm ++ += , where , 1B tR +  is a k-vector of benchmark 

factor returns, and A and B are a constant and a fixed k-vector, there exists a 
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portfolio, , 1 , 1p t B tR w R+ +′= , 11' =w , where w is a constant N-vector, and , 1p tR +  is 

efficient with respect to the information Zt.  

Proof:  See the Appendix for all proofs. 

We now consider the case of a general ( , )m m X= θ , and allow for time-varying weights in 

the efficient portfolio of factors. This requires the definition of portfolios that are maximum 

correlation with respect to Z. 

Definition: A portfolio RP is maximum correlation for a random variable, m, with 

respect to conditioning information Z, if: 

 ( ) [ ] 11)(':)(,)(', 22 =∀≥ ZxZxmRZxmRp ρρ , (7) 

 where ρ2(.,.) is the squared unconditional correlation coefficient. 

Proposition 3 If a given m satisfies Equation (4), then a portfolio RP that is maximum 

correlation for m with respect to Z must be minimum variance efficient with 

respect to Z.  

Proposition 2 is clearly a special case of Proposition 3, because if mt+1 is linear in RB,t+1, a 

linear regression maximizes the squared correlation.  More generally, given a stochastic discount 

factor, m, we can test the model by constructing a portfolio that is maximum correlation for m 

with respect to Z, and testing the hypothesis that the portfolio is efficient with respect to Z. 

Methods for constructing a maximum correlation portfolio with respect to Z are described below.  

 With the preceding results we can consider a case where the stochastic discount factor is 

linear in k factor-portfolios, allowing for time-varying weights. 

Corrollary Given { }1,t tR Z+  and a stochastic discount factor mt+1 such that Equation (4) 

holds, then if a maximum correlation portfolio for 1tm +  with respect to Zt has 

nonzero weights only on the k-vector of benchmark factor returns , 1B tR + , an 
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efficient-with-respect-to-Z portfolio of the factor returns , 1B tR +  is efficient with 

respect to Z in the full set of test asset returns. 

With conditioning information, efficient portfolios generally have time-varying weights.  

The situation described in the Corrollary is a “dynamic” version of mean variance intersection, 

as developed by Huberman, Kandel and Stambaugh (1987).  For example, one hypothesis that 

we consider below is that some combination (that depends on Z) of the three Fama and French 

(1996) factors is a mimicking portfolio for a stochastic discount factor. The test is to find the 

efficient, time-varying combination of the Fama-French factors and see if it is efficient with 

respect to Z in the sample of test assets. 

 

D. Discussion 

 The presence of conditioning information impacts asset pricing models based on stochastic 

discount factors in three general ways. First, conditioning information relates to the set of 

payoffs we ask the model to price.  Second, conditioning information relates to the specification 

of the functional form of the SDF.  Third, the asset pricing statement, Equation (1), would 

ideally apply to conditional moments given a public information set Ω, but an empiricist can 

only measure Z, a proper subset  of Ω. 

The first issue with respect to conditioning information is the set of payoffs that we ask the 

model to price. By using the given conditioning information Z in different ways we generate 

different payoffs from the test assets, R. As explained above, our approach asks the model to 

price all portfolios x(Z)’R, where x(Z)’1 = 1.  We thereby expand the set of payoffs, relative to 

approaches that ignore Z or use portfolio functions that are linear in Z or ad-hoc functions of Z.  

Expanding the set of payoffs, we restrict the set of m’s that can price those payoffs.  Our tests 

should therefore reject models that previous approaches would not reject. 
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The second related issue is the functional form of the SDF.  Different asset pricing models 

imply different functional forms. Our maximum correlation approach can handle general 

functions of measurable data, ),X(m θ .  If we reject the efficiency with respect to Z, of a 

portfolio that has maximum correlation with ),X(m θ  with respect to Z, we reject the hypothesis 

that E(m(X,θ )R│Z) = 1 .  By iterated expectations, we therefore reject the model that says 

.1)R),X(m(E =Ωθ  

 The third issue arises because the asset pricing theory says E(mR|Ω)=1, but the full 

information set Ω cannot be measured. There are two cases.  In the first case, the SDF is a 

known function of measurable data and parameters and we can test E(mR|Z) = 1, a necessary 

condition which follows from the law of iterated expectations.  The inability to measure all of Ω 

results only in a potential loss of power in this case. 

 A more difficult case arises when the SDF, m(Ω), is a function of unobservable parts of Ω.  

In this case it is not known how to test a model that says E(m(Ω)R|Ω) = 1. While it remains true 

that E(m(Ω)R|Z)=1, that is no help if m(Ω) can not be measured.2  Hansen and Richard (1987) 

describe a version of this problem in terms of portfolio efficiency. Consider a conditional version 

of the CAPM in which m(Ω) = a(Ω) + b(Ω)Rm and the market portfolio Rm is conditionally 

efficient given Ω (meaning minimum conditional variance given Ω subject to the conditional 

mean return given Ω). Hansen and Richard show that the conditional efficiency of Rm given Ω 

does not imply conditional efficiency given Z.  If we can only observe Z we can test the 

efficiency of Rm using Z, but such a test does not allow us to reject the conditional CAPM.  

                                                 

2 Hansen and Jagannathan (1991) develop an SDF given by m* = E(m|R) and they show how to form the 
projection m*. However, m* can not be used to test the original model because it prices the returns by construction. 
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Cochrane (2001) calls this the “Hansen-Richard critique.”  By analogy with the Roll (1977) 

critique that the CAPM can’t be tested because we can’t measure the market portfolio, the 

Hansen-Richard critique implies that the conditional CAPM can’t be tested (even if we could 

measure the market portfolio) because we can’t measure all the information, .Ω   This problem is 

by no means unique to our paper.  In the spirit of virtually all empirical studies, we therefore 

focus on cases where the SDF is assumed to depend on measurable data only. 

 

E. Testing Conditional Efficiency  

Our approach is to test (unconditional) efficiency with respect to Z.  An alternative approach 

is to test the conditional efficiency given Z, of a  portfolio RP.  While such tests do not imply 

inferences about the efficiency given ,Ω  tests of conditional efficiency given observable 

instruments Z have nevertheless been of historical interest in the asset pricing literature.  Hansen 

and Hodrick (1983) and Gibbons and Ferson (1985) test conditional efficiency given Z, 

restricting the functional forms of conditional means and betas.  Campbell (1987) and Harvey 

(1989) restrict the form of a market price of risk.  Shanken (1990) tests conditional efficiency 

restricting the form of the conditional betas.  Tests of conditional efficiency given Z may be 

handled in our framework, as a specification of the functional form for ).,X(m θ  

The conditional efficiency of a portfolio RP given Z is equivalent to the existence of an SDF, 

m=a(Z) + b(Z)RP, where a(Z) and b(Z) are particular functions of the conditional first and 

second moments of RP and a zero-beta portfolio for RP. We can also test for the conditional 

efficiency given Z of a combination of K factor-returns, RB. In this case m = A(Z) + B(Z)’RB, 
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again with particular coefficients.3  With our approach we test conditional efficiency given Z by 

constructing the maximum correlation portfolio to this particular m with respect to Z.  The 

maximum correlation portfolio, call it *
pR , should be efficient with respect to Z.  Note that *

pR  

will be different from RP when the coefficients a(Z) or b(Z) are time varying as functions of Z. 

Rejecting the efficiency of *
PR  with respect to Z rejects the conditional efficiency of RP given Z.  

This is an example of how conditional efficiency (given Z) does not imply unconditional 

efficiency (with respect to Z) of the same portfolio.  However, conditional efficiency does 

identify a portfolio that should be efficient with respect to Z, and this implication can be tested. 

 

2. Testing Efficiency 
 
 
A. When There is no Conditioning Information 

Classical tests for the efficiency of a given portfolio involve restrictions on the intercepts of 

a system of time-series regressions. If tr  is the vector of N excess returns at time t, measured in 

excess of a risk-free or zero-beta return, and ,p tr  is the excess return on the tested portfolio, the 

regression system is  

 , ;    1, , ;t p t tr r u t T= α +β + = L  (8) 

where T is the number of time-series observations, β is the N-vector of betas and α is the N-

vector of alphas. The portfolio pr  is minimum-variance efficient only if α=0.  

