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ABSTRACT

To question the statistical significance of return predictability, we cannot specify a null that simply

turns off that predictability, leaving dividend growth predictability at its essentially zero sample

value. If neither returns nor dividend growth are predictable, then the dividend-price ratio is a

constant. If the null turns off return predictability, it must turn on the predictability of dividend

growth, and then confront the evidence against such predictability in the data. I find that the absence

of dividend growth predictability gives much stronger statistical evidence against the null, with

roughly 1-2% probability values, than does the presence of return predictability, which only gives

about 20% probability values. I argue that tests based on long-run return and dividend growth

regressions provide the cleanest and most interpretable evidence on return predictability, again

delivering about 1-2% probability values against the hypothesis that returns are unpredictable. I show

that Goyal and Welch's (2005) finding of poor out-of-sample R² does not reject return forecastability.

Out-of-sample R² is poor even if all dividend yield variation comes from time-varying expected

returns.
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1 Introduction

Table 1 presents regressions of the real and excess value-weighted stock return on its dividend-
price ratio, in annual data. The results are quite similar using nominal returns, earnings yields
or book to market ratios, and in postwar data.

b t R2(%) σ(βx)(%)

Rt+1 3.39 2.28 5.8 4.9
R−Rf 4.00 2.62 7.6 5.8
Dt+1/Dt 0.07 0.06 0.00 0.001

rt+1 0.097 1.92 4.0 4.0
r − rf 0.110 2.18 5.1 4.5
∆dt+1 0.008 0.18 0.00 0.003

Table 1. Regression of real CRSP value-weighted return and dividend growth on
dividend/price ratio, 1926-2004. The top two rows regress gross returns and dividend
growth on the D/P ratio; the bottom two rows regress log returns and log dividend
growth on the log D/P ratio. σ(βx) gives the standard deviation of the fitted value
of the regression.

Returns seem predictable, and excess returns even more so. The point estimates have very
large economic significance. The units in the top row are percent return on percent dividend
yield. A coefficient of zero means that if the dividend yield goes up one percentage point, prices
are expected to grow one percentage point less; the one percentage point lower expected capital
gain matches the one percentage point higher dividend yield to give no change in expected return.
A coefficient of one results if price expectations do not change at all. The one percentage point
rise in dividend yield translates directly to a one percentage point higher return. The coefficient
of three to four means that if dividend yields go up one percentage point, prices are expected
to go up another two to three percentage points, strongly reinforcing rather than offsetting the
change in dividend yield.

As another measure of economic significance, the last column of Table 1 presents the standard
deviation of the fitted value of the regressions. The return-forecasting regression gives a standard
deviation of expected returns of five to six percentage points. The variation in expected returns
is almost as large as the level of the sample equity premium. Furthermore, as emphasized by
Fama and French (1988), the coefficients and R2 rise with horizon reaching values between
30 and 60 percent, depending on time period and estimation details. The large R2 at long
horizon is another measure of the large economic significance of return forecastability. Finally,
if one calculates the fraction of the variance of the price-dividend ratio due to time-varying
expected returns (discount rates), the point estimate of the return forecast shown in Table 1
neatly accounts for all variation in stock prices scaled by dividends, leaving no need or room
for changing expected dividend growth or bubbles to affect price-dividend ratios. I present this
calculation below.

However, the statistical significance of the first row is marginal. And the ink was hardly
dry on the first studies1 to run regressions like those of Table 1 before a large literature sprang

1Rozeff (1984), Shiller (1984), Keim and Stambaugh (1986), Campbell and Shiller (1987), and Fama and
French (1988).
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up examining their econometric properties and questioning their statistical significance. The
right hand variable (dividend yield) is very persistent, and innovations in returns are highly
correlated with innovations in dividend yields, since a change in prices moves both variables.
As a result, the return-forecasting coefficient inherits near-unit-root properties of the dividend
yield. It is biased upward, and its t-statistic is biased towards rejection. Goetzmann and Jorion
(1993) and Nelson and Kim (1993) find the distribution of the return-forecasting coefficient by
simulation, and find greatly reduced evidence for return forecastability. Stambaugh (1999)
derives the finite-sample properties of the return-forecasting regression, showing the bias in the
return forecast coefficient and the standard errors. In monthly regressions, Stambaugh finds
that in place of OLS p-values of 6% (1927-1996) and 2% (1952-1996), the correct p-values are
17% and 15% — far from statistically significant.

More recently, Goyal and Welch (2003), (2005) show that return forecasts based on dividend
yields and a menagerie of other variables do not work out of sample. They compare forecasts
in which one estimates the regression using data up to time t to forecast returns at t+1 with
forecasts using the sample mean in the same period. They find that the sample mean produces
a better out-of-sample prediction than do the return-forecasting regressions.2

Does this evidence mean return forecastability is dead? No, and the key is in the second
regression of Table 1. Dividends are clearly not forecastable at all. In fact, the small point
estimate has the wrong sign — a high dividend yield means a low price, which should signal
lower, not higher, future dividend growth.

If both returns and dividend growth are unforecastable, then present value logic implies that
the dividend/price ratio is a constant, which it surely is not. Alternatively, if the dividend yield
is stationary, one of dividend growth or price growth must be forecastable to bring the dividend
yield back following a shock. We cannot just ask “Are returns forecastable?” We have to ask
“which of dividend growth or returns is forecastable?” (Or really, “how much of each?” ) The
null hypothesis for unforecastable returns must also raise the forecastability of dividend growth,
and then it must also confront the lack of such forecastability in the data.

I set up such a null, and I evaluate the joint distribution of return and dividend-growth
forecasting coefficients. I confirm that the return forecasting coefficient, taken alone, is not
significant. Under the br = 0 null, we see return forecasts as large or larger than those in the
data about 20% of the time. However, I find that the absence of dividend growth forecastability
offers much more significant evidence. The answer depends on specification, but the best overall
number is about a 1-2% probability value (last row of Table 5). The important evidence, as in
Sherlock Holmes’ famous case, is the dog that does not bark.3

2Additional contributions include Kothari and Shanken (1997), Paye and Timmermann (2003), Torous, Valka-
nov and Yan (2004), Ang and Bekaert (2005), Richardson and Whitelaw (2006), and papers cited below.
A related literature finds studies whether long-horizon regressions capture any information not present in one-

period regressions. Given the large persistence of the dividend yield and related forecasting variables, the answer
is that, by and large, they do not. This is good news for my purpose, as I can focus entirely on one-period
regression statistics. Important contributions include Campbell and Shiller (1988), Richardson and Stock (1989),
Hodrick (1992), Boudoukh and Richardson (1993), Valkanov (2003), Boudokh Richardson and Whitelaw (2006).

3Inspector Gregory: “Is there any other point to which you would wish to draw my attention?”
Holmes: “To the curious incident of the dog in the night-time.”
“The dog did nothing in the night time.”
“That was the curious incident,” remarked Sherlock Holmes.
From “The Adventure of Silver Blaze” by Arthur Conan Doyle
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I confirm Goyal and Welch’s observation that out-of-sample return forecasts are poor, but I
show that this result is to be expected. Setting up a null in which return forecasts account for all
dividend yield volatility, I find out-of-sample performance as bad or worse than that in the data
about 30-40% of the time. With a highly persistent right hand variable, it is hard to measure
the regression coefficient accurately in “short” samples. Thus, this observation does not reject
the view that returns are forecastable. Instead, Goyal and Welch’s findings are an important
caution about the practical usefulness of return forecasts in forming aggressive market-timing
portfolios given currently available data.

There are several mathematically equivalent ways of stating the same point, and I connect
them. They stem from the approximate identity

br = 1− ρφ+ bd (1)

where br is the coefficient of log returns on the log dividend yield, bd is the coefficient of log
dividend growth on the log dividend yield, φ is the dividend yield autocorrelation, and ρ ≈ 0.96
is a constant.

First, we can focus on the joint distribution of (br, φ), leaving bd implied, rather than focus
on the joint distribution (br, bd), leaving φ implied. This is the more conventional framing of
the problem, and it allows us to examine forecasting variables that do not include dividends.
Larger br estimates typically come with lower φ estimates. This fact is driven by a strong
negative correlation between return and dividend yield shocks. Thus, while under the br = 0
null we do often see br as high as in the data - the marginal distribution of br does not reject —
almost all of those high br draws come with low φ draws. We almost never see events with br
as high as we have seen in our sample and φ as high as we have seen in our sample.

Second, one can divide (1) by (1− ρφ) to obtain

br
1− ρφ

− bd
1− ρφ

= 1 (2)

The terms of this identity represent the fractions of dividend yield variance due to chang-
ing return forecasts and to changing dividend growth forecasts respectively. They are also
the coefficients in regressions of long-run returns

P∞
j=1 ρ

j−1rt+j and long-run dividend growthP∞
j=1 ρ

j−1∆dt+j on dividend yields. Tests based on long-run coefficients also reject the null with
1-2% probability values. Again, samples with high br typically have low φ. Therefore, they do
not have particularly large values of br/(1− ρφ).