                                                 

3 The coefficients are: A(Z) = [1 + Σj λj E(RBj│Z)/var(RBj│Z)]/E(Ro│Z)  and  Bj(Z) = -λj /[E(Ro│Z)var(RBj│Z)], 
where λj = E(RBj – R0│Z) and R0 is the conditional zero-beta return for RB (that is, Cov (RoRp│Z) = 0).  When RBj = 
Rp we have the single-factor coefficients.  (See Ferson and Jagannathan, 1996).  
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It is well known that the classical test statistics for the hypothesis that α=0 in Equation (8) 

can be written in terms of the squared Sharpe ratios of portfolios (e.g., Jobson and Korkie, 1982).  

Consider the Wald Statistic: 

 ( ) ( )
( )

2 2
1 2

2

ˆ ˆ( )
ˆ ˆ ˆ ~  ( )ˆ1

p

p

S R S R
W T Cov T N

S R
−  −

  = α α α = χ   + 
&  (9) 

where $α  is the OLS or ML estimator of α and Cov( $ )α  is its asymptotic covariance matrix.  The 

term ( )2ˆ
pS R  is the sample value of the squared Sharpe ratio of pR : ( ) ( ) ( ) 22 /p p pS R E r r = σ  . 

The term ( )2Ŝ R  is the sample value of the maximum squared Sharpe ratio that can be obtained 

by portfolios of the assets in R (including RP): 

 








′
′

=
)rx(Var

)]rx(E[max)R(S
2

x

2 . (10) 

The Wald statistic has an asymptotic chi-squared distribution with N degrees of freedom. 

Since the Sharpe ratio is the slope of a line in the mean-standard deviation space, Equation 

(12) suggests a graphical representation for the Wald statistic in the sample mean standard 

deviation space.  It measures the distance between the sample frontier and the location of the 

tested portfolio, inside the frontier.  Kandel (1984), Roll (1985), Gibbons, Ross and Shanken 

(1989) and Kandel and Stambaugh (1987,1989) develop this interpretation. 

 

B. Tests with Conditioning Information 

To illustrate using conditioning information efficiently, we employ statistics similar to the 

classical statistic, as in Equation (9). When conditioning information is used, the asymptotic 

distribution of the statistic in (9) is not known to be chi-squared, and there are many alternative 

statistics that we could use.  Some of these may have better sampling properties.  Thus, by 
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moving to Equation (4) and conditioning information we raise some new statistical questions for 

future research.  Our examples focus on the classical-looking statistic as a natural extension of 

the literature. 

Classical tests that ignore conditioning information restrict the maximization in Equation 

(10) to fixed-weight portfolios, where x is a constant vector.  In contrast, efficient portfolios with 

respect to the information Z maximize the squared Sharpe ratio over all portfolio weight 

functions, ( )x Z .  Maximizing over a larger set of weights we get a larger maximum Sharpe 

ratio.  The Appendix describes the closed-form solutions from Ferson and Siegel (2001), for the 

portfolio weight functions that maximize the squared Sharpe ratio. 

Jobson and Korkie (1982) show that the test statistic in Equation (9) may be interpreted as 

the relative performance of the portfolio of the test assets that is the “most-mispriced” by PR .  

This portfolio is also called the “active” portfolio by Gibbons, Ross and Shanken (1989) and the 

“optimal orthogonal portfolio” by MacKinlay (1995).  We use a version of this portfolio in our 

empirical examples. The portfolio has weights proportional to ( ) 1ˆ ˆCov
−

 α α   in the classical case 

with no conditioning information. With conditioning information the portfolio’s weight function 

is time-varying. We derive the most mispriced portfolio for a general case with an arbitrary fixed 

“zero-beta” rate, γ0. 

 Consider any portfolio formed from the test assets with weights xP as RP,t+1=xP’Rt+1, 

where xP may depend on Zt.  The portfolio has unconditional expected return E(xP’Rt+1)=µP and 

variance Var(xP’Rt+1) = σp
2.  The most mispriced portfolio, RC, with respect to RP maximizes 

2
c

2
c / σα  where 2

cσ  is the variance of RC, )R(E cc =µ  and 

]/)([ 2
pcpopocc σσγµγµα −+−+  is the alpha of RC with respect to RP, where 

)R,R(Cov pccp =σ .  Let RS be the portfolio return that maximizes the squared Sharpe ratio in 
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(10) over all portfolio weight functions x(Z), when the excess returns r ≡ R - 0γ .  The portfolio 

RS has unconditional mean return sµ  and variance, 2
sσ . 

Proposition 4:  The most mispriced portfolio RC with respect to a given portfolio RP, may be 

found as a fixed linear combination of RP and the efficient-with-respect to Z 

portfolio, RS, that maximizes the squared Sharpe ratio for a given zero beta rate, 

0γ , as:  
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or 
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 Proposition 4 extends the concept of the “active” or “optimal orthogonal” portfolio to the 

setting of efficiency with respect to given conditioning information.  The most mispriced 

portfolio RC has weights that depend on Z; these are presented with the proof in the Appendix.  

Note that the portfolio RC is uncorrelated with RP, according to Equation (12).  The most 

mispriced portfolio is the projection of RS, orthogonal to RP, normalized so that the weights sum 

to 1.0.  The portfolio RP may be found by starting with RS and then removing its component that 

is correlated with RP.  A combination of RP and its most-mispriced RC is an efficient portfolio 

with respect to Z. 
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C. Empirical Strategy 

Our empirical examples compare the classical approach using no conditioning information, 

the multiplicative approach to conditioning information, and the efficient use of the conditioning 

information.  The specifics depend on the example. 

When we test the efficiency of a given portfolio, RP, then ( )2ˆ
pS R  is formed using the 

sample mean excess return and sample variance of RP. ( )2Ŝ R  differs according to the way 

conditioning information is used.  When there is no conditioning information we use the fixed-

weight solution to (10).  When the information is used multiplicatively, we define an expanded 

set of returns as 1)(ˆ
−⊗−+= tfttftt ZRRRR , where Rft is the one-month Treasury bill return for 

month t.  We then proceed as in the previous case, using the returns tR̂ in place of Rt. When the 

information is used efficiently, 2ˆ ( )S R  is formed using the sample mean and variance of R)Z(x ′)  

where )Z(x)  is the sample version of the optimal solution from Ferson and Siegel (2001) 

described in the Appendix.  

We evaluate the tests using simulations.  To generate data consistent with the null 

hypothesis that a given portfolio RP is efficient, we replace its return with a portfolio that is 

efficient, based on the specification of the asset-return moments in the simulation. With this 

substitution, we then construct the test statistic using the artificial data in the same way that we 

get the sample value of the statistic in the actual data. The details are discussed in the Appendix. 

 

3. The Data 

 
To model the conditioning information, we use a number of lagged variables that have long 

been prominent in the conditional asset pricing literature.  These include: (1) the lagged value of 
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a one-month Treasury bill yield (see Fama and Schwert (1977), Ferson (1989),  Breen et al. 

(1989) or Shanken, 1990); (2) the dividend yield of the market index (see Fama and French, 

1988); (3) the spread between Moody's Baa and Aaa corporate bond yields (see Keim and 

Stambaugh, (1986) or Fama, 1990); (4) the spread between ten-year and one-year constant 

maturity Treasury bond yields (see Fama and French, 1989) and (5); the difference between the 

one-month lagged returns of a three-month and a one-month Treasury bill (see Campbell, 1987). 

We provide results using two alternative methods of grouping common stocks into 

portfolios. The first sample comprises twenty five industry portfolios (from Harvey and Kirby, 

1996) measured for the period February, 1963 to December, 1994.4 The portfolios are created by 

grouping common stocks according to their SIC codes and forming value-weighted averages 

(based on beginning-of-month values) of the total returns within each group of firms. Table 1 

shows the industry classifications for the 25 portfolios, and summary statistics of the returns.  