Stating null and alternative in terms of the long-run regression coefficients simplifies and
clarifies the analysis considerably. They condense the joint distribution of br, φ into a single
number, and capture in that number the observation that we do not see high br without high
φ. Since the long-run return and long-run dividend coefficients in (2) are mechanically related,
we do not have to worry whether it is more interesting to test br, bd or some other part of the
joint distribution. The question is, what set of events do we consider “more extreme” than the
observed sample, to put in the rejection region of a test statistic? If we base a test statistic
on br greater than that observed in the data, then many of the events in the rejection region
have lower φ than in our data ((br, φ) distribution), or they have bd much lower (large negative
numbers) than in our data ((br, bd) distribution). These events do have forecastable dividend
growth, and dividend yields partially forecast by variation in dividend growth — their dogs do
bark. The long-run coefficients reject decisively, because they put these events in the set that
are “closer to the null” than the event we have seen. And rightly so.
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Third, the identity (1) shows that we can in fact have both br = 0 and bd = 0 if φ = 1/ρ ≈
1.04. But this specification requires an explosive root in the dividend yield. Thus, the extra
information about return forecastability from bd or φ comes from prior information that φ < 1.04,
and stronger evidence comes by imposing φ < 1. This is eminently sensible extra information,
as I argue at length below. It makes neither statistical nor economic sense to consider dividend
yields that have explosive roots. But it is extra information, and it is its imposition that allows
us to use information in bd or φ to sharpen our knowledge about br. This last point is the essence
of Lewellen’s (2004) calculations, and he also finds strong statistical evidence against the null of
unpredictable returns.

2 Null hypothesis

To keep the analysis simple, I restrict attention to a first order VAR representation of log returns,
dividend yields, and dividend growth,

rt+1 = ar + br(dt − pt) + εrt+1 (3)

∆dt+1 = ad + bd(dt − pt) + εdt+1 (4)

(dt+1 − pt+1) = adp + φ(dt − pt) + εdpt+1. (5)

Lagged returns and dividend yields do not add much forecast power, nor do further lags of
dividend yields. Of course, adding more variables can only make returns more forecastable.

The Campbell-Shiller linearization of the definition of a return4 Rt+1 = (Pt+1 + Dt+1)/Pt
gives the approximate identity

rt+1 = ρ(pt+1 − dt+1) +∆dt+1 − (pt − dt) . (6)

First, projecting on dt − pt, this identity implies that the regression coefficients obey the ap-
proximate identity

br = 1− ρφ+ bd. (7)

Second, it means that the errors in (3)-(5) obey

εrt+1 = εdt+1 − ρεdpt+1. (8)

Thus, the three equations (3)-(5) are redundant. One can infer the coefficients and error covari-
ances of any one equation from the other two.

4Start with the identity

Rt+1 =
Pt+1 +Dt+1

Pt
=

³
1 +

Pt+1
Dt+1

´
Dt+1
Dt

Pt
Dt

.

Loglinearizing,

rt+1 = log
h
1 + e(pt+1−dt+1)

i
+∆dt+1 − (pt − dt)

≈ k +
P/D

1 + P/D
(pt+1 − dt+1) +∆dt+1 − (pt − dt)

where P/D is the point of linearization. Ignoring means, and defining ρ = P/D
1+P/D

,

rt+1 = ρ (pt+1 − dt+1) +∆dt+1 − (pt − dt)

Iterating forward results in the present value identity (11).
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The identity (7) shows clearly how we cannot simply take br = 0 without changing the
dividend growth forecast bd or the dividend yield autocorrelation φ. If one changes bd or φ, then
the reduced fit of those forecasts become evidence against the null as well. In particular, for a
nonexplosive φ < 1/ρ ≈ 1.04, we cannot choose both br = 0 and bd = 0. Fixing φ, to generate
a coherent null with br = 0, we must assume an equally large bd of the opposite sign, and then
we must address the failure of this dividend growth forecastability in the data.

By subtracting inflation from both sides, Equations (6)-(8) can apply to real returns and
real dividend growth. Subtracting the riskfree rate from both sides we can relate the excess log
return rt+1−rft to dividend growth less the interest rate ∆dt+1−rft . One can either introduce an
extra term brf and εrf or simply understand the need to forecast “dividend growth” to include
both terms.

To form a null hypothesis, then, I start with estimates of (3)-(5) formed from regressions of
log real returns, log real dividend growth and the log dividend yield in annual CRSP data, 1927-
2004 displayed in Table 2. The return-forecasting coefficient is about br ≈ 0.10, the dividend
growth forecasting coefficient bd ≈ 0, and the OLS estimate of the dividend yield autocorrelation
is about φ ≈ 0.94. The standard errors are about the same, 0.05 in each case.

Alas, the identity (7) is not exact. The “implied b” column of Table 2 gives each coefficient
implied by the other two equations and the identity (7). The difference is small, about 0.005 in
each case, but large enough to make a visible difference in the results. For example, the t statistic
calculated from the implied br coefficient is 0.101/0.050 = 2.02 rather than 0.097/0.05 = 1.94,
and we will see as much as 2-3 percentage point differences in probability values to follow. In
this and all remaining calculations I calculate ρ from the mean log dividend yield as

ρ =
eE(p−d)

1 + eE(p−d)
= 0.9638.

The middle three columns of Table 2 present the error standard deviations and correlations.
Returns have almost 20% standard deviation. Dividend growth has a large 14% standard devia-
tion. In part this number comes from large variability in dividends in the prewar data. In part,
the standard method for recovering dividends from the CRSP returns5 means that dividends
paid early in the year are reinvested at the market return to the end of the year. Return and
dividend yield shocks are negatively correlated; price changes affect both variables. Dividend
yield and dividend growth shocks are almost uncorrelated however, which will drive several
differences between return - dp and dividend growth - dp systems.

The final columns of Table 2 present the null hypothesis I use to simulate distributions. I
set br = 0. I start by choosing φ at its sample estimate φ = 0.941. I consider alternative and
especially larger values of φ in detail below. Given br = 0 and φ, the necessary dividend forecast

5CRSP gives total returns R and returns without dividends Rx. I find dividend yields by

Dt+1

Pt+1
=

Rt+1

Rxt+1
− 1 = Pt+1 +Dt+1

Pt

Pt
Pt+1

− 1.

I then can find dividend growth by

Dt+1

Dt
=
(Dt+1/Pt+1)

(Dt/Pt)
Rxt+1 =

Dt+1

Pt+1

Pt
Dt

Pt+1
Pt

.

Cochrane (1991) shows that this procedure implies that dividends paid early in the year are reinvested at the
return R to the end of the year. Accumulating dividends at a different rate is an attractive alternative, but then
returns, prices and dividends would no longer obey the identity Rt+1 = (Pt+1+Dt+1)/Pt with end-of year prices.
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coefficient bd follows from the identity bd = ρφ− 1 + br.

Estimates ε sd/corr (%) Null

b̂, φ̂ σ(b̂) impl. b̂ r ∆d dp b, φ

r 0.097 0.050 0.101 19.6 66 -70 0
∆d 0.008 0.044 0.004 66 14.0 7.5 -0.0931
dp 0.941 0.047 0.945 -70 7.5 15.3 0.941

Table 2. Forecasting regressions and null hypothesis. Each row represents an OLS
forecasting regression using the log dividend yield, rt+1 = ar + br(dt − pt) + εrt+1,
etc. in annual CRSP data 1927-2004. Standard errors include a GMM correction
for heteroskedasticity. The “implied b” column calculates each coefficient based on
the other two and the identity br = 1 − ρφ + bd, using ρ = 0.9638. The diagonals
of the “ε sd/corr (%)” columns give the standard deviation of the regression errors
in percent; the off-diagonals give the correlation between errors. The “Null” column
describes coefficients used to simulate data under the null hypothesis that returns
are not predictable.

We have to choose two variables to simulate and then let the third follow from the identity
(6). I simulate the dividend growth and dividend yield system. This is a pleasant choice since
the errors are nearly uncorrelated, and with bd = 0 the shocks are nicely interpretable as pure
“expected return” and “cashflow” shocks (See Cochrane 2004 Ch. 20). However, the identity
(6) holds well enough that this choice has almost no effect on the results. The null hypotheses
thus takes the form⎡⎢⎣ dt+1 − pt+1

∆dt+1
∆rt+1

⎤⎥⎦ =
⎡⎢⎣ φ
ρφ− 1
0

⎤⎥⎦ (dt − pt) +

⎡⎢⎣ εdpt+1
εdt+1

εdt+1 − ρεdpt+1

⎤⎥⎦
I use the sample estimate of the covariance matrix of εdp and εd. I simulate 5000 artificial
data points from each null. I draw the first observation d0 − p0 from the unconditional density

d0 − p0 ∼ N
h
(0, σ2

³
εdp
´
/(1− φ2)

i
; then I draw εdt and εdpt as random normals and simulate

the system forward.

2.1 A “structural” interpretation

The null hypothesis can be given a deeper structural interpretation. Suppose that expected
dividend growth follows an AR(1) process,

∆dt+1 = xt + vt+1 (9)

xt+1 = φxt + δt+1, (10)

and that expected returns are constant. Using the Campbell-Shiller (1988) present value identity
that results from iterating (6) forwards,

pt − dt = Et

∞X
j=1

ρj−1 (∆dt+j − rt+j) , (11)
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we then have

pt − dt =
1

1− ρφ
xt. (12)

From the identity (6), returns follow

rt+1 =
ρ

1− ρφ
δt+1 + vt+1 (13)

Thus, (9)-(10) implies that dividend yields, returns, and dividend growth follow the representa-
tion ⎡⎢⎣ dt+1 − pt+1

rt+1
∆dt+1

⎤⎥⎦ =
⎡⎢⎣ φ

0
ρφ− 1

⎤⎥⎦ (dt − pt) +

⎡⎢⎣ − 1
1−ρφδt+1

ρ
1−ρφδt+1 + vt+1

vt+1

⎤⎥⎦ . (14)

We can recover the covariance of the “structural” shocks v, δ from the covariance matrix
of the regression errors — σv, σδ and σvδ are exactly identified— and thus we can interpret the
restricted regression with br = 0 and bd = ρφ − 1 model as an instance of this structural
model. The implied values are a very small innovation variance for expected dividend growth,
σ(δ) = 0.008, a quite large innovation variance for unexpected dividend growth σ(v) = 0.144
and a nearly zero correlation between the two corr(v, δ) = −0.073.

Thus, we understand the strong positive correlation between return and dividend growth
shocks in Table 2 as a consequence of these underlying uncorrelated expected dividend growth
and ex-post dividend growth shocks, and the fact that unexpected dividend growth ε shocks
quite naturally enter both the return and dividend growth (second two) equations in (14). We
understand the strong negative correlation between return and dividend yield shocks in Table
2 as a consequence of the fact that the “present value” 1/(1− ρφ) of expected dividend growth
shocks δ enters both dividend yield and return (first two) equations in (14). We understand the
near-zero correlation of dividend-yield and dividend growth shock in Table 2 as a consequence of
the fact that δ and ε are (sensibly) nearly uncorrelated, and appear separately in the dividend
yield and dividend growth (first and last) equations of (14). The same error structure emerges if
we specify that expected returns vary through time and expected dividend growth is constant.

This little calculation verifies that the null really can comes from a consistent view of the
world in which expected returns are constant and changing expected dividend growth gener-
ates observed movements in dividend yields. It also verifies that it makes sense to change the
forecasting coefficients br, bd, φ and keep intact the error covariance structure.

3 Distribution of regression coefficients and t statistics

In each Monte Carlo draw I run regressions

rt+1 = ar + br(dt − pt) + vrt+1

∆dt+1 = ad + bd(dt − pt) + vdt+1.

Figure 1 plots the joint distribution of the return and dividend-forecast regression coefficients
and t statistics. Table 3 collects probabilities.

The marginal distribution of the return-forecast coefficient br gives quite weak evidence
against the unforecastable-return null. The Monte Carlo produces a coefficient larger than the
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-8
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-2

0
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t, br

t, 
b d

1.0 % 5.8 %
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11.1 %

t-stats, φ = 0.99

Figure 1: Joint distribution of return and dividend growth forecasting coefficients (left) and t-
statistics (right). Red lines and dot give the sample estimates. The green triangle gives the null.
1000 simulations are plotted for clarity; each point represents 1/10 % probability. Percentages
are the fraction of 5000 simulations that fall in the indicated quadrants.

roughly b̂r ≈ 0.10 sample estimate 22% of the time, and a larger t statistic than the sample t
= about 10% of the time (points to the right of the vertical line in the top panels of Figure 1,
top left entries of Table 3) This finding confirms the results of Goetzmann and Jorion (1993),
Nelson and Kim (1993), and Stambaugh (1999).

However, the null must assume that dividends are forecastable. As a result, almost all
simulations give a strong, negative dividend growth forecast coefficient bd; the cloud of Figure 1
is vertically centered a good deal below zero and below the sample estimate b̂d. Dividend growth
forecasting coefficients and t statistics larger than the roughly zero values observed in sample
are only seen 1.90% of the time, and the t statistic is only greater than the sample value 1.76%
of the time (points above the horizontal lines in Figure 1, bd column of Table 3). Results are
even stronger for excess returns, for which bd > b̂d is only observed 1.16% of the time and the t
statistic only 0.82% of the time.
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br tr bd td br, bd br, φ br, φimpl

Real 22.1 9.88 1.90 1.76 1.88 0.04 0.00
Excess 17.1 5.60 1.16 0.82 1.16 0.02 0.00

Table 3. Percent probability values under the φ = 0.941 null. Each column gives
the probability that the indicated coefficients are greater than the sample values.
Monte Carlo simulation of the null described in Table 2 with 5000 draws. φimpl =
0.945 uses the value of φ implied by the bd and br estimates and the identity br =
1− ρφ+ bd

This is my central point: the lack of dividend forecastability in the data gives in fact far
stronger statistical evidence against the null than does the presence of return forecastability,
lowering probability values from the 20% range for returns to the 1% range. ( I discuss the
φ = 0.99 results in Figure 1 below.)

To emphasize this point, Figure 2 plots the conditional distribution of each forecast coefficient
given that the other one comes out to its sample value. These are horizontal and vertical slices
of the distributions in Figure 1 along the horizontal and vertical lines. The left hand panel of
Figure 2 shows that given the dividend growth coefficient bd = b̂d, the observed return coefficient
b̂r is not that surprising. However, the right hand panel of Figure 2 show that given the return
coefficient, the (lack of) dividend forecast really is surprising. Given the estimate b̂r ≈ 0.1, we
should see most of the time a dividend growth forecast coefficient of approximately bd ≈ −0.05,
and we only see coefficients above the approximately zero sample value 2% of the time.

-0.1 0 0.1 0.2 0.3 0.4

br in data

22 % 78 %

b
r

f( br | bd  )

-0.2 -0.1 0 0.1

b
d
 in data

b
d

98 % 2 %

f( bd | br  )

Figure 2: Conditional distribution of return forecast coefficients br given the dividend growth
forecast coefficient bd and vice versa.

3.1 The φ view

The return forecast coefficient, the dividend-yield autocorrelation and the dividend growth fore-
cast coefficient are related by the approximate identity br = 1− ρφ + bd. Therefore, the exact
same information in the joint distribution of return and dividend growth forecast coefficients
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(br, bd) is captured in the joint distribution of return and dividend yield forecast coefficients
(br, φ), or dividend growth and dividend yield coefficients (bd, φ), and it is useful to relate the
three ways of looking at the data.

Recasting the point in the (br, φ) is context is especially important since the most articles
study return forecastability in a two-variable VAR consisting of returns and the forecasting
variable, leaving the behavior of dividends implicit from identities.

To address this question, the left-hand panels of Figure 3 plot the joint distribution of (br, φ).
We see again that a high return coefficient br by itself is not so unusual, occurring about 20%
of the time (area to the right of the vertical line). However, high return coefficients br almost
always come with low dividend yield autocorrelations φ. We almost never see a return forecast as
high as we do in the data together with a dividend yield autocorrelation as high as the φ = 0.941
we seen in the data — the North East quadrants. The exact numbers depend on whether one
starts the tail region at the directly estimated sample value φ̂ = 0.941 or the sample value of
φ implied from b̂d and b̂r, φ̂ = 0.945. The probability of the joint region based on φ̂ = 0.941
is 0.04%, i.e. two times in 5000 draws, while the probability based on φ > 0.945 is 0.00%,
i.e. never in 5000 draws. (The bottom left panel of Figure 3 is the same as Lewellen’s (2004)
Figure 1, Panel B except Lewellen calibrates to monthly postwar data. Lewellen also focuses on
a different distributional calculation.)

The negative correlation between br and φ estimates is the key to this result. A lower sample
value of φ, through br = 1− ρφ+ bd must correspond to a larger br, a larger, bd or both. If the
dividend yield reverts quickly after a shock, then it must be the case that one of dividend growth
or prices and hence returns is unusually large after the shock, to bring the dividend yield back
in line. In fact, lower φ are primarily largely associated with higher br, driven by the strong
negative correlation between φ and br shocks seen in Table 2.

The diagonal dashed line marked bd in the left panel of Figure 3 marks the set br = 1−ρφ+b̂d
where b̂d is the sample estimate. Points above and to the right of this dashed line are exactly the
points above bd > b̂d in Figure 1. The comparison between the diagonal bd line and the vertical
br line shows the difference between looking at the return forecast br and the dividend forecast
bd in (br, φ) space. Given the strong negative correlation between br and φ, the bd region above
the diagonal line of Figure 3 excludes many points allowed by the vertical br > b̂r region. In
this way, the bd > b̂d test captures the intuition that the high br estimates null typically happen
with low φ estimates, estimates not observed in our sample. Again, I discuss the φ = 0.99 results
below.

Looking at the (br, φ) system has the added advantage that one can make the same dis-
tributional points with an arbitrary right hand variable, one that is not connected to dividend
growth via any identities. However, the strong negative correlation between br and φ estimates
visible in Figure 3 is an important component of the result. In turn, the correlation of estimates
derives from the strong correlation between return and dividend yield shocks seen in Table 2,
and that correlation between shocks emerges naturally in dynamic present value models such as
the one sketched at the end of section 2, since a change in price moves both dividend yield and
return. An arbitrary right hand variable, especially one that does not include price, is likely
not to feature such a strong correlation.