The second grouping follows Fama and French (1996). Individual common stocks are 

placed into five groups according to their prior equity market capitalization, and independently 

into five groups on the basis of their ratios of book value to market value of equity per share. 

This 5 by 5 classification scheme results in a sample of 25 portfolio returns. These are the same 

portfolios used by Ferson and Harvey (1999), who provide details and summary statistics.  

This project has matured over a length of time, providing the opportunity to investigate the 

results over a “hold-out” sample.  The hold-out sample period is January, 1995 through 

December, 2002.  We use 25 size x book-to-market and Industry portfolios from Kenneth French 

                                                 

4 We are grateful to Campbell Harvey for providing these data. 
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and update the other series with fresh data.5  The hold-out sample results are interesting in view 

of recent evidence, cited above, that some of the lagged instruments may have lost their 

predictive power for stock returns in recent data.  Table 1 illustrates this, reporting the adjusted 

R-squares from regressing the industry returns on the lagged instruments over the 1963-1994 

period and the 1995-2002 sample.  The R-squares are substantially lower in the more recent 

period. 

 

4. Empirical Results 

 
A. Inefficiency of the SP500 Relative to Industry Portfolios 

Table 2 summarizes results for the 25 industry portfolios for the 1963-94 period, three ten-

year subperiods and the holdout sample, 1995-2002.  The tested portfolio, pR , is the SP500. We 

use the average of the one-month Treasury bill to determine the zero-beta rate.  In Panel A there 

is no conditioning information.  Substituting the sample values of 2ˆ ( )pS R  and 2ˆ ( )S R  into (9) 

gives the sample value of the test statistic. Referring to the asymptotic distribution, which is chi-

squared with 25 degrees of freedom, the right-tail p-value is 0.48 for the full sample and 

0.14 − 0.39 in the subperiods. The test produces little evidence to reject the hypothesis that the 

SP500 is efficient in the industry portfolio returns over 1963-1994.  During the holdout sample 

period the sample Sharpe ratios are substantially higher, and so is the value of the test statistic.  

The asymptotic p-value of the test is 0.001 for this period.  

                                                 

5 We use a subset of the 48 value-weighted industry portfolios provided by French to match the definitions in 
Table 1.  We confirm that the matched industry returns produce similar summary statistics and regression R-
sequences on the lagged instruments as our original data, over the 1963-1994 period. 
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Panel A of Table 2 also reports 5% critical values and empirical p-values for the tests based 

on Monte Carlo simulation assuming normality, and based on a resampling approach that does 

not assume normality. Consistent with Gibbons, Ross and Shanken (1989) the Wald Test rejects 

a correct null hypothesis too often when the asymptotic distribution is used. The empirical p-

values are larger than the asymptotic p-values in each subperiod, and the full sample period. The 

smallest empirical p-value in the panel is 0.43.  Thus, when we correct for finite sample bias 

there is no evidence against the efficiency of the market index in the industry portfolios, given 

that no conditioning information is used in the tests. 

Panel B of Table 2 summarizes tests using the “multiplicative” returns, 

1)(ˆ
−⊗−+= tfttftt ZRRRR . With 25 industry portfolios, the market return and five instruments 

plus a constant, there are 156 “returns.” One disadvantage of the multiplicative approach is that 

the size of the system quickly becomes unwieldy. It is not possible to construct the Wald Test for 

the ten year subperiods, as the sample covariance matrix is singular.  

Over the full sample period the value of the Wald Test statistic using the multiplicative 

returns is 348.6. The asymptotic p-value is close to zero. However, we expect a finite-sample 

bias and the simulations confirm the bias. Based on the empirical p-values the tests reject the 

efficiency of the SP500 at either the 2% (Monte Carlo) or 40% (resampling) levels. Thus, the 

finite sample results are highly sensitive to the data generating process. This makes sense, 

because even if Rt is approximately normal, the products of returns and the elements of Zt-1 are 

not normal, and the Monte Carlo simulation assumes normality. We therefore place more trust in 

the resampling results.  Correcting for finite sample bias with the resampling scheme, we find no 

evidence to reject the efficiency of the market index in the set of dynamic strategy returns that 

use the conditioning information multiplicatively. 
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Using the conditioning information Z efficiently, Panel C expands the tests to include all 

portfolios that may be functions of the information.  With the efficient portfolio solutions the 

size of the covariance matrices to be inverted does not increase with the use of conditioning 

information, so results for the subperiods can be obtained. This illustrates the tractability of our 

approach, compared to the multiplicative approach.  The value of the statistic given by Equation 

(9) is 161.84 in the full sample, 164.98 − 203.29 in the ten-year subperiods and 148.2 in the 

holdout sample.  The empirical p-values are 0.5% or less in the full sample and each ten-year 

subperiod, and 4.4% in the holdout sample.  The results also are fairly robust to the method of 

simulation (Monte Carlo or resampling). Thus, we can reject the hypothesis that the market 

index is mean variance efficient when the conditioning information is used efficiently. The tests 

that use the conditioning information efficiently can reject the model when the multiplicative 

approach cannot.  We even find marginal rejections during the holdout sample period, where 

Table 1 illustrated that the predictive power of the lagged instruments is relatively low. 

Figure 1 illustrates the test, showing the sample frontier of fixed-weight portfolios that 

ignore the conditioning information and the efficient frontier with respect to Z. The test statistics 

are related to the differences between the squared slopes of the lines drawn through the SP500 

versus the lines tangent to the frontiers.  The figure shows how the efficient use of conditioning 

information produces a larger test statistic.  
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Figure 1. The test statistic for the efficiency of the SP500 compares the squared 
slope of the line through the tested portfolio with the line through the sample 
efficient portfolio. As the slopes diverge, the test statistic is larger. Testing for 
efficiency with respect to the information, Z, the test statistic is larger than when 
the information is ignored. 

 

B. Alternative Test Assets 

Recent studies use portfolios grouped on firm size and book-to-market ratios, and find that a 

market index is not efficient in these returns (e.g. Fama and French, 1992). Table 3 presents 

results where the portfolios are grouped on size and book-to-market.  The full sample and 

holdout results for industries from Table 2 are repeated in the right hand column for comparison 

purposes. 

In panel A of Table 3 there is no conditioning information. Consistent with previous studies, 

the efficiency of the SP500 is rejected in the size x book-to-market portfolio design for the 1963-

1994 period.  However, in the 1995-2002 period, the efficiency of the market index is not 
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rejected when the finite sample bias in the statistics is corrected.  This is consistent with a 

weakening of the size and book-to-market effects after 1994. 

In panel B of Table 3, the test assets are the multiplicative returns. The asymptotic p-values 

suggest rejections of the efficiency hypothesis, but the resampling results indicate a strong, 

finite-sample bias. The empirical p-value based on resampling is 4.4% with the 25 size × book-

to-market portfolios over the 1963-1994 sample. 

In panel C the test assets are all portfolios of the form ( )1t tx Z R−′ . The resampling p-values 

are 0.3% or less in the size x book-to-market design, including the 1995-2002 subsample.  Thus, 

once again we find that efficiency can be rejected with our approach, in settings where the 

classical approach does not reject efficiency.  The results show that expanding the set of dynamic 

strategies using our results makes a substantial difference, even in the size x book-to-market 

portfolio design. 

 

C. Expanding the Mean Variance Boundary 

The evidence so far shows that the market index return lies “significantly” inside the mean-

variance boundaries when the conditioning information is used efficiently. However, these 

results only indirectly address the question of inferences about the mean variance boundaries 

themselves.  These inferences relate to questions like mean variance intersection and spanning.  

If the Sharpe ratio of a given portfolio is estimated with greater precision than the maximum 

Sharpe ratio in a set of returns, as seems likely, then we may be able to draw inferences about 

efficiency for a given portfolio and yet be unable to draw reliable inferences about the efficient 

frontiers themselves. 