The right hand panels of Figure 3 complete the trio of views by plotting the joint distribution
of dividend growth and dividend yield forecasting coefficients (bd, φ). There is no particular
correlation between the two coefficients in this case, resulting from the fact that the correlation
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Figure 3: Joint distributions of regression coefficients. Left hand panels give the joint distribution
of br, φ. Right hand panels give the joint distribution of bd, φ. In each graph the triangle marks
the null hypothesis used to generate the data and the circle marks the estimated coefficients
b̂r, b̂d, φ̂. The diagonal dashed line marked “bd” in the left hand panels marks the region br =
1 − ρφ + b̂d; points above and to the right are draws where bd exceeds its sample value. The
diagonal dashed line marked “br” in the right hand panels marks the region bd = ρφ − 1 + b̂r;
points above and to the left are draws where br exceeds its sample value. Numbers are the
percentage of the draws that fall in the indicated quadrants.

between dividend growth and dividend yield shocks is nearly zero, as seen in Table 2. The
cloud is smeared to the left however; the distribution of bd conditional on a given φ (vertical
slices) becomes more spread out for lower φ. The leftward smear of the cloud relative to the
null (triangle) comes from the downward bias and large left tail of autocorrelation φ estimates,
and the fact that lower φ estimates are via br = 1 − ρφ + bd allow the appearance of greater
dividend growth forecastability than is really there. Thus, though the unconditional chance of
seeing a dividend growth forecast as high as in the data (above the horizontal line) is already
low, there are almost no observations in the North East corner, where we see a large dividend
growth forecast and high sample autocorrelation.
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4 Long-horizon coefficients

If we divide the identity br = 1− ρφ+ bd by 1− ρφ, we obtain the identity

br
1− ρφ

− bd
1− ρφ

= 1 (15)

blrr − blrd = 1.

The terms of this lovely identity have important interpretations. First, blrr is the regression
coefficients of long-run returns

P∞
j=1 ρ

j−1rt+j on dividend yields dt − pt, and similarly for b
lr
d ,

hence the lr superscript. Second, blrr and −blrd represent the fraction of the variance of dividend
yields that can be attributed to time-varying expected returns and to time-varying expected
dividend growth, respectively.

To see these points, iterate the return identity (6) forward, giving the Campbell-Shiller (1988)
present value identity

dt − pt = Et

∞X
j=1

ρj−1∆rt+j −Et

∞X
j=1

ρj−1∆dt+j .

Multiply by (dt − pt)−E(dt − pt) and take expectations, giving

var(dt − pt) = cov

⎛⎝ ∞X
j=1

ρj−1∆rt+j , dt − pt

⎞⎠− cov

⎛⎝ ∞X
j=1

ρj−1∆dt+j , dt − pt

⎞⎠ .

All variation in the dividend-price ratio must be accounted for by its covariance with, and thus
ability to forecast, future returns or future dividend growth. Dividing by var(dt − pt) we can
express the variance decomposition in terms of regression coefficients,

β

⎛⎝ ∞X
j=1

ρj−1∆dt+j , dt − pt

⎞⎠− β

⎛⎝ ∞X
j=1

ρj−1rt+j , dt − pt

⎞⎠ = 1
where β(y, x) denotes the regression coefficient of y on x. In the context of our simple VAR(1)
representation we have

β

⎛⎝ ∞X
j=1

ρj−1rt+j , dt − pt

⎞⎠ = ∞X
j=1

ρj−1β (rt+j , dt − pt) =
∞X
j=1

ρj−1φj−1br =
br

1− ρφ
= blrr

and similarly for dividend growth.

Negative blrd is the fraction of dividend-yield volatility due to dividend growth, since b
lr
d and

bd should be negative. High dividend yields — low prices — should correspond to lower dividend
growth. If a high dividend yield instead means higher dividend growth, expected returns
must move even further to explain the dividend yield, thus explaining “more than 100%” of
dividend yield variation. More than 100% and less than zero are therefore possible. This is
not a decomposition into orthogonal components; in fact with a single state variable (d-p) the
components are perfectly correlated. This sort of calculation is the standard way to adapt the
ideas of Shiller’s (1981) and LeRoy and Porter’s (1981) volatility tests to the fact that dividend
yields rather than price levels are stationary. See Campbell and Shiller (1988) and Cochrane
(1992), (2004) for more details on this variance decomposition.
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Using the identity br−bd = 1−ρφ, we can also express the identity linking long-run coefficients
(15) as

br
br − bd

− bd
br − bd

= 1. (16)

This equation expresses the same idea in another way. br−bd is the total amount of predictability
we see in the data. Returns or dividends must be forecastable to pull the dividend yield back
after a shock, and the faster it reverts (lower φ), the larger br and −bd must be. The two terms
then capture how much of the needed overall predictability br − bd is in returns and how much
is in dividend growth.

Variable blr s.e. t % p
r 1.086 0.437 2.48 1.52
∆d 0.086 0.437 2.48 1.52

blrr t % p
min max min max min max

Real 1.04 1.09 2.48 2.50 1.48 1.98
Excess 1.18 1.23 2.62 2.72 0.38 0.64

Table 4. Long-run regressions. blrr is computed as b
lr
r = br/(1 − ρφ) where br is

the regression coefficient of one year returns rt+1 on dt−pt, φ is the autocorrelation
of dt − pt, ρ = 0.961, and similarly for blrd . The standard error is calculated from
standard errors for br and φ by the delta method. br, φ standard errors correct for
heteroskedasticity. The t statistic for ∆d is the statistic for the hypothesis blrd = −1.
Top panel entries are based on direct estimates of bd, φ using br implied by the
identity br = 1 − ρφ + bd. The bottom panel gives the maximum and minimum
values over the three choices of which two variables are estimated leaving the third
implied. Probability values are generated by Monte Carlo under the φ = 0.941 null.

Table 4 presents estimates of the long-horizon regression coefficients. I calculate standard
errors6 and a t statistic based on the OLS standard errors for the underlying coefficients br, bd, φ.
The top panel of Table 4 shows that dividend yield volatility is almost exactly accounted for
entirely by return forecasts, b̂lrr ≈ 1, with essentially no contribution from dividend growth
forecasts b̂lrd ≈ 0. This is another sense in which the return forecasting coefficient is highly

6I compute standard errors from standard errors for b̂r and φ̂ as follows

σ2(b̂lrr ) = σ2
∙
∂blrr
∂br

b̂r +
∂blrr
∂φ

φ̂

¸
=

µ
∂blrr
∂br

¶2
σ2
¡
b̂r
¢
+

µ
∂blrr
∂φ

¶2
σ2
¡
φ̂
¢
+ 2

∂blrr
∂br

∂blrr
∂φ

σ(b̂r, φ̂)

∂blrr
∂br

=
1

1− ρφ
;
∂blrr
∂φ

=
ρbr

(1− ρφ)2
=

ρ

1− ρφ
blrr

σ2
¡
b̂lrr
¢

=

µ
1

1− ρφ

¶2
σ2(b̂r) +

µ
ρ

1− ρφ

¶2 ¡
blrr
¢2

σ2(φ̂) + 2
ρ

(1− ρφ)2
blrr σ(br, φ)

σ2
¡
b̂lrr
¢

=

µ
1

1− ρφ

¶2 h
σ2(b̂r) + 2ρb

lr
r σ(b̂r, φ̂) +

¡
ρblrr

¢2
σ2(φ̂)

i
.

14



economically significant. This finding is a simple consequence of the familiar estimates. b̂d ≈ 0
means b̂lrd ≈ 0 of course, and

b̂lrr =
b̂r

1− ρφ̂
≈ 0.10

1− 0.96× 0.94 ≈ 1.0.

In fact, the point estimates in Table 4 show slightly more than 100% of dividend-yield volatility
coming from returns, since the point estimate of dividend growth forecasts go slightly the wrong
way.

The top panel of Table 4 drives home the fact that, by the identity blrr − blrd = 1, the long-
horizon dividend growth regression gives exactly the same results as the long-horizon return
regression. The standard errors are also exactly the same, and the t statistic for blrr = 0 is
exactly the same as the t statistic for blrd = −1. Using the long-horizon regression coefficients,
we do not need to choose between return and dividend-growth tests.
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Figure 4: Distribution of br/(1−ρφ), the fraction of dividend-yield variance explained by return
forecasts, and the implied coefficient of long run returns

P
ρj−1rt+j on dividend yields. The

vertical bar gives the corresponding value in the data.

Figure 4 tabulates the small-sample distribution of the long-run return and dividend growth
estimates, and the bottom panel of Table 4 includes the probability values, i.e. how many long-
run return forecasts are greater than the sample value under the null brlr = 0. By the identity
blrr − blrd = 1, these are exactly the same as how many long-run dividend growth forecasts are
greater than the sample value under the null bdlr = −1. The finite sample distribution gives
a 1.52% probability value of seeing larger blrr (or b

lr
d − 1). Comparing this value to the 20% or

so probability values for br > b̂r, and we see that the long-run coefficient incorporates the joint
information in returns and dividend growth, or returns and dividend-yield autocorrelation, in a
single number.

Specifically, we saw in Figure 3 that br is large predominantly in samples in which φ is low.
When φ is low, however, 1− ρφ is large, so blrr = br/(1− ρφ) is not so large. Thus, the long-run
coefficient captures the point of the joint br, φ distribution of Figure 3.
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Similarly, we saw in Figure 1 that large br usually come with small (large negative) bd. In the
context of (16), the long-run regression coefficient is blrr = br/(br − bd). Large br that also come
with large negative bd count less in blrr , so testing the long-run coefficient captures the point of
the joint (br, bd) distribution in a single number. Of course, since br − bd = 1 − ρφ this is the
same observation, as the only way both returns and dividend growth can be more forecastable
in the right direction is for dividend yields to have a lower autocorrelation.