In this section we ask if the use of conditioning information expands the mean variance 

boundary.  Table 4 presents the tests.  Here we replace the market index with a portfolio of the 



23 

test assets whose weights are proportional to 1−Σ µ/ , where Σ/  is the unconditional covariance 

matrix and µ  the mean vector, that determines the excess returns of the test assets in the 

simulations.  This is a portfolio on the “population” mean-variance boundary with no 

conditioning information.  We then test the efficiency of this portfolio instead of the SP500, as in 

the previous tables.  Of course, tests using no conditioning information find the portfolio to be 

efficient. In panel A the mean variance boundary is constructed using the multiplicative 

approach. The resampled p-values are 0.464 and 0.686, thus providing no evidence that the 

multiplicative approach expands the boundary. These results are consistent with studies such as 

Carlson and Chapman (2000) that question the usefulness of the standard lagged instruments in 

the multiplicative design. 

In Panel B of Table 4 the test assets are all portfolios of the form ( )1t tx Z R−′ .  In the 1963-94 

period the resampled p-values are 0.1% and 2.5% for the two portfolio grouping methods, 

showing that when the conditioning information is used efficiently the mean variance boundary 

is expanded.  However, in the holdout sample we do not reject the null hypothesis.  This is 

consistent with the low explanatory power of the lagged variables during the holdout sample, as 

indicated in Table 1.  While the efficiency of the market index can be rejected during this period, 

the maximum Sharpe ratio on the fixed-weight frontier is closer to the efficient-with-respect-to-Z 

boundary than is the market index. 

The tests of Table 4 have an interesting interpretation when they are applied to the  size x 

book-to-market portfolios and the market index.  Fama and French (1996) construct three factors 

designed to capture the average returns of portfolios grouped by size and book-to-market, the 

Fama-French “3 factor model.”  If these factors describe the cross-section of expected returns, a 

combination of the factors is efficient.  A fixed combination of these factors cannot produce a 

higher Sharpe ratio than the fixed-weight maximum in a sample that includes the three factor 
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portfolios.  Logically speaking then, the tests in Table 4 reject a fortiori a static (fixed-weight) 

version of the Fama-French 3-factor model over 1963-94, but not for 1995-2002.  However, 

given that the statistical noise involved in estimating the maximum Sharpe ratio for 26 test assets 

will differ from that involving three factors, it is interesting to examine the multifactor models 

explicitly. 

 

D. Testing Static Combinations of the Fama-French Factors 

 This section presents tests of the efficiency of a fixed-weight combination of the three Fama 

and French factors.  The hypothesis may be started as m = a + b1Rm + b2RHML + b3RSMB, where 

the coefficients are fixed over time.  Rm is the gross return of the market index.  RHML is the one-

month Treasury bill gross return plus the excess return of high book-to-market over low book-to-

market stocks, and RSMB is similarly constructed using small and large market-capitalization 

stocks.  In testing this model we replace the first and 25th portfolios in the industry or size x 

book-to-market design with the returns RHML and RSMB, to insure that the factor portfolios are a 

subset of the tested portfolio returns. 

 Table 5 presents the tests.  In Panel A there is no conditioning information.  Based on the 

asymptotic p-values we would reject the efficiency of the Fama-French factors at the 5% level, 

except in the size x book-to-market portfolio design over 1963-1994.  However, adjusting for 

finite sample bias the only rejection occurs for the industry portfolios.  Fama and French (1997) 

also find that their factors don’t explain industry portfolio returns very well. 

 In Panel B the multiplicative approach to conditioning information is used.  The resampled 

p-values strongly reject the model for 1963-94.  This is consistent with studies such as Ferson 

and Harvey (1999) who find that the Fama-French factors do not explain ad-hoc dynamic 
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strategy returns over a similar sample period.  Once again, we cannot examine the multiplicative 

approach over the holdout sample because the covariance matrices are too large to invert. 

 Panel C of Table 5 presents the tests relative to the efficient-with-respect-to-Z frontier.  The 

tests confirm the value of using the conditioning information efficiently.  We observe strong 

rejections of the static version of the Fama-French model, both over 1963-1994 and in the 1995-

2002 sample, and for both portfolio designs.  The test results are consistent with the intuition that 

Sharpe ratios can be estimated with greater precision on a smaller number of assets (the Fama 

French factors in Table 5) than they can on a larger number of assets (the 26 portfolios in Table 

4).  Thus, the tests using the conditioning information efficiently can reject the Fama French 

factors even when they could not reject the hypothesis that the mean variance boundary fails to 

expand, as during the 1995-2002 sample. 

 

E. Testing Dynamic Multifactor Models 

 The empirical results so far show that the efficient use of conditioning information expands 

the mean variance boundary of monthly portfolio returns for the sample before 1995, even when 

a multiplicative approach does not, and that the stock market index and fixed combinations of 

the Fama-French factors lie inside the expanded boundary, even during the 1995-2002 holdout 

sample.  This section illustrates tests of multifactor and conditional benchmarks with time-

varying weights. 

 The theory indicates two versions of multifactor benchmarks in the presence of conditioning 

information.  Let RB denote the vector of benchmark factor returns (eg., a market index and the 

Fama-French factors).  The first example specifies m(Z) = a + b w’(Z)RB, where a  and b are 

constants and w’(Z)1 = 1.  In the language of Huberman, Kandel and Stambaugh (1987), this 

says there is mean-variance “intersection” of the efficient-with-respect-to-Z boundary formed 
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from RB and the boundary of all the test assets, including RB.  Equivalently, the dynamic 

portfolio w’(Z)RB is efficient and there is a single-beta pricing model for the unconditional mean 

returns of all portfolios of the form ,R)Z(x′  based on the portfolio w’(Z)RB.  We refer to this as 

the hypothesis of “dynamic intersection.” 

 The second examples implies a multifactor benchmark m(Z) = A(Z) + B(Z)’RB, where A(Z) 

and B(Z) are the previously-specified scalar and vector-valued functions of the conditional 

moments of returns and the zero-beta rate (see footnote 3).  This says that a time-varying 

combination of the factor portfolios is conditionally minimum variance efficient given Z.  

Equivalently, there is a k-beta pricing relation for the conditional mean returns based on the k-

vector of factor portfolios, RB.  According to this model, a maximum correlation portfolio with 

respect to Z for A(Z) + B(Z)’RB, will be efficient with respect to Z.  A special case is a 

conditional CAPM, when k=1 and RB is the market return. 

 Note that, for a given choice of benchmark factors, the hypotheses of conditional efficiency 

and dynamic intersection are related.  Both hypotheses specify that a particular time-varying 

combination of the benchmark assets should be efficient with respect to Z.  Conditional 

efficiency specifies that the combination involves all of the test assets through the maximum 

correlation portfolio.  Dynamic intersection restricts the coefficients of the combination to be 

zero, except for the factor portfolios, but allows the nonzero weights to vary over time to 

maximize the Sharpe ratio.6 

                                                 

 6 Dynamic intersection in general is stronger than conditional efficiency.  Dynamic intersection says that the 
efficient-with-respect-to-Z boundaries share a common point.  Efficient-with-respect-to-Z portfolios must also be 
conditionally efficient, as shown by Hansen and Richard (1987).  Conditional efficiency says the conditional 
boundaries have a common point for each realization of Z.  The tangency to the common point is a particular zero-
beta rate that may vary with Z over time.  Thus, dynamic intersection at a given zero-beta or risk-free rate does not 
imply conditional efficiency given the same risk-free rate.  It follows that rejections of conditional efficiency with a 
given risk-free rate do not imply a rejection of dynamic intersection. 

 



27 

 Table 6 summarizes the tests for dynamic intersection.  The tests ask if the efficient-with-

respect-to-Z frontier formed from all portfolios of the three Fama-French factor returns touches 

the efficient-with-respect-to-Z frontier of the test assets at a point tangent to the risk-free rate.  

The sample values of the test statistics are smaller, in very case, than the values in Table 5.  This 

is because a time-varying combination of the Fama-French factors has a larger maximum Sharpe 

ratio in the sample than a fixed-weight combination.  The simulations reveal that that the 5% 

critical values of the test statistics are fairly close to those in Table 5; slightly larger in the 1963-

94 samples and slightly smaller in the 1995-2002 samples.  The p-values of the test statistics in 

Table 6 are not as small as the values in Table 5.  Still, the hypothesis of dynamic intersection is 

strongly rejected for the 1963-94 sample. with p-values of 0.1% or less. 

 During 1995-2002 the tests in Table 6 marginally reject intersection, with p-values of 3.9% 

in the industry portfolio design and 5.5% in the size and book/market design.  In Panel A of 

Table 5, when no conditioning information was used, the p-values for the tests of intersection 

were 7.7% and 15.7%.  Thus, the evidence against the hypothesis that a combination of the three 

Fama-French factors can touch the boundary of the test assets is stronger, even during the 1995-

2002 period, when the conditioning information is used efficiently. 

 Table 7 presents tests of the conditional efficiency of the market index and of a combination 

of the three Fama-French factors.  We reject both models over 1963-1994 in both portfolio 

designs.  The bootstrapped p-values are 1.2% or less.  We also reject conditional efficiency in 

the 1995-2002 sample period, with p-values of 1.6% or less.  Thus, when the conditioning 

information is used efficiently our tests can reject conditional versions of both the CAPM an the 

Fama-French three-factor model. 
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5. Robustness 

This section discusses the robustness of the results.  The tests of portfolio efficiency were 

illustrated under the assumptions that the conditional mean returns are linear functions of the 

instruments and the conditional covariance matrix is fixed.  While this is a common set of 

assumptions, there are many ways to model conditional moments and future research should use 

or framework under alternative specifications.  It is important to understand that the rejections of 

efficiency in our examples are in some sense robust to misspecified conditional moments. We 

test the efficiency of a given portfolio in sets of returns constructed from the test assets using the 

conditioning information.  If we use the correct specification the solutions for ( )x Z  are optimal 

and therefore include all portfolio functions. If we incorrectly specify the conditional moments 

the portfolio weights ( )x Z  are not optimal, but they still generate valid dynamic strategy 

returns. With the wrong conditional moments we essentially test efficiency in a smaller set of 

constructed returns, but if we reject efficiency on the subset, it implies rejection on the larger set 

of returns. Therefore, if we reject efficiency of a given portfolio with incorrectly specified 

conditional moments, it implies a rejection when the conditional moments are correct. 

 The robustness to misspecified moments does not apply when the tests use a maximum 

correlation portfolio as the tested portfolio.  In these cases, if we get the moments wrong the 

portfolio is not maximum correlation, and there is no reason that it should be minimum variance 

efficient.  Thus, our rejections of the conditional models in Table 7 could reflect a misspecified 

data generating process.  However, Ferson, Siegel and Xu (2005) shows that the weights of the 

portfolios that maximize correlation with respect to Z share a “robustness” to extreme 

observations, similar to that of the efficient-with-respect-to-Z solutions.  Thus it should be 

interesting for future research to explore the properties of these tests under alternative data 

generating processes. 
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While the rejections for a given portfolio are theoretically robust to incorrectly 

parametrizing the conditional moments, the results of our simulations may be sensitive to the 

parameters. We conduct experiments to assess this sensitivity. We use a sample of simulated 

data to estimate alternative parameter values, and then recalibrate the simulations with these 

parameters. Repeating this experiment 100 times we obtain information on how sensitive our 

empirical p-values are to variation in the parameters. We consider the test for the efficiency of 

the SP500.  The initial simulated sample produces Monte Carlo p-values of 0.59, 0.02 and 0.00 

for the fixed-weight, multiplicative and efficient-with-respect-to-Z frontiers, respectively. After 

100 experiments the mean p-values are 0.579, 0.027 and 0.000, with standard deviations equal to 

0.015, 0.005 and 0.000, respectively. Thus, the results do not appear highly sensitive to variation 

in the simulation parameters. 

 Finally, in our empirical examples we use the average Treasury bill return as the fixed 

risk-free rate.  We provide the analytical results for a general zero-beta rate.  The empirical 

results may be sensitive to the choice of the zero beta rate.  Therefore, it should be interesting in 

future research to apply our framework in a setting where the zero beta rate is a parameter to be 

estimated, perhaps by extending results in Kandel (1984). 

 

6. Summary and Conclusions 

We develop a new framework for testing asset pricing models in the presence of lagged 

conditioning information.  The approach requires a model’s stochastic discount factor (SDF) to 

correctly price all the dynamic portfolio returns that may be constructed from a set of test assets, 

where the portfolio weights may be functions of the conditioning information.  By requiring the 

SDF to price a large set of payoffs, the tests can reject models that previous approaches would 

not reject. 
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Our tests examine the (unconditional) mean variance efficiency of a  portfolio with respect 

to the conditioning information, a version of efficiency studied previously by Hansen and 

Richard (1987) and Ferson and Siegel (2001).  We show how different specifications for a 

model’s SDF identify portfolios that should be efficient with respect to the conditioning 

information.  If we reject the efficiency of the portfolio, we reject the asset pricing model.  We 

illustrate the approach with versions of the Capital Asset Pricing model, the Fama-French (1996) 

factors, and a dynamic version of mean-variance intersection (Huberman, Kandel and 

Stambaugh, 1987). 

Using a standard set of lagged instruments and test portfolios, the efficiency of the SP500 

index and all combinations of the Fama-French factor returns are rejected.  In the same setting, 

the commonly-used “multiplicative” approach to conditioning information does not significantly 

expand the mean variance boundary, when compared with ignoring the conditioning information 

altogether.  A holdout sample illustrates that the predictive power of the lagged variables 

declines after 1995, but even during this period the efficient use of the conditioning information 

enhances the results. 
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Appendix 

Efficient Portfolio Solutions 

The portfolio weights for efficient portfolios in the presence of conditioning information are 

derived by Ferson and Siegel (2001).  First consider the case with N risky assets with returns R 

and a riskless asset returning fR .  In N×1 column-vector notation, we have  

 ( )R Z= µ + ε  (13) 

The noise term ε  is assumed to have conditional mean zero given Z and nonsingular conditional 

covariance matrix ( )ZεΣ/ .  The conditional expected return vector, )Z(µ , is permitted to have a 

singular or nonsingular (unconditional) covariance matrix, so there can be any number of 

conditioning variables.  

Define portfolio P by letting the 1×N row vector ( ) ( ) ( )( )1 ,..., Nx Z x Z x Z′ =  denote the 

portfolio share invested in each of the N risky assets, investing (or borrowing) at the riskless rate 

the amount 1)Z('x1 − , where )'1,...,1(1 =  denotes the column vector of ones. The observed 

return on this portfolio will be 1)((' ff RRZxR −+ ), with unconditional expectation and 

variance (after computing conditional expectations given Z to eliminate the random noise terms) 

as follows: 

 µp= Rf + E[x’(Z)(µ(Z)-Rf 1)] (14) 

 ( )( ) ( )22 )()(1)(1)()(' fpffP RZxZRZRZZxE −−










 Σ+′−−= µµµσ ε  (15) 

[ ] ( )21 )()(' fp RZxQZxE −−= − µ  

where we have defined the N×N matrix  

 [ ] [ ] 1
1

)()1)()(1)(()1)(1()( −
−

Σ+′−−=






 ′−−== ZRZRZZRRRREZQQ ffff εµµ  (16) 



32 

Define the constant ζ  as follows: 

 ζ=E[(µ(Z)-Rf1)’Q(µ(Z)-Rf1)] (17) 

Theorem 1. (Ferson and Siegel, 2001) Given the unconditional expected return µP, N risky 

assets, and a riskless asset, the unique portfolio having minimum unconditional variance is 

determined by the weights: 

 [ ] QRZ
R

Zx f
fP ′−

−
= )1)(()(' µ

ζ
µ

. (18) 

The portfolio variance is 

 






 −−= 11)( 22

ζ
µσ fPP R . (19) 

Proof. See Ferson and Siegel (2001). 