For the identity blrr − blrd = 1 to hold exactly, one must use estimates for which the return
identity holds exactly, implying one of br, bd or φ from the other two. The first two rows of Table
4 present results calculated from bd and φ, implying br. The first row of the bottom panel shows
the maximum and minimum values over the three ways of making the calculation, i.e. implying
each variable in turn from estimates of the other two. The coefficients change slightly, from 1.04
to 1.09, resulting in just enough of a difference in probability values, 1.48% to 1.98%, to merit
showing the range of variation.

The last row of Table 4 shows the results for excess returns. Again, excess returns paint
a stronger picture. Returns are more forecastable, and correspondingly dividend growth less
interest rates go further in the wrong direction, accounting now for -18% to -23% of dividend
yield variation. The probability values of 0.38% - 0.64% for the test blrr = 0 are correspondingly
lower.

4.1 The advantages of long-run coefficients

Recasting the problem in terms of the long-run coefficients blrr and b
lr
d provides the most elegant

way to characterize the null and alternative. In particular, the long-run coefficients solve the
arbitrariness of the joint regions for br and bd, or br and φ, by boiling them down to a single
number, and they capture the null and alternative in the cleanest way.

Boiling a joint distribution down to a single test statistic is always troublesome. Should we
test br > b̂r, or should we test bd > b̂d? Or perhaps we should test some other linear combination
or subset of the (br, bd) region, or the (br, φ) region? Certainly the joint probabilities (br > b̂r,
φ > φ̂) go too far. I present them as interesting characterizations of the joint distribution, but
one would not likely set up a test region that is an upper right quadrant, since one would not
likely commit to accepting the null with an arbitrarily large br but bd or φ just below some
preannounced value.

The issue comes down to defining what is the “event” we have seen, and what other events
we would consider “more extreme,” and so should count as being further out in the tail. Here,
the long-run coefficients neatly solve the conundrums posed by the joint distribution of short-run
coefficients.

We conventionally think of the “event” as br = b̂r ≈ 0.1, and “more extreme” events as
br > b̂r. But, as the joint distributions point out, most of the events with br > b̂r have
bd < b̂d ≈ 0 or low values of φ < φ̂. In these events, dividend growth is forecastable and does
count for an often substantial portion of dividend yield variation. For example, we might see
φ = 0.8, bd = −0.11 and br = 1 − 0.96 × 0.80 − 0.11 = 0.12. This br = 0.12 is greater than
b̂r ≈ 0.10 seen in our data, so conventionally counts as a “more extreme” event. But in this
draw, a rise in the dividend yield corresponds about half and half to future dividend growth
and future returns; volatility tests are a half-success rather than the total failure they are in our
data. Is this really a “more extreme” event, further from the unpredictable-return null than
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what we have seen in our data? Or, should we instead count this event as being much closer
to the null than the event in our data? The latter seems much more plausible, and that is how
the long-run coefficient counts things. Characterizing the null as bd = −0.1 leads to similar
problems, since a different φ leads to br 6= 0. blrd = −1 is the same as blrr = 0 for any value of φ.

Furthermore, since the long-run coefficients obey the identities (15) and (16), there is no dif-
ference whether we think in terms of return coefficients, dividend coefficients, or joint properties
of returns br, dividends bd or dividend-yields φ. Every statistic or pair of variables gives exactly
the same answer.

The long-run coefficients seem to give the same answer as the test on bd > b̂d, but in fact they
are different conceptually and slightly different in this sample. blrd > b̂lrd means bd/(1 − ρφ) >

b̂d(1 − ρφ̂). If we had b̂d = 0 exactly, these two events would be the same. With b̂d 6= 0, a
different sample φ can affect blrd , perhaps pushing it across a boundary, for the same value of bd.

Events with bd > b̂d can have a variance decompositions closer to the null than is our sample.
It is just the fact that b̂d is so close to zero that makes the results and intuition (regions in the
joint distribution regions) so similar between bd and long-run tests in our data.

5 Autocorrelation φ, unit roots, bubbles, and priors

So far I have used the sample value of the dividend yield autocorrelation φ. One naturally
wants to know how the results are affected by the choice of φ, especially larger values given the
downward bias in autocorrelation estimates.

Percent probability values Statistics
Null Real Excess returns
φ br bd br, φ blrmin blrmax br bd br, φ blrmin blrmax σ (dp) 1/2 life

0.90 23.6 0.64 0.00 0.34 0.58 19.3 0.34 0.00 0.08 0.18 0.35 6.6
0.941 22.2 1.60 0.06 1.20 1.68 17.5 0.96 0.00 0.36 0.58 0.45 11.4
0.96 21.7 2.58 0.08 2.02 2.80 17.0 1.52 0.02 0.76 1.04 0.55 17.0
0.98 21.2 4.92 0.42 4.30 5.50 15.9 2.92 0.20 1.80 2.54 0.77 34.3
0.99 21.3 6.28 0.76 5.86 7.40 16.0 3.44 0.34 2.86 3.56 1.09 69.0
1.00 22.2 8.66 1.00 8.06 10.10 17.1 4.82 0.56 3.86 4.94 ∞ ∞
1.01 19.6 11.00 1.46 10.72 12.94 15.0 5.40 0.70 5.14 6.60 ∞ ∞
Draw φ 23.1 1.64 0.10 1.40 1.70 18.2 0.96 0.04 0.70 0.84

Table 5. The effects of dividend-yield autocorrelation φ. The first column gives
the assumed value of φ. “Draw φ” draws φ from the concentrated unconditional
likelihood function displayed in Figure 5. “Percent probability values” give the per-
cent chance of seeing each statistic larger than the sample value. br is the return
forecasting coefficient, bd is the dividend growth forecasting coefficient. br, φ gives
the chance of seeing both statistics greater than their data counterparts. blr is the
long-run regression coefficient br/(1−ρφ). blrmin and blrmax are the smallest and largest
values across the three ways of calculating the sample value of br/(1− ρφ), depend-
ing on which coefficient is implied by the identity. σ(dp) gives the implied standard
deviation of the dividend yield σε,dp/

p
1− φ2. Half life is the value of t such that

φt = 1/2 .
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Table 5 collects the probability values for various events as a function of φ. The previous
figures include the case φ = 0.99, to illustrate the effects of changing φ on the distribution of
statistics.

As φ rises, the identity br = 1− ρφ+ bd requires larger (less negative) bd in the null br = 0.
At the sample φ = 0.94, we needed bd ≈ −0.1. As φ rises to φ = 1, for example, we only need
bd = ρ − 1 ≈ −0.04. As the null bd rises, the chance of seeing bd > b̂d naturally rises. This
behavior is clear comparing the top and bottom panels of Figure 1. Raising φ and thus raising
bd in the null raises the triangle representing the null, and the cloud of points rises with it, so
the chance of seeing bd > b̂d rises as well. This rise has little effect on the br statistic, which is
about 20% for all values of φ. However, the cloud doesn’t rise much, and its shape is changed
reflecting more severe small-sample biases. Looking down the br and bd columns of Table 5, the
bd probability for real returns crosses the 5% mark a bit above φ = 0.98 and is still below 10%
at φ = 1. Excess returns are stronger as usual, with the bd probability value still below 5% at
φ = 1. In all cases, bd still has more information, with less than half the probability value of the
br region.

The joint distributions of Figure 3 and the corresponding probability values br, φ in Table 5
show a similar pattern. In the left hand (br, φ) distribution, raising φ raises the null triangle,
raising the cloud of points somewhat. The increased downward bias in φ works against this rise
however, as the cloud of points does not rise one for one with the triangle null. Again, raising
φ has little effect on the number of points to the right of the vertical br = b̂r line, which is
why these probability values stay put at about 20%. Raising φ does put more points above the
diagonal bd line, but again not that much, and still almost no points in the joint br, φ region.

The probability values of the more attractive long-run coefficients blr = b/(1− ρφ) also rise
with φ. These probability values cross the 5% line at about φ = 0.98 for real returns, and stay
below 5% all the way to φ = 1 for excess returns. The evidence from the long-horizon coefficients
is stronger than the br evidence at any φ.

5.1 What’s the right φ?

One can simply stop at Table 5 and catalog the probability values as a function of the assumed
null φ. But it’s natural to think a bit about how large a value of φ we should consider, and thus
how strong the evidence really is.

We can start by ruling out φ > 1/ρ ≈ 1.04, since this case implies an infinite price-dividend
ratio, and we observe finite values. The forward iteration used to derive the present value
relation (11) from the return identity (6) is

pt − dt = Et

∞X
j=1

ρj−1∆dt+j −Et

∞X
j=1

ρj−1rt+j + lim
k→∞

ρkEt (pt+k − dt+k) (17)

In our VAR(1) model, the last term is ρkφk (pt − dt).

If we have φ = 1/ρ = 1/0.96 ≈ 1.04, then it seems we can adopt a null with both br = 0 and
bd = 0, and br = 1− ρφ+ bd. In fact, in this case we must have br = bd = 0, otherwise the terms
Et
P∞

j=1 ρ
j−1∆dt+j =

P∞
j=1 ρ

j−1φj−1br(dt − pt) do not converge. This is the case of “rational
bubble.” If φ = 1/ρ exactly, then price-dividend ratios vary on changing expectations of their
future values, the last term of Equation (17). This view is hard to hold as a matter of economic
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theory, so I rule it out on that basis. (Since I will argue against any φ ≥ 1, it doesn’t make sense
to spend a lot of time on a review of the rational bubbles literature to rule out φ = 1.04.)