When there is no riskless asset, we define portfolio P by letting 

( ) ( )1( ),..., ( )Nx x Z x Z x Z′ ′= =  denote the shares invested in each of the N risky assets, with the 

constraint that 11'x = . The return on this portfolio, ( )PR x Z R′= , has expectation and variance 

as follows: 

 ( ) ( )P E x Z Z′ µ = µ  ,  

 ( ) ( ) ( ) ( ) ( ){ }2 2
P PE x Z Z Z Z x Zε′ ′ σ = µ µ + Σ −µ/  . (20) 

Define the matrix Λ=Λ(Z)={E(RR’│Z)}-1= {µ(Z)µ(Z)’+ Σ ε(Z)}-1 and define the following 

portfolio constants: 
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
Λ

ΛΛ−Λ= )(
1'1
'11)('3 ZZE µµδ . (23) 

Theorem 2. (Ferson and Siegel, 2001) Given N risky assets and no riskless asset, the unique 

portfolio having minimum unconditional variance and unconditional expected return µP, is 

determined by the weights: 

 






 −
−

+=
1'1

'11)Z('
1'1

'1)Z('x
3
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Λ
ΛΛΛµ

δ
δµ

Λ
Λ  (24) 

 

The efficient-with-respect to Z frontier determined by these weights is a parabola relating the 

variance of return, 2σ , and the mean return, µ , as cba 22 ++= µµσ , where the constants are: 

,/)1(a 33 δδ−=   32 /2b δδ−=  and  3
2
21 /c δδδ += . 

 

Proof of Proposition 2 

By the definition of covariance, ( )1 1 1t t tE m x Z R+ +′  =   implies 

 ( ) ( ){ } ( )1 1 1 11 , /t t t t t tE x Z R Cov m x Z R E m+ + + +′ ′   = −    . (25) 

Now, using mt+1 = A + B′RB,t+1, we find that Equation (6) is satisfied, with , 1 , 1p t B tR w R+ +′= , 

),'1/( BBw ≡ γ0 = [A + B′E(RB,t+1)]-1, and )'1(01 Bγγ −= .  

 

Proof of Proposition 3 

Regress m on RP using a simple regression: Pm a bR u= + + , where without loss of 

generality a and b are constants and ( )( ) 0PE u E uR= = . If RP is maximum correlation, then the 

error also satisfies: [ ] 11)(':)(0)(' =∀= ZxZxRZuxE . (If this were not true for some ( )x Z , then 

( )x Z R′  would enter the regression with a nonzero coefficient, contradicting the assumption that 
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RP is maximum correlation.) Now, substitute the regression into (4) to obtain 

( ){ }( )PE a bR u x Z R′+ +  = 1 = ( ){ }( )PE a bR x Z R′+ 11)(':)( =∀ ZxZx . Proposition 2 now 

establishes that RP is efficient with respect to Z.   

 

Theorem 3: (Ferson, Siegel and Xu, 2005).  The solution, ( )mx Z  to the maximization: 

 [ ]F,R)Z('xMax 2

)Z(x
ρ  s.t. 11)(' =Zx , (26) 

 where F is any random variable, is given by: 
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1'1

'11
1'1

1)Z(x 21m λµλ
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 −+=  where (27) 

γ1(Z) = 1/(1' Λ 1),  γµ(Z) = 1' Λ µ(Z)/(1' Λ 1), γF(Z) = 1' Λ E(RF′|Z)/(1' Λ 1), 

  Ω (Z) = [ Λ - Λ 1 1' Λ /(1' Λ 1)],  γµµ(Z) = µ(Z)'Ω (Z)µ(Z), 

            and γµF(Z)=  µ(Z)' Ω (Z)E(RF′|Z), where: 
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Proof of Proposition 4 

 Observe that ]/)([ 2
PCP0P0CC σσγµγµα −+−≡  depends on the portfolio RC only 

through its mean and covariance with RP.  It follows that RC must have minimal variance among 

all portfolios with its mean and covariance with RP.  From Ferson, Siegel and Xu (2005, Eq. 6) 

the optimal weights xC(Z) corresponding to RC are given by: 

   )]ZRR(bE)Z(a[
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11
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
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ΛΛΛ
Λ

Λ ,                  (28) 

where a and b are constants.  We evaluate the final term using RP = R′xP(Z): 
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which we may substitute into the expression for xC to obtain: 

   )Z(bx)Z(
11

11a
11

1)b1(x Pc +
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
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′
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′
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Λ

Λ .        (29) 

Comparing equations (24) and (29), we conclude that the most mispriced portfolio must be 

formed by combining an efficient-with-respect-to-Z portfolio with RP. 

 Without loss of generality we represent the efficient-with-respect-to-Z frontier using the 

following two portfolios.  Let R0 denote the efficient portfolio with (unconditional) mean 

00 γµ =  and unconditional variance 2
0σ .  Note that the covariance between R0 and RS is S0σ  = 0 

as R0 is a zero-beta asset for RS. 

 Consider the system of three assets (R0, RS, RP), which has mean vector ( PS0 ,, µµγ ) and 

alpha vector )0,/)(,/)((),,( 2
PSP0P0S

2
PP00PPS0 σσγµγµσσγµαααα −−−−−==′  with 

respect to RP.  The covariance matrix for these assets is 
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         (30) 

Note that the efficient-with-respect to Z frontier and portfolio RP are all accessible as fixed-

weight portfolios within this system. 

 We maximize the mispricing by maximizing the squared Sharpe ratio within an 

isomorphic system of assets defined as 

)R,R,R()R,R,R( PPSSS000PS0 µαµαγ −+−+−=+++ , constructed so that the alphas of 

the original system are equal to the means in the isomorphic system: 

)0,,()R,R,R(E S0PS0 αα=+++  and we define the zero beta rate in the isomorphic system to be 

zero.  Note that the variances for any fixed portfolio weight function will be the same in the 

original and the isomorphic system, and that the portfolio alpha in the original system is equal to 

the portfolio mean in the isomorphic system (because of linearity for both means and alphas).  

Thus the mispricing 2
C

2
C / σα  of a portfolio in the original system is equal to its squared Sharpe 

ratio 2
C

2
C / σµ  in the isomorphic system.  It follows that the most mispriced portfolio weights xC 

are proportional to V-1α . 

 The portfolio R0 has zero weight in the most mispriced portfolio.  When we multiply the 

first row of V-1 by α , the result is proportional to 

[ ] [ ]
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where the last equality follows from the fact that RS is efficient with a zero-beta rate of 0γ  and 

thus must price 2
SSP0S0PP /)(:R σσγµγµ −+= . 
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 Since R0 does not appear in the most mispriced portfolio, we may maximize 2
C

2
C / σα  

over the restricted isomorphic system )R,R( PS
++ .  The optimal weights (wS,wP)′ will be 

proportional to  
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hence (wS,wP) is proportional to (1, 2
PSP / σσ− ), which established Equation (12) after 

normalization.  To establish Equation (11), substitute for SPσ  using 

2
SSP0S0P /)( σσγµγµ −+= . 

 

Evaluating the Tests by Simulation 

We conduct simulation experiments to evaluate the test statistics. Consider first a case with 

no conditioning information.  In Monte Carlo experiments we draw random samples from a 

normal distribution with mean vector and covariance matrix set equal to the maximum likelihood 

(ML) estimates from our data. Under the null hypothesis the fixed-weight portfolio pR  should be 

minimum variance efficient. We therefore replace pR  in the simulations by a fixed-weight 

portfolio whose weights maximize the Sharpe ratio at the ML estimates.  Thus, each artificial 

sample is drawn from a population in which the tested portfolio pR  is efficient.  

The Monte Carlo results may be sensitive to the assumption of normally distributed data. 