At φ = 1, dividend yields are a random walk. φ = 1 still requires some predictability of
returns or dividend growth, br + bd = 1− ρφ ≈ 0.04. If prices and dividends are not expected
to move after a dividend yield rise, the higher dividend yield still translates directly to a higher
return. Alternatively, if returns are unchanged, lower dividend growth must offset the higher
dividend yield. φ = 1 does not cause much trouble for the present value model; that blows up
at φ = 1/ρ ≈ 1.04. φ = 1 is the point at which the statistical model explodes to an infinite
unconditional variance.

Can we seriously consider a unit root in dividend yields? The dividend yield does pass
standard unit root tests (Craine 1993), but with φ̂ = 0.94 that statistical evidence will naturally
be marginal. In my simulations, with φ = 1 the observed φ̂ = 0.941 is almost exactly the median
value, so we do not reject φ = 1 on a that basis.

A random walk does not fit long-run evidence. Stocks have been trading since the 1600s,
giving spotty observations of prices and dividends, and privately held businesses and partnerships
have been valued for a millennium. A random walk in dividend yields generates far more
variation than we have seen in that time. Using the measured 15% innovation variance of
the dividend yield, and starting at a price/dividend ratio of 25 (1/0.04), the one-century one-
standard deviation band — looking backwards as well as forwards — is a price-dividend ratio
between7 5.6 and 112, and the ±2 standard deviation band is between8 1.24 and 502. In 300
years, the bands are similarly ±1σ = (1.9− 336), ±2σ = (0.14− 4514). If dividend yields are
a random walk we should have seen observations of this sort, but market price-dividend ratios
of two or several hundred have never been approached.

Looking forward, and as a matter of economics, do we really believe that dividend yields will
wander arbitrarily far in either the positive or negative direction? Are we fairly likely to see a
market price-dividend ratio of one, or one thousand, in the next century or two? These points
are mirrored in the infinite unconditional variance of the dividend yield tabulated in Table 5.

Having argued against φ = 1, how close to one should we seriously consider as a null for φ?
Neither the statistical nor the economic argument rests on an exact random walk in dividend
yields. Both arguments center on the conditional variance of the price dividend ratio over
centuries, and φ = 0.999 or φ = 1.001 generate just about the same magnitudes as φ = 1.000.
Thus, if φ = 1.00 is too large to swallow, there is some range of φ below one that is also too
large to swallow. To get a handle on this question, Table 5 also includes the unconditional
variance of dividend yields and the half-life of dividend yields implied by the assumed φ. The
sample estimate φ̂ = 0.941 is consistent with the sample standard deviation of σ(dp) = 0.45
, and a 11.4 year half-life of dividend-yield fluctuations. In the φ = 0.99 null, the standard
deviation of log dividend yields is actually 1.14, more than twice the volatility that has caused
so much consternation in our sample, and the half-life of market swings is in reality 69 years;
two generations rather than one or two business cycles. These numbers seems to me a good
deal larger than any sensible view of the world.

However, nothing dramatic happens as φ rises from 0.98 to 1.01, so one may take any upper
limit in this range without changing the conclusions dramatically. And that conclusion remains
a rejection of the null that returns are unpredictable, with the consequence that dividend growth

7I.e. between eln(25)−0.15
√
100 = 5.6 and eln(25)+0.15

√
100 = 112.

8 I.e., eln(25)−2×0.15
√
100 = 1.24 and eln(25)+2×0.15

√
100 = 502.
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is predictable, with probability values in the 1% to 5% range.

5.2 An overall number

Results as a function of φ and then thoughts about upper limits for φ are not that satisfying in
the end. To produce a single number, one wants to integrate over possible values of φ with a
prior on φ. The last row of Table 5 presents this calculation, using the unconditional maximum
likelihood of φ as the density.

Figure 5 presents the unconditional likelihood function for the autoregressive parameter φ of
the dividend yield. I maximize out the other parameters, the intercept adp and the innovation
variance σ2ε,dp. (Details are in the appendix.) I use the unconditional likelihood (the usual
likelihood function plus the likelihood of the first data point) in order to impose the view that
dividend yields are stationary with a finite variance, φ < 1, since the unconditional likelihood
function goes to 0 at φ = 1.

0.8 0.85 0.9 0.95 1 1.05
φ

Li
ke

lih
oo

d

Ucond.

Cond.

Figure 5: Likelihood function for φ, the autoregressive parameter for dividend yields. The
intercept adp and innovation variance σ

2
εdp are maximized out

Next, I repeat the simulation but this time drawing φ from the unconditional likelihood
plotted in Figure 5 before drawing a sample of errors εdpt and εdt . The last row of Table 5
summarizes the results. (The graphs do not look all that much different than the ones shown so
far.) As one might expect from a visual integration of Table 5, the results are quite similar to
the φ = 0.94 case. Most importantly, rather than a 23.1% chance of seeing br > b̂r, we can reject
the null based on a 1.64% chance of seeing bd > b̂d or the 1.40-1.70% chance of seeing the more
elegant long-run regression coefficients blrr or blrd greater than their sample values. As usual,

excess returns give even stronger rejections, with bd > b̂d occurring 0.96% of the time, and the
long-run blrr test only 0.70-0.84% of the time. (Lewellen 2004 presents a similar calculation, also
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delivering small probability values.)

Figure 5 and the fact that numbers behave smoothly across the φ = 1 boundary in Table 5
actually suggest that the results will not be all that different if one chooses φ from the conditional
likelihood function, allowing the possibility that φ ≥ 1, but ignoring the information in the first
data point if φ < 1. Most of the weight of the density is in fact below φ = 1. The only hitch
is what to do about the small probabilities that φ ≥ 1/ρ ≈ 1.04, where the price-dividend ratio
becomes infinite.

5.3 Bias in forecast estimates

Table 6 presents the means of the estimated coefficients under the null hypothesis. As we expect
for a near-unit-root process, the φ estimate is downward biased. The return forecast coefficient
br is upward biased, with a bias of approximately 0.05 accounting for roughly half of the sample
estimate b̂r ≈ 0.10. This bias results from the strong negative correlation between return and
dividend-yield errors. The dividend growth coefficient however is not biased. As seen in of Figure
3, there is no particular correlation between the bd and φ estimates, again deriving from the
nearly zero correlation between dividend growth and dividend yield shocks. This observation
should give a little more comfort to the result that bd ≈ 0 is a good characterization of the
data. The long-horizon return coefficient blrr is biased up, and more so for higher values of φ.
Correspondingly blrd is biased up as well. However, the strong rejections of b

lr
r = 0 or equivalently

blrd = −1 are a sign that the coefficients are well enough measured that we can distinguish the
biased value of blrr = 0.24− 0.42 from the sample value of blrr ≈ 1. The main source of bias here
is the downward bias in φ, which induces a downward bias in the measured variance of dividend
yields. Therefore bd/(1− ρφ) is biased even though bd is not.

br bd φ blrr blrd
φ = 0.941 Null 0 -0.093 0.941 0 -1

Mean 0.049 -0.096 0.886 0.24 -0.76

φ = 0.99 Null 0 -0.046 0.990 0 -1
Mean 0.056 -0.050 0.927 0.42 -0.58

Table 6. Means of estimated parameters. Means are taken over 5000 simulations
of the Monte Carlo described in Table 2.

6 Out-of-sample R2

Goyal and Welch (2005) show in a careful and comprehensive study that dividend yield and
just about every other regressor thought to forecast returns does not do so out of sample. They
compare two return-forecasting strategies. First, run a regression rt+1 = a + bxt + εt+1 from
time 1 to time τ , and use â + b̂xτ to forecast the return at time τ + 1. Second, compute the
sample mean return from time 1 to time τ , and use that sample mean to forecast the return at
time τ + 1. Goyal and Welch compare the mean squared error of the two strategies, and find
that the “out-of-sample” mean squared error is larger for the return forecast than for the sample
mean.

Campbell and Thompson (2005) give a partial rejoinder. The heart of the Goyal-Welch
low R2 is that the coefficients a and b are poorly estimated in “short” samples. In particular,
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sample estimates often put conditional expected excess returns less than zero, and recommend
a short position. Campbell and Thompson rule out such “implausible” estimates, and find out-
of-sample R2 that are a bit better than the unconditional mean. Goyal and Welch respond that
the out-of-sample R2 are still tiny.

Does this result mean that “returns are really not forecastable?” If all dividend yield varia-
tion was really due to return forecasts, how often would we see Goyal-Welch results? To answer
this question, I set up the analogous null with bd = 0. Let expected returns vary through time,

Et(rt+1) = xt+1 = φxt − δt+1.

(The sign of δ is arbitrary. With a negative sign, a positive δ shock raises the ex-post return,
so the VAR covariance matrix becomes identical to the last case.) Now, let dividend growth be
completely unforecastable,

∆dt+1 = εt+1.

Imposing the Campbell-Shiller identity (11), we have

pt − dt = − 1

1− ρφ
xt.

Returns follow

rt+1 = ρ(pt+1 − dt+1) +∆dt+1 − (pt − dt)

= xt +
ρ

1− ρφ
δt+1 + εt+1

= (1− ρφ)(dt − pt) +
ρ

1− ρφ
δt+1 + εt+1.

Thus, we have a VAR representation"
dt+1 − pt+1

rt+1

#
=

"
φ 0

1− ρφ 0

# "
dt+1 − pt+1

rt+1

#
+

" − 1
1−ρφδt+1

ρ
1−ρφδt+1 + εt+1

#
. (18)

This is exactly the same VAR as before but with a 1 − ρφ in the return forecast slot rather
than zero.

I simulate artificial data from this null as before. I start with φ = 0.941, which gives the
sample return-forecasting coefficient br = 1 − ρφ ≈ 0.1. I also consider φ = 0.99 to address
small-sample bias worries, using br = 1 − ρφ. In each sample, I calculate the Goyal-Welch
statistic: I start in year 20, and I compute the difference between root mean squared error from
the sample-mean forecast and from the fitted dividend yield forecast. A larger positive value
for this statistic is good for return forecastability, larger negative values mean the sample mean
is winning.

Figure 6 shows the distribution of this statistic across simulations. In the data, marked by
the vertical “Data” line, the statistic is negative; the sample mean is a better forecast than the
dividend yield, as Goyal and Welch find. However, 30-40% of the draws show even worse results
than our sample. In these cases, even though all dividend-price variation is due to time-varying
expected returns, the dividend yield is an even worse “out of sample” forecaster than it is in the
observed data. In fact, the mean of the statistic is negative, and only about 20% of the draws
show a positive value. Under this null, it is unusual for dividend-yield forecasting actually to
work better than the sample mean in this out of sample experiment.
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Figure 6: Distribution of the Goyal-Welch statistic under the null that returns are forecastable
and dividend growth is not forecastable. The statistic is the root mean squared error from
using the sample mean return to forecast returns, less the root mean squared error from using
a dividend yield regression from time 1 to time t to forecast returns at time t+ 1.

I conclude that the Goyal-Welch statistic does not reject the time-varying expected return
null. Poor out-of-sample R2 is exactly what we expect given the persistence of the dividend
yield, and the relatively short samples we have for estimating the relation between dividend
yields and returns. Also, one might think that the null the sample mean would do poorly,
reasoning that with predictability high past returns would signal low future returns. However,
though under this null though returns are predictable from dividend yields, returns are essentially
unpredictable from past returns, so the sample mean does not lead one astray in this way.

6.1 Reconciliation

Both views are right. Goyal and Welch’s message is that regressions using dividend yields and
other variables are not likely to be useful in forming market-timing portfolios, given the difficulty
of accurately estimating the return-forecasting coefficients in our “short” data sample with highly
persistent right hand variables. This conclusion echoes Kandel and Stambaugh (1996) and
Barberis (2000), who show in a Bayesian setting that uncertainty about the parameter br means
one should use a much lower parameter in a market-timing portfolio, shading the portfolio advice
well back towards simple use of the sample mean. (How these more sophisticated calculations
perform out of sample, extending Campbell and Thompson’s 2005 idea, is an interesting open
question.)

However, poor out-of-sample R2 does not reject the null hypothesis that returns are pre-
dictable. Out-of-sample R2 is not an unusually powerful statistic that gives stronger evidence
about return forecastability than the regression coefficients. One can simultaneously hold the
view that returns are predictable, or more accurately that the bulk of price-dividend ratio
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movements reflect return forecasts rather than dividend growth forecasts, and believe that such
forecasts are not very useful for out-of sample portfolio advice, given uncertainties about the
coefficients in our data sets.

7 What about...

7.1 Long-horizon estimates

So far, I have imposed a VAR(1) structure on the null with unforecastable returns. Perhaps
this restriction is too limiting. Perhaps prices move on news of dividends several years in the
future, news not seen in next year’s dividend. After all, we know managers smooth dividends, so
imputing the multi-year dividend growth forecastability from the forecastability one year ahead
may be severely constraining.

To address this question, I look at direct forecasts of long-horizon returns and dividend
growth, regressions of the form

kX
j=1

ρj−1∆dt+j = a
(k)
d + b

(k)
d (dt − pt) + εdt+k

kX
j=1

ρj−1rt+j = a(k)r + b(k)r (dt − pt) + εrt+k.

Individual regressions ∆dt+j = a+ b (dt − pt) + εt+k paint a similar picture, and the long-run
regressions are of course partial sums of such individual regressions. Again, these regressions
amount to a variance decomposition for dividend yields of the type studied by Cochrane (1992).
Start with the finitely-iterated version of identity (6),

dt − pt = Et

kX
j=1

ρj−1rt+j −
kX

j=1

ρj−1∆dt+j + ρk+1 (dt+k+1 − pt+k+1) .

Multiply by (dt − pt)−E(dt − pt), and take expectations, giving

var(dt − pt) = −cov
⎛⎝ kX
j=1

ρj−1∆dt+j , dt − pt

⎞⎠+ cov

⎛⎝ kX
j=1

ρj−1rt+j , dt − pt

⎞⎠
+cov

h
ρk+1 (dt+k+1 − pt+k+1) , dt − pt

i
Dividing by var(dt − pt) we can express the variance decomposition in terms of regression
coefficients,

1 = b(k)r − b
(k)
∆d + b

(k+1)
dp . (19)

Thus, we can read from the regression coefficients directly what fraction of the variance of
dividend yields is due to k-period dividend growth forecasts, what fraction is due to k-period
return forecasts, and what fraction is due to k-period forecasts of future dividend yields. As
k → ∞ and if the last term vanishes (φ < 1/ρ) we recover the identity blrr − blrd = 1 studied
above.
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Figure 7: Regression forecasts of discounted dividend growth
Pk

j=1 ρ
j−1∆dt+j (top) and returnsPk

j=1 ρ
j−1rt+j (bottom) on the log dividend yield dt−pt, as a function of the horizon k. Triangles

are direct estimates. Circles sum individual estimates, e.g.
Pk

j=1 ρ
j−1β (∆dt+j , dt − pt). The

dashed line is the value implied by the VAR, e.g.
Pk

j=1 ρ
j−1φj−1bd. Dots are +/- two standard

errors from zero. The tighter set use a Newey-West correction with lags = twice the horizon.
The larger set impose the null and homoskedasticity to avoid “nonaparametric” standard error
estimation.

Figure 7 presents direct estimates of long-horizon regression coefficients in (19) as a function
of k. I do not calculate the last, future price-dividend ratio term as it is implied by the other
two.

Dividend growth forecasts explain small fractions of dividend yield variance at all horizons.
The triangles in Figure 7 are direct regressions, e.g.

Pk
j=1 ρ

j−1∆dt+j on dt − pt. The rise
in these estimates in the top panel means that long-run dividend growth moves in the wrong
direction, explaining negative fractions of dividend yield variation. The circles in Figure 7 sum
individual regression coefficients,

Pk
j=1 ρ

j−1β(∆dt+j , dt−pt). This estimate only differs because
it uses more data points. For example, the first year β(∆dt+1, dt − pt) in the 10-year k return
is estimated using T − 1 data points, not T − 10 data points of the direct (triangle) estimate.
Here we at least see the “right,” negative, sign, though the magnitudes are still trivial.

By contrast, the return forecasts account for essentially all dividend yield volatility once one
looks out past 10 years. This (with a negative sign) is what dividend forecasts should look like
if we are to hope that they explain price variation, and they do not come close, even in these
direct estimates.
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The return forecast coefficient and thus the sum of coefficients is close to one past the 10
year horizon. There is no identity forcing return and dividend coefficients to add up here, as
the future dividend yield term in (19) could enter as well. In fact, we do not need bubbles.

Despite the battering return forecasts br have taken in the 1990s, cutting return coefficients br
almost in half, both these direct and the above indirect blrr = br/(1−ρφ) long-horizon estimates
are very little changed since Cochrane (1992). The longer sample has a lower br, but a larger φ,
so br/(1− ρφ) is still just about exactly one.

The dashed lines present the long-run coefficients implied by the VAR,
Pk

j=1 ρ
j−1brφj−1 =

br
1−(ρφ)k
1−ρφ and similarly for dividend growth, to give a visual sense of how well the VAR fits the

direct estimates. The point estimates of the long-run regressions show slightly stronger return
forecastability than the values implied by the VAR, and dividend growth that goes even more
in the “wrong” positive direction, though the differences are far from statistically significant.
Time-series empirical work is full of examples in which direct long-horizon estimates give quite
different answers from those implied by models fit to short-run properties of the data, for example
Cochrane (1988). This case does not appear to be one of them.

The dotted standard errors in Figure 7 use the Newey-West scheme with lags equal to
twice the horizon in order to control for serial correlation due to overlap. I use the Newey-
West scheme because the standard Hansen-Hodrick correction with lags equal to the horizon
yields negative variances in some instances. These standard errors struck me as suspiciously
optimistic, especially the apparent increase in precision with horizon in the lower panel of Figure
7. “Nonparametric” estimates can perform poorly in small samples, especially when using up
to 50 lags in a 77 year sample. In an attempt to provide a bit more trustworthy standard errors,
the dashed standard errors impose the null that one period returns or dividend growth are i.i.d.
(independent of current and past dividend yields and independent of past returns or dividend
growth) in order to estimate the spectral density matrix. This assumption produces a much
simplified spectral density matrix, which should result in better small sample performance. The
calculation is in the Appendix. The dashed standard errors show the return forecasts to have
about the same significance at all horizons, which is the message of the econometric literature
that investigates long-horizon forecasts. They show that the long-horizon dividend forecasts
are completely insignificant.

7.2 Hidden long-run movements

We cannot rule out a null hypothesis that prices are driven by news of extremely far-distant
dividend growth, that the real decompositions change places after the 25 years shown in Figure
7. For example, we might suppose that dividend growth exhibits rare “structural breaks,” and
prices vary on varying assessments of the probability of such a break. Though we do not have
any evidence for such long-run dividend growth forecastability, we don’t have much evidence
against it either, so this null cannot be rejected.