We therefore resample from the original data instead of a normal distribution, using a parametric 

bootstrap approach.  For example, a regression of returns on the lagged conditioning information 

defines the conditional mean function and the matrix of sample residuals.  We choose randomly 
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selected rows, with replacement, from the matrix of the sample residuals; the number of draws 

matches the length of the time series in the relevant subperiod.  We use the conditional mean 

functions, evaluated at the simulated Z, and add the independently resampled residuals 

(unexpected returns) to obtain the simulated returns. 

When conditioning information is involved the distribution of Z is taken from the empirical 

distribution of the 5 lagged instruments.  In order to capture the strong serial dependence of these 

instruments we model Zt as a vector AR(1) process.  The sample AR (1) coefficient matrix is a 

parameter of the simulation.  We resample from the matrix of residuals from the AR(1) model 

and build the time series of the Zt’s recursively in each simulation trial. 

Under the null hypothesis the artificial samples are drawn from a population in which the 

tested portfolio PR  is efficient with respect to Z.  The precise manner in which this is 

accomplished depends on the situation.  When the null hypothesis places a given portfolio on the 

efficient-with-respect-to-Z frontier, we simply replace the tested portfolio return with the time-

varying combination of test assets that is ex ante efficient given the data generating process 

(Tables 2 through 4).  When the null hypothesis specifies that a fixed weight combination of 

factors is efficient, we replace the first factor with the ex ante efficient portfolio (Table 5).   

The Corrollary to Proposition 3 describes the case of dynamic intersection.  In this case we 

exploit the most mispriced portfolio of Proposition 4 in order to generate data that satisfy the null 

hypothesis. We first form a portfolio that is efficient with respect to Z within the set of k-1 of the 

factor portfolios for the given data generating process. This portfolio, call it Rk-1, will be 

inefficient in the full set of assets.  We then use Proposition 4 to compute the most mispriced 

portfolio by Rk-1.  A combination of  Rk-1 and the most-mispriced portfolio is efficient in the full 

sample of test assets given the data generating process. We replace the k-th factor with the most 

mispriced portfolio.  With this replacement, the k factor-portfolios satisfy the null hypothesis that 
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they are efficient in the full set of test assets (Table 6).  When the null hypothesis specifies the 

conditional efficiency of a combination of the benchmark returns, RB, we satisfy the null 

hypothesis by replacing the conditional mean functions of the test assets with the expressions 

implied by the equivalent conditional beta pricing restriction: 

]ZR[E)Z()Z( 0Bjj
k

1jo γβΣγµ −+= = , where Bj(Z) is the vector of conditional betas on the j-th 

benchmark return (Table 7). 

Each simulation experiment produces 1,000 artificial samples, and we estimate the relevant 

test statistic on each sample. The empirical 5% critical value is the value above which 5% of the 

1,000 statistics lie. The empirical p-value is the fraction of the 1,000 statistics that are larger than 

the value obtained in the original sample. The logic is that if this p-value is small, it is unlikely 

that the sample statistic comes from a population in which the null hypothesis is true.  
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Table 1. Monthly Industry Returns 

Monthly returns on 25 portfolios of common stocks are from Harvey and Kirby (1996). The portfolios are 
value-weighted within each industry group. The industries and their SIC codes are in the following table. 
Mean is the sample mean of the gross (one plus rate of) return, σ is the sample standard deviation and ρ1  is 
the first order autocorrelation of the monthly return. 2R  is the adjusted coefficient of determination in 
percent from the regression of the returns on the lagged instruments. The sample period is February of 1963 
through December of 1994 (383 observations).  2

HOLDOUTR  is for the 1995-2002 holdout sample (96 
observations).  Negative adjusted R-squares are reported as 0.0. 
 
--------------------------------------------------------------------------------------------------------------------------------------- 
 Industry SIC codes Mean σ ρ1 

2R   
2
HOLDOUTR  

--------------------------------------------------------------------------------------------------------------------------------------- 

1 Aerospace 372, 376 1.0107 0.0644 0.13 9.9  1.1 
2 Transportation 40, 45 1.0094 0.0648 0.08 9.1  0.0 
3 Banking 60 1.0086 0.0631 0.10 4.3  2.4 
4 Building materials 24, 32 1.0097 0.0608 0.09 10.4  0.0 
5 Chemicals/Plastics 281, 282, 286-289, 308 1.0094 0.0525 -0.01 8.0  2.5 
6 Construction 15-17 1.0109 0.0760 0.16 10.2  0.0 
7 Entertainment 365, 483, 484, 78 1.0135 0.0662 0.14 5.7  0.0 
8 Food/Beverages 20 1.0117 0.0449 0.05 6.6  0.2 
9 Healthcare 283, 384, 385, 80 1.0113 0.0524 0.01 2.4  0.0 
10 Industrial Mach. 351-356 1.0089 0.0587 0.05 8.2  0.0  
11 Insurance/Real Estate 63-65 1.0095 0.0581 0.15 6.4  2.3 
12 Investments 62, 67 1.0097 0.0453 0.05 8.7  4.1 
13 Metals 33 1.0075 0.0610 -0.02 4.5  0.2 
14 Mining 10, 12, 14 1.0108 0.0535 0.01 7.2  0.3 
15 Motor Vehicles 371, 551, 552 1.0095 0.0584 0.11 10.6  0.0 
16 Paper 26 1.0095 0.0536 -0.02 6.9  2.4 
17 Petroleum 13, 29 1.0102 0.0518 -0.02 4.4  0.0 
18 Printing/Publishing 27 1.0114 0.0586 0.21 11.3  0.0 
19 Professional Services 73, 87 1.0111 0.0693 0.13 8.4  2.8 
20 Retailing 53, 56, 57, 59 1.0106 0.0597 0.15 8.7  3.7 
21 Semiconductors 357, 367 1.0080 0.0559 0.08 9.0  0.0 
22 Telecommunications 366, 381, 481, 482, 489 1.0085 0.0412 -0.05 5.4  8.8 
23 Textiles/Apparel 22, 23 1.0100 0.0613 0.21 11.0  0.0 
24 Utilities 49 1.0078 0.0392 0.02 6.8  4.3 
25 Wholesaling 50, 51 1.0109 0.0614 0.13 10.7  0.0 
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Table 2 

Tests of the mean variance efficiency of the Standard and Poors 500 stock index excess return in a sample of 

industry portfolio returns. The monthly returns on 25 industry-sorted portfolios of common stocks are 

measured, for the sample period February 1963 through December 1994 (T=383 observations), and ten-year 

subperiods. A holdout sample from January, 1995 through December, 2002 (96 observations) is also shown. 

The conditioning information consists of a lagged Treasury bill yield, dividend yield, excess bill return, and 

yield spreads of long over short-term Government bonds and low-grade over high-grade corporate bonds. 

NA denotes not applicable, when the number of assets is larger than the number of time series observations 

and the covariance matrix of the returns is singular. Asymptotic p-values are from the chi-squared 

distribution. 