By itself, this is an unsatisfactory solution. Explaining price variation by far-off dividend
forecasts with no independent measurement of those forecasts is really no different from explain-
ing price variation by fads and fashions. The only way to make either idea respectable is to find
some independent confirmation of the event. Noone has yet suggested a way to independently
confirm that expectations of long-term dividend forecasts are moving.
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7.3 Repurchases

What about the fact that firms seem to smooth dividends, dividend payments seem to be
declining in favor of repurchases, and dividend behavior may be shifting over time?

Dividends as measured by CRSP capture all payments to investors, including cash mergers,
liquidations, and so forth as well as actual dividends. If a firm repurchases all of its shares,
CRSP records this event as a dividend payment. If a firm repurchases some of its shares, an
investor may choose to hold his shares, and the CRSP dividend series captures the eventual
payments he receives. If the firm pays no dividends, ever, as measured by CRSP, then the
stock is worthless. Thus, there is nothing wrong in an accounting sense with using the CRSP
dividends series. The price really is the present value of these dividends.

The danger posed by repurchases, then, is another possibility of long-delayed dividend
growth. Prices may move on news of future cashflows, and those cashflows do eventually work
their way into measured dividends, but it takes so long that we do not measure the correlation
between prices and eventual dividends even in 25 years. Again, we need some independent
measurement for this view to rescue the idea that dividend growth is forecastable and returns
are not.

8 Conclusion

If returns really are not forecastable, then dividend growth must be forecastable in order to
generate variation in dividend-price ratios. We should see that forecastability. Yet, even
looking 25 years out, there is not a shred of evidence that high market price-to-dividend ratios
are associated with higher subsequent dividend growth. Even if we convince ourselves that the
return-forecasting evidence crystallized in Fama and French’s (1988) regressions is statistically
insignificant, we still leave unanswered the challenge crystallized by Shiller’s (1981) volatility
tests. If not dividend growth or expected returns, what does move prices?

Setting up a null in which varying expected dividend growth does explain the variation of
dividend yields, I can check both dividend and return forecastability. I find that the absence
of dividend growth forecastability in our data provides much stronger evidence against the null
than does the presence of return forecastability, with probability values in the 1-2% range rather
than in the 20% range.

The long-run coefficient blrr = br/(1 − ρφ) = br/(br − bd) captures these observations in a
single number, and ties them to modern volatility tests. The point estimates are squarely in the
bull’s eye that all variation in price-dividend ratios is accounted for by time-varying expected
returns, and none by time-varying dividend growth forecasts. Tests based on these coefficients
also give 1-2% rejections.

The stronger rejection comes from a different view of what events are “more extreme” than
the one seen in our data. Many samples with higher return forecasting coefficients br than we
have seen also come with much greater dividend forecastabilty than we have seen (large negative
bd or small φ). In these samples, some or even a lot of dividend yield variation is accounted
for by dividend growth forecasts. The conventional br > b̂r test counts these samples as “more
extreme,” in the rejection region. Tests based on the dividend growth coefficient or the long-run
coefficients count these events as “closer to the null” thus delivering the smaller larger probability
values for events that really are “more extreme” than our data.
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I have concentrated on dividend yields for simplicity and to give the tightest interpretation
of the alternative — if returns are not predictable, then something else must be. Other variables
do predict dividend growth (Ribeiro 2004, Lettau and Ludvigson 2005), but they also predict
returns. Adding more variables can only make the evidence stronger.

Excess return forecastability is not a comforting result. Our lives would be so much easier
if we could trace price movements back to visible news about dividends or cashflows. Failing
that, at least high prices could forecast dividend growth, so we could think agents see cash-flow
information that we do not see. Failing that, it would be lovely if high prices were associated
with low interest rates or other observable movements in discount factors. Failing that, perhaps
time-varying expected excess returns that generate price variation could be associated with more
easily measurable time-varying standard deviations, so the market moves up and down a mean-
variance frontier with constant Sharpe ratio. Alas, the evidence so far seems to be that most
aggregate price variation can only be explained by rather nebulous variation in Sharpe ratios.
But that is where the data have forced us, and they still do so.

The only good piece of news in all of this is that observed return forecastability does seem to
be just enough to account for the volatility of price dividend ratios. If both return and dividend
growth forecast coefficients were small, we would be forced to conclude that prices follow a
“bubble” process, moving only on news (or, frankly, opinion) of their own future value.

The implications of excess return forecastability reach throughout finance and are only be-
ginning to be explored. The literature has focused on portfolio theory, i.e. the possibility that
a few investors who are not affected by the change in risk or risk aversion that drives excess
return forecastability can benefit by market-timing portfolio rules. However, the signals are
slow-moving, really affecting the static portfolio choices of different generations rather than
dynamic portfolio choices of short-run investors, parameter uncertainty greatly reduces the po-
tential benefit, and these calculations face the classic Catch-22: if there are more than measure
zero of agents who take the advice (and you don’t find a corresponding measure who want to
move in the opposite direction), the phenomenon will disappear. But if expected excess returns
really do vary by as much as their average levels, much of the rest of finance still needs to be
rewritten. For example, Mertonian state variables, long a theoretical curiosity, but relegated to
the back shelf by an empirical view that investment opportunities are roughly constant, should
in fact be at center stage of cross-sectional asset pricing. For example, much of the beta of
a stock or portfolio reflects covariation between firm and factor (e.g. market) discount rates
rather than reflecting the covariation between firm and market cash flows. For example, stan-
dard cost-of-capital calculations featuring the CAPM and a steady 6% market premium need
to be rewritten, at least recognizing the dramatic variation of that premium, and more deeply
recognizing likely changes in that premium over the lifespan of a project and the multiple pricing
factors that predictability implies.
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10 Appendix

10.1 Likelihood for an AR(1)

The unconditional likelihood for an AR(1),

xt = a+ φxt−1 + εt

is

L = −T
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The second and third terms penalize φ near 1. There is no full analytic solution, but we can
analytically maximize out a and σ2 given φ. The derivatives are
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Figure 5 uses these values of σ2 and a for any given φ to plot the likelihood as a function of φ
only.

The conditional likelihood function in Figure 5 is

L = −T − 1
2

lnσ2 − 1
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t=2

(xt − a− φxt−1)2

For each φ I use the usual estimates of the other parameters,
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10.2 Simple standard errors for long-horizon forecasts

The general GMM formula for standard errors of OLS regressions

yt = βxt + εt

is (see Cochrane 2004)

var(β̂) =
1

T
E(xtx

0
t)
−1

∞X
j=−∞

E
³
εtxtx

0
t−jεt−j

´
E(xtx

0
t)
−1.

Applied to a forecasting regression

yt+k = βxt + vt+k

we have

var(β̂) =
1

T
E(xtx

0
t)
−1

∞X
j=−∞

E
³
vt+kxtx

0
t−jvt−j+k

´
E(xtx

0
t)
−1

When the horizon k is long, we need many terms of the sum. These terms can be poorly
estimated in “small” samples. By imposing structure on the null we can obtain simpler formulas
that can perform more reliably in small samples.

The long-horizon forecast regression is

yt+k =
kX

j=1

ρj−1rt+j = α+ βxt + vt+k

I impose the null that the returns are unforecastable. Then the regression is

yt+k = xtβ + εt+1 + ρεt+2 + ..ρk−1εt+k

and we can recover σ2ε from the regression residual by

σ2v = σ2
³
εt+1 + ρεt+2 + ..ρk−1εt+k

´
= σ2ε

³
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´
=
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σ2ε

Plugging in to the standard error formula we have
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E(xtx

0
t)
−1 ×

∞X
j=−∞

E
³³

εt+1 + ρεt+2 + ..+ ρk−1εt+k
´
xtx

0
t−j

³
εt−j+1 + ρεt−j+2 + ..+ ρk−1εt−j+k

´´
E(xtx

0
t)
−1

I assume that the εt are iid, and independent (as well as orthogonal to) past x. I do not assume
that εt are independent of contemporaneous and future x — return innovations today do affect
the dividend yield tomorrow. Thus

E
h³
εt+1 + ρεt+2 + ..+ ρk−1εt+k

´
xtx

0
t

³
εt+1 + ρεt+2 + ..+ ρk−1εt+k

´i
= E

∙³
εt+1 + ρεt+2 + ..+ ρk−1εt+k

´2¸
E
£
xtx

0
t

¤
=

³
1 + ρ2 + ..+ ρ2(k−1)

´
σ2εE

£
xtx

0
t

¤
=

1− ρ2k

1− ρ2
σ2εE

£
xtx

0
t

¤
32



The first lag term is
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Note by the independence assumption
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¢
thus the fact that εt is not independent of xt does not stop us from eliminating terms with
different dates on the ε. Thus, the first lag term simplifies to
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Continuing,

var(β̂) =
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Unweighted long-horizon regressions are also often used,

yt+k =
kX

j=1

rt+j = α+ βxt + vt+k

We can obtain the result in this case by taking the limit ρ→ 1,
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Thus, the answer in this case is

var(β̂) =
1

T
E(xtx

0
t)
−1σ2v

kX
j=−k

k − |j|
k

E
³
xtx

0
t−j
´
E(xtx

0
t)
−1.

33