Subperiod    63-72 73-82 83-92 63-94 95-02 
Panel A: Test assets Rt,  no conditioning information: 
Wald Statistic 32.80 26.26 29.76 24.77 51.26 
    asymptotic p-value   0.14  0.39  0.23  0.48 0.001
      
Monte Carlo 5% Critical Value       52.82 52.34 50.82 51.93 211.40 
    empirical p-value 0.43 0.71 0.58 0.59     0.70 
      
Resampling 5% Critical Value      60.05 63.86 62.32 40.00 231.41 
    empirical p-value       0.52 0.81 0.65 0.58     0.72 
Panel B: Test assets are 1)( −⊗−+ tfttft ZRRR :      
      
Wald Statistic NA   NA NA 348.63 NA 
    asymptotic p-value    0.00  
      
Monte Carlo 5% Critical Value     327.99  
    empirical p-value    0.02  
      
Resampling 5% Critical Value     475.96  
    empirical p-value    0.44  
Panel C: Test assets are all Portfolios ( )1t tx Z R−′ : 
      
Test Statistic 203.29 188.56 164.98 161.84 148.2 
      
Monte Carlo 5% Critical Value  125.69 121.58 121.61 133.27 139.93 
    empirical p-value     0.000 0.000 0.001 0.002     0.029
      
Resampling 5% Critical Value  117.25 130.55 121.62 118.76 144.89 
    empirical p-value     0.003 0.005 0.003 0.001     0.044
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Table 3 

Tests of the mean variance efficiency of the Standard and Poors 500 stock index excess return. The industry 
data are monthly returns on 25 industry-sorted portfolios of common stocks, for the sample period February 
1963 through December 1994 (T=383 observations). The size/BM returns are 25 portfolios of stocks sorted 
on market capitalization and book-to-market ratio, for the sample period July 1963 through December 1994 
(T=378 observations).  A holdout sample covers January 1995 through December, 2002 (96 observations). 
The conditioning information consists of a lagged Treasury bill yield, dividend yield, excess bill return, and 
yield spreads of long over short-term Government bonds and low-grade over high-grade corporate bonds. 
Asymptotic p-values are from the chi-squared distribution.  NA indicates that the sample size does not allow 
the statistic to be calculated. 

Sample                                                                                  size/BM                                           industry 
                                                                                  63-94                 95-02                       63-94           95-02 
Panel A: Test assets Rt,  no conditioning information:  
Sample Statistic  83.02 74.12  24.77  51.26 
    asymptotic p-value     0.000  0.000   0.475    0.001 
      
Monte Carlo 5% Critical Value   40.97 114.58  51.93 211.40 
    empirical p-value    0.000 0.192  0. 59     0.70 
      
Resampling 5% Critical Value   45.13 131.52  39.99 231.41 
    empirical p-value    0.000  0.277   0.579     0.72 
Panel B: Test assets are 1)( −⊗−+ tfttft ZRRR : 
Sample Statistic 517.12 NA  348.63 NA 
    asymptotic p-value      0.000    0.000  
      
Monte Carlo 5% Critical Value 342.03   327.99  
    empirical p-value     0.000    0.019  
      
Resampling 5% Critical Value  508.78   475.96  
    empirical p-value     0.040    0.440  
Panel C: Test assets are all Portfolios ( )1t tx Z R−′ : 
Sample Statistic 272.66 210.4  161.84 148.2 
      
Monte Carlo 5% Critical Value  120.79 131.92  133.27 139.93 
    empirical p-value     0.000 0.000   0.002     0.029 
      
Resampling 5% Critical Value  107.59 135.10  118.76 144.89 
    empirical p-value     0.000 0.003   0.001     0.044 
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Table 4 

Tests of the null hypothesis that conditioning information does not expand the mean variance boundary. The 
industry data are monthly returns on 25 industry-sorted portfolios of common stocks and a market index 
return. The size/BM returns are for 25 portfolios of stocks sorted on market capitalization and book-to-
market ratios and a market index return. The conditioning information consists of a lagged Treasury bill 
yield, dividend yield, excess bill return, and yield spreads of long over short-term Government bonds and 
low-grade over high-grade corporate bonds. Asymptotic p-values are from the chi-squared distribution. NA 
indicates that the sample size does not allow the test statistic to be calculated. 

 
                                                                                                                            size/BM                       industry 
 63-94 95-02 63-94 95-02 
Panel A: Test assets are 1)( −⊗−+ tfttft ZRRR : 
 Sample Statistic 356.29 NA 304.31 NA 
    asymptotic p-value      0.000      0.000  
     
Monte Carlo 5% Critical Value  338.18  326.70  
    empirical p-value     0.033      0.141  
     
Resampling 5% Critical Value  520.38  485.96  
    empirical p-value     0.464      0.686  
Panel B: Test assets are all Portfolios ( )1t tx Z R−′ : 
 Sample Statistic 155.75   77.70 128.83   63.78 
     
Monte Carlo 5% Critical Value  122.29 127.69 133.42 133.96 
    empirical p-value  0.000     0.458     0.067     0.806 
     
Resampling 5% Critical Value  108.69 138.26 118.83 148.08 
    empirical p-value  0.001     0.539     0.025     0.779 



50 

Table 5 

Tests of the null hypothesis that a fixed-weight combination of the three Fama-French factors is efficient. 
The industry data are monthly returns on 25 industry-sorted portfolios of common stocks and a value-
weighted index. The size/BM returns are for 25 portfolios of stocks sorted on market capitalization and 
book-to-market ratio and a value-weighted return. In each design the first and 25th portfolio returns are 
replaced with the returns of the HML and SMB factors, respectively. The conditioning information consists 
of a lagged Treasury bill yield, dividend yield, excess bill return, and yield spreads of long over short-term 
Government bonds and low-grade over high-grade corporate bonds. Asymptotic p-values are from the chi-
squared distribution. NA indicates that the sample size does not allow the test statistic to be calculated. 

 
                                                                                                                            size/BM                       industry 
 63-94 95-02 63-94 95-02 
Panel A: Test assets are Rt: 
 Sample Statistic 34.96 49.51 43.03 55.53 
    asymptotic p-value  0.089   0.002 0.014 0.004 
     
Resampling 5% Critical Value  41.58 63.97 39.24 61.22 
    empirical p-value 0.117 0.157 0.021 0.077 
Panel B: Test assets are all Portfolios 1)( −⊗−+ tfttft ZRRR : 
 Sample Statistic 
   asymptotic p-value 

521.87 
0.000 

NA 415.08 
0.000 

NA 

     
Resampling 5% Critical Value  319.34 NA 313.73 NA 
    empirical p-value 0.000  0.000  
Panel C: Test assets are ( )1t tx Z R−′ : 
 Sample Statistic 340.61 181.55 180.09 174.64 
     
Resampling 5% Critical Value  70.52 128.03 75.55 118.38 
    empirical p-value 0.000 0.003 0.000 0.001 
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Table 6 

Tests of dynamic intersection.  The null hypothesis is that an efficient-with-respect-to-Z combination of the 
three Fama French factors touches the efficient-with-respect-to-Z frontier of the test assets at a tangency 
from the risk-free rate.  Industry refers to monthly returns on 25 industry-sorted portfolios of common stocks 
and a market index return. The size/BM returns are 25 portfolios of stocks sorted on market capitalization 
and book-to-market ratios and a market index. The first and 25th portfolio returns are replaced with the 
returns of the HML and SMB factors. The conditioning information consists of a lagged Treasury bill yield, 
dividend yield, excess bill return, and yield spreads of long over short-term Government bonds and low-
grade over high-grade corporate bonds. 

 
                                                                                                                            size/BM                       industry 
 63-94 95-02 63-94 95-02 
 
 Sample Statistic 268.09 124.3 125.47 118.9 
     
Resampling 5% Critical Value  73.30 127.14 79.59 114.05 
    empirical p-value 0.000 0.055 0.001 0.039 
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Table 7 

Tests of Conditional Efficiency. The industry data are monthly returns on 25 industry-sorted portfolios of 
common stocks and a market index return. The size/BM returns are for 25 portfolios of stocks sorted on 
market capitalization and book-to-market ratios and a market index. In each design the first and 25th 
portfolio returns are replaced with the returns of the HML and SMB factors. The conditioning information 
consists of a lagged Treasury bill yield, dividend yield, excess bill return, and yield spreads of long over 
short-term Government bonds and low-grade over high-grade corporate bonds. 

 
                                                                                                                            size/BM                       industry 
 63-94 95-02 63-94 95-02 
Panel A: Conditional Efficiency of the Market Index 
 Sample Statistic 339.16 131.70 189.70 143.0 
     
Resampling 5% Critical Value  101.12 88.19 91.42 83.22 
    empirical p-value 0.000 0.008 0.002 0.006 
Panel B: Conditional Efficiency of the Fama-French Factors 
 Sample Statistic 362.95 132.50 144.37 137.8 
     
Resampling 5% Critical Value  98.13 97.65 117.75 94.19 
    empirical p-value 0.000 0.016 0.012 0.015 
 




